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Abstract

This paper analyzes a steady-state finite buffer M/M/1 feedback queue with reverse balking, re-
verse reneging and multiple working vacations. The concept of reverse balking and reverse reneging
evolves from investment businesses wherein more the number of customers associated with a firm less
the probability of balking of a customer and similar is the case of reverse reneging. Furthermore, if a
customer is dissatisfied with the service provided, he or she may chose to rejoin the queue as a feedback
customer. The server exits for working vacations whenever the system becomes empty instead of staying
idle in the system. Vacation times and service times during working vacations are all independent ran-
dom variables following exponential distribution. The model’s steady-state system length distributions
are calculated using the matrix approach. Some performance characteristics and cost optimization using
ant colony optimization (ACO) are presented. Sensitivity analysis is performed using numerical results
which are shown in the form of tables and graphs.
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1. Introduction

Queueing models with server vacations have been actively researched and successfully used
in manufacturing and production systems, service systems, communication systems, and other
fields over the last three decades. Working vacations (WV) are a form of vacation policy estab-
lished by Servi and Finn [13] wherein the server can provide service at a reduced rate rather than
shutting down altogether during the vacation period. Wu and Takagi [16] and Baba [2] extended
the M/M/1/WV queue to M/G/1 and GI/M/1 queues with working vacations, respectively.
Krishnamoorthy and Sreenivasan [8] analyzed an M/M/2 queue with one of the two servers in
working vacations. A survey on WV queues has been presented by Chandrasekaran et al. [4].

There is a growing trend to examine queueing systems from an economic perspective in order
to address customers’ unhappiness with waiting and desire for service. Customer impatience
has a damaging influence on businesses since it causes them to lose potential consumers, which
has a negative impact on the entire company. Balking and reneging are two queueing concepts
that are commonly used to depict customer impatience. In balking, if a customer sees a large
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queue ahead of him, he may resist at joining the queueing system. In the case of reneging, the
customer joins the queue, waits for his service, and then departs the system without receiving
service if the wait time exceeds his expectations. The situation of impatient customers in a server
vacation period was investigated by Altman and Yechiali [1]. Yue, Yue and Xu [17] analyzed the
single server queueing systems with customer impatience and WV. A Markovian queueing
system with balking, reneging and WV has been studied by Vijaya Laxmi et al. [15].

In the above mentioned queueing models, the size of the system or the length of the queue
influences balking and reneging. The larger the system, the more balking occurs, and the same
is true with reneging. However, in the case of investment enterprizes, the number of customers
with a certain firm becomes an intriguing and appealing feature for potential investors. As a
result, the likelihood of joining such a company is high. In this scenario, the larger the system
size, the greater the number of consumers who join it. As a result, when the system size is high,
the chance of balking is low which is referred to as "reverse balking". Furthermore, having a
large number of investors with an investment firm instils trust in investors and helps them to
complete the term of their policies/bonds. That instance, when a firm has a big number of in-
vesting consumers, waiting customers will have more patience. When seen as a queueing system,
it is obvious that as the queue becomes longer, fewer consumers would renege, a phenomenon
known as "reverse reneging". Jain et al. [7] first incorporated the concept of reverse balking in
queueing theory. Kumar and Som [10] developed the concept of reverse reneging and incorpo-
rated into an M/M/1 queueing system with reverse balking. A heterogeneous two server queue
with reverse balking and reneging has been studied by Bouchentouf and Messabihi [3].

In queueing theory, feedback refers to a dissatisfied client rejoining the queue owing to poor
service quality. Rework is another example of a queue with feedback in industrial processes.
Tackacs [14] studied a single server queue with feedback to determine the stationary process for
the queue size. Shanthakumaran and Thangaraj [12] considered a single server feedback queue
with impatient customers. An M/M/1 feedback queueing model with retention of reneged
customers and balking has been studied by Kumar and Sharma [9]. Kumar et al. [11] developed
an M/M/1/N feedback queueing system with reverse balking.

To the best of our knowledge, the impatient attitude of customers in the reverse view has not
been explored in working vacations queues. Therefore, we intend to embed reverse balking and
reverse reneging in a feedback WV queue. In this article, we explore a finite buffer feedback WV
queue in which customers may balk or renege owing to impatience in the reverse notion. The
inter-arrival times, service times during regular service period, during WV period and vacation
times are presumed to be exponentially distributed. The matrix form solution of the steady-state
probabilities is found by putting the steady-state equations in block matrix form. The model’s
performance metrics, cost analysis using ACO are obtained. Tables and graphs have been used
to demonstrate certain numerical findings.

The rest of the paper is laid out as follows. The queueing model is described in Section 2,
followed by the steady-state equations and their solution in Section 3. In Section 4, we offer
different model performance metrics as well as a cost model. Section 5 contains the sensitivity
analysis followed by conclusions in Section 6.

2. Model description

Consider an M/M/1/N feedback queueing system with reverse balking, reverse reneging and
WV. According to a Poisson process with an arrival rate λ, customers arrive one at a time.
When the system is unoccupied, a new customer has a probability q of joining the system and a
p = (1 − q) probability of not joining. When there are i customers ahead of him in the system,
let bi indicate the probability that the customer will join the queue or balk with probability 1− bi.
Furthermore, we assume that b0 = q and bN = 0. The assumption of reverse balking has been
incorporated with bi+1 > bi, 1 ≤ i ≤ N − 1.

After joining the queue each customer will wait a certain length of time which is exponen-
tially distributed with mean 1/α. When there are i customers in the system, the average rate of
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reverse reneging of a customer is given by (N − (i − 1))α, , 1 ≤ i ≤ N.
If a customer receives service and finds it unsatisfactory, it can return to the system as a

feedback customer with a probability q1 or depart with a probability p1 = 1 − q1.
A single server serves the customers on a first-come first-served basis with a service rate that

follows an exponential distribution with mean 1/µ. When the system gets empty, the server
takes WV. If there are waiting customers in the line after a vacation expires, the server resumes
regular service; otherwise, he departs for another WV. During the vacation time, the server
stays active and provides service at a different service rate to the arriving customers. This type
of working vacation is called multiple working vacations (MWV).

The vacation times and service times during WV are assumed to follow Poisson distribution
with parameter ϕ and η, respectively. The inter-arrival times, vacation times, service times
during regular service and during working vacation are mutually independent.

3. Analysis of the model

In this section, the Markov process is used to build the steady-state probability equations and
the matrix technique is adopted to determine steady-state probabilities. Let π0,i, 0 ≤ i ≤ N,
be the probability that the server is on WV when there are i customers in the system, and
π1,i, 1 ≤ i ≤ N, be the probability that there are i customers in the system while the server is in
regular service period. The steady-state equations are derived using the Markov process as:

λb0π0,0 = u1π0,1 + v1π1,1, (1)

ziπ0,i = λbi−1π0,i−1 + ui+1π0,i+1, 1 ≤ i ≤ N − 1, (2)

zNπ0,N = λbN−1π0,N−1, (3)

t1π1,1 = v2π1,2 + ϕπ0,1, (4)

tiπ1,i = λbi−1π1,i−1 + vi+1π1,i+1 + ϕπ0,i, 2 ≤ i ≤ N − 1, (5)

vNπ1,N = λbN−1π1,N−1 + ϕπ0,N , (6)

where for 1 ≤ i ≤ N, ui = ηp1 + (N − i + 1)α; vi = µp1 + (N − i + 1)α; zi = λbi + ϕ + ui; ti =
λbi + vi.

3.1. Matrix solution

In this subsection, the steady-state probabilities πj,i, j = 0, 1; j ≤ i ≤ N, are obtained by solving
the system of equations (1) to (6) using matrices.

Let Π = (Π0, Π1) be the steady-state probability vector, where Π0 = (π0,0, π0,1, π0,2, ..., π0,N)
and Π1 = (π1,1, π1,2, ..., π1,N). The equations (1) to (6) can be written in matrix form as

ΠQ = 0, (7)

Πe = 1, (8)

where e is a column vector with each component equal to unity and the Markov process’s
transition rate matrix Q has the block form:

Q =

(
Avv Avb
Abv Abb

)
.

The elements of the matrices Avv, Avb, Abv and Abb are given by

Avv =


−λb0 , if i = j = 1,
λbi−1 , if i = j − 1, j ≥ 2,

ui−1 , if i = j + 1,
−zi−1 , if i = j, j ≥ 2,

0 , otherwise
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Avb =

{
ϕ , if i = j + 1,
0 , otherwise

Abv =

{
v1 , if i = j = 1,
0 , otherwise

Abb =


−ti , if i = j,
λbi , if i = j − 1, j ≥ 2,

vi , if i = j + 1,
0 , otherwise.

Avb is a (N + 1)× N matrix, Abv is a N × (N + 1) matrix, Avv and Abb are square matrices of
orders N + 1 and N, respectively.
Based on the partition Π = (Π0, Π1), equations (7) and (8) can be written as:

Π0Avv + Π1Abv = 0, (9)

Π0Avb + Π1Abb = 0, (10)

Π0e0 + Π1e1 = 1, (11)

where e0, e1 are column vectors of order N + 1 and N, respectively, with each component as 1.
From (9), we have

Π0 = −Π1AbvAvv
−1. (12)

Using (12) in (10) and (11), we get

Π1

(
I − AbvAvv

−1AvbAbb
−1
)
= 0, (13)

Π1

(
e1 − AbvAvv

−1e0

)
= 1. (14)

The matrices Abv and Avb can be written as

Abv =

(
v1 O1
O2 O3

)
N×(N+1)

, Avb = ϕ

(
O1

IN×N

)
(N+1)×N

,

where O1, O2 and O3 are zero matrices of order 1× N, (N − 1)× 1 and (N − 1)× N, respectively.
Let Avv

−1 = [ai,j](N+1)×(N+1) and w denote the first row of Avv
−1, i.e., w = (a11, a12, ..., a1,N+1),

then

AbvAvv
−1 =

(
v1w
O4

)
N×(N+1)

, (15)

where O4 is a zero matrix of order (N − 1)× (N + 1).
Now,

AvbAbb
−1 = ϕ

(
O1

Abb
−1

)
. (16)

From (15) and (16), we have

AbvAvv
−1AvbAbb

−1 = v1ϕ

(
w0Abb

−1

O3

)
, (17)

where w0 = (a12, a13, . . . , a1,N+1).

Let us partition Π1 as
[
π1,1, Π̃1

]
where Π̃1 = [π1,i, 2 ≤ i ≤ N]1×(N−1). From (13) and (17), we

have [
π1,1, Π̃1

]
=
[
π1,1, Π̃1

] ( v1ϕw0Abb
−1

O3

)
.
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Hence, the system length probabilities of regular service period are given by

π1,i = π1,1v1ϕw0Abb
−1ϵi, 1 ≤ i ≤ N,

where ϵi is a column vector whose ith component is unity and the remaining components are
zero. From (12) and (15), the system length probabilities of server being in WV are given by

[π0,0, π0,1, . . . , π0,N ] = −[π1,1, Π̃1]

(
v1w
O4

)
.

Hence,

π0,i = −π1,1v1wϵi+1, 0 ≤ i ≤ N.

Using the normalization condition ∑1
j=0 ∑N

i=j πj,i = 1, the only unknown π1,1 is obtained as

π1,1 =

(
v1ϕ

N

∑
i=1

w0Abb
−1ϵi − v1

N

∑
i=0

wϵi+1

)−1

.

This completes the evaluation of steady-state probabilities.

4. Performance measures

Once the steady-state probabilities are determined, several model performance measures may be
calculated. The average number of customers in the system (ls), the probability that the server is
busy with regular service (pb) and the probability that the server is in WV (pwv) are given by

ls =
N

∑
i=1

i (π0,i + π1,i) ; pb =
N

∑
i=1

π1,i ; pwv =
N

∑
i=0

π0,i.

The average reverse balking rate (br), the average reverse reneging rate (rr) and the average rate
of loosing a customer due to impatience (lr) are obtained as

br =
N

∑
i=0

λ(1 − bi)π0,i +
N

∑
i=1

λ(1 − bi)π1,i ; rr =
N

∑
i=1

α(N − i + 1) (π0,i + π1,i) ; lr = br + rr.

4.1. Cost model

The total expected cost function per unit time is formulated in this subsection with service rates
as the decision variables. Our goal is to figure out the best service rates that minimize the total
expected cost function. The cost parameters are assumed to be:

• Cls− holding cost per unit time,

• Clr− cost incurred when a customer is lost due to impatience,

• Cµ− cost per service during regular service period,

• Cη− cost per service during WV period,

• C f µ− cost per service for a feedback customer during regular service period,

• C f η− cost per service for a feedback customer during WV period.

The total expected cost (tec) is defined as:

tec = Clsls + Clrlr + µ(Cµ + q1C f µ) + η(Cη + q1C f η).
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Analytical optimization of the aforementioned cost model is a tedious job due to the complexity
of the cost function. As a result, we have used the ACO developed by Colorni et al. [5] and
Dorigo et al. [6] to find the best values for µ and η. A brief algorithm of ACO is given below:
Algorithm for ACO
Step 1: Consider a suitable number of ants in the colony (B). Assume a set of permissible
discrete values for each of the n design variables xij as xi1, xi2, ..., xip (i = 1, 2, ..., n). Assume

equal amounts of pheromone τ
(1)
ij initially along all the arcs. The superscript to τij denotes the

iteration number. For simplicity, τ
(1)
ij is assumed to be 1. Set the iteration number l = 1.

Step 2: (a) Compute the probabilities (pij) of selecting the arc xij as

p(l)ij =
τ
(l)
ij D(β)

ij

∑
p
m=1[τ

(l)
im D(β)

im ]
; i = 1, 2, ..., n; j = 1, 2, ..., p,

where τij is a pheromone amount between arc i and arc j, Dij is a reciprocal of the distance
between arc i and arc j, β is the parameter that allow a user control on the relative importance
of trail versus visibility.
(b) The specific path (or discrete values) chosen by the kth ant can be determined using random
numbers generated in the range (0, 1). For this, we find the cumulative probability ranges asso-
ciated with different paths based on the probabilities given by above equation. The specific path
chosen by ant k will be determined using the roulette-wheel selection process in step 3(a).
Step 3: (a) Generate B random numbers r1, r2, ..., rB in the range (0, 1), one for each ant. De-
termine the discrete value or path assumed by ant k for variable i as the one for which the
cumulative probability range (found in step 2 (b)) includes the value ri.
(b) Repeat step 3 (a) for all design variables i = 1, 2, ..., n.
(c) Evaluate the objective function values corresponding to the complete paths (design vectors
X(k) or values of xij chosen for all design variables i = 1, 2, ..., n by ant k, k = 1, 2, ..., B):

fk = f (X(k)); k = 1, 2, ..., B.

Determine the best and worst paths among the B paths chosen by different ants as follows:

fbest = min
k=1,2,...,B

fk, fworst = max
k=1,2,...,B

fk.

Step 4: Test for the convergence of the process. The process is assumed to have converged if
all the B ants take the same best path. If convergence is not achieved, assume that all the ants
return home and start again in search of food. Set the new iteration number as l = l + 1, and
update the pheromone on different arcs as

τij = τ
(old)
ij + ∑

k
∆τ

(k)
ij ,

where τ
(old)
ij denotes the pheromone amount of the previous iteration left after evaporation, ∆τ

(k)
ij

is the amount of pheromone deposited on arc i and arc j by the best ant k and are taken as

τ
(old)
ij = (1 − ρ)τij,

∆τ
(k)
ij =


ξ fbest
fworst

; if (i, j) ∈ global best tour,

0 ; otherwise,

where ρ ∈ (0, 1] is the evaporation rate (also known as the pheromone decay factor) and ξ is
the parameter used to control the scale of the global updating of the pheromone. With the new
values of τij, go to step 2. Steps 2, 3, and 4 are repeated until the process converges. In some
cases, the iterative process may be stopped after completing a prespecified maximum number of
iterations (lmax).

The complexity of the algorithm is O(lϱ2B) where l is the number of iterations, ϱ is the
number of nodes and B is the number of ants.
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Table 1: Various performance measures of the model for different λ and q1

λ=1.0 λ=1.7 λ=2.4
q1 = 0.6 q1 = 0.2 q1 = 0.6 q1 = 0.2 q1 = 0.6 q1 = 0.2

ls 0.038536 0.027681 0.092328 0.052341 0.407215 0.094482
pb 0.002170 0.001060 0.006109 0.002123 0.036461 0.004367

pwv 0.997830 0.998930 0.993891 0.997876 0.963538 0.995632
br 0.947901 0.948532 1.606110 1.610020 2.237570 2.266750
rr 0.034617 0.025827 0.061203 0.044884 0.092589 0.065255
lr 0.982518 0.974359 1.667310 1.654901 2.330160 2.332010

Table 2: Effect of α on the performance measures

α = 0.5 α = 1.0 α = 1.5
ls 0.015341 0.008061 0.005467
pb 0.000244 0.000071 0.000033

pwv 0.999756 0.999929 0.999966
br 1.613650 1.614230 1.614530
rr 0.073773 0.079008 0.080914
lr 1.687420 1.693310 1.695440

5. Sensitivity analysis

In this section, tables and graphs have been used to display certain numerical results. We fix
the capacity of the system as N = 10 and the balking function is taken as bi = i/N, 1 ≤ i ≤
N − 1, bN = 0. The various parameters of the model are chosen to be λ = 1.7, µ = 2.0, η =
1.2, ϕ = 0.1, q = 0.05, α = 0.1, q1 = 0.3, unless they are considered as variables or their values
are mentioned in the respective tables and figures. For employing the ACO, we have arbitrarily
chosen the following: n = 2, B = 3, ϱ = 40, l = 100, β = 0.5, ξ = 2, ρ = 0.5 and the distances
between the arcs are obtained using the RandomReal function of Mathematica software.

Table 1 shows the model’s performance metrics for various values of λ and q1. All the
performance measures, with the exception of pwv and br, drop as q1 lowers, whereas pwv and br
rise as q1 decreases for fixed λ. Further, increase in λ results in a drop in pwv, whereas increase
in λ results in the increase of the remaining performance metrics.

Table 2 shows the influence of α on the model’s performance measures. With the rise of α, a
rising trend can be noticed in pwv, br, rr and lr while a declining trend can be found in ls and pb.

Figure 1 shows the influence of µ on the server’s state probabilities for various values of
the vacation parameter (ϕ). The picture illustrates that when µ grows, the probability of the
server being busy with regular service (pb) decreases while the probability of the server being
on vacation (pwv) increases. Furthermore, as the vacation parameter (ϕ) is increased, pb grows
while pwv decreases for any µ.

The impact of λ on the average number of customers in the system (ls) in models with and
without reverse balking and reverse reneging is shown in Figure 2. From the graph, one may
observer that in either of the models ls increases with the increase of the arrival rate λ. Further,
the queue lengths are lower in models with reverse balking and reverse reneging when compared
to models without reverse balking and reverse reneging.

Figure 3 displays the effect of service rates µ and η on the average rate of loosing a customer
(lr). With the increase of both µ and η, the average rate of loosing a customer decreases. We can
carefully setup the service rates µ and η in the system in order to ensure the minimum average
rate of loosing a customer due to impatience.
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Table 3: Optimum service rates and the corresponding minimum tec.

ϕ 0.06 0.08 0.1
Case 1 (µ∗, η∗) (0.606627, 0.393620) (0.648424, 0.295251) (0.679539, 0.213562)

tec∗ 65.9207 65.3714 64.7454
Case 2 (µ∗, η∗) (0.613050, 0.539007) (0.656637, 0.446063) (0.689743, 0.366756)

tec∗ 70.8644 70.5699 70.1348
Case 3 (µ∗, η∗) (0.608498, 0.390333) (0.650509, 0.291586) (0.681784, 0.209613)

, tec∗ 57.5689 57.0077 56.3712
Case 4 (µ∗, η∗) (0.557353, 0.457533) (0.597739, 0.360028) (0.628019, 0.278463)

tec∗ 68.8265 68.4826 68.0101
Case 5 (µ∗, η∗) (0.695438, 0.199822) (0.737154, 0.101221) (0.768531, 0.018769)

tec∗ 67.9667 66.7260 65.5257
Case 6 (µ∗, η∗) (0.590782, 0.413392) (0.632152, 0.315211) (0.662999, 0.233546)

tec∗ 66.8187 66.3317 65.7522
Case 7 (µ∗, η∗) (0.622554, 0.356552) (0.664430, 0.257807) (0.695557, 0.175969)

tec∗ 66.3707 65.703 64.9789

Table 4: Optimum service rates and the corresponding model characteristics for various model parameters

(µ∗, η∗) tec∗ ls pb pwv lr
1.5 (0.560865, 0.053717) 53.0653 0.291992 0.027470 0.972530 1.486520

λ = 2.0 (0.856029, 0.449138) 82.0273 0.355744 0.032820 0.967180 1.955930
2.5 (1.145080, 0.832582) 110.272 0.415343 0.037775 0.962225 2.421721
0.1 (0.533546, 0.289963) 55.1871 0.231776 0.021178 0.978822 1.672162

q1 = 0.2 (0.597385, 0.258192) 59.5429 0.269601 0.024895 0.975105 1.673490
0.3 (0.679539, 0.213562) 64.7454 0.318140 0.029674 0.970325 1.674791
0.04 (1.021179, 0.862099) 91.8238 0.332031 0.034453 0.965547 1.625062

α = 0.08 (0.782366, 0.436608) 73.5377 0.320756 0.030862 0.969137 1.659655
0.12 (0.572881, 0.022225) 81.3452 0.304472 0.027703 0.972297 1.687794

Table 3 presents the optimum values of the service rates (µ∗, η∗) that minimize the total
expected cost (tec) for different values of ϕ and for the following cost values:
Case 1: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 2: Cls = 60, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 3: Cls = 40, Clr = 10, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 4: Cls = 40, Clr = 15, Cµ = 30, Cη = 20, C f µ = 22, , C f η = 18,
Case 5: Cls = 40, Clr = 15, Cµ = 25, Cη = 27, C f µ = 22, , C f η = 18,
Case 6: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 27, , C f η = 18,
Case 7: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 22.

One may observe from the table that for any set of cost values with the increase of ϕ, µ∗

increases while tec∗ and η∗ decrease.
The values of the service rates that minimize the total expected cost are presented in Table 4

along with the corresponding performance metrics for λ, q1, α and the cost values in Case 1. It
is clear from the table that an increase in λ or q1 results in the increase of µ∗, tec∗, ls, pb and lr
while pwv decreases with λ or q1. One may note that η∗ increases with λ and decreases with q1.
On the otherhand increase in α leads to the decrease of all the values except pwv and lr.
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6. Conclusions

We investigated a Markovain feedback queue with reverse balking, reverse reneging, and work-
ing vacations in this study. Using the matrix technique, we have obtained the steady-state prob-
abilities. Different performance measures, cost analysis using ACO and numerical findings in
the form of tables and graphs are sketched out to show the influence of the system parameters.
The provided approach has the potential to be utilized in a variety of investment business areas,
including insurance, mutual funds, banking and so on. The current model may be expanded
to a renewal input feedback queue with working vacations under reverse balking and reverse
reneging in future.
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