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Inferences on Stress Strength Reliability in Multicomponent
System for Type I Generalized Half-Logistic Distribution .............c..ccccccceeennnn

Phillip Oluwatobi Awodutire, Thomas Xavier, Joby K. Jose

This article deals with inferences on stress strength reliability in a multicomponent system for Type I
generalized half-logistic distribution. It is assumed that the strength and stress components are independently
distributed. In this work, we develop some statistical properties of the type I generalized half-logistic
distribution. Furthermore, the expression for stress strength reliability for a multicomponent setup was
obtained and studied. Two methods to estimate the multicomponent stress-strength reliability -maximum
likelihood and Bayesian estimation were employed. The Bayes estimates of the multicomponent stress strength
reliability are obtained under squared error loss function and using gamma priors for the parameters.
Simulation studies were conducted to assess the efficiency of the methods. The importance of this model was
studied by applying it to a real life data set.

A New Mixed Poisson Distribution for Over-dispersed
Count Data: Theory and Applications.............ccocoeviiiiiiiniiiiniiniciccccene

Ramajeyam Tharshan, Pushpakanthie Wijekoon

In this paper, an alternative mixed Poisson distribution is proposed by amalgamating Poisson distribution and
a modification of the Quasi Lindley distribution. Some fundamental structural properties of the new
distribution, namely the shape of the distribution and moments and related measures, are explored. It was noted
that the new distribution to be either unimodal or bimodal, and over-dispersed. Further, it has a tendency to
accommodate various right tail behaviors and variance-to-mean ratios. Its unknown parameter estimation by
using the maximum likelihood estimation method is examined by a simulation study based on the asymptotic
theory. Finally, two real-world data sets are used to illustrate the flexibility and potentiality of the new
distribution.

A Novel Approach for Constructing Distributions with an
Example of the Rayleigh Distribution.............cccccoiiiiiiiiicene,

Aijaz Ahmad, Muzamil Jallal, Afaqg Ahmad

In this paper, we describe a novel technique for creating distributions based on logarithmic functions, which we
referred the Log Exponentiated Transformation (LET). The LET technique is then applied to Rayleigh
distributions, resulting in a new distribution known as the Log Exponentiated Rayleigh distribution (LERD).
Several distributional properties of the formulated distribution have been discussed. The expressions for ageing
properties have been derived and discussed explicitly. The behaviour of the pdf, cdf and hazard rate function has
been illustrated through different graphs. The parameters are estimated through the technique of MLE. A
simulation analysis was conducted to measure the effectiveness of all estimators. Eventually the versatility and
the efficacy of the formulated distribution have been examined through real life data set.
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A New Reliability Model and Applications ..............ccccceeiniiininiiniiiniiiie,

M. Manoharan, P. Kavya

The Lomax or Pareto Type II distribution has a wide range of applications in many areas including reliability
and life testing. In this paper, we modify the Lomax distribution using KM transformation to enhance the
applicability of the Lomax distribution. The distribution introduced using KM transformation is parsimonious
in parameter. Substituting the cumulative distribution function (cdf) of the Lomax distribution in KM
transformation provides a new modified Lomax distribution. The behavior of hazard rate function is studied
graphically and also theoretically using Glacer method. Its analytical properties are derived and parameters are
estimated using maximum likelihood estimation method. We consider two real data sets to show the flexibility
of the proposed model. The model proposed in this paper provides a better fit to the data sets compared to other
well-known distributions given in this study.

A New Life Time Distribution: Burr III Modified Weibull
Distribution and its Application in Burn in Process..............ccccooviiiinninnnn

Deepthy G S, Nicy Sebastian

In burn-in analysis, models with a bathtub-shaped hazard rate and a bimodal density function are inevitable.
This work focusses on a new five parameter distribution called Burr 1II Modified Weibull distribution which
can be used to design burn-in procedures and preventative maintenance for incurable devices. The statistical
properties such as quantile function, hazard rate function and order statistics have been discussed. The model
parameters are estimated using the maximum likelihood estimation technique, and the performance of the
proposed model is evaluated using the simulation technique. Finally, a real data set is presented to demonstrate
the model * s utility and its application in the burn-in process.

Analysis of Some Proposed Replacement Policies ..............cccccoviiviininiciniinincnnee.

Tijjani A. Waziri, Bashir M. Yakasai, Rahama S. Abdullahi

This paper is coming up with an age replacement cost model under the standard age replacement policy
(SARP) for some multi-unit systems. Furthermore, some two other age replacement cost models will be
constructed for the multi-unit systems under some proposed policies (policy A and policy B). For simple
illustration of the proposed age replacement cost models under SARP, policy A and policy B, numerical
example was provided, and the result obtained will be beneficial to engineers, maintenance managers and plant
management, in selecting and applying the optimal preventive maintenance policies.
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Effect of Preprocessing in Human Emotion Analysis Using
Social Media Status Dataset ..............cccoovviiiiiii

Komal Anadkat, Hiteishi Diwanji, Shahid Modasiya

Emotion analysis using social media text is the emerging research area now a day. It helps the researcher to
recognize the emotional state of the users and identify mental health-relevant problems like depression or
anxiety, which may lead to suicide if not cured. The social media platforms like WhatsApp, Facebook,
Instagram, etc. are widely used as these applications provide an affordable and reliable medium for transferring
data, sharing thoughts, and even for routine informal communication. Social media status is normally analyzed
to recognize the mood, emotion, thought process, or mental state of the individual as people generally share
status for what they feel. On the other hand, pre-processing is the crucial step for any kind of text data analysis.
In this paper, the social media status dataset is first pre-processed using various methods, given for feature
extraction and classification purpose. For the machine learning approach, we have used count vectors and TF-
IDF techniques for extracting the different features of the data. Using count vector feature extraction accuracy
achieved by pre-processed data is 68.90%, 69.33%, 70.59%, 64.95%, 69.33% for naive Bayes, LDA, Random
forest, SGD and MLP respectively. Similarly, using TF-IDF feature extraction accuracy achieved by pre-
processed data is 65.76%, 69.96%, 68.49%, 65.96%, 70.80% for naive Bayes, LDA, Random forest, SGD and
MLP respectively. The experimental results show that pre-processing helps to improve the accuracy of the
classifier and CNN outperforms the traditional approach and achieves 79% accuracy

A Two Non-Identical Unit Parallel System With Priority
in Repair and Correlated Life Times ............cccccocoooiiiiii

Pradeep Chaudhary, Anika Sharma

The paper analyses a two non-identical unit parallel system in respect of various measures of system
effectiveness by using regenerative point techniques. It has been considered that the life times of both the units
are correlated random variables and a single repairman is always available with the system to repair a failed
unit.

Stochastic Analysis of a Repairable System of Non-Identical
Units With Priority and Conditional Failure of Repairman ...

Naveen Kumar, S.C. Malik, N. Nandal

Here, we describe the stochastic analysis of a repairable system consisting of two non-identical units called the
main unit and the other is a duplicate unit. The units have direct complete failure from the operative state. A
single repairman has been engaged to carry out the repair activities that can be failed while performing his jobs
with the main unit. The repairman does repair activities of the duplicate unit without any problem. Priority for
operation and repair to the duplicate unit is given over the main unit. The repairman performs with full
efficiency after getting treatment. The distribution for failure rates of the units has been considered as negative
exponential while arbitrary distributions have been taken for repair and treatment rates. The use of semi-
Markov process and regenerative point technique has been made to study the probabilistic behavior of the
system in different possible transition states. The reliability characteristics of the system model have been
examined numerically and graphically for particular values of the parameters. The profit of the system has also
been analyzed for some fixed values of the repair and other maintenance costs.
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The Reliability Performance of the Exponential Inverted
Marshall-Olkin-G Family of Distributions: Non-Bayesian
Properties and Applications..........cccocooeoiiiiiniiiiininincccc e

Joseph Thomas Eghwerido, Eferhonore Efe-Eyefia

This article introduces a class of generator for enhancing the performance, productivity and flexibility of
statistical distributions called the exponential Inverted Marshall-Olkin-G (EMA-G) distribution. The
characteristics of the new class of generator were obtained and examined. Some special models of the proposed
model were investigated. The Bernstein function of the EMA-G model was also obtained in a closed form. The
maximum likelihood method was adopted to obtain the parameters estimate of the formulated EMA-G
distribution model. The flexibility, productivity, tractability, applicability, and wviability of the new
contemporary class of distribution were examined by Monte Carlo simulation. A two real life data sets were
used to illustrate the empirical performance and flexibility, productivity, tractability of the generator. The up-
to-the-minute outcomes of the new generator indicated that the EMA-G density gives a better fit compared to
some existing statistical generators in literature using their goodness-of-fit.

Optimization of a Feedback Working Vacation Queue With
Reverse Balking and Reverse Reneging.................cccccoviiiiinniiiiccne,

K. Jyothsna, P. Vijaya Laxmi, P. Vijaya Kumar

This paper analyzes a steady-state finite buffer M/M/1 feedback queue with reverse balking, reverse reneging
and multiple working vacations. The concept of reverse balking and reverse reneging evolves from investment
businesses wherein more the number of customers associated with a firm less the probability of balking of a
customer and similar is the case of reverse reneging. Furthermore, if a customer is dissatisfied with the service
provided, he or she may chose to rejoin the queue as a feedback customer. The server exits for working vacations
whenever the system becomes empty instead of staying idle in the system. Vacation times and service times
during working vacations are all independent random variables following exponential distribution. The model
" s steady-state system length distributions are calculated using the matrix approach. Some performance
characteristics and cost optimization using ant colony optimization (ACO) are presented. Sensitivity analysis
is performed using numerical results which are shown in the form of tables and graphs.

Analysis of the Primary Factors Affecting the Most Fatal
Aviation Accidents: A Machine Learning Approach...............cccccoovniiiinnine.

Tuzun Tolga Inan - Neslihan Gokmen Inan

The safety concept is primarily examined in this study considering the most fatal accidents in aviation history
with human, technical, and sabotage/terrorism factors. Although the aviation industry was started with the
first engine flight in 1903, the safety concept has been examined since the beginning of the 1950s. However, the
safety concept was firstly examined with technical factors, in the late 1970s, human factors have started to
analyze. Despite these primary causes, there have other factors which could have an impact on accidents. So, the
purpose of the study is to determine the affecting factors of the most fatal 100 accidents including aircraft type,
distance, flight phase, primary cause, number of total passengers, and time period by classifying survivor/non-
survivor passengers. Logistic regression and discriminant analysis are used as multivariate statistical analyses
to compare with the machine learning approaches in terms of showing the algorithms’ robustness. Machine
learning techniques have better performance than multivariate statistical methods in terms of accuracy (0.910),
false-positive rate (0.084), and false-negative rate (0.118). In conclusion, flight phase, primary cause, and total
passenger numbers are found as the most important factors according to machine learning and multivariate
statistical models for classifying the accidents’ survivor/non-survivor passengers.

10
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Statistical Properties and Application of a Transformed Lifetime
Distribution: Inverse Muth Distribution..............cccooiiiiiininiceee,

Agni Saroj, Prashant K. Sonker, Mukesh Kumar

In this paper, we have proposed a transformed distribution called inverse Muth (IM) distribution. The
expressions for probability density function (pdf), cumulative distribution function (cdf), reliability and hazard
function of this distribution are well defined. The statistical properties such as, quantile function, moments,
skewness and kurtosis are derived. The methods of estimation such as maximum likelihood estimation (MLE)
and maximum product spacing estimation (MPSE) are used to estimate the parameters. The IM distribution is
positively skewed and its behavior of hazard rate is upside-down bathtub (UBT) shape. The important finding
of the study is that the moments of IM distribution do not exist. A real dataset (the active repair time for
airborne communication transceiver) used for application purpose, after taking a natural extension of IM
distribution. It is expected that the proposed model would be used as a life time model in field of reliability and
its applicability.

Hybrid Deep Resnet With Inception Model for Optical
Character Recognition in Gujarati Language Short Title:
Optical Character Recognition in Gujarati Language..............ccccooiiiiiinnn.

Sanket B. Suthar, Amit R. Thakkar

In the Optical Character Recognition (OCR) system, achieving high recognition performance is important.
OCR and visual perception are affected by the inclined characters in each language. Deep learning methods
play an important role in the OCR field, which can outperform humans with higher recognition performance.
So, in this research, a hybrid deep learning technique is applied to recognize the Gujarati language characters.
Initially, Gujarati characters collected from different sources are pre-processed using different techniques.
Adaptive Weiner Filter (AWF) is used for noise removal, Binarization, and contrast enhancement is done by
Contrast Limited Adaptive Histogram Equalization (CLAHE) method. Finally, a hybrid deep ResNet with
Inception model (GoogleNet) is suggested to perform character recognition in the Gujarati language. This
hybrid architecture also performs feature extraction tasks, considered a major task in OCR. Python tool is
utilized to illustrate the proposed methodology and solve the mathematical model. Scanned documents
containing Gujarati characters are engaged to evaluate the robustness of the proposed methodology. Using
various performance parameters, the influence of the proposed methodology is examined and its results
compared with various deep learning algorithms.

Reliability Analysis and Profit Optimization of Briquette
Machine by Considering Neglected Faults .................cccooiii

Divesh Garg, Reena Garg

Sustainable energy plays a significant role in socio-economic advancement by raising the standard of living of
all human beings. Briquetting is the process of compaction of biomass residues into solid fuels in order to
increase the effectiveness of thermal capacity, combustion rate, calorific value to name a few. In this paper, we
consider not only the occurrence of minor/ major faults but also the other neglected faults such as abnormal
sound, overheating of the motor unit, vibration, etc. Such neglected faults may not affect the working of the
system at a time but their ignorance may convert into major faults in the future. An ordinary repairman can
easily rectify all machine faults except some major faults for which an expert repairman is required. Moreover,
we analyse the availability of the system and optimize system profit by using the Artificial Bee Colony
optimization algorithm. Furthermore, a graphical study of these parameters is presented.

11



RT&A, No 1 (67)

Table of Contents Volume 17, March 2022

A New Method for Generating Distributions with
an Application to Weibull Distribution.................cccoccoooiii

M. A. Lone, I. H. Dar, T. R. Jan

In the literature of probability theory, it has been noticed that the classical probability distributions do not
furnish an ample fit and fail to model the real-life data with a non-monotonic hazard rate behaviour. To
overcome this limitation, researchers are working in the refinement of these distributions. In this paper, a new
method has been presented to add an extra parameter to a family of distributions for more flexibility and
potentiality. We have specialized this method to two-parametric Weibull distribution. A comprehensive
mathematical treatment of the new distribution is provided. We provide closed-form expressions for the density,
cumulative distribution, reliability function, hazard rate function, the r-th moment, moment generating
function, and also the order statistics. Moreover, we discussed mean residual life time, stress strength
reliability and maximum likelihood estimation. The adequacy of the proposed distribution is supported by using
two real lifetime data sets as well as simulated data.

Skip-Lot Sampling Plan of Type Sksp-T With Group Acceptance
Sampling Plan as Reference Plan Under Burr-Type Xii Distribution .....................

S. Suganya, K. Pradeepa Veerakumari

This paper clearly assigns skip-lot sampling plan of type SkSP-T with Group Acceptance sampling plan is
designing and Burr type XII distribution is applied to determine the lifetime of the product. The new proposed
plan parameters are determined by using the two-point method on the Operating Characteristics curve together
with consistent producer and consumer risks are specified. Tables are simulated for various parametric values
of SkSP-T, Group acceptance sampling plan and Burr type XII distribution. Skip-lot sampling plan of type
SkSP-T is also compared with Group acceptance single sampling plan and skip-lot sampling plan of type SkSP-
2 with group acceptance sampling plan using Burr type XII distribution. Further, the efficiency of the proposed
plan is discussed. Numerical illustration and examples are given to justify the efficiency of the proposed plan.

Some Properties and Different Estimation Methods for Inverse A(_)
Distribution with an Application to Tongue Cancer Data...........c..ccccoeecincinnennnee.

Shreya Bhunia, Proloy Banerjee

The inverted distribution is the distribution of the reciprocal of a random variable that follows a specified
distribution. Here, a new one parameter inverse A(_) distribution has been introduced, which is the reciprocal
of the A(_) distribution. An account of mathematical and statistical properties of the new distribution such as
survival characteristics, quantile functions, mode, order statistics, ageing intensity function and stochastic
ordering have been derived and discussed. Furthermore, from the frequentist view point we discussed several
estimation approaches including maximum likelihood method, method of maximum product of spacings,
ordinary and weighted least square methods, Cram/er-Von-Mises estimation and Anderson-Darling estimation
methods. These methods are compared for both small and large samples by performing an extensive numerical
simulation. The flexibility of the new lifetime distribution is demonstrated by modeling a tongue cancer data.
The result indicates the superiority for proposed model compared to some popular competing ones.

12
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Safety at Work: A Complex or an Exceedingly Simple Matter? ...............................

Rodrigo F. S. Gomes, Leandro Gauss, Fabio Sartori Piran, Daniel Pacheco
Lacerda

This paper uses the concept of inherent simplicity stemming from the Theory of Constraints to explain whether
safety at work is a complex or an exceedingly simple matter. In this context, the study seeks to explore the
causalities that govern safety at work, identifying its constructs and presenting logic propositions based on the
theory-building blocks: classification, correlation, and causal consistency. To support the research, a dataset
composed of 46 work-related accident investigation reports from an elevator industry in Latin America was
carefully analyzed using association rules. Moreover, direct observations grounded on inductive reasoning
were used to speculate plausive causes concerning the effect of work-related accidents. The research strategy
followed common strategies of theory building to reach common sense: theory-to-practice and practice-to-
theory. As a result, a conceptual proposition is postulated based on the reasoning that safety at work is
governed by very few constructs, and that its complexity is explained through the two elements from inherent
simplicity: degrees of freedom (interdependencies between constructs) and harmony (conflicts resolution within
the work environment). From the practitioners’ perspective, the study also offers directions towards safety
improvements at the organizational level by considering the impact of the interdependencies between constructs
in safety at work.

Gumbel Marshall-Olkin Lomax: A new distribution
for reliability modelling...............cccocoiiiiiiiii e

Elebe E. Nwezza, Uchenna U. Uwadi, C.K. Acha, Christian Osagie

A new distribution for modeling the two approaches (physical and actuarial) of reliability problems is
introduced. The statistical properties including the moments, mode, quantile function are derived. Some
reliability measures including the mean residual life and hazard rate are derived. An alternative measure for
total time of test (TTT) for evaluation of the interfailure times is drived. The unknown parameters of the new
distribution are estimated using the maximum likelihood approach. Furthermore, the asymptotic consistency of
the estimated parameters is evaluated through a simulation study. Two real-life datasets were used to illustrate
the applicability of the new distribution and comparison with already existing distributions.

A Novel Transformation: Based on Inverse
Trigonometric Lindley Distribution ...,

D. Kumar, P. K. Chaurasia, P. Kumar, A. Chaurasia

As we see that the present era is directly depending upon various kinds of machines. In other words, we can say
that we are fully surrounded by machines. Machines are assembled with many components and each
component has its own importance. For proper functioning of a machine, these components should be up to
date. Therefore, for smooth functioning, we have to make replacement of the component before its failure. In this
present paper, we propose a new transformation which is purely based on inverse trigonometry with lindley
distribution for the first time and so, named "Inverse Trigonometric Lindley Distribution”. It find its various
properties like survival function, hazard rate function, moments, conditional moments, order statistics, entropy
measurement etc. Maximum likelihood estimator have also considered for estimation of parameter. To know the
paternal behavior of the model, different real datasets have been considered. To understand the behavior of
estimators at the long run, simulation study is being performed in detail.
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Study on Acceptance Sampling Plan for Truncate Life Tests Based on
Percentiles Using Gompertz Frechet Distribution..................ccccoiii

S.J Ayalakshmi, S. Vijilamery

In this paper, Acceptance Sampling approaches useful for minimizing the cost and time of the submitted lots. In
this busy world expect the Quality assurance and reliability of the product is very high. So, use the truncated
life tests in acceptance sampling plan. Time truncated life tests in sampling plan are used to certain reach a
decision on the product. Therefore, Gompertz Frechet Distribution is considered as model for a life time random
variable when the lifetime test is truncated at pre-determined time. The operating characteristic functions of the
sampling plans and Producers risk is also discussed. The results are illustrated by an example.

Explicit Time Dependent Solution of a Twostate Retrial
Queueing Model with Heterogenous Servers ..............ccooeciniiniicniinicnnciniccen

Neelam Singla, Sonia Kalra

In this paper, two-dimensional state retrial queueing system with two non - identical parallel servers is
considered. Incoming calls (primary calls) arrive at the server according to a Poisson process. Repeating calls
also follows the same fashion. Service times of two servers follow exponential distribution with different rates.
An incoming call that finds the servers busy, joins an orbit and retries after some random amount of time. Time
dependent probabilities of exact number of arrivals and exact number of departures at when the servers are free
or when one server is busy or when both servers are busy are derived for the system. Finally busy period
distribution obtained to illustrate the system dynamics.

A Discrete Analogue of Teissier Distribution: Properties
and Classical Estimation with Application to Count Data.........c..cccecccvviinninnncnnn.

Bhupendra Singh, Varun Agiwal, Amit Singh Nayal, Abhishek Tyagi

This article presents a novel discrete distribution with a single parameter, called the discrete Teissier
distribution. It is noted that this model, with one parameter, offers a high degree of fitting flexibility as it is
capable of modelling equi-, over-, and under-dispersed, positive and negative skewed, and increasing failure rate
datasets. In this article, we have explored its numerous essential distributional features such as recurrence
relation, moments, generating function, index of dispersion, coefficient of variation, entropy, survival and
hazard rate functions, mean residual life and mean past life functions, stress-strength reliability, order
statistics, and infinite divisibility. The classical point estimators have been developed using the method of
maximum likelihood, method of moment, and least-squares estimation, whilst an interval estimation based on
Fisher’ s information has also been presented. Finally, the applicability of the suggested discrete model has
been demonstrated using two complete real datasets.
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Costs of Age Replacement under Accelerated
Life Testing with Censored Information ................ccccccocooiiiii

Intekhab Alam, Mohd Asif Intezar, Lalit Kumar Sharma, Mohammad Tariq
Intezar, Agsa Irfan

Accelerated life testing (ALTY) helps manufacturers to predict the various costs associated with the product
under the warranty policy. The main aim of undertaking ALTg is the extended time of today’s manufactured
goods, the small-time among design and make public, and the difficulty of analysis of items that are
continuously used in ordinary environments. Hence ALTg is used to offer quick information about the life
distribution of products. We describe how to propose and analyze the accelerated life testing plans to develop
the excellence and reliability of the item for consumption. We also focus on finding the expected cost rate and
the expected total cost for age replacement in the prorate rebate warranty plan. The problem is studied using
constant stress, under the hypothesis that the life spans of the units follow the Gompertz distribution (GD) for
predicting the cost of age replacement in the warranty plan. The asymptotic variance and covariance matrix,
confidence intervals for parameters, and respective errors are also obtained. A simulation study is carried out to
show the statistical properties of distribution parameters.

Selection of Life Test Sampling Inspection
Plans for ContiNUOUS PrOAUCHION ......ooooiieeeeeeeee e e e e e e eeeereeeeeeeeens

R. Vijayaraghavana, A. Pavithrab

Reliability sampling is the methodology often used in manufacturing industries for making decision about the
disposition of lots of finished products based on the information generated from a life test. Such a methodology
can be applied effectively for isolated lots as well as for a continuous stream of lots through the life tests to
ensure control over the quality characteristics that are mainly related to the functioning of the manufacturing
items in time. Sampling inspection plans for isolated lots are classified under lot-by-lot inspection procedures.
Cumulative results plans are classified under the sampling inspection for continuous production, which results
in continuous stream of lots. This paper presents the notion of life tests for cumulative results plans with a
particular reference to chain sampling inspection plans when the lots are formulated from a continuous stream
of production. The operating characteristic (OC) function of chain sampling plans for life tests is presented as a
measure of performance when the lifetime random variable follows an exponential distribution. A procedure for
designing the proposed plans indexed by two points on the characteristic curve for providing protection to the
producer and consumer is discussed with illustrations. Tables yielding the parameters of the optimum plans are
also provided.

Critical Path Interms of Intuitionistic Triangular
Fuzzy Numbers Using Maximum Edge Distance Method...............cccccoecvnininne.

S. Priyadharshini, G. Deepa

We live in a contemporary world where successful project management strategies are complex to manipulate
the projects for project managers and decision-makers. It is essential to pinpoint strategies so that managers can
accomplish projects and polish off them within a predetermined period of time and resource restrain. This
research assists us to detect the critical path in an acyclic network in terms of intuitionistic triangular fuzzy
numbers, we have proposed the “maximum edge distance” method. Forward and backward algorithms are
designed to find the optimal path for the proposed method. Numerical examples are also illustrated for the same.
Verification is done using the path length ranking technique. Simulation results are included by the use of the
C program and MATLAB. Finally, the comparison is made with the traditional forward and backward pass
(existing method) technique to point out the conclusion.
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Sentiment Analysis Performance and Reliability Evaluation
Using an XLNet-based Deep Learning Approach..............cccoooiiiiniiiinnicnne,

Dhaval Bhoi, Amit Thakkar

Online reviews are now a global form of communication between consumers and E-commerce companies. When
it comes to making day-to-day decisions, customers rely heavily on the availability of internet reviews, as well
as their trustworthiness and performance. Due to the unique qualities of user reviews, customers are finding it
increasingly difficult to define and examining the authenticity and reliability of sentiment evaluations. These
sentiment classifications for user reviews can aid in understanding user feelings, review dependability, and
customer perceptions of movie items. Deep Learning is a strong technique for learning several layers of data
representations or features. When compared to traditional machine learning approaches, deep learning
techniques yield better results. To assess, analyze, and weight the usefulness of each review comment, we
employed the XLNet Deep Learning Model Approach on balanced movie review dataset. Experimental result
demonstrates that the proposed deep learning model achieves higher performance evaluation than those of other
classifiers.

Sharma-Mittal Entropy Properties on Generalized (k) Record Values.....................

Jerin Paul, P. Yageen Thomas

In this paper, we derive Sharma-Mittal entropy of generalized (k) record values and analyse some of its
important properties. We establish some bounds for the Sharma-Mittal entropy of generalized (k) record values.
We generate a characterization result based on the properties of Sharma-Mittal entropy of generalized (k)
record values for the exponential distribution. We further establish some distribution-free properties of Sharma-
Mittal divergence information between the distribution of a generalized (k) record value and the parent
distribution. We extend the concept of Sharma-Mittal entropy to the concomitants of generalized (k) record
values arising from a Farlie-Gumbel-Morgenstern (FGM) bivariate distribution. Also, we consider residual
Sharma-Mittal Entropy and used it to describe some properties of generalized (k) record values.

The New Mixed Erlang Distribution: A Flexible
Distribution for Modeling Lifetime Data.............cc.ccocoooiiiiiniiniiiice

Therrar Kadri, Souad Kadri, Seifedine Kadry, Khaled Smaili

We introduce a new mixed distribution of the Erlang distribution that is generated from the convolution of the
Extension Exponential distribution denoted by the Mixed Erlang distribution (ME). We derive an exact closed
expression of the probability density function which is used to obtain closed expressions of the cumulative
function, reliability function, hazard function, moment generating function and kth moment. The method of
maximum likelihood and method of moments is used for estimating the model parameters. Two applications to
real data sets are given to illustrate the potentiality of this distribution.
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Construction of Life Test Sampling Inspection Plans
by Attributes Based on Marshall — Olkin Extended
Exponential Distribution ...,

R. Vijayaraghavan, A. Pavithra

A life test is a random experiment conducted on the manufactured items such as electrical and electronic
components for estimating their life time based on the inspection of randomly sampled items. Life time of the
items is a random variable which follows a specific continuous-type distribution, called the lifetime distribution.
Reliability sampling, which is one among the classifications of product control, deals with inspection
procedures for sentencing one or more lots or batches of items submitted for inspection. In this paper, the
concept of sampling plans for life tests involving two samples is introduced under the assumption that the life
time random variable is modeled by Marshall - Olkin extended exponential distribution. A procedure is
developed for designing the optimum plan with minimum sample sizes when two points on the desired
operating characteristic curve are prescribed to ensure protection to the producer and the consumer.

A Comparative study of outlier detection of Yamuna
River Delhi India by Classical Statistics and Statistical Quality Control................

Mohammad Ahmad, Ahteshamul Haq, Abdul Kalam, Sayed Kifayat Shah

Water quality control aids in preventing pollution, public health, and the preservation and improvement of the
biological integrity of water bodies. Water quality involves many variables and observations, some of which are
outside of the acceptable range. An observation that apart from the rest of the data or looks diverge from other
observation of the sample in which it occurs. In this paper, we proposed two methodologies for detecting outliers
for the Yamuna River water quality data with three variables Chemical Oxygen Demand (COD), Bio-chemical
Demand Oxygen (BOD) and PH, at three different locations did comparison of these two methodologies. These
two methodologies are based on Descriptive Statistics and Statistical Process Control (SPC). A few outliers are
present in the data. The outcome shows how far the outlier detection method has progressed and better
knowledge of the various outlier methodologies and provide a clear path for future outlier detection methods for
researchers.
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Abstract

This article deals with inferences on stress strength reliability in a multicomponent system for Type
I generalized half-logistic distribution. It is assumed that the strength and stress components are
independently distributed. In this work, we develop some statistical properties of the type I generalized
half-logistic distribution. Furthermore, the expression for stress strength reliability for a multicomponent
setup was obtained and studied. Two methods to estimate the multicomponent stress-strength reliability -
maximum likelihood and Bayesian estimation were employed. The Bayes estimates of the multicomponent
stress strength reliability are obtained under squared error loss function and using gamma priors for the
parameters. Simulation studies were conducted to assess the efficiency of the methods. The importance of
this model was studied by applying it to a real life data set.

Keywords: Type I generalized half-logistic distribution; multicomponent system; stress strength
reliability; beta function.

1. INTRODUCTION

Researchers and statisticians have paid a lot of attention to stress-strength reliability. Their vast
range of applications includes industries ranging from transportation and communications to
medicine and healthcare. If the system’s strength is higher than the stress it is subjected to, it
is called trustworthy. Random stress is given to an appliance, Y, and the strength is X then a
measure of the reliability of a system is given by R=Pr{X>Y}. There has been a great deal of
effort done on estimating R using various X and Y distributions and estimate methodologies.
Kotz et al. (2003) provide an overview of the applications and theories in this field . Raqab et al.
(2008) and Kundu and Ragab (2009) found R where X and Y are independent three-parameter
generalized exponential and three-parameter Weibull random variables, respectively. Kundu
and Raqgab (2013) have calculated the stress-strength reliability for a three-parameter generalized
Rayleigh distribution. Using the phase-type distribution and a discrete distribution, Jose et al.
(2020) calculated stress-strength reliability and Jose and Drisya (2020) evaluated time-dependent
reliability using the phase-type distribution, respectively.

The development of multicomponent stress-strength reliability has also received considerable
attention. For example, consider a system with k statistically independent and identically
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distributed strength components subjected to a shared load. When s(l < s < k) or more
components concurrently survive, this multicomponent stress-strength system is activated. This
was initially explored by Bhattacharya and Johnson (1974). A wide range of industrial and
military applications can benefit from such systems. When s = k and s = 1 respectively, the
following system corresponds to series and parallel. Using a panel of k identical solar cells,
Johnson (1988) showed that this set-up may be used in practice to ensure that the mission’s power
requirements are met even if only s of the cells are in use at any one time. Some cells may be
unable to function properly due to severe temperatures, and this extreme temperature may be
a factor in a cell’s strength. Dey et al. (2016) used this model to estimate the multicomponent
stress-strength reliability for the Kumaraswamy distribution, among many other practical uses.
An example of a log-logistic distribution of strength and stress was studied by Rao and Kantam
(2010). The dependability of multicomponent stress-strength models was calculated by assuming
generalized exponential and Burr XII distributions for the components in Kizilaslan and Nadar
(2015), Rao (2012), and Rao et al. (2014).

Olapade developed the type I generalized half-logistic model, which is shown below (2014). A
generalized version of the half-logistic distribution suggested by Balakrishnan, the distribution is
used in this case (Balakrishnan, 1985). If a random variable X has the density function f(x) of
the type I generalized half-logistic (TIGHL) distribution, it is said to have the type I generalized
half-logistic (TIGHL) distribution if

e

N
v <1+e7)

and f(x) = 0 elsewhere with cumulative distribution function as

F(x):l—( zx)b 2

1+ec

f(x)

0<x<o00o,b>0,0>0 @

where ¢ and b are the scale and shape parameters, respectively. Jose and Manoharan’s approach
is a particular case of the model in (I) (Jose and Manoharan, 2016). This model’s dependability
qualities haven’t been well studied in the literature, which prompted us to investigate them
and come up with clearer formulations. In addition to Bello et al. (2017), Awodutire and
Awodutire et al. (2020a) and others, the type I generalized half-logistic model has been further
generalized. According to Jose et al. (2019) the stress-strength reliability of Kumaraswamy half-
logistic distribution was analyzed. Furthermore, a power-transformed half-logistic distribution
was used to estimate stress-strength reliability in single and multicomponent system (Xavier and
Jose, 2020a, 2020b).

The following is the article’s flow: The type-I generalized half-logistic model’s dependability
features are discussed in Section 2. Under a multicomponent arrangement, the calculation
of the distribution’s strength stress reliability is discussed in Section 3. Maximum likelihood
estimates and Bayesian estimates are developed. Gamma priors are used for Bayesian estimation
under the squared error loss function. In Section 4, characteristics were tested in a series of
computer simulations. In the same section, a real-world dataset is used to demonstrate the
model’s capabilities. Section 5 is the final conclusions of the paper.

2. RELIABILITY PROPERTIES

Olapade(2014) had studied some properties of the Type I generalized half logistic distribution. In
this section, more research is carried out in order to derive precise formulations for a number of
dependability characteristics. Moment generating function, mean failure time, mean residual life
function, and Renyi and Shannon entropies are among the properties that are further studied.
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2.1. Moment generating function

The moment generating function can be obtained as

b o x
My(t) = E(e) = b%/ et gy
0

Now consider the transformation <1+1 ;) = u, then
er
1
My(t) = E(e) = b20 / Wb (1 ) dy
0
I'(b—to)l(toc+ 1)
—_ b _
= 2 X0 RO —toc) >0 (©)]

where I'(.) is called the gamma function defined as T'(a) = [;° x*~le %dx; R(a) > 0

2.2. Mean Time to Failure Function
Then we can have mean time to failure (MTTF) or E(X) as E(X) = %Mx(t) lt=0

E(X) = 217“1’_“1’,)(2)(”“) o9 (b — to) + ap(to +1)]|,_,

= 2% [p(b) +y(1)] ()

Here ¢(.) called the digamma function is the logarithmic derivative of the gamma function, that

is () = 1.

2.3. Mean residual life function

The mean residual life function for a non-negative continuous random variable X is defined as
7(x) = E(X — x|X > x) and can be obtained by

Now consider the transformation

nx) = o

Il
Q

- )() 1 \*
; (b+ 1)gk! 1+e§>

(1bb+1 ! X> (5)
1+ec

W‘\Q W‘\Q
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where (t); = t(t+1)...(t +m — 1) and ,F;(z) is the generalized hypergeometric function. The
generalized hypergeometric function ,F;(z) is defined as

k

o k p )k 2
qu<al,...,ap; b]/- ’ Z k )k k'

where b]- #0,-1,-2,.;,i=12,.,p;, j=12,..,4, The convergence conditions and other details
are available from books on special functions, see for example Mathai and Haubold (2008).

2.4. Renyi and Shannon entropies

The entropy of a random variable X is a measure of variation of the uncertainty. Renyi entropy is

defined as I,(y) = 1171n { [ f7(x)dx}, where v > 0 and y # 1.
_ . -
1 p127b e’
Ir(r)/) - 1— ,)/ln oY /0 (1 n e£)7(b+l) dx
1 [br2w g1 ]
_ yo—1¢1 _ . \7—1
= 1= ,)/ln = /0 u (1—u)"  du
1 [ (2t
= 1 —_— B ; 1
—, " <0> (Y6, )|y > 0,7 # (6)

The Shannon entropy is defined as E[—Inf(x)] and can be obtained as
E[~Inf(x)] = —E[Inb + bIn2 — Ing] — E [ﬂ + (b+ DE [In(1 +e¥)]
Now

E[Z] = 2(p®) -p0)

1o
x b(b+1)20 oo ecln(1+ev
E [1n(1+ea)] _ U TT ) / ( m) dx
0 (1+e2l7>
= b(b+1)2b/ ub= 11n< )du
0
_ 12
B b
Hence, the Shannon entropy reduces to
b (b+1)2b
E[~Inf(x)] = ~[Inb +bIn2 — In] + 2°((b) = (1)) + 5~ @)

3. MULTICOMPONENT STRENGTH STRESS RELIABILITY

The stress-strength reliability of a system is defined as the chance that the system will continue
to work effectively until the strength surpasses the stress. When the system is placed to use
and subjected to a random stress, the system’s strength changes as a result of the manufac-
turing variability and unpredictable circumstances. Material, production technique, humidity,
temperature, and other variables may all be exploited to create manufacturing variations and
unpredictability in products. There are several studies in the literature that have attempted
to estimate the multicomponent stress-strength reliability for different statistical distributions.
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Reliability of multicomponent stress strength is established by Bhattacharyya and Johnson (1974)
as

Ry = Pr{atleasts of (X;,X>,..., Xi) exceed Y}

= i (k> /000[1 — F(y)J'[F(y)]*'dG(y) ®)

. 1
1=s

where X;, X3, X3, ..., Xy are independently distributed with the cumulative distribution function
F(x) and are subjected to common random stress Y with cumulative distribution function G(vy).
Let Xi, Xy, ..., Xy be iid with TIGHL(q,0) and Y~TIGHL(b, o) be independently distributed.
Thus, by putting equations (I) and () into (8), we can derive the multicomponent system’s stress
strength reliability using the type I generalized half logistic distribution as

X

_hh & o/ g N\ . 2 A\ el 4
X - X PRV
o Z( )/0 <1+ev> < (1+ev> ) (14e7)b+t

Lett = (%)q then dt = —%dx and when x — 0,t — 1 and when x — oo, — 0.
+er o(1+ev )9+l
k b
Ry = ?2 ( ) / t[1 — ) tade
7i=s
k 1 b, 4
= 92 (k)/ t 1 — 1k iar
qi:s ! 0
= 52() (b+i+1L,k—i+1) )
where § = s and B(.) is the beta function defined as B(x,y) f 1 = tyldt R(x) >
0,R(y) >0

As special case, consider X1, Xy, ..., X are connected in parallel, then s = 1 and R, will be

le_(sZ() (G+i+1Lk—i+1) (10)

Consider Xj, X, ..., Xy are connected in series, then s = k and Ry will be

0

o+k+1 (1)

Rkk:(sz() b+i+1Lk—i+1)=

3.1. Maximum Likelihood Estimation of R,

Consider two random samples of size m and n, respectively, drawn from the variables strength,
X, and stress, Y, each of which follows a type I generalized half-logistic distribution with shape
parameters q and b, respectively, and a common scale parameter ¢, then the log-likelihood
function of the observed data is as follows:

m
I = m(lng+gIn2—Inc)+n(lnb+bIn2—1Ino) + Z

q\*?

Q\R

Yj
In(1+e7)

M:

- (q+1)iln(l+e%) (b+1)

i=1 =1
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q j=1 Y qIn(l+e7)—nln2
% i

ol U Lo yjer
3% = (4+1)2ﬁ ++1)Yy ——— 7;

i—10%2(14+e7) j=i02(1+e7)
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0 can be obtained by iteratively solving the equation %: 0. Given the estimates, the MLE of R, j
becomes

k
o k A
=9 ()B o+i+1Lk—i+1 (15)
i:ZS . ) B )
The asymptotic variance of the estimate of R as defined by Rao (1973) is
AVar(Ryy) = Var(q) ( 2Rk 2+v () ((2Re i (16)
ar(Ry ) = Var(g 3 ar 5
where .
. %17 7%
A o AR
Var(b) = E [_abZ} =
OR; Ry 62 & .
aq' =4 — ; Z( ) F+i+Lk—i+D{p(d+k+2)—p(0+i+1)}
=S

Rgx Ry o0&
Sh== +b2<) G+i+tLk—i+D{p@+i+1)—p(6+k+2)}

Then the asymptotic 95% confidence interval for the system reliability, R, can be obtained as

Ry F1.96,/ AVar(R; ).

3.2. Bayes estimation of R

Parameters are assumed to be constants in the conventional estimate technique. For example, the
parameters in the model may not be constant over the entire testing time, therefore they must
be handled as random variables. The prior distribution of the parameters may be utilized as
information on the uncertainty associated with them in Bayesian estimation, which is a method for
overcoming this. This section is devoted to estimating R, ;. by use of a Bayesian approach. Here,
we assume that the parameters ¢, b and ¢ have gamma prior distributions with (¢;,d;),i=1,2,3
correspondingly. Assume random variable Z has parameters (c;, d;) with the following gamma
density is

h dfl ci—1,—

®) Ty ¢

and h(z) = 0 elsewhere. The joint prior of b,q and ¢ can be written as

i, (0 < z<00,¢;> 0,d;> 0,i=1,2,3

7'((17, q, 0’) x qcl_1bc2_10'C3_1e_d1‘7_d2b_d3!7 (17)
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On the basis of the squared error loss function, it was possible to generate Bayes estimates of R; x
when the likelihood function and the prior posterior distribution of the parameters q,b and ¢ are
combined and the following result is obtained:

75 (olb, g, data) o ges=m=n=lgz (Tl ¥ T ys) ~dso

% Im—[ (1+e%)*(q+1)ﬁ (1+ey75)7(h+1)

r=1 s=1

m
ni (glo,data) o Gamma (m +c,dy—mIn2+ ) In (1 + eJ))
r=1

n
iy (blo,data) o Gamma (n +cpdy—nln2+ ) In (1 + e¢)>
s=1

Any well-known distribution cannot be reduced to the posterior distribution of . Random
samples are generated using the Markov chain Monte Carlo (MCMC) method because posterior
distributions cannot be reduced into closed forms. It is possible to estimate the posterior density
functions if they are unimodal and generally symmetric; for details, see Gelman et al (2003). When
a previous is log-concave, then a posterior is similarly log-concave, according to Kundu (2008)
Metropolis-Hasting and the normal proposal distribution will be utilized to generate random
samples from posterior distributions of ¢. Bayesian R, estimation is given in the following
manner:

Step 1: Set the initial values ¢” and i = 1. Let Let v = o'~ 1.

Step 2: Generate g from Gamma (m +cp,dp—mIn2+Y"  In (1 + e%r)).
Step 3: Generate b from Gamma (n +oep,dy—nIn2+ Y7 | In (1 + e%s) )

Step 4: Using the proposal density () = N(c'~1,1),0 > 0, generate ¢ from 7t (c|b'~!, 4’1, data)
using step 5.

Step 5: From the proposal density, generate a sample, 7. Generate U from Uniform (0,1) and if

U < min {1, %} , accept T and set o =T

Step 6: Compute R;k and setitoi+ 1.

Step 7: Repeat steps 2 to 6, K times and obtain the Bayesian estimates of 4,b,0 and R,y as
i i i R .
YR e XK B vk % and YX | 3 respectively.

The method of Chen and Shao (1999) can be used to construct the 100(1 — «)% high poste-
rior density (HPD) credible interval of R, .

4. SIMULATION STUDY AND DATA ANALYSIS

Here, we compare the performances of R; y for different sample sizes. Random samples of sizes 15,
20, 30, 40, and 50 with 1000 replications each from the strength and stress populations were gen-
erated for (q,b) ={(3.5,1.0),(2.5,1.0), (1.5,1.0), (1.0,1.5), (1.0,2.5), (1.0,3.5) } respectively. The
value of o was fixed at 2 for all simulation results. The ML estimators of 4 and b were then substi-
tuted to obtain the estimate for R, ; with (s, k) ={(1,3),(2,4)}. The bias, MSE, and asymptotic
confidence intervals of the MLE of R, are presented in Table|l} The MSE values decrease as the
sample size increases for both (s, k) which verifies the consistency property of the MLE of Ry .
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The Bayesian estimates were derived using the MCMC technique with two priors. The
Bayesian estimates were derived using the MCMC technique with two priors. Prior 1: (c 1,d
1)=(1,0.5), (c 2,d 2)=(2,0.5), (c 3,d 3)=(1,1) and Prior 2: (c 1,d 1)=(1,1.5), (c 2,d 2)=(2.5,0.5), (c 3,d
3)=(1,1) (2,1). We ran the MCMC chains with a variety of beginning values and generated a
total of 10000 iterations. The first 9000 iterations were deleted to reduce the distribution’s initial
influence. This is referred to as burn-in. Tables [2| and [3| show the bias, Bayes risk, and HPD
confidence ranges for R, estimations. With increasing sample size, the risk and interval lengths
are seen to decrease. We ran the MCMC chains with a variety of beginning values and generated
a total of 10000 iterations. The first 9000 iterations were deleted to reduce the distribution’s initial
influence. This is referred to as burn-in. Tables [2| and [3| show the bias, Bayes risk, and HPD
confidence ranges for R yestimations. With increasing sample size, the risk and interval lengths
are seen to decrease.

4.1. Data analysis

In this part, a real-world dataset is examined to demonstrate how the produced conclusions may

be used. Al-Mutairi et al. (2013) and Rao (2014) considered the dataset, the amount of time (in

minutes) that clients had to wait before being served. As an example, suppose bank A has five

service points, say Xj, X, ..., X5, while bank B has one service point, say Y with m= 100 and

n= 60 as the sample sizes, respectively. For your convenience, the dataset is displayed here.
Data X: 0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.04.1,4.2, 42,43,43/4.44.4,
464.7474849495.05.3555757,6.1,62,62,62,6.3,67,69,7.1,7.1,71,7.1,7.4,7.6,7.7,8.0,
8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.59.6,9.7,9.8,10.7,109,11.0,11.0,11.1,11.2,11.2,11.5,11.9,12.4,12.5,
12.9,13.0,13.1,13.3,13.6,13.7,13.9,14.1,15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.0,19.9,20.6,21.3,
21.4,21.9,23.0,27.0,31.6,33.1,38.5

Data Y: 0.1,0.2,0.3,0.7,09,1.1,1.2,1.8,1.9,2.0,2.2,2.3,2.3,2.3,2.5,2.6,2.7,2.7,29,31,3.1,3.2,3.4,3 4,
35394.042454.75.3,56,5.6,6.2,6.3,6.6,6.8,7.3,7.57.7,7.7,8.0,8.0,8.5,8.5,8.7,9.510.7,10.9,11.0,
12.1,12.3,12.8,12.9,13.2,13.7,14.5,16.0,16.5,28.0

In order to match the datasets, we used the Type I generalized half-logistic distribution, and it
can be shown that the model fits the data quite well. g and ¢ have MLE values of 0.41 and 3.33
for Data X. The MLEs of b and ¢ for Data Y are 0.69 and 3.33. Table 4] contains the results of
the KS-test as well as the relevant p-values. Figure [1|shows a histogram of the fit, which shows
how well the model fits. The values s=5 and k=5 are used for example reasons only, which
means that the service points in Bank A are connected in a series fashion. A series connection of
the service points might be read as consumers offering services for all five of the service points
that are now accessible. The estimate of Rs5 is obtained as 0.2160 with a 95 percent asymptotic
confidence range of (0.1580,0.2740).

Table 4: Goodness for fit for data set

Shape parameter Scale parameter K-S Statistic ~ p-value

Data X 0.41 3.33 0.1136 0.1513
Data Y 0.69 3.33 0.0728 0.9083

The MCMC technique under two priors was used to produce the Bayesian estimates in this
case. Preliminary estimates for the following priors are used:

Prior 1: (c1,d1) = (2,1), (c2,d2) = (2,1), (¢3,d3) = (0.5,0.5), and

Prior 2: (Clrdl) = (1, 05), (CQ, dz) = (2, 05), (63, d3) = (1, 1)
We ran the MCMC chains and generated 20000 iterations, the first 10000 iterations of the distribu-
tion were removed in order to reduce the initial influence of the distribution. In order to break the
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Figure 1: The fitted density for X and Y

reliance among the produced samples, we select a sample every tenth one. This results in a final
chain of 1000 samples. According to the preceding condition, the multicomponent stress-strength
reliability is derived as Rs5= 0.2189 with 95 percent credible interval as (0.1660,0.2766). Figure
shows the trace plot of and histogram of the R;  values. Prior 2 yields the multicomponent
stress-strength reliability as Rss5= 0.2192 with 95 percent credible interval as (0.1701,0.2760).
Figure 3| depicts a trace plot and histogram of the R, ; values.

5. CONCLUSIONS

Using the Type I generalized half-logistic model, we may derive explicit formulas for several of the
model’s dependability features. Additional point and interval estimates of the multicomponent
stress strength reliability, R,y where the strength of its constituents and the stress applied to it are
statistically independent and follow a Type I generalized half-logistic distribution are presented.
The maximum likelihood estimates and Bayesian estimates under the squared error loss function
are generated. The results of the simulations indicate that the estimations were compatible with
one another. Furthermore, as the sample size was increased, the length of the confidence interval
shrank as a result of this. As an example of how the proposed conclusions can be put into practice,
a real-life scenario is explored.
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Figure 3: Trace plot and histogram of R, ;. values under prior 2
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Abstract

In this paper, an alternative mixed Poisson distribution is proposed by amalgamating Poisson
distribution and a modification of the Quasi Lindley distribution. Some fundamental structural properties
of the new distribution, namely the shape of the distribution and moments and related measures, are
explored. It was noted that the new distribution to be either unimodal or bimodal, and over-dispersed.
Further, it has a tendency to accommodate various right tail behaviors and variance-to-mean ratios. Its
unknown parameter estimation by using the maximum likelihood estimation method is examined by a
simulation study based on the asymptotic theory. Finally, two real-world data sets are used to illustrate
the flexibility and potentiality of the new distribution.

Keywords: over-dispersion, mixed Poisson distribution, Lindley distribution, Quasi Lindley
distribution, goodness of fit.

1. INTRODUCTION

Most of the real-world applications, especially, reliability, actuarial, biomedical, engineering,
ecological sciences, and among others, the variable of interest is in the form of count data. The
Poisson distribution is a standard tool to model the count data if the empirical and theoretical
properties satisfy the related underline assumptions. A random variable X is said to have a
Poisson distribution with parameter A if both the E(X) and Var(X) of the distribution equal to the
parameter A. This property is commonly known as equidispersion. Even though its probability
mass function (pmf) is very flexible to compute its probabilities, in some real-world applica-
tions the Poisson distribution fails to match empirical observations. Here the variance of the
observed data exceeds the theoretical variance. This phenomenon is explained as over-dispersion
or variation inflation (Greenwood and Yule, 1920). The over-dispersion occurs by the failure of
the basic assumptions of the Poisson distribution. The reasons might be by phenomena of the
clustered structure of the population or population is heterogeneous, and heavy right tail that
cannot accommodate by the Poisson distribution (McCullagh et al., 1989; Ridout et al., 1998). The
heterogeneity of a population is determined by the Poisson parameter A which differs individ-
ual to individual, and then the Var(X) = TE(X); (t > 1), where 7 is called the index of dispersion.

The mixed Poisson distributions are well-known flexible modeling methods to explain the
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heterogeneity of the Poisson parameter as well as heavy right tail behaviors (Feller,1943; Shaked,
1980). The mixed Poisson distribution is a resultant distribution or unconditional distribution
by assuming that the Poisson parameter is a random variable that has as a parameterized dis-
tribution P. The distribution P and its parameter vector © are called prior distribution and
hyperparameter, respectively. Then, the resultant distribution of the random variable X can be
expressed mathematically in the following form

fx@) = [ Fra N ar, ®
where X|A has a Poisson distribution with parameter A as
e MAx
fa(xlA) = == x=0,1,2,., A >0, @)

A is the random variable of the Poisson parameter A, and £} (A) is the density function of the
assumed continuous distribution P to the Poisson parameter A. Hence, the random variable X
has the same support of X|A with parameter(s) of the prior distribution. Further, Lynch (1988)
showed that the form of the mixing distribution has ascendancy over to the form of the resultant
mixed distribution.

In literature, researchers assumed the standard lifetime distributions to model the Poisson
parameter A as a classical approach. Greenwood and Yule (1920) used the gamma distribution,
and the resultant distribution is negative binomial (NBD). Johnson et al., (1992) assumed the ex-
ponential distribution to model the Poisson parameter, and the resultant distribution is geometric
distribution (GD). Even though NBD and GD are computationally flexible pmfs, they are not
befitting distributions for a higher value of T and long right tail. In this context, researchers have
assumed several modifications of the standard lifetime distributions for the Poisson parameter.
They were modified to have more flexibility in their shapes and failure rate criteria than the
standard lifetime distributions. Confluent Hypergeometric series, Gamma product ratio, General-
ized gamma, Shifted gamma, Inverse gamma, and Modified Bessel of the 3rd kind are used by
Bhattacharya (1967), Irwin (1975), Albrecht (1984), Ruohonen (1988), Willmot (1993), and Ong and
Muthaloo (1995), respectively to model the Poisson parameter. The pmfs of such distributions are
derived through the recursive formulas or Laplace transform technique, or by using the special
mathematical functions. Hence, computing the probabilities of such distributions is complicated
and they are limited in practice.

The Lindley distribution (LD) is one of the life time distributions introduced by Lindley (1958)
having the density function

92

:1_'_9(14—)&)@’9)‘, A>0,0>0, 3)

fa(A)

where 6 is the shape parameter, and A is the respective random variable. Equation (3) presents a
two-component mixture of two different continuous distributions namely exponential (6) and

gamma (2,6) distributions with the mixing proportion, p = T30 Sankaran (1970) introduced

the one-parameter discrete Poisson-Lindley distribution (PLD) by combining the Poisson and LD.
Its pmf is given as
_ 0P(x+0+2)

fX(.x) — W, X = 0,1,2,..., 9 > O (4:)

Note that the pmf of the PLD is an explicit form. Then, obtaining its probabilities is computa-
tionally flexible. However, the PLD flexibility is limited to fit various types of the over-dispersed
count data sets since it has only one parameter. Then, as an alternative to PLD, Bhati et al.
(2015) have obtained the Generalized Poisson-Lindley distribution (GPLD), where the Poisson
parameter is distributed to Two-parameter Lindley distribution (Shanker et al., 2013b); Wongrin
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and Bodhisuwan (2016) introduced Poisson-generalized Lindley distribution (PGLD), which was
obtained by mixing the Poisson distribution with the generalized Lindley distribution (Elbatal et
al., 2013); Grine et al. (2017) have obtained the Quasi-Poisson distribution (PQLD) by modeling
Poisson parameter to Quasi Lindley distribution (Shanker et al., 2013a). Table 1 summarizes the
mixing proportions, mixing components, and parameters of the above continuous distributions
that have been used to model the Poisson parameter. We can see that the mixing proportions
of the Two-parameter Lindley and generalized Lindley distributions are incorporated with the
scale parameter, § of the mixing components. Further, the shape parameter of the mixing
component gamma (2,0) is fixed with value 2 for the Two-parameter Lindley and the Quasi
Lindley distributions. These settings of such mixing distributions may limit the flexibility of the
above-mentioned Poisson mixtures to fit well for the various types of the right tail heaviness and
T for an over-dispersed count data (Tharshan and Wijekoon, 2020 a b).

Table 1: Mixing proportions, mixing components, and parameters of some modified-Lindley distributions.

Distribution Mixing proportion Mixing components Parameters
shape scale

6
Two-parameter Lindley i a exponential (f) , gamma (2,0) 6,«
. . 6
Generalized Lindley 56 gamma («,0) , gamma (8, 0) 0,a,B
Quasi Lindley o j_ 7 exponential (6) , gamma (2, 0) 4 «

The main contribution of this paper is to propose an alternative mixed Poisson distribution
for over-dispersed count data to address the above issues. It is obtained by mixing the Poisson
distribution and the Modification of the Quasi Lindley distribution (MQLD) (Tharshan and
Wijekoon, 2021). The density function of the MQLD(6, &, §) is given as

96—9)\

fa(A0,a,0) = (@ +1)T0)

(r((s)uc3 + (9/\)‘5—1>;/\ >0,0>0,a>>-1,6 >0, (5)
where «, and J are shape parameters, 6 is a scale parameter, and A is the respective random
variable. Equation (5) presents the mixture of two non-identical distributions, exponential (6) ,
43
P
proportion p does not incorporate with scale parameter, 0 of the mixing components. Further, the
shape parameter of the mixing component gamma distribution, J is not fixed with a value. The
authors have shown that these settings of the MQLD provide the capability to capture the various
ranges of right tail heaviness measured by excess kurtosis (kurtosis -3), horizontal symmetry
measured by skewness, and heterogeneity measured by Fano factor (variance-to-mean ratio) by
setting its parameter values. Further, its density function can be either unimodal or bimodal.

and gamma (4, 0) with the mixing proportion, p = . We can clearly observe that its mixing

The remaining part of this paper is organized as follows: In section 2, we introduce the PMQLD
with its explicit forms of the probability mass and distribution functions. Its fundamental
structural properties are discussed in section 3. The simulation of its random variables and
parameter estimations are discussed in section 4. Finally, a simulation study is done to examine
the performance of parameter estimation by using the maximum likelihood estimation method,
and some real-world examples are taken to show the applicability of the proposed model by
comparing it with some other existing Poisson mixtures, NBD, GD, PLD, GPLD, PQLD, PGLD.
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2. FORMULATION OF THE NEW MIXED POISSON DISTRIBUTION

In this section, we introduce the new mixed Poisson distribution with its pmf and cumulative
distribution function (cdf).

Let the random variable X represent the total counts of a specific experiment with mean A.
Then, the traditional distribution to calculate probabilities of such outcomes is the Poisson dis-
tribution. The PMQLD is obtained by mixing the Poisson and MQLD (Tharshan and Wijekoon,
2021) for over-dispersed count data. The following theorem gives the pmf of the PMQLD.

Theorem 1. Let X|A is a random variable that follow the Poisson distribution with parameter
A, abbreviated as X|A ~ Poisson (A) and the Poisson parameter A ~ MQLD (6, «, ). Then, the
pmf of the PMQLD is defined as

) <F((5)F(x +1)ad(1+6)° 1+ 61T (x + 5))

,x=0,12,..,0>006>0,0a>>-1. (6
21(a® +1)(1 + 0)*T(5) * : ©)

fx(x) =

Proof. Since X|A ~ Poisson (A) and A ~ MQLD (6, «, ), the unconditional distribution of X
can be obtained by substituting equations (2) and (5) in equation (1) as below

00 e*/\/\x 9679?\

f(X)=/0 . (a3+1)r(5)<r(5)a3+(6/\)‘51>dA

_ 4 3 (% A(146) yx 51 /°° 2+5-1,-A(146)
- T (F(J)zx/o AN 4 g1 [ Ar M)

B 0 T(6)a’T(x+1) 6°7T(x +6)
x!(oc3+1)F(5)< Arop+ (1+9)x+6>
0

~ (BT I(0)(1+8)* 0 <<1 +0)° ' T(8)a’T(x +1) +6° 7T (x + 5)).

[ |
Remarks:

1. Equation (6) presents a two-component mixture of GD(%) and NBD(4, ﬁ) with the
3
ag-&-l'

mixing proportion p =
2. For &« — 0, the PMQLD reduces to the NBD(J, ﬁ)
3. For a« — oo, the PMQLD reduces to the GD(%).
The right tail behaviors of the PMQLD for different values of 8, &, and ¢ are illustrated in Figure
1. For fixed & and 4, it is clear that the distribution’s right tail approaches to zero at a faster
rate when 6 increases. For fixed § and ¢, and when « is increasing, the distribution’s right tail
approaches to zero at a slower rate when compared with the changes of 0. Further, for fixed 6
and «, and when ¢ is increasing, the distribution captures more right tail. From Figure 2, we may

note that the PMQLD may be a bimodal distribution when parameter value 0 is very different
(higher value) from the parameter values of 6 and «.

The corresponding cumulative distribution function of PMQLD is given as
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5140 IT(0)@’T (x + 1) (140" = 1) + 6T (x + 6+ 1)2F (L x + 6+ 1,6+ 1; ) ;
B (a3 +1)T(8)x!6(1 + §)x+o+1 @

,x=0,1,2,..,6 >0, >0,a°> —1,

where > F; (¢, d;r;w) is the Gaussian hypergeometric function defined as

[e9)

2Fi(c,d;r;w) = Z ,

which is a special case of the generalized hypergeometric function given by the expression

- (
Pa)i w'
an(pl/ PZ; Pa; qll 5[2r qbr = Z 71/
= +(gp)i!
and (p); = rg;r)l) =p(p+1)..(p +i+1) is the Pochhammer symbol.

n

3] 82025 i 82075 s ] §=125
s ‘ | =07 o o =0t o 0 a=075
&, | | §=125| & © | §=125| & 82125

o 4 n 0_

° |||I||Iln.i g |||l|-.......i g Ill;....i....i

0 15 0 5 10 15 0 5 10 15
X X X
@ (b) (

8 | 82005 2 82005 R 8005
<~ 6] a0l | o g az07 [ o 3] =125
| |||||| o 4 |||||| ] 7y ||||||| -

o] o o 4

54 "l""llllnn... Rl "l""llllllnn... g ""l”lllllllnm....

0 0 ) 0 )
X X X
@ () U}

)
0.01 0.03
()

()

0.015

0.005 0.020

0.000

Figure 1: The probability mass function of the PMQLD at different parameter values of 0, a,and ,6

3. STATISTICAL PROPERTIES OF PMQLD
In this section, we present some important statistical properties of the PMQLD such as the shape

of the distribution, moments and related measures, probability and moment generating functions,
and quantile function.
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Figure 2: Some bimodal distributions of the PMQLD

3.1. Shape of the distribution

9((1+9)‘571(X3+9‘571)

@B+ (1+0? 7 and limy e f(x) = 0.

From (6) we can easily derive f(0) =

The recurrence relation for probabilities is given by

flx+1) A

f) ~ (x+D)(1+0)B°

where A = (1+0)°71T(8)a®T (x +2) +6°~(x + 6)I'(x +6), and

x=0,12,.., (8)

B=(1+6)°"1T(8)a’T(x+ 1)+ 67T (x +6)).
The PMQLD(6, «, ) has a log-concave probability mass function when

_ S+l fx+2)
An(x) = o ft) > 0, Vx (Gupta et al., 1997)

2)A?
= (x + ) > 1.

(x+1) ((1 +0)5-1T(8)aT (x + 3) + 01T (x + 5 + 2)) B

Under this condition, the distribution represents a unimodal distribution. Further, by using (8), it
can be shown that

(i) For (1+6)° 13 +0°716 < (14 6)((1+6)°"1a® + 6°~1), equation (6) has unique mode at
X=0.

(ii) Equation (6) has a unique mode at X = x, for
(1+0)°71T(8)a’T (x0 + 2) + 0°~1(xp + )T (x0 + 0)

<1,
(xo+1)(1+0) ((1 +0)-1T(6)adT (xg + 1) + 62 1T (xp + 5)>

and
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(1+6)°71T(8)a’T (x0) + 21T (xg +6 — 1)

<1
x0(1+6) <(1 +0)°-1T(6)asT (xo + 1) + 621T (xo + 5))

(iif) Equation (6) has two modes at X = xp and X = x¢ + 1, for
(1+6)°71T(6)a’T (xg +2) + 0° 1 (x0 + )T (x0 + 6)
= (xg+1)(1+0)((1+0)°7T(0)a®T (xg + 1) + 6°~1T(xg + 6)).
The above facts are also shown in Figures 1 and 2 at different parameter settings.
Further, the PMQLD(6, «, 6) has a log-convex probability mass function when Az (x) < 0:

2
N (x+2)A <1

(x+1) ((1 +0)°71T(6)aT (x +3) + 091 (x + 6 + 2)> B

3.2. Survival and hazard rate functions

The survival/reliability function is associated with the probability of a system that will survive
beyond a specified time. The survival function of the PMQLD is defined as

B1+60°T(x+06+1)2F(Lx+6+1;5+1; %)
B2
where 1 = 6(1 4 0)°71T(8)a’T(x +1)((1 4+ 6)*t! — 1) and By = (4 + 1)I(8)x!6(1 + #)¥+0+1,

The hazard rate function (hrf) is the instantaneous failure rate. The hrf of the PMQLD is defined
as

S(x)=1-F(x) =1 )

P(x < X < x+Ax|X > x)
Ax

h(X) = limAx_>0

0—1 a3 X 0—1 X
) 59(1+9)((1+6) I(0)a’T(x+1)+6°I( +(5)>

T S() T B (B OT(x+ 0+ 1R (Lx+0+ 16+ 1;15))

(10)

Figure 3 provides an illustration of the possible shapes of the PMQLD’s hazard rate function at
different shape parameter values. According to these illustrations, it is clear that the proposed
model has the capability to model the bathtub, monotonic increasing, and decreasing failure rate
shapes.

3.3. Moments and related measures

The central tendency, horizontal symmetry, tail heaviness, and dispersion are important character-
istics of a distribution. These characteristics can be studied by using the moments. The following
theorem provides the " factorial moment of the PMQLD.

Theorem 2. Let X ~PMQLD(6, &, ¢), then the rth factorial moment of X is given as

o T(OT(r+1)a+T(547)
fo = T @ )re)er

(11

Proof.
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Figure 3: The hazard rate function at different values of a, and §

o] o0 —Aax —0A
_ (n [Ce AT fe 3 5-1
x;]x /0 X (@31 1)) (F(‘S)“ +(63) )d)‘

00 . 9679/\ 5
:/O N TG (r(&)«%(m) 1)dA
_ ) [(6)a’T(r+1) T(5+r)
- (0(3+1)F(5)< gr+1 gr+1 )

_T)I(r+1)a®+T(6+7)
(a3 +1)T ()0

Then, the first four raw moments of X can be derived by the following relationship
r
pe=EW") =) Sri)uy ; r=12,.,
i=0

where S(r,1) is the Stirling numbers of the second kind, and it is defined as
L1 i (1\ .
S(r,z):EZ(—l) i j,0<i<r
j=0

Let

k1 =a+6, kg =203 +5(6+1), k3 =6a+5(5+1)(6+2), kg =240 +5(5 +1)(6 +2)(6 + 3).

Then,
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Further, the r*"-order moments about the mean can be obtained by using the relationship between
moments about the mean and moments about the origin, i.e.

pr=E l(y - y)’} = i (:) (1) r=1,2, ...

i=0

Therefore, the variance of X, ¢? and index of dispersion, 7 are derived as

Uz:m:a6(1+9)+a3<2+9+5(9+5—1))+5(9+1):
(a3 +1)262
3(,3
2w (a’+24+6(0—-1))+6
ﬂ+u< o ,
and
2 W@ +246(6—-1))+6

ge! =1+

)
1y (a3 +1)(ad+6)0 7
respectively. It is clear that the q > 1. Then, the PMQLD is an over-dispersed distribution. Since
the mathematical expressions of y3 and 4 are very long, we present the graphical presentations

(#ﬁ and kurtosis (y3) = ‘1% of the PMQLD in Figure 5. The surface
H2 H2

plots in Figures 4, and 5 show some possible values of the index of dispersion, skewness, and
kurtosis that can be accommodated by the PMQLD at different settings of the parameters. Hence,
these plots indicate that the PMQLD (6, &, §) has the capability to accommodate various ranges of
the index of dispersion, skewness, and kurtosis at different sets of parameters for over-dispersed
count data.

of the skewness () =

6=0.10 6=050 6=1.50

Figure 4: Surface plots for the index of dispersion at different values of 6, o, and &
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Figure 5: Surface plots for the skewness and kurtosis functions at different values of 0, and «

3.4. Probability and moment generating functions

The characteristics of a probability distribution are directly associated with its probability gener-
ating function (pgf) and the moment generating function (mgf). The following theorem provides
the pgf of the PMQLD.

Theorem 3. The pgf, G(t) = E(tX), X ~PMQLD(6, a, 6) is given as
9(0(3(1 — 9)(5—1 + 9(5—1)

=" g e R (12)
Proof.
G(t) = E(t¥)
— Yy / ” ﬂ?x b " (r(a)ﬁﬂm)“)m
= Jo x (a341)0(5)
-/ PR (w39—il§/; ® (F(&)a3 + (9/\)‘5‘1>d)\

_ 4 3 [ A(1-t46) 51 [ A(1-t10) yo-1
- T <F(5)¢x/0 e A+ 0 /Oe A-14p

0@ -t+0)° 400
(@B +1)(1—t+06)

|
The mgf can be obtained effortlessly from pgf by using the relationship G(ef) = E(eX) = Mx(t),
and given as
0(a3(1—ef +0)°1+6°71)
(a3 +1)(1—et+6)°

Mx(t) = ,tER. (13)

3.5. Quantile function

The quantile function is a useful function to estimate the quantiles. Let us define the quantiles for
random variable X ~PMQLD(6, &, 6). The u'" quantile can be derived by solving F(x,) = u for
Xu,0 < u < 1. Then, the u'” quantile function of the PMQLD is given as

0
B1(xu) + 6°T (xy + 8+ 1)2Fy (1, %, +5+1,-5+1;m) —uBy(xy) =0, 0<u<1, (14)
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where B1(x,) = 6(1 4 0)°1T(8)a®T (x, + 1)((1 + 0)*+1 — 1) and Ba(xy) = (a3 +1)T(8)x,!16(1 +
G)Xu"r&-‘rl.

Since equation (14) is not a closed-form in x,, the estimates of the quantiles can be evalu-
ated by using any numerical method. Further, the first three quartiles can be calculated by
substituting u = 0.25,0.50, and 0.75 in equation (14) and solving the respective equations.

4. SIMULATION AND PARAMETER ESTIMATION

4.1. Simulation of the random variables

Here, we provide two different algorithms to simulate the random variables x1, x, ..., x,, from the
PMQLD(6, &, §) with size n based on the inverse transform method.

The first algorithm is obtained by considering the mixing of the PMQLD. Since X|A ~Poisson
(A) and A ~MQLD(6, «, ), the first algorithm is obtained as follows

Algorithm I:
i Simulate the random variables, u#; ~uniform(0,1); i=1,2,..,n.

ii Solve the non-linear equation for A;: T(8)(1+a3(1 —e=%%)) —T(5,0A;) — u;(a® +1)T(6) =0
to simulate the random variables, A; ~MQLD(0,«,4); i=1,2,...,n.

iii Simulate x; from Poisson (A;); i=1,2,...,n.

The second algorithm is obtained from the quantile function of PMQLD discussed in subsection
3.5, and the steps are as follows

Algorithm II:
i Simulate the random variables, u; ~uniform(0,1); i = 1,2, ..., n.

ii Solve the non-linear equation for [x,,];
B1(xu;) + 0°T (xu, + 0+ 1)2F (1, xy, + 6+ 1,6+ 1; ﬁoe) — uifa(xy;) = 0, where B1(x,,) and
B2(xy,;) are defined as in section 3.6. [.] denotes the integer part.

4.2. Parameter estimation of PMQLD
In this subsection, we discuss the parameter estimation of the PMQLD by using the method of
moment estimation and the maximum likelihood estimation method.

421 Method of moment estimation (MME)

Given a random samples x1, x...x, with size n from the PMQLD(0, «, 6), the method of moment
estimators of 6, «, and J, abbreviated as OppE, & mamE, and opmE, can be evaluated by equating
n
g

=1+ —1,2,3 ie. we need to find the

the raw-moments, say pt/,, to the sample moments, say
solutions of the following system of non-linear equations:
niy — (a3 + 10 x; =0; n(0x; +x2) — (a®+1)02 Y0, x? = 0;
2 _
n(60%x1 + 3k, +x3) — (a3 +1)0° Y1 23 =0,
where 1, k3, and «3 are defined in subsection 3.3. It is clear that these equations are not a closed
form. However, the solutions can be derived by using a numerical method.
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4.2.2 Maximum likelihood estimation (MLE)

Given a random samples x1, X;...x,, with size n from the PMQLD(6, &, §), the likelihood function
of the i*" sample value x; is given as

0
xil(a® + 1) (1 + 6)%+oT(6)
Then, the log-likelihood function is given as

log(L(8,a,0|x;)) =1(6,u,6|x)

L(6,a,6|x)=

(F(&)F(xi +1)a3(1+60)° 1+ 6211 (x; + 5)) .

=n <log(6) —log(a®+1) — log(F(J))) + X log (T((S)F(xi +1)a3(1+6)°~1 + 01T (x; + 5))

— log(xi!) — (x; + 6)log(1 +6). (15)
The score functions are
0l(6,a,8|x) X": T(x;+1)a(8 —1)(1+80)°"2 +T(x; +6)(6 —1)8°2 le+(s
00 — T(6)T(x; +1)ad3(1+0)0—1 +09-1T (x; + 9) 1+67
ol (9 x, (5|x f 30T ()T (x; + 1) (1 +0)°~1  3na?
ETOT(x+1)a3(1+0)°14+60-1T(x;4+06) a3+17

and
al(0,u,d|x)

96
T (x; 4+ 1)a3(T(8)(140)°"og(1+8) + (14 0)° 71T (8)y(8)) +T'(x; +6)8°(log () + ¢(x; +6))
i; T(6)(x; +1)ad(146)°~1 +69-1T(x; + 6)

—n(log(1+6) +9(9)),

/

) r

where (a) = ﬁlogl“(a) = 1"((;))’ By setting the score functions equal to zero, the maximum
likelihood estimators of 6, «, and §, abbreviated as éMLE, & pLe, and ) MLE can be derived. These
systems of non-linear equations can be solved by a numerical method. Here, the solutions of the

parameter estimates will be obtained by using the optim function in the R package stats.

The asymptotic confidence intervals for the parameters 6, «, and § are derived by the asymptotic
theory. The estimators are asymptotic three-variate normal with mean (6, «, ) and the observed
information matrix
9%1(6,u,5|x) 9%1(6,u,5|x) 9%1(6,u,5|x)
-, 002 960« -, 606
1(6,a,5) = _ %0, 0]x)  9°U(0,a,0]x)  97U(6, &, d]x)

dndo a2 0ndd
7821(9,a,5|x) 7821(9,0c,(5|x) 7821(9,0c,5|x)
9500 960w 002

at 0 = Oyre,a = dppp, and 6 = Sppe, ie. (Omee, &, dmre) ~ N3((6,a,6),171(6,a,0)). The
second order partial derivatives of the log-likelihood function are given in Appendix.

Therefore, a (1 — a)100% confidence interval for the parameters 6, «, and ¢ are given by

OMLE £ 2021/ Var(Omie),  &mie £ za2/Var(@mie),  Omie £ 2zay2y/ Var(Smie),

wherein, the Var(Oyg), Var(appg), and Var(Sypg) are the variance of Oy, &pre, and Sk,
respectively, and can be derived by diagonal elements of I~!(6,&,4) and z,/, is the critical value
at a level of significance.
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5. MONTE CARLO SIMULATION STUDY AND REAL-WORLD APPLICATION

This section is devoted to discuss the simulation study and the applicability of PMQLD.

5.1.

Here, we examine the accuracy of the MLE method in the unknown parameter estimation of the
PMQLD with respect to sample size n. The second algorithm given in subsection 4.1 is used to
simulate the random variables from the PMQLD. The sample sizes are taken as 60,100,200, and
300, and the simulation study is repeated 1000 times. The study is designed as follows

Monte Carlo simulation study

(i) Simulate 1000 samples of size n.
(if) Compute the maximum likelihood estimates for the 1000 samples, say (Ai, &;, &),i =
1,2,...1000.

(iii) Compute the average MLEs, biases, and mean square errors (MSEs) by using the following
equations
biass(n) = 155 L) (8; — s), and MSEs(n) = 1055 Lo (8 —

§(n) = 1050 L1 i 5)%,

fors =6,a,4, and n = 60,100, 200, 300.

Tables 2 to 5 represent the average MLEs, biases, and MSEs (in parentheses) of 6, «, and J for
different values of 0, x, and § which are 6 = 0.1, 0.3; « = 0.25, 0.50, 0.75; and 6 = 2.50, 3.50, 4.50.
Note that the biases and MSEs decrease as n increases for all parameters. Then, MLE method
verifies the asymptotic property for all parameter estimates, and the parameters 6, «, and ¢ are
over estimated. Further, while the estimation of 8 is good for small value of §, the estimation
of « doses not show a good estimation for small value of « based on average biases and MSEs.
However, there is no particular pattern for estimation of J.

Table 2: Performance of MLE method for the PMQLD(6 = 0.10, & = 0.50, J)

n =60 n =100 n =200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

6 =250

0 0.1151 0.0152(0.0014) 0.1086  0.0086(0.0007) 0.1067 0.0067(0.0002) 0.1009  0.0009(0.0001)

o 0.7519  0.2519(0.0691) 0.7482  0.2482(0.0648) 0.7290 0.2290(0.0557) 0.7195 0.2195(0.0494)

6 3.0685 0.5685(1.0107) 3.0545 0.5545 (0.9155) 2.8466 0.3466(0.3078) 2.8358 0.3358(0.2186)
6=23.50

0 0.1101  0.0101(0.0010) 0.1051  0.0051(0.0006) 0.1044 0.0044(0.0002) 0.1029 0.0029(0.0001)

« 0.6733 0.1733(0.0348) 0.6662  0.1662(0.0317) 0.6684 0.1684(0.0300) 0.6509  0.1509(0.0259)

6 3.8991 0.3991(0.9110) 3.8494 0.3494(0.8928) 3.6791 0.1791(0.2898) 3.6010 0.1010(0.0887)
6 =450

0 0.1087 0.0087(0.0009) 0.1054 0.0054(0.0006) 0.1037 0.0037(0.0002) 0.1029 0.0021(0.0001)

« 0.6299 0.1299(0.0213) 0.6268  0.1268(0.0191) 0.6217 0.1217(0.0161) 0.6192 0.1192(0.0156)

6 4.8064 0.3664(1.3188) 4.7506  0.2506(1.1957) 4.6354 0.1354(0.3871) 4.5805 0.0805(0.0122)
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Table 3: Performance of MLE method for PMQLD(6 = 0.30,« = 0.50, J)

n =60 n =100 n = 200 n = 300
MLE Bias(MSE) MLE  Bias(MSE)  MLE Bias(MSE) MLE Bias(MSE)
=250
6 0.3791 0.0790 (0.0242) 0.3635 0.0635(0.0215) 0.3378 0.0378 (0.0075) 0.3367  0.0367(0.0039)
o 0.8392 0.3392 (0.1199) 0.8243  0.3243(0.1109) 0.7956  0.2956 (0.0933) 0.7503  0.2503(0.0853)
) 3.6229  1.1229(3.5560) 3.4672 0.9672(2.9115) 3.1876  0.6876(1.2228)  3.1509  0.6509 (0.7488)
6=23.50
0 0.3839 0.0839 (0.0245) 0.3710 0.0710(0.0216) 0.3275  0.0275(0.0042) 0.3207  0.0207(0.0018)
« 0.7493  0.2493 (0.0698) 0.7215 0.2215(0.0543) 0.7170  0.2170(0.0487) 0.6983  0.1983(0.0457)
6 43284  0.8284(2.5256) 4.1190 0.6190(1.9316) 3.7680  0.2680(0.4910) 3.7393  0.2393(0.2547)
5 =450
6 0.3638  0.0638 (0.0210) 0.3484 0.0484(0.0118) 0.3143  0.0143(0.0033) 0.3117  0.0117(0.0016)
o 0.6784 0.1784 (0.0373) 0.6703 0.1703(0.0330) 0.6658  0.1658(0.0299)  0.6578  0.1578(0.0277)
) 5.1958  0.6958(3.0589) 4.9240 0.4240(2.0855) 4.6154 0.1154(0.6430) 4.6713  0.1713(0.2667)
Table 4: Performance of MLE method for PMQLD(6 = 0.10,a,6 = 2.50)
n =60 n =100 n =200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)
=025
0 0.1128 0.0128(0.0014) 0.1079 0.0079(0.0007) 0.1080 0.0080(0.0002) 0.1027  0.0027 (0.0001)
x 0.7109 0.4609(0.2184) 0.7034 0.4534(0.2088) 0.6957  0.4457(0.2000) 0.6804 0.4304 (0.1888)
6 3.0685 0.5685(1.0447) 3.0085 0.5085(0.7195) 2.9490 0.4490(0.3138) 2.8473 0.3473 (0.1865)
a=0.75
6 0.1351  0.0351(0.0065) 0.1217 0.0217(0.0017) 0.1203  0.0203(0.0023) 0.1156  0.0156(0.0004)
o 0.8487 0.0987(0.0167) 0.8414 0.0914(0.0135) 0.8318  0.0818(0.0095) 0.8190  0.0690(0.0081)
é 3.1905 0.6905(2.0102) 3.1765 0.6765(1.4733) 3.0104 0.5104(0.7818) 2.8781  0.3781(0.3592)
Table 5: Performance of MLE method for PMQLD(6 = 0.30,a,6 = 2.50)
n =60 n =100 n =200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)
=025
0 0.3998  0.0998(0.0329) 0.3805 0.0805(0.0240) 0.3482  0.0482(0.0060) 0.3336  0.0336(0.0030)
o 0.7823  0.5323(0.2928) 0.7795 0.5295(0.2873) 0.7611 0.5111(0.2636) 0.7437  0.4937(0.2508)
6 3.5545 1.0545(2.7164) 3.4774 09774(2.2678) 3.1584 0.6584(0.7994) 3.0583 0.5583(0.5396)
=075
6 0.3773  0.0773(0.0621) 0.3566 0.0566(0.0506) 0.3275 0.0275(0.0267) 0.3097  0.0097(0.0225)
a 0.8962  0.1462(0.0280) 0.8889  0.1389(0.0221) 0.8693 0.1193(0.0186) 0.8475 0.0975(0.0175)
1) 29598 0.4598(4.7991) 2.8278 0.3278(4.4320) 2.6089 0.1089(2.7618) 2.5723 0.0723(2.4811)

5.2. Real-world applications

In this subsection, we discuss the real-world applications of the proposed mixed Poisson distribu-
tion. Two data sets are considered to illustrate whether the proposed distribution is well fitted
compared to some other existing competing Poisson mixtures. The best-fitted distribution was
selected based on the negative log-likelihood (—2logL), Akaike Information Criterion (AIC), and
chi-square goodness of fit statistic. The unknown parameters of the models are estimated by
using the MLE method. Tables 6 and 7 summarize all these statistical measures for each data set,
and the standard errors of the parameter estimates are reported in parentheses.

The first data set contains the epileptic seizure counts (Chakraborty, 2010). The sample in-
dex dispersion () of this data set is 1.867. Since T value is greater than one, the distribution of
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this data set is clearly over-dispersed. Also, the skewness and excess kurtosis for this example are
1.239 and 1.680, respectively, which show that the distribution of the data set is positively skewed
and leptokurtic. This data set was used to fit the PMQLD, GD, NBD, PLD, GPLD, PQLD, and
PGLD. Table 6 presents the estimates of the parameters of distributions and the goodness of fit
test. Of all eight distributions, the PMQLD performs well based on the smallest AIC value of
1191.83 and the smallest chi-square value (x?) of 2.93 (p-value=0.71).

The second data set represents the number of roots produced by 270 micro-propagated shoots of
the columnar apple cultivar Trajan (Ridout et al., 1998). This is a bimodal data set for which the
sample index dispersion, skewness, and excess kurtosis are 3.077, 0.182, and -1.056, respectively.
These values indicate that the distribution of the data set is extremely over-dispersed, mild
positively skewed, and platykurtic. This data set was also used to fit the same distributions
that we used for the first example. Table 7 summarizes the results of parameter estimations and
the goodness of fit test. The results show that the PMQLD having AIC=1350.20, xz = 11.75,
p-value=0.47 outperforms clearly than other distributions.

Figure 6 illustrates how the expected values of the proposed distribution adhere with the
observed value for the data sets. We can see that the observed values of the first and second data
sets are very close to the expected values of the PMQLD, and the observed values of the third
data set are very close to the expected values of the ZMPQLD.
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Figure 6: Performance of PMQLD for the real-data sets
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Table 6. Epileptic seizure counts

Counts  Observed Expected
GD NBD PLD GPLD PQLD PGLD PMQLD
0 126 137.95 120.22 128.72 121.93 121.82 122.85 125.65
1 80 83.73 93.00 87.14 90.92 90.95 90.08 80.98
2 59 50.82 59.18 55.26 58.72 58.76 57.85 59.30
3 42 30.85 34.94 33.63 35.20 35.23 35.20 39.25
4 24 18.72 19.84 19.89 20.16 20.17 20.53 22.99
5 8 11.37 10.99 11.52 11.20 11.20 11.54 12.17
6 5 6.90 5.98 6.57 6.08 6.08 6.27 5.94
7 4 4.19 3.22 3.70 3.25 3.25 3.31 2.72
8 3 6.47 3.63 4.57 3.54 3.54 3.37 2.00
Total 351 351 351 351 351 351 351 351
6 = 0.65 6 =1.00 6 =097 =111 0 =112 0 =157 0 =270
(0.04) (0.19) (0.05) (0.13) (0.13) (0.66) (1.26)
& =155 & =276 & =038 & =149 & =0.82
MLE (0.28) (2.76) (0.33) (0.57) (0.07)
B=38  §=589
(2.38) (2.83)
P 11.42 5.67 5.84 4.85 4.86 4.66 293
p-value 0.12 0.46 0.56 0.56 0.56 0.46 0.71
—2logL 1196.79 1189.88 1190.36 1188.96 1188.96 1188.54 1185.83
AIC 1198.79 1193.88 1192.36 1192.96 1192.96 1194.54 1191.83
Table 7. Number of roots
Counts  Observed Expected
GD NBD PLD GPLD PQLD PGLD PMQLD
0 64 44.62 36.87 31.09 35.46 35.45 82.81 61.93
1 10 37.25 36.05 32.94 34.00 33.99 17.81 13.92
2 13 31.09 32.16 31.79 31.19 31.19 15.31 8.47
3 15 25.95 27.77 29.06 27.78 27.77 16.46 12.85
4 21 21.66 23.58 25.63 24.20 24.20 17.53 19.30
5 18 18.08 19.83 22.04 20.74 20.74 17.70 24.53
6 24 15.09 16.56 18.60 17.55 17.55 16.95 26.85
7 21 12.60 13.76 15.48 14.69 14.69 15.53 25.94
8 23 10.52 11.39 12.73 12.20 12.20 13.70 22.55
9 21 8.78 9.40 10.37 10.05 10.05 11.72 17.90
10 17 7.33 7.74 8.39 8.23 8.24 9.76 13.13
11 12 6.12 6.37 6.74 6.71 6.71 7.96 8.99
12 5 5.11 523 5.38 5.44 5.45 6.36 5.78
13 2 4.26 428 427 4.40 4.40 5.01 3.52
14 3 3.56 3.51 3.38 3.54 3.54 3.88 2.03
> 15 1 17.98 15.50 12.11 13.82 13.83 11.51 231
Total 270 270 270 270 270 270 270 270
6 =0.12 p =024 6 =0.35 6 =037 0 =032 0 =059 0 =423
(0.01) (0.03) (0.02) (0.03) (0.03) (0.08) (1.36)
& =121 & =047 & =0.68 & =022 & =073
MLE (0.16) (0.26) (0.27) (0.12) (0.04)
B=425 §=12934
(0.66) (9.28)
X 121.92 120.76 117.44 110.58 110.58 46.72 11.74
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.466
—2logL 1464.90 1462.63 1454.10 1451.45 1451.45 1384.21 1344.20
AIC 1466.90 1466.63 1456.10 1455.45 1455.45 1390.21 1350.20

6. CONCLUSION

This paper proposes an alternative mixed Poisson distribution to model the over-dispersed count
data. Explicit expressions of the pmf, hazard rate function, moments, mean, variance, skewness,
and kurtosis were derived for the proposed distribution. Its pmf possesses to be either unimodal
or bimodal, and hazard rate function presents monotonic increasing, decreasing, and bathtub
shapes. The kurtosis and the variance-to-mean ratio functions of the new distribution indicate that
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the distribution can capture various ranges of right tail weights as well as the index of dispersions.
Further, its structural properties show that the new distribution is much more flexible than its
predecessors, negative binomial, geometric, and Poisson-Lindley distributions. The maximum
likelihood method was employed to estimate the parameters of the distribution, and the observed
information matrix has also been derived. The proposed distribution and some other competing
Poisson mixtures have been fitted to two real-world data sets. The results show that the proposed
distribution could provide a better fit than a set of common Poisson mixtures considered in these
applications.
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Appendix: Elements of the observed information matrix, I(6, «,d) defined in subsection 4.2.1:

Let us define Ty, Ty, T3, Ty, Ts, T, T7, T, To, T1o, T11, T12, T13 and Ty4 as follows
Ty =T(&T(x; +1)a3(6 —1)(1+0)°"2 +T(x; + ) (6 —1)6°72,
T, = T(6)T(x; +1)ad(1+0)°~1 + 61T (x; +6),
T3 = 3a2T(6)T(x; + 1) (14 6)°~1

T, =
T(x; +1)a3(T(8)(1+6)°log(1+6) + (1+ 6)‘;1*11"(5)1p(5)) +T(x; +6)6° 1 (log(8) + ¢ (x; +9)),

=T(6)I(x; + 1)ad(1+0)°3 + T(x; +6)6°3,
T(6)T(x; +1)ad(140)°"2 + T (x; + 6)6°2,
= log(1+0)(T(8)(1+6)°"og(1+6) + (1+6)°"'T(6)y(6))
Ty = (1+9)‘5 HT(©)y1(8) + (9(6))°T(6)) +T(6)y(0)(1 +8)°log(1+9),

Ty = T'(x; + 6)8°Hog(8) + 62T (x; + 8)y(x; + 9),

Tio = T(x; +6)8° 1y (x; + 6),
Ti1 = T(x; + 1)a3(T(8) (14 6)°og(1+0) + (1+60)°~1T(8)p(d)),
12 = 09710 (x; + 8)y(x; +8) + T(x; +6)0°og(6),
Ti3 =T(8)((1+6)°"2+10g(1+0)(6 —1)(1+6)°72) + (6 — 1) (1 + 0)°2T(8) (),
and

Tig = (log(8) + ¢ (x; +6))T(x; +6) (6 —1)6° 2.
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Then, the second order partial derivatives of the log-likelihood function are as follows

1(0,a,6|x) —n & oxi+o " Tr(6—1)(8 —2)Ts — T4 (6 — 1) Ty
w2 — @ T larer’ T2 /
i=1 i=1 2
9%1(0,a,0|x)
on? )

f To(6al (5)T(x; +1)(1+60)°"") — T3(3a’T ()T (x; + 1)(1+6)°1)  3na(2(a® +1) —3a3)
i=1 5 (a3 +1)? '
9%1(0,a,0|x)

002
i To(T(x; +1)a’(Ty + Tg) + (log(0) + 9 (x; +6))To + Tio) — Tu(Ti1 + Tia) np (6)
i=1 T22
9%1(0,a,6x) (L To(3a?T(0)T(x; +1)(6 — 1) (14 6)°1) — T4 Ty
00x = T? ’
9%1(0,a,6]x) N To(3a®T (x; 4+ 1)(T(6) (1 + 0)°log(1+0) + (1 +60)° T (8)y(0))) — TuTs
dbon  H T? ’
and
0%1(0,a,0|x) f L(T(xi+1)aTi3+T(xi+6)0° 2+ Tiy) —TyT1
a6  ~ T2 1+6
d? LA |
where 11 (s) is the trigamma function and defined as ¢ (s) = plog(r(s)) =) CENAL
i=1
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Abstract

In this paper, we describe a novel technique for creating distributions based on logarithmic
functions, which we referred the Log Exponentiated Transformation (LET). The LET technique is
then applied to Rayleigh distributions, resulting in a new distribution known as the Log
Exponentiated Rayleigh distribution (LERD). Several distributional properties of the formulated
distribution have been discussed. The expressions for ageing properties have been derived and
discussed explicitly. The behaviour of the pdf, cdf and hazard rate function has been illustrated
through different graphs. The parameters are estimated through the technique of MLE. A
simulation analysis was conducted to measure the effectiveness of all estimators. Eventually the
versatility and the efficacy of the formulated distribution have been examined through real life
data set.

Keywords: Log Exponentiated Transformation, Rayleigh distribution,
Moments, reliability measures, maximum likelihood function.

Mathematics subject classification: 60-XX, 62-XX, 11-KXX.

I. Introduction

The adoption of an efficient statistical model is critical in a variety of practical analyses. This is
especially inconvenient for specific data studies, because the typically employed distributional
models are inadequate for producing a plausible fit. Several approaches, such as the generation of
families of adaptable distributions, have been presented in recent times. Most of them attempt to
increase the effectiveness of a baseline distribution by utilising diverse mathematical expansion
approaches. As a result, the related models may incorporate some extra characteristics that provide
sufficient flexibility to examine real-life data in many areas of study, such as reliability, survival
analysis, computer science, finance, biological research, medicine, and so on. Academics have recently
been concerned with developing new techniques for creating new families of distributions so that real
data can be adequately analysed and explored. Among them are Marshall and Olkin [9], Eugene et
al.[4] , Mudholkar et al. [11], Nadrajah and Kotz [12], Alzaatreh et al. [2], Mahdavi and Kundu [9], ljaz
et al. [8], Anwar Hassan et al.[3]. Based on the argumentation stated above, we suggest a novel family
of distributions that adds versatility to the provided family and entitles it Log Exponentiated
Transformation (LET). We give a thorough explanation of its fundamental mathematical
characteristics, and subsequently employ the Rayleigh distribution as an application.
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II. Log Exponentiated Transformation (LET)

This section demonstrates a novel generating family of probability distributions termed as log
Exponentiated transformation, abbreviated as LET. If X' is a continuous random variable, then the
cumulative distribution function (cdf) of the log Exponentiated transformation is described as

F(x:£,0)=1-logle +2(G(x; ;))9) ;xeR,0,¢>0 (1)
Where G(x; 4 ) denotes the cdf of baseline distribution and M =g(x:¢).
X
The associated probability density function (pdf) is described as
(e= 1) NGl )
;6,0)= ;x€R, 60,4 >0 2
S e e 2)

The survival function s(x; g, 9), hazard rate function h(x; Z, 49) and cumulative hazard rate function
H (x; ¢, 0) are stated as respectively
s(x;§,9):10g(e+é( ( 'g))g)
h(x; Z, 9) (e glﬁ(x gXG( g))
(e+eG x 4’ XIOg(eJre(G( )) »
H(x; <, ) =— log(log(e + e »

III. Mixture Form

This section provides an expression for the mixture form of the probability density function.
Equation (2) can be written as

1(52,0)= (el )0 (s e vl )f )
:@eg<x;;>G9-l<x;g>(l+§<G<x;¢>>9j o)

We know that 1+ z ; |zl <1, using it in equation (3), we have
& q
p=0

0 P
-1
e e Y S e
p=0
After simplification, we obtain the mixture form of pdf as
p+l

fx:c.0 :Zi‘; f’“[_] fe(x: £ NGl ) )

IV. Log Exponentiated Rayleigh Distribution with properties

The Rayleigh distribution, named after the Lord Rayleigh, is a continuous probability distribution.
Due to its wide range of applications, researchers have extended Rayleigh distribution for instance
Exponentiated Rayleigh distribution by Voda [13], Weibull-Rayleigh distribution by Faton Merovci et
al.[5], transmuted generalized Rayleigh distribution by Faton Merovci [6], Topp-Leone Rayleigh
distribution with application by Fatoki O [7] and inverse Weibull Rayleigh distribution by Aijaz et al.
[1]. The probability density function (pdf) of Rayleigh distribution with scale parameter & is defined
by

a
_7x2

gla)=axe 27 ;x>0,a>0 (5)

53



Aijjaz Ahmad, Muzamil Jallal, Afaq Ahmad
A NOVEL APPROACH FOR CONSTRUCTING DISTRIBUTIONS RT&A, No 1 (67)
WITH AN EXAMPLE OF THE RAYLEIGH DISTRIBUTION Volume 17, March 2022

The related cumulative distribution function (cdf) is given by
_a
G(x;a)=1—e 2 :x>0,a>0 (6)
The cumulative distribution function (cdf) of the formulated distribution can be obtained by
substituting the value of equation (6) in equation (1), which follows

o 2

F(x;a,0)=1-log e+ée| 1-e 2 ;x>0,0,0>0 (7)

The related probability density function is stated as

2y _a !
able—1)xe 2 |1-e 2
f(x;a,@)z 5 ;x>0,a,0>0 (8)

Equation (8) may be stated in mixture form by substituting equations (5) and (6) in equation (4).
(p+1)0-1
2 a 2

f(xa,0)= i P“() aaxez l—e 2 )
(

p=0
= b- 1
Smce 1 z = Z( 1) |z| <1, using it in equation (9), we have
q

a5 >ﬂ+{P“> 2 e

p=0¢=0
0o © (q+l)
=35, e 2 (10)
p=0¢=0
Where
(p + 1)9 pH
8,q= 1)"*‘1[ . [ej 0

Figures (1.1), (1.2), (1.3), and (1.4) depict several probable pdf and cdf layouts of LERD for distinct
parameter selections.

o | o |
o o
= = =
alpha=0.6 theta=1.20 B alpha=130 theta=0.80
@ alpha=0.70,theta=2.30
B alpha<0.80 theta=2 50 @ alpha=0.70 theta=0.90
00’ y B alpha=1.80,theta=0.90
O alpha=0.90 theta=2.90 ap! ¢
= B alpha=150 theta=2.0 e O alpha=0.80 theta=1.80
’ B alpha=0.50 theta=1.60
\
x = x =
Z s Z s
o~ o~
o o
o | o |
o o
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
] X ] X
Figure 1.1:pdf of LERD under different values to parameters Figure 1.2:pdf of LERD under different values to parameters
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Figure 1.3:cdf of LERD under different values to parameters Figure 1.4:cdf of LERD under different values to parameters

V. Mathematical Properties of LER Distribution

1. Moments of LER Distribution

Let suppose X denotes random variable follows LERD. Then " moment denoted by 4, is given as

o0

,u,.' :E( ’)zj‘xrf(x;a,@}lx

0

Using equation (10), we have

After solving the integral, we get

o0 00

u = ZZ&M%(ﬁJZ F(%H)

p=04¢=0
II. Moment Generating Function of LER Distribution

Let X be a random variable follows LERD. Then the moment generating function of the distribution
denoted by M (t) is given

00

My (t)= E(e’x>: J‘e'x (x;cx, O )dx

0
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Using Taylor’s series

:T(l+tx+%+%+m}(x;a,e)dx

0

r

I—I ’f(x; a, H)clx
0

7!

r

~

s T(__w)Mss

)

Ii
[=]
3

r

=235 5005 ) 5

p=0¢g=0 r=0 q + 1)

III. Quantile Function of LER Distribution

The quantile function of any distribution may be described as follows:
Olu)=x, =F(u)
Where Q(u) denotes the quantile function of F (x) forue (0,1)

Let us suppose

Fx)=1- log(e+e(1 e Z#JJ:L{ (11)

After simplifying equation (l 1), we obtain quantile function of LER distribution as

1
2 el
Q(u):Xq = —zlog 1—[ j

e

VI. Mean Deviation From Mean and Median of LE R Distribution

The entirety of deviations is apparently a measure of amount of dispersion in a population. Let X be a
random variable from LER distribution with mean 4 . Then the mean deviation from mean is defined
as.

Dlu)=E(X -4

[l s

=2uF ()~ ZTxf(x)dx (12)
Now O
I (xyx iépqajﬁxze =
o)

Making substitution =zsothat0<z< @ yz , we have

2
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a (q +1)
u 1 o
xf(xpx = z2e7%dz
»[f y ZZ pq[ q+1} (q+l] I
p=04=0 0

After solvmg the integral, we have

jxfxyx S Yol qﬂjl[qlﬂjy@ elosl) ) 03)

p=04=0
Substituting Value of equation (7) and (13) in equation (12), we get

D(u)= 2,U1—10g[e+e[1—e2 D _222 ( qHJl[quV(%’a(q;l)”zj

p=0¢=0
Let X be a random variable from LER distribution with median M . Then the mean deviation
from median is defined as.

D(M)=E(x -M]) = T|X ~ MIf(x)dx = p— szf(x)dx (14)

Now
q+1) 2

J x)dx z&l,qajxei

p=0¢q=0

alg+1)
2

Making substitution =z sothatO0<z< M?, we have

a(q + 1)
2

a(q+1)M2

.[xfx}fx ZZ pq( q-{-l]l[q-ll-lj -([ ;e ks

p=04=0
After solvmg the integral, we have

jxfx)dx 33, [ qﬂjl[qlﬂjy@ a(q;l)Mz] (15)

p=0¢=0
Substituting Value of equation (15) in equation (14), we get

23Sl () 25

p=04g=0

VII. Ageing Properties of LER Distribution

Suppose X be a continuous random variable with cdf F' (x), x20. Then its reliability function which

is also known survival function is stated as
S(x)=p, (X >x)= jf(x)dx =1-F(x)

Therefore, the survival function for LER distribution is given as
S(x, a, 6’)= l—F(x, a, 0)

= log[e + E[l - e_%x2 H (1 6)

The hazard rate function of a random variable x is given as

h(x,a,0)= % (17)
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Using equation (8) and (16) in equation (17), we have

_a _a 2 o
ab(e—1)xe 2 [l—e 2 J

a o o a 2
B -—x | —x
e+e[1—e 2 } log] e+e[l—e 2 J

Figures (1.5) and (1.6) depict several probable hazard rate function layouts of LERD for distinct
parameter selections.

h(x,a,0)=

B alpha=0.6,theta=0.20

@ alpha=0.70theta=0.30
B alpha=0.80,theta=0.50
@ alpha=0.10,theta=0.20
B alpha=0.20theta=0.30

B alpha=0.30,theta=0.10
B alpha=0.40 theta=0.20
B alpha=0.50 theta=0.30
O alpha=0.60 theta=0.40
B alpha=0.70,theta=0.50

T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5

X X
Figure 1.5:hrf of LERD under different values to parameters Figure 1.6:hrf of LERD under different values to parameters

The cumulative hazard rate function of a continuous random variable x is defined as

H(x,a,0)= —log[F(x;a,é’)] (1 8)
Using equation (16) in equation (18), we obtain the cumulative hazard rate function of LER
distribution

an
H(x,a,0)=—log| log e+§(l—e 2 ]

VIII. Renyi Entropy of LER Distribution

If X denotes a continuous random variable having probability density function f (x) Then Renyi

entropy is stated as
TA&):%log J.f‘g(x)dx , where §>0 and 0 #1
0

Thus, the Renyi entropy of LER distribution is given as

IR I ) 2 s (s i
H0 g [ el J )

0

:Llog{@—1>5e-5eéT<g<x;;>>5<G<x;;))<9-1>5(1+€<G<x;4»9)_5dx} (19)

1-6 e
0
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Since (1+ z)fb = Z(— 1y (b TP 1]2” ; |7| <1, using it in equation (19), we have
p=0

p

TR<5>=—log{<e R Yol B <G<x;g>wdx}

1-0 0 p=0
1 = o p+o-1 ’”‘5 Tl N (ol Npe0)-0
-mlog{;(—l)p e e et tatsere
Using equation (5) and (6), we have
- CS_TY 5\ o s @, 0(p+6)-6
ws(pro-1)e -
TR(5):ﬁlog ;(—1)” 5( » j(;j 495_([[(1% 2 J (l—e 2 J dx (20)

Smce 1 z i (bj ;

Z| <1, using it in equation (20), we have

q=0 q
© p+o b 0’(‘1+5) 2
)] g{ZZ p+q+5(p+5 1][a(p+5) 5](_] g™ dx}
-6 "|=55 p q ¢ 0
| o o 5 _a(q+6)x2
:ﬁlog Za)pq_[x e 2 dx
p=0g= 0
Where
_\p+6
p+q+é [p j( p+5) 5}(Ejp+ 95(15
e
Making substitution < x =z so that0 <z <, we have

5-1
X 0 5+1

T =—10g Zprq ’ — J.ZT_le_Zdz

r0a0  (a (q+5))

After solving the integral, we get
5-1

Tx( =—10g Zzwpq : 541 F[S;rlj

p=04=0 (aq+5))

IX. Maximum Likelihood Estimation of LER Distribution

Let X, X,,..,X,be arandom sample of size n from LERD then its likelihood function is given by

l:ﬁf(y;,aae)
i=l

=

The log likelihood function is given as
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10gl—n10ga+n10g9+n10g(e l ——Zx +210g

i=1
., PRY (21)
6’ IZIOg[l e ? '} Zlog e+e[l e ? l}

Differentiate equation (21), partially with respect parameters, we have

-1
2 [1 —e 2 } e 2
Ologl _ £—1§:x+a@9lizjfé;7—a9 (22)

oa a 2

a 2 o a 2
Y {l—ezx‘ ] log{l—ezli ]
alogl " +Zlog(l e 2 J+EZ (23)

The equations (22) and (23) are non-linear equations and hence cannot be expressed in compact form.
Therefore to solve these equations explicitly for @ and ¢ is difficult. So we can apply iterative methods
such as Newton-Raphson method, secant method, Regula-falsi method etc. The MLE of the
parameters denoted as é(o}, é)of g(a,@) can be obtained by using the above methods.

For interval estimation and hypothesis tests on the model parameters, an information matrix is

required. The 2 by 2 observed matrix is
2 2
£ 0~ log! £ 0” log!
oa’ 006

I¢)= 2 2
E 0” logl £ 0° logl
0oa 06*

The elements of above information matrix can obtain by differentiating equations (22)and (23) again

partially. Under standard regularity conditions when »n— o the distribution of¢can be

approximated by a multivariate normal N (O, I (é) _1) distribution to construct approximate confidence
interval for the parameters.
Hence the approximate 100(1 —l//)% confidence interval for «,0 and A are respectively given by
& +2,\1,,(¢) and 0 £2,15(¢)
2

Where Z,, denotes the ¢™ percentile of the standard normal distribution.
2

I\)

X. Simulation Analyses

In this segment, a Monte Carlo simulation analysis was performed using R software to evaluate the
consistency of the MLE's. This analysis was performed 500 times using sample sizes of n=30, 50, 150,
250,350 and 450 and various parameter combinations (0.5, 0.7) and (0.7, 0.5) created from LERD. In
each case, the bias, variance, and mean square errors (MSEs) were calculated. Table 10.1 shows the
simulation findings. In particular, we see that, pursuant to the theory, the MSEs and bias decrease as
sample size increases.
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Table 1: Average bias, variance and MSEs of 500 simulations of LERD for different parameter combinations.

Sample Parameters a=0.5 . 6=0.7 a=0.7 . 8=0.5
Sizen Bias Variance MSE Bias Variance = MSE
30 a 0.04106 0.01906 0.02075 0.06495 0.04404 0.04826
2 0.08050 0.05995 0.06643 0.04658 0.02140 0.02357
50 a 0.01797 0.00826 0.00858 0.03166 0.02274 0.02375
0 0.03925 0.02402 0.02556 0.02152 0.01128 0.01175
150 a 0.01085 0.00321 0.00333 0.01693 0.00608 0.00637
o 0.01481 0.00729 0.00751 0.01100 0.00305 0.00317
250 a 0.00280 0.00186 0.00187 0.00456 0.00366  0.00368
o 0.00702 0.00401 0.00406 0.00280 0.00169 0.00170
350 a 0.00219 0.00102 0.00102 0.00461 0.00271 0.00273
o 0.00175 0.00232 0.00232 0.00296 0.00123 0.00124
450 a 0.00309 0.00088 0.00089 -0.0002  0.00200 0.00200
o 0.00311 0.00222 0.00223 0.00188 0.00102 0.00103

XI. Data Analysis

This section assesses the effectiveness of the stated distribution using real-world data. We fitted the
LER distribution to many other models for comparative purposes, including Weibull distribution
(WD), Exponentiated exponential distribution (EED), Frechet distribution (FD), inverse Burr
distribution (IBD), Rayleigh distribution (RD) and exponential distribution (EXD).

We will use certain measures to evaluate which of the competitive models is the strongest, including
AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian
Information Criterion) and HQIC (Hannan-Quinn Information Criterion). Such criteria can be
represented mathematically by

AIC =2k -2Inl CAIC = 2hn

n—-k-1

BIC=kInn-2Inl/ and HQIC=2kIn(In(n))-2In!

—21Inl

We compute Anderson-Darling (A*), Cramer-Von Misses (W¥), Kolmogorov-Smirnov Statistic, and P-
value in addition to the aforementioned goodness of measures. The model with the lowest value of
these indicators and the greatest p-value is considered the best among the competing models.

Data Set: The data set was originally reported by Bader and Priest (1982), on failure stresses (in GPa)
of 65 single carbon fibres of lengths 50 mm, respectively. The data set is given as follows

1.339,1.434,1.549,1.574,1.589,1.613,1.746,1.753,1.764,1.807,1.812,1.84,1.852,1.852,1.862,1.864,1.931,1.952,1
.974,2.019,2.051,2.055,2.058,2.088,2.125,2.162,2.171,2.172,2.18,2.194,2.211,2.27,2.272,2.28,2.299,2.308,2.33
5,2.349,2.356,2.386,2.39,2.41,2.43,2.458,2.471,2.497,2.514,2.558,2.577,2.593,2.601,2.604,2.62,2.633,2.67,2.68
2,2.699,2.705,2.735,2.785,3.02,3.042, 3.116, 3.174.

Table 2: The Min Q1 Med. Mean Qs Kurt. Skew. Max descriptive statistics
for data set

1.339 1914 2271 2241 2563 25270 0.0419 3.174
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Table 3: The ML Estimates

for data set

Model

LERD
WD
EED
FD
RD
IBD
EXD

ML Estimates

Standard
Error

A

o

1.3473
0.0059
2.3310
1.9940
0.3849
5.0822
0.4462

A

o

0.1356
0.0022
0.2045
0.0530
0.0481
0.4311
0.0557

0
3.7652
0.4026
46.011
0.4439

(standard error in parenthesis)

Table 4: Comparison criterion and goodness of fit statistics for data set

Model —2log/ AIC CAIC BIC HQIC
LERD 69.712 73.712 73909 78.030 75.413
WD 70.756 74.756 74952  79.073  76.457
EED 76.657  80.657 80.853 84.974  82.358
FD 86.443 90.443 90.642 94.761 92.144
RD 149.168 151.16 151.23 153.32 152.01
IBD 85.506 89.506 89.702 93.824 91.207
EXD 231.29 23329 233.35 23545 234.14

Table 5: Other goodness of fit statistics criterion for data set

Model w A K-S value p-value
LERD 0.04714  0.2987 0.0670 0.9357
WD 0.0590  0.3836  0.0787 0.9181
EED 0.1173 0.7114 0.1006 0.5363
FD 0.2547 1.5484 0.1221 0.2949
RD 0.0834  0.3266  0.3501 3.054e-07
IBD 0.2428 1.4748 0.1186 0.3288
EXD 0.04735 0.3986 0.4677 1.374e-12
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Density

In this study, a novel technique known as log exponentiated transformation (LET) is suggested. As an
illustration, the Rayleigh distribution is employed as the baseline distribution, and a novel two-
parameter log exponentiated Rayleigh distribution (LERD) which proved more flexible has been
studied. Several mathematical aspects of the newly developed distribution are deduced and analysed.
The MLE approach is used to acquire the parameters. From table 8.3 and 8.6 it is evident that the
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XII. Conclusions

formulated distribution outranks than compared ones.
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Abstract

The Lomax or Pareto Type 1I distribution has a wide range of applications in many areas including
reliability and life testing. In this paper, we modify the Lomax distribution using KM transformation to
enhance the applicability of the Lomax distribution. The distribution introduced using KM transformation
is parsimonious in parameter. Substituting the cumulative distribution function (cdf) of the Lomax
distribution in KM transformation provides a new modified Lomax distribution. The behavior of hazard
rate function is studied graphically and also theoretically using Glacer method. Its analytical properties
are derived and parameters are estimated using maximum likelihood estimation method. We consider two
real data sets to show the flexibility of the proposed model. The model proposed in this paper provides a
better fit to the data sets compared to other well-known distributions given in this study.

Keywords: Parsimonious model Lifetime KM transformation Lomax distribution Decreasing
failure rate.

1. INTRODUCTION

The Lomax distribution has wide applications in many fields like economics, actuarial science,
and so on. The Lomax distribution is also called Pareto Type II distribution. The distribution was
introduced by Lomax [13] and it is a heavy-tailed distribution. It has also been useful in reliability
and life testing problems in engineering and survival analysis as an alternative distribution
[[O], [11]]. The Lomax distribution shows decreasing failure rate. Modified and extended
versions of the Lomax distribution have been studied; examples include the weighted Lomax
distribution [11], exponential Lomax distribution [7], exponentiated Lomax distribution [19],
gamma Lomax distribution [5]], transmuted Lomax distribution [3], Poisson Lomax distribution [2],
McDonald Lomax distribution [12], Weibull Lomax distribution [21], power Lomax distribution
[18], Kumaraswamy-Generalized Lomax distribution [20], Gompertz-Lomax distribution [16],
and DUS-Lomax distribution [6]. Besides, estimation of the parameters of Lomax distribution
under general progressive censoring has been considered by Al-Zahrani and Al-Sobhi [1].

The principal objective of the study is to introduce a modified Lomax distribution which is
parsimonious in parameter and enhance the application of the Lomax distribution in reliability
theory and survival analysis. We try to improve the properties of the Lomax distribution as a
useful lifetime model.

We organize the paper as follows: In Section 2, we introduce a new life distribution using
the Lomax distribution as the baseline distribution in the KM transformation. We then discuss
the analytical characteristics of the new distribution in Section 3. In Section 4, we establish the
ordering of the new distribution. In section 5, the parametric estimation for the new distribution
is studied. We carry out an analysis using a real-life data set to illustrate the model’s flexibility in
Section 6. In section 7, we summarize the conclusions and outline our future works.
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Figure 1: Probability density plot

2. THE MODIFIED LOMAX MODEL

In this paper we have modified the Lomax distribution with cumulative distribution function
(cdf)

Gx)=1-(1+px)"" x>0, a B >0, (1)

using KM (Kavya and Manoharan) transformation introduced by Kavya and Manoharan [10].
Let X be a random variable with cdf G(x) and probability density function (pdf) g(x) of some
baseline distribution. Then the cdf F(x) of new distribution is defined as,

F(x) = 1= e o) @

Here we introduce a new distribution by substituting the cdf of Lomax distribution (T) in ().
The cdf and pdf of the new distribution are respectively obtained as

F(x) :eflu —e 1= ™] x>0, &, B >0, 3)
~(at1) p(14x)

£(x) :"‘5(”5")8_1 ¢ , x>0, & B >0, @)

5)

The graphical representation of pdf is given in Fig. |1| for different values of parameters. In the
whole paper we used the software MATHEMATICA [23] for plotting the graphs.

3. HAZARD RATE FUNCTION OF THE MODEL

The hazard function is defined as

h(x) = lf_‘(;fgx) ©)

The hazard function of the proposed model is obtained as

_ aB(L+ pr)~Velop
h(X) - e(l"",Bx)ﬂX -1 (7)

The shape of the hazard rate function is given in Fig.
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Figure 2: Hazard rate plot

3.1. Theoretical explanation of the shape of the hazard rate function

We follow Glaser [8] for theoretical explanation of the shape of the hazard rate. Suppose f(t) is
the pdf of some distribution and f’(t) is the first derivative of f(t). Then

=0
10

For our proposed distribution
v(x) = B o+ (a+1)(1+px) |
and
V() = =B a+1)(1+ px) 2 ®)

based on Glaser [8] we get a result from Equation (8):
v'(x) < 0 for all x > 0 when a > 0. Then the distribution has decreasing failure rate (DFR).

4. SOME ANALYTICAL CHARACTERISTICS

Here we discuss some of the analytical characteristics of our proposed distribution.

4.1. Moments

The moments of a random variable, if they exist, are useful for estimating measures of central
tendency, dispersion, and shapes. The r*" raw moments of the proposed distribution is

E(X") = Lﬁl [T ) 0480 .
- 0
After transformation, we get,
E(X") =

1 1. 1
BTy Jp (1w

applying binomial expansion, then

E(X") = Ble—1) g(—l)iC) /01 s ="l
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Expanding exponential term, and we get the ! raw moment as
1 > (—1) /7 «

E(X") = .

(X7) [&’(efl)l.;) j! (i)aj+1xr+i

4.2. Moment generating function

The moment generating function of the proposed distribution is

0 &S 1 " (na+a-—2)!
Mx(t) = Z
x(t) (e—1) m;On:O m!n! " (n+a)! ©)
4.3. Characteristic function
The characteristic function of the proposed distribution is obtained as
o &1 @)™ (na4a—2)!
Px(t) = (e—1) mgm;) m!n! Bm (n+a)! (19)

where i = v/—1.

4.4. Quantile function

The quantile function is useful when generating random observations from a distribution. It can
also be utilized in estimating measures of shapes (skewness and kurtosis) when the moments
of the random variable do not exist. The p! quantile function of the proposed distribution is

obtained as )
<1 +1log(1 — p(ee_l))) o 1] (11)

We can easily find the first, second and third quartile functions after substituting p = 1, 1, and

in Equation (TI).

1
Qp) = B

NI

4.5. Order statistic

Order statistics are important for estimating summary statistics such as the minimum, maximum,
and range of a data set. They are also used in quality control testing and reliability to forecast
failure of future items based on the times of few early failures. Let X;, X»,---, X, be a random
sample of size n from the proposed distribution and X3y, X(2), - - - , X(,;) denote the corresponding
order statistics. The pdf of the 7! order statistic f,(x) is given by
folx) = e F @)1 - )] (),
(r=1)t(n —1)!

n—r)!
and the pdf of the ' order statistic of our proposed model is obtained as

e e sy
f’(x)7(r—1)!(”—7)!(3_1)ni:0j:01<§) j'k! ( j )

n—

[i(l _ (1 +ﬁx)—a)]j(1 +‘Bx)—(ak+a+l) (e(1+ﬁx)—a B 1) r (12)

Substitute = 1 and r = n in Equation (12), we get the pdf of the smallest and the largest order
statistics respectively.
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The cdf of the " order statistic is
n

F(x) =) (7) Fi(x)[1 — F(x)]",

j=r

and the cdf F,(x) of r' order statistic of the new distribution is obtained by using the Equation

as,
- E )t B (e v ) o

The cdf of X(;) and X(,,) are obtained by putting r = 1 and r = n respectively in Equation .

5. ORDERING

Stochastic ordering of positive continuous random variables is an important tool for judging the
comparative behavior. There are different types of stochastic orderings that are useful in ordering
random variables in terms of different properties. Here we consider four different stochastic
orders, namely, the usual, the hazard rate, the mean residual life, and likelihood ratio order for
KM-Lomax random variables. If X and Y are two random variables with cumulative distribution
functions Fx and Fy, respectively, then X is said to be smaller than Y in the

e stochastic order (X <g Y) if Fx(x) > Fy(x) for all x
e hazard rate order (X <j, Y) if hx(x) > hy(x) for all x

e mean residual life order (X <,,,; Y) if mx(x) > my(x) for all x

e likelihood ratio order (X <, Y) if J;}Y( E;C)) decreases in x

The implication between the ordering is X <;, ¥ = X <5, Y = X <,y Y = X <& Y. The
KM-Lomax distribution is ordered with respect to the strongest "likelihood ratio" ordering as
shown in the following theorem. It shows the flexibility of the proposed distribution.

Theorem 1. Let X ~ KML(«q, 1) and Y ~ KML(ay,82) if &1 = ap = a and $; > By and if
Bi=pP2=2p and aq > ap, then X <, Y, X <, Y, X <,y Yand X <4 Y.

Proof. The likelihood ratio is
fx(x)  agBr(1+4 prx)~(@te(iHhx)™
fY(x) l’ézﬁz(l + ﬁzx)*("Q*l)e(l"‘.Bzx)f“Z

(14)

and

fx(x)

e =logay +log 1 — (a1 + 1) log(1 4 B1x) + (1+ B1x) ™™

log

—logay —log B2 + (ax +1)log(1 + Box) — (14 Bax) ™2
thus,

d lo fX(x) __(

B By~ PL 1By (1 + Bra)~ (D) (15)

14 B1x
B2

L+ pox

+ (a2 +1) + B (1 + Box) (2D

1. Case Loy =ap =uw, B1 > B2

%log %83 <0=X<,Yhence X <}, Y, X <,y Yand X <4 Y.

2. Casell: B1 =B =B, 41 > a

%log ?;83 <0= X<, Yhence X<}, Y, X<,y Yand X <4 Y.
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6. ESTIMATION OF THE PARAMETERS OF THE MODEL

In this section we estimate the parameters involved in the distribution using maximum likelihood
estimation method. This is one of the most popular methods used for estimation. The likelihood
function is defined as,

L(x;A) =f{f<xi,A>

In our distribution,

non

L B) = (267 ) 1T+ pr) (@ Deiotrrsn ™,
=0

The log-likelihood function of the distribution is given by,

n n

log L(x;a,B) = —n log(e —1) +n loga +nlogp — (a«+1) Zlog(l + Bx;) + 2(1 + Bx;) .
i=1

i= i=1
We proceed as follows. First we find partial derivatives of the log-likelihood function with respect
to the parameters « and . The partial derivatives are

dlog L 1 1
(a)g _ log(1+ Bx;) + ) log(1+ Bx;) “log(1l+ Bx;),
a | i=1
and
dlog L n T x; L (a1
=——(a+1 —a Y (1 + )@+,

Two non-linear equations can be obtained by equating these partial derivatives to zero, the
solutions for which provide the maximum likelihood estimates of the parameters. The Newton-
Raphson method can be used to solve this equation with the help of the available statistical
packages. We use R [17] language for finding the numerical solution of the non-linear system of
equations.

7. APPLICATION

In this section we are showing the flexibility of the proposed distribution using two real-life data
sets. The first data set is the uncensored data set corresponding to intervals in days between 109
successive coal-mining disasters in Great Britain, for the period 1875-1951, published by Maguire
et al. [15] and the data set is given in Table 1. The second data set is of Wheaton River obtained
from Choulakian and Stephens [4] and presented in Table 2.

We use AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), HQC
(Hannan-Quinn Information Criterion) and K-S (Kolmogorov-Smirnov) test value for the compar-
ison. The distribution which shows minimum AIC, BIC, HQC and K-S test value is the sign of a
better fit for the data set. The AIC, BIC and HQC are defined as

AIC = 2 log(L) +2m,

BIC = —2 log(L) + m log(n),
and
HQC = —2 log(L) +2m log(log(n)),

where 7 is the sample size, m is the number of parameters, and L is the maximum value of
the likelihood function for the considered distribution. Here R [17] language is used for all the
computation. We compare the proposed distribution with the following distributions,
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Table 1: Flood Level Data.

1 4 4 7 1 13 15 15 17 18 19 19
20 20 22 23 28 29 31 32 36 37 47 48
49 50 54 54 55 59 59 61 61 66 72 72
75 78 78 8 93 9 99 108 113 114 120 120
120 123 124 129 131 137 145 151 156 171 176 182
188 189 195 203 208 215 217 217 217 224 228 233
255 271 275 275 275 286 291 312 312 312 315 326
326 329 330 336 338 345 348 354 361 364 369 378
390 457 467 498 517 566 644 745 871 1312 1357 1613

1630

Table 2: Wheaton River Data.

17 22 144 11 04 206 53 07 19 13.0
120 93 14 187 85 255 116 141 221 1.1
25 144 17 376 06 22 390 03 150 110
73 229 17 01 11 06 90 17 70 201
04 28 141 99 104 107 300 36 56 308
133 42 255 34 119 215 276 364 27 640
15 25 274 10 271 202 168 53 97 275

25 270

1. DUS-Lomax distribution Deepthi and Chacko [6] with cdf,

F(x) = (=] i ) [e(l‘(”"x)ﬂ) - 1} , x>0 & 0>0

2. Lomax distribution Lomax [13] with cdf,

Flx)=1—-(1+6x)™" x>0, o, 6>0

3. KM-Exponential (KME) distribution Kavya and Manoharan [10] with cdf,

Fix)= S [1—e =] x>0, A>0

e—1

4. KM-Weibul (KMW) distribution Kavya and Manoharan [10] with cdf,

F(x) = eil 1—e 0= x>0, a,p>0

5. Weibull distribution Weibull [22] with cdf,
F(x) 21—67(/57()”, x>0, >0

The values of AIC, BIC, HQC and K-S test for distributions based on the first data set are

given in Table 3.

From Table 2, we can see that the new model shows the lowest AIC, BIC and HQC values
among all the distributions considered here. The K-S test value of Lomax distribution is smaller
than KM-Lomax distribution. In general we can say that our proposed model shows better fit to
the data compared to other distributions given in this study. The plot of empirical cdf along with
other cdf of the 