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Abstract

A new distribution for modeling the two approaches (physical and actuarial) of reliability problems is
introduced. The statistical properties including the moments, mode, quantile function are derived. Some
reliability measures including the mean residual life and hazard rate are derived. An alternative measure
for total time of test (TTT) for evaluation of the interfailure times is drived.The unknown parameters of
the new distribution are estimated using the maximum likelihood approach. Furthermore, the asymptotic
consistency of the estimated parameters is evaluated through a simulation study. Two real-life datasets
were used to illustrate the applicability of the new distribution and comparison with already existing
distributions.

Keywords: Lomax distribution, Reliability, Moment, Total time of test, Maximum likelihood

1. Introduction

There have been growing needs to provide solutions associated with reliability problems found
in life testing, structural reliability, machine maintenance using probability distribution [1].
Many classical distributions including Weibull, Log-normal, Birnbaum-Saunders, Inverse normal,
gamma, exponential, geometric, Poisson have been applied in reliability studies where interest is
on nonrepairable system [2]. However, [1] noted that it may be difficult to differentiate among
these distributions while fitting failure datasets but stated that the failure rate function provides
distinguishing features for these distributions. [3] furthermore, pointed out that distributions with
bathtub shape failure rate function describing the decreasing, normal or constant, and increasing
failure rate of component would have wide applicability in reliability studies. Most of the classical
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distributions do not exhibit bathtub-shape hazard rate function [4]. However, a distribution
to analyze business failure which is referred to as Lomax distribution was introduced by [5].
The application of Lomax distribution has been found in many other areas including income,
size cities, reliability modeling [6], see [7] for more details. The Lomax distribution has been
extended by introducing one or more additional parameter such as Marshall-Olkin Lomax due
to [8], gamma Lomax by [9], exponential Lomax by [10], logistic-Lomax by [11] and McDonald
Lomax distribution by [7]. The major aim of this paper is to introduce a new and more flexible
extended Lomax distribution that will provide better fit and for modeling reliability datasets
amongst other datasets from different areas of study. The reversed-J-shape, constant, and J-shape
among many other shapes are the characterizations of the failure rate function shape of the new
distribution. These shapes of failure rate function are suitable for modeling increasing failure
rate (IFR), no-ware out and decreasing failure rate (DFR) datasets. Some statistical properties of
this distribution are discussed and comparison with other existing distribution having Lomax
distribution as baseline was made. The rest of the paper is organized as follows. The new
distribution is derived in section two. In Section 3, the statistical properties of the distribution
are derived and presented while the reliability measures are derived in Section 4. The Entropy
and parameter estimation of the distribution are respectively considered in Sections 5 and 6. The
asymptotic consistence of the maximum likelihood estimates is considered in Section 7 while the
applications to real-life data sets are done in Section 8. The concluding remark is presented in
Section 9.

2. The new distribution

A class of distribution having distribution function as defined by equation(1) was introduced
by[12].

G(x) = e−Bp
1
σ
[

F(x;ξ)
1−F(x;ξ)

]− 1
σ

; (1)

where B = e
µ
σ . Define F(x; ξ) = 1−

(
1 + x

λ

)−α in eq(1), where ξ = (α, λ) is the parameter
vector, the cumulative density function (cdf) of the new distribution referred to as Gumbel
Marshall-Olkin-Lomax (GMO-Lomax) is given by

G(x) = e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

. (2)

The density function corresponding to equation (2) is obtained as

g(x) =
Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
. (3)

Furthermore, equation(3) can also be obtained using Theorem 1.

Theorem 1. Let X and Y be two random variables, if Y follows Gumbel distribution, then,

X = λ

[(
1 + peY) 1

α − 1
]

follows GMO-Lomax distribution.

Proof. Given that the random variable Y follows Gumbel distribution, its pdf is given as

h(y) =
B
σ

e−
y
σ e−Be−

y
σ . (4)

For X = λ

[(
1 + peY) 1

α − 1
]

, the partial derivative w.r.t. x is obtained as
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∂y
∂x

=
α

λ
(
1 + x

λ

) [
1−

(
1− x

λ

)−α
] .

The density function of X is defined as g(x) = h(y)
∣∣∣ ∂y

∂x

∣∣∣. Substituting the value of Y in h(y)

and
∣∣∣ ∂y

∂x

∣∣∣ and simplifying yields

g(x) =
Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
.

�
Some possible shapes of GMO-Lomax pdf, including monotone decreasing, monotone increas-

ing, right-skewed, among other shapes are shown in Figure 1.

3. Statistical properties

Some of the GMO-Lomax statistical properties such as Quantile function, moments, moment
generating function, mode are derived and presented in this section.

3.1. Quantile function

The quantile function is very important in probability distribution, θth, percentile and random
number generation for a distribution can be obtained using the quantile function. Using the
probability integral transform [13], the quantitle function of GMO-Lomax is obtained as

QX(u) = λ

({
1 + Bσ p

[
log
(

u−1
)]−σ

} 1
α

− 1

)
. (5)

Using Theorem 2, the quantile function of GMO-Lomax can also be obtained.

Theorem 2. Given that a random variable, Y, follows Gumbel distribution, then the quantile

function of GMO-Lomax is defined by QX(u) = F−1
{

1 + p−1e−G−1(u)
}−1

; where G−1(.) denotes

the quantile function of Gumbel distribution and F−1(.) denotes the quantile function of Lomax
distribution.

Proof. Equation(1) can also be re-written as

G(y) =
∫ y

−∞

B
σ

e−
t
σ eBe−

t
σ dt, (6)

where y = log
[

F(x)
p[1−F(x)]

]
.

By probability integral transform, the quantile function of a random variable, X, having a
well-defined cdf, F(x), is given by x = F−1(u), where u = F(x). Then, the quantile function of
Gumbel distribution is given by

y = G−1(u) = log
{[

B−1log
(

u−1
)]−σ

}
. (7)

Furthermore, the quantile function of Lomax distribution is given by

x = F−1(u) = λ
[
(1− u)−

1
α − 1

]
. (8)
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Figure 1: Some possible shapes of GMO-Lomax pdf: a) monotone decreasing b) unimodal c) monotone increasing d)
right-skewed.

From equation(6)

x = F−1
[
1 + p−1e−y

]−1

= F−1
[
1 + p−1e−G−1(u)

]−1

= F−1

({
1 + pBσ

[
log
(

u−1
)]−σ

}−1
)

. (9)

Substituting the value of u =
{

1 + pBσ
[
log
(
u−1)]−σ

}−1
in equation(9) and simplifying

yields
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QX(u) = λ

({
1 + Bσ p

[
log
(

u−1
)]−σ

} 1
α

− 1

)
.

�

3.2. Moments

Corollary 1. The nth non-central moment of GMO-Lomax random variable, X denoted by E(Xn)
is obtained as E(Xn) = λn ∑∞

j=0 ψjΓ (1− jσ)

Proof.

E (Xn) =
∫ ∞

0

{
λ
[
(1 + pey)

1
α − 1

]}n B
σ

e−
y
σ e−Be−

y
σ dy

=
Bλn

σ

∫ ∞

0
(1 + pey)

n
α

[
1− (1 + pey)−

1
α

]n
e−

y
σ e−Be−

y
σ dy

=
Bλn

σ

∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pj
∫ ∞

0
ejye−

y
σ e−Be−

y
σ dy

=
Bλn

σ

∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pj
∫ ∞

0
e−

y
σ (1−jσ)e−Be−

y
σ dy (10)

Letting x = Be−
y
σ implies that dy = − σ

x dx and equation(10) becomes

E (Xn) = Bλn
∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pjBjσ−1

∫ ∞

0
x−jσe−xdx

= λn
∞

∑
j=0

ψjΓ (1− jσ) ,

where

ψj = ∑∞
i=j (−1)i

(
n
i

)( n−i
α
j

)
pjBjσ. �

3.3. Moment generating function

The moment generating function (mgf) of a random variable with well-defined density function,
f (x), is defined byMX(t) = E(etX). For a random variable with pdf defined as in equation(3)
then, the mgf is given by

MX(t) =
∫ ∞

0
etx Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1

=
Bp

1
σ α

λσ

∞

∑
i,j=0

(−1)i+j

i!

( i
σ + 1

σ + j
j

)(
Bp

1
σ

)i ∫ ∞

0
etx
(

1 +
x
λ

)−α( i
σ +

1
σ +j)−1

dx

MX(t) =
∞

∑
j=0

ϕjΓ
(
−α (jσ + i + 1)

σ
, tλ
)

,

where

ϕj =
Bp

1
σ α

σ ∑∞
j=i ∑∞

i,j=0
(−1)i+j

i!

( i
σ + 1

σ + j
j

)(
Bp

1
σ

)i
(−1λ)

α(jσ+i+1)
σ .
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3.4. Mode

The mode of a distribution plays an important role in life distribution. It defines the most likely
failure time of an object when failure is of consideration. The mode of GMO-Lomax is obtained
as the value of x that satisfies ∂log(g(x))

∂x = 0 given in equation (11)

α− 1
λ
(
1 + x

λ

) + Bαp
1
σ

σλ

(
1 +

x
λ

)α−1 [(
1 +

x
λ

)α
− 1
]−( 1

σ +1)
−

(
1
σ + 1

)
α
(
1 + x

λ

)α−1

λ
[(

1 + x
λ

)α − 1
] = 0 (11)

4. Reliability measures

4.1. Hazard rate function

Generally, the hazard rate function is defined as the conditional probability of failure, given that
a component has survived up to time x. [4] note that the hazard rate function is an important
quantity which characterizes life phenomena. Denoting the hazard rate function as R(x), the
hazard rate function is defined as g(x)

S(x) , where S(x) represents the survival function. Suppose
a random variable X follows GMO-Lomax distribution, the hazard rate function associated to
GMO-Lomax is given by

R(x) =
Bp

1
σ
(
1 + x

λ

)α−1

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
[

eBp 1
σ

[
(1+ x

λ )
α−1

]− 1
σ

− 1

] .

Figure 2 shows some possible shapes of the GMO-Lomax hazard rate function which include
decreasing hazard rate function which captures the high failure rate at the initial phase (infant
mortality), the constant hazard rate function representing the period of stability of the component,
and the increasing hazard rate function capturing the increase in failure rate as the component
begins to wear-out.

4.2. Mean residual life function

Given that a random variable, X, denotes the lifetime of a component. The mean residual life
function denoted by m(t) defines the expected value of the remaining lifetime of a component
after a fixed point t . Suppose the random variable, X, follows GMO-Lomax distribution, then

m(t) = E (X− t|X > t)

=
1

1− G(t)

∫ ∞

t
1− G(u)du, (12)

where G(.) is as defined in equation(2), substituting in equation(12) and simplifying yields

m(t) =
∞

∑
k=0

ψk

(
1 +

t
λ

)−α
(

j
σ +k

) ∞

∑
j=0

ψj
[λσ + tα (1 + i + jσ)]

(
1 + t

λ

)−α( 1
σ +

1
σ +j)

(1 + i + jσ) [α (1 + i + jσ)− σ]
− t

 ,

where

ψk =
∞

∑
i,k=j

(−1)j

j!

(
iBp

1
σ

)j
(

j
σ + k− 1

k

)
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(a) 
(b) 

(c) 

(d) 

Figure 2: Some possible shapes of GMO-Lomax failuare rate function: a) right-skewed b) monotone decreasing c)
constant d) monotone increasing.

and

ψj = Bp
1
σ

∞

∑
j=i

(−1)i

i!

(
Bp

1
σ

)i
(

j
σ + k− 1

k

)
.
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5. Reliability

Suppose the random variables, X and Y, represent, respectively, the strength and stress of a
component. The measure of performance of the component (that is the component reliability)
having strength, X when subjected to random stress, Y, denoted by R is defined as R = P(Y < X).
Let X and Y, respectively, follow GMO-Lomax with some different parameters, then, R, is defined
by

R =
∫ ∞

0
g(x; B1, p1, σ, α, λ)P(Y < X)dx

=
∫ ∞

0
g(x; B1, p1, σ, α, λ)G(x; B2, p2, σ, α, λ)dx

=
∫ ∞

0

B1 p
1
σ
1 α

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
e
−
(

B1 p
1
σ
1 +B2 p

1
σ
2

)[
(1+ x

λ )
α−1

]− 1
σ

dx

=
∞

∑
j=0

CjB1 p
1
σ
1 ,

where B1 = e
µ1
σ , B2 = e

µ2
σ and Cj = ∑∞

j=i
(−1)i

i!

( i
σ + 1

σ + j
j

) (
B1 p

1
σ
1 +B2 p

1
σ
2

)i

(1+i+jσ) .

5.1. Lorenz curve

The Lorenz curve was established by[14] to graphical represent the distribution of wealth in a
population. However, [15] established relationship between the Lorenz curve and the total time
on test (TTT). The TTT graphically detects the possible change in the pattern of failures [16].
Hence, if a random variable, X, follows GMO-Lomax such that it denotes the failure times of a
component or an individual, then the Lorenz curve is defined as

L(ϕ) =
1
µ

∫ z

0
x f (x)dx (13)

Substituting equation (3) in equation (14), we have

L(ϕ) =
Bp

1
σ α

µλσ

∫ z

0

x
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

[(
1 + x

λ

)α − 1
] 1

σ +1
dx

=
Bp

1
σ α

µλσ

∞

∑
i=0

(−1)i

i!

(
Bp

1
σ

)i ∫ z

0
x
(

1 +
x
λ

)α−1 [(
1 +

x
λ

)α
− 1
]−( 1

σ +
1
σ +1)

dx

=
Bp

1
σ α

µλσ

∞

∑
i,j=0

(−1)i+j

i!

(
Bp

1
σ

)i
( i

σ + 1
σ + 1
j

) ∫ z

0
x
(

1 +
x
λ

)−α( i
σ +

1
σ +j)−1

dx

=
1
µ

∞

∑
j=0

(−1)jΨj,
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where µ is the first non-central moment and

Ψj =
∞

∑
i=j

(−1)i
( i

σ + 1
σ + 1
j

)(
Bp

1
σ

)i+1 (
1 + z

λ

)−α( i
σ +

1
σ +j)

i!(1 + i + jσ)[α(1 + i + jσ)− σ]
×[

λσ

{(
1 +

z
λ

)α( i
σ +

1
σ +j)
− 1

}
− zα(1 + i + jσ)

]

6. Order statistics

Suppose X1 < X2 < · · · < Xn are ordered random sample of size n from GMO-Lomax population.
The density function of the hth order statistics ( h = 1, 2, · · · , n), say, gh:n(x), is obtained as

gh:n(x) =
g(x)

B(h, n− h + 1)

n−h

∑
j=0

(−1)j
(

n− h
j

)
G(x)h+j−1 (14)

Substituting equations (2) and (3) in equation(14) and simplifying yields

gh:n(x) =
g(x)

B(h, n− h + 1)

n−h

∑
j=0

(−1)j
(

n− h
j

) ∞

∑
m=0

ϕm,

where ϕm = Bp
1
σ α

λσ ∑∞
k=m

(−1)k

k!

[
Bp

1
σ (h + j)

]k (
1 + x

λ

)−α( k
σ +

1
σ +m)−1 .

7. Entropy

Suppose a random variable, X, follows GMO-Lomax, the uncertainty associated with a value of
X is measured using entropy. The Rényi entropy introduced by [17] generalizes the Shannon
entropy and it is defined by

IR(γ) =
1

1− γ
log
[∫
∀

gγ(x)dx
]

, (15)

where g(x) is the pdf of GMO-Lomax, then

IR(γ) =
1

1− γ
log


(

Bp
1
σ α

λσ

)γ ∫ ∞

0

(
1 + x

λ

)γ(α−1) e−γBp
[
(1+ x

λ )
α−1

]− 1
σ

[(
1 + x

λ

)α
]γ( 1

σ +1)


=

1
1− γ

log
(

Bp
1
σ α
)
+ log (λσ) +

1
1− γ

log

(
∞

∑
j=0

ϕj

)
,

where ϕj = ∑∞
j=i

(−1)i

i!

(
γBp

1
σ

)i
( i

σ + γ
σ + γ + j− 1

j

)
.

8. Parameter estimation

Let X1, X2, ..., Xn be a radom sample of size n from GMO-Lomax population. The unknown
parameters of GMO-Lomax are estimated using the maximum likelihood method. The log-
likelihood function is obtained as

Nwezza, E.E., Uwadi, U.U., Acha, C.K., Osagie, C. 
GUMBEL MARSHALL-OLKIN LOMAX

RT&A, No 1 (67)
 Volume 17, March 2022

296



`(Θ) =
nµ

σ
+

n
σ

log(p) + nlog(α) + (α− 1)
n

∑
i=1

log
(

1 +
xi
λ

)
− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

= −nlog(λ)− nlog(σ)−
(

1
σ
+ 1
) n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]

. (16)

The corresponding score functions of equation(16) are given below

∂`(Θ)

∂σ
=

nµ

σ2 −
n
σ2 log(p) +

e
µ
σ p

1
σ

σ2

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ
[µ + log(p)]− n

σ

− 1
σ2 e

µ
σ p

1
σ

n

∑
i=1

log
[(

1 +
xi
λ

)α
− 1
] [(

1 +
xi
λ

)α
− 1
]− 1

σ
+

1
σ2

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]

.

∂`(Θ)

∂µ
=

1
σ

[
n− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

]
.

∂`(Θ)

∂p
=

n
σp

[
n− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

]
.

∂`(Θ)

∂λ
=

(1− α)

λ2

n

∑
i=1

xi(
1 + xi

λ

) + α

σλ2 e
µ
σ p

1
σ

n

∑
i=1

xi

(
1 +

xi
λ

)α−1 [(
1 +

xi
λ

)α
− 1
]−( 1

σ +1)

−
(

1
σ
+ 1
)

α

λ2

n

∑
i=1

xi

(
1 +

xi
λ

)α−1
.

∂`(Θ)

∂α
=

n
α
+

n

∑
i=1

log
(

1 +
xi
λ

)
−
(

1
σ
+ 1
) n

∑
i=1

log
(

1 +
xi
λ

) (
1 +

xi
λ

)α

+
e

µ
σ p

1
σ

σ
log(α)

n

∑
i=1

[(
1 +

xi
λ

)α]−( 1
σ +1)

log
(
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The maximum likelihood estimators for the nknown parameters of GMO-Lomax are obtained
by equating the score functions to zero respectively and solving simultaneously for the parameters.
However, the score functions are non-linear to x and there are no closed form solutions for the
estimators. The estimates for the parameters can be obtained using iterative numeric optimization
methods.

9. Simulation

The maximum likelihood estimates of GMO-Lomax parameters were examined for asymptotic
consistence using simulation study. Random samples of sizes 50, 75, 125 and 200 were generated
using equation(5) with initial parameter values Ω = ( p = 2.3, µ=2, σ=1.8, α=0.5, λ=1.2). For
each sample size and N = 1000, the parameter estimates Ω̂i = (p̂i, µ̂i, σ̂i, α̂i, λ̂i) were evaluated
for i = 1, 2, · · · , N. The Mean value Ω̂, Bias, Mean Square Error (MSE) were all computed. The
values in Table 1 indicate that as the sample size increases, the MSE decreases and the Mean
value converges to the initial parameter values as required under first asymptotic theorem.
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Table 1: Summary of the simulation study.

Initial Sample size (n) Mean value Bias MSE
paramater
value

50 2.2598 -0.0402 0.0022
1.9324 -0.0676 0.0085
1.8466 0.0466 0.0033
0.5232 0.0232 0.0007
3.5942 2.3943 5.7900

p=2.3 75 2.3081 0.0081 0.0006
µ = 2 1.9758 -0.0242 0.0038
σ = 1.8 1.8537 0.0537 0.0037
α = 0.5 0.5239 0.0239 0.0007
λ = 1.2 3.3466 2.1466 4.6753

125 2.3016 0.0016 0.0003
1.9344 -0.0655 0.0065
1.7939 -0.0061 0.0006
0.5028 0.0028 0.0001
2.9596 1.7596 3.1669

200 2.2918 -0.0082 0.0003
1.8786 -0.1214 0.0161
1.7641 -0.0359 0.0018
0.4903 -0.0097 0.0001
2.7963 1.5962 2.6032

10. Applications

In this section, we illustrate the applicability of the GMO-Lomax using two real-life datasets.
Comparison with other existing distributions including McDonald Lomax (McLomax) Beta-Lomax,
Lomax of Lomax, Marshall-Olkin Lomax(MOL), Logistic Lomax(logisticL), and exponentiated
Lomax( Exp Lomax)) are done using goodness-of-fit statistics including Cramer-von Misses (W),
Anderson Darling (A), Kolmogorov Smirnov (K-S) test, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC). Generally, the smaller the values of these statistics, the
better the distribution fits the data set. The total test on time (TTT) to illustrate the empirical
failure rate behavior of the two data sets was done.

First data set used which was reported by [18] is on the Kevlar 49/epoxy strands failure
when the pressure is at 90% stress level while the second data set reported by [19] is on the
lifetimes of 50 industrial device put on life test at time zero. The estimated cramer-von Misses
(W*), and Anderson Darling (A*) together with the computed K-S, AIC, BIC, and negative
log-likelihood of the two datasets are shown in Tables 3 and 5. The parameter estimates of the
competing distributions with the standard errors in parentheses for the first and second data set
are respectively shown in Table 2 and 4. Tables 3 and 5 show that the goodness-of-fit statistics
values associated with GMO-Lomax are the least among the competing distribution, implying
that GMO-Lomax distribution provided adequate fit for the two data sets respectively. The plots
of the estimated pdfs with the histograms of the datasets and cdfs with the empirical cdf of the
two data sets are shown in Figures 3 and 4. Figure 3 showed a close fit of the dataset’s histogram,
however, the goodness-of-fit statistics values in Table 3 indicate the numerical difference of how
well the various competing distriutions actually fit the dataset. Figure 4 clearly show that the
GMO-Lomax provided a better fit on the histogram of the second dataset among other competing
distributions. Furthermore, the empirical TTT of the failure rates for the two datasets are shown
in Figure 5. The Figure 5 shows that the datasets constitute constant and monotone-increasing
failure rate.
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Table 2: Results of parameter estimates for the first dataset(standard errors).

Distribution
GMO-Lomax(p,µ, σ, α, λ) 5.0148 0.5808 3.5797 33.6301 6.5039

(371.7516) (74.1372) (0.6937) (27.8848) (6.5015)
McLomax(a,b,α, λ, c) 0.8243 6.0317 1.6613 4.1831 3.1728

(0.1279) (17.3009) (4.5598) (7.2706) (2.8795)
Beta-Lomax(a,b,α, λ) 0.8897 4.2914 7.6109 36.09837

(0.1177) (108.5245) (189.4789) (94.9773)
Lomax(α, λ) 15.4125 14.7618

(20.9761) (21.3217)
MOL(p,α, λ) 1.3640 8.9718 6.9621

(0.8281) (10.9643) (11.1955)
LogisticsL(β, α, λ) 1.2869 38.9985 24.4089

(0.1089) (31.6599) (20.3205)
Exp-Lomax(θ, α, λ) 0.8846 31.0501 33.3998

(0.1201) (71.2834) (80.0430)

Table 3: Results of the goodness-of-fit-statistics for the first dataset.

Distribution W∗ A∗ K-S AIC BIC −`
GMO-Lomax 0.0985 0.5926 0.0653 208.9945 209.6261 99.4973
McLomax 0.1440 0.8452 0.0967 213.9501 227.0257 101.9751
Beta-Lomax 0.1934 1.0843 0.0925 213.6633 224.1238 102.8817
Lomax 0.2107 1.1665 0.0864 210.4693 215.6995 103.2346
MOL 1.515 8.2009 0.6336 212.2111 220.0565 103.1056
LogisticsL 0.5828 3.1709 0.1065 233.0110 240.8564 113.5055
Exp-Lomax 0.1914 1.0749 0.0926 211.6259 219.4713 102.8129
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Figure 3: Estimated plots for the first dataset: a) competing pdfs b) empirical cdf with competing cdf.
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Table 4: Results of parameter estimates for the second dataset (standard errors).

Distribution
GMO-Lomax(p,µ, σ, α, λ) 7.3403 1.8975 5.5264 60.0204 341,1701

(83.8036) (11.5748) (1.5003) (38.3307) (211.1367)
McLomax(a,b,α, λ, c) 0.8345 63.7855 1.1889 105.2354 8.1853

(0.1398) (54.4193) (0.6347) (51.0148) (4.0484)
Beta-Lomax(a,b,α, λ) 0.5273 0.0915 37.2292 162.6509

(0.1464) (0.0277) (11.0337) (26.1937)
Lomax(α, λ) 5.1659 205.1413

(2.5299) (110.9948)
MOL(p,α, λ) 3.9229 4.3019 83.7042

(2.3716) (1.8419) (52.2756)
LogisticsL(β, α, λ) 8.7631 0.1069 0.0022

(1.1127) (0.0038) (0.0005)
Exp-Lomax(θ, α, λ) 0.8464 3.9194 176.1126

(0.1547) (1.6727) (88.7161)

Table 5: Results of the goodness-of-fit-statistics for the second dataset.

Distribution W∗ A∗ K-S AIC BIC −`
GMO-Lomax 0.3725 2.3066 0.1641 479.9236 489.4837 234.9618
McLomax 0.3898 2.4432 0.2277 481.2248 490.7849 235.6124
Beta-Lomax 0.4871 2.9544 0.2124 492.1212 499.7693 242.0606
Lomax 0.8010 4.5753 0.8014 490.7842 494.6083 243.3921
MOL 1.5131 7.7835 0.8757 491.1396 496.8757 242.5698
LogisticsL 0.8579 4.7819 0.2566 521.2151 526.9511 257.6075
Exp-Lomax 0.5455 3.2668 0.1999 492.8816 498.0960 243.1799
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Figure 4: Estimated plots for the second dataset: a) competing pdfs b) empirical cdf with competing cdf.
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Figure 5: Plots of Total time on test: a) First dataset b) second dataset.

11. Conclusion

We have introduced a new five parameter distribution for modeling reliability problems. The
statistical properties and some reliability measures of the new distribution are derived. The
unknown parameters of the distribution are estimated using the maximum likelihood approach.
Furthermore, the maximum likelihood estimates of the new distribution were examined for
asymptotic consistence and were found to conform to the first order asymptotic theorem. Two
real-life data sets were used to illustrate the applicability of the new distribution and comparison
with other existing distributions indicates that the new distribution provided better fit for the
two data sets. The constant and monotone-increasing failure shapes shown in the TTT plots
are indications of the suitability of GMO-Lomax distribution which has constant and monotone-
increasing failure rate shapes amongst other possible shapes in modelling the two datasets.
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