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Abstract

In this paper, two dimensional state retrial queueing system with two non - identical parallel
servers is considered. Incoming calls (primary calls) arrive at the server according to a Poisson
process. Repeating calls also follows the same fashion. Service times of two servers follow
exponential distribution with different rates. An incoming call that finds the servers busy, joins an
orbit and retries after some random amount of time. Time dependent probabilities of exact number
of arrivals and exact number of departures at when the servers are free or when one server is busy
or when both servers are busy are derived for the system. Finally busy period distribution obtained
to illustrate the system dynamics.

Keywords: Retrial, Queueing, Arrivals, Departures, Heterogeneous Servers

I. Introduction

Recently retrial queues are paid much attention because they have applications in performance
analysis of various systems such as call centers, computer networks and telecommunication
systems. Retrial queues are characterized by the fact that arriving customers when could not able
to receive service may enter a virtual queue (orbit) and retry for service again after some random
amount of time. The analyse of retrial queueing models are much more difficult than without
retrials and explicit results are obtained only in a few special cases.

Retrial queueing models are often used for the performance and reliability modeling of
computer systems and communication networks. The reason is that the return of customers plays a
special role in many of these systems or in other practical applications. Some applications of retrial
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queues can be found in Li and Yang [1], Janssens [2], Tran-Gia and Mandjes [3], Onur et al. [4] and
the detailed overviews of retrial queues are given in Falin and Templeton [5], Artalejo [6], Falin
and Artalejo [7], Artalejo [8], Falin [9].

Queues with non-identical parallel servers (heterogeneous servers) can be widely used for
modeling real systems with heterogeneous environment. Heterogeneous servers are allocated in
banks, hospitals, telecommunication and business centers. Customers arrive according to a Poisson
process at a rate A. The servers have a tendency to serve the same type of job but with different
service rates (i, & U,.

The classical transient results for the M/M/1 queueing model provide slight perception about
the behavior of a queueing system through a fixed time t, but Pegden and Rosenshine [10] have
given the probability of exact number of arrivals in the system and exact number of departures
from the system by a given time for the classical queueing model M/M/1/e. This measures supplies
better insight into the behavior of a queueing system than the probability of the exact number of
units in the system at a given time.

In this paper, we obtained the time dependent probabilities of the exact number of arrivals in
the system and exact number of departures from the system for a retrial queueing system with two
servers having unequal service rates. Many authors have studied systems with two non-identical
parallel servers. Satty [11] studied a continuous time first come first served queueing system with
two parallel servers each with different service rate. He obtained the steady state probabilities for
the number of units in the system/ queue. Gumbel [12] studied the steady state probabilities for the
number of units in the system by considering a more general queueing problem having a finite
number of servers, each with different service rate. Morse [13] also considered two servers with
different service rates and obtained the steady state solutions.

The paper is organized as follows: In Section 2, the full description of the model is discussed.
In Section 3, we defined the two-dimensional state model and derived its difference-differential
equations. The time dependent solution for the model is also obtained in this section. Then the
main performance measures of the system and a special case are derived in Section 4. In Section 5,
several numerical examples are discussed. The busy period distribution for the system is obtained
in Section 6 and finally the paper ends with a conclusion.

I1. Model Description
I. Assumption and Notation

The queueing system investigated in this paper is described by the following assumptions:

The arrival of primary calls follow a Poisson distribution with parameter A.

The repeated calls to each server follow a Poisson distribution with parameter 6.

Service times are exponentially distributed with parameters piand p2for the first and second
channel respectively.

When the channels are empty, an arriving unit/ repeating unit joins the first channel with
probability ai and the second channel with probability az.

The stochastic process involved viz. arrival of units, departures of unit and retrials are statistically
independent.

Laplace transformation f(s) of f(t) given by
f@)=[f et f(t)dt, Re(s)>0
The Laplace inverse of

my—1l a5t -1
Q) is Z;(l=1zmk L )

— mg =, . i
@) 1= DD 2T P (p) (p — ax)™V p=ay, a; * a; fori#k
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where,

Pp=p—a)™®@—a)™ .......(p —a,)™

Q(p) is a polynomial of degree <m;+m,+m; +............. my,-1.

. ~7a,b, _ 1 .
The Laplace inverse of Ny, * (s) = TG e

abe e oms €% BT (L) (M0 g ) ) (T 25 (2 +e2))
an,nz ns (t) _Zl=1 Zm:l n2=D1(m=1)! (hb—a)2+m-1(c—q)n1+l-m
: (n3-D(m-1)! (b-a) (c-a)
- - -1 —m- -
1 ) ek Vi ) N LR D) (L= ()
(n, = D!'(m —1)! (a — b)stm=1(c — p)mati-m

e~ Ml (=)™ () (T2 (e + 80) (TR (s +82))
+; ; (n, = D'(m—1)! (a—c)st™m=1(b — ¢)eti-m

If L71{f(s)} = F(t) and L *{g(s)} = G(t), then

L7Hf(s) g(s)} = |, Ot F(u)G(t—u)du=F*G, F* Gis called the convolution of F and G.

III. The Two-Dimensional State Model
I. Definitions
Pijo (t) = Probability that there are exactly i arrivals in the system and j departures from the system
by time t when both servers are free.
Pij 1 x (t) = Probability that there are exactly i arrivals in the system, j departures from the system by
time t when one server is free and that unit is in the kth channel. k=1,2.
Pij2 (t) = Probability that there are exactly i arrivals in the system and j departures from the system
by time t when both servers are busy.
Pij (t) = Probability that there are exactly i arrivals in the system and j departures from the system
by time t.

Pij(t) = Pijo (t) + Pij 11 (t) + Pij 12 (t) + Pij2 (t)V i, j i2j
Pij 1 (t) = Pij 11 (t) + Pij 12 (t)

also

Pijo(t)=0,1<j; Pijik (1) =0 & Pij2 (t) =0, i<j. k=1,2

Initially

Pooo (0) =1; Pij 0 (0) =0, Psj1x (0) =0 & Pij2 (0) =0, i,j#0. k=1,2.

II. The difference — differential equations governing the system are

%Pi,j,o (t) = - (A+ (i) 0) Pijo (t) + p1 Pijoi1,1 (0)+ p2 Pijoriz (1) i>27>0 )
%Pl,o,l,l (t) =- (A+ ) P10 (t) + AaiPo, 0,0 (t) )
%Pl, 012 (t) =- (A+ ) P1,0,12 (t) + AazPo, 0,0 (t) 3)
%Pi,j,l,l () =- A+ 1 + (i5j-1)0) Pij 11 (t) + AaiPivjo (t) + (i-)) 0 arPijo (t) + p2 Pija2 (1)

i>j>0 4)
%Pi,j,ll (t) =- A+ 2+ (i-j-1)0) Pij 12 (t) + AazPi1jo (t) + (i-)) 0 a2Pijo (t) + i Pija2 (t)

i>j>0 5)
%Pi, 0,2 (t) = - (A+pu+pz ) Pio,2 (0)+ A 8i2{Pi1, 0,11 (t) +Pi1, 0,12 (£)}+A (1-6;-2,j)Pi-1,02 ()

1>2 (6)

%Pi,j,z (t) = - (A+pi+p2 ) Pij2 (1) +(i-5-1)0 {Pij1,1 (O)+ Pigaz ()} +
MPirjia () HPirja2 O3+ A (1-6;_5 j)Pirj2 (V) >2,i>j>0 (7

_ (1, wheni—2=j
where 0, = {O, otherwise
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5. = {1, wheni =2
L2 70, otherwise
Using Laplace transformation f (s) of f(t)given by
f)=["estf(©)d, Re(s)>0

in the equations (1) - (7) along with the initial conditions. We have

(s + A+ (i-)) ©)Pijo (8) = w1 Pigo1,1,1 () + 2 Pijo1, 12 (s) + Pijo (0) 1>j>0 ®)
(s + A+ 1) Pioo1 (s)= Aai Po,oo (s) ©)
(s + A+ u2) Pioo12 (s)= Aaz Po,oo (s) (10)
(s + A+ i + (i5-1)0) Pigi,1 (s)= Aai Pijo (s) + (i-)0 aiPijo (s) + p2Pij12 (5)
i>j>0 (11)
(s + A+ p2+ (i-j-1)0) Piji2 (s)= Aaz Piijo (s) + (i-1)0 a2Pijo (s) + piPij-12 (s)
i>j>0 (12)
(s+A+ it p2) Pio,2(s)=A8i2{ Pi-1,0,1,1(8)+Pi-10,1.2(s)} + A (1- Si_z_j)pi.1,j,2(s)
i>2 (13)
(s + A+ pi+u2) Piga (s)= (i-§-1)0 {Pij, 1,1(s)+ Piji2(s)}+ A {Pirgr1(s) +Pi1j12(s)}
+ & (1- 8;_5;) Pi1ja(s) i>2,i>j>0 (14)
(1, wheni—-2=j
where 6, ; = {0, otherwise
5. = {1, wheni =2
L2710, otherwise
III. Solution of the Problem
Solving equations (8) to (14) recursively, we have
pooo(s):L (15)
1 M1 Aay Uz
Pl 1.0 (S) ((s+ﬂ+u1 ) (s+2)2 + (s+A+uy) (s+ﬂ)2) (16)
5. _ Uglio 1 .
Pizo (s) (s+,1+(1 2)0) [(s+/l+u1+(i—2)9) + (s+l+u2+(1 2)9)] Pio2 (s) 123 a7
Aaq
Pioni(s)= s+/1(s+,1+u1) (18)
Aay
Pioi2(s)= s+/1(s+/1+u2) (19)
Poiit ()= == Prio 9+ [ 2= () Pronn® + Piosa()}] (20)
P P [ () @ + P ] 21
2112 (8) = (s+/l+;1 y FLLo (8)+ (S+ﬂ~+uz) Aty ) {Pro,1,1(5) 10,1,2(8)} (21)
_ 3 u 41 _ _ )
Piiii(s)= ((s+l+u1-+2-(i—2)6’) Gty i) 1 {Pro1,1(8) + Pioiy (5)}) 1>2 (22)
_ - i -t _ _ .
Piii2(s)= ((S+A+#2+(i_2)9) Gty i) 1 {Pro1,1(8) + Pioiy (5)}) 1>2 (23)
- A = - .
Pio2 (s) = e {P10.1.1(s) + P1o,12(8)} i>1 (24)
o 2 i-j—k
P, (s)= ( i (5+/1+u1+uz) M) Paij11(8) + B 2(5)}>
i>j+2,j>1 (25)
1 fork=1
(k=1)0 _ S
where 1 (8) = (1 s+/1+;41+u2) fork=2toi—-j—1
(k-1)0 .
s+/1+u1+;42 fork=i-j
Pii1,1 (s) = mpl 1,i-1,0 (8) + ( +/1+ Pn 10(s)+ ( +/1+ Pu 22 (8) i>2 (26)
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Pii1i2(s)= mpl 1,i-1,0 (8) + ———— (s+/1+ Pu 10(s) + (s+/1+ P; i22 (S) i>2 27)
Prjin (5) =m0 Py jo(s) + = DB (5) 4 ——L2

(s+A+p+(i—j-1)6) (s+A+pu+(i—-j-1)0)

( ;c=]0 (ﬁ) _]_knk(s){ Pij- 111(S)+ +kj— 112(5)}>

(s+A+u1+(i—j—1)0)

i>+2,j>2 (28)
1 fork=20
(1-I— ko ) fork=1toi—j—1
_— ork=1toi—j—
where m(s) = s+ A +klg + U
LA k=i—i
S+ A+ + for t=J
131:.]',1.2 (S) A;Pl Lj, O(S) %pig,o (S) + H1

(s+A+pz+(i—j-1)6) (s+A+uz+(i—j-1)0)

( ;c=]0 (ﬁ)lﬂ_ nk(s){ j+kj— 111(S)+ j+k,j— 112(5)}>

(s+A+up+(i—j—1)0)

1>j+2,>2 (29)
1 fork=20

k6
1+—) k=1toi—j—-1
where 1 (s) = ( S+ A+ + Uy, for or=J
ko i
S+ A+ +u, fork=i-j

uag uap 5. . 0 [ pag paz ]
Piio ()= ((s+/1)) [(s+,1+u1) + (S+A+z )] Piriro(9)+ ((s+/1)) (s+/1+;41) (s+A+1z) Pis10(s)

Uity 1 :
+ ( (s+/l)) [(s+/1+u1) (s+l+u2 )] Pii2a (s) 1>1 (30)
Fi,j,o ()
u Aa (i—-j+1)6a _
= 1-_ - - Pi_q;- 10(8) + _1 Pi,j—l,o(s)
+A+(@-NO)|+A+m+ (- 1)67) S+A+u+@E-5)0
AR p) ((i-D+1)-k ~ ~
¥ (s+ A+ Mﬂj- i—-50) Z (S A+t + #2) M FG-1)+1j-211(8) + Fy-1yicj-212(8)}
1 - k=0
U Aa, (i—j+1)6a, P

N R ) [ e e 1 M I e e ey A

i—j+1

2 {G-D+1}-k
e Y () TPy 1j-211() + Fyoyai212(9)
+ k (-1D+kj-2,11 (-D+kj-2,1,2
GHitm+@-No)| = SHATmTh
i>i>3 31)
1 fork=20
k6 o
where 0y (s) = (1 + s+/1+;41+u2) fork=1toi—j
ko .
m for k=i -] +1
Taking the Inverse Laplace transform of equations (15) to (31), we have
Pooo(t) = e * (32)
Piio(t) =4 pya, (te™)e~HHH0t + 4, a,(te™H)e~ (it (33)
. _ —(+(i-2)O)t 1 _etlmr2nny —OHG-oe (1
Piao®) = ppize ((u1+(i—2)9) (1 +(-2)0) )*P"‘)’z(t)ﬂ‘ 1H2¢€ ((#2+(i—2)9)
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o~ (U2 +(i=2)0)t ,
m) *Pi,0,2(t) 1> 3 (34)
it
Prosi() = dare™ x (- — =) (35)
it
Prosa(t) = daye = X (i -~ u; ) (36)
_ _ 1 —(u1tuz)t
Pripi(t)=Aa et « Pyo(®) + (ﬂﬂze it (m - EMT) * {P1,0,1,1 () + P (t)})
(37)
— _ 1 —(u1+u2)t
Pa11a(t)=Aae (A2l *P1,1,o(t)+(l,ule (i)t (m - EMT) * {P1,0,1,1 () + P (t)})
(38)
[ i-2
0= [ A temGrmra-oe [ L —(#1+uz)tz o1
PiLri(t) _(,uz/i ¢ {(u1+uz)“1 ¢ r=o T (uatu)T *
{Pl,o,l,l(t) + P1,0,1,2 (t)} 1 >2 (39)
[ ’ i-2
R L P T (oY) L (R S —(u1+#z)tz @ __ 1
Pi1a(t) _(‘ul/1 ¢ {(u1+uz)“1 ¢ r=o T (uatu)T *
{Pl,o,l,l(t) + P1,0,1,2 (t)} 1 >2 (40)
) i-2 . i-2
Pioa(t) :(/11_1 ﬁ e_(“”“”z)t)* P1,0,1,1(t) +(/Il_1 ﬁ e_(““lﬂ‘z)t)* P1,0,12(t)
i>1 41
g fiiz
Pija(t) = ((ﬂl -1 e (“”“”Z)t) * {Piy1j11(0) +Pipjas (t)}>+
i—j-1
ik ti—j—k—l
|l —
(/1 J —(i i —k=1)! e u+”1+”2)t> * {Pj+k,j,1,1 (®) + Pz (t)} +
k=2
i—j-1
. pimi—k
(ﬂl Ik -1) Hm 6_(’”“1“2”) * {Pj+k,j,1,1 (®) + Pikjiz (t)}
k=2
+(((i —-j— 1)08_(’H”1+”2)t) * {Pi,j,l,l(t) + P12 (t)})
i>+2, 21 (42)
Pii111(t) =4 a;e " AHHOE «Pyy i o(t) +0a, e~ AHROE %Py i o(t) +u,e =TI <P o(t)
i>2 43)
Pii1,12(t) =4 aye ")t &Py i o(t) +0a,e ~(AFH2E «P iy o(t) +py e AT «Piis (1)
i>2 (44)

Pijii(t) = Aaye”FHit=i=D0 4Py o) + (i) Ga, e~ it =i=DOL 4Py (1)
o i=j=1, \r
n i-j —(l+u1+(i—j—1)€)t{;,__ —(u1+uz)t§ ot ¥
HZ/I € (p1+puz)tJ € r=0 r! (ug+ux)t=I7T * {P],]—l,l,l(t) +

Bi—112 (t)}] +

iy .

(e~ +(=j-1) 0t - ATk {_ l  _e—(mtma)t S L S *
5 E — E S—
k=1 (ua+up) =ik r=0 ! (uytpp)imkT

{Pj+k,j—1,1,1 ®+ Pj+k,j—1,1,2 (t)} +

U e_(’1+”1+(i_j_1)9)tzi_j_l VAR (T) {—1. : —e—(u1+uz)tzi_j_kﬂ+ *
’ k=1 (u1+pp)i-—k+1 reo T/ (uatpp)iTRALST

{Pj+k,j—1,1,1 ®+ Pj+k,j—1,1,2 (t)}
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. . _ L 1 —(n1+u2)t
+ [/12 (i — j) Ge~Atua+(i=j-1Ot ( 2 ) * {Pi,j—1,1,1 (O + P12 (t)}]
i>j+2, j>2 (45)

(H1+u2) B (H1+u2)

Pij12(t) = Aage” Hratmi=DO0 4Py (1) + (i) Gaye = Kt =m0 «p; (1)

o i—j=1 .y
i~ o—(tp +(i—j—1)e)r{;_ ~(uatup) t o_ 1,
’ [MM ¢ ’ s Zr:O 7/ (ua+pg) T * Bj1aa®+

Bi-112 (t)}] +
u e‘“*”l*“‘f‘l)@le T g [t _e—(#1+#2)tzl S OIS S N
' k=1 (n1+pz)t=I=k o 1 (uytpg)i k=T
{ j+kj- 1110 +F J+kj— 112(0}]
[ =1 i—j—k
—(A+pz+(i-j-1)0t i—-j—k { 1 _ (#1+u2)tz " 1
nule Zk ) l ( g) (ﬂ1+ﬂ2)l Jj—k+1 e o 7 —(”1+#2)i—j—k+1—r *

{ j+k,j— 111(t)+ j+kj— 112(0}]

1 e—(H1+u2)t

+ [H1 (@ _].)‘99_(“’42“1._]_1)9” X ( ) * {Pi,j—l,l,l ®+ Pi—11,2 (t)}]

(n1+pz2) B (H1+u2)

i >j+2, j>2 (46)
Piio(t) = Auy a,e™* ( et ) + Ay ae ™ (i - LMt) *PitiLo(t) +
” H1 H1 H2 H2 T
—ar (L _ ekt —at (L _ ekt
(ulﬁale (M1 - ) + u,0ae (Mz - )) *Pii-10(t) +
a1 _ ekt —at (L _ ekt -

(1o (=5 e (= 5 ) sty

i>1 47)

1 Doy o
—_ *i1 -
ptG-NO pug+G—)o ) 1. i-10(0)
1 e‘(#1+(i—j)t‘7Jf) P 0+
_ P -

P +-NO  mt-No b1

e OGO i)ty (1) (T g (B4 e)
(G=j+D) =) m=1)! (u)™ (g +pp—(i-j)H1HI-m

Pij o (t) = py Aa, e~ A E=D0¢ (

pi(i —j +1)0a e~ -0t (

Uyt ﬂl ]+1[Zl Jj+1 m L

e~ Ut +(iI-) Ot e~ (Hpg+u)t
(u1)<i-f+1>(u1—(i—j)e) (1 +2= (=N OET+D (g ~ (i~ ) 0) #Bo1-212 0 + By 22 O+

Zl j ﬂ(l j+1)—k Z(" j+1)— kzl e~ (AH(I=-DOt (((—j+D)-k)—L(— 1)m+1(l 1)(Hg1 S (1+g1))(l—[xgnz—:20(1+g2))_
Hakz L= m=1 (= j+D=K)=D){m=D! ()™ (st +piz— = O

e—(A+pg +(@i-)Ot e—(A+ug+uzlt
G DB - | Gt rz—G-DOTT DR iy —G—)B) * {Po-nkj-214 (0 + Pyonan212 (O} +

- - -k
Uiz k=1(k9)/1(1 )
((i—-j+1D)-k)+1

Z Z —(1+(L -j)ot t(((l j+1)—-k)+1)— l( 1)m+1( )(nglgo 1(1 + 81))(Hg2 0(1 + gz))
(((G=j+D =R+ D) =D m= 1! @)™ +p, — (@ —HOr+-m
e~ (tus +(i-Not e~ (tui+uzt

- — — + — — —
() D= D (y — (i = )O) (g + pp — (= H OOy — (i — ) 6)

* {P(j—1)+k,j—2,1,1 ®+ P(j—1)+k,j—2,1,2 (t)}
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n . i +1)0 e~ (A=) Ot e~ (tu1+i-pot + e—(A+u1tur)t ] {P (t)
[“1”2(‘ j+D [(ul)(u1+uz—(i—j)6’) ()1 =(=)0) * (ua+pz == O (11 ~(i~))6) =211

Pi-212 (t)}] +

.. —(u2+-NHot
—um—ne)t( 1 _e ) «Pit +
HaAaye e mrape ) *Prie®
1 o=z + (-0

—— — ) Pija(t)
uz +(i-j)0 p2+(i-/)0
e —(A+{-Not t(l j+1)— l( 1)m+1(l 1)(Hg1 5 (1+g1))(l—[fgn2—=20(1+g2)) B
(G—j+D)-1)1m—1! ()™ (g +pp—(i—j) HL+-m

1y (i = j + 1) Oaye=C+a-0t (

.U1#2/11 st [Zl st m 1

e~ Ut +(I=) Ot e~ (Hpg+u)t
(u2)<i-f+1>(u2—(i—j)e) (1 +2= (=N OET+D (U~ (i~ ) 0) #Bo1-212 0 + By 22 O+

Zl j ﬂ(l j+1)-k Z(l. j+1)- kZl e~ (AHE=DOL (= D-k)~1(- 1)m+1(l 1)(Hg1 0 (1+g1))(l—[xgnz—=20(1+g2))_
ik Zu= m=1 (DR~ D)Hm—D! () g iz~ G- N O™

e—Utua +(i-)Ot = U+ +uz)t {P 0 +
G TP (-G08 | Gt iz~ DO D P =G )0) G- +kj-211(0)

P14k z1z(t)}]+ ul,uzz (ké’)/i(l J+D)-k

((-j+D-Kk)+1

Z Z e~ A+ -Not ((-j+1D)-k)+1)- (- 1)m+1( )(H 130 (1 +g1))(l'[ 2(1 +g2))
(((C=j+D =R+ 1) =)t = D! )™y +p — (= O™
e~ (pus +(i-po e~ (tui+uzt

- __ 4 — - —
() D=4 D (g, — (1 = O (g + pp — (i — ) OV Dy, — (i — j)6)

* {P(j—1)+k,j—2,1,1 ®+ P(j—1)+k,j—2,1,2 (t)}

N ) 4+ 1)0 e—U+G-)OE e~ Ut +(i-j ot + e—(A+ug+ug)t ] {P © +
J— — * AN
[“1”2 C=j+1 [(uz)(u1+u2—(i—j)6’) (U2)(uz=(i=)0) (1w =(i=))O)(uz~(i~))6) =211

P22} i>23 49)

IV. Measures of Effectiveness
I. The Laplace transform of the probability P; (t) that exactly i units arrive by time tis :
= i 5 A
P (s) = ijo Pj(s)= G 0 (49)
And its Inverse Laplace transform is

P (=0 (50)

The basic assumption on primary arrivals is that it forms a Poisson process and above analysis of
abstract solution also verifies the same.

I1.The probability that exactly j customers have been served by time t. P; (t) in terms of P;; (t) is
given by:

Pi©) =) Py ®
i=j
III. From the abstract solution of our model, we verified that the sum of all possible probabilities
is one i.e. taking summation over i and j on equations (15)-(31) and adding, we get
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- i
_ _ _ _ 1
Z Z{Pi,j,o () + Pyj11(S) + Pyjya(s) + Py jy(s)} = 5

i=0 j=0
Taking inverse Laplace transformation, we get

o i
ZZ{PL',],O ®)+Pj11 () +Pjq () + P ®}=1,
i=0 j=0

which is a verification of our results.

IV. Converting two-state model into single state model:

Define @, ,,(t) as the probability that there are n customers in the system at time t and the servers

are free or busy according as m=0,1,2.

The probability of exactly n customers in the system at time t in terms of P ; ,(¢t) and P;j ,,(¢):
When the server is free, it is defined by probability Q,, , (t)

Cuo )= ) Prinjo®
=0

In this case, the number of customers in the orbit is calculated with the help of following formula:
n = (number of arrivals - number of departures)
When only one server (m=1) is busy, it is defined by probability Q,, ,, ,(t)

Qumpe = X Pisntmjms(®) (k=1,2)
In this case, the number of customers in the orbit is calculated with the help of following formula:
n = (number of arrivals — number of departures — m)
When both servers (m=2) are busy, it is defined by probability Q,, ,,, (t)

N GEIN

In this case, the number of customers in the orbit is calculated with the help of following formula:

j=0 Pj+n+m,j,m (t)

n = (number of arrivals — number of departures — m)

Using above definitions and letting u;=u,-1 from the equations (1) to (7) the set of equations in
statistical equilibrium are:

(O 10) Qn. 0= Qu n>0 51)
(A 10 + 1) Qn, 1,1=2Aa1 Qn,0 + (n+1) 6 a1Qn+1,0t Qn2 n>0 (52)
(A 10 + 1) Qn,12=2Aa2 Qn,0 + (n+1) 6 a2Qn+1,0t Qn2 n>0 (53)
(A+2) Qn2= A Q1 + (0+1)0 Quri,1 + A Qu-1, 2(1-En0)n> 0 (54)
here {1, whenn =20
WRCIC On0=10  whenn > 1
Using Qn, 11+ Qn, 12 = Qn 1 and letting a1-az- % in equations (51) to (54) then the set of equations are:
(4 10) Qn. o= Qu. n>0 (55)
(A 16 + 1) Qn, 1= AQn, 0+ (n+1) 6 Qn+1,0 + 2Qn2 n>0 (56)
(A+2) Qu2= A Qn 1 + (0+1) 0 Qo1 + A Qut,2 (1-n) n>0 57)
where & {1, whenn =0
CreOon0=10 whenn>1

which coincide with the results (2.1) - (2.3) of Falin and Templeton [5].

V. Special Case:
When there are two servers then various probabilities can be obtained from equations (32)
to (48) by letting pu,=p,= p, ar-az- %and using the relation Py j11(t) + P j12(t) = Py ji(t), we get

—ut
Proi(t) = e~ x (i _e : ) (58)
Pi1o(t) =Au(te*)e~(+mt (59)
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. i-1 t e~ (2wt} :
Pioa(t) = (/1 e ) Pioa(t) i>1 (60)
ey gt (LM -t e ™M b
Piiot) =Aue (ﬂ - ) *Pi1i1o(t) + 6™ (ﬂ - ) #Piio(t)
-t 1 e~ - .
+212e (ﬂ - ) *Pii2(t) i>1 (61)
—2ut
P2.11(t) =Ae =8 Py 1 o(t) + 2 Aue~ (At (i - 2: ) *P1.0.1(t) (62)
i-2
i=1,— (At (i-2)0)t —2ut ®r_ 1
Pii(t) = [Z,U/I {(2/4)1 - —e Zr:o = (2ﬂ)i-r}] *P1.0,1(t)
i>2 (63)
Pii1,1(t) =Ae~HAE %Py i o(t) +60e =L %Py o(t) + 2 e~ AL «Pjis (1)
i>2 (64)
. —n, 2 —(AH(i=2)O)t 1 _etwanny. o .
Pizo(t) = 212e (s Wi_zm) “Piaa() i>3 (65)

fimj—k=1
(i—j—k-1)!

J N i=j-1, . .
Pija(t) = (A7 e‘(’“zﬂ)t) Py (2
k=2

Y e_(’”z/’)t)* Pjkj,1(t)

i-j-1, .
i-j-k e—(+2t L s i —(+20t)* p. .
+zk=2 (A7 - 1o —e ) Piia(y + (G —j— D )" Pija(t)
i>j+2, 21 (66)
Piji(t) = Ae~GrutU=j=DOt xp, . o(t) + (i-j) e~ A +E-I=DOt 4P, . (1)
i—j-1_ .,
i-j  —(A+pu+i-j-1) o)t —2ut w1 .
+2ul e {(2;1)1 ——e Zr —~ (z;t)i—i—r} *Pj j1,1(t)

=1

imio1 i ik
-(A4u+G-j-1) 0t - i-j-k 1 _p—2ut - I(t)r 1
+ 2ue A — e —
ket (2T rmo T @I

L. i-j-1 . .
*Pjk j1,1(1) + Zye_(“”“‘_]_l)g)t Z ATk (k6

k=1

1 ot i-j—k o 1 . . —(A+u+@-j-1) ot
G € o 7 G PO+ 200 = ) 6T
r= :

1 2K . . .
X (Zt = » ) *Pi j1,1(t) i > 2, 22
(67)

Pij,0 (t) = Aue~A+I-Not ( 1 e U hO

pHi-p0  pHi-io

) *Pisjro(t) + (i — j + 1) fe~+iE-Do

—(u+(i-Hot .
(y+(i1 j)g_e/H(i “ho ) *Pi j10(t) + 242 2" j+1
Zl j+1 Zl e~ (A=)t ¢(i—j+1)-l_ 1)m+1( )(nglmo 1(1+g1))(ﬂg2:2(,(1+g2))_ GO
m=1 (= j+D-1)m—1)! ()™ (2p—(i—j) O +-m P e
e et 1 i—j H(i-j+D-k

Y .)6)(i—j+1)(ﬂ_(i_j)€)] *Pi1j21(t) + 242 X2y A
Z(l j+1— kZl e~ (A=At (((i—j+1)-k)- (- 1)m+1( )(Hg1 iny (1+g1))(1‘[‘gnz‘:20(1+g2)) B o= Gt +(i= DO

" (=4 D=-k)=D!m—1)! (W™ (24— (=) O ™ DT DK (=B

e—(ﬂ+2;l)t

o 2 yimj li-j+1)-k
(2u—(i- ')e)<i—1‘+1)—’<(u-(i—j)9)] Pt p21(0) + 24 L2y A (k&)

Z((l S+ g =GP (a0t D-L-ymHa (71 ) (M 05 (140 ) (g To(1+82))
m=1 ((=j+D=R)+ D= (m=1)! ()™ (2pu-(i-) 1+

o= Utu +(i=) Ot e~ (200t P 122(i—i+1)80
— — *Pi- 1= -
TRty T GG d TRy | P10+ 248 (= +1)
e—(A+(-HOt e~ (A+ut(i-oOt e~ (A2t

— i i>7>
Weno  weana T (Zu—(i—j)e)(u—(i—j)a)] * Pijza() 1>)23 (68)

The above equations coincide with that of Singla & Kalra [14].
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V. Numerical Solution

Using MATLAB programming the numerical results are generated for the case when p (:
H1

2 0
H1+#2)_0'3’ n(_ #1+#2) =06 2! (_ Hitpz
found that the sum of all the probabilities at any instant approaches to one. In table 1, we show
some of the significant probabilities at different instants of time whose sum is found close to one.

) = 0.3 ,a,- 0.4,a,- 0.6. From the numerical results, it is

Table 1: Some significant probabilities at different instants of time.

At time t=1
Po,0,0 P10 P101,1 P21 P1o,1,2 2112 P202
0.7408 0.0495 0.0768 0.0069 0.0959 0.0046 0.0204
P32 P32 Sum
0.0018 0.0008 0.9975
At time t=5
Poo,0 P10 P220 P30 P1o11 P21 P3211 P1o,1,2 P211,2
0.2231 0.2097 0.0947 0.0260 0.0693 0.0759 0.0330 0.0556 0.0463
P321,2 P20 302 P32 Ps12 Papp2 Ps32 Sum
0.0196 0.0341 0.0087 0.0315 0.0079 0.0107 0.0024 0.9147
At time t=10
Poo,0 P10 P220 P30 Ps20 Pss50 P101,1
0.0498 0.1176 0.1378 0.1052 0.0579 0.0242 0.0189
Pai,11 P3211 Pz
0.0480 0.0572 0.0047
Pas i1 P1o1,2 P211,2 P321,2 Pas1,2 Ps41,2 P51, P202 P02 P32
0.0433 | 0.0128 | 0.0288 | 0.0331 | 0.0249 | 0.0134 | 0.0055 | 0.0094 | 0.0028 | 0.0216
Paip Paop P53, Ps,32 Ps42 P742 P7s52 Sum
0.0069 0.0241 0.0174 0.0063 0.0089 0.0074 0.001 0.9062
At time t=20
P1,1,0 P220 P30 Pa4o Pss0 Ps,6,0 P760
0.0132 0.0354 0.0627 0.0886 0.0876 0.0754 0.0071
P770 P3211 Pas i1
0.2357 0.0148 0.0265
Psa411 Pes,11 P76,11 P321,2 Pasiz Ps4,1,2 Pe5,1,2 P02 Ps3.
0.0353 0.0372 0.0741 0.0088 0.0155 0.0204 0.0213 0.0310 0.0119
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Pea2 Pr42 P7s2 Sum
0.0155 0.0080 0.0237 0.9497
At time t=40
Pss0 Ps,6,0 P770 P7611 P02 P752 Sum
0.0096 0.0180 0.9183 0.0242 0.0075 0.0027 0.9803

V. Busy Period Probabilities

In this section, we discuss some interesting numerical results about busy period distribution of

the server and busy period distribution of the system.

The probability when the one or both servers are busy is given

P (Servers one or both busy) =z (Pi_ i+ P, )+ P, (t))
i>j20

The probability when the system is busy is given by

P (System is busy) = ) (P @+ Pyaa O+ P (0 + Py )
i>jz

The numerical results are generated using MATLAB programming for the desired probabilities.

The probability when system is busy and the probability when one or both servers are busy for

different values of p (=

listed in Table 2.

#1iﬂz)at n(

) =06,7 (=L

M1tz

M1tz

) =03,a, =04,a, =06 are

Table 2: Probability of system busy and one or both servers busy (r; =0.3,a; =04, a, =0.6).

Probability (System busy) n=0.6 Probability (Servers busy) n=0.6
t p=0.3 p=0.6 p=0.9 p=0.3 p=0.6 p=0.9
0 0 0 0 0 0 0
1 0.2082 0.3734 0.5045 0.2082 0.3732 0.5039
2 0.314 0.532 0.6826 0.3135 0.5294 0.6768
3 0.3754 0.6164 0.7685 0.3737 0.6088 0.754
4 0.4145 0.6684 0.8184 0.4111 0.6547 0.7949
5 0.441 0.7035 0.8504 0.4357 0.6838 0.8176
6 0.4598 0.7283 0.8699 0.4525 0.7028 0.8266
7 0.4733 0.7452 0.8759 0.4644 0.714 0.8207

In figure 1, probability (system busy) and probability (one or both servers busy) are studied by
plotting these against time for the case (p=0.6, n=0.6,r; =0.3,a; =0.4, a, =0.6). From this figure
it is apparent that the probability when the system is busy always remains more than the
probability when the (server / servers)are busy.
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Figure 1 : Probability (system busy) and Probability (server/servers busy) against time for
p=0.6, n=0.6

The probability (system busy) and the probability (one or both servers are busy) are plotted in
figures 2 and 3 for different values of p for the case (n=0.6, r; =0.3, a; =0.4,a, =0.6). From these
figures it is clearly visible for higher values of value of p both the probabilities achieved greater
highest values for some t, but this trend reverses for higher values of t.
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Figure 2: Effect of p on probability (system busy) against time
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Figure 3: Effect of p on probability (servers busy) against time

VL. Conclusion

This paper considers a two state retrial queueing system having two non- identical parallel
servers, which can be used in practical modeling of computer and communication systems. The
transient state solution of the model is obtained and some measures of performance are derived.
Due to the two-dimensional nature of the model under study, factors are clearly understood and
well quantified. Further, the model can be converted into a model with the total number of
customers in the system. Numerical results and busy period distribution demonstrate the
influence of changing arrival rate on behavior of the system.
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