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Abstract

In the literature of probability theory, it has been noticed that the classical probability distributions do
not furnish an ample fit and fail to model the real-life data with a non-monotonic hazard rate behaviour.
To overcome this limitation, researchers are working in the refinement of these distributions. In this
paper, a new method has been presented to add an extra parameter to a family of distributions for more
flexibility and potentiality. We have specialized this method to two-parametric Weibull distribution.
A comprehensive mathematical treatment of the new distribution is provided. We provide closed-form
expressions for the density, cumulative distribution, reliability function, hazard rate function, the r-th
moment, moment generating function, and also the order statistics. Moreover, we discussed mean residual
life time, stress strength reliability and maximum likelihood estimation. The adequacy of the proposed
distribution is supported by using two real lifetime data sets as well as simulated data.

Keywords: Weibull distribution, hazard rate function, survival function, mean residual life,
Maximum likelihood estimation.

1. Introduction

Weibull distribution is a well known life time distribution in reliability engineering and failure
analysis. The Weibull distribution is used in modelling the engineering, biological, weather
forecasting and hydrogical data sets. It does not impart an admissible fit for some applica-
tions, espacially, when the hazard rates are bathtub, upside down bathtub, or bimodal shapes.
To overcome these limitations, several researchers have developed various modifications and
extensions of the Weibull distribution to model various types of data. Many extentions and
generalizations of the Weibull distribution have accomplished the above purpose. Among these,
Xie and Lai [1] introduced the additive Weibull distribution, Mudholkar et al. [2] proposed
exponentiated Weibull (EW) distribution by adding an extra parameter to the Weibull distribution
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which provides bathtub shaped hazard rate function. Xie et al. [3] proposed the the extended
Weibull distribution. Carrasco et al. [4] presented generalized modified Weibull (GMW) distri-
bution. Modified Weibull by Lai et al. [5]; extended flexible Weibull by Bebbington et al. [6].
The exponential-Weibull distribution by Cordeiro et al. [7]. Lee et al. [8] and Alzaatreh et al.
[9] proposed methods of generalized continuous and discrete distributions.

Mahdavi and Kundu [10] proposed a method called the Alpha Power Transformation (APT)
and it is useful to assimilates skewness to a family of distributions. Let F(x) be the cumulative
distribution function (cdf) of a continuous random variable X, then they define the APT of F(x)
for x ∈ R as follows

FAPT(x) =

{
αF(x)−1

α−1 ; α ∈ R+, α ̸= 1
F(x) ; α = 1

and the corresponding probability density function (pdf) as

fAPT(x) =

{
logα
α−1 f (x)αF(x) ; α ∈ R+, α ̸= 1
f (x) ; α = 1

They applied the proposed method to a one-parameter exponential distribution and generated a
two-parameter Alpha Power Exponential distribution.

Recently, Ijaz et al. [11] proposed a new family of distributions named as New Alpha Power
Trasformed family (NAPT) of distributions. They employed exponential distribution in NAPT
family and derived a new distribution called New Alpha Power Trasformed exponential (NAPTE)
distribution. Let F(x) be the cdf of a continuous random variable X, then they define the NAPT
of F(x) for x ∈ R as follows

FNAPT(x) = α
−log

(
1

F(x)

)
; α > 0

and the corresponding pdf as

fNAPT(x) =
log(α)α−log

(
1

F(x)

)
f (x)

F(x)
; α > 0

The following are the primary motivations for disposing Ratio Transformation (RT) method in
practise:

• A straightforward and efficient method for adding an extra parameter to an existing
distributions.

• To enhance the characteristics and flexibility of existing distributions.

• It is quite easy to use, hence it can be used quite effectively for data analysis purposes.

• To present the extended version of the baseline distribution that includes closed forms of
cdf, reliability function as well as hazard rate function.

• To provide better fits than the other modified models having the same or higher number of
parameters.

The remainder of the paper is organized as follows: In section 2 a new family of probability
distributions called RT has been highlighted and some general properties of this family have been
discussed. In section 3, RTW distribution has been considered, some special cases are presented
and its structural properties including moments, moment generatin function, mean residual life
and mean waiting time, order statistic and stress-strength reliability have been discussed. In
section 4, Maximum likelihood estimators of unknown parameter as well as simulation study
have been carried out. In secton 5, Two real life data sets have been analyzed to illustrate the
potency of the proposed model. Finally, the paper is concluded in section 6.
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2. General properties of RT method

Let F(x) be the cdf of a continuous random variable X, then the Ratio transformation of F(x) for
x ∈ R, is defined as follows

FRT(x) =
F(x)

1 + α − αF(x)
; α > 0 (1)

Clearly, FRT(x) is a proper cdf. If F(x) is an absolute continuous distribution function with the
pdf f (x), then FRT(x) is also an absolute continuous distribution function with the pdf

fRT(x) = f (x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)2 ; α > 0 (2)

A useful expansion for the cdf and pdf in (1) and (2) are respectively given by

FRT(x) =
∞

∑
j=0

∞

∑
k=0

ajk(F(x))k+1 (3)

where,

ajk =
(j logα)k

k! (1 + α)j+1

and

fRT(x) = f (x)

[
1 − αF(x)

1 + α
(1 − F(x)logα)

]
∞

∑
j=0

∞

∑
k=0

bjkFk(x) (4)

where,

bjk =
(j + 1)(j logα)k

(1 + α)j+1k!

The reliability function RRT(x) is given by

RRT(x) =
1 + α − αF(x) − F(x)

1 + α − αF(x)
; α > 0 (5)

The hazard rate function hRT(x) is given by

hRT(x) = f (x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)
(1 + α − αF(x) − F(x))

; α > 0 (6)

If R(x) and h(x) are the reliability and hazard rate functions of f respectively, then the hazard
rate hRT(x) can be written as

hRT(x) = h(x)R(x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)
(1 + α − αF(x) − F(x))

; α > 0 (7)

From (7), it is clear that

lim
x→−∞

hRT(x) =
1
α

lim
x→−∞

h(x)

and,
lim

x→∞
hRT(x) = lim

x→∞
h(x)
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3. RTW distribution and its properties

Let Θ = (α, λ, β)T . From (2), The continuous randon variable X follows RTW distribution if its
cdf, with scale parameter λ > 0 and shape parameters α > 0, β > 0, for x ∈ R+ is given by

FRTW(x, Θ) =
1 − e−λxβ

1 + α − α1−e−λxβ
; α > 0 (8)

and the corresponding pdf is

fRTW(x, Θ) =

λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
(

1 + α − α1−e−λxβ
)2 ; α > 0 (9)

Using (3) and (4), the cdf and pdf in (8) and (9) can be respectively written as

FRTW(x, Θ) =
∞

∑
j=0

∞

∑
k=0

k+1

∑
l=0

ajkl e−lλxβ

where,

ajkl =
(j logα)k(k+1

l )(−1)l

k! (1 + α)j+1

and

fRTW(x, Θ) = xβ−1

1 − α

(
1−e−λxβ

)
1 + α

(1 − logα (1 − e−λxβ
))

 ∞

∑
j=0

∞

∑
k=0

k

∑
l=0

bjkle−λ(l+1)xβ

where,

bjkl =
λβ(j + 1)(j logα)k(k

l)(−1)l

(1 + α)j+1k!

The reliability function RRTW(x, Θ) and the hazard rate function hRTW(x, Θ) for x ∈ R+ are,
respectively, given by

RRTW(x, Θ) =

α

(
1 − α−e−λxβ

)
+ e−λxβ

1 + α − α1−e−λxβ
; α > 0 (10)

hRTW(x, Θ) =

λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
(

1 + α − α1−e−λxβ
) (

α
(

1 − α−e−λxβ
)
+ e−λxβ

) ; α > 0

The behaviour of the hazard rate function at extremes for different values of shape parameter β.

h(0) =


∞ f or 0 < β < 1,
λ
α f or β = 1,
0 f or β > 1,

h(∞) =


0 f or 0 < β < 1,
λ f or β = 1,
∞ f or β > 1.

Remark: When α = 1, the RTW distribution becomes the Weibull distribution. In that situation
the shapes for hazard rate function are conspicuous in the literature. The seven important special
cases of RTW distribution are presented in table 1

Figure 1 depicts some plots of the RTW density for selected parameter values. Plots of the
hazard rate function of the RTW distribution for selected parameter values are displayed in
Figure 2.
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Table 1: Sub-cases of the RTW Distribution

α λ β Reduced model

- 1 - RT one-parameter Weibull distribution
1 - - Two-parameter Weibull distribution
1 1 - One-parameter Weibull distribution
- - 2 RT-Rayleigh distribution
1 - 2 Rayleigh distribution
- - 1 RT-exponential distribution
1 - 1 Exponential distribution
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Figure 1: Plots of the RTW density for λ = 1 and various values of α and β.
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Figure 2: Plots of the RTW hazard rate function for λ = 1 and various values of α and β.
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3.1. Moment and moment generating function

In this subsection, the rth moment and the moment generating function of the RTW distribution
are obtained by using the following series representations.

α−x =
∞

∑
k=0

(−logα)kxk

k!
(11)

(1 − x)−2 =
∞

∑
k=0

(k + 1)xk ; |x| < 1, (12)

(1 − x)−1 =
∞

∑
k=0

xk ; |x| < 1, (13)

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xr f (x)dx

=
1

(1 + α)2

∞∫
0

xrλβxβ−1e−λxβ
(

1 + α − α1−e−λxβ (
1 − (1 − e−λxβ

)logα
))

×
(

1 − α1−e−λxβ

1 + α

)−2

dx (14)

By substituting 1 − e−λxβ
= y in (14), we get

E(Xr) =
∞

∑
j=0

1
(1 + α)j+1

 1∫
0

(
−1
λ

log(1 − y)
) r

β

(
αjy +

α(j+1)y(j + 1)logα

1 + α
y

)
dy

 (15)

Again, substituting −1
λ log(1 − y) = x in (15), we get the final expression as

E(Xr) =
∞

∑
j=0

∞

∑
k=0

λαj(−logα)k

(1 + α)j+1k!
Γ(

r
β
+ 1) {A + B}

where,

A =
jk

(λ(k + 1))
r
β +1

and

B =
α logα (j + 1)k+1

1 + α

(
1

(λ(k + 1))
r
β +1

− 1

(λ(k + 2))
r
β +1

)

and the moment generating function can be obtained as

MX(t) =
∞∫

0

etx f (x)dx

by using the same procedure as above, we get the final expression for moment generating function
as

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

λtiαj(−logα)k

(1 + α)j+1k!i!
Γ(

i
β
+ 1) {C + D}
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where,

C =
jk

(λ(k + 1))
i
β +1

and

D =
α logα (j + 1)k+1

1 + α

 1

(λ(k + 1))
i
β +1

− 1

(λ(k + 2))
i
β +1


3.2. Mean residual life and mean waiting time

Suppose that X is a continuous random variable with reliability function R(x) , the mean residual
life is the expected additional lifetime given that a component has survived until time t. The
mean residual life function, say µ(t) , is given by

µ(t) =
1

R(t)

E(t)−
t∫

0

x f (x)dx

− t (16)

where

E(t) =
∞

∑
j=0

∞

∑
k=0

λαj(−logα)k

(1 + α)j+1k!
Γ(

1
β
+ 1)

 jk

(λ(k + 1))
1
β +1

+
α logα (j + 1)k+1

1 + α

×

 1

(λ(k + 1))
1
β +1

− 1

(λ(k + 2))
1
β +1

 (17)

and

t∫
0

x f (x)dx =
∞

∑
j=0

∞

∑
k=0

αj jk(−logα)k

(1 + α)j+1k!

 1

λ
1
β (k + 1)

1
β +1

γ

(
λ(k + 1)tβ,

1
β
+ 1
)

+
(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1

 (18)

Substituting (10), (17) and (18) in (16), µ(t) can be written as

µ(t) =
1 + α − α1−e−λtβ

α
(

1 − α−e−λtβ
)
+ e−λtβ

∞

∑
j=0

∞

∑
k=0

αj(−logα)k

(1 + α)j+1k!

×
(

A′ + B′ −jk

Γ( 1
β + 1)

(C′ + D′)

)
− t

where,

A′ =
jk

(λ(k + 1))
1
β +1

,

B′ =
α logα (j + 1)k+1

1 + α

 1

(λ(k + 1))
1
β +1

− 1

(λ(k + 2))
1
β +1

 ,

C′ =
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1
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and

D′ =
(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1


where γ(a, b) =

a∫
0

xb−1e−xdx is the lower incomplete gamma function.

The mean waiting time represents the waiting time elapsed since the failure of an object on
condition that this failure had occurred in the interval [0, t]. The mean waiting time of X, say
µ̄(t), is defined by

µ̄(t) = t − 1
F(t)

t∫
0

x f (x)dx. (19)

Substituting (8) and (18) in (19), we get

µ̄(t) = t − 1 + α − α1−e−λtβ

1 − e−λtβ

∞

∑
j=0

∞

∑
k=0

αj jk(−logα)k

(1 + α)j+1k!

 1

λ
1
β (k + 1)

1
β +1

× γ

(
λ(k + 1)tβ,

1
β
+ 1
)
+

(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1



3.3. Order Statistics

Let X1, X2, ..., Xn be a random sample of size n, and let Xr:n denote the rth order statistic, then,
the pdf of Xr:n, say fr:n(x) is given by

fr:n(x) =
n!

(r − 1)!(n − r)!
F(x)r−1 f (x)(1 − F(x))n−r. (20)

Substituting (8) and (9) in (20), we get

fr:n(x) =
λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
B(r, n − r + 1)

(
1 + α − α1−e−λxβ

)n+1

×
(

1 − e−λxβ
)r−1

(
α

(
1 − α−e−λxβ

)
+ e−λxβ

)n−r

where B(a, b) is the beta function.

3.4. Stress Strength Reliability

Suppose X1 and X2 be independent strength and stress random variables respectively, where
X1 ∼ RTW(α1, λ1, β) and X2 ∼ RTW(α2, λ2, β), then the stress strength reliability P(X1 > X2),
say SSR, is defined as

SSR =

∞∫
−∞

f1(x)F2(x)dx

M. A. Lone, I. H. Dar, T. R. Jan
A NEW METHOD FOR GENERATING DISTRIBUTIONS 
WITH AN APPLICATION TO WEIBULL DISTRIBUTION

RT&A, No 1 (67)
 Volume 17, March 2022

230



Table 2: Average values of MLEs and the corresponding MSEs(n=50).

Parameter MLE MSE
λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1 1.18927 0.75566 0.74107 0.27647 0.71977 0.04782
1.5 1.22622 0.87384 1.51407 0.40466 0.58467 0.07297
2 1.18561 0.77796 1.98113 0.24700 0.61990 0.11475

1 1 1.08698 1.18120 1.04943 0.23511 1.10633 0.03877
1.5 1.12510 1.27644 1.55446 0.24403 1.12121 0.09897
2 1.13204 1.28600 2.04414 0.29381 1.45360 0.17665

1.5 1 1.04126 1.72249 1.05876 0.27080 2.20896 0.05698
1.5 1.08026 1.78405 1.54105 0.28238 2.09977 0.10365
2 1.07287 1.81606 2.12707 0.27423 1.89261 0.24845

2 1 0.98987 2.07177 1.07668 0.24656 2.17639 0.07918
1.5 0.98794 2.19104 1.60992 0.22690 2.61831 0.17018
2 0.98397 2.19145 2.15508 0.22988 2.63456 0.31296

2 0.5 1 2.28613 0.68043 1.02709 0.30981 0.33733 0.03757
1.5 2.16929 0.57581 1.57420 0.19697 0.27864 0.07851
2 2.23597 0.60438 2.09259 0.30316 0.31276 0.11952

1 1 2.17700 1.19918 1.04533 0.51708 1.12488 0.03843
1.5 2.21341 1.27536 1.55452 0.49046 1.11322 0.09883
2 2.15140 1.33614 2.09166 0.55797 1.57897 0.15442

1.5 1 2.05912 1.74110 1.05653 0.55367 2.22683 0.05775
1.5 2.00179 1.58862 1.61057 0.45244 1.48239 0.15847
2 1.95160 1.56072 2.18486 0.52078 2.38803 0.27118

2 1 1.99288 2.15485 1.09058 0.58386 2.18773 0.10266
1.5 2.01983 2.26075 1.58730 0.53255 2.56440 0.15576
2 1.99596 2.23927 2.14504 0.58591 3.79841 0.27387

The stress strength reliability SSR, is obtained by using (8) , (9), (11), (12) and (13) and is given by

SSR =λ1

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

α
j
1αk

2km(−logα1)
l(−logα2)

m

(1 + α1)j+1(1 + α2)k+1l!m!

{(
jl +

α1logα1(j + 1)l+1

1 + α1

)

× λ2

[(l + 1)λ1 + mλ2][(l + 1)λ1 + (m + 1)λ2]

− λ2α1logα1(j + 1)l+1

(1 + α1)[(l + 2)λ1 + (m + 1)λ2][(l + 2)λ1 + mλ2]

}
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Table 3: Average values of MLEs and the corresponding MSEs(n=100).

Parameter MLE MSE
λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1 1.12427 0.85980 1.01394 0.16520 0.36686 0.02039
1.5 1.10945 0.64163 1.49813 0.08311 0.15675 0.04790
2 1.03860 0.51790 2.00760 0.04648 0.11094 0.08922

1 1 1.09751 1.20162 1.00568 0.13615 0.44997 0.02630
1.5 1.09006 1.14954 1.52710 0.14385 0.47309 0.05824
2 1.07148 1.14295 2.07225 0.17511 0.69167 0.12353

1.5 1 1.04769 1.66319 1.01968 0.17384 1.08369 0.02691
1.5 1.05555 1.68631 1.54287 0.19368 1.20057 0.07301
2 1.05153 1.64619 2.06356 0.17319 1.02013 0.14828

2 1 0.96890 2.04959 1.05881 0.19612 1.91723 0.04225
1.5 1.02776 2.05201 1.52135 0.15814 1.90158 0.04479
2 1.02772 2.04339 2.02851 0.15842 1.92072 0.07969

2 0.5 1 2.20157 0.64279 1.00275 0.20282 0.21313 0.01958
1.5 2.15936 0.60787 1.50924 0.18855 0.18872 0.03718
2 2.20967 0.64716 2.00121 0.25218 0.27663 0.07502

1 1 2.14197 1.15711 1.03218 0.35039 0.70753 0.03321
1.5 2.12690 1.14278 1.55439 0.36045 0.69360 0.06954
2 2.22353 1.21377 1.98709 0.51312 1.10397 0.09771

1.5 1 2.09963 1.74911 1.03669 0.50675 1.89731 0.03895
1.5 2.05345 1.67112 1.55151 0.33247 0.93642 0.06657
2 2.06760 1.68920 2.06563 0.37754 1.67294 0.15132

2 1 1.92617 2.06013 1.05836 0.42906 1.98756 0.04258
1.5 2.01885 2.20664 1.55748 0.40409 1.79326 0.08481
2 1.99881 2.13749 2.07929 0.41542 2.86112 0.14579

4. Statistical Inference

4.1. Maximum Likelihood Estimators

Let x1, x2, ..., xn be a random sample from RTW distribution, then the logarithm of the likelihood
function is

l = nlogα + nlogβ + (β − 1)
n

∑
i=1

logxi − λβ
n

∑
i=1

xi − 2
n

∑
i=1

log

(
1 + α − α1−e−λxβ

i

)

+
n

∑
i=1

log

[
1 + α − α1−e−λxβ

i
(

1 − logα (1 − e−λxβ
i )

)]
(21)
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The MLEs of α, λ and β are obtained by partially differentiating (21) with respect to the corre-
sponding parameters and equating to zero, we have

∂l
∂α

=
n

∑
i=1

1 + (1 − e−λxβ
i )2α−e−λxβ

i logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)

− 2
n

∑
i=1

1 − (1 − e−λxβ
i )α−e−λxβ

i

1 + α − α1−e−λxβ
i

(22)

∂l
∂β

=
n
β
+ (1 − λ)

n

∑
i=1

xi + αλβ logα
n

∑
i=1

xβ−1
i e−λxβ

i α−e−λxβ
i

×

 α

1 + α − α1−e−λxβ
i

− (1 − e−λxβ
i )logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)
 (23)

∂l
∂λ

=
n
λ
+ β

n

∑
i=1

xi − αlogα
n

∑
i=1

xβ
i e−λxβ

i α−e−λxβ
i

 2

1 + α − α1−e−λxβ
i

− (1 − e−λxβ
i )logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)
 (24)

The above three equations (22),(23) and (24) are not in closed form. thus, it is difficult to calculate
the values of the parameters α, β and λ. However, R software can be used to get the MLE.

4.2. Simulation study
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Figure 3: (i) The relative histogram and the fitted RTW distribution. (ii) The fitted RTW reliability function and
empirical reliability function for first data set.

The simulation study has been performed using R Software to show the behaviour of the
MLEs in terms of the sample size n. Two sets of sample (n=50, n=100) each replicated 100
times with different values of parameters λ = (1, 2), α = (0.5, 1, 1.5, 2) and β = (1, 1.5, 2) were
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Figure 4: (i) The relative histogram and the fitted RTW distribution. (ii) The fitted RTW reliability function and
empirical reliability function for second data set.
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Figure 5: Q-Q plot for the RTW distribution for data set first and data set second, respectively.

generated from RTW. In each setting, the average values of MLEs and the corresponding empirical
mean squared errors (MSEs) were obtained. The simulation results are presented in table 2 and
table 3. From tables 2 and 3, it can be seen that the estimates are stable and quite close to the true
parameter values. As the sample size increases the MSE decreases in all the cases.

5. Applications

In this section, we analyse two data sets to describe the significance and flexibility of the RTW
distribution. The data set first reported by Nassar et al. [12], orginally published by Smith and
Naylor [13], corresponding to strengths of 1.5 cm glass fibers, measured at the National Physical
Laboratory, England. The data are as follows: 0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68,
1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53,1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28,
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Figure 6: P-P plot for the RTW distribution for data set first and data set second, respectively.

Table 4: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the first data set.

Estimates Statistics
Model α̂ β̂ λ̂ K-S p-value

RTW
9.49959 3.261905 0.72053 0.08745 0.72090

(6.00647) (0.69075) (0.40517)

APW
10.86178 4.48322 0.19483 0.12249 0.30090

(12.72527) (0.76269) (0.10826)

APIW
193.05946 3.87688 0.63654 0.21627 0.00551

(267.40709) (0.30960) (0.1823435)

MW
0.03088 6.37442 0.04087 0.13341 0.21210

(0.04349) (0.96544) (0.02476)

TW
0.92496 5.97478 1.80960 0.15191 0.10920

(0.21931) (0.74495) (0.07553)

LW
0.53504 4.94433 0.77920 0.13673 0.18950

(0.48673) (0.65927) (0.18296)

ZBLL
0.25140 18.41002 1.82436 0.13053 0.23330

(0.06121) (3.05420) (0.04629)

APE
145351 - 2.15458 0.22099 0.00425

(23726.57) (0.09901)

W
- 5.77962 0.05978 0.15232 0.10750

(0.57515) (0.02047)

1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7,
1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

The second data set was reported by Elbatal et al. [14], orginally published by Aarset [15],
which represents the failure times of 50 devices. The data are as follows: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3,
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Table 5: −2l(θ̂), AIC, AICC, BIC for the first data set.

Model −2l(θ̂) AIC AICC BIC

RTW 22.16977 28.16977 28.57655 34.59917

APW 26.94826 32.94826 33.35504 39.37766

APIW 75.77237 81.77237 82.17915 88.20177

MW 29.78938 35.78938 36.19616 42.21878

TW 30.28635 36.28635 36.69313 42.71576

LW 28.42141 34.42141 34.82819 40.85081

ZBLL 24.23729 30.23729 30.64407 36.66669

APE 67.56511 71.56511 71.76511 75.85138

W 30.41369 34.41369 34.61369 38.69995

Table 6: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the second data set.

Estimates Statistics
Model α̂ β̂ λ̂ K-S p-value

RTW
6.28982 0.71267 0.17523 0.16014 0.15390

(2.80293) (0.12226) (0.10967)

APW
4.51340 0.83571 0.05854 0.17492 0.09379

(4.01925) (0.13558) (0.03910)

APIW
62.22037 0.59918 1.14499 0.27478 0.00105

(86.31937) (0.05672) (0.39802)

MW
0.01863 0.37305 0.04043 0.19432 0.04583

(0.00375) (0.18838) (0.03113)

TW
0.00010 0.94905 44.91508 0.1928 0.04860

(0.42067) (0.12873) (12.90900)

LW
0.91774 0.88097 0.04050 0.18488 0.06555

(0.69388) (0.12668) (0.04259)

ZBLL
20.23812 2.25295 0.00273 0.23307 0.00874
(4.33771) (0.46228) (0.00091)

APE
2.64622 - 0.02687 0.17657 0.08851

(1.90895) (0.00474)

W
- 0.94770 0.02719 0.19313 0.04800

(0.11778) (0.01375)

6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82,
82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

We compare the fit of the proposed RTW distribution with its sub-model Weibull (W) distribu-
tion and with several other competitive models, namely Alpha Power Weibull (APW) (see [12]),
Alpha Power Inverse Weibull (APIW) (see [16]), Modified Weibull (MW) (see [17]), Transmuted
Weibull (TW) (see [18]), Lindley Weibull (LW) (see [19]), Zografos–Balakrishnan log-logistic
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Table 7: −2l(θ̂), AIC, AICC, BIC for the second data set.

Model −2l(θ̂) AIC AICC BIC

RTW 470.2143 476.2143 476.7360 481.9504

APW 479.2431 485.2431 485.7648 490.9791

APIW 519.9063 525.9063 526.4280 531.6423

MW 478.9685 484.9685 485.4902 490.7045

TW 482.0043 488.0043 488.5261 493.7404

LW 479.5173 485.5173 486.0390 491.2534

ZBLL 517.3178 523.3178 523.8396 529.0539

APE 480.5838 484.5838 484.8391 488.4078

W 482.0038 486.0038 486.2591 489.8278

(ZBLL) (see [20]), and Alpha Power Exponential (APE) (see [10]), their correspinding density
functions for x > 0 are as follows

APW f (x) =
logα

α − 1
λβα1−e−λxβ

xβ−1e−λxβ

APIW f (x) =
logα

α − 1
λβx−(β+α)e−λx−β

αe−λx−β

MW f (x) = (α + λβxβ−1)e−αx−λxβ

TW f (x) =
β

λ

( x
λ

)β−1
e−(

x
λ )

β
(

1 − α + 2αe−(
x
λ )

β
)

LW f (x) =
βα2

α + 1
λβxβ−1 + λ2βx2β−1e−α(λx)β

ZBLL f (x) =
β

λβΓ(α)
xβ−1

(
1 +

( x
λ

)β
)−2 (

log
(

1 +
( x

λ

)β
))α−1

APE f (x) =
logα

α − 1
λe−λxα1−e−λx

where α,β,λ > 0 and Γ(α) =
∞∫
0

xα−1e−xdx is the gamma function.

From Table 4, Table 5, Table 6 and Table 7, it is evident that RTW distribution has lowest
−2l(θ̂), AIC, AICC, BIC, K-S values and highest p-value among all the other competitive models.
Hence the proposed model yeilds the better fit than the other models for both data sets.

The relative histogram and the fitted RTW distribution of the data set first and second are
shown in Figures 3(i) and 4(i), respectively. The plots of the fitted RTW reliability function
and empirical reliability function of the data set first and second are shown in Figures 3(ii)
and 4(ii), respectively. The Q-Q plots for data set first and second are shown in Figure 5(i) and 5(ii)
respectively. Also, The P-P plots for data set first and second are shown in Figure 6(i) and 6(ii)
respectively that allows us to differentiate between the empirical distribution of the data with
the RTW distribution. These graphical goodness of fit measures clearly support the results in
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Tables 4, Table 5, Table 6 and Table 7.

6. Conclusion

A new family of distributions has been introduced called RT method. RT method has been spe-
cialized on the two-parameter Weibull distribution and a new three-parameter RTW distribution
has been introduced. We have discussed various properties of RTW distribution. It has been
realized that the three-parameter RTW distribution has more flexibility in terms of the hazard
rate function and the density function. The effectiveness of the proposed model is compared
with other existing models by using goodness of fit measures. The model has been fitted to two
different real life data sets, the figures show that the proposed model provides better fit for both
data sets in comparison to all other competitive models.
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