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Inferences on Stress Strength Reliability in Multicomponent 

System for Type I Generalized Half-Logistic Distribution ........................................ 18  

Phillip Oluwatobi Awodutire, Thomas Xavier, Joby K. Jose 

This article deals with inferences on stress strength reliability in a multicomponent system for Type I 

generalized half-logistic distribution. It is assumed that the strength and stress components are independently 

distributed. In this work, we develop some statistical properties of the type I generalized half-logistic 

distribution. Furthermore, the expression for stress strength reliability for a multicomponent setup was 

obtained and studied. Two methods to estimate the multicomponent stress-strength reliability -maximum 

likelihood and Bayesian estimation were employed. The Bayes estimates of the multicomponent stress strength 

reliability are obtained under squared error loss function and using gamma priors for the parameters. 

Simulation studies were conducted to assess the efficiency of the methods. The importance of this model was 

studied by applying it to a real life data set. 

A New Mixed Poisson Distribution for Over-dispersed 

Count Data: Theory and Applications ............................................................................. 33  

Ramajeyam Tharshan, Pushpakanthie Wijekoon 

In this paper, an alternative mixed Poisson distribution is proposed by amalgamating Poisson distribution and 

a modification of the Quasi Lindley distribution. Some fundamental structural properties of the new 

distribution, namely the shape of the distribution and moments and related measures, are explored. It was noted 

that the new distribution to be either unimodal or bimodal, and over-dispersed. Further, it has a tendency to 

accommodate various right tail behaviors and variance-to-mean ratios. Its unknown parameter estimation by 

using the maximum likelihood estimation method is examined by a simulation study based on the asymptotic 

theory. Finally, two real-world data sets are used to illustrate the flexibility and potentiality of the new 

distribution. 

A Novel Approach for Constructing Distributions with an 

Example of the Rayleigh Distribution ............................................................................. 52  

Aijaz Ahmad, Muzamil Jallal, Afaq Ahmad 

In this paper, we describe a novel technique for creating distributions based on logarithmic functions, which we 

referred the Log Exponentiated Transformation (LET). The LET technique is then applied to Rayleigh 

distributions, resulting in a new distribution known as the Log Exponentiated Rayleigh distribution (LERD). 

Several distributional properties of the formulated distribution have been discussed. The expressions for ageing 

properties have been derived and discussed explicitly. The behaviour of the pdf, cdf and hazard rate function has 

been illustrated through different graphs. The parameters are estimated through the technique of MLE. A 

simulation analysis was conducted to measure the effectiveness of all estimators. Eventually the versatility and 

the efficacy of the formulated distribution have been examined through real life data set. 
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A New Reliability Model and Applications .................................................................. 65  

M. Manoharan, P. Kavya

The Lomax or Pareto Type II distribution has a wide range of applications in many areas including reliability 

and life testing. In this paper, we modify the Lomax distribution using KM transformation to enhance the 

applicability of the Lomax distribution. The distribution introduced using KM transformation is parsimonious 

in parameter. Substituting the cumulative distribution function (cdf) of the Lomax distribution in KM 

transformation provides a new modified Lomax distribution. The behavior of hazard rate function is studied 

graphically and also theoretically using Glacer method. Its analytical properties are derived and parameters are 

estimated using maximum likelihood estimation method. We consider two real data sets to show the flexibility 

of the proposed model. The model proposed in this paper provides a better fit to the data sets compared to other 

well-known distributions given in this study. 

A New Life Time Distribution: Burr III Modified Weibull 

Distribution and its Application in Burn in Process .................................................... 76  

Deepthy G S, Nicy Sebastian 

In burn-in analysis, models with a bathtub-shaped hazard rate and a bimodal density function are inevitable. 

This work focusses on a new five parameter distribution called Burr III Modified Weibull distribution which 

can be used to design burn-in procedures and preventative maintenance for incurable devices. The statistical 

properties such as quantile function, hazard rate function and order statistics have been discussed. The model 

parameters are estimated using the maximum likelihood estimation technique, and the performance of the 

proposed model is evaluated using the simulation technique. Finally, a real data set is presented to demonstrate 

the model’s utility and its application in the burn-in process. 

Analysis of Some Proposed Replacement Policies ....................................................... 87  

Tijjani A. Waziri, Bashir M. Yakasai, Rahama S. Abdullahi 

This paper is coming up with an age replacement cost model under the standard age replacement policy 

(SARP) for some multi-unit systems. Furthermore, some two other age replacement cost models will be 

constructed for the multi-unit systems under some proposed policies (policy A and policy B). For simple 

illustration of the proposed age replacement cost models under SARP, policy A and policy B, numerical 

example was provided, and the result obtained will be beneficial to engineers, maintenance managers and plant 

management, in selecting and applying the optimal preventive maintenance policies. 
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Effect of Preprocessing in Human Emotion Analysis Using 

Social Media Status Dataset .............................................................................................. 104  

Komal Anadkat, Hiteishi Diwanji, Shahid Modasiya

Emotion analysis using social media text is the emerging research area now a day. It helps the researcher to 

recognize the emotional state of the users and identify mental health-relevant problems like depression or 

anxiety, which may lead to suicide if not cured. The social media platforms like WhatsApp, Facebook, 

Instagram, etc. are widely used as these applications provide an affordable and reliable medium for transferring 

data, sharing thoughts, and even for routine informal communication. Social media status is normally analyzed 

to recognize the mood, emotion, thought process, or mental state of the individual as people generally share 

status for what they feel. On the other hand, pre-processing is the crucial step for any kind of text data analysis. 

In this paper, the social media status dataset is first pre-processed using various methods, given for feature 

extraction and classification purpose. For the machine learning approach, we have used count vectors and TF-

IDF techniques for extracting the different features of the data. Using count vector feature extraction accuracy 

achieved by pre-processed data is 68.90%, 69.33%, 70.59%, 64.95%, 69.33% for naïve Bayes, LDA, Random 

forest, SGD and MLP respectively. Similarly, using TF-IDF feature extraction accuracy achieved by pre-

processed data is 65.76%, 69.96%, 68.49%, 65.96%, 70.80% for naïve Bayes, LDA, Random forest, SGD and 

MLP respectively. The experimental results show that pre-processing helps to improve the accuracy of the 

classifier and CNN outperforms the traditional approach and achieves 79% accuracy 

A Two Non-Identical Unit Parallel System With Priority 

in Repair and Correlated Life Times ............................................................................... 113  

Pradeep Chaudhary, Anika Sharma 

The paper analyses a two non-identical unit parallel system in respect of various measures of system 

effectiveness by using regenerative point techniques. It has been considered that the life times of both the units 

are correlated random variables and a single repairman is always available with the system to repair a failed 

unit. 

Stochastic Analysis of a Repairable System of Non-Identical 

Units With Priority and Conditional Failure of Repairman ....................................... 123  

Naveen Kumar, S.C. Malik, N. Nandal 

Here, we describe the stochastic analysis of a repairable system consisting of two non-identical units called the 

main unit and the other is a duplicate unit. The units have direct complete failure from the operative state. A 

single repairman has been engaged to carry out the repair activities that can be failed while performing his jobs 

with the main unit. The repairman does repair activities of the duplicate unit without any problem. Priority for 

operation and repair to the duplicate unit is given over the main unit. The repairman performs with full 

efficiency after getting treatment. The distribution for failure rates of the units has been considered as negative 

exponential while arbitrary distributions have been taken for repair and treatment rates. The use of semi-

Markov process and regenerative point technique has been made to study the probabilistic behavior of the 

system in different possible transition states. The reliability characteristics of the system model have been 

examined numerically and graphically for particular values of the parameters. The profit of the system has also 

been analyzed for some fixed values of the repair and other maintenance costs. 

.  
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The Reliability Performance of the Exponential Inverted  

Marshall-Olkin-G Family of Distributions: Non-Bayesian 

Properties and Applications .............................................................................................. 134  

Joseph Thomas Eghwerido, Eferhonore Efe-Eyefia 

This article introduces a class of generator for enhancing the performance, productivity and flexibility of 

statistical distributions called the exponential Inverted Marshall-Olkin-G (EMA-G) distribution. The 

characteristics of the new class of generator were obtained and examined. Some special models of the proposed 

model were investigated. The Bernstein function of the EMA-G model was also obtained in a closed form. The 

maximum likelihood method was adopted to obtain the parameters estimate of the formulated EMA-G 

distribution model. The flexibility, productivity, tractability, applicability, and viability of the new 

contemporary class of distribution were examined by Monte Carlo simulation. A two real life data sets were 

used to illustrate the empirical performance and flexibility, productivity, tractability of the generator. The up-

to-the-minute outcomes of the new generator indicated that the EMA-G density gives a better fit compared to 

some existing statistical generators in literature using their goodness-of-fit. 

Optimization of a Feedback Working Vacation Queue With 

Reverse Balking and Reverse Reneging .......................................................................... 154  

K. Jyothsna, P. Vijaya Laxmi, P. Vijaya Kumar

This paper analyzes a steady-state finite buffer M/M/1 feedback queue with reverse balking, reverse reneging 

and multiple working vacations. The concept of reverse balking and reverse reneging evolves from investment 

businesses wherein more the number of customers associated with a firm less the probability of balking of a 

customer and similar is the case of reverse reneging. Furthermore, if a customer is dissatisfied with the service 

provided, he or she may chose to rejoin the queue as a feedback customer. The server exits for working vacations 

whenever the system becomes empty instead of staying idle in the system. Vacation times and service times 

during working vacations are all independent random variables following exponential distribution. The model

’s steady-state system length distributions are calculated using the matrix approach. Some performance 

characteristics and cost optimization using ant colony optimization (ACO) are presented. Sensitivity analysis 

is performed using numerical results which are shown in the form of tables and graphs. 

Analysis of the Primary Factors Affecting the Most Fatal 

Aviation Accidents: A Machine Learning Approach .................................................... 164  

Tuzun Tolga İnan - Neslihan Gokmen İnan 

The safety concept is primarily examined in this study considering the most fatal accidents in aviation history 

with human, technical, and sabotage/terrorism factors. Although the aviation industry was started with the 

first engine flight in 1903, the safety concept has been examined since the beginning of the 1950s. However, the 

safety concept was firstly examined with technical factors, in the late 1970s, human factors have started to 

analyze. Despite these primary causes, there have other factors which could have an impact on accidents. So, the 

purpose of the study is to determine the affecting factors of the most fatal 100 accidents including aircraft type, 

distance, flight phase, primary cause, number of total passengers, and time period by classifying survivor/non-

survivor passengers. Logistic regression and discriminant analysis are used as multivariate statistical analyses 

to compare with the machine learning approaches in terms of showing the algorithms’ robustness. Machine 

learning techniques have better performance than multivariate statistical methods in terms of accuracy (0.910), 

false-positive rate (0.084), and false-negative rate (0.118). In conclusion, flight phase, primary cause, and total 

passenger numbers are found as the most important factors according to machine learning and multivariate 

statistical models for classifying the accidents’ survivor/non-survivor passengers. 
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Statistical Properties and Application of a Transformed Lifetime 

Distribution: Inverse Muth Distribution ........................................................................ 178  

Agni Saroj, Prashant K. Sonker, Mukesh Kumar 

In this paper, we have proposed a transformed distribution called inverse Muth (IM) distribution. The 

expressions for probability density function (pdf), cumulative distribution function (cdf), reliability and hazard 

function of this distribution are well defined. The statistical properties such as, quantile function, moments, 

skewness and kurtosis are derived. The methods of estimation such as maximum likelihood estimation (MLE) 

and maximum product spacing estimation (MPSE) are used to estimate the parameters. The IM distribution is 

positively skewed and its behavior of hazard rate is upside-down bathtub (UBT) shape. The important finding 

of the study is that the moments of IM distribution do not exist. A real dataset (the active repair time for 

airborne communication transceiver) used for application purpose, after taking a natural extension of IM 

distribution. It is expected that the proposed model would be used as a life time model in field of reliability and 

its applicability. 

Hybrid Deep Resnet With Inception Model for Optical  

Character Recognition in Gujarati Language Short Title: 

Optical Character Recognition in Gujarati Language .................................................. 194  

Sanket B. Suthar, Amit R. Thakkar 

In the Optical Character Recognition (OCR) system, achieving high recognition performance is important. 

OCR and visual perception are affected by the inclined characters in each language. Deep learning methods 

play an important role in the OCR field, which can outperform humans with higher recognition performance. 

So, in this research, a hybrid deep learning technique is applied to recognize the Gujarati language characters. 

Initially, Gujarati characters collected from different sources are pre-processed using different techniques. 

Adaptive Weiner Filter (AWF) is used for noise removal, Binarization, and contrast enhancement is done by 

Contrast Limited Adaptive Histogram Equalization (CLAHE) method. Finally, a hybrid deep ResNet with 

Inception model (GoogleNet) is suggested to perform character recognition in the Gujarati language. This 

hybrid architecture also performs feature extraction tasks, considered a major task in OCR. Python tool is 

utilized to illustrate the proposed methodology and solve the mathematical model. Scanned documents 

containing Gujarati characters are engaged to evaluate the robustness of the proposed methodology. Using 

various performance parameters, the influence of the proposed methodology is examined and its results 

compared with various deep learning algorithms. 

Reliability Analysis and Profit Optimization of Briquette 

Machine by Considering Neglected Faults .................................................................... 210  

Divesh Garg, Reena Garg 

Sustainable energy plays a significant role in socio-economic advancement by raising the standard of living of 

all human beings. Briquetting is the process of compaction of biomass residues into solid fuels in order to 

increase the effectiveness of thermal capacity, combustion rate, calorific value to name a few. In this paper, we 

consider not only the occurrence of minor/ major faults but also the other neglected faults such as abnormal 

sound, overheating of the motor unit, vibration, etc. Such neglected faults may not affect the working of the 

system at a time but their ignorance may convert into major faults in the future. An ordinary repairman can 

easily rectify all machine faults except some major faults for which an expert repairman is required. Moreover, 

we analyse the availability of the system and optimize system profit by using the Artificial Bee Colony 

optimization algorithm. Furthermore, a graphical study of these parameters is presented. 
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A New Method for Generating Distributions with 

an Application to Weibull Distribution .......................................................................... 223  

M. A. Lone, I. H. Dar, T. R. Jan

In the literature of probability theory, it has been noticed that the classical probability distributions do not 

furnish an ample fit and fail to model the real-life data with a non-monotonic hazard rate behaviour. To 

overcome this limitation, researchers are working in the refinement of these distributions. In this paper, a new 

method has been presented to add an extra parameter to a family of distributions for more flexibility and 

potentiality. We have specialized this method to two-parametric Weibull distribution. A comprehensive 

mathematical treatment of the new distribution is provided. We provide closed-form expressions for the density, 

cumulative distribution, reliability function, hazard rate function, the r-th moment, moment generating 

function, and also the order statistics. Moreover, we discussed mean residual life time, stress strength 

reliability and maximum likelihood estimation. The adequacy of the proposed distribution is supported by using 

two real lifetime data sets as well as simulated data. 

Skip-Lot Sampling Plan of Type Sksp-T With Group Acceptance 

Sampling Plan as Reference Plan Under Burr-Type Xii Distribution ...................... 240  

S. Suganya, K. Pradeepa Veerakumari

This paper clearly assigns skip-lot sampling plan of type SkSP-T with Group Acceptance sampling plan is 

designing and Burr type XII distribution is applied to determine the lifetime of the product. The new proposed 

plan parameters are determined by using the two-point method on the Operating Characteristics curve together 

with consistent producer and consumer risks are specified. Tables are simulated for various parametric values 

of SkSP-T, Group acceptance sampling plan and Burr type XII distribution. Skip-lot sampling plan of type 

SkSP-T is also compared with Group acceptance single sampling plan and skip-lot sampling plan of type SkSP-

2 with group acceptance sampling plan using Burr type XII distribution. Further, the efficiency of the proposed 

plan is discussed. Numerical illustration and examples are given to justify the efficiency of the proposed plan. 

Some Properties and Different Estimation Methods for Inverse A(_) 

Distribution with an Application to Tongue Cancer Data .......................................... 251  

Shreya Bhunia, Proloy Banerjee 

The inverted distribution is the distribution of the reciprocal of a random variable that follows a specified 

distribution. Here, a new one parameter inverse A(_) distribution has been introduced, which is the reciprocal 

of the A(_) distribution. An account of mathematical and statistical properties of the new distribution such as 

survival characteristics, quantile functions, mode, order statistics, ageing intensity function and stochastic 

ordering have been derived and discussed. Furthermore, from the frequentist view point we discussed several 

estimation approaches including maximum likelihood method, method of maximum product of spacings, 

ordinary and weighted least square methods, Cram/er-Von-Mises estimation and Anderson-Darling estimation 

methods. These methods are compared for both small and large samples by performing an extensive numerical 

simulation. The flexibility of the new lifetime distribution is demonstrated by modeling a tongue cancer data. 

The result indicates the superiority for proposed model compared to some popular competing ones. 
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Safety at Work: A Complex or an Exceedingly Simple Matter? ................................. 267  

Rodrigo F. S. Gomes, Leandro Gauss, Fabio Sartori Piran, Daniel Pacheco 

Lacerda 

This paper uses the concept of inherent simplicity stemming from the Theory of Constraints to explain whether 

safety at work is a complex or an exceedingly simple matter. In this context, the study seeks to explore the 

causalities that govern safety at work, identifying its constructs and presenting logic propositions based on the 

theory-building blocks: classification, correlation, and causal consistency. To support the research, a dataset 

composed of 46 work-related accident investigation reports from an elevator industry in Latin America was 

carefully analyzed using association rules. Moreover, direct observations grounded on inductive reasoning 

were used to speculate plausive causes concerning the effect of work-related accidents. The research strategy 

followed common strategies of theory building to reach common sense: theory-to-practice and practice-to-

theory. As a result, a conceptual proposition is postulated based on the reasoning that safety at work is 

governed by very few constructs, and that its complexity is explained through the two elements from inherent 

simplicity: degrees of freedom (interdependencies between constructs) and harmony (conflicts resolution within 

the work environment). From the practitioners’ perspective, the study also offers directions towards safety 

improvements at the organizational level by considering the impact of the interdependencies between constructs 

in safety at work. 

Gumbel Marshall-Olkin Lomax: A new distribution 

for reliability modelling ..................................................................................................... 288  

Elebe E. Nwezza, Uchenna U. Uwadi, C.K. Acha, Christian Osagie 

A new distribution for modeling the two approaches (physical and actuarial) of reliability problems is 

introduced. The statistical properties including the moments, mode, quantile function are derived. Some 

reliability measures including the mean residual life and hazard rate are derived. An alternative measure for 

total time of test (TTT) for evaluation of the interfailure times is drived. The unknown parameters of the new 

distribution are estimated using the maximum likelihood approach. Furthermore, the asymptotic consistency of 

the estimated parameters is evaluated through a simulation study. Two real-life datasets were used to illustrate 

the applicability of the new distribution and comparison with already existing distributions. 

A Novel Transformation: Based on Inverse 

Trigonometric Lindley Distribution ................................................................................ 303  

D. Kumar, P. K. Chaurasia, P. Kumar, A. Chaurasia

As we see that the present era is directly depending upon various kinds of machines. In other words, we can say 

that we are fully surrounded by machines. Machines are assembled with many components and each 

component has its own importance. For proper functioning of a machine, these components should be up to 

date. Therefore, for smooth functioning, we have to make replacement of the component before its failure. In this 

present paper, we propose a new transformation which is purely based on inverse trigonometry with lindley 

distribution for the first time and so, named "Inverse Trigonometric Lindley Distribution". It find its various 

properties like survival function, hazard rate function, moments, conditional moments, order statistics, entropy 

measurement etc. Maximum likelihood estimator have also considered for estimation of parameter. To know the 

paternal behavior of the model, different real datasets have been considered. To understand the behavior of 

estimators at the long run, simulation study is being performed in detail. 
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S.J Ayalakshmi, S. Vijilamery

In this paper, Acceptance Sampling approaches useful for minimizing the cost and time of the submitted lots. In 

this busy world expect the Quality assurance and reliability of the product is very high. So, use the truncated 

life tests in acceptance sampling plan. Time truncated life tests in sampling plan are used to certain reach a 

decision on the product. Therefore, Gompertz Frechet Distribution is considered as model for a life time random 

variable when the lifetime test is truncated at pre-determined time. The operating characteristic functions of the 

sampling plans and Producers risk is also discussed. The results are illustrated by an example. 

Explicit Time Dependent Solution of a Twostate Retrial 

Queueing Model with Heterogenous Servers ............................................................... 325  

Neelam Singla, Sonia Kalra 

In this paper, two-dimensional state retrial queueing system with two non - identical parallel servers is 

considered. Incoming calls (primary calls) arrive at the server according to a Poisson process. Repeating calls 

also follows the same fashion. Service times of two servers follow exponential distribution with different rates. 

An incoming call that finds the servers busy, joins an orbit and retries after some random amount of time. Time 

dependent probabilities of exact number of arrivals and exact number of departures at when the servers are free 

or when one server is busy or when both servers are busy are derived for the system. Finally busy period 

distribution obtained to illustrate the system dynamics. 

A Discrete Analogue of Teissier Distribution: Properties 

and Classical Estimation with Application to Count Data .......................................... 340  

Bhupendra Singh, Varun Agiwal, Amit Singh Nayal, Abhishek Tyagi 

This article presents a novel discrete distribution with a single parameter, called the discrete Teissier 

distribution. It is noted that this model, with one parameter, offers a high degree of fitting flexibility as it is 

capable of modelling equi-, over-, and under-dispersed, positive and negative skewed, and increasing failure rate 

datasets. In this article, we have explored its numerous essential distributional features such as recurrence 

relation, moments, generating function, index of dispersion, coefficient of variation, entropy, survival and 

hazard rate functions, mean residual life and mean past life functions, stress-strength reliability, order 

statistics, and infinite divisibility. The classical point estimators have been developed using the method of 

maximum likelihood, method of moment, and least-squares estimation, whilst an interval estimation based on 

Fisher’s information has also been presented. Finally, the applicability of the suggested discrete model has 

been demonstrated using two complete real datasets. 
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Accelerated life testing (ALTg) helps manufacturers to predict the various costs associated with the product 

under the warranty policy. The main aim of undertaking ALTg is the extended time of today’s manufactured 

goods, the small-time among design and make public, and the difficulty of analysis of items that are 

continuously used in ordinary environments. Hence ALTg is used to offer quick information about the life 

distribution of products. We describe how to propose and analyze the accelerated life testing plans to develop 

the excellence and reliability of the item for consumption. We also focus on finding the expected cost rate and 

the expected total cost for age replacement in the prorate rebate warranty plan. The problem is studied using 

constant stress, under the hypothesis that the life spans of the units follow the Gompertz distribution (GD) for 

predicting the cost of age replacement in the warranty plan. The asymptotic variance and covariance matrix, 

confidence intervals for parameters, and respective errors are also obtained. A simulation study is carried out to 

show the statistical properties of distribution parameters. 

Selection of Life Test Sampling Inspection 

Plans for Continuous Production ..................................................................................... 371  

R. Vijayaraghavana, A. Pavithrab

Reliability sampling is the methodology often used in manufacturing industries for making decision about the 

disposition of lots of finished products based on the information generated from a life test. Such a methodology 

can be applied effectively for isolated lots as well as for a continuous stream of lots through the life tests to 

ensure control over the quality characteristics that are mainly related to the functioning of the manufacturing 

items in time. Sampling inspection plans for isolated lots are classified under lot-by-lot inspection procedures. 

Cumulative results plans are classified under the sampling inspection for continuous production, which results 

in continuous stream of lots. This paper presents the notion of life tests for cumulative results plans with a 

particular reference to chain sampling inspection plans when the lots are formulated from a continuous stream 

of production. The operating characteristic (OC) function of chain sampling plans for life tests is presented as a 

measure of performance when the lifetime random variable follows an exponential distribution. A procedure for 

designing the proposed plans indexed by two points on the characteristic curve for providing protection to the 

producer and consumer is discussed with illustrations. Tables yielding the parameters of the optimum plans are 

also provided. 

Critical Path Interms of Intuitionistic Triangular 

Fuzzy Numbers Using Maximum Edge Distance Method .......................................... 382  

S. Priyadharshini, G. Deepa

We live in a contemporary world where successful project management strategies are complex to manipulate 

the projects for project managers and decision-makers. It is essential to pinpoint strategies so that managers can 

accomplish projects and polish off them within a predetermined period of time and resource restrain. This 

research assists us to detect the critical path in an acyclic network in terms of intuitionistic triangular fuzzy 

numbers, we have proposed the “maximum edge distance” method. Forward and backward algorithms are 

designed to find the optimal path for the proposed method. Numerical examples are also illustrated for the same. 

Verification is done using the path length ranking technique. Simulation results are included by the use of the 

C program and MATLAB. Finally, the comparison is made with the traditional forward and backward pass 

(existing method) technique to point out the conclusion. 
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Online reviews are now a global form of communication between consumers and E-commerce companies. When 

it comes to making day-to-day decisions, customers rely heavily on the availability of internet reviews, as well 

as their trustworthiness and performance. Due to the unique qualities of user reviews, customers are finding it 

increasingly difficult to define and examining the authenticity and reliability of sentiment evaluations. These 

sentiment classifications for user reviews can aid in understanding user feelings, review dependability, and 

customer perceptions of movie items. Deep Learning is a strong technique for learning several layers of data 

representations or features. When compared to traditional machine learning approaches, deep learning 

techniques yield better results. To assess, analyze, and weight the usefulness of each review comment, we 

employed the XLNet Deep Learning Model Approach on balanced movie review dataset. Experimental result 

demonstrates that the proposed deep learning model achieves higher performance evaluation than those of other 

classifiers. 

Sharma-Mittal Entropy Properties on Generalized (k) Record Values..................... 398  

Jerin Paul, P. Yageen Thomas 

In this paper, we derive Sharma-Mittal entropy of generalized (k) record values and analyse some of its 

important properties. We establish some bounds for the Sharma-Mittal entropy of generalized (k) record values. 

We generate a characterization result based on the properties of Sharma-Mittal entropy of generalized (k) 

record values for the exponential distribution. We further establish some distribution-free properties of Sharma-

Mittal divergence information between the distribution of a generalized (k) record value and the parent 

distribution. We extend the concept of Sharma-Mittal entropy to the concomitants of generalized (k) record 

values arising from a Farlie-Gumbel-Morgenstern (FGM) bivariate distribution. Also, we consider residual 

Sharma-Mittal Entropy and used it to describe some properties of generalized (k) record values. 

The New Mixed Erlang Distribution: A Flexible 

Distribution for Modeling Lifetime Data ....................................................................... 411  

Therrar Kadri, Souad Kadri, Seifedine Kadry, Khaled Smaili 

We introduce a new mixed distribution of the Erlang distribution that is generated from the convolution of the 

Extension Exponential distribution denoted by the Mixed Erlang distribution (ME). We derive an exact closed 

expression of the probability density function which is used to obtain closed expressions of the cumulative 

function, reliability function, hazard function, moment generating function and kth moment. The method of 

maximum likelihood and method of moments is used for estimating the model parameters. Two applications to 

real data sets are given to illustrate the potentiality of this distribution. 
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R. Vijayaraghavan, A. Pavithra

A life test is a random experiment conducted on the manufactured items such as electrical and electronic 

components for estimating their life time based on the inspection of randomly sampled items. Life time of the 

items is a random variable which follows a specific continuous-type distribution, called the lifetime distribution. 

Reliability sampling, which is one among the classifications of product control, deals with inspection 

procedures for sentencing one or more lots or batches of items submitted for inspection. In this paper, the 

concept of sampling plans for life tests involving two samples is introduced under the assumption that the life 

time random variable is modeled by Marshall - Olkin extended exponential distribution. A procedure is 

developed for designing the optimum plan with minimum sample sizes when two points on the desired 

operating characteristic curve are prescribed to ensure protection to the producer and the consumer. 

A Comparative study of outlier detection of Yamuna 

River Delhi India by Classical Statistics and Statistical Quality Control ................ 430  

Mohammad Ahmad, Ahteshamul Haq, Abdul Kalam, Sayed Kifayat Shah 

Water quality control aids in preventing pollution, public health, and the preservation and improvement of the 

biological integrity of water bodies. Water quality involves many variables and observations, some of which are 

outside of the acceptable range. An observation that apart from the rest of the data or looks diverge from other 

observation of the sample in which it occurs. In this paper, we proposed two methodologies for detecting outliers 

for the Yamuna River water quality data with three variables Chemical Oxygen Demand (COD), Bio-chemical 

Demand Oxygen (BOD) and PH, at three different locations did comparison of these two methodologies. These 

two methodologies are based on Descriptive Statistics and Statistical Process Control (SPC). A few outliers are 

present in the data. The outcome shows how far the outlier detection method has progressed and better 

knowledge of the various outlier methodologies and provide a clear path for future outlier detection methods for 

researchers. 
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Abstract

This article deals with inferences on stress strength reliability in a multicomponent system for Type
I generalized half-logistic distribution. It is assumed that the strength and stress components are
independently distributed. In this work, we develop some statistical properties of the type I generalized
half-logistic distribution. Furthermore, the expression for stress strength reliability for a multicomponent
setup was obtained and studied. Two methods to estimate the multicomponent stress-strength reliability -
maximum likelihood and Bayesian estimation were employed. The Bayes estimates of the multicomponent
stress strength reliability are obtained under squared error loss function and using gamma priors for the
parameters. Simulation studies were conducted to assess the efficiency of the methods. The importance of
this model was studied by applying it to a real life data set.

Keywords: Type I generalized half-logistic distribution; multicomponent system; stress strength
reliability; beta function.

1. Introduction

Researchers and statisticians have paid a lot of attention to stress-strength reliability. Their vast
range of applications includes industries ranging from transportation and communications to
medicine and healthcare. If the system’s strength is higher than the stress it is subjected to, it
is called trustworthy. Random stress is given to an appliance, Y, and the strength is X then a
measure of the reliability of a system is given by R=Pr{X>Y}. There has been a great deal of
effort done on estimating R using various X and Y distributions and estimate methodologies.
Kotz et al. (2003) provide an overview of the applications and theories in this field . Raqab et al.
(2008) and Kundu and Raqab (2009) found R where X and Y are independent three-parameter
generalized exponential and three-parameter Weibull random variables, respectively. Kundu
and Raqab (2013) have calculated the stress-strength reliability for a three-parameter generalized
Rayleigh distribution. Using the phase-type distribution and a discrete distribution, Jose et al.
(2020) calculated stress-strength reliability and Jose and Drisya (2020) evaluated time-dependent
reliability using the phase-type distribution, respectively.

The development of multicomponent stress-strength reliability has also received considerable
attention. For example, consider a system with k statistically independent and identically
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distributed strength components subjected to a shared load. When s(1 ≤ s ≤ k) or more
components concurrently survive, this multicomponent stress-strength system is activated. This
was initially explored by Bhattacharya and Johnson (1974). A wide range of industrial and
military applications can benefit from such systems. When s = k and s = 1 respectively, the
following system corresponds to series and parallel. Using a panel of k identical solar cells,
Johnson (1988) showed that this set-up may be used in practice to ensure that the mission’s power
requirements are met even if only s of the cells are in use at any one time. Some cells may be
unable to function properly due to severe temperatures, and this extreme temperature may be
a factor in a cell’s strength. Dey et al. (2016) used this model to estimate the multicomponent
stress-strength reliability for the Kumaraswamy distribution, among many other practical uses.
An example of a log-logistic distribution of strength and stress was studied by Rao and Kantam
(2010). The dependability of multicomponent stress-strength models was calculated by assuming
generalized exponential and Burr XII distributions for the components in Kizilaslan and Nadar
(2015), Rao (2012), and Rao et al. (2014).

Olapade developed the type I generalized half-logistic model, which is shown below (2014). A
generalized version of the half-logistic distribution suggested by Balakrishnan, the distribution is
used in this case (Balakrishnan, 1985). If a random variable X has the density function f (x) of
the type I generalized half-logistic (TIGHL) distribution, it is said to have the type I generalized
half-logistic (TIGHL) distribution if

f (x) =
b2b

σ

e
x
σ(

1 + e
x
σ

)b+1 ; 0 ≤ x < ∞, b > 0, σ > 0 (1)

and f (x) = 0 elsewhere with cumulative distribution function as

F(x) = 1 −
(

2
1 + e

x
σ

)b
(2)

where σ and b are the scale and shape parameters, respectively. Jose and Manoharan’s approach
is a particular case of the model in (1) (Jose and Manoharan, 2016). This model’s dependability
qualities haven’t been well studied in the literature, which prompted us to investigate them
and come up with clearer formulations. In addition to Bello et al. (2017), Awodutire and
Awodutire et al. (2020a) and others, the type I generalized half-logistic model has been further
generalized. According to Jose et al. (2019) the stress-strength reliability of Kumaraswamy half-
logistic distribution was analyzed. Furthermore, a power-transformed half-logistic distribution
was used to estimate stress-strength reliability in single and multicomponent system (Xavier and
Jose, 2020a, 2020b).

The following is the article’s flow: The type-I generalized half-logistic model’s dependability
features are discussed in Section 2. Under a multicomponent arrangement, the calculation
of the distribution’s strength stress reliability is discussed in Section 3. Maximum likelihood
estimates and Bayesian estimates are developed. Gamma priors are used for Bayesian estimation
under the squared error loss function. In Section 4, characteristics were tested in a series of
computer simulations. In the same section, a real-world dataset is used to demonstrate the
model’s capabilities. Section 5 is the final conclusions of the paper.

2. Reliability Properties

Olapade(2014) had studied some properties of the Type I generalized half logistic distribution. In
this section, more research is carried out in order to derive precise formulations for a number of
dependability characteristics. Moment generating function, mean failure time, mean residual life
function, and Renyi and Shannon entropies are among the properties that are further studied.
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2.1. Moment generating function

The moment generating function can be obtained as

Mx(t) = E(etx) =
b2b

σ

∫ ∞

0
etx e

x
σ(

1 + e
x
σ

)b+1 dx

Now consider the transformation 1(
1+e

x
σ
) = u, then

Mx(t) = E(etx) = b2b
∫ 1

0
ub−tσ−1(1 − u)tσdu

= 2b Γ(b − tσ)Γ(tσ + 1)
Γ(b)

; ℜ(b − tσ) > 0 (3)

where Γ(.) is called the gamma function defined as Γ(a) =
∫ ∞

0 xa−1e−xdx;ℜ(a) > 0.

2.2. Mean Time to Failure Function

Then we can have mean time to failure (MTTF) or E(X) as E(X) = d
dt Mx(t)|t=0

E(X) = 2b Γ(b − tσ)Γ(tσ + 1)
Γ(b)

[σψ(b − tσ) + σψ(tσ + 1)]|t=o

= 2bσ [ψ(b) + ψ(1)] (4)

Here ψ(.) called the digamma function is the logarithmic derivative of the gamma function, that
is ψ(.) = Γ′(.)

Γ(.) .

2.3. Mean residual life function

The mean residual life function for a non-negative continuous random variable X is defined as
η(x) = E(X − x|X > x) and can be obtained by

η(x) =
1

S(x)

∫ ∞

x
S(y)dy

=

(
1 + e

x
σ

)b

2b 2b
∫ ∞

x

1(
1 + e

y
σ

)b dy

Now consider the transformation 1(
1+e

y
σ
) = u, then

η(x) = σ
(

1 + e
x
σ

)b ∫ 1

1+e
x
σ

0

ub−1

1 − u
du

= σ
(

1 + e
x
σ

)b ∞

∑
k=0

(1)k
k!

∫ 1

1+e
x
σ

0
ub+k−1du

= σ
(

1 + e
x
σ

)b ∞

∑
k=0

(1)k
(b + k)k!

(
1

1 + e
x
σ

)b+k

=
σ

b

∞

∑
k=0

(1)k(b)k
(b + 1)kk!

(
1

1 + e
x
σ

)k

=
σ

b 2F1

(
1, b; b + 1;

1
1 + e

x
σ

)
(5)
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where (t)m = t(t + 1)...(t + m − 1) and pFq(z) is the generalized hypergeometric function. The
generalized hypergeometric function pFq(z) is defined as

pFq(a1, ..., ap; b1, ..., bq; z) =
∞

∑
k=0

(a1)k...(ap)k

(b1)k...(bq)k

zk

k!

where bj ̸= 0,−1,−2, ...; i = 1, 2, ..., p; j = 1, 2, ..., q,. The convergence conditions and other details
are available from books on special functions, see for example Mathai and Haubold (2008).

2.4. Renyi and Shannon entropies

The entropy of a random variable X is a measure of variation of the uncertainty. Renyi entropy is
defined as Ir(γ) =

1
1−γ ln

{∫
ℜ f γ(x)dx

}
, where γ > 0 and γ ̸= 1.

Ir(γ) =
1

1 − γ
ln

 bγ2γb

σγ

∫ ∞

0

e
γ(x)

σ(
1 + e

x
σ

)γ(b+1)
dx


=

1
1 − γ

ln

[
bγ2γb

σγ

∫ 1

0
uγb−1(1 − u)γ−1du

]

=
1

1 − γ
ln

[(
b2b

σ

)γ

B(γb, γ)

]
; γ > 0, γ ̸= 1 (6)

The Shannon entropy is defined as E[−ln f (x)] and can be obtained as

E[−ln f (x)] = −E[lnb + bln2 − lnσ]− E
[ x

σ

]
+ (b + 1)E

[
ln(1 + e

x
σ )
]

Now

E
[ x

σ

]
= 2b(ψ(b)− ψ(1))

E
[
ln(1 + e

x
σ )
]

=
b(b + 1)2b

σ

∫ ∞

0

e
x
σ ln
(

1 + e
x
σ

)
(

1 + e
x
σ

)b+1 dx

= b(b + 1)2b
∫ 1

0
ub−1ln

(
1
u

)
du

=
(b + 1)2b

b

Hence, the Shannon entropy reduces to

E[−ln f (x)] = −[lnb + bln2 − lnσ] + 2b(ψ(b)− ψ(1)) +
(b + 1)2b

b
(7)

3. Multicomponent Strength Stress Reliability

The stress-strength reliability of a system is defined as the chance that the system will continue
to work effectively until the strength surpasses the stress. When the system is placed to use
and subjected to a random stress, the system’s strength changes as a result of the manufac-
turing variability and unpredictable circumstances. Material, production technique, humidity,
temperature, and other variables may all be exploited to create manufacturing variations and
unpredictability in products. There are several studies in the literature that have attempted
to estimate the multicomponent stress-strength reliability for different statistical distributions.
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Reliability of multicomponent stress strength is established by Bhattacharyya and Johnson (1974)
as

Rs,k = Pr {at least s of (X1, X2, ..., Xk) exceed Y}

=
k

∑
i=s

(
k
i

) ∫ ∞

0
[1 − F(y)]i[F(y)]k−idG(y) (8)

where X1, X2, X3, ..., Xk are independently distributed with the cumulative distribution function
F(x) and are subjected to common random stress Y with cumulative distribution function G(y).
Let X1, X2, ..., Xk be iid with TIGHL(q, σ) and Y∼TIGHL(b, σ) be independently distributed.
Thus, by putting equations (1) and (2) into (8), we can derive the multicomponent system’s stress
strength reliability using the type I generalized half logistic distribution as

Rs,k =
b2b

σ

k

∑
i=s

(
k
i

) ∫ ∞

0

(
2

1 + e
x
σ

)qi (
1 −

(
2

1 + e
x
σ

)q)k−i e
x
σ

(1 + e
x
σ )b+1

dx

Let t =
(

2
1+e

x
σ

)q
then dt = − q2qe

x
σ

σ(1+e
x
σ )q+1

dx and when x → 0, t → 1 and when x → ∞, t → 0.

Rs,k =
b
q

k

∑
i=s

(
k
i

) ∫ 1

0
ti[1 − t]k−it

b
q dt

=
b
q

k

∑
i=s

(
k
i

) ∫ 1

0
t

b
q +i

[1 − t]k−idt

= δ
k

∑
i=s

(
k
i

)
B(δ + i + 1, k − i + 1) (9)

where δ = b
q and B(.) is the beta function defined as B(x, y) =

∫ 1
0 tx−1(1 − t)y−1dt; ℜ(x) >

0,ℜ(y) > 0.
As special case, consider X1, X2, ..., Xk are connected in parallel, then s = 1 and Rs,k will be

R1,k = δ
k

∑
i=1

(
k
i

)
B(δ + i + 1, k − i + 1) (10)

Consider X1, X2, ..., Xk are connected in series, then s = k and Rk,k will be

Rk,k = δ
k

∑
i=k

(
k
i

)
B(δ + i + 1, k − i + 1) =

δ

δ + k + 1
(11)

3.1. Maximum Likelihood Estimation of Rs,k

Consider two random samples of size m and n, respectively, drawn from the variables strength,
X, and stress, Y, each of which follows a type I generalized half-logistic distribution with shape
parameters q and b, respectively, and a common scale parameter σ, then the log-likelihood
function of the observed data is as follows:

l = m(ln q + q ln 2 − ln σ) + n(ln b + b ln 2 − ln σ) +
m

∑
i=1

xi
σ
+

n

∑
j=1

yj

σ

− (q + 1)
m

∑
i=1

ln(1 + e
xi
σ )− (b + 1)

n

∑
j=1

ln(1 + e
yj
σ )
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∂l
∂q

=
m
q
+ m ln 2 −

m

∑
i=1

ln(1 + e
xi
σ ) ⇒ q̂ =

m

∑m
i=1 ln(1 + e

xi
σ )− m ln 2

(12)

∂l
∂b

=
n
q
+ n ln 2 −

n

∑
j=1

ln(1 + e
yj
σ ) ⇒ b̂ =

n

∑n
j=1 ln(1 + e

yj
σ )− n ln 2

(13)

∂l
∂σ

= (q + 1)
m

∑
i=1

xie
xi
σ

σ2(1 + e
xi
σ )

+ (b + 1)
n

∑
j=i

yje
yj
σ

σ2(1 + e
yj
σ )

− 1
σ2

(
m

∑
i=1

xi +
n

∑
j=1

yj

)
− (m + n)

σ
(14)

σ̂ can be obtained by iteratively solving the equation ∂l
∂σ= 0. Given the estimates, the MLE of Rs,k

becomes

R̂s,k = δ̂
k

∑
i=s

(
k
i

)
B(δ̂ + i + 1, k − i + 1) (15)

The asymptotic variance of the estimate of Rs,k as defined by Rao (1973) is

AVar(R̂s,k) = Var(q̂)
(

∂Rs,k

∂q

)2
+ Var(b̂)

(
∂Rs,k

∂b

)2
(16)

where

Var(q̂) = E
[
− ∂2l

∂q2

]−1

=
q2

m

Var(b̂) = E
[
− ∂2l

∂b2

]−1

=
b2

n

∂Rs,k

∂q
= −

Rs,k

q
+

δ2

q

k

∑
i=s

(
k
i

)
B(δ + i + 1, k − i + 1){ψ(δ + k + 2)− ψ(δ + i + 1)}

∂Rs,k

∂b
=

Rs,k

b
+

δ

b

k

∑
i=s

(
k
i

)
B(δ + i + 1, k − i + 1){ψ(δ + i + 1)− ψ(δ + k + 2)}

Then the asymptotic 95% confidence interval for the system reliability, Rs,k can be obtained as

Rs,k ∓ 1.96
√

AVar( ˆRs,k).

3.2. Bayes estimation of Rs,k

Parameters are assumed to be constants in the conventional estimate technique. For example, the
parameters in the model may not be constant over the entire testing time, therefore they must
be handled as random variables. The prior distribution of the parameters may be utilized as
information on the uncertainty associated with them in Bayesian estimation, which is a method for
overcoming this. This section is devoted to estimating Rs,k. by use of a Bayesian approach. Here,
we assume that the parameters q, b and σ have gamma prior distributions with (ci, di),i= 1, 2, 3
correspondingly. Assume random variable Z has parameters (ci, di) with the following gamma
density is

h(z) =
dci

i
Γ(ci)

zci−1e−zdi ; 0 ≤ z<∞, ci> 0,di> 0,i= 1, 2, 3

and h(z) = 0 elsewhere. The joint prior of b, q and σ can be written as

π(b, q, σ) ∝ qc1−1bc2−1σc3−1e−d1q−d2b−d3σ (17)
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On the basis of the squared error loss function, it was possible to generate Bayes estimates of Rs,k
when the likelihood function and the prior posterior distribution of the parameters q, b and σ are
combined and the following result is obtained:

π∗
0 (σ|b, q, data) ∝ σc3−m−n−1e

1
σ (∑m

r=1 xr+∑n
s=1 ys)−d3σ

×
m

∏
r=1

(
1 + e

xr
σ

)−(q+1) n

∏
s=1

(
1 + e

ys
σ

)−(b+1)

π∗
1 (q|σ, data) ∝ Gamma

(
m + c1, d1 − m ln2 +

m

∑
r=1

ln
(

1 + e
xr
σ

))

π∗
2 (b|σ, data) ∝ Gamma

(
n + c2, d2 − n ln2 +

n

∑
s=1

ln
(

1 + e
ys
σ

))

Any well-known distribution cannot be reduced to the posterior distribution of σ. Random
samples are generated using the Markov chain Monte Carlo (MCMC) method because posterior
distributions cannot be reduced into closed forms. It is possible to estimate the posterior density
functions if they are unimodal and generally symmetric; for details, see Gelman et al (2003). When
a previous is log-concave, then a posterior is similarly log-concave, according to Kundu (2008)
Metropolis-Hasting and the normal proposal distribution will be utilized to generate random
samples from posterior distributions of σ. Bayesian Rs,k estimation is given in the following
manner:

Step 1: Set the initial values σ0 and i = 1. Let Let γ = σi−1.

Step 2: Generate q from Gamma
(

m + c1, d1 − m ln2 + ∑m
r=1 ln

(
1 + e

xr
σ

))
.

Step 3: Generate b from Gamma
(

n + c2, d2 − n ln2 + ∑n
s=1 ln

(
1 + e

ys
σ

))
.

Step 4: Using the proposal density h(σ) ≡ N(σi−1, 1), σ > 0, generate σi from π∗
0 (σ|bi−1, qi−1, data)

using step 5.

Step 5: From the proposal density, generate a sample, τ. Generate U from Uniform (0, 1) and if

U ≤ min
{

1, π∗
0 (τ)h(γ)

π∗
0 (γ)h(τ)

}
, accept τ and set σi = τ.

Step 6: Compute Ri
s,k and set i to i + 1.

Step 7: Repeat steps 2 to 6, K times and obtain the Bayesian estimates of q, b, σ and Rs,k as

∑K
i=1

qi

K , ∑K
i=1

bi

K , ∑K
i=1

σi

K and ∑K
i=1

Ri
s,k
K respectively.

The method of Chen and Shao (1999) can be used to construct the 100(1 − α)% high poste-
rior density (HPD) credible interval of Rs,k.

4. Simulation study and data analysis

Here, we compare the performances of Rs,k for different sample sizes. Random samples of sizes 15,
20, 30, 40, and 50 with 1000 replications each from the strength and stress populations were gen-
erated for (q, b) ={(3.5, 1.0), (2.5, 1.0), (1.5, 1.0), (1.0, 1.5), (1.0, 2.5), (1.0, 3.5)} respectively. The
value of σ was fixed at 2 for all simulation results. The ML estimators of q̂ and b̂ were then substi-
tuted to obtain the estimate for Rs,k with (s, k) ={(1, 3), (2, 4)}. The bias, MSE, and asymptotic
confidence intervals of the MLE of Rs,k are presented in Table 1. The MSE values decrease as the
sample size increases for both (s, k) which verifies the consistency property of the MLE of Rs,k.
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The Bayesian estimates were derived using the MCMC technique with two priors. The
Bayesian estimates were derived using the MCMC technique with two priors. Prior 1: (c 1,d
1)=(1,0.5), (c 2,d 2)=(2,0.5), (c 3,d 3)=(1,1) and Prior 2: (c 1,d 1)=(1,1.5), (c 2,d 2)=(2.5,0.5), (c 3,d
3)=(1,1) (2,1). We ran the MCMC chains with a variety of beginning values and generated a
total of 10000 iterations. The first 9000 iterations were deleted to reduce the distribution’s initial
influence. This is referred to as burn-in. Tables 2 and 3 show the bias, Bayes risk, and HPD
confidence ranges for Rs,k estimations. With increasing sample size, the risk and interval lengths
are seen to decrease. We ran the MCMC chains with a variety of beginning values and generated
a total of 10000 iterations. The first 9000 iterations were deleted to reduce the distribution’s initial
influence. This is referred to as burn-in. Tables 2 and 3 show the bias, Bayes risk, and HPD
confidence ranges for Rs,kestimations. With increasing sample size, the risk and interval lengths
are seen to decrease.

4.1. Data analysis

In this part, a real-world dataset is examined to demonstrate how the produced conclusions may
be used. Al-Mutairi et al. (2013) and Rao (2014) considered the dataset, the amount of time (in
minutes) that clients had to wait before being served. As an example, suppose bank A has five
service points, say X1, X2, ..., X5, while bank B has one service point, say Y with m= 100 and
n= 60 as the sample sizes, respectively. For your convenience, the dataset is displayed here.

Data X: 0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.0,4.1,4.2, 4.2,4.3,4.3,4.4,4.4,
4.6,4.7,4.7,4.8,4.9,4.9,5.0,5.3,5.5,5.7,5.7,6.1,6.2,6.2,6.2,6.3, 6.7,6.9,7.1,7.1,7.1,7.1,7.4,7.6,7.7,8.0,
8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7,10.9,11.0,11.0,11.1,11.2,11.2,11.5,11.9,12.4,12.5,
12.9,13.0,13.1,13.3,13.6,13.7,13.9,14.1,15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.0,19.9,20.6,21.3,
21.4,21.9,23.0,27.0,31.6,33.1,38.5

Data Y: 0.1,0.2,0.3,0.7,0.9,1.1,1.2,1.8,1.9,2.0,2.2,2.3,2.3,2.3,2.5,2.6,2.7,2.7,2.9,3.1,3.1,3.2,3.4,3.4,
3.5,3.9,4.0,4.2,4.5,4.7,5.3,5.6,5.6,6.2,6.3,6.6,6.8,7.3,7.5,7.7,7.7,8.0,8.0,8.5,8.5,8.7,9.5,10.7,10.9,11.0,
12.1,12.3,12.8,12.9,13.2,13.7,14.5,16.0,16.5,28.0

In order to match the datasets, we used the Type I generalized half-logistic distribution, and it
can be shown that the model fits the data quite well. q and σ have MLE values of 0.41 and 3.33
for Data X. The MLEs of b and σ for Data Y are 0.69 and 3.33. Table 4 contains the results of
the KS-test as well as the relevant p-values. Figure 1 shows a histogram of the fit, which shows
how well the model fits. The values s= 5 and k= 5 are used for example reasons only, which
means that the service points in Bank A are connected in a series fashion. A series connection of
the service points might be read as consumers offering services for all five of the service points
that are now accessible. The estimate of R5,5 is obtained as 0.2160 with a 95 percent asymptotic
confidence range of (0.1580,0.2740).

Table 4: Goodness for fit for data set

Shape parameter Scale parameter K-S Statistic p-value

Data X 0.41 3.33 0.1136 0.1513
Data Y 0.69 3.33 0.0728 0.9083

The MCMC technique under two priors was used to produce the Bayesian estimates in this
case. Preliminary estimates for the following priors are used:

Prior 1: (c1, d1) = (2, 1), (c2, d2) = (2, 1), (c3, d3) = (0.5, 0.5), and
Prior 2: (c1, d1) = (1, 0.5), (c2, d2) = (2, 0.5), (c3, d3) = (1, 1).

We ran the MCMC chains and generated 20000 iterations, the first 10000 iterations of the distribu-
tion were removed in order to reduce the initial influence of the distribution. In order to break the
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Figure 1: The fitted density for X and Y

reliance among the produced samples, we select a sample every tenth one. This results in a final
chain of 1000 samples. According to the preceding condition, the multicomponent stress-strength
reliability is derived as R̂5,5= 0.2189 with 95 percent credible interval as (0.1660,0.2766). Figure
2 shows the trace plot of and histogram of the Rs,k values. Prior 2 yields the multicomponent
stress-strength reliability as R̂5,5= 0.2192 with 95 percent credible interval as (0.1701,0.2760).
Figure 3 depicts a trace plot and histogram of the Rs,k values.

5. Conclusions

Using the Type I generalized half-logistic model, we may derive explicit formulas for several of the
model’s dependability features. Additional point and interval estimates of the multicomponent
stress strength reliability, Rs,k where the strength of its constituents and the stress applied to it are
statistically independent and follow a Type I generalized half-logistic distribution are presented.
The maximum likelihood estimates and Bayesian estimates under the squared error loss function
are generated. The results of the simulations indicate that the estimations were compatible with
one another. Furthermore, as the sample size was increased, the length of the confidence interval
shrank as a result of this. As an example of how the proposed conclusions can be put into practice,
a real-life scenario is explored.
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Figure 2: Trace plot and histogram of Rs,k values under prior 1

Figure 3: Trace plot and histogram of Rs,k values under prior 2
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Abstract

In this paper, an alternative mixed Poisson distribution is proposed by amalgamating Poisson
distribution and a modification of the Quasi Lindley distribution. Some fundamental structural properties
of the new distribution, namely the shape of the distribution and moments and related measures, are
explored. It was noted that the new distribution to be either unimodal or bimodal, and over-dispersed.
Further, it has a tendency to accommodate various right tail behaviors and variance-to-mean ratios. Its
unknown parameter estimation by using the maximum likelihood estimation method is examined by a
simulation study based on the asymptotic theory. Finally, two real-world data sets are used to illustrate
the flexibility and potentiality of the new distribution.

Keywords: over-dispersion, mixed Poisson distribution, Lindley distribution, Quasi Lindley
distribution, goodness of fit.

1. Introduction

Most of the real-world applications, especially, reliability, actuarial, biomedical, engineering,
ecological sciences, and among others, the variable of interest is in the form of count data. The
Poisson distribution is a standard tool to model the count data if the empirical and theoretical
properties satisfy the related underline assumptions. A random variable X is said to have a
Poisson distribution with parameter λ if both the E(X) and Var(X) of the distribution equal to the
parameter λ. This property is commonly known as equidispersion. Even though its probability
mass function (pmf) is very flexible to compute its probabilities, in some real-world applica-
tions the Poisson distribution fails to match empirical observations. Here the variance of the
observed data exceeds the theoretical variance. This phenomenon is explained as over-dispersion
or variation inflation (Greenwood and Yule, 1920). The over-dispersion occurs by the failure of
the basic assumptions of the Poisson distribution. The reasons might be by phenomena of the
clustered structure of the population or population is heterogeneous, and heavy right tail that
cannot accommodate by the Poisson distribution (McCullagh et al., 1989; Ridout et al., 1998). The
heterogeneity of a population is determined by the Poisson parameter λ which differs individ-
ual to individual, and then the Var(X) = τE(X); (τ > 1), where τ is called the index of dispersion.

The mixed Poisson distributions are well-known flexible modeling methods to explain the
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heterogeneity of the Poisson parameter as well as heavy right tail behaviors (Feller,1943; Shaked,
1980). The mixed Poisson distribution is a resultant distribution or unconditional distribution
by assuming that the Poisson parameter is a random variable that has as a parameterized dis-
tribution P. The distribution P and its parameter vector Θ are called prior distribution and
hyperparameter, respectively. Then, the resultant distribution of the random variable X can be
expressed mathematically in the following form

fX(x) =
∫ ∞

0
fX|Λ(x|λ) f P

Λ(λ)dλ, (1)

where X|Λ has a Poisson distribution with parameter λ as

fX|Λ(x|λ) = e−λλx

x!
, x = 0, 1, 2, ..., λ > 0, (2)

Λ is the random variable of the Poisson parameter λ, and f P
Λ(λ) is the density function of the

assumed continuous distribution P to the Poisson parameter λ. Hence, the random variable X
has the same support of X|Λ with parameter(s) of the prior distribution. Further, Lynch (1988)
showed that the form of the mixing distribution has ascendancy over to the form of the resultant
mixed distribution.

In literature, researchers assumed the standard lifetime distributions to model the Poisson
parameter λ as a classical approach. Greenwood and Yule (1920) used the gamma distribution,
and the resultant distribution is negative binomial (NBD). Johnson et al., (1992) assumed the ex-
ponential distribution to model the Poisson parameter, and the resultant distribution is geometric
distribution (GD). Even though NBD and GD are computationally flexible pmfs, they are not
befitting distributions for a higher value of τ and long right tail. In this context, researchers have
assumed several modifications of the standard lifetime distributions for the Poisson parameter.
They were modified to have more flexibility in their shapes and failure rate criteria than the
standard lifetime distributions. Confluent Hypergeometric series, Gamma product ratio, General-
ized gamma, Shifted gamma, Inverse gamma, and Modified Bessel of the 3rd kind are used by
Bhattacharya (1967), Irwin (1975), Albrecht (1984), Ruohonen (1988), Willmot (1993), and Ong and
Muthaloo (1995), respectively to model the Poisson parameter. The pmfs of such distributions are
derived through the recursive formulas or Laplace transform technique, or by using the special
mathematical functions. Hence, computing the probabilities of such distributions is complicated
and they are limited in practice.

The Lindley distribution (LD) is one of the life time distributions introduced by Lindley (1958)
having the density function

fΛ(λ) =
θ2

1 + θ
(1 + λ)e−θλ , λ > 0, θ > 0, (3)

where θ is the shape parameter, and Λ is the respective random variable. Equation (3) presents a
two-component mixture of two different continuous distributions namely exponential (θ) and

gamma (2, θ) distributions with the mixing proportion, p =
θ

1 + θ
. Sankaran (1970) introduced

the one-parameter discrete Poisson-Lindley distribution (PLD) by combining the Poisson and LD.
Its pmf is given as

fX(x) =
θ2(x + θ + 2)
(θ + 1)x+3 , x = 0, 1, 2, ..., θ > 0. (4)

Note that the pmf of the PLD is an explicit form. Then, obtaining its probabilities is computa-
tionally flexible. However, the PLD flexibility is limited to fit various types of the over-dispersed
count data sets since it has only one parameter. Then, as an alternative to PLD, Bhati et al.
(2015) have obtained the Generalized Poisson-Lindley distribution (GPLD), where the Poisson
parameter is distributed to Two-parameter Lindley distribution (Shanker et al., 2013b); Wongrin
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and Bodhisuwan (2016) introduced Poisson-generalized Lindley distribution (PGLD), which was
obtained by mixing the Poisson distribution with the generalized Lindley distribution (Elbatal et
al., 2013); Grine et al. (2017) have obtained the Quasi-Poisson distribution (PQLD) by modeling
Poisson parameter to Quasi Lindley distribution (Shanker et al., 2013a). Table 1 summarizes the
mixing proportions, mixing components, and parameters of the above continuous distributions
that have been used to model the Poisson parameter. We can see that the mixing proportions
of the Two-parameter Lindley and generalized Lindley distributions are incorporated with the
scale parameter, θ of the mixing components. Further, the shape parameter of the mixing
component gamma (2, θ) is fixed with value 2 for the Two-parameter Lindley and the Quasi
Lindley distributions. These settings of such mixing distributions may limit the flexibility of the
above-mentioned Poisson mixtures to fit well for the various types of the right tail heaviness and
τ for an over-dispersed count data (Tharshan and Wijekoon, 2020 a b).

Table 1: Mixing proportions, mixing components, and parameters of some modified-Lindley distributions.

Distribution Mixing proportion Mixing components Parameters
shape scale

Two-parameter Lindley
θ

θ + α
exponential (θ) , gamma (2, θ) θ, α

Generalized Lindley
θ

1 + θ
gamma (α, θ) , gamma (β, θ) θ, α, β

Quasi Lindley
α

α + 1
exponential (θ) , gamma (2, θ) θ α

The main contribution of this paper is to propose an alternative mixed Poisson distribution
for over-dispersed count data to address the above issues. It is obtained by mixing the Poisson
distribution and the Modification of the Quasi Lindley distribution (MQLD) (Tharshan and
Wijekoon, 2021). The density function of the MQLD(θ, α, δ) is given as

fΛ(λ; θ, α, δ) =
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
; λ > 0, θ > 0, α3 > −1, δ > 0, (5)

where α, and δ are shape parameters, θ is a scale parameter, and Λ is the respective random
variable. Equation (5) presents the mixture of two non-identical distributions, exponential (θ) ,

and gamma (δ, θ) with the mixing proportion, p =
α3

α3 + 1
. We can clearly observe that its mixing

proportion p does not incorporate with scale parameter, θ of the mixing components. Further, the
shape parameter of the mixing component gamma distribution, δ is not fixed with a value. The
authors have shown that these settings of the MQLD provide the capability to capture the various
ranges of right tail heaviness measured by excess kurtosis (kurtosis -3), horizontal symmetry
measured by skewness, and heterogeneity measured by Fano factor (variance-to-mean ratio) by
setting its parameter values. Further, its density function can be either unimodal or bimodal.

The remaining part of this paper is organized as follows: In section 2, we introduce the PMQLD
with its explicit forms of the probability mass and distribution functions. Its fundamental
structural properties are discussed in section 3. The simulation of its random variables and
parameter estimations are discussed in section 4. Finally, a simulation study is done to examine
the performance of parameter estimation by using the maximum likelihood estimation method,
and some real-world examples are taken to show the applicability of the proposed model by
comparing it with some other existing Poisson mixtures, NBD, GD, PLD, GPLD, PQLD, PGLD.
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2. Formulation of the new mixed Poisson distribution

In this section, we introduce the new mixed Poisson distribution with its pmf and cumulative
distribution function (cdf).

Let the random variable X represent the total counts of a specific experiment with mean λ.
Then, the traditional distribution to calculate probabilities of such outcomes is the Poisson dis-
tribution. The PMQLD is obtained by mixing the Poisson and MQLD (Tharshan and Wijekoon,
2021) for over-dispersed count data. The following theorem gives the pmf of the PMQLD.

Theorem 1. Let X|Λ is a random variable that follow the Poisson distribution with parameter
λ, abbreviated as X|Λ ∼ Poisson (λ) and the Poisson parameter Λ ∼ MQLD (θ, α, δ). Then, the
pmf of the PMQLD is defined as

fX(x) =
θ

(
Γ(δ)Γ(x + 1)α3(1 + θ)δ−1 + θδ−1Γ(x + δ)

)
x!(α3 + 1)(1 + θ)x+δΓ(δ)

, x = 0, 1, 2, ..., θ > 0, δ > 0, α3 > −1. (6)

Proof. Since X|Λ ∼ Poisson (λ) and Λ ∼ MQLD (θ, α, δ), the unconditional distribution of X
can be obtained by substituting equations (2) and (5) in equation (1) as below

f (X) =
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

x!(α3 + 1)Γ(δ)

(
Γ(δ)α3

∫ ∞

0
e−λ(1+θ)λxdλ + θδ−1

∫ ∞

0
λx+δ−1e−λ(1+θ)dλ

)

=
θ

x!(α3 + 1)Γ(δ)

(
Γ(δ)α3Γ(x + 1)
(1 + θ)x+1 +

θδ−1Γ(x + δ)

(1 + θ)x+δ

)

=
θ

x!(α3 + 1)Γ(δ)(1 + θ)x+δ

(
(1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)

)
.

■
Remarks:

1. Equation (6) presents a two-component mixture of GD( θ
1+θ ) and NBD(δ, 1

1+θ ) with the

mixing proportion p = α3

α3+1 .

2. For α → 0, the PMQLD reduces to the NBD(δ, 1
1+θ ).

3. For α → ∞, the PMQLD reduces to the GD( θ
1+θ ).

The right tail behaviors of the PMQLD for different values of θ, α, and δ are illustrated in Figure
1. For fixed α and δ, it is clear that the distribution’s right tail approaches to zero at a faster
rate when θ increases. For fixed θ and δ, and when α is increasing, the distribution’s right tail
approaches to zero at a slower rate when compared with the changes of θ. Further, for fixed θ
and α, and when δ is increasing, the distribution captures more right tail. From Figure 2, we may
note that the PMQLD may be a bimodal distribution when parameter value δ is very different
(higher value) from the parameter values of θ and α.

The corresponding cumulative distribution function of PMQLD is given as

FX(x) =
x

∑
t=0

f (x)
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=
δ(1 + θ)δ−1Γ(δ)α3Γ(x + 1)((1 + θ)x+1 − 1) + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ )

(α3 + 1)Γ(δ)x!δ(1 + θ)x+δ+1 (7)

, x = 0, 1, 2, ..., θ > 0, δ > 0, α3 > −1,

where 2F1(c, d; r; w) is the Gaussian hypergeometric function defined as

2F1(c, d; r; w) =
∞

∑
i=0

(c)i(d)iwi

(r)ii!
,

which is a special case of the generalized hypergeometric function given by the expression

aFb(p1, p2, ...pa; q1, q2, ...qb; w) =
∞

∑
i=0

(p1)i...(pa)iwi

(q1)i...(qb)ii!
,

and (p)i =
Γ(p+i)

Γ(p) = p(p + 1)...(p + i + 1) is the Pochhammer symbol.
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Figure 1: The probability mass function of the PMQLD at different parameter values of θ, α,and ,δ

3. Statistical properties of PMQLD

In this section, we present some important statistical properties of the PMQLD such as the shape
of the distribution, moments and related measures, probability and moment generating functions,
and quantile function.
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Figure 2: Some bimodal distributions of the PMQLD

3.1. Shape of the distribution

From (6) we can easily derive f (0) = θ((1+θ)δ−1α3+θδ−1)
(α3+1)(1+θ)δ , and limx→∞ f (x) = 0.

The recurrence relation for probabilities is given by

f (x + 1)
f (x)

=
A

(x + 1)(1 + θ)B
; x = 0, 1, 2, ..., (8)

where A = (1 + θ)δ−1Γ(δ)α3Γ(x + 2) + θδ−1(x + δ)Γ(x + δ), and

B = (1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)).

The PMQLD(θ, α, δ) has a log-concave probability mass function when

∆η(x) =
f (x + 1)

f (x)
− f (x + 2)

f (x + 1)
> 0, ∀x (Gupta et al., 1997)

⇒ (x + 2)A2

(x + 1)
(
(1 + θ)δ−1Γ(δ)α3Γ(x + 3) + θδ−1Γ(x + δ + 2)

)
B
> 1.

Under this condition, the distribution represents a unimodal distribution. Further, by using (8), it
can be shown that

(i) For (1 + θ)δ−1α3 + θδ−1δ < (1 + θ)((1 + θ)δ−1α3 + θδ−1), equation (6) has unique mode at
X = 0.

(ii) Equation (6) has a unique mode at X = x0, for

(1 + θ)δ−1Γ(δ)α3Γ(x0 + 2) + θδ−1(x0 + δ)Γ(x0 + δ)

(x0 + 1)(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)

) < 1,

and
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(1 + θ)δ−1Γ(δ)α3Γ(x0) + θδ−1Γ(x0 + δ − 1)

x0(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)

) < 1.

(iii) Equation (6) has two modes at X = x0 and X = x0 + 1, for

(1 + θ)δ−1Γ(δ)α3Γ(x0 + 2) + θδ−1(x0 + δ)Γ(x0 + δ)

= (x0 + 1)(1 + θ)((1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)).

The above facts are also shown in Figures 1 and 2 at different parameter settings.

Further, the PMQLD(θ, α, δ) has a log-convex probability mass function when ∆η(x) ≤ 0:

⇒ (x + 2)A2

(x + 1)
(
(1 + θ)δ−1Γ(δ)α3Γ(x + 3) + θδ−1Γ(x + δ + 2)

)
B
≤ 1.

3.2. Survival and hazard rate functions

The survival/reliability function is associated with the probability of a system that will survive
beyond a specified time. The survival function of the PMQLD is defined as

S(x) = 1 − F(x) = 1 −
β1 + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ )

β2
(9)

where β1 = δ(1 + θ)δ−1Γ(δ)α3Γ(x + 1)((1 + θ)x+1 − 1) and β2 = (α3 + 1)Γ(δ)x!δ(1 + θ)x+δ+1.
The hazard rate function (hrf) is the instantaneous failure rate. The hrf of the PMQLD is defined
as

h(x) = lim∆x→0
P(x < X < x + ∆x|X > x)

∆x

=
f (x)
S(x)

=

δθ(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)

)
β1 − (β2 + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ ))
. (10)

Figure 3 provides an illustration of the possible shapes of the PMQLD’s hazard rate function at
different shape parameter values. According to these illustrations, it is clear that the proposed
model has the capability to model the bathtub, monotonic increasing, and decreasing failure rate
shapes.

3.3. Moments and related measures

The central tendency, horizontal symmetry, tail heaviness, and dispersion are important character-
istics of a distribution. These characteristics can be studied by using the moments. The following
theorem provides the rth factorial moment of the PMQLD.

Theorem 2. Let X ∼PMQLD(θ, α, δ), then the rth factorial moment of X is given as

µ
′
(r) =

Γ(δ)Γ(r + 1)α3 + Γ(δ + r)
(α3 + 1)Γ(δ)θr . (11)

Proof.

µ
′
(r) = E(Πr−1

i=0 (X − i))
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Figure 3: The hazard rate function at different values of α, and δ

=
∞

∑
x=0

x(r)
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
∫ ∞

0
λr θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

(α3 + 1)Γ(δ)

(
Γ(δ)α3Γ(r + 1)

θr+1 +
Γ(δ + r)

θr+1

)

=
Γ(δ)Γ(r + 1)α3 + Γ(δ + r)

(α3 + 1)Γ(δ)θr .

■
Then, the first four raw moments of X can be derived by the following relationship

µ
′
r = E(xr) =

r

∑
i=0

S(r, i)µ
′
(i) ; r = 1, 2, ...,

where S(r, i) is the Stirling numbers of the second kind, and it is defined as

S(r, i) =
1
i!

i

∑
j=0

(−1)i−j
(

i
j

)
jr , 0 < i < r.

Let

κ1 = α3 + δ, κ2 = 2α3 + δ(δ + 1), κ3 = 6α3 + δ(δ + 1)(δ + 2), κ4 = 24α3 + δ(δ + 1)(δ + 2)(δ + 3).

Then,
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µ
′
1 =

κ1

(α3 + 1)θ
= µ , µ

′
2 =

θκ1 + κ2

(α3 + 1)θ2 , µ
′
3 =

θ2κ1 + 3θκ2 + κ3

(α3 + 1)θ3 , µ
′
4 =

θ3κ1 + 7θ2κ2 + 6θκ3 + κ4

(α3 + 1)θ4 .

Further, the rth-order moments about the mean can be obtained by using the relationship between
moments about the mean and moments about the origin, i.e.

µr = E

[
(Y − µ)r

]
=

r

∑
i=0

(
r
i

)
(−1)r−iµ

′
iµ

r−i; r = 1, 2, ....

Therefore, the variance of X, σ2 and index of dispersion, γ1 are derived as

σ2 = µ2 =
α6(1 + θ) + α3(2 + θ + δ(θ + δ − 1)) + δ(θ + 1)

(α3 + 1)2θ2 =

µ + µ2
(

α3(α3 + 2 + δ(δ − 1)) + δ

(α3 + δ)2

)
,

and

γ1 =
µ2

µ
′
1
= 1 +

α3(α3 + 2 + δ(δ − 1)) + δ

(α3 + 1)(α3 + δ)θ
,

respectively. It is clear that the γ1 > 1. Then, the PMQLD is an over-dispersed distribution. Since
the mathematical expressions of µ3 and µ4 are very long, we present the graphical presentations

of the skewness (γ2) =
µ3

(µ2)3/2 and kurtosis (γ3) =
µ4

µ2
2

of the PMQLD in Figure 5. The surface

plots in Figures 4, and 5 show some possible values of the index of dispersion, skewness, and
kurtosis that can be accommodated by the PMQLD at different settings of the parameters. Hence,
these plots indicate that the PMQLD (θ, α, δ) has the capability to accommodate various ranges of
the index of dispersion, skewness, and kurtosis at different sets of parameters for over-dispersed
count data.

delta

2

4

6

8

10

a
lp

h
a

2

4

6

8

10

In
d
e
x
 o

f d
is

p
e
rs

io
n

20

30

40

50

θ=0.10

delta

2

4

6

8

10

a
lp

h
a

2

4

6

8

10

In
d
e
x
 o

f d
is

p
e
rs

io
n

4

6

8

10

12

θ=0.50

delta

2

4

6

8

10

a
lp

h
a

2

4

6

8

10

In
d
e
x
 o

f d
is

p
e
rs

io
n 2

3

4

θ=1.50

Figure 4: Surface plots for the index of dispersion at different values of θ, α, and δ
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Figure 5: Surface plots for the skewness and kurtosis functions at different values of θ, and α

3.4. Probability and moment generating functions

The characteristics of a probability distribution are directly associated with its probability gener-
ating function (pgf) and the moment generating function (mgf). The following theorem provides
the pgf of the PMQLD.

Theorem 3. The pgf, G(t) = E(tX), X ∼PMQLD(θ, α, δ) is given as

G(t) =
θ(α3(1 − t + θ)δ−1 + θδ−1)

(α3 + 1)(1 − t + θ)δ
, t ∈ R. (12)

Proof.

G(t) = E(tX)

=
∞

∑
x=0

tX
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
∫ ∞

0
e−λ(1−t) θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

(α3 + 1)Γ(δ)

(
Γ(δ)α3

∫ ∞

0
e−λ(1−t+θ)dλ + θδ−1

∫ ∞

0
e−λ(1−t+θ)λδ−1dλ

)

=
θ(α3(1 − t + θ)δ−1 + θδ−1)

(α3 + 1)(1 − t + θ)δ
.

■
The mgf can be obtained effortlessly from pgf by using the relationship G(et) = E(etX) = MX(t),
and given as

MX(t) =
θ(α3(1 − et + θ)δ−1 + θδ−1)

(α3 + 1)(1 − et + θ)δ
, t ∈ R. (13)

3.5. Quantile function

The quantile function is a useful function to estimate the quantiles. Let us define the quantiles for
random variable X ∼PMQLD(θ, α, δ). The uth quantile can be derived by solving F(xu) = u for
xu, 0 < u < 1. Then, the uth quantile function of the PMQLD is given as

β1(xu) + θδΓ(xu + δ + 1)2F1(1, xu + δ + 1; δ + 1;
θ

1 + θ
)− uβ2(xu) = 0, 0 < u < 1, (14)
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where β1(xu) = δ(1 + θ)δ−1Γ(δ)α3Γ(xu + 1)((1 + θ)xu+1 − 1) and β2(xu) = (α3 + 1)Γ(δ)xu!δ(1 +
θ)xu+δ+1.

Since equation (14) is not a closed-form in xu, the estimates of the quantiles can be evalu-
ated by using any numerical method. Further, the first three quartiles can be calculated by
substituting u = 0.25, 0.50, and 0.75 in equation (14) and solving the respective equations.

4. Simulation and parameter estimation

4.1. Simulation of the random variables

Here, we provide two different algorithms to simulate the random variables x1, x2, ..., xn from the
PMQLD(θ, α, δ) with size n based on the inverse transform method.

The first algorithm is obtained by considering the mixing of the PMQLD. Since X|Λ ∼Poisson
(λ) and Λ ∼MQLD(θ, α, δ), the first algorithm is obtained as follows

Algorithm I:

i Simulate the random variables, ui ∼uniform(0, 1); i = 1, 2, ..., n.

ii Solve the non-linear equation for λi: Γ(δ)(1 + α3(1 − e−θλi ))− Γ(δ, θλi)− ui(α
3 + 1)Γ(δ) = 0

to simulate the random variables, λi ∼MQLD(θ, α, δ); i = 1, 2, ..., n.

iii Simulate xi from Poisson (λi); i = 1, 2, ..., n.

The second algorithm is obtained from the quantile function of PMQLD discussed in subsection
3.5, and the steps are as follows

Algorithm II:

i Simulate the random variables, ui ∼uniform(0, 1); i = 1, 2, ..., n.

ii Solve the non-linear equation for [xui ];
β1(xui ) + θδΓ(xui + δ + 1)2F1(1, xui + δ + 1; δ + 1; θ

1+θ )− uiβ2(xui ) = 0, where β1(xui ) and
β2(xui ) are defined as in section 3.6. [.] denotes the integer part.

4.2. Parameter estimation of PMQLD

In this subsection, we discuss the parameter estimation of the PMQLD by using the method of
moment estimation and the maximum likelihood estimation method.

4.2.1 Method of moment estimation (MME)

Given a random samples x1, x2...xn with size n from the PMQLD(θ, α, δ), the method of moment
estimators of θ, α, and δ, abbreviated as θ̂MME, α̂MME, and δ̂MME, can be evaluated by equating

the raw-moments, say µ
′
r, to the sample moments, say

n

∑
i=1

xr
i

n
, r = 1, 2, 3, i.e. we need to find the

solutions of the following system of non-linear equations:

nκ1 − (α3 + 1)θ ∑n
i=1 xi = 0; n(θκ1 + κ2)− (α3 + 1)θ2 ∑n

i=1 x2
i = 0;

n(θ2κ1 + 3κ2 + κ3)− (α3 + 1)θ3 ∑n
i=1 x3

i = 0,

where κ1, κ2, and κ3 are defined in subsection 3.3. It is clear that these equations are not a closed
form. However, the solutions can be derived by using a numerical method.
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4.2.2 Maximum likelihood estimation (MLE)

Given a random samples x1, x2...xn with size n from the PMQLD(θ, α, δ), the likelihood function
of the ith sample value xi is given as

L(θ, α, δ|x) = θ

xi!(α3 + 1)(1 + θ)xi+δΓ(δ)

(
Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

)
.

Then, the log-likelihood function is given as

log(L(θ, α, δ|xi)) = l(θ, α, δ|x)

= n
(

log(θ)− log(α3 + 1)− log(Γ(δ))
)
+ ∑n

i=1 log
(

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

)
− log(xi!)− (xi + δ)log(1 + θ). (15)

The score functions are

∂l(θ, α, δ|x)
∂θ

=
n
θ
+

n

∑
i=1

Γ(δ)Γ(xi + 1)α3(δ − 1)(1 + θ)δ−2 + Γ(xi + δ)(δ − 1)θδ−2

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)
−

n

∑
i=1

xi + δ

1 + θ
,

∂l(θ, α, δ|x)
∂α

=
n

∑
i=1

3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)
− 3nα2

α3 + 1
,

and

∂l(θ, α, δ|x)
∂δ

=
n

∑
i=1

Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)) + Γ(xi + δ)θδ−1(log(θ) + ψ(xi + δ))

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

−n(log(1 + θ) + ψ(δ)),

where ψ(a) =
∂

∂a
logΓ(a) =

Γ
′
(a)

Γ(a)
. By setting the score functions equal to zero, the maximum

likelihood estimators of θ, α, and δ, abbreviated as θ̂MLE, α̂MLE, and δ̂MLE can be derived. These
systems of non-linear equations can be solved by a numerical method. Here, the solutions of the
parameter estimates will be obtained by using the optim function in the R package stats.

The asymptotic confidence intervals for the parameters θ, α, and δ are derived by the asymptotic
theory. The estimators are asymptotic three-variate normal with mean (θ, α, δ) and the observed
information matrix

I(θ, α, δ) =


−∂2l(θ, α, δ|x)

∂θ2 −∂2l(θ, α, δ|x)
∂θ∂α

−∂2l(θ, α, δ|x)
∂θ∂δ

−∂2l(θ, α, δ|x)
∂α∂θ

−∂2l(θ, α, δ|x)
∂α2 −∂2l(θ, α, δ|x)

∂α∂δ

−∂2l(θ, α, δ|x)
∂δ∂θ

−∂2l(θ, α, δ|x)
∂δ∂α

−∂2l(θ, α, δ|x)
∂δ2


at θ = θ̂MLE, α = α̂MLE, and δ = δ̂MLE, i.e. (θ̂MLE, α̂MLE, δ̂MLE) ∼ N3((θ, α, δ), I−1(θ, α, δ)). The
second order partial derivatives of the log-likelihood function are given in Appendix.

Therefore, a (1 − a)100% confidence interval for the parameters θ, α, and δ are given by

ˆθMLE ± za/2

√
Var( ˆθMLE), α̂MLE ± za/2

√
Var(α̂MLE), δ̂MLE ± za/2

√
Var(δ̂MLE),

wherein, the Var(θ̂MLE), Var(α̂MLE), and Var(δ̂MLE) are the variance of θ̂MLE, α̂MLE, and δ̂MLE,
respectively, and can be derived by diagonal elements of I−1(θ, α, δ) and za/2 is the critical value
at a level of significance.
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5. Monte Carlo simulation study and real-world application

This section is devoted to discuss the simulation study and the applicability of PMQLD.

5.1. Monte Carlo simulation study

Here, we examine the accuracy of the MLE method in the unknown parameter estimation of the
PMQLD with respect to sample size n. The second algorithm given in subsection 4.1 is used to
simulate the random variables from the PMQLD. The sample sizes are taken as 60, 100, 200, and
300, and the simulation study is repeated 1000 times. The study is designed as follows

(i) Simulate 1000 samples of size n.

(ii) Compute the maximum likelihood estimates for the 1000 samples, say (θ̂i, α̂i, δ̂i), i =
1, 2, ...1000.

(iii) Compute the average MLEs, biases, and mean square errors (MSEs) by using the following
equations

ŝ(n) = 1
1000 ∑1000

i=1 ŝi, biass(n) = 1
1000 ∑1000

i=1 (ŝi − s), and MSEs(n) = 1
1000 ∑1000

i=1 (ŝi − s)2,

for s = θ, α, δ, and n = 60, 100, 200, 300.

Tables 2 to 5 represent the average MLEs, biases, and MSEs (in parentheses) of θ, α, and δ for
different values of θ, α, and δ which are θ = 0.1, 0.3; α = 0.25, 0.50, 0.75; and δ = 2.50, 3.50, 4.50.
Note that the biases and MSEs decrease as n increases for all parameters. Then, MLE method
verifies the asymptotic property for all parameter estimates, and the parameters θ, α, and δ are
over estimated. Further, while the estimation of θ is good for small value of θ, the estimation
of α doses not show a good estimation for small value of α based on average biases and MSEs.
However, there is no particular pattern for estimation of δ.

Table 2: Performance of MLE method for the PMQLD(θ = 0.10, α = 0.50, δ)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

δ = 2.50
θ 0.1151 0.0152(0.0014) 0.1086 0.0086(0.0007) 0.1067 0.0067(0.0002) 0.1009 0.0009(0.0001)
α 0.7519 0.2519(0.0691) 0.7482 0.2482(0.0648) 0.7290 0.2290(0.0557) 0.7195 0.2195(0.0494)
δ 3.0685 0.5685(1.0107) 3.0545 0.5545 (0.9155) 2.8466 0.3466(0.3078) 2.8358 0.3358(0.2186)

δ = 3.50
θ 0.1101 0.0101(0.0010) 0.1051 0.0051(0.0006) 0.1044 0.0044(0.0002) 0.1029 0.0029(0.0001)
α 0.6733 0.1733(0.0348) 0.6662 0.1662(0.0317) 0.6684 0.1684(0.0300) 0.6509 0.1509(0.0259)
δ 3.8991 0.3991(0.9110) 3.8494 0.3494(0.8928) 3.6791 0.1791(0.2898) 3.6010 0.1010(0.0887)

δ = 4.50
θ 0.1087 0.0087(0.0009) 0.1054 0.0054(0.0006) 0.1037 0.0037(0.0002) 0.1029 0.0021(0.0001)
α 0.6299 0.1299(0.0213) 0.6268 0.1268(0.0191) 0.6217 0.1217(0.0161) 0.6192 0.1192(0.0156)
δ 4.8664 0.3664(1.3188) 4.7506 0.2506(1.1957) 4.6354 0.1354(0.3871) 4.5805 0.0805(0.0122)
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Table 3: Performance of MLE method for PMQLD(θ = 0.30, α = 0.50, δ)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

δ = 2.50
θ 0.3791 0.0790 (0.0242) 0.3635 0.0635(0.0215) 0.3378 0.0378 (0.0075) 0.3367 0.0367(0.0039)
α 0.8392 0.3392 (0.1199) 0.8243 0.3243(0.1109) 0.7956 0.2956 (0.0933) 0.7503 0.2503(0.0853)
δ 3.6229 1.1229(3.5560) 3.4672 0.9672(2.9115) 3.1876 0.6876(1.2228) 3.1509 0.6509 (0.7488)

δ = 3.50
θ 0.3839 0.0839 (0.0245) 0.3710 0.0710(0.0216) 0.3275 0.0275(0.0042) 0.3207 0.0207(0.0018)
α 0.7493 0.2493 (0.0698) 0.7215 0.2215(0.0543) 0.7170 0.2170(0.0487) 0.6983 0.1983(0.0457)
δ 4.3284 0.8284(2.5256) 4.1190 0.6190(1.9316) 3.7680 0.2680(0.4910) 3.7393 0.2393(0.2547)

δ = 4.50
θ 0.3638 0.0638 (0.0210) 0.3484 0.0484(0.0118) 0.3143 0.0143(0.0033) 0.3117 0.0117(0.0016)
α 0.6784 0.1784 (0.0373) 0.6703 0.1703(0.0330) 0.6658 0.1658(0.0299) 0.6578 0.1578(0.0277)
δ 5.1958 0.6958(3.0589) 4.9240 0.4240(2.0855) 4.6154 0.1154(0.6430) 4.6713 0.1713(0.2667)

Table 4: Performance of MLE method for PMQLD(θ = 0.10, α, δ = 2.50)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

α = 0.25
θ 0.1128 0.0128(0.0014) 0.1079 0.0079(0.0007) 0.1080 0.0080(0.0002) 0.1027 0.0027 (0.0001)
α 0.7109 0.4609(0.2184) 0.7034 0.4534(0.2088) 0.6957 0.4457(0.2000) 0.6804 0.4304 (0.1888)
δ 3.0685 0.5685(1.0447) 3.0085 0.5085(0.7195) 2.9490 0.4490(0.3138) 2.8473 0.3473 (0.1865)

α = 0.75
θ 0.1351 0.0351(0.0065) 0.1217 0.0217(0.0017) 0.1203 0.0203(0.0023) 0.1156 0.0156(0.0004)
α 0.8487 0.0987(0.0167) 0.8414 0.0914(0.0135) 0.8318 0.0818(0.0095) 0.8190 0.0690(0.0081)
δ 3.1905 0.6905(2.0102) 3.1765 0.6765(1.4733) 3.0104 0.5104(0.7818) 2.8781 0.3781(0.3592)

Table 5: Performance of MLE method for PMQLD(θ = 0.30, α, δ = 2.50)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

α = 0.25
θ 0.3998 0.0998(0.0329) 0.3805 0.0805(0.0240) 0.3482 0.0482(0.0060) 0.3336 0.0336(0.0030)
α 0.7823 0.5323(0.2928) 0.7795 0.5295(0.2873) 0.7611 0.5111(0.2636) 0.7437 0.4937(0.2508)
δ 3.5545 1.0545(2.7164) 3.4774 0.9774(2.2678) 3.1584 0.6584(0.7994) 3.0583 0.5583(0.5396)

α = 0.75
θ 0.3773 0.0773(0.0621) 0.3566 0.0566(0.0506) 0.3275 0.0275(0.0267) 0.3097 0.0097(0.0225)
α 0.8962 0.1462(0.0280) 0.8889 0.1389(0.0221) 0.8693 0.1193(0.0186) 0.8475 0.0975(0.0175)
δ 2.9598 0.4598(4.7991) 2.8278 0.3278(4.4320) 2.6089 0.1089(2.7618) 2.5723 0.0723(2.4811)

5.2. Real-world applications

In this subsection, we discuss the real-world applications of the proposed mixed Poisson distribu-
tion. Two data sets are considered to illustrate whether the proposed distribution is well fitted
compared to some other existing competing Poisson mixtures. The best-fitted distribution was
selected based on the negative log-likelihood (−2logL), Akaike Information Criterion (AIC), and
chi-square goodness of fit statistic. The unknown parameters of the models are estimated by
using the MLE method. Tables 6 and 7 summarize all these statistical measures for each data set,
and the standard errors of the parameter estimates are reported in parentheses.

The first data set contains the epileptic seizure counts (Chakraborty, 2010). The sample in-
dex dispersion (τ) of this data set is 1.867. Since τ value is greater than one, the distribution of
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this data set is clearly over-dispersed. Also, the skewness and excess kurtosis for this example are
1.239 and 1.680, respectively, which show that the distribution of the data set is positively skewed
and leptokurtic. This data set was used to fit the PMQLD, GD, NBD, PLD, GPLD, PQLD, and
PGLD. Table 6 presents the estimates of the parameters of distributions and the goodness of fit
test. Of all eight distributions, the PMQLD performs well based on the smallest AIC value of
1191.83 and the smallest chi-square value (χ2) of 2.93 (p-value=0.71).

The second data set represents the number of roots produced by 270 micro-propagated shoots of
the columnar apple cultivar Trajan (Ridout et al., 1998). This is a bimodal data set for which the
sample index dispersion, skewness, and excess kurtosis are 3.077, 0.182, and -1.056, respectively.
These values indicate that the distribution of the data set is extremely over-dispersed, mild
positively skewed, and platykurtic. This data set was also used to fit the same distributions
that we used for the first example. Table 7 summarizes the results of parameter estimations and
the goodness of fit test. The results show that the PMQLD having AIC=1350.20, χ2 = 11.75,
p-value=0.47 outperforms clearly than other distributions.

Figure 6 illustrates how the expected values of the proposed distribution adhere with the
observed value for the data sets. We can see that the observed values of the first and second data
sets are very close to the expected values of the PMQLD, and the observed values of the third
data set are very close to the expected values of the ZMPQLD.
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Figure 6: Performance of PMQLD for the real-data sets
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Table 6. Epileptic seizure counts
Counts Observed Expected

GD NBD PLD GPLD PQLD PGLD PMQLD
0 126 137.95 120.22 128.72 121.93 121.82 122.85 125.65
1 80 83.73 93.00 87.14 90.92 90.95 90.08 80.98
2 59 50.82 59.18 55.26 58.72 58.76 57.85 59.30
3 42 30.85 34.94 33.63 35.20 35.23 35.20 39.25
4 24 18.72 19.84 19.89 20.16 20.17 20.53 22.99
5 8 11.37 10.99 11.52 11.20 11.20 11.54 12.17
6 5 6.90 5.98 6.57 6.08 6.08 6.27 5.94
7 4 4.19 3.22 3.70 3.25 3.25 3.31 2.72
8 3 6.47 3.63 4.57 3.54 3.54 3.37 2.00

Total 351 351 351 351 351 351 351 351
θ̂ = 0.65 β̂ = 1.00 θ̂ = 0.97 θ̂ = 1.11 θ̂ = 1.12 θ̂ = 1.57 θ̂ = 2.70

(0.04) (0.19) (0.05) (0.13) (0.13) (0.66) (1.26)
α̂ = 1.55 α̂ = 2.76 α̂ = 0.38 α̂ = 1.49 α̂ = 0.82

MLE (0.28) (2.76) (0.33) (0.57) (0.07)
β̂ = 3.89 δ̂ = 5.89

(2.38) (2.83)
χ2 11.42 5.67 5.84 4.85 4.86 4.66 2.93

p-value 0.12 0.46 0.56 0.56 0.56 0.46 0.71
−2logL 1196.79 1189.88 1190.36 1188.96 1188.96 1188.54 1185.83

AIC 1198.79 1193.88 1192.36 1192.96 1192.96 1194.54 1191.83

Table 7. Number of roots
Counts Observed Expected

GD NBD PLD GPLD PQLD PGLD PMQLD
0 64 44.62 36.87 31.09 35.46 35.45 82.81 61.93
1 10 37.25 36.05 32.94 34.00 33.99 17.81 13.92
2 13 31.09 32.16 31.79 31.19 31.19 15.31 8.47
3 15 25.95 27.77 29.06 27.78 27.77 16.46 12.85
4 21 21.66 23.58 25.63 24.20 24.20 17.53 19.30
5 18 18.08 19.83 22.04 20.74 20.74 17.70 24.53
6 24 15.09 16.56 18.60 17.55 17.55 16.95 26.85
7 21 12.60 13.76 15.48 14.69 14.69 15.53 25.94
8 23 10.52 11.39 12.73 12.20 12.20 13.70 22.55
9 21 8.78 9.40 10.37 10.05 10.05 11.72 17.90
10 17 7.33 7.74 8.39 8.23 8.24 9.76 13.13
11 12 6.12 6.37 6.74 6.71 6.71 7.96 8.99
12 5 5.11 5.23 5.38 5.44 5.45 6.36 5.78
13 2 4.26 4.28 4.27 4.40 4.40 5.01 3.52
14 3 3.56 3.51 3.38 3.54 3.54 3.88 2.03

≥ 15 1 17.98 15.50 12.11 13.82 13.83 11.51 2.31
Total 270 270 270 270 270 270 270 270

θ̂ = 0.12 β̂ = 0.24 θ̂ = 0.35 θ̂ = 0.37 θ̂ = 0.32 θ̂ = 0.59 θ̂ = 4.23
(0.01) (0.03) (0.02) (0.03) (0.03) (0.08) (1.36)

α̂ = 1.21 α̂ = 0.47 α̂ = 0.68 α̂ = 0.22 α̂ = 0.73
MLE (0.16) (0.26) (0.27) (0.12) (0.04)

β̂ = 4.25 δ̂ = 29.34
(0.66) (9.28)

χ2 121.92 120.76 117.44 110.58 110.58 46.72 11.74
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.466
−2logL 1464.90 1462.63 1454.10 1451.45 1451.45 1384.21 1344.20

AIC 1466.90 1466.63 1456.10 1455.45 1455.45 1390.21 1350.20

6. Conclusion

This paper proposes an alternative mixed Poisson distribution to model the over-dispersed count
data. Explicit expressions of the pmf, hazard rate function, moments, mean, variance, skewness,
and kurtosis were derived for the proposed distribution. Its pmf possesses to be either unimodal
or bimodal, and hazard rate function presents monotonic increasing, decreasing, and bathtub
shapes. The kurtosis and the variance-to-mean ratio functions of the new distribution indicate that
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the distribution can capture various ranges of right tail weights as well as the index of dispersions.
Further, its structural properties show that the new distribution is much more flexible than its
predecessors, negative binomial, geometric, and Poisson-Lindley distributions. The maximum
likelihood method was employed to estimate the parameters of the distribution, and the observed
information matrix has also been derived. The proposed distribution and some other competing
Poisson mixtures have been fitted to two real-world data sets. The results show that the proposed
distribution could provide a better fit than a set of common Poisson mixtures considered in these
applications.
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Appendix: Elements of the observed information matrix, I(θ, α, δ) defined in subsection 4.2.1:

Let us define T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and T14 as follows

T1 = Γ(δ)Γ(xi + 1)α3(δ − 1)(1 + θ)δ−2 + Γ(xi + δ)(δ − 1)θδ−2,

T2 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ),

T3 = 3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1,

T4 =
Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)) + Γ(xi + δ)θδ−1(log(θ) + ψ(xi + δ)),

T5 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−3 + Γ(xi + δ)θδ−3,

T6 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−2 + Γ(xi + δ)θδ−2,

T7 = log(1 + θ)(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ))

T8 = (1 + θ)δ−1(Γ(δ)ψ1(δ) + (ψ(δ))2Γ(δ)) + Γ(δ)ψ(δ)(1 + θ)δ−1log(1 + θ),

T9 = Γ(xi + δ)θδ−1log(θ) + θδ−1Γ(xi + δ)ψ(xi + δ),

T10 = Γ(xi + δ)θδ−1ψ1(xi + δ),

T11 = Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)),

T12 = θδ−1Γ(xi + δ)ψ(xi + δ) + Γ(xi + δ)θδ−1log(θ),

T13 = Γ(δ)((1 + θ)δ−2 + log(1 + θ)(δ − 1)(1 + θ)δ−2) + (δ − 1)(1 + θ)δ−2Γ(δ)ψ(δ),

and

T14 = (log(θ) + ψ(xi + δ))Γ(xi + δ)(δ − 1)θδ−2.
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Then, the second order partial derivatives of the log-likelihood function are as follows

∂2l(θ, α, δ|x)
∂θ2 =

−n
θ2 +

n

∑
i=1

xi + δ

(1 + θ)2 +
n

∑
i=1

T2(δ − 1)(δ − 2)T5 − T1(δ − 1)T6

T2
2

,

∂2l(θ, α, δ|x)
∂α2 =

n

∑
i=1

T2(6αΓ(δ)Γ(xi + 1)(1 + θ)δ−1)− T3(3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1)

T2
2

− 3nα(2(α2 + 1)− 3α3)

(α3 + 1)2 ,

∂2l(θ, α, δ|x)
∂δ2 =

n

∑
i=1

T2(Γ(xi + 1)α3(T7 + T8) + (log(θ) + ψ(xi + δ))T9 + T10)− T4(T11 + T12)

T2
2

− nψ1(δ),

∂2l(θ, α, δ|x)
∂θ∂α

=
n

∑
i=1

T2(3α2Γ(δ)Γ(xi + 1)(δ − 1)(1 + θ)δ−1)− T1T3

T2
1

,

∂2l(θ, α, δ|x)
∂δ∂α

=
n

∑
i=1

T2(3α2Γ(xi + 1)(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)))− T4T3

T2
2

,

and

∂2l(θ, α, δ|x)
∂δ∂θ

=
n

∑
i=1

T2(Γ(xi + 1)α3T13 + Γ(xi + δ)θδ−2 + T14)− T4T1

T2
2

− n
1 + θ

,

where ψ1(s) is the trigamma function and defined as ψ1(s) =
d2

ds2 log(Γ(s)) =
n

∑
i=1

1
(s + k)2 .
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Abstract 
 
In this paper, we describe a novel technique for creating distributions based on logarithmic 
functions, which we referred the Log Exponentiated Transformation (LET). The LET technique is 
then applied to Rayleigh distributions, resulting in a new distribution known as the Log 
Exponentiated Rayleigh distribution (LERD). Several distributional properties of the formulated 
distribution have been discussed. The expressions for ageing properties have been derived and 
discussed explicitly. The behaviour of the pdf, cdf and hazard rate function has been illustrated 
through different graphs. The parameters are estimated through the technique of MLE. A 
simulation analysis was conducted to measure the effectiveness of all estimators. Eventually the 
versatility and the efficacy of the formulated distribution have been examined through real life 
data set. 
 
Keywords: Log Exponentiated Transformation, Rayleigh distribution, 
Moments, reliability measures, maximum likelihood function. 
 

                    Mathematics subject classification: 60-XX, 62-XX, 11-KXX.      
              
 
 

I. Introduction 
 
The adoption of an efficient statistical model is critical in a variety of practical analyses. This is 
especially inconvenient for specific data studies, because the typically employed distributional 
models are inadequate for producing a plausible fit. Several approaches, such as the generation of 
families of adaptable distributions, have been presented in recent times. Most of them attempt to 
increase the effectiveness of a baseline distribution by utilising diverse mathematical expansion 
approaches. As a result, the related models may incorporate some extra characteristics that provide 
sufficient flexibility to examine real-life data in many areas of study, such as reliability, survival 
analysis, computer science, finance, biological research, medicine, and so on. Academics have recently 
been concerned with developing new techniques for creating new families of distributions so that real 
data can be adequately analysed and explored. Among them are Marshall and Olkin [9], Eugene et 
al.[4] , Mudholkar et al. [11], Nadrajah and Kotz [12], Alzaatreh et al. [2], Mahdavi and Kundu [9], Ijaz 
et al. [8], Anwar Hassan et al.[3]. Based on the argumentation stated above, we suggest a novel family 
of distributions that adds versatility to the provided family and entitles it Log Exponentiated 
Transformation (LET). We give a thorough explanation of its fundamental mathematical 
characteristics, and subsequently employ the Rayleigh distribution as an application. 
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II. Log Exponentiated Transformation (LET) 
 
This section demonstrates a novel generating family of probability distributions termed as log 
Exponentiated transformation, abbreviated as LET. If is a continuous random variable, then the 
cumulative distribution function (cdf) of the log Exponentiated transformation is described as 

                                                                     

Where  denotes the cdf of baseline distribution and .  

The associated probability density function (pdf) is described as 

                                                               

The survival function , hazard rate function  and cumulative hazard rate function 
 are stated as respectively 

                    

                   

                 
 

III. Mixture Form 
 
This section provides an expression for the mixture form of the probability density function.  
Equation (2) can be written as 

                                                                                              

                                                                                                     

We know that , using it in equation (3), we have 

                 

After simplification, we obtain the mixture form of pdf as 

                                                                                         

 
IV. Log Exponentiated Rayleigh Distribution with properties 

 
The Rayleigh distribution, named after the Lord Rayleigh, is a continuous probability distribution. 
Due to its wide range of applications, researchers have extended Rayleigh distribution for instance 
Exponentiated Rayleigh distribution by Voda [13], Weibull-Rayleigh distribution by Faton Merovci et 
al.[5], transmuted generalized Rayleigh distribution by Faton Merovci [6], Topp-Leone Rayleigh 
distribution with application by Fatoki O [7] and inverse Weibull Rayleigh distribution by Aijaz et al. 
[1]. The probability density function (pdf) of Rayleigh distribution with scale parameter is defined 
by 
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The related cumulative distribution function (cdf) is given by 

                                                                                           
The cumulative distribution function (cdf) of the formulated distribution can be obtained by 
substituting the value of equation (6) in equation (1), which follows                                                                                       

                                                                         

The related probability density function is stated as   

                                                                          

Equation (8) may be stated in mixture form by substituting equations (5) and (6) in equation (4). 

             
                                                                                                                             

 

Since , using it in equation (9), we have 

       

                                                                                                                              

Where  

               

Figures (1.1), (1.2), (1.3), and (1.4) depict several probable pdf and cdf layouts of LERD for distinct 
parameter selections. 
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V. Mathematical Properties of LER Distribution 
 
I. Moments of LER Distribution 
 
Let suppose denotes random variable follows LERD. Then moment denoted by is given as 

                   
 

Using equation (10), we have 

                    

                          

Making substitution   , so that , we have
 

                 

After solving the integral, we get 

                

 
II. Moment Generating Function of LER Distribution 
 
Let be a random variable follows LERD. Then the moment generating function of the distribution 
denoted by  is given 
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Using Taylor’s series 

                            

                            

                            

                
 

 
III. Quantile Function of LER Distribution 
 

The quantile function of any distribution may be described as follows: 

                    
 Where  denotes the quantile function of  for .  

Let us suppose  

                                                                                                           

After simplifying equation , we obtain quantile function of LER distribution as 

                         

 
VI. Mean Deviation From Mean and Median of LE R Distribution 

 
The entirety of deviations is apparently a measure of amount of dispersion in a population. Let be a 
random variable from LER distribution with mean . Then the mean deviation from mean is defined 
as. 

                   
 

                                        

                                                                                                                                

Now  

             

Making substitution  so that , we have 
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After solving the integral, we have 

                                                                          

Substituting value of equation (7) and (13) in equation (12), we get 

                            

Let be a random variable from LER distribution with median . Then the mean deviation 
from median is defined as. 

                                                 

Now  

 

Making substitution  so that , we have 

                     

After solving the integral, we have 

                                                                         

Substituting value of equation (15) in equation (14), we get 

                                                                         

 
VII. Ageing Properties of LER Distribution 

 
Suppose be a continuous random variable with cdf , . Then its reliability function which 
is also known survival function is stated as 

                                      

Therefore, the survival function for LER distribution is given as 
                        

                                                                                                                                       

The hazard rate function of a random variable  is given as 
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Using equation (8) and (16) in equation (17), we have 

                   

 
Figures (1.5) and (1.6) depict several probable hazard rate function layouts of LERD for distinct 
parameter selections. 

 
 
The cumulative hazard rate function of a continuous random variable is defined as 

                                                                                                                                                                               
Using equation (16) in equation (18), we obtain the cumulative hazard rate function of LER 
distribution 

                   

 
VIII. Renyi Entropy of LER Distribution 

 
If denotes a continuous random variable having probability density function . Then Renyi 
entropy is stated as 

                     , where  and   

Thus, the Renyi entropy of LER distribution is given as 
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Since , using it in equation (19), we have                    

                       

                                 

Using equation (5) and (6), we have 

              
       

Since , using it in equation (20), we have                    

                        
  

                                   
Where 

                      
 

Making substitution  so that , we have 

                   
  

After solving the integral, we get 

                    
  

 
IX. Maximum Likelihood Estimation of LER Distribution  

 
Let be a random sample of size n from LERD then its likelihood function is given by 

                        

 

                                  

The log likelihood function is given as   
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Differentiate equation (21), partially with respect parameters, we have 

              
                                

                                               

The equations (22) and (23) are non-linear equations and hence cannot be expressed in compact form. 
Therefore to solve these equations explicitly for and  is difficult. So we can apply iterative methods 
such as Newton–Raphson method, secant method, Regula-falsi method etc. The MLE of the 
parameters denoted as of can be obtained by using the above methods. 
 
For interval estimation and hypothesis tests on the model parameters, an information matrix is 
required. The 2 by 2 observed matrix is 

 

 
The elements of above information matrix can obtain by differentiating equations and  again 
partially. Under standard regularity conditions when the distribution of can be 

approximated by a multivariate normal  distribution to construct approximate confidence 
interval for the parameters. 
Hence the approximate  confidence interval for and are respectively given by 

 and  

Where denotes the  percentile of the standard normal distribution. 

X. Simulation Analyses 
 
In this segment, a Monte Carlo simulation analysis was performed using R software to evaluate the 
consistency of the MLE's. This analysis was performed 500 times using sample sizes of n=30, 50, 150, 
250,350 and 450 and various parameter combinations (0.5, 0.7) and (0.7, 0.5) created from LERD. In 
each case, the bias, variance, and mean square errors (MSEs) were calculated. Table 10.1 shows the 
simulation findings. In particular, we see that, pursuant to the theory, the MSEs and bias decrease as 
sample size increases.  
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Table 1: Average bias, variance and MSEs of 500 simulations of LERD for different parameter combinations. 

Sample  
Size n 

parameters   

Bias  Variance  MSE Bias  Variance  MSE 
30  0.04106 0.01906 0.02075 0.06495 0.04404 0.04826 

 0.08050 0.05995 0.06643 0.04658 0.02140 0.02357 
50  0.01797 0.00826 0.00858 0.03166 0.02274 0.02375 

 0.03925 0.02402 0.02556 0.02152 0.01128 0.01175 
150  0.01085 0.00321 0.00333 0.01693 0.00608 0.00637 

 0.01481 0.00729 0.00751 0.01100 0.00305 0.00317 
250  0.00280 0.00186 0.00187 0.00456 0.00366 0.00368 

 0.00702 0.00401 0.00406 0.00280 0.00169 0.00170 
350  0.00219 0.00102 0.00102 0.00461 0.00271 0.00273 

 0.00175 0.00232 0.00232 0.00296 0.00123 0.00124 
450  0.00309 0.00088 0.00089 -0.0002 0.00200 0.00200 

 0.00311 0.00222 0.00223 0.00188 0.00102 0.00103 
 

XI. Data Analysis 
 
This section assesses the effectiveness of the stated distribution using real-world data. We fitted the 
LER distribution to many other models for comparative purposes, including Weibull distribution 
(WD), Exponentiated exponential distribution (EED), Frechet distribution (FD), inverse Burr 
distribution (IBD), Rayleigh distribution (RD) and exponential distribution (EXD). 
 
We will use certain measures to evaluate which of the competitive models is the strongest, including 
AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian 
Information Criterion) and HQIC (Hannan-Quinn Information Criterion). Such criteria can be 
represented mathematically by 

         

  and  
 
We compute Anderson-Darling (A*), Cramer-Von Misses (W*), Kolmogorov-Smirnov Statistic, and P-
value in addition to the aforementioned goodness of measures. The model with the lowest value of 
these indicators and the greatest p-value is considered the best among the competing models. 
 
Data Set: The data set was originally reported by Bader and Priest (1982), on failure stresses (in GPa) 
of 65 single carbon fibres of lengths 50 mm, respectively. The data set is given as follows

 1.339,1.434,1.549,1.574,1.589,1.613,1.746,1.753,1.764,1.807,1.812,1.84,1.852,1.852,1.862,1.864,1.931,1.952,1

.974,2.019,2.051,2.055,2.058,2.088,2.125,2.162,2.171,2.172,2.18,2.194,2.211,2.27,2.272,2.28,2.299,2.308,2.33

5,2.349,2.356,2.386,2.39,2.41,2.43,2.458,2.471,2.497,2.514,2.558,2.577,2.593,2.601,2.604,2.62,2.633,2.67,2.68

2,2.699,2.705,2.735,2.785,3.02,3.042, 3.116, 3.174.
 

 
Table 2: The descriptive statistics 
for data set 

 
 

 
 

7.0,5.0 == qa 5.0,7.0 == qa

a
q
a
q
a
q
a
q
a
q
a
q

lkAIC ln22 -= l
kn
knCAIC ln2
1

2
-

--
=

lnkBIC ln2ln -= ( )( ) lnkHQIC ln2lnln2 -=

Min  Q1 Med. Mean  Q3 Kurt.  Skew. Max  
1.339 1.914 2.271 2.241 2.563 2.5270 0.0419 3.174 
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Table 3: The ML Estimates (standard error in parenthesis) 

for data set 
 
 
 
 
 

 
 

 
 

 
 
 

Table 4: Comparison criterion and goodness of fit statistics for data set 
 
 

            
 
 

 
 

 
 
 
 
 
 

Table 5:  Other goodness of fit statistics criterion for data set  

 
                                                           
 

Model  ML Estimates Standard 
Error 

    
LERD 1.3473 12.660 0.1356 3.7652 
WD 0.0059 5.8363 0.0022 0.4026 
EED 2.3310 115.52 0.2045 46.011 
FD 1.9940 4.9923 0.0530 0.4439 
RD 0.3849 …… 0.0481 …… 
IBD 5.0822 34.299 0.4311 9.5300 
EXD 0.4462 ……. 0.0557 …… 

Model   AIC CAIC BIC HQIC 

LERD 69.712 73.712 73.909 78.030 75.413 

WD 70.756 74.756 74.952 79.073 76.457 

EED 76.657 80.657 80.853 84.974 82.358 

FD 86.443 90.443 90.642 94.761 92.144 

RD 149.168 151.16 151.23 153.32 152.01 

IBD 85.506 89.506 89.702 93.824 91.207 

EXD 231.29 233.29 233.35 235.45 234.14 

Model W* A* K-S value p-value 

LERD 0.04714 0.2987 0.0670 0.9357 

WD 0.0590 0.3836 0.0787 0.9181 

EED 0.1173 0.7114 0.1006 0.5363 

FD 0.2547 1.5484 0.1221 0.2949 

RD 0.0834 0.3266 0.3501 3.054e-07 

IBD 0.2428 1.4748 0.1186 0.3288 

EXD 0.04735 0.3986 0.4677 1.374e-12 

â q̂ â q̂

llog2-
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XII. Conclusions  
 
In this study, a novel technique known as log exponentiated transformation (LET) is suggested. As an 
illustration, the Rayleigh distribution is employed as the baseline distribution, and a novel two-
parameter log exponentiated Rayleigh distribution (LERD) which proved more flexible has been 
studied. Several mathematical aspects of the newly developed distribution are deduced and analysed. 
The MLE approach is used to acquire the parameters. From table 8.3 and 8.6 it is evident that the 
formulated distribution outranks than compared ones. 
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Abstract

The Lomax or Pareto Type II distribution has a wide range of applications in many areas including
reliability and life testing. In this paper, we modify the Lomax distribution using KM transformation to
enhance the applicability of the Lomax distribution. The distribution introduced using KM transformation
is parsimonious in parameter. Substituting the cumulative distribution function (cdf) of the Lomax
distribution in KM transformation provides a new modified Lomax distribution. The behavior of hazard
rate function is studied graphically and also theoretically using Glacer method. Its analytical properties
are derived and parameters are estimated using maximum likelihood estimation method. We consider two
real data sets to show the flexibility of the proposed model. The model proposed in this paper provides a
better fit to the data sets compared to other well-known distributions given in this study.

Keywords: Parsimonious model Lifetime KM transformation Lomax distribution Decreasing
failure rate.

1. Introduction

The Lomax distribution has wide applications in many fields like economics, actuarial science,
and so on. The Lomax distribution is also called Pareto Type II distribution. The distribution was
introduced by Lomax [13] and it is a heavy-tailed distribution. It has also been useful in reliability
and life testing problems in engineering and survival analysis as an alternative distribution
[[9], [11]]. The Lomax distribution shows decreasing failure rate. Modified and extended
versions of the Lomax distribution have been studied; examples include the weighted Lomax
distribution [11], exponential Lomax distribution [7], exponentiated Lomax distribution [19],
gamma Lomax distribution [5], transmuted Lomax distribution [3], Poisson Lomax distribution [2],
McDonald Lomax distribution [12], Weibull Lomax distribution [21], power Lomax distribution
[18], Kumaraswamy-Generalized Lomax distribution [20], Gompertz-Lomax distribution [16],
and DUS-Lomax distribution [6]. Besides, estimation of the parameters of Lomax distribution
under general progressive censoring has been considered by Al-Zahrani and Al-Sobhi [1].

The principal objective of the study is to introduce a modified Lomax distribution which is
parsimonious in parameter and enhance the application of the Lomax distribution in reliability
theory and survival analysis. We try to improve the properties of the Lomax distribution as a
useful lifetime model.

We organize the paper as follows: In Section 2, we introduce a new life distribution using
the Lomax distribution as the baseline distribution in the KM transformation. We then discuss
the analytical characteristics of the new distribution in Section 3. In Section 4, we establish the
ordering of the new distribution. In section 5, the parametric estimation for the new distribution
is studied. We carry out an analysis using a real-life data set to illustrate the model’s flexibility in
Section 6. In section 7, we summarize the conclusions and outline our future works.
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Figure 1: Probability density plot

2. The modified Lomax model

In this paper we have modified the Lomax distribution with cumulative distribution function
(cdf)

G(x) = 1 − (1 + βx)−α, x > 0, α, β > 0, (1)

using KM (Kavya and Manoharan) transformation introduced by Kavya and Manoharan [10].
Let X be a random variable with cdf G(x) and probability density function (pdf) g(x) of some
baseline distribution. Then the cdf F(x) of new distribution is defined as,

F(x) =
e

e − 1
[1 − e−G(x)]. (2)

Here we introduce a new distribution by substituting the cdf of Lomax distribution (1) in (2).
The cdf and pdf of the new distribution are respectively obtained as

F(x) =
e

e − 1
[1 − e−(1−(1+βx)−α)], x > 0, α, β > 0, (3)

f (x) =
αβ(1 + βx)−(α+1)e(1+βx)−α

e − 1
, x > 0, α, β > 0, (4)

(5)

The graphical representation of pdf is given in Fig. 1 for different values of parameters. In the
whole paper we used the software MATHEMATICA [23] for plotting the graphs.

3. Hazard rate function of the model

The hazard function is defined as

h(x) =
f (x)

1 − F(x)
(6)

The hazard function of the proposed model is obtained as

h(x) =
αβ(1 + βx)−(α+1)e(1+βx)−α

e(1+βx)−α − 1
(7)

The shape of the hazard rate function is given in Fig. 2.
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Figure 2: Hazard rate plot

3.1. Theoretical explanation of the shape of the hazard rate function

We follow Glaser [8] for theoretical explanation of the shape of the hazard rate. Suppose f (t) is
the pdf of some distribution and f ′(t) is the first derivative of f (t). Then

ν(t) =
− f ′(t)

f (t)

For our proposed distribution

ν(x) = β
[
α + (α + 1)(1 + βx)−1

]
and

ν′(x) = −β2(α + 1)(1 + βx)−2 (8)

based on Glaser [8] we get a result from Equation (8):
ν′(x) < 0 for all x > 0 when α ≥ 0. Then the distribution has decreasing failure rate (DFR).

4. Some analytical characteristics

Here we discuss some of the analytical characteristics of our proposed distribution.

4.1. Moments

The moments of a random variable, if they exist, are useful for estimating measures of central
tendency, dispersion, and shapes. The rth raw moments of the proposed distribution is

E(Xr) =
αβ

e − 1

∫ ∞

0
xr(1 + βx)−(α+1)e(1+βx)−α

dx.

After transformation, we get,

E(Xr) =
1

βr(e − 1)

∫ 1

0
(1 − u

1
α )ru− r

α eudu,

applying binomial expansion, then

E(Xr) =
1

βr(e − 1)

∞

∑
i=0

(−1)i
(

r
i

) ∫ 1

0
u

1
α (i−r)eudu.
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Expanding exponential term, and we get the rth raw moment as

E(Xr) =
1

βr(e − 1)

∞

∑
i=0

(−1)i

j!

(
r
i

)
α

αj + α − r + i
.

4.2. Moment generating function

The moment generating function of the proposed distribution is

MX(t) =
α

(e − 1)

∞

∑
m=0

∞

∑
n=0

1
m! n!

tm

βm
(nα + α − 2)!

(n + α)!
(9)

4.3. Characteristic function

The characteristic function of the proposed distribution is obtained as

ϕX(t) =
α

(e − 1)

∞

∑
m=0

∞

∑
n=0

1
m! n!

(it)m

βm
(nα + α − 2)!

(n + α)!
(10)

where i =
√
−1.

4.4. Quantile function

The quantile function is useful when generating random observations from a distribution. It can
also be utilized in estimating measures of shapes (skewness and kurtosis) when the moments
of the random variable do not exist. The pth quantile function of the proposed distribution is
obtained as

Q(p) =
1
β

[(
1 + log(1 − p(e − 1)

e
)

) 1
α

− 1

]
(11)

We can easily find the first, second and third quartile functions after substituting p = 1
4 , 1

2 , and 3
4

in Equation (11).

4.5. Order statistic

Order statistics are important for estimating summary statistics such as the minimum, maximum,
and range of a data set. They are also used in quality control testing and reliability to forecast
failure of future items based on the times of few early failures. Let X1, X2, · · · , Xn be a random
sample of size n from the proposed distribution and X(1), X(2), · · · , X(n) denote the corresponding
order statistics. The pdf of the rth order statistic fr(x) is given by

fr(x) =
n!

(r − 1)!(n − r)!
Fr−1(x)[1 − F(x)]n−r f (x),

and the pdf of the rth order statistic of our proposed model is obtained as

fr(x) =
n!

(r − 1)!(n − r)!
αβ

(e − 1)n

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+j

j!k!

(
(r − 1)

j

)
[i(1 − (1 + βx)−α)]j(1 + βx)−(αk+α+1)

(
e(1+βx)−α − 1

)n−r
(12)

Substitute r = 1 and r = n in Equation (12), we get the pdf of the smallest and the largest order
statistics respectively.
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The cdf of the rth order statistic is

Fr(x) =
n

∑
j=r

(
n
j

)
Fj(x)[1 − F(x)]n−j,

and the cdf Fr(x) of rth order statistic of the new distribution is obtained by using the Equation
(3) as,

Fr(x) =
n

∑
j=r

(
n
j

)
ej

(e − 1)n

∞

∑
i=0

∞

∑
k=0

(−1)i+k

k!

(
j
i

)
[j(1 − (1 + βx)−α)]k

(
e(1+βx)−α − 1

)n−j
. (13)

The cdf of X(1) and X(n) are obtained by putting r = 1 and r = n respectively in Equation (13).

5. Ordering

Stochastic ordering of positive continuous random variables is an important tool for judging the
comparative behavior. There are different types of stochastic orderings that are useful in ordering
random variables in terms of different properties. Here we consider four different stochastic
orders, namely, the usual, the hazard rate, the mean residual life, and likelihood ratio order for
KM-Lomax random variables. If X and Y are two random variables with cumulative distribution
functions FX and FY, respectively, then X is said to be smaller than Y in the

• stochastic order (X ≤st Y) if FX(x) ≥ FY(x) for all x

• hazard rate order (X ≤hr Y) if hX(x) ≥ hY(x) for all x

• mean residual life order (X ≤mrl Y) if mX(x) ≥ mY(x) for all x

• likelihood ratio order (X ≤lr Y) if fX(x)
fY(x) decreases in x

The implication between the ordering is X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y ⇒ X ≤st Y. The
KM-Lomax distribution is ordered with respect to the strongest "likelihood ratio" ordering as
shown in the following theorem. It shows the flexibility of the proposed distribution.

Theorem 1. Let X ∼ KML(α1, β1) and Y ∼ KML(α2, β2) if α1 = α2 = α and β1 ≥ β2 and if
β1 = β2 = β and α1 ≥ α2, then X ≤lr Y, X ≤hr Y, X ≤mrl Y and X ≤st Y.

Proof. The likelihood ratio is

fX(x)
fY(x)

=
α1β1(1 + β1x)−(α1+1)e(1+β1x)−α1

α2β2(1 + β2x)−(α2+1)e(1+β2x)−α2
(14)

and

log
fX(x)
fY(x)

= log α1 + log β1 − (α1 + 1) log(1 + β1x) + (1 + β1x)−α1

− log α2 − log β2 + (α2 + 1) log(1 + β2x)− (1 + β2x)−α2

thus,

d
dx

log
fX(x)
fY(x)

=− (α1 + 1)
β1

1 + β1x
− α1β1(1 + β1x)−(α1+1) (15)

+ (α2 + 1)
β2

1 + β2x
+ α2β2(1 + β2x)−(α2+1)

1. Case I: α1 = α2 = α, β1 ≥ β2
d

dx log fX(x)
fY(x) ≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y.

2. Case II: β1 = β2 = β, α1 ≥ α2
d

dx log fX(x)
fY(x) ≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y.

■
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6. Estimation of the parameters of the model

In this section we estimate the parameters involved in the distribution using maximum likelihood
estimation method. This is one of the most popular methods used for estimation. The likelihood
function is defined as,

L(x; λ) =
n

∏
i=1

f (xi, λ)

In our distribution,

L(x; α, β) =

(
αβ

e − 1

)n n

∏
i=0

(1 + βxi)
−(α+1)e∑n

i=0(1+βxi)
−α

.

The log-likelihood function of the distribution is given by,

log L(x; α, β) = −n log(e − 1) + n log α + n log β − (α + 1)
n

∑
i=1

log(1 + βxi) +
n

∑
i=1

(1 + βxi)
−α.

We proceed as follows. First we find partial derivatives of the log-likelihood function with respect
to the parameters α and β. The partial derivatives are

∂ log L
∂α

=
n
α
−

n

∑
i=1

log(1 + βxi) +
n

∑
i=1

log(1 + βxi)
−α log(1 + βxi),

and

∂ log L
∂β

=
n
β
− (α + 1)

n

∑
i=1

xi
1 + βxi

− α
n

∑
i=1

xi(1 + βxi)
−(α+1).

Two non-linear equations can be obtained by equating these partial derivatives to zero, the
solutions for which provide the maximum likelihood estimates of the parameters. The Newton-
Raphson method can be used to solve this equation with the help of the available statistical
packages. We use R [17] language for finding the numerical solution of the non-linear system of
equations.

7. Application

In this section we are showing the flexibility of the proposed distribution using two real-life data
sets. The first data set is the uncensored data set corresponding to intervals in days between 109
successive coal-mining disasters in Great Britain, for the period 1875-1951, published by Maguire
et al. [15] and the data set is given in Table 1. The second data set is of Wheaton River obtained
from Choulakian and Stephens [4] and presented in Table 2.

We use AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), HQC
(Hannan-Quinn Information Criterion) and K-S (Kolmogorov-Smirnov) test value for the compar-
ison. The distribution which shows minimum AIC, BIC, HQC and K-S test value is the sign of a
better fit for the data set. The AIC, BIC and HQC are defined as

AIC = −2 log(L̂) + 2m,

BIC = −2 log(L̂) + m log(n),

and

HQC = −2 log(L̂) + 2m log(log(n)),

where n is the sample size, m is the number of parameters, and L̂ is the maximum value of
the likelihood function for the considered distribution. Here R [17] language is used for all the
computation. We compare the proposed distribution with the following distributions,
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Table 1: Flood Level Data.

1 4 4 7 11 13 15 15 17 18 19 19
20 20 22 23 28 29 31 32 36 37 47 48
49 50 54 54 55 59 59 61 61 66 72 72
75 78 78 81 93 96 99 108 113 114 120 120
120 123 124 129 131 137 145 151 156 171 176 182
188 189 195 203 208 215 217 217 217 224 228 233
255 271 275 275 275 286 291 312 312 312 315 326
326 329 330 336 338 345 348 354 361 364 369 378
390 457 467 498 517 566 644 745 871 1312 1357 1613

1630

Table 2: Wheaton River Data.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0
12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1
2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0
7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1
0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8

13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5
2.5 27.0

1. DUS-Lomax distribution Deepthi and Chacko [6] with cdf,

F(x) =
1

(e − 1)

[
e(1−(1+θx)−α) − 1

]
, x > 0, α, θ > 0

2. Lomax distribution Lomax [13] with cdf,

F(x) = 1 − (1 + θx)−α, x > 0, α, θ > 0

3. KM-Exponential (KME) distribution Kavya and Manoharan [10] with cdf,

F(x) =
e

e − 1
[1 − e−(1−e−λx)], x > 0, λ > 0

4. KM-Weibul (KMW) distribution Kavya and Manoharan [10] with cdf,

F(x) =
e

e − 1
[1 − e−(1−e−(xβ)α )], x > 0, α, β > 0

5. Weibull distribution Weibull [22] with cdf,

F(x) = 1 − e−(βx)α
, x > 0, α, β > 0

The values of AIC, BIC, HQC and K-S test for distributions based on the first data set are
given in Table 3.

From Table 2, we can see that the new model shows the lowest AIC, BIC and HQC values
among all the distributions considered here. The K-S test value of Lomax distribution is smaller
than KM-Lomax distribution. In general we can say that our proposed model shows better fit to
the data compared to other distributions given in this study. The plot of empirical cdf along with
other cdf of the distributions for the first data set is given in Fig. 3. for a better understanding of

M. Manoharan, P. Kavya
A NEW RELIABILITY MODEL AND APPLICATIONS

RT&A No 1 (67)
Volume 17, March 2022

71



Empirical

KM - Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(a)

Empirical

Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(b)

Empirical

DUS-Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(c)

Empirical

KME

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(d)

Empirical

KMW

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(e)

Empirical

Weibull

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(f)

Figure 3: Comparison plot for the first data set.

the result. Compared to the distributions mentioned in Mahdavi [14] for this particular data set,
the proposed model gives better result.

The comparison table of the considered models for the second data set is given in Table 4.
Based on the AIC, BIC and HQC values, we can conclude that the proposed model gives

the best fit to the data set compared to other Lomax, KM family and Weibull distributions
considered here. The K-S test value of the KMW distribution is slightly lower than the KM-Lomax
distribution. The empirical and fitted cdf plot of distributions considered for the comparison for
the second data set is given in Fig. 4.
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Figure 4: Comparison plot for the second data set.

8. Conclusions

In the present work, we introduce a new modified Lomax distribution using KM transformation.
The main advantage of the new model is that which is parsimonious in parameter. So we can
use the model more conveniently. The behavior of the hazard rate function is studied and the
shape of the hazard function is shown both graphically and theoretically. Some of properties of
the new model like moments, mgf, characteristic function, quantile function and order statistics
are derived. stochastic ordering of the KM Lomax distribution is discussed and established the
condition for the stronger mode of ordering viz likelihood ratio. We consider two real data sets to

M. Manoharan, P. Kavya
A NEW RELIABILITY MODEL AND APPLICATIONS

RT&A No 1 (67)
Volume 17, March 2022

73



Table 3: Maximum likelihood (ML) estimates, K-S test value, AIC, BIC, and HQC of the fitted models.

Model ML estimates K-S value AIC BIC HQC
KM-Lomax α̂ = 9.4097, β̂ = 0.0004 0.0720 1040.647 1046.03 1042.83
DUS-Lomax α̂ = 9.4008, θ̂ = 0.0004 0.2703 1187.936 1193.319 1190.119

Lomax α̂ = 4.9251, θ̂ = 0.0011 0.0642 1405.426 1410.809 1407.609
KME λ̂ = 0.0033 0.0761 1404.864 1407.555 1405.955
KMW α̂ = 0.9685, β̂ = 0.0033 0.0772 1406.654 1412.037 1408.837

Weibull α̂ = 0.8848, β̂ = 0.0046 0.0784 1407.545 1412.927 1409.728

Table 4: Maximum likelihood (ML) estimates, K-S test value, AIC, BIC, and HQC of the fitted models.

Model ML estimates K-S value AIC BIC HQC
KM-Lomax α̂ = 243.7254, β̂ = 0.000258 0.11 286.6547 291.2081 288.4674
DUS-Lomax α̂ = 251.4388, θ̂ = 0.00025 0.24 364.0633 368.6166 365.876

Lomax α̂ = 80.7719, θ̂ = 0.00102 0.14 508.2621 512.8155 510.0748
KME λ̂ = 0.0632 0.11 506.025 508.3017 506.9313
KMW α̂ = 0.9722, β̂ = 0.0633 0.10 507.9317 512.4851 509.7444

Weibull α̂ = 0.9012, β̂ = 0.08597 0.11 506.9973 511.5506 508.81

show the suitability of the model. The proposed model shows better fit to the data sets compared
to other models in the literature. We can conclude that the proposed model can be used as a
useful lifetime model for decreasing failure rate.
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Abstract

In burn-in analysis, models with a bathtub-shaped hazard rate and a bimodal density function are
inevitable.This work focusses on a new five parameter distribution called Burr III Modified Weibull
distribution which can be used to design burn-in procedures and preventative maintenance for incurable
devices. The statistical properties such as quantile function, hazard rate function and order statistics have
been discussed.The model parameters are estimated using the maximum likelihood estimation technique,
and the performance of the proposed model is evaluated using the simulation technique. Finally, a real
data set is presented to demonstrate the model’s utility and its application in the burn-in process.

Keywords: Burr III distribution, Modified Weibull distribution, maximum likelihood estimation.

1. Introduction

In lifetime analysis, one is often interested to know about the reasons for the failure of a system
or component. The different ways through which a system or product may fail is known as
competing risk. Some normal reasons for the failures are material defects, imperfection of
manufacturing process, wear out processes etc. Here comes the importance of burn-in process in
reliability. Burn-in is an important technique for detecting and eliminating early fault, thereby
increasing system reliability. It is used to find the defective units before they reach the customers.
Items that survive burn-in period ensure the product quality. Burn-in must have a high failure
rate in the early stages of life in order to be successful. This characteristic is mainly found
in a class of life time distributions with bathtub-shaped failure rates. In the modelling of the
lifetime of a system, distributions with bathtub-shaped failure rates are preferred. The bathtub
curve has three phases: an infant mortality phase (decreasing failure rate), a normal life phase
(constant failure rate), and a wear-out phase ( increasing failure rate). The necessary condition
in distribution of lifetime of system is bathtub hazard rate and sufficient condition is bimodal
density function. That is, a model with bathtub hazard rate function and a bimodal density
function allows designing burn-in procedures and preventive maintenance of malfunctioning
devices. The goal of this study is to create a new reliability distribution that meets both the
necessary and sufficient conditions of the lifetime of system. The important works related to this
are reliability enhancement through optimal burn-in by Way K [22], a new model in relation to
burn-in of components and its consequences are discussed by Mϕltoft [8] , the burn-in problems
by Lawrence [12] and Chandrasekaran [5]. Park [17] learned about the impact of burn-in on the
average residual life.

In reliability analysis, lifetime distriburions has an importance because of its ability to explain
the nature of data and its properties. For analysing lifetime data, one often consider Weibull
distribution. But one of the disadvantage of Weibull distribution is that it possess only monotone
hazard rates not non-monotone hazard rates. Hence it cannot be used in the case of lifetime
data possessing bathtub hazard rates. To overcome this problem, several new models were
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proposed such as three parameter modified Weibull distribution introduced by Lai et al. [11],
a four-parameter generalisation of the Weibull distribution that can simulate a bathtubshaped
hazard rate function by Carrasco et al. [4], a modification is given to weibull distribution which
exhibit non monotone behavior by Sarhan et al. [19], beta modified Weibull distribution in-
troduced by Silva et al. [20], extended flexible Weibull distribution by Bebbington et.al. [1].
Khan [15] introduced another flexible distribution called modified beta Weibull distribution etc.
Among which modified Weibull proposed by Lai et al. [11] seems to be more flexible than other
proposed ones. Another important life time distribution that we consider in our study is Burr
III distribution. In 1942, Burr introduced twelve types of cumulative distribution function based
on the Pearson system of distributions among which Burr XII and Burr III are commonly used.
The Burr type III distribution is used in a variety of domains, including survival and reliability
research, forestry, and environmental studies etc. BurrIII is the inverse of BurrXII distribution.
Burr III distribution is also known as dagum distribution studies on the wealth of distribition
[6] and as kappa distribution in the meteorological literature [14]. Many modification of Burr III
have been already intoduced such as Burr and Cislak [3], Johnson et al. [9] etc. This distribution
has a wide range of applications in statistical modelling, including forestry by Gove et al. [7],
meteorological field Mielke [14] and actuarial literature Kleiber [10] etc.

Using the concept of competing risk model, a new five parameter distribution called Burr III
Modified Weibull (BIIIMW) is proposed in this paper. If we model lifetime of units subjecting
to two risk as series system, then the life time of the observed unit is the minimum of the
individual potential lifetimes associated with each risk (see [23]). That is the realibility function
of the BIIIMW model is the product of the reliability function of Burr III and Modified Weibull
distribution. This model exhibits both bathtub hazard function and bimodal density function,
which are commonly present when dealing with survival and lifetime data, and it can also be
utilised in burn-in procedures.

The cumulative distribution function (cdf) of the modified Weibull (MW) distribution proposed
by Lai is given by,

FMW(x; α, β, λ) = 1 − e−αxβeλx
; x ≥ 0, α > 0, β > 0, λ ≥ 0. (1)

where α is the scale parameter, β is the shape parameter and λ is the accelerating factor in the
time of imperfection and a factor of fragility in the individual’s survival as time increases. The
cumulative distribution (cdf) of the Burr III distribution is given by,

GB(x; c, k) = (1 + x−c)−k; x ≥ 0, k > 0, c > 0. (2)

where c and k are shape parameters.

2. Proposed Distribution

The concept of competing risk model is used to create the new Burr III Modified Weibull
distribution (BIIIMW). Realibility function of the model is the product of reliability functions
of Burr III and Modified Weibull distributions. The realibility function, cumulative distribution
function and probability density function of the Burr III modified Weibull distribution (BIIIMW)
are respectively given by,

r(x, c, k, α, β, λ) = e−αxβeλx
(

1 −
(
1 + x−c)−k

)
x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0,

F(x, c, k, α, β, λ) = 1 − e−αxβeλx
(

1 −
(
1 + x−c)−k

)
, x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0

(3)
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and

f (x, c, k, α, β, λ) =


e−αxβeλx

[
ckx−c−1 (1 + x−c)

−k−1
+

(
1 − (1 + x−c)

−k
)

αxβ−1eλx(β + λx)
]

,

for x ≥ 0, c > 0, k > 0, α > 0, β > 0, λ ≥ 0.
0, otherwise.

(4)
Where α is the scale parameter. β, c, k are the shape parameters and λ is the accelerating factor in
the imperfection time and a factor of fragility increases.
Plot of the density function of BIIIMW distribution is given in Figure 1. The figures shows that

Figure 1: Probability density functions of the BIIIMW distribution for different parameteric values.

the the BIIIMW distribution can be decresing, positively skewed, negatively skewed, unimodal
and bimodal for selected values of parameters.

The particular case of the BIIIMW distribution is included in Table 1.

Table 1: Special cases of BIIIMW distribution

Parameters Distribution
α = 0 BurrIII

c=1, α = 0 Inverse Lomax
λ = 0 BurrIII-Weibull

λ = 0, β = 1 BurrIII-Exponential
λ = 0, β = 2 BurrIII-Rayleigh

c=1 Inverse Lomax-Modified Weibull
c=1, λ=0, β=1 Inverse Lomax-Exponential
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3. Reliability Analysis

The hazard and reverse hazard function of the BIIIMW distribution is obtained respectively, as
follows

h(x) =
ckx−c−1 (1 + x−c)

−k−1
+

(
1 − (1 + x−c)

−k
)

αxβ−1eλx(β + λx)(
1 − (1 + x−c)−k

) (5)

and

t(x) =
e−αxβeλx

[ckx−c−1 (1 + x−c)
−k−1

+
(

1 − (1 + x−c)
−k

)
αxβ−1eλx(β + λx)]

1 −
[
e−αxβeλx

(
1 − (1 + x−c)−k

)] . (6)

Plot of the hazard function for selected values of BIIIMW parameters are shown in Figure (2).
The shape of the hazard function shows that BIIIMW distribution can accommodate both mono-
tone and non monotone behavior such as monotonically decreasing, monotonically increasing,
unimodal and bathtub shapes for different values of the parameters, which are more likely to be
meet when dealing with survival and lifetime data.

Figure 2: Plot for hazard rate functions of BIIIMW distribution.

4. The Statistical Properties

In this section, some statistical properties of BIIIMW distribution such as quantile function and
order statistics are discussed.

4.1. Quantile Function

The quantile function of the BIIIMW distribution is obtained by solving the non-linear equation,
that is FBII IMW(x) = u, 0 ≤ u ≤ 1.

1 − e−αxβeλx
(

1 −
(
1 + x−c)−k

)
= u,

e−αxβeλx
(

1 −
(
1 + x−c)−k

)
= 1 − u.
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Taking logarithm on both sides we have,

log
(

1 −
(
1 + x−c)−k

)
− αxβeλx − log(1 − u) = 0. (7)

The quantile values of the BIIIMW distribution can be obtained by solving the equation (7) using
numerical methods, where u denotes a uniformly distributed random variable on the interval
[0,1]. Table 2 describe the quantile values of BIIIMW distribution for certain given parameter
values.

Table 2: BIIIMW quantile values for selected parameters

(c,k,α,β,λ,)
u (3,2,0.7,0.4,2) (3,2,1,2,2) (0.7,1,0.5,2,4) (1,0.5,3,4,3) (0.7,0.4,0.4,0.6,0.8)

0.1 0.00844 0.25199 0.04266 0.01010 0.000244
0.2 0.04566 0.33641 0.12545 0.04167 0.00274
0.3 0.10799 0.39880 0.22052 0.09871 0.01134
0.4 0.18256 0.45172 0.30147 0.18620 0.03183
0.5 0.26241 0.50027 0.36646 0.28989 0.07354
0.6 0.34600 0.54755 0.42171 0.37356 0.15240
0.7 0.43513 0.59646 0.47254 0.43637 0.29609
0.8 0.53557 0.65143 0.52404 0.49053 0.55078
0.9 0.66521 0.72343 0.58525 0.54787 0.99652

4.2. Order Statistics

Order statistics have a wide application in realibiity. Let X1, X2, ..., Xn be a simple random
sample from BIIIMW distribution with cdf and pdf given in (3) and (4), respectively. Let
X(1) ≤ X(2) ≤ .... ≤ X(n) denote the order statistics. Then the pdf of ith order statistc is given by,

fXi (x) =
n! f (x)

(i − 1)!(n − i)!
[F(x)]i−1[1 − F(x)]n−i.

fXi (x) =
n!

(i − 1)!(n − i)!
e−αxβeλx

[ckx−c−1 (1 + x−c)−k−1
+

(
1 −

(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
1 − e−αxβeλx

(
1 −

(
1 + x−c)−k

)]i−1
∗
[
e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−i
.

The pdf of 1st order statistic X1 is given by,

fX1(x) = ne−αxβeλx
[ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−1
.

The pdf of nth order statistic Xn is given by,

fXn(x) = ne−αxβeλx
[ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)]

∗
[
1 − e−αxβeλx

(
1 −

(
1 + x−c)−k

)]n−1
.

5. Maximum Likelihood Estimation

In this section, we consider the estimation of unknown parameters of BIIIMW model using
maximum lilelihood estimation technique. Let x1, x2, ...., xn be a random sample from BIIIMW
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distibution having parameters ∆=(c, k, α, β, λ)T then the log likelihood function is given by,

l(x; c, k, α, β, λ) =
n

∑
i=1

ln ( f (xi, c, k, α, β, λ)) . (8)

The log liklyhood of a single observation x of X is given by,

l(x; c, k, α, β, λ) = −αxβeλx + ln
[
ckx−c−1 (1 + x−c)−k−1

+
(

1 −
(
1 + x−c)−k

)
αxβ−1eλx(β + λx)

]
. (9)

The first order derivatives of the log-likelihood function with respect to the parameters ∆=(c, k, α, β, λ)T

is given by,

∂l
∂α

=

[
1 − (1 + x−c)

−k
] (

λxβeλx + βxβ−1eλx)
ckx−c−1 (1 + x−c)−k−1 +

[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − xβeλx. (10)

∂l
∂β

=

[
1 − (1 + x−c)

−k
] (

αeλx (xβ−1ln(x)β + xβ−1)+ αλxβeλxln(x)
)

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − αxβeλx ln(x). (11)

∂l
∂λ

=

[
1 − (1 + x−c)

−k
] (

αxβ
(
xλexλ + exλ

)
+ αβxβexλ

)
ckx−c−1 (1 + x−c)−k−1 +

[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) − αxβ+1exλ. (12)

∂l
∂c

=
k
(
−x−c−1ln(x)(1 + x−c)−k−1c + c(k + 1)x−2c−1ln(x)(1 + x−c)−k−2 + x−c−1(1 + x−c)−k−1

)
− A

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) .

(13)
where,

A =
k
(
αλxβeλx + αβxβ−1eλx) ln(x)(1 + x−c)−k−1

xc .

∂l
∂k

=
cx−c−1B +

(
αλxβeλx + αβxβ−1eλx) ln(1 + x−c) (1 + x−c)

−k

ckx−c−1 (1 + x−c)−k−1 +
[
1 − (1 + x−c)−k

] (
αλxβeλx + αβxβ−1eλx

) , (14)

where B = (1 + x−c)
−k−1

[1 − ln (1 + x−c) k].

The total log-likelihood function of BIIIMW distribution based on a random sample of size
n (x1, x2, ..., xn) is given by l(∆)=∑n

i=1 li(∆) where li(∆)(i=1, 2,..., n) is the log-likelyhood of ith

observation. By setting the above partial derivatives to zero, the solution will yield the maximum
likelyhood estimators of ĉ, k̂, α̂, β̂ and λ̂. These equations can be solved by using Newton-Raphson
method. All the second order derivatives are exist for BIIIMW distribution. Then the observed
information matrix is given by,

V−1 = −E


Vcc Vck Vcα Vcβ Vcλ

Vkc Vkk Vkα Vkβ Vkλ

Vαc Vαk Vαα Vαβ Vαλ

Vβc Vβk Vβα Vββ Vβλ

Vλc Vλk Vλα Vλβ Vλλ


−1

. (15)

Here Vjj, j=c, k, α, β, λ denotes the second order derivatives of log-likelihood function with
respect to the parameters and E(.) denotes the expexted value. The asymptotic variance and
co-variances of these maximum likelihood estimators for ĉ, k̂, α̂, β̂ and λ̂ can be obtained by
solving this observed information matrix. From (15), the 100(1-ξ)% confidence intervals for the
parameters are approximately given as follows,
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ĉ ± Zξ/2

√
V̂cc, k̂ ± Zξ/2

√
V̂kk, α̂ ± Zξ/2

√
V̂αα, β̂ ± Zξ/2

√
ˆVββ, λ̂ ± Zξ/2

√
ˆVλλ.

where Zξ/2 is the upper ξth percentile of the standard normal distribution.

6. Simulation and Data Analysis

In this section, we consider the simulation of BIIIMW distribution. Parameters are estimated by
using optim CG method in R. We simulate 1000 samples for the true parameters values I : c = 8.5,
k = 6, α = 2, β =5 , λ = 0.8 and II: c=2, k=9, α=0.5, β=9, λ=1.5. Table 3 lists the means of the MLE
estimates, bias and RMSE. From the table, it is obvious that as the sample size grows, estimates
approach the true value of the parameter, whereas bias and RMSE decrease as expected.

Table 3: Simulation Results: Mean Estimates, Bias and MSE of BIIIMW distriburion.

I II

Sample Size Parameter Mean Bias RMSE Mean Bias RMSE

n=200

c 7.8901 -0.6098 0.7106 2.0048 0.0048 0.0070
k 7.6779 1.6779 1.8808 9.0031 0.0031 0.0036
α 2.2418 0.2418 1.5350 0.2244 -0.2755 0.2783
β 7.7369 2.7369 2.9288 9.9856 0.9856 1.0549
λ 0.3435 0.2435 0.866 2.3495 0.8495 0.8946

n=500

c 7.9066 -0.5933 0.6594 2.0045 0.0045 0.0059
k 7.6698 1.6698 1.7860 9.0028 0.0028 0.0032
α 1.8931 -0.1068 1.094 0.2281 -0.2734 0.2780
β 7.6866 2.6866 2.786 9.9638 0.9667 0.9752
λ 0.3193 0.2193 0.6565 2.3398 0.8398 0.8577

n=800

c 8.0117 -0.4882 0.568 2.0042 0.0042 0.0052
k 7.3521 1.3521 1.5066 9.0025 0.0025 0.0026
α 1.9233 -0.0766 0.3474 0.2286 -0.2712 0.2751
β 7.6809 2.6809 2.7521 9.9581 0.9581 0.9925
λ 0.3089 0.2089 0.4682 2.3216 0.8276 0.8396

6.1. Data Analysis

We evaluate a data set in this part to demonstrate the importance and flexibility of the BIIIMW
distribution and comparison is done with other well known distributions such as Burr III, modi-
fied Weibull, inverse Lomax, exponetiated Weibull and Rayleigh(BIII, MW, IL, EW, R). The data is
obtained from Sylwia ([21]) on the lifetime of a certain device (30 device).

Data set : 0.0094, 0.05, 0.4064, 4.6307, 5.1741, 5.8808, 6.3348,7.1645, 7.2316, 8.2604, 9.2662,
9.3812, 9.5223, 9.8783, 9.9346, 10.0192, 10.4077,10.4791, 11.076, 11.325, 11.5284, 11.9226, 12.0294,
12.074, 12.1835, 12.3549, 12.5381, 12.8049, 13.4615, 13.853.

The estimated values of the parameters, Akaike Information Criterion, Bayesian Information
Criterion are presented. Also presented Kolmogorov-Smirnov(KS) (its p value), Cramer-Von
Mises(W) and Anderson-Darling (A) statistic for hypothesis test. Goodness of fit is performed
to test whether the proposed model fits better to the real data sets. In general, the distribution
with smallest values of these statistics better fits for the data. Table 4 list the MLE’s of model
parameters of BIIIMW, BIII, MW, EW, IL, R and the statistics values of W, A and KS.
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Table 4: Goodness of fit of Dataset

Model
Estimates

W A KS P value AIC BIC
Parameters Estimates

BIIIMW c 2.693 0.076 0.585 0.124 0.692 156.0103 180.0223
k 1920.256
α 0.0202
β 0.2089
λ 0.3164

BIII c 0.6941 1.295 6.373 0.367 0.00038 231.1692 240.774
k 2.564

MW α 3.797 0.118 1.258 0.154 0.428 233.1692 247.5763
λ 0.021
β 0.0001

EW α 0.396 6.200 1.250 0.348 0.0009 213.734 223.339
β 4.658

IL α 0.9301 1.046 5.277 0.357 0.0006 215.5066 225.1113
β 8.432

R α 6.935 0.456 3.652 0.257 0.030 213.5066 218.3089

From the table 4, it is clear that BIIIMW distribution has the smallest values for these statistics,
hence the proposed model is regarded as the better one. The variance- covariance matrix after
substituting the unknown parameters of the MLE’s in (15), we get,

0.00560 −0.012635 −0.000049 0.001199 0.00162
−0.01263 0.71116 0.00062 −0.08420 −0.00695
−0.00004 0.00062 0.00001 −0.00428 0.00018
0.00119 −0.08420 −0.00428 1.56465 −0.14485
0.00162 −0.00695 0.00018 −0.14485 0.02210


and the corresponding 95% confidence interval is given by c ∈ (2.693 ± 1.96 ∗ 0.0748), k ∈
(1920.256 ± 1.96 ∗ 0.8433), α ∈ (0.0202 ± 1.96 ∗ 0.0031), β ∈ (0.2089 ± 1.96 ∗ 1.2508) and λ ∈
(0.3164 ± 1.96 ∗ 0.1486). Plot of the fitted densities, histogram of the data and pp plot of the real
data set is shown in figure (3).
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Figure 3: (a) Plot of the estimated pdfs over the histogram and (b) PP plot of the BIIIMW model for dataset.
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Figure 4: Survival plot of BIIIMW distribution with the estimated parameter values.

Figure 5: (a) The expected parameter values for the BIIIMW distribution hazard rate function (b) The BIIIMW density
function for the estimated parameter values.

Figure (4) describe the survival plot of BIIIMW distribution. Figure (5) gives a clear picture
that the model satisfy both the necessary and sufficent condition of the distribution of lifetime
of system ( both bathtub hazard rate and bimodal density function). The hazard rate function
reaches minimum at time, x=0.05 (time period till which the system may undergo breakdown at
the beginning of its use itself), followed by normal life till x=4.5 and thereafter exibit an increasing
failure rate (wear-out process of the system). Also from figure (5b) it is evidant that the density
function attains maximum at time x=0.05 and x=10.5. From the results, it is clear that the model
can be used for modelling burn-in procedures.

7. Conclusion

In this paper, we introduce the Burr III-Modified Weibull (BIIIMW) distribution, a new five-
parameter lifetime distribution. This distribution can be used to represent both monotone and
non-monotone hazard rates in lifetime data. The statistical properties such as quantile fuction,
hazard rate function and order statistics are presented. The performance of the new BIIIMW
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distribution is performed by using simulation study. Finally, flexibility and applicability of this
model is illustrated by a real data set. From the data analysis, it is obvious that the proposed
model is highly desirable in the modeling of the lifetime of system. The model satisfy both the
necessary and sufficent condition of the distribution of lifetime of system. The proposed method
can be used to successfully plan a burn-in process and preventive maintenance of inoperable
devices.
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Abstract 
 

This paper is coming up with an age replacement cost model under the standard age replacement policy 
(SARP) for some multi-unit systems. Furthermore, some two other age replacement cost models will 
be constructed for the multi-unit systems under some proposed policies (policy A and policy B).  For 
simple illustration of the proposed age replacement cost models under SARP, policy A and policy B, 
numerical example was provided, and the result obtained will be beneficial to engineers, maintenance 
managers and plant management, in selecting and applying the optimal preventive maintenance 
policies. 
 
Keywords: failure rate, proposed policies, multi-unit systems 
 
 

I. Introduction 
 
        Multi-components systems deteriorate and subsequently fail due to age and usage. To reduce 
the occurrence of system failures, management of organizations are always interested in selecting 
and implementing the optimal preventive replacement policy for normal system operation.  
Furthermore, in describing the reliability of a multi-unit system, it is necessary to specify how the 
units of the system are connected and provide the rule of the operation. The simplest form of the 
system configuration is the series configuration. Designing systems in parallel configuration is done 
with the intention to improve systems reliability. In most practical situations, a combination of both 
series and parallel configurations is inevitable. 
 Enogwe et al. [1] used the distribution of the probability of failure times and come up with a 
replacement model for items that fails un-notice. Fallahnezhad and Najafian [2] investigated the 
number of spare parts and installations for a unit and parallel systems, so as cut down the average 
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cost per unit time. Gertsbakh [3] described and presented some vital preventive maintenance models 
for some multi-component systems. Huang and Wang [4] constructed a time-replacement model for 
multistate systems, which can be used to determine the optimal time to replace the entire system, 
and this proposed approach provides further insight into the relationship between preventive 
maintenance policy setting and long-term system benefits. Jain et al. [5] developed Markov model 
for a multi-component system which is subjected to two types of failures, which are hardware failure 
and human error. Jain and Gupta [6] presented a preventive replacement model for a repairable 
system with multiple vacation and imperfect coverage.  Lim et al. [7] presented some characteristics 
of some age substitution policies. Liu et al. [8] come up with mathematical models of uncertain 
reliability of some multi-component systems. Malki et al. [9] studied some age replacement policies 
of a parallel system with stochastic dependency. Murthy and Hwang [10] discussed that, the failures 
can be reduced through effective maintenance actions, and such maintenance actions can occur 
either at discrete time instants or continuously over time. Nakagawa [11] presented age replacement 
model for series and parallel system based on standard age replacement policy. Nakagawa et al. [12] 
presented the advantages of some proposed replacement policies. In an approach for analyzing the 
behavior of an industrial system under the cost free warranty policy, Niwas and Garg [13] developed 
a mathematical model of a system based on the Markov process, they also derived various 
parameters such as reliability, mean time to system failure, availability and expected profit for the 
system. Safaei et al. [14] studied the optimal preventive maintenance action for a system based on 
some conditions. Sudheesh et al. [15] studied age replacement model in discrete approach. Tsoukalas 
and Agrafiotis [16] presented a new replacement policy warrant for a system with correlated failure 
and usage time. Waziri and Yusuf [17] constructed an age replacement cost model for a parallel-
series system based on some proposed policies, where they investigated the characteristics of the 
proposed policies. In trying to extending the optimal replacement time of multi-unit systems, Waziri 
et al. [18] come up with some proposed age replacement cost models involving discounting rate and 
minimal repair for a series system. Waziri [19] presented a discounted age replacement model for a 
unit based on discrete time. Wu et al. [20] proposed a new replacement policy and established 
corresponding replacement models for a deteriorating repairable system with multiple vacations of 
one repairman. Xie et al. [21] assessed the effects of safety barriers on the prevention of cascading 
failures. Zhao et al. [22] collected some recent results on age replacement policies and proposed some 
modified age replacement policies, such as optimal age replacement policy for a parallel system with 
a random number of units.  
       The literature review presented in this paper did not captured a way or strategy of extending 
the optimal replacement time of a multi-component system. This paper will proposed some 
proposed replacement cost models under some policies, so as to see the possibility of extending the 
optimal replacement time of some four multi-component systems, and this will be achieved through 
the following objectives:   

1. By constructing age replacement cost model for series and parallel systems under the 
standard age replacement policy (SARP). 

2. By constructing age replacement cost models for series and parallel systems under two 
proposed policies (policy A and policy B). 

3. By providing a numerical example for simple illustration of the constructed replacement 
cost models. 

 
II. Methods 

 
Reliability measures namely reliability function and failure rates are used to obtain the expressions 
of replacement cost models for four systems under the standard age replacement policy (SARP) and 
under proposed two policies (policy A and policy B). A numerical example was given so to assess 
the three replacement policies. 
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III. Notations 
 

• 𝑟!(𝑡):		Level I failure rate of unit 𝐷!, for 𝑖 = 1, 2, 3, 4, 5, 6 . 
• 𝑟!∗(𝑡):		Level II failure rate of unit 𝐷! , for	𝑖 = 1, 2, 3, 4, 5, 6	. 
• 𝑅!∗(𝑡): Reliability function of Level II failure of unit 𝐵!, for 𝑖 = 1, 2, 3, 4, 5, 6.	
• 𝑆𝐴𝑅𝑃: Standard age replacement policy. 
• 𝑅#!∗ (𝑡): Reliability function of system 𝑆!	due to Level II failure, for 𝑖 = 1, 2, 3, 4.	
• 𝐶𝑆!(𝑇): Cost rate of system 𝑆! 	under SARP, for 𝑖 = 1, 2, 3, 4.	
• 𝐶𝑌𝑆!(𝑇): Cost rate of system 𝑆! 	under policy A, for 𝑖 = 1, 2, 3, 4.	
• 𝐶𝑍(𝑇): Cost rate of system 𝑆! 	under policy B, for 𝑖 = 1, 2, 3, 4.	
• 𝑋#!∗ :	Optimal replacement time of system 𝑆! 	under SARP, for 𝑖 = 1, 2, 3, 4. 
• 𝑌#!∗ :	Optimal replacement time of system 𝑆! 	under policy A, for 𝑖 = 1, 2, 3, 4. 
• 𝑍#!∗ :	Optimal replacement time of system 𝑆! 	under policy B, for 𝑖 = 1, 2, 3, 4. 
• 𝐶!$: Cost of unplanned replacement of failed 𝐷! 	due to Level II failure, for 𝑖 = 1, 2,

3, 4, 5, 6. 
• 𝐶!%: Cost of minimal repair of failed 𝐷! 	due to Level II failure, for 𝑖 = 1, 2, 3, 4, 5,

6. 
• 𝐶&': Cost of planned replacement of system 𝑆! 	 at planned replacement time T, for 

𝑖 = 1, 2, 3, 4. 
• 𝐶&$: Cost of un-planned replacement of system 𝑆! 	due to Level II failure, for 𝑖 =

1, 2, 3, 4. 

 
IV. Description of the Systems 

 
Consider six units 𝐷(,	𝐷),	𝐷*, 𝐷+,	𝐷, and	𝐷-, arranged in four different configurations, so as to formed 
four different systems, which are series-parallel system ( 𝑆(), series-parallel system  (𝑆)), parallel-
series system  (𝑆*) and parallel-series system  (𝑆+).  All the six units are subjected to Level I and Level 
II failures, such that, Level I failure is repairable one, while the Level II failure is non-repairable 
failure. Since all the six units are subjected to Level I and Level II failures, then, this implies that, all 
the four systems are also subjected to Level I and Level II failures.  See the Figure 1, Figure 2 , Figure 
3 and Figure 4  as the diagram of the four systems (𝑆(,	𝑆),	𝑆* and 𝑆+). 
 
 
 
 
 
 
 
 

 

 

Figure 1:  Reliability block diagram of system 𝑆! 
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Figure 2:  Reliability block diagram of system 𝑆" 

 

 

 

 

 

 

 

                             

 

Figure 3:  Reliability block diagram of system 𝑆# 

 

 

 

 

 

 

                             

Figure 4:  Reliability block diagram of system 𝑆$ 
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                                  V. Replacement Cost Models Under SARP 
 
Some Assumptions for SARP: 

1. If a system fails due to Level I failure, then the system is minimally repaired. 
2. If a system fails due to Level II failure, then the whole system replaced completely with new 

one. 
3. Both the two levels of failures (Level I and Level II)  of the six units arrives according to non-

homogeneous Poisson process. 
4. Rate of Level I failure of the six units follows the order: 𝑟((𝑡) ≥ 𝑟*(𝑡) ≥ 𝑟,(𝑡) ≥ 𝑟)(𝑡) ≥

𝑟+(𝑡) ≥ 𝑟-(𝑡). 
5. Rate of Level II failure of the six units follows the order:  𝑟(∗(𝑡) ≥ 𝑟*∗(𝑡) ≥ 𝑟,∗(𝑡) ≥ 𝑟)∗(𝑡) ≥

𝑟+∗(𝑡) ≥ 𝑟-∗(𝑡). 
6. The cost of repair and replacement follows the order: 𝐶!% < 𝐶#' < 𝐶#$ , for 𝑖 = 1, 2, 3, 4, 5, 6. 
7. A system is replaced at a planned time 𝑇(𝑇 > 0) or at Level II failure, whichever occurs first.  
8. The cost of planned replacement of a system is less than the cost of un-planned replacement. 
9. The cost of repair of a failed unit is less than the cost of replacement of a unit. 
10. All costs are positive numbers. 

 

From the assumptions above,  the probability that system 𝑆( will be replaced at planned replacement 
time 𝑇, before Level II failure occurs, is 
 

    𝑅#(∗ (𝑇) = (1 −∏ (1 − 𝑅!∗(𝑇)))
!.( ) × (1 −∏ (1 − 𝑅!∗(𝑇)))

!.( ) × (1 −∏ (1 − 𝑅!∗(𝑇)))
!.( ).      (1)         

               
From the assumptions above,  the probability that system 𝑆) will be replaced at planned replacement 
time 𝑇, before Level II failure occurs, is 
 

    𝑅#)∗ (𝑇) = (1 −∏ (1 − 𝑅!∗(𝑇)))
!.( ) × (1 − ∏ (1 − 𝑅!∗(𝑇))*

!.( ) × 𝑅-∗(𝑇) .                                  (2)      
                  
From the assumptions above,  the probability that system 𝑆* will be replaced at planned replacement 
time  𝑇, before Level II failure occurs, is 
 

      𝑅#*∗ (𝑇) = 	1 − F1 − 𝑅*∗(𝑇)𝑅-∗(𝑇)G × F1 − 𝑅)∗(𝑇)𝑅,∗(𝑇)G × F1 − 𝑅(∗(𝑇)𝑅+∗(𝑇)G .                    (3)      
                               
From the assumptions above,  the probability that system 𝑆+ will be replaced at planned replacement 
time 𝑇, before Level II failure occurs, is 
 

             𝑅#+∗ (𝑇) = 1 − (1 − 𝑅(∗(𝑇)𝑅)∗(𝑇)𝑅*∗(𝑇)) × (1 − 𝑅+∗(𝑇)𝑅,∗(𝑇)𝑅-∗(𝑇))	.                               (4) 
 
The mean time of systems  𝑆(, 𝑆) , 𝑆* and 𝑆+ under SARS, is 
 

                            ∫ 𝑅#!∗ (𝑡)𝑑𝑡
/
0  , for   𝑖 = 1, 2, 3,4.                                                                  (5) 

 
The cost of un-planned replacement (failure due to Level II failure) of 𝑆( and 𝑆) in one replacement 
cycle under SARP, is  

                                             𝐶&$F1 − 𝑅#!∗ (𝑇)G,  for   𝑖 = 1, 2, 3, 4.                                                      (6) 
 
The cost of planned replacement at time T of 𝑆(, 𝑆) , 𝑆* and 𝑆+  in one replacement cycle under 
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SARS, is  
 

                                            𝐶&'𝑅#!∗ (𝑇),   for   𝑖 = 1, 2, 3, 4 .                                                                 (7) 
 
The cost of minimal repair of components  𝐷(, 𝐷), 𝐷*, 𝐷+, 𝐷, and 𝐷- due to Level I failure in one 
replacement cycle under SARP, is   

 

𝐽(𝑇) = K 𝐶(%𝑟((𝑡)𝑅#!∗ (𝑡)𝑑𝑡
/

0
+K 𝐶)%𝑟)(𝑡)𝑅#!∗ (𝑡)𝑑𝑡

/

0
+	K 𝐶*%𝑟*(𝑡)𝑅#!∗ (𝑡)𝑑𝑡

/

0
 

      +	∫ 𝐶+%𝑟+(𝑡)𝑅#!∗ (𝑡)𝑑𝑡
/
0 + ∫ 𝐶+%𝑟,(𝑡)𝑅#!∗ (𝑡)𝑑𝑡

/
0 + ∫ 𝐶,%𝑟-(𝑡)𝑅#!∗ (𝑡)𝑑𝑡

/
0  .                 (8) 

 
Using equations  (5 ), (6 ), (7) and (8), the replacement cost rate of systems  𝑆(, 𝑆) , 𝑆* and 𝑆+ under 
SARP is 
 

                   𝐶𝑆!(𝑇) = 		
1!"2(3	5#$

∗ (/)891!&	5#$
∗ (/)9∫ ;(<)	5#$

∗ (<)=<'
(

∫ 	5#$
∗ (<)=<'

(
,   𝑖 = 1, 2, 3, 4,                                    (9)        

where 
 

         𝐽(𝑡) = 𝐶(%𝑟((𝑡) + 𝐶)%𝑟)(𝑡) + 𝐶*%𝑟*(𝑡) + 𝐶+%𝑟+(𝑡) + 𝐶,%𝑟,(𝑡) + 𝐶-%𝑟-(𝑡).                     (10) 
 
 
Noting that, 𝐶𝑆!(𝑇) for 𝑖 = 1, 2, 3, 4, is adopted as an objective function of an optimization problem, 
and the main goal is to obtain an optimal replacement time 𝑇#!∗  that minimizes 𝐶𝑆!(𝑇), for 𝑖 = 1, 2, 3, 4. 
 

                                  VI. Replacement Cost Models Under Policy A 
 
From assumption 4, observe that, Level II failure of units 𝐷(, 𝐷* and 𝐷, is higher than that of units 
𝐷), 𝐷+ or 𝐷-. Policy A is a preventive maintenance policy, in which the un-planned replacement of a 
system, which depends on the failure of units 𝐷(, 𝐷* and 𝐷, due to Level II. Noting that, the reliability 
function of a system due to policy A, depends on the location of units 𝐷(, 𝐷* and  𝐷, in a system. But 
when any of the units 𝐷), 𝐷+ or 𝐷- fails due to Level II failure, the failed unit is replace completely 
with new one and allow the system to continue operating from where it stopped. 
 
Under policy A, we have the following descriptions: 
 

1. System 𝑆(	: the system is replace completely with new one when at least one of the 
components 𝐷(, 𝐷* or 𝐷, fails due to Level II failure. Now, the probability that system 𝑆( will 
be replaced at planned replacement time 𝑇, before Level II failure occurs due to policy A, is 

                         𝑅#(>∗(𝑇) = 𝑅(∗(𝑇)𝑅*∗(𝑇)𝑅,∗(𝑇).                                                              (11) 
 

 
2. System 𝑆) : the system is replace completely with new one when all the three units 𝐷(, 𝐷* 

and 𝐷, fails due to Level II failure. Now, the probability that system 𝑆) will be replaced at 
planned replacement time 𝑇, before Level II failure occurs due to policy A, is 
 

               𝑅#)>∗(𝑇) = 𝑅(∗(𝑇)F1 − (1 − 𝑅*∗(𝑇))(1 − 𝑅,∗(𝑇))G	.                                         (12) 
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3. System 𝑆* : the system is replace completely with new one when at least one of the units 
𝐷(, 	𝐷* or 𝐷, fails due to Level II failure. Now, the probability that system 𝑆* will be replaced 
at planned replacement time 𝑇, before Level II failure occurs due to policy A, is 

 

                           𝑅#*>∗(𝑇) = 	 F1 − (1 − 𝑅(∗(𝑇))(1 − 𝑅*∗(𝑇))(1 − 𝑅,∗(𝑇))G	.                                    (13)     
                               

4. System 𝑆+ : the system is replace completely with new one when any of the combination 
fails: 𝐷( and 𝐷,,  or  𝐷* and 𝐷,  fails.  Now, the probability that system 𝑆* will be replaced at 
planned replacement time 𝑇, before Level II failure occurs due to policy A, is 

 
                            𝑅#+>∗(𝑇) = 1 − (1 − 𝑅(∗(𝑇)𝑅*∗(𝑇))(1 − 𝑅,∗(𝑇))	.                                       (14) 

 
The mean time of systems of 𝑆(, 𝑆) , 𝑆* and 𝑆+  in one replacement cycle under policy A, is 
 

                                ∫ 𝑅#!>∗(𝑡)𝑑𝑡
/
0  , for   𝑖 = 1, 2, 3,4. .                                                              (15) 

 
The cost of un-planned replacement (failure due to Level II failure) of 𝑆(, 𝑆) , 𝑆* and 𝑆+ in one 
replacement cycle under policy A, is  

                                     𝐶&$F1 − 𝑅#!>∗(𝑇)G, for   𝑖 = 1, 2, 3, 4 .                                                                (16) 
 
The cost of planned replacement at time T of 𝑆(, 𝑆) , 𝑆* and 𝑆+  in one replacement cycle under 
policy A, is  
 

                                        𝐶&'𝑅#!>∗(𝑇),   for   𝑖 = 1, 2, 3, 4 .                                                                  (17) 
 
The cost of minimal repair of components 𝐷(, 𝐷), 𝐷*, 𝐷+, 𝐷, and 𝐷-  due to Level I failure in one 
replacement cycle under policy A, is   
 

K 𝐶(%𝑟((𝑡)𝑅#!>∗(𝑡)𝑑𝑡
/

0
+K 𝐶)%𝑟)(𝑡)𝑅#!>∗(𝑡)𝑑𝑡

/

0
+	K 𝐶*%𝑟*(𝑡)𝑅#!>∗(𝑡)𝑑𝑡

/

0
 

             +	∫ 𝐶+%𝑟+(𝑡)𝑅#!>∗(𝑡)𝑑𝑡
/
0 + ∫ 𝐶+%𝑟,(𝑡)𝑅#!>∗(𝑡)𝑑𝑡

/
0 + ∫ 𝐶,%𝑟-(𝑡)𝑅#!>∗(𝑡)𝑑𝑡

/
0  .                 (18) 

 
The cost of replacement of components 𝐷), 𝐷+ and 𝐷- due to Level II failure in one replacement 
cycle under policy A, is   
 

               ∫ 𝐶)$𝑟)∗(𝑡)𝑅#!>∗(𝑡)𝑑𝑡
/
0 + ∫ 𝐶+$𝑟+∗(𝑡)𝑅#!>∗(𝑡)𝑑𝑡

/
0 ∫ 𝐶-$𝑟-∗(𝑡)𝑅#!>∗(𝑡)𝑑𝑡.

/
0                     (19) 

               
Using equations (15), (16 ), (17), (18) and (19), the replacement cost rate of 𝑆(, 𝑆) , 𝑆* and 𝑆+ under 
policy A, is 
 

        𝐶𝑌𝑆!(𝑇) =
				1!"2(35#$

)∗(/)891!&5#$
)∗(/)9∫ ?(<)5#$

)∗(<)=<'
( 9∫ @(<)5#$

)∗(<)=<'
(

∫ 5#$
)∗(<)=<'

(
	,  for   𝑖 = 1, 2, 3, 4	    (20) 

   where 
           𝐾(𝑡) = 𝐶(%𝑟((𝑡) + 𝐶)%𝑟)(𝑡) + 𝐶*%𝑟*(𝑡) + 𝐶+%𝑟+(𝑡) + 𝐶,%𝑟,(𝑡) + 𝐶-%𝑟-(𝑡),                    (21) 

and  
                          𝐿(𝑡) = 𝐶)$𝑟)∗(𝑡) + 𝐶+$𝑟+∗(𝑡) + 𝐶-$𝑟-∗(𝑡) .                                                                  (22) 

 
Noting that, 𝐶𝑌𝑆!(𝑇) for 𝑖 = 1, 2, 3, 4,  is adopted as an objective function of an optimization problem, 
and the main goal is to obtain an optimal replacement time 𝑌#!∗  that minimizes 𝐶𝑌𝑆!(𝑇), for 𝑖 =
1, 2, 3, 4. 
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                                  VII. Replacement Cost Models Under Policy B 
 
Observe from assumption 4, that Level II failure of units 𝐷), 𝐷+ and 𝐷- is lower than that of units 
𝐷(, 𝐷* or 𝐷,. Policy B is a preventive maintenance policy, in which the un-planned replacement of a 
whole system depends on the failure of units 𝐷), 	𝐷+ and 𝐷- due to Level II. Noting that, the reliability 
function of a system due to policy B, depends on the location of units 𝐷), 𝐷+ and 𝐷-  in a system. But 
when any of the units 𝐷(, 𝐷* or 𝐷, fails due to Level II failure, the failed unit is replace completely 
with new one and allow the system to continue operating from where it stopped.  
 
Under policy B, we have the following descriptions: 
 

1. System 𝑆(	: the system is replace completely with new one when at least one of the units 
𝐷), 𝐷+ or 𝐷- fails due to Level II failure. Now, the probability that system 𝑆( will be 
replaced at planned replacement time 𝑇, before Level II failure occurs due to policy B, 
is 

                     𝑅#(A∗(𝑇) = 𝑅)∗(𝑇)𝑅+∗(𝑇)𝑅-∗(𝑇).                                                                       (23) 
 

2. System 𝑆) : the system is replace completely with new one when all the three units 𝐷), 𝐷+ 
or 𝐷- fails due to Level II failure. Now, the probability that system 𝑆) will be replaced at 
planned replacement time 𝑇, before Level II failure occurs due to policy B, is 
 

                    𝑅#)A∗(𝑇) = 𝑅)∗(𝑇)𝑅+∗(𝑇)𝑅-∗(𝑇).                                                                        (24) 
 

3. System 𝑆* : the system is replace completely with new one when at least one of the 
components 𝐷), 𝐷+ or 𝐷- fails due to Level II failure. Now,  the probability that system 
𝑆* will be replaced at planned replacement time 𝑇, before Level II failure occurs due to 
policy B, is 

 
                               𝑅#*A∗(𝑇) = 1 − (1 − 𝑅)∗(𝑇))(1 − 𝑅+∗(𝑇))(1 − 𝑅-∗(𝑇))	.                                  (25) 

 
4. System 𝑆+ : the system is replace completely with new one when any of the combination 

fails: 𝐷+ and 𝐷),  or  𝐷- and 𝐷)  fails.  Now, the probability that system 𝑆* will be replaced 
at planned replacement time 𝑇, before Level II failure occurs due to policy B, is 

 
                            𝑅#+A∗(𝑇) = 1 − (1 − 𝑅+∗(𝑇)𝑅-∗(𝑇))(1 − 𝑅)∗(𝑇))	.                                (26) 

 
The mean time of systems of 𝑆(, 𝑆) , 𝑆* and 𝑆+ in one replacement cycle under policy B, is 
 

                            ∫ 𝑅#!A∗(𝑡)𝑑𝑡
/
0  , for   𝑖 = 1, 2, 3, 4 .                                                       (27) 

 
The cost of un-planned replacement (failure due to Level II failure) of  𝑆(, 𝑆) , 𝑆* and 𝑆+ in one 
replacement cycle under policy B, is  

                                        𝐶&$ O1 − 𝑅#!A∗(𝑇)P, for   𝑖 = 1, 2, 3, 4 .                                                    (28) 
 
The cost of planned replacement at time T of 𝑆(, 𝑆) , 𝑆* and 𝑆+ in one replacement cycle under 
policy B, is  
 

                                        𝐶&'𝑅#!A∗(𝑇),   for   𝑖 = 1, 2, 3, 4 .                                                              (29) 
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The cost of minimal repair of components 𝐷(, 𝐷), 𝐷*, 𝐷+, 𝐷, and 𝐷-  due to Level I failure in one 
replacement cycle under policy B, is   
 

K 𝐶(%𝑟((𝑡)𝑅#!A∗(𝑡)𝑑𝑡
/

0
+K 𝐶)%𝑟)(𝑡)𝑅#!A∗(𝑡)𝑑𝑡

/

0
+	K 𝐶*%𝑟*(𝑡)𝑅#!A∗(𝑡)𝑑𝑡

/

0
 

   +∫ 𝐶+%𝑟+(𝑡)𝑅#!A∗(𝑡)𝑑𝑡
/
0 + ∫ 𝐶+%𝑟,(𝑡)𝑅#!A∗(𝑡)𝑑𝑡

/
0 + ∫ 𝐶,%𝑟-(𝑡)𝑅#!A∗(𝑡)𝑑𝑡

/
0  .         (30) 

 
The cost of replacement of components 𝐷(, 𝐷* and 𝐷, due to Level II failure in one replacement 
cycle under policy B, is   
 

                               ∫ 𝐶($𝑟(∗(𝑡)𝑅#!A∗(𝑡)𝑑𝑡
/
0 + ∫ 𝐶*$𝑟*∗(𝑡)𝑅#!A∗(𝑡)𝑑𝑡

/
0 ∫ 𝐶,$𝑟,∗(𝑡)𝑅#!A∗(𝑡)𝑑𝑡.

/
0                 (31) 

 
Using equations (27), (28), (29), (30) and (31), the replacement cost rate of systems  𝑆(, 𝑆) , 𝑆* and 𝑆+  
under policy B, is 
 

       𝐶𝑍𝑆!(𝑇) =
				1!"B(35#$

*∗(/)C91!&5#$
*∗(/)9∫ D(<)5#$

*∗(<)=<9∫ E(<)5#$
*∗(<)=<'

(
'
(

∫ 5#$
*∗(<)=<'

(
	,  for   𝑖 = 1, 2, 3, 4,   (32) 

   where 
 

              𝑀(𝑡) = 𝐶(%𝑟((𝑡) + 𝐶)%𝑟)(𝑡) + 𝐶*%𝑟*(𝑡) + 𝐶+%𝑟+(𝑡) + 𝐶,%𝑟,(𝑡) + 𝐶-%𝑟-(𝑡),               (33) 
and  
 

                                      𝑁(𝑡) = 𝐶($𝑟(∗(𝑡) + 𝐶*$𝑟*∗(𝑡) + 𝐶,$𝑟,∗(𝑡) .                                                    (34) 
 
Noting that, 𝐶𝑍𝑆!(𝑇) for 𝑖 = 1, 2, 3, 4, is adopted as an objective function of an optimization problem, 
and the main goal is to obtain an optimal replacement time 𝑍#!∗  that minimizes 𝐶𝑍𝑆!(𝑇), for 𝑖 =
1, 2, 3, 4. 
 
 

                         VIII. Numerical Example 

To illustrate the characteristics of the constructed replacement cost models under SARP, policies A 
and B. Let the time of Level I failure for the six units follows Weibull distribution: 
 

                         𝑟!(𝑡) = 𝜆! ∝! 𝑡∝$3(, for 𝑖 = 1, 2, 3, 4, 5, 6,                                                        (35) 
 
where ∝!> 1 and  𝑡 ≥ 0. 
 
Also, let the time of Level II failure for the six units follows Weibull distribution: 
 

                           𝑟!∗(𝑡) = 𝜆!∗ ∝!∗ 𝑡∝$
∗3(, for 𝑖 = 1, 2, 3, 4, 5, 6,                                                    (36) 

 
where ∝!> 1and  𝑡 ≥ 0. 
 
Let the set of parameters and cost of repair and replacement be used throughout this particular 
example: 

1.  	∝(= 4, ∝)= 3, ∝*= 3, ∝+= 3, ∝,= 4 and  ∝-= 2. 
2. 𝜆( = 0.03, 𝜆) = 0.002, 𝜆* = 0.03, 𝜆+ = 0.001 , 𝜆, = 0.001 and  𝜆- = 0.001	. 
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3. ∝(∗= 4, ∝)∗= 3.5, ∝*∗= 4, ∝+∗= 3.5, ∝,∗= 4, and ∝-∗= 3.5	. 
4. 	𝜆(∗ = 0.00033, 𝜆)∗ = 0.00025	, 𝜆*∗ = 0.00030, 𝜆+∗ = 0.00023, 𝜆,∗ = 0.00025	and       𝜆-∗ = 0.0002	. 
5. 	𝐶&$ = 70 , 𝐶&' = 50 and  𝐶!% = 0.5,  for 𝑖 = 1, 2	, 3, 4, 5, 6	.  

 
By substituting the parameters in equations (35) and (36), the following equations ( Level I and Level 
II failures ) below are obtained as follows: 
 

                                                         𝑟((𝑡) = 0.12𝑡*.                                                          (37) 
 

                                                         𝑟)(𝑡) = 0.06𝑡.                                                            (38) 
 

                                                         𝑟*(𝑡) = 0.09𝑡).                                                          (39) 
 

                                                         𝑟+(𝑡) = 0.003𝑡).                                                        (40) 
 

                                                         𝑟,(𝑡) = 0.004𝑡*.                                                        (41) 
 

                                                         𝑟-(𝑡) = 0.002𝑡.                                                          (42) 
 

                                                         𝑟(∗(𝑡) = 0.00132𝑡*.                                                    (43) 
 

                                                         𝑟)∗(𝑡) = 0.000875𝑡).,.                                               (44) 
 

                                                         𝑟*∗(𝑡) = 0.00012𝑡*.                                                    (45) 
 

                                                         𝑟+∗(𝑡) = 0.000805𝑡).,.                                                (46) 
 

                                                         𝑟,∗(𝑡) = 0.001𝑡*.                                                         (47) 
 

                                                         𝑟-∗(𝑡) = 0.0007𝑡).,.                                                      (48) 

Tables 1, 2 and 3 below are obtained, by substituting the assumed cost of replacement/repair and 
rates of Level I and Level II failures obtained above ( equations (37) to (48) ) in the replacement cost 
models constructed above ( equations (9), (20) and (32) ),  so as to determine the  optimal replacement 
times of the four systems. 
 
Table 1. Results obtained from evaluating the replacement cost rates of systems	𝑆!, 𝑆", 𝑆# and 𝑆$  under  SARP. 

T 𝑪𝑺𝟏(𝑻) 𝑪𝑺𝟐(𝑻) 𝑪𝑺𝟑(𝑻) 𝑪𝑺𝟒(𝑻) 
1 240.04 240.09 240.04 240.03 
2 120.16 120.43 120.16 120.11 
3 80.42 81.14 80.37 80.41 
4 61.06 62.38 60.75 61.61 
5 50.68 52.48 49.65 53.17 
6 46.28 48.04 44.23 52.86 
7 46.64 48.13 44.70 59.29 
8 53.74 52.16 51.31 67.98 
9 61.01 58.01 60.74 72.17 
10 63.97 58.91 64.89 74.11 
11 70.03 61.84 65.31 76.16 
12 73.92 68.98 67.87 78.97 
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Table 2. Results obtained from evaluating the replacement cost rates of systems	𝑆!, 𝑆", 𝑆# and 𝑆$  under policy A.  

T 𝑪𝒀𝑺𝟏(𝑻) 𝑪𝒀𝑺𝟐(𝑻) 𝑪𝒀𝑺𝟑(𝑻) 𝑪𝒀𝑺𝟒(𝑻) 
1 240.78 240.65 240.57 240.57 
2 122.87 121.82 121.18 121.19 
3 87.58 84.10 81.96 82.03 
4 76.01 68.08 62.89 63.41 
5 76.62 62.52 52.13 54.13 
6 83.71 64.18 46.27 51.36 
7 89.44 70.76 44.88 53.95 
8 90.24 77.06 48.34 59.77 
9 92.73 77.01 55.49 64.92 
10 94.99 73.65 61.79 66.28 
11 95.45 76.44 62.77 67.90 
12 98.00 79.00 65.57 69.72 

 
 
 
Table 3. Results obtained from evaluating the replacement cost rates of systems	𝑆!, 𝑆", 𝑆# and 𝑆$  under policy B. 

T 𝑪𝒁𝑺𝟏(𝑻) 𝑪𝒁𝑺𝟐(𝑻) 𝑪𝒁𝑺𝟑(𝑻) 𝑪𝒁𝑺𝟒(𝑻) 
1 240.80 243.3 240.64 240.64 
2 122.54 125.04 121.62 121.63 
3 85.61 88.11 83.11 83.13 
4 70.10 72.6 65.11 65.20 
5 63.97 66.47 55.61 55.94 
6 62.95 65.45 50.64 51.48 
7 64.67 67.17 49.55 50.22 
8 67.21 69.71 48.55 51.27 
9 68.67 71.17 50.20 53.79 
10 70.74 73.24 53.05 56.80 
11 74.46 76.96 56.43 59.10 
12 76.97 79.47 59.34 59.61 

 
 
Table 4. The optimal replacement times of systems	𝑆!, 𝑆", 𝑆# and 𝑆$ under SARP, policy A and policy B from tables 1, 2 
and 3. 

     System Under SARP Under policy A Under policy B 

𝑺𝟏 𝑋#(∗ = 6.00 𝑌#(∗ = 4.00 𝑍#(∗ = 6.00 
𝑺𝟐 𝑋#)∗ = 6.00 𝑌#)∗ = 5.00 𝑍#)∗ = 6.00 
𝑺𝟑 𝑋#*∗ = 6.00 𝑌#*∗ = 7.00 𝑍#*∗ = 8.00 
𝑺𝟒 𝑋#+∗ = 6.00 𝑌#+∗ = 6.00 𝑍#+∗ = 7.00 
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Figure 5: The plot of cost rates of system	𝑆! under SARP, policy A and policy B against planned replacement time T. 
 
 
 
 

 
 
Figure 6: The plot of cost rates of system	𝑆" under SARP, policy A and policy B against planned replacement time T. 
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Figure 7: The plot of cost rates of system	𝑆# under SARP, policy A and policy B against planned replacement time T. 
 
 
 
 
 
 
 

 
 
Figure 8: The plot of cost rates of system	𝑆$ under SARP, policy A and policy B against planned replacement time T. 
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Figure 9 : The plot of cost rates of the four systems under SARP against planned replacement time T. 
 
 
 
 
 

 
 

Figure 10 : The plot of cost rates of the four systems under SARP against planned replacement time T. 
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Figure 11 : The plot of cost rates of the four systems under SARP against planned replacement time T. 
 
 
Some observations from the results obtained are as follows   
 

1. From Table 4, observe that, optimal replacement time of systems 𝑆* and 𝑆+ under policy B is 
higher than that of SARP and policy A. 

2. From Table 4, observe that, optimal replacement time of systems 𝑆( and 𝑆) under SARP and 
policy B are the same. 

3. From Table 4, observe that, optimal replacement time of all the four systems under SARP 
are the same. 

4. From Figure 5, observe that: 
 

                                     𝐶𝑆((𝑇) ≤ 𝐶𝑍𝑆((𝑇) ≤ 𝐶𝑌𝑆((𝑇).                                                 (49) 
 

5. From Figure 6, observe that: 
 

                                      𝐶𝑆)(𝑇) ≤ 𝐶𝑍𝑆)(𝑇) ≤ 𝐶𝑌𝑆)(𝑇).                                                  (50) 
 

6. From Figure 7, observe that: 
  

                                     𝐶𝑍𝑆*(𝑇) ≤ 𝐶𝑌𝑆*(𝑇) ≤ 𝐶𝑆*(𝑇).                                                    (51) 
 

7. From Figure 8, observe that: 
 

                                      𝐶𝑍𝑆+(𝑇) ≤ 𝐶𝑌𝑆+(𝑇) ≤ 𝐶𝑆+(𝑇).                                                    (52) 
 

8. From Figure 9, observe that: 
 

                                   𝐶𝑆((𝑇) ≤ 𝐶𝑆)(𝑇) ≤ 𝐶𝑆*(𝑇) ≤ 𝐶𝑆+(𝑇).                                           (53) 
 

9. From Figure 10, observe that: 
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                               𝐶𝑌𝑆((𝑇) ≤ 𝐶𝑌𝑆)(𝑇) ≤ 𝐶𝑌𝑆*(𝑇) ≤ 𝐶𝑌𝑆+(𝑇).                                    (54) 
 

10. From Figure 11, observe that: 
 

                               𝐶𝑍𝑆((𝑇) ≤ 𝐶𝑍𝑆)(𝑇) ≤ 𝐶𝑍𝑆*(𝑇) ≤ 𝐶𝑍𝑆+(𝑇).                                    (55) 
 

IX. Discussion of Results Obtained  

From the results obtained, we have the following observations:  
 

1. It can be seen that, the optimal replacement time of the parallel - series systems (𝑆* and 𝑆+) 
under policy B, is higher than that of SARP and policy A. Furthermore, the results also 
showed that, the cost rates of the parallel - series systems (𝑆* and 𝑆+) under policy B is lower 
than that of SARP and policy A. With these reasons, preventive maintenance of the parallel 
- series systems under policy B is optimal when compared to preventive maintenance of 
parallel - series systems under SARP and policy A. 

2. It can be seen that, the optimal replacement time of series - parallel systems (𝑆( and 𝑆)) under 
SARP and policy B are the same or very closed. While, the cost rates of the series - parallel 
systems (𝑆( and 𝑆)) under SARP is lower than that of under policies A and B. With these 
reasons, preventive maintenance of the series-parallel systems under SARP is optimal when 
compared to preventive maintenance of the series-parallel systems under policies A and B. 
 

Hence, from the observations above, we suggest maintenance managers and plant management to 
adopt policy B as an optimal preventive policy of maintaining multi-unit systems which are in 
parallel-series configuration. While for systems with series-parallel configuration, SARP should be 
adopted as an optimal preventive replacement policy. 

 
                          X. Conclusion  

In trying to come up with some modifications and extension of the age replacement policy, this 
paper presented some proposed age replacement cost models for multi-unit systems under standard 
age replacement policy (SARP), policy A and policy B. The results obtained, showed that, preventive 
replacement of parallel-series systems under policy B is optimal when compared to SARP and policy 
A. While, preventive replacement of series-parallel systems under SARP is optimal when compared 
to policies A and B. Thus, the results is beneficial to maintenance managers, in selecting the optimal 
preventive replacement policy. All the replacement cost models and the results presented in this 
paper are vital to engineers, maintenance managers and plant management for proper maintenance 
analysis, decision and safety for multi-unit systems.  
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Abstract 

Emotion analysis using social media text is the emerging research area now a day. It helps the 

researcher to recognize the emotional state of the users and identify mental health-relevant problems 

like depression or anxiety, which may lead to suicide if not cured. The social media platforms like 

WhatsApp, Facebook, Instagram, etc. are widely used as these applications provide an affordable and 

reliable medium for transferring data, sharing thoughts, and even for routine informal 

communication. Social media status is normally analyzed to recognize the mood, emotion, thought 

process, or mental state of the individual as people generally share status for what they feel. On the 

other hand, pre-processing is the crucial step for any kind of text data analysis. In this paper, the 

social media status dataset is first pre-processed using various methods, given for feature extraction 

and classification purpose. For the machine learning approach, we have used count vectors and TF-

IDF techniques for extracting the different features of the data. Using count vector feature extraction 

accuracy achieved by pre-processed data is 68.90%, 69.33%, 70.59%, 64.95%, 69.33% for naïve 

Bayes, LDA, Random forest, SGD and MLP respectively. Similarly, using TF-IDF feature extraction 

accuracy achieved by pre-processed data is 65.76%, 69.96%, 68.49%, 65.96%, 70.80% for naïve 

Bayes, LDA, Random forest, SGD and MLP respectively. The experimental results show that pre-

processing helps to improve the accuracy of the classifier and CNN outperforms the traditional 

approach and achieves 79% accuracy. 

Keywords: Pre-processing, Emotion analysis, Feature extraction, classifiers, 

Count Vectors, TF-IFD  

I. Introduction

Emotions are defined as psychological conditions caused by neurophysiological changes, associated 

with thoughts and feelings of happiness or dislike. The advent of internet technology and 

communication makes them a great platform for people to express their feelings and ideas. If a 

person is having positive emotions like happiness, it can help to improve the health and work 

efficiency of a person [1]. On the other side, constant negative emotions like sadness and anger can 

cause major physical or mental disorders Persistent negative emotions can cause psychological 

issues like depression, which in some cases can lead to suicide. Nowadays people are using social 

media platforms to share their moods and feelings. Many popular applications like Twitter, Whats 

App, Facebook etc. are not only used to share static forwarded messages or multimedia contents but  
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also used to express feelings and emotions. To provide such insight, machine learning strategies may 

provide some unique features that can help explore unique patterns hidden in online 

communication and process them to reveal emotions like happy, sad, anger, surprise, or disgust. In 

addition, there is a growing body of literature on the role of social media concerning the structure 

of social networks such as broken relationships, mental illness smoking and drinking, sexual abuse, 

and suicidal thoughts among users of social media. 

 Many social media applications like WhatsApp, Facebook, Instagram etc. has a feature called 

status or story. The WhatsApp messenger started in 2009 with the purpose of instant communication 

and transfer of information. People use to share an image, video, text, GIFs in the status of WhatsApp 

which disappears automatically after 24 hours of uploading. To predict the mood or emotion of the 

person, WhatsApp status or Facebook story data can be very useful as people use it to post on the 

status what they usually feel. WhatsApp users are very careful about what they post as their status 

because their contacts will make meanings from their posts. People are sensitive to WhatsApp profile 

status; this implies there is a lot of significance attached to it. This phenomenon shows that users are 

sensitive, alert, and mindful of WhatsApp profile statuses.  

        In this paper, we have observed that social media status can be used to classify emotions 

effectively. For extracting meaningful information from the textual status data, the essential step is 

data preprocessing [5][2]. We used count vectors and TF-IDF feature extraction methods and report 

experimental results with different machine learning classifiers with the effect of different 

preprocessing methods. At last, we demonstrated the results of CNN on the same dataset. Our main 

contributions are, first we have developed a system that could find the emotion label like happy, 

sad, and anger for any piece of text, especially status and stories on social media with their 

probability for each emotion using its textual features, Preprocessing techniques, and various 

machine learning and deep learning algorithms. Second, we were able to achieve an accuracy of 

around 79% using a CNN classifier with a dataset available on Kaggle and last we Show the effect 

of pre-processing techniques on the final accuracy of the model. 

II. Existing Research

Since the last decade, many researchers are working in the area of emotion analysis and classification 

using social media datasets. The main goal of emotion classification is to identify the specific text 

and decide the relevant emotion in a different category. 

  In [3], the authors have proposed a novel hybrid approach to determine the sentiment hidden 

in the individual tweet. They have also shown the effectiveness of the pre-processing using different 

methods like slang/abbreviations and lemmatization and correct and stop words removal. In [4], the 

authors conducted an extended comparison of sentiment polarity classification methods for Twitter 

text. Furthermore, they proceeded to the inclusion of a combination of classifiers in the compared 

set and the aggregation and use of several manually annotated tweets for the evaluation of the 

methods. In [9], the authors have worked on the Spanish language for the mobile phone and Mexican 

presidential elections relevant tweets .they proposed parameter settings for SVM, naïve bays, and 

decision trees. They used n-gram as a feature extraction method and presented results for positive, 

negative, and neutral classes. Wiebe et al. [5] has manually annotated the emotions, opinions, and 

sentiments of a sentence, which are taken from news articles.  Sana Shahid [7], the author has 

analyzed the popular social media platform WhatsApp and concluded that it helps in building 

aimed to explore that WhatsApp helps in building the interpersonal relationship and used by 

Professionals for meeting business goals .he also analyzed the usage pattern and kind of 

conversation users made by observing the frequency and composition of users. Church, K. et al [6], 

have compared SMS to MIM and give the reason for the success of WhatsApp. They conclude that 
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SMS is more private, formal, and more reliable and WhatsApp messages are more social, informal, 

and conversational. Yeboah and Ewur [8], authors have analyzed the performance of students in 

Ghana and conclude that WhatsApp can help in making communication easy and fast. In [11], The 

Lexicon-based methods have experimented for the instant messaging system as it uses sentiment 

expression keywords from the corpus and uses this to classify the emotions in different categories. 

The proposed method first identifies the emotion-relevant content in the text using keywords. After 

this to detect the emotional meaning of the text, they extracted syntactic features. Other functions 

like gestures, postures can be used to help the users to communicate with individual users. Aman et 

al. [12] have proposed a novel classification method that is based on emotional intensity knowledge. 

The author has achieved around 66% of accuracy rate for the blog corpus emotion classification task. 

Alm et al. [13], proposed an SVM-based text sentiment prediction method combined with SNoW 

(sparse network of winnows) architecture. In this approach, 22 fairy tales of Grimm's are taken as 

the input dataset. These fairy tales are divided into six emotion categories named happy, sad, fearful, 

angry, disgusted, surprised by selecting 30 features such as the first sentence of the story and specific 

connectives. Then the author has compared the result of the proposed method SVM + SNoW with 

existing well-known approaches and achieved 69.37% accuracy.  

        However, many researchers have done lots of work in the field of emotion classification and 

sentiment analysis using various social media datasets. But after a thorough investigation of the 

related literature, we came up with the conclusion that still there is a scope in the field of emotion 

classification using social media status. Hence, we present the effect of pre-processing in emotion 

analysis, and a report on experiment results demonstrating that feature selection and representation 

can affect the classification performance positively. 

II. Proposed Methodology

         The ultimate goal of this paper is to evaluate the effect of pre-processing methods for emotion 

classification for social media status datasets. Several pre-processing techniques are available but we 

have applied some of them like cleaning Html tags, converting to lower, removing special characters 

and stopping words, and performing stemming and evaluating the effectiveness of these methods 

for different classifiers. Figure. 1 shows the flow for analyzing the emotions using social media 

status. In this paper, Emotion analysis has been performed by two different approaches.  One is 

using the traditional machine learning methods, which extract the hand-crafted features from the 

data using TF-IDF and Count Vector methods. The other is using the deep learning methods, which 

don't require manual extraction of features. 

I. Dataset Description

The input dataset is available on Kaggle (https://www.kaggle.com/sankha1998/emotion). It has 

social media status collected by scraping from different sources. The dataset contains a textual status 

for three basic emotions happy, sad, and angry. The .csv file for each emotion category has two 

columns for status and relevant sentiment respectively. 

II. Preprocessing Techniques

Preprocessing is the basic mandatory step for any kind of classification problem. It tries to clean the 

data by removing noise and preparing suitable data for the machine-learning model. We have 

applied the following methods to convert raw data into a suitable form. 

 Cleaning Html tag: - Unstructured text contains a lot of noise, especially here, we use
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techniques like web or screen scraping. 

 Converting to lower: - Converting all data to lowercase helps in the process of pre-

processing.

 Remove special characters:-Special characters and symbols are usually non-alphanumeric

characters, which add to the extra noise in unstructured text.

 Remove stop words: - Words that have little or no significance, especially when constructing

meaningful features from the text, are known as stop words. Typically, these can be articles,

conjunctions, prepositions, and so on. Some examples of stop words are a, an, the, and the

like.

 Perform stemming: - Word stems are also known as the base form of a word, and we can

Create new words by attaching affixes to them in a process known as inflection. The reverse

process of obtaining the base form of a word from its inflected form is known as stemming.

Stemming helps us in standardizing words to their base or root stem, irrespective of their

inflections.

Figure 1:  Work Flow basic of emotion analysis 

III. Feature Extraction

The preprocessed data is high-dimensional and unstructured. So different data is structured in 

different ways, which makes it difficult for the different classifiers to work on these data. The process 

to reduce the dimensionality of these kinds of data and extract the useful features from the text is 

known as feature extraction. 

 TF-IDF: - Term frequency and inverse document frequency method is normally used for

information retrieval from text purposes. It shows the relevance of particular tern is in the
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document.[10] It converts simple words into vectors and assigns weights to not relevant 

words.   We have used it as a feature extraction method to determine which terms in a 

document are most distinguishing for that document. 

 Count Vector:-This method counts the number of occurrences of each word that appears in

the particular document and makes a vector to store the result of it.

IV. Classifiers

The ultimate goal for emotion recognition is to classify the input into relevant emotion classes

like happy, sad, or anger. Many classification models are available for this purpose. We have chosen 

some well-known classifiers, named Naïve Bayes, Linear Discriminant Analysis (LDA), Random 

Forest (RF), Multi-Layer Perceptron, SGD, and CNN to evaluate their performance depending on 

the preprocessing method applied to the input dataset. 

        Each classifier has its own merits and demerits, so as per the input data and require the 

appropriate classifier can be chosen. The naïve Bayes algorithms are widely used for text 

classification purpose because it is efficient even though the dataset size is less and resources are 

scarce. LDA works well for the linear classification of data as it has good generalization ability. 

Random forest and MLP work well if data is high-dimensional. CNN is the updated version of a 

simple neural network, as it tries to make the network less complex by sharing weights and making 

a local connection. As shown in figure:-2, we have sequentially implemented the deep model, layer 

by layer. To add the layers we have used add () function. In the out model, we have a total of three 

dense layers and two Dropout layers as shown in the figure:-2 Activation function has a dominant 

effect on the performance of the network. We have used ReLu in our network as it works normally 

effectively with the neural network. Finally, we compiled our model by using ‘adam’  as out 

optimizer, ‘accuracy' as a metric, and  'categorical_crossentropy' for our loss function. 

 

 

 

 

Figure 2:  Deep architecture for emotion classification 

input_1: InputLayer 

dense_1: Dense 

dropout_1: Dropout 

dense_2: Dense 

dropout_2: Dropout 

dense_3: Dense 
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IV. Experimental Results and Discussion

We have performed various Pre-processing techniques on the dataset as mentioned in the previous 

section and will show the results in this section. We have tried Count vector and TF-IDF feature 

extraction methods and will show the results. Then, will show the results obtained from deep neural 

networks. 

I. Count Vector Feature Experiments

  First, we have used Count Vector Features with different classifiers named Naïve Bayes, LDA, 

Random Forest, Multilayer Perceptron, and SGD. As shown in the table:-1 the result shows that 

maximum accuracy can be achieved by using a random forest classifier which is 70.59% by applying 

pre-processing which is 4% higher than without applying pre-processing techniques. 

Table 1:  Performance Comparison of Count vector features 

Classifier Accuracy(%) without 

Pre-processing 

Accuracy(%) with 

Pre-processed data 

Naïve Bayes 66.38 68.90 

LDA 67.23 69.33 

RF 66.59 70.59 

MLP 63.27 64.95 

SGD 65.75 69.33 

II. TF-IDF Feature Experiments

          Now, we tried TF-IDF Features with different classifiers named Naïve Bayes, LDA, Random 

Forest, Multilayer Perceptron, and SGD. As shown in the table:-2 The result shows that maximum 

accuracy can be achieved by using SGD which is 70.80% by applying pre-processing which is 5% 

higher than without applying pre-processing techniques. Here, Random forest gives good results 

without pre-processing which is 67.43%. 
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Table 2:  Performance Comparison of TF-IDF features 

Classifier Accuracy(%) without 

Pre-processing 

Accuracy(%) with Pre-

processed data 

Naïve Bayes 63.44 65.76 

LDA 65.96 69.96 

RF 67.43 68.49 

MLP 63.44 65.96 

SGD 65.75 70.80 

Figure 4: Effect of pre-processing on different classifiers for TF-IDF features 

III. CNN Based Experiments

CNN architecture we have used is already explained in section III. As given in table 3, we have

achieved 79% validation accuracy by implementing this model for all three emotion categories. 

Figure: - 5 shows the confusion metrics for happy, sad, and angry emotions. It clearly shows that the 

deep model achieves almost 9% higher accuracy than manual feature extractions. 

Table 3:  Class-wise Precision, F1-score, and support 

Precision Recall F1-

score 

support 

Angry 0.79 0.87 0.83 237 

Happy 0.79 0.75 0.77 228 

Sad 0.79 0.75 0.77 208 

Accuracy NA NA 0.79 673 

Macro avg 0.79 0.79 0.79 673 

Weighted avg 0.79 0.79 0.79 673 
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Figure 5: Confusion Matrix for different emotions 

V. Conclusion and Future Work

Even though detail research has been done in the area of analyzing social media text for emotion 

detection, still it faces many problems like poor accuracy when applied to real-life data. For making 

classification tasks efficient, pre-processing and feature extraction should be performed properly on 

the raw dataset. We applied different preprocessing techniques to the dataset of social media status 

and evaluated the performance of five different machine-learning classifiers and CNN for deep 

learning classification. Our experimental results concluded that the appropriate pre-processing 

methods could effectively improve the efficiency of the classifiers by around 4-5%. By the traditional 

approach, the highest accuracy has been achieved by SGD classifiers which is 70.59% for count vector 

features whereas the highest accuracy has been achieved by random forest classifiers which is 

70.80% for TF-IDF features. For the deep learning approach, CNN achieved 79% accuracy for 

classifying the emotions in three different categories which is almost 9% higher than the traditional 

approach. However, this work can be further extended by incorporating the different pre-processing 

methods to find the optimal settings. In future, these results can be cross verified on other wide and 

real-world datasets of social media status for emotion classification. 
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Abstract 
 

The paper analyses a two non-identical unit parallel system in respect of various measures of 
system effectiveness by using regenerative point techniques. It has been considered that the life 
times of both the units are correlated random variables and a single repairman is always available 
with the system to repair a failed unit. 

 
Keywords: Transition probabilities, mean sojourn time, bi-variate exponential distribution, 
reliability, MTSF, availability, expected busy period of repairman, net expected profit.  
 
 

I. Introduction 
 
Various authors including Sridharan & Kalyani (2002), Mokaddis & Sherbeny (2008) in the field of 
reliability theory have been analyzed two unit parallel system models under different sets of 
assumptions using regenerative point technique. Some of the authors using the concept of giving 
the priority to one of the unit in repair and compare to other, Malik et al. (2010), Kumar  et al. 
(2018, 2021) developed a reliability model for a system of non-identical units parallel system with 
priority to repair . In all these systems models it is assumed that the lifetimes are uncorrelated 
random variables, but in practical situations this seems to be unrealistic because in many cases 
there may be some sort of correlation between the lifetimes of operating units. Singh & Poonia 
(2019) introduced the concept of correlation between failure and their times in the analysis of a 
single server two unit cold standby system. Later various papers including those by Gupta et al. 
(2010) have been analyzed the correlated failure and repair time distribution of a unit.  

Gupta and co-workers [2008,2018] analyzed two unit parallel and standby system models 
under different sets of assumptions by taking the failure and repair times as correlated random 
variables having their joint distribution as bivariate exponential. They have considered only single 
type of failure in an operating unit. Some authors including [1999, 2013] analyzed two-unit parallel 
system models by taking the joint distribution of life times of the units working in parallel as 
bivariate exponential. They have also considered the single type of failure in an operating unit. 

In the present paper we analyze a two non-identical unit parallel system model with priority 
in repair and correlated life times of the units working in parallel having their joint distribution as 
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bivariate exponential distribution with different parameters as the form of the joint p.d.f. given 
below.  

 

Where,  

is the modified Bessel function of type-I and order zero. 
By using regenerative point technique, the following measures of system effectiveness are 

obtained- 
i. Transition probabilities and mean sojourn times in various states. 
ii. Reliability and mean time to system failure (MTSF). 
iii. Point-wise and steady-state availabilities of the system as well as expected up time 

of the system during time interval (0, t). 
iv. Expected busy period of repairman in the repair of unit-1 and unit-2 during time 

interval (0, t). 
v. Net expected profit earned by the system in time interval (0, t). 
 

II. System Description and Assumptions 
 

1. The system consists of two non-identical units (unit-1 and unit-2). Initially, both 
the units work in parallel configuration. 

2. Each unit of the system has two possible modes-Normal (N) and total failure (F). 
3. The first unit gets priority in repair. 
4. System failure occurs when both the units stop functioning.  
5. A single repairman is always available with the system to repair a totally failed 

unit and repair discipline is first come, first served (FCFS).  
6. If during the repair of a failed unit the other unit also fails, then the later failed unit 

waits for repair until the repair of the earlier failed unit is completed. 
7. The repair times of both the units are uncorrelated random variables, each having 

a general distribution with different parameters. 
8. Each repaired unit works as good as new.   
9. The joint distribution of lifetimes (failure times) of both the units is taken to be 

bivariate  exponential having a joint density function of the form , 

               

              Where,    

10. The arrival time distribution of repairman is general. 
 

III. Notations and States of the System 
 
We define the following symbols for generating the various states of the system- 

    :    Unit-1and unit-2 is in N-mode and operative in parallel. 
                  :    Unit-1 and unit-2 is in F-mode and under repair. 

 
                        :    Unit-2 is in F-mode and under waiting for repair. 

                        :     First unit is in failure mode and its repair is continued from state  
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Considering the above symbols in view of assumptions stated in section-2, the possible   states 
of the system are shown in the transition diagram represented by Figure. 1. It is to be noted that 
the epochs of transitions into the state from are non-regenerative, whereas all the other 
entrance epochs into the states of the systems are regenerative. 

The other notations used are defined as follows: 
 E                         :    Set of regenerative states. 
           :    Random variables denoting the failure time of unit-1 N-mode and unit-

2 respectively for (i=1, 2)   
              :    Joint probability density function of  

                                   

                                   Where,  

                   :    Marginal p.d.f. of  

                                    
                :    Conditional p.d.f. of   

   :    Conditional p.d.f. of  

                                   
 

                  :   Conditional p.d.f. of  

                                    
 

: The repair time probability distribution function and cumulative 

distribution   function of  

 
        

:   P.d.f. of transition time from state  to  and  to  via  . 

        :  Steady-state transition probabilities from state  to and  to via

. 

      :  Steady-state transition probabilities from state to and  to via 

when it is known that the unit has worked for time x before its 
failure. 

                          :    Repair time of failed unit-2 

                            :    Symbol for Laplace Transform i.e.   

   ~                          :    Symbol for Laplace Stieltjes Transform i.e.
 

 

   ©                         :    Symbol for ordinary convolution i.e. 
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†The limits of integration are 0 to  whenever they are not mentioned. 

  
 

IV. Transition Probabilities and Sojourn Times 
 
Let  be the state of the system at epoch t, then  constitutes a continuous parametric 

Markov-Chain with state space .The various measures of system effectiveness are 

obtained in terms of steady-state transition probabilities and mean sojourn times in various states. 
First we obtain the direct conditional and unconditional transition probabilities in terms of 

                                     

as follows- 

 

 
 

 

                   Similarly,       
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The unconditional transition probabilities with correlation coefficient from some of the above 
conditional transition probabilities can be obtained as follows: 

      
Similarly, 

                                                  
 

 It can be easily verified that, 

                                                                        (1-4) 

 
V. Mean Sojourn Time 

 
The mean sojourn time  in state is defined as the expected time taken by the system in state 
before transiting into any other state. If random variable denotes the sojourn time in state 
then, 

 

Therefore, its values for various regenerative states are as follows- 
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VI. Analysis of Characteristics 
I. Reliability and MTSF 
 
Let be the probability that the system operates during (0, t) given that at t=0 system starts 
from  . To obtain it we assume the failed states  and as absorbing. By simple 
probabilistic arguments, the value of in terms of its Laplace Transform (L.T.) is given by 

                                                                                                              (9)  

We have omitted the argument’s from and for brevity. ; i = 0, 1, 2 are the L. T. of 

                 
                

 
Taking the Inverse Laplace Transform of (9), one can get the reliability of the system when 

system initially starts from state  . 
The MTSF is given by,  

                                                                    (10) 

 
II. Availability Analysis 
 
Let  be the probability that the system is up at epoch t, when initially it starts operation from 

state . Using the regenerative point technique and the tools of Laplace transform, one can 

obtain the value of 
 
in terms of its Laplace transforms i.e.  given as follows- 

                                                                                                                              (11)  

Where, 

                 

and 

                                                      (12) 

Where, , i=0,1,2 are same as given in section VI(I). 

The steady-state availability of the system is given by 
                                                                                                     (13)  

We observe that 
 

Therefore, by using L. Hospital’s rule the steady state availability is given by 

                                                                                                                    (14) 

Where,  

 
and  

                                                       (15)
 

The expected up time of the system in interval (0, t) is given by 
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So that,                                                                                                                               (16) 

 
III. Busy Period Analysis 
 
Let and be the respective probabilities that the repairman is busy in the repair of unit-

1 failed due to first repair with priority of unit-1 and unit-2 failed due to second repair at epoch t, 
when initially the system starts operation from state . Using the regenerative point technique 
and the tools of L. T., one can obtain the values of above two probabilities in terms of their L. T. i.e.  

 
and as follows- 

                                                                                               (17-18) 
Where,  

 

and 

 
and  is same as defined by the expression (12) of section VI(II). 

The steady state results for the above two probabilities are given by- 
     and                                            (19-20)    

Where,  

                                                  
(21) 

                                                                                                              (22) 

and is same as given in the expression (15) of section VI(II). 
The expected busy period in repair of unit-1 failed due to first repair with priority of unit-1 

and unit-2 failed due to second repair during time interval (0, t) are respectively given by- 

    
         and              

So that, 

   
         and                                                  (23-24) 

 
IV. Profit Function Analysis 
 
The net expected total cost incurred in time interval (0, t) is given by 

P (t) = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

                                                                    
                               (25)  

Where, is the revenue per- unit up time by the system during its operation.  and are 
the amounts paid to the repairman per-unit of time when the system is busy in repair of unit-1 
failed due to first repair with priority of unit-1 and unit-2 failed due to second repair respectively. 
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The expected total profit incurred in unit interval of time is  
 

VII. Particular Case 
 
Let,  
In view of above, the changed values of transition probabilities and mean sojourn times. 

 

                     
 

                    
 

VIII. Graphical Study of Behaviour and Conclusions 
 
For a more clear view of the behaviour of system characteristics with respect to the various 
parameters involved, we plot curves for MTSF and profit function in Fig. 2 and Fig. 3 w.r.t. for 
three different values of correlation coefficient =0.1, 0.5, 0.9 and two different values of repair 
parameter r =0.25, 0.6 while the other parameters are =0.085, = 0.6. It is clearly observed from 
Fig. 2 that MTSF increases uniformly as the value of and r increase and it decrease with the 
increase in . Further, to achieve MTSF at least 17 units we conclude for smooth curves that the 
values of must be less than 0.13, 0.23 and 0.45 respectively for =0.1, 0.5, 0.9 when r =0.6. 
Whereas from dotted curves we conclude that the values of must be less than 0.12, 0.14 and 0.31 
for =0.1, 0.5, 0.9 when r =0.25. 

Similarly, Fig.3 reveals the variations in profit (P) with respect to for three different values 
of = 0.3, 0.6, 0.9 and two different values of r =0.3, 0.6, when the values of other parameters 
=0.95, = 0.09, K0=200, K1=95 and K2=175. Here also the same trends in respect of ,  and r are 
observed in case of MTSF. Moreover, we conclude from the smooth curves that the system is 
profitable only if is less than 0.22, 0.42 and 0.66 respectively for = 0.3, 0.6, 0.9 when r =0.6. 
From dotted curves, we conclude that the system is profitable only if is less than 0.19, 0.3 and 
0.5 respectively for = 0.3, 0.6, 0.9 when r =0.3. 
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Behaviour of PROFIT (P) w.r.t. for different values of and r 
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Abstract 
 

Here, we describe the stochastic analysis of a repairable system consisting two non-identical units 
called the main unit and the other is a duplicate unit. The units have direct complete failure from 
the operative state. A single repairman has been engaged to carry out the repair activities that can 
be failed while performing his jobs with the main unit. The repairman does repair activities of the 
duplicate unit without any problem. Priority for operation and repair to the duplicate unit is given 
over the main unit. The repairman performs with full efficiency after getting treatment. The 
distribution for failure rates of the units has been considered as negative exponential while arbitrary 
distributions have been taken for repair and treatment rates. The use of semi-Markov process and 
regenerative point technique has been made to study the probabilistic behavior of the system in 
different possible transition states. The reliability characteristics of the system model have been 
examined numerically and graphically for particular values of the parameters. The profit of the 
system has also been analyzed for some fixed values of the repair and other maintenance costs. 
Keywords: System of Non-identical Units, Priority, Conditional Failure of 
Repairman and Stochastic Analysis 

 
I. Introduction 

 
Over the years the researchers in the field of the reliability have been struggling to identify the best 
possible structure of the components and the techniques which can be used to improve the 
performance of repairable systems. As a result of which some reliability improve techniques for 
the repairable systems have been emerged as the provision of redundancy, priority in repair 
discipline and configuration of the components such as series, parallel, series-parallel, parallel-
series, k-out-of-n and other mixed mode structures. The technique of cold standby redundancy 
with different repair policies has been used most frequently during stochastic modeling of 
repairable systems. Subramanian and Natarajan [10] developed an N-Unit standby redundant 
system with R repair facilities. Cao and Wu [2] discussed a cold standby system of two unit with 
replaceable repair facility. Smith [9] highlighted the concept of regenerative stochastic processes. 
On the other hand, the objective of the manufacturers is not only to produce the systems with 
considerable reliability but also to launch the products in markets with optimal balance between 
reliability and the production costs. To cope with this situation it becomes necessary to use systems 
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with non-identical units and appropriate repair facilities. The systems with non-identical units 
have also been studied in the past considering the ideas of priority in repair discipline. Kadyan et 
al. [4] discussed the stochastic modeling of a system of non-identical units with priority in different 
mode of failures. Salah and EL-Sherbeny [8] described a two unit non-identical parallel system 
subject to preventive maintenance and repairs. Kumar et al. [5] analyzed profit of a warm standby 
non-identical unit system with single server. Kadyan et al. [7] developed system models using the 
concept of priority. In the field of reliability research it is a common practice that the repair facility 
called server or repairman cannot fail while performing its assignments i.e. the jobs related to 
maintenance, repair of the faults and any other precautionary needs of the systems. This 
assumption on repair facility seems to be unrealistic when repair activities perturb due to the 
reasons which cause the failure of the service facility or any other catastrophic failure. Chen and 
Wang [3] analyzed a retrial machine repair problem with warm standbys and a single server with 
N-policy. Kumar and Nandal [6] developed a system of two non-identical units with conditional 
failure of repairman. Anuradha et al. [1] analyzed a 1-out-of-2: G System with Priority to Repair 
and Conditional Failure of Service Facility. 

In view of the above observations and facts, the purpose of the present paper is to analyze 
stochastically a repairable system of non-identical units with the concept of priority and 
conditional failure of the repairman. The system has one main unit which is initially operative and 
the other unit is considered as duplicate in cold standby redundancy. The units have direct 
complete failure from the operative state. A single repairman is engaged to carry out the repair 
activities that can be failed while performing his jobs with the main unit. The repairman does 
repair activities of the duplicate unit without any problem. Priority for operation and repair to the 
duplicate unit is given over the main unit. The repairman performs with full efficiency after 
getting treatment. The distribution for failure rates of the units has been considered as negative 
exponential while arbitrary distributions have been taken for repair and treatment rates. The use of 
semi-Markov process and regenerative point technique has been made to study the probabilistic 
behavior of the system in different possible transition states. The reliability characteristics of the 
system model such as MTSF, availability, busy period of the server due to repair of the main and 
duplicate units, expected number of repairs of the units, expected number of the treatments given 
to the repairman and finally the profit function have been examined numerically and graphically 
for particular values of the parameters. The profit of the system has also been analyzed for some 
fixed values of the repair and other maintenance costs. 

 
II. System Description 

 
1. The system comprises of two non-identical units; one main unit which is initially operative 

and the other unit is considered as duplicate in cold standby redundancy. 
2. The duplicate unit becomes operative after the failure of main unit. 
3. A single repairman is engaged to carry out the repair activities that can be failed while 

performing his jobs with the main unit. 
4. The repaired unit works as good as new.   
5. Priority for operation and repair to the duplicate unit is given over the main unit. 
6. The distribution for failure rates of the units has been considered as negative exponential 

while arbitrary distributions have been taken for repair and treatment rates 
The state transition diagram shown in the figure 1 as: 
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Figure 1:State Transition Diagram 

a) Notations and Abbreviations  
 
O Operative state 
 Failed State 
 Regenerative point 
λ Failure rate of the repairman 
𝑀! Main unit is Operative and in normal mode 
𝐷"# Duplicate unit is in cold standby 
𝑟$ Failure rate of the main unit 
𝑟% Failure rate of the duplicate unit 
𝑔(𝑡)/𝐺(𝑡) pdf/cdf of the main unit repair time 
ℎ(𝑡)/𝐻(𝑡) pdf/cdf of the duplicate unit repair time 
𝑎(𝑡)/𝐴(𝑡) pdf/cdf of the treatment time of the repairman 
𝑀𝐹&'/𝑀𝐹() Main unit failed under repair /continuously under repair from previous state 
𝐷𝐹&'/𝐷𝐹() Duplicate unit failed under repair/continuously under repair from previous state 
𝑀𝑤&'/𝑀𝑤() Main unit waiting for repair /continuously waiting for repair from previous state 
𝐷𝑤&'/𝐷𝑤() Duplicate unit waiting for repair/continuously waiting for repair from previous state 
𝑆𝐹&'/𝑆𝐹() Repairman failed under treatment/continuously under treatment from previous state 
𝑞*+/𝑄*+ pdf/cdf of transition from regenerative state (or non-regenerative state) 𝑆! or to a failed state 
                         𝑆" without visiting any regenerative state in (0,t] 
𝑚*+ Mean sojourn time (𝜇!) in state 𝑆! when system transits directly to state 𝑆" so that 
 𝜇! = ∑ 𝑚!"" 	𝑎𝑛𝑑	𝑚!" = ∫ 𝑡𝑑𝑄!"(𝑡) = −𝑞!"∗

!(0)$
%  

𝜇* The mean sojourn time in state 𝑆! 
𝑀*(𝑡) Probability that the system up initially in state  𝑆! ∈ 𝐸 is up at time t without visiting to any 
 regenerative state 
𝑊*(𝑡) Probability that the repairman is busy in the state 𝑆!up to time t without making any 
 transition to any other regenerative state or returning to the same state via one or more non 
 regenerative states  

 cdf of the first passage time from regenerative state 𝑆! to a failed state  

 Probability that the system is in upstate at instant t given that the system entered regenerative 
 state 𝑆! at t = 0 
𝐵*(𝑡) Probability that the repairman is busy at instant t given that the system entered regenerative 

( )i tf
( )iA t
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 state 𝑆! at t = 0 
𝑅𝑀*(t) Expected number of repair of the main unit given to the repairman in (0, t] such that the 
 system entered regenerative state 𝑆!at t = 0 
𝑅𝐷*(t) Expected number of repair of the duplicate unit given to the repairman in (0, t] such that the 
 system entered regenerative state𝑆!at t = 0 
𝑇𝑅*(t) Expected number of Treatment given to the repairman in (0, t] such that the system entered 
 regenerative state 𝑆! at t = 0 

 Symbol for Stieltjes convolution 
© Symbol for Laplace convolution 
*/** Symbol for Laplace Transform/ Laplace Stieltjes Transform  
P Profit function of the system 

 Revenue per unit to the system 

 Cost per unit for which repairman is busy to repair the main unit. 

 Cost per unit for which repairman is busy to repair the duplicate unit.   

 Cost per unit for repair of main unit 

 Cost per unit for repair of duplicate unit 

𝐾, Cost per unit treatment given to the repairman 
TP Transition Probabilities 
MSTs Mean Sojourn Times 
MTSF Mean Time to System Failure 
LT Laplace Transform 
LST Laplace Stieltijes Transform 
LIT Laplace Inverse Transform 
s-MP semi-Markov Process  
RPT            Regenerative Point Technique 
 

III. Reliability Measures of the System 
 

a) Transition Probabilities  
 
Simple probabilistic considerations yield the following expression for the non-zero elements 𝑝!" =
lim
&→∞

𝑄!"(𝑡) = 		 ∫ 𝑞!"(𝑡)𝑑𝑡
∞
%   as: 

 
𝑑𝑄%((𝑡) = 	 𝑟(𝑒)*"&𝑑𝑡, 𝑑𝑄(+(𝑡) = 	𝑔(𝑡)𝑒)(*#-	/)&𝑑𝑡, 𝑑𝑄(1(𝑡) = 	𝜆𝑒)(*#-	/)&𝐺(𝑡)======𝑑𝑡, 
𝑑𝑄(2(𝑡) = 	 𝑟+𝑒)(*#-	/)&𝐺(𝑡)======𝑑𝑡,  𝑑𝑄+3(𝑡) = 	 𝑟+𝑒)(*#)&𝑑𝑡,  𝑑𝑄3%(𝑡) = ℎ(𝑡)𝑒)*"&𝑑𝑡, 

𝑑𝑄34(𝑡) = 	 𝑟(𝑒)*"&𝐻(𝑡)======𝑑𝑡,𝑑𝑄1((𝑡) = 	𝑎(𝑡)𝑒)*#&𝑑𝑡,𝑑𝑄15(𝑡) = 	 𝑟+𝑒)*#&𝐴(𝑡)======𝑑𝑡 
𝑑𝑄2((𝑡) = ℎ(𝑡)𝑑𝑡,𝑑𝑄4((𝑡) = ℎ(𝑡)𝑑𝑡, 𝑑𝑄6((𝑡) = ℎ(𝑡)𝑑𝑡,𝑑𝑄56(𝑡) = 	𝑎(𝑡)𝑑𝑡 

By taking t ∞ of the above expressions using 𝑝!" =	𝑄!"(∞) = 	∫ 𝑞!"(𝑡)𝑑𝑡,
∞
%  we get 

𝑝%( = 1,𝑝(+ =	𝑔∗(𝑟+ + 	𝜆),𝑝(1 =	
/

(*#-/)
[1 − 𝑔∗(𝑟+ + 	𝜆)],𝑝(2 =	

*#
(*#-/)

[1 − 𝑔∗(𝑟+ + 	𝜆)], 

𝑝+3 = 	1,𝑝3% =	ℎ∗(𝑟(),𝑝34 =	 [1 − ℎ∗(𝑟()],𝑝1( =	𝑎∗(𝑟+),𝑝15 =	 [1 − 𝑎∗(𝑟+)], 
𝑝2( =	ℎ∗(0), 𝑝6( =	ℎ∗(0), 𝑝4( =	ℎ∗(0), 𝑝56 =	𝑎∗(0)  

It is verified that: 
𝑝%( =	𝑝(+ +	𝑝(1 +	𝑝(2  = 𝑝3% +	𝑝34= 𝑝1( +	𝑝15= 𝑝2( = 𝑝4( =𝑝6( =  𝑝56 = 1 

 
b) Mean Sojourn Times 
 
The expected time taken by the system in a particular state before transiting to any other state is 
known as mean sojourn time or mean survival time in the state. If 𝑇! be the sojourn time in the 

Ä
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state i, then the mean sojourn time in the state i is 
𝜇! = ∫ 𝑃𝑟(𝑇! > 𝑡)𝑜𝑟𝜇!

∞
% = ∑ 𝑚!""  But 𝑚!" = − 7

78
J𝑄!"∗∗(𝑠)L89% 

µ% =	𝑚%,µ( =	𝑚(+ +	𝑚(1 +	𝑚(2,µ+ =	𝑚+3 
µ𝟑 =	𝑚3% +	𝑚34,µ1 =	𝑚1( +	𝑚15 

µ𝟑
′ =	𝑚3% +	𝑚3(.4,µ1

′  = 𝑚1( +	𝑚1(.56  
 
c) Reliability and MTSF 
 
Let ∅!(𝑡) be the c.d.f. of first passage time from regenerative state Si to a failed state. Regarding the 
failed state as absorbing state, we have following recursive relations for∅!(𝑡): 

∅!(𝑡) = ∑ 𝑄!"(𝑡)®∅"(𝑡)" + ∑ 𝑄!<(𝑡)<                                 (1) 
where Sj is an un-failed regenerative state to which the given regenerative state Si can transit and Sk 
is a failed state to which the state Si can transit directly. Thus, the following equations are obtained 
by using (1) as: 

∅=(𝑡) = 𝑄%((𝑡) ⊗ ∅((𝑡) 
∅((𝑡) = 𝑄(+(𝑡) ⊗ ∅+(𝑡) + 𝑄(1(𝑡) ⊗ ∅1(𝑡) + 𝑄(2(𝑡) 

∅+(𝑡) = 𝑄+3(𝑡)⊗ ∅3(𝑡) 
∅3(𝑡) = 𝑄3%(𝑡)⊗ ∅%(𝑡) + 𝑄34(𝑡) 
∅1(𝑡) = 𝑄1((𝑡) ⊗ ∅((𝑡) + 𝑄15(𝑡) 

Taking LST of above relations to obtain ∅%∗∗(𝑠) using this, we have 
R*(s) = ()∅$

∗∗(8)	
8

 
Taking LIT of R*(s), we can obtain the reliability R(t) of the system model. The MTSF is given by  

MTSF =lim?→%	 𝑅∗(𝑠) = 	
@"
A"

 

where, 
𝑁( =	µ%(𝑝(+ + 𝑝(2 +	𝑝(1𝑝15) +	µ( + µ+𝑝(+ + µ3𝑝(+ +	µ1𝑝(1, 

𝐷( =	(1 − 𝑝(+𝑝3% − 𝑝(1𝑝1() 
d) Steady State Availability  
 
Let 𝐴!(𝑡) be the probability that the system is in up-state at epoch ‘t’ given that the computer 
system entered regenerative state 𝑆! at 𝑡 = 0. The recursive relations for 𝐴!(𝑡) are given as 

𝐴!(𝑡) = 𝑀!(𝑡) + ∑ 𝑞!"
(?)(𝑡)©𝐴"(𝑡)"     (2) 

where Sj is any successive regenerative state to which the regenerative state Si can transit through n 
transitions. Thus, the following equations are obtained by using (2) as: 

𝐴=(𝑡) = 	𝑀=(𝑡) +	𝑞%(©𝐴((𝑡) 
𝐴((𝑡) = 	𝑀((𝑡) +	𝑞(+(𝑡)©𝐴+(𝑡) +	𝑞(1(𝑡)©𝐴1(𝑡) +	𝑞(2(𝑡)©𝐴2(𝑡) 

𝐴+(𝑡) = 	𝑀+(𝑡) +	𝑞+3©𝐴3(𝑡) 
𝐴3(𝑡) = 	𝑀3(𝑡) +	𝑞3=(𝑡)©𝐴=(𝑡) + 𝑞3(.4(𝑡)©𝐴((𝑡) 
𝐴1(𝑡) = 𝑀1(𝑡) +	𝑞1((𝑡)©𝐴((𝑡) +	𝑞1(.56(𝑡)©𝐴((𝑡) 

𝐴2(𝑡) = 𝑞2((𝑡)©𝐴((𝑡) 
where  

𝑀%(𝑡) = 	 𝑒)*"&,𝑀((𝑡) = 	 𝑒)(*#-	/)&𝐺(𝑡)======,𝑀+(𝑡) = 	 𝑒)*#&,𝑀1(𝑡) = 	 𝑒)*#&𝐴(𝑡)======, 𝑀3(𝑡) = 	 𝑒)*"&𝐻(𝑡)====== 
Taking L.T of above expressions and calculate the value of 𝐴%∗ (𝑠), we have 

𝐴% = lim&→$ 𝐴%(𝑡) = 	 lim8→%	 𝑠𝐴%∗(𝑠) = 	
𝑁+
𝐷+′

 

where, 
𝑁+ =	µ% − µ%𝑝(+𝑝34 − µ%𝑝(1 − µ%𝑝(2 + µ( + µ+𝑝(+ + µ3𝑝(+ − µ1𝑝(1 

𝐷+′ =	µ%𝑝(+𝑝3% + µ( + µ+𝑝(+ +	µ3
(𝑝(+ +		µ1

(𝑝(1 +	µ2𝑝(2 

e) Busy Period of the Repairman Due to Repairs 
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Let 𝐵!B(𝑡) be the probability that server is busy in repairing the unit at epoch ‘t’ given that the 
system entered state Si at 𝑡 = 0. The recursive relations for 𝐵!B(𝑡) are given as: 

𝐵!B(𝑡) = 𝑊!
B(𝑡) + ∑ 𝑞!"

(?)(𝑡)©𝐵"C(𝑡)"                                               (3) 
where Sj is any successive regenerative state to which the regenerative state Si can transit through n 
transitions. Thus, the following equations are obtained by using (3) as: 
 
i) Repair of Main Unit 
 

𝐵%D(𝑡) = 𝑞%(©𝐵(D(𝑡) 
𝐵(D(𝑡) = 𝑊((𝑡) +	𝑞(+(𝑡)©𝐵+D(𝑡) + 𝑞((.2(𝑡)©𝐵(D(𝑡) + 𝑞(1(𝑡)©𝐵1D(𝑡) 

𝐵+D(𝑡) = 𝑞+3©𝐵3D(𝑡) 
𝐵3D(𝑡) = 𝑞3=(𝑡)©𝐵%D(𝑡) + 𝑞3(.4(𝑡)©𝐵(D(𝑡) 
𝐵1D(𝑡) = 𝑞1((𝑡)©𝐵(D(𝑡) + 𝑞1(.56(𝑡)©𝐵(D(𝑡) 

𝐵2D(𝑡) = 𝑞2(©𝐵(D(𝑡) 
where 

𝑊((𝑡) = 	 𝑒)(*#	-	/)&𝐺(𝑡)====== 
Taking L.T. of above expressions and calculate the value of 𝐵%∗(𝑠), we have 

𝐵%D = lim8→%	 𝑠𝐵%∗(𝑠) = 	
𝑁3
𝐷+′

 

Where,𝑁3 =		µ(and 𝐷+′  is already defined. 
 
ii) Repair of Duplicate unit 

 
𝐵%A(𝑡) = 𝑞%(©𝐵(A(𝑡) 

𝐵(A(𝑡) = 𝑞(%(𝑡)©𝐵%A(𝑡) + 𝑞(1(𝑡)©𝐵1A(𝑡) + 𝑞((.2(𝑡)©𝐵(A(𝑡) 
𝐵+A(𝑡) = 𝑞+3©𝐵3A(𝑡) 

𝐵3A(𝑡) = 𝑊3(𝑡) + 𝑞3=(𝑡)©𝐵%A(𝑡) + 𝑞3(.4(𝑡)©𝐵(A(𝑡) 
𝐵1A(𝑡) = 𝑞1((𝑡)©𝐵(A(𝑡) + 𝑞1(.56(𝑡)©𝐵(A(𝑡) 

𝐵2A(𝑡) = 𝑊2(𝑡) + 𝑞2(©𝐵(A(𝑡) 
where 

𝑊3(𝑡) = 	 𝑒)(*"	)&𝐻(𝑡)====== +[𝑟(	𝑒*"	&©1]𝐻(𝑡)====== 
𝑊2(𝑡) = 	𝐻(𝑡)======, 

Taking L.T. of above expressions and calculate the value of 𝐵%∗(s), we have 

𝐵%A = lim8→%	 𝑠𝐵%∗(𝑠) = 	
𝑁3A
𝐷+′

 

where, 𝑁3A= 𝑊3
∗(0)𝑝(+ and 𝐷+′  is already defined. 

 
f) Expected Number of Repairs of the Main Unit 
 
Let 𝑅!D(𝑡) be the expected number of repairs of the unit by the repairman in (0, t] such that the 
system entered regenerative state𝑖 at t = 0. The recursive relation for𝑅!D(𝑡) are given as: 

𝑅!D(𝑡) = ∑ 𝑄!,"
(?)(𝑡)ⓢJ𝛿" + 𝑅!D(𝑡)L"                                                                 (4) 

Where 𝑗 is any regenerative state to which the given regenerative state 𝑖 transits and 𝛿" = 1 if 𝑗 is 
the regenerative state where the repairman does job afresh, otherwise, 𝛿" = 0.Thus, the following 
equations are obtained by using (4) as: 

𝑅%D(𝑡) = 𝑄%(⊗𝑅(D(𝑡) 
𝑅(D(𝑡) = 𝑄(+(𝑡) ⊗ [1 + 𝑅+D(𝑡)] + 𝑄(1(𝑡)⊗ 𝑅1D(𝑡) + 𝑄((.2(𝑡) ⊗ 𝑅(D(𝑡) 

𝑅+D(𝑡) = 𝑄+3⊗𝑅3D(𝑡) 
𝑅3D(𝑡) = 𝑄3%(𝑡) ⊗ 𝑅%D(𝑡) + 𝑄3(.4(𝑡) ⊗ 𝑅(D(𝑡) 
𝑅1D(𝑡) = 𝑄1((𝑡) ⊗ 𝑅(D(𝑡) + 𝑄1(.56(𝑡) ⊗ 𝑅(D(𝑡)	

𝑅2D(𝑡) = 𝑄2(⊗𝑅(D(𝑡) 
Taking L.S.T. of above expressions and calculating for 𝑅%D====(𝑠), we have 
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𝑅%D = lim8→%	 𝑠𝑅%D====(𝑠), = 	
𝑁1
𝐷+′

 

where,𝑁1= 𝑝(+ and 𝐷+′  is already defined.  
 
g) Expected Number of Repairs of the Duplicate Unit 
 
Let 𝑅!A(𝑡) be the expected number of repairs of the unit by the repairman in (0, t] such that the 
system entered regenerative state𝑖 at t = 0. The recursive relation for𝑅!A(𝑡) are given as: 

𝑅!A(𝑡) = ∑ 𝑄!,"
(?)(𝑡)ⓢJ𝛿" + 𝑅!A(𝑡)L"                                     (5) 

Where 𝑗 is any regenerative state to which the given regenerative state 𝑖 transits and 𝛿" = 1 if 𝑗 is 
the regenerative state where the repairman does job afresh, otherwise, 𝛿" = 0.Thus, the following 
equations are obtained by using (5) as: 

𝑅%A(𝑡) = 𝑄%(⊗𝑅(A(𝑡) 
𝑅(A(𝑡) = 𝑄(+(𝑡) ⊗ 𝑅+A(𝑡) + 𝑄(1(𝑡)⊗ 𝑅1A(𝑡) + 𝑄((.2(𝑡) ⊗ 𝑅(A(𝑡) 

𝑅+A(𝑡) = 𝑄+%⊗𝑅3A(𝑡) 
𝑅3A(𝑡) = 𝑄3=(𝑡) ⊗ [1 + 𝑅%A(𝑡)] + 𝑄3(.4(𝑡) ⊗ [1 + 𝑅(A(𝑡)] 
𝑅1A(𝑡) = 𝑄1((𝑡) ⊗ 𝑅(A(𝑡) + 𝑄1(.56(𝑡) ⊗ [1 + 𝑅(A(𝑡)]	

𝑅2A(𝑡) = 𝑄2(⊗ [1 + 𝑅(A(𝑡)] 
Taking L.S.T. of above expressions and calculating for𝑅%A====(𝑠), we have 

𝑅%A = lim8→%	 𝑠𝑅%A====(𝑠) = 	
𝑁2
𝐷+′

 

where,𝑁2= 𝑝(+ and 𝐷+′  is already defined.  
 
h) Expected Number of Treatment Given to the Repairman 
 
Let 𝑇!B(𝑡) be the expected number of repairs of the unit by the repairman in (0, t] such that the 
system entered regenerative state𝑖 at t = 0. The recursive relation for𝑇!B(𝑡)  are given as: 

𝑇!B(𝑡) = ∑ 𝑄!,"
(?)(𝑡)ⓢJ𝛿" + 𝑇!B(𝑡)L"                                                                  (6) 

Where 𝑗 is any regenerative state to which the given regenerative state 𝑖 transits and 𝛿" = 1 if 𝑗 is 
the regenerative state where the repairman does job afresh, otherwise, 𝛿" = 0.Thus, the following 
equations are obtained by using (6) as: 

𝑇%B(𝑡) = 𝑄%(⊗𝑇(B(𝑡) 
𝑇(B(𝑡) = 𝑄(+(𝑡) ⊗ 𝑇+B(𝑡) + 𝑄(1(𝑡)⊗ 𝑇1B(𝑡) + 𝑄((.2(𝑡) ⊗ 𝑇(B(𝑡) 

𝑇+B(𝑡) = 𝑄+3⊗𝑇3B(𝑡) 
𝑇3B(𝑡) = 𝑄3%(𝑡)⊗ 𝑇%B(𝑡) + 𝑄3(.4(𝑡) ⊗ 𝑇(B(𝑡) 

𝑇1B(𝑡) = 𝑄1((𝑡) ⊗ [1 + 𝑇(B(𝑡)] + 𝑄1(.56(𝑡) ⊗ [1 + 𝑇(B(𝑡)]	
𝑇2B(𝑡) = 𝑄2(⊗𝑇(B(𝑡) 

Taking L.S.T. of above expressions and calculating for 𝑇%B====(𝑠),we have 
𝑇%B = lim8→%	 𝑠𝑇%B====(𝑠) = 	

@'
A#
′  ,  

where, 𝑁4=𝑝(1 and 𝐷+′  is already defined. 
 

IV Profit Analysis 
 

The following expression can be used to obtain Profit of the system model: 
𝑃F =	𝐾%𝐴% −𝐾(𝐵%D(𝑡) − 𝐾+𝐵%A(𝑡) − 𝐾3𝑅%D(𝑡) − 𝐾1𝑅%A(𝑡) − 𝐾2𝑇%B(𝑡)   (7) 

 
V. Particular Cases 

 
Let us take 

g(t) = α𝑒−𝛼𝑡, h(t) = β𝑒−𝛽𝑡, a(t) = ϒ𝑒−ϒ𝑡, 
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𝑝12 = 	
α

(α+λ+r2)
 , 𝑝15 = 	

r2
(α+λ+r2)

 , 𝑝14 =
λ

(α+λ+r2)
,𝑝41= ϒ

(ϒ+r2)
,  𝑝48 =

r2
(ϒ+r2)

, 𝑝30 =
β

(β+r1)
 ,𝑝36= r1

(β+r1)
 

µ0 =
1

r1
,  µ1 =

1

(α+λ+r2)
, µ2 =

1

r2
,  µ3 =

1

(β+r2)
,  µ4 =

1

(ϒ+r2)
, µ5 =

1

β
,  µ4

′ = r2
(ϒ+r2)

[1
β
+	 1

β
],  µ3

′ = 1

β
( r1
(β+r1)

), 

 
MTSF = 𝑁1

𝐷1
,Availability =  𝑁2

𝐷2
′ , 

Busy period of the repairman (B) =𝑁3
𝐷2
′ ,  

Expected number of repairs of main unit (𝑅𝑀0) =𝑁5
𝐷2
′ ,  

Expected number of repairs of duplicate unit (𝑅𝐷0) =
𝑁4
𝐷2
′ ,  

Expected number of Treatment given to the Repairman (𝑇𝑅0) =
𝑁6
𝐷2
′ , 

where, 
𝑁1 =

1

r1
! α
(α+λ+r2)

+	 r2
(α+λ+r2)

+	 λ
(α+λ+r2)(ϒ+r2)

" + 1

(α+λ+r2)
+	 1

r2

α
(α+λ+r2)

+ 1

(𝛽+𝑟2)

α
(α+λ+r2)

+	 λ
(α+λ+r2)(ϒ+r2)

, 

𝐷1 = 1 − α

(α+λ+r2)

𝛽

(𝛽+𝑟1)
− λϒ
(α+λ+r2)(ϒ+r2)

, 

𝑁2 = 	
1

𝑟1
− 𝑟1

(𝛽+𝑟1)

1

𝑟1

α
(α+λ+r2)

− 1

𝑟1

𝜆

(𝛼+𝜆+𝑟2)
− 1

𝑟1

r2
(α+λ+r2)

+	 1

(𝛼+𝜆+𝑟2)
+	 1

r2

α
(α+λ+r2)

+	 𝛼

(𝛼+𝜆+𝑟2)

1

(𝛽+𝑟1)
−

𝜆

(𝛼+𝜆+𝑟2)

1

(ϒ+𝑟2)
  

𝑁3 =			
(

(^-/-*#)
, 𝑁3A =	

_
(_-`-a#)

,𝑁1 = _
(_-`-a#)

𝑁2 = _
(_-`-a#)

𝑁4= `
(_-`-a#)

 

𝐷+b =	
(

(^-/-*#)
+ (

*"

_
(_-`-a#)

c
(c-*")

+ (
*#

_
(_-`-a#)

+ (
c

_
(_-`-a#)

*"
(c-*")

	+	 *#
(ϒ-*#)

/
(^-/-*#)

Y(
ϒ
+	 (

c
Z +	 (

c
a#

(_-`-a#)
  

 
VI. Graphical Presentation 

 
The graphical representation of MTSF, availability and profit function has been shown in figures 
2,3 and 4 respectively to check their behavior with respect to the values of the parameters 
associated with failure and repair rates. From Figure 2, it is observed that the MTSF of the system 
decreases when failure rate of main unit is increased from 0.01 to 0.1. Also, MTSF increases with an 
increase inrepair rate of main unit, duplicate unit and treatment rate of the repairman. 
 

 
Figure 2: MTSF Vs Failure Rate of Main Unit 

 
From Figure 3, it is clearly seen that the availability of the system decreases rapidly with increase 
of failure rate of main unit. Also, availability of the system increases with an increase inrepair rate 
of main unit, duplicate unit and treatment rate of the repairman. 
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Figure 3: Availability Vs Failure Rate of Main Unit 
 
From Figure 4, it is observed that the profit decreases when failure rate of the main unit increases. 
Also,the profit of the system is increases with an increase inrepair rate of main unit, duplicate unit 
and treatment rate of the repairman. 
 

 
Figure 4: Profit Vs Failure Rate of Main Unit 

 

VII. Conclusion 
 

The idea of priority for repair and operation of the duplicate unit has been used to determine 
reliability characteristics of a stochastic model developed for a system of non-identical units with 
failure of repairman.  The failure of repairman is called conditional failure as it fails only during 
the repair of the main unit. In this study reliability measures such as MTSF, availability and profit 
function are obtained and their behavior is shown respectively figures: Figure 2, Figure 3 and 
Figure 4. It is observed that MTSF, availability and profit function decline when failure rate 
increases. On the other hand, these measures increase with the increase of repair rate of main unit, 
duplicate unit and treatment rate of the repairman. Further, the study reveals that profit of the 
system model can be increased by increasing the repair rate of the duplicate unit. 
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VIII. Application 

 
 

The oxygen supply system which is shown in figure 5 can be considered as a direct application of 
the present study. An acute shortage of medical oxygen and oxygen cylinders has been observed 
during COVID-19 pandemic situation everywhere throughout the World. The oxygen therapy was 
in dire need for the survival of patients during this pandemic.  The scarcity of oxygen cylinders has 
also pushed up the demand for oxygen concentrators. Today, oxygen concentrators are in great 
demand after devices for oxygen therapy in home isolation. Therefore, the present study has been 
designed to analyze the oxygen supply system comprises oxygen concentrator as a main unit and 
the oxygen cylinder as its duplication. In case of electricity failure, it becomes necessary to give 
priority for operation and repair of the oxygen cylinder to cover the risk. Thus, it is a non-identical 
system of two units in which the concepts of priority and the failure of repairman have been 
considered to examine some important reliability characteristics so that the users of the oxygen 
supply system may take appropriate decision to minimize the risk. 

 

 
 
Figure 5: Oxygen Supply System 
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Abstract

This article introduces a class of generator for enhancing the performance, productivity and flexibility
of statistical distributions called the exponential Inverted Marshall-Olkin-G (EMA-G) distribution.
The characteristics of the new class of generator were obtained and examined. Some special models of
the proposed model were investigated. The Bernstein function of the EMA-G model was also obtained
in a closed form. The maximum likelihood method was adopted to obtain the parameters estimate of
the formulated EMA-G distribution model. The flexibility, productivity, tractability, applicability and
viability of the new contemporary class of distribution were examined by Monte Carlo simulation. A two
real life data sets was used to illustrate the empirical performance and flexibility, productivity, tractability
of the generator. The up-to-the-minute outcomes of the new generator indicated that the EMA-G density
gives a better fit compare to some existing statistical generators in literature using their goodness-of-fit.

Keywords: Bernstein function, Exponential distribution, Generating function, Generator, Marshall-
Olkin characterization, Vehicle fatalities.

1. Introduction

Statistical distributions have unraveled the behaviour, characteristics and nature of life time
processes. However, these scenarios depend on the flexibility, productivity, performance and
tractability of the underlying probability used in analysing these processes. Hence, the per-
formance, productiveness and flexibility can be enhanced either by adding a new parameter
or compounding the probability density function (pdf) involved. One of such methods for
high productivity is using the T-X family approach called exponential Inverted Marshall-Olkin
generator(EMA-G) distribution. This method negates the exponentiated method in existing
literature by using the T-X approach in developing the underlying exponential generator.

Despite the emerging statistical generators in literature, newer generators are still being
proposed to improve productivity and performance of lifetimes scenarios. However, many
models have been proposed in literature. These include the works of [3] who proposed the
Gompertz-G model. [17] proposed the logistic-X generator. [8] proposed the Weibull-G generator.
[9] proposed the Kumaraswamy-G generator. [10] proposed the alpha power Marshall-Olkin-G
generator. [11] proposed the transmuted alpha power-G generator. [14] proposed the alpha
power transformation method of adding a new parameter. The beta transmuted-H generator was
proposed in [1]. Kumaraswamy Marshall-Olkin generator was proposed in [2]. [4] proposed the
transmuted Weibull-G generator. The transmuted odd log-logistic-G generator was proposed
in [5]. [6] proposed the log-gamma family of distributions. The exponentiated generalized-G
Poisson generator was proposed in [7]. [12] proposed the bivariate Gumbel-G generator. [16]
proposed the Topp Leone odd Lindley-G generator. Marshall-Olkin generalized-G generator
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was proposed in [20]. The transmuted Topp-Leone-G generator was proposed in [18]. Burr-X
generator was proposed in [19]. Of most important is the works of [13] who proposed the
exponentiated generalized Marshall-Olkin distribution. However, the exponentiated family of
distribution is contrary and different from the EMA-G family of distributions.

Thus, [15] proposed a one parameter model for adding a contemporary parameter with a pdf
g(t) = dG

dt such that G(t) is associated cdf for a random variable t. Then, its pdf can be expressed
as

g(t) =
βm(t)[

1− β̄M̄(t)
]2 f or β > 1, (1)

with a tilt parameter β̄ = (1− β) and M̄(t) = 1−M(t). The cumulative distribution function
(cdf) that corresponds to Equation (1) is expressed as

G(t) =
M(t)[

1− β̄M̄(t)
] f or β > 1. (2)

Redefining (1) and (2), we have the inverted Marshall-Olkin cdf and pdf as

M(t) =
βG(t)(

1− β̄G(t)
) . (3)

and
m(t) = β−1g(t)

(
1− β̄M(t)

)2 f or β > 1, (4)

where g(t) and G(t) are the parents pdf and cdf.
However, using the T-X characterization proposed by [3], the pdf of the exponential-G can be

expressed as
g(t) = α f (t)F̄(t)α−1 f or α > 0. (5)

The cdf that corresponds to Equation (3) is expressed as

G(t) = 1− F̄(t)α f or α > 0. (6)

The study introduces a generator for enhancing the performance and flexibility of distribution
with a better goodness-of-fit to real life data. The EMA-G model was applied to the Weibull,
Burrxii and Frechet distributions in a bid to investigate their performance and flexibility with glass
fibers data obtained from the UK National Physical Laboratory, breaking stress of carbon fiber data
and data from the Highway Traffic Safety Administration of accidents fatality rate in the United
States real life data (Vehicle fatalities in South Caroline for 2012, www.fars.nhtsa.dot.gov/states).
It is also motivated as a result of inefficiency in researched existing literature in distribution
theory and some results obtained from Weibull Frechet, Gompertz Weibull, Gompertz Burrxii,
transmuted Gompertz, Gompertz Frechet, Kumaraswamy Frechet models and to mention but for
a few.

The aim of this study is to introduce a new class of generator called the exponential Marshall-
Olkin-G (EMA-G) distribution using both the T-X and Marshall-Olkin characterizations that is
different from the exponentiated generalized Marshall-Olkin of [13].

2. The EMA-G method

Let g(t) and G(t) be the pdf and cdf of the Marshall-Olkin distribution respectively for a random
variable T ∈ <. Then, the pdf of the new class of generator is defined as

f (t) = αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 , α > 0 β > 1, (7)

with a baseline cdf and pdf given as M(t) and m(t) respectively. The cdf of Equation (5) is defined
as

F(t) = 1−
[

β(1−M(t))
β + (1− β)M(t)

]α

, α > 0 β > 1. (8)
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However, when β = 1 , α > 0, we obtained the exponential-G family of distribution. Also,
when β > 1 , α = 0, we obtained the usual Marshall-Olkin transformation of adding a one
parameter.

The survival rate, hazard rate, cumulative hazard rate, odd and reversed hazard rate functions
of the EMA-G distribution can be expressed respectively as

S(t) =
[

β(1−M(t))
β + (1− β)M(t)

]α

,

h(t) =
α m(t)[

1−M(t)
][

β + (1− β)M(t)
] ,

H(t) = −α

[
log(β(1−M(t)))− log(β + (1− β)M(t))

]
,

O(t) =
1−

[
β(1−M(t))

β+(1−β)M(t)

]α

[
β(1−M(t))

β+(1−β)M(t)

]α ,

and

r(t) =
αβα m(t)[1−M(t)]α−1

[β+(1−β)M(t)]α+1

1−
[

β(1−M(t))
β+(1−β)M(t)

]α .

The quantile function tu for a given EMA-G density when u ∈ (0, 1) is defined as

tu = M−1β(1− (1− u)
1
α )(β + (1− u)

1
α (1− β))−1. (9)

The skewness and kurtosis of the EAP-G density can be obtained respectively as

SK(tu) =
t0.25 + t0.75 − 2t0.5

t0.75 − t0.25
,

KU(tu) =
t0.875 + t0.125 − t0.625 − t0.375

t0.75 − t0.25
.

The performance of the skewness and kurtosis of the EMA-G models are given in Table 1
with the skewness as (SK), kurtosis denoted as (KU), 25th percent as (Q1), the median as (M),
and the 75th percent as (Q3) for some EMA-G models. The data set were generated with the
quantile function given in Equation (7) with different parameter values cases. The simulation
sub-model are Weibull, Burrxii and Frechet. The results of the simulation show that increase
in parameter estimates increases the skewness and kurtosis and decreases the median and the
quarters for Weibull, Burrxii and Frechect models. However, increase in parameter estimate
increases the quarters in Weibull, Frechet and Burrxii models. The EMA-G Burrxii model is left
skewed. Otherwise right skewed and the parameter values increases. The kurtosis increases as
parameter increases.
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Table 1: Results for goodness-of-fit with skewness, kurtosis, first quantile, median and third quantile for different
parament values cases for the EMA-G models

Distribution Parameter SK KU Q1 M Q3
α β λ µ

Weibull 0.5 1.0 0.5 0.5675 1.6591 0.6620 3.8436 15.3745
1.5 1.0 0.2136 0.4911 0.8109 1.8325 3.4094
2.0 2.0 0.5 0.0258 0.0631 1.0384 1.5536 2.0962
3.5 3.0 -0.0584 -0.0987 1.3414 1.7297 2.0751
5.0 5.0 -0.1064 -0.1864 1.5269 1.7783 1.9814
10.0 8.0 -0.1474 -0.2556 1.7290 1.8931 2.0150

1.5 1.0 0.5 0.5675 1.6591 0.1324 0.7687 3.0748
1.5 1.0 0.2136 0.4911 0.1621 0.3665 0.6818
2.0 2.0 2.5 0.0258 0.0631 0.2076 0.3107 0.4192
3.5 3.0 -0.0584 -0.0987 0.2682 0.3459 0.4150
5.0 5.0 -0.1064 -0.1864 0.3053 0.3556 0.3962
10.0 8.0 -0.1474 -0.2556 0.3458 0.3786 0.4030

2.5 1.0 0.5 0.5675 1.6591 0.0662 0.3843 1.5374
1.5 1.0 0.2136 0.4911 0.0810 0.1832 0.3409
2.0 2.0 5.0 0.0258 0.0631 0.1038 0.1553 0.2096
3.5 3.0 -0.0584 -0.0987 0.1341 0.1729 0.2075
5.0 5.0 -0.1064 -0.1864 0.1526 0.1778 0.1981
10.0 8.0 -0.1474 -0.2556 0.1729 0.1893 0.2015

Burrxii 0.5 1.0 0.5 0.9932 257.8495 4.6677 225.00 65025
1.5 1.0 0.8000 5.1096 0.2500 2.2500 20.25
2.0 2.0 0.5 0.5992 1.9455 0.0208 0.1240 0.5358
3.5 3.0 0.5141 1.4381 0.0111 0.0579 0.2035
5.0 5.0 0.4690 1.2171 0.0028 0.0138 0.0442
10.0 8.0 0.4122 1.0082 0.0015 0.0070 0.0201

1.5 1.0 0.5 0.5922 2.6458 1.3608 2.9541 9.1752
1.5 1.0 0.2162 0.5446 0.7578 1.1760 1.8250
2.0 2.0 2.5 0.0621 0.1398 0.4609 0.6587 0.8827
3.5 3.0 0.0099 0.0311 0.4072 0.5656 0.7273
5.0 5.0 -0.0182 -0.0243 0.3093 0.4247 0.5360
10.0 8.0 -0.0487 -0.0799 0.2753 0.3711 0.4580

2.5 1.0 0.5 0.4070 1.2491 1.1665 1.7187 3.0290
1.5 1.0 0.1094 0.2515 0.8705 1.0844 1.3509
2.0 2.0 5.0 -0.0182 -0.0287 0.6789 0.8116 0.9395
3.5 3.0 -0.0617 -0.1093 0.6381 0.7521 0.8528
5.0 5.0 -0.0859 -0.1521 0.5562 0.6517 0.7321
10.0 8.0 -0.1112 -0.1945 0.5246 0.6091 0.6767

Frechet 0.5 1.0 0.5 0.9109 16.6310 0.7316 6.0414 120.0417
1.5 1.0 0.7497 4.5117 0.8285 3.8322 24.8331
2.0 2.0 0.5 0.6019 2.3041 0.9609 3.1910 12.1653
3.5 3.0 0.5644 1.9297 1.6578 5.4552 19.0959
5.0 5.0 0.5134 1.5901 2.2939 6.8833 21.1601
10.0 8.0 0.5063 1.5110 4.6143 14.4425 44.4367
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Table 1 – Continued from previous page
Distribution Parameter SK KU Q1 M Q3

α β λ µ

1.5 1.0 0.5 0.4075 1.2536 0.5395 0.8230 1.4963
1.5 1.0 0.2640 0.6746 0.9630 1.3082 1.9011
2.0 2.0 2.5 0.1796 0.4158 1.7272 2.1958 2.8697
3.5 3.0 0.1465 0.3277 2.6644 3.3811 4.3439
5.0 5.0 0.1214 0.2635 4.2785 5.3301 6.6723
10.0 8.0 0.1052 0.2254 7.1662 9.0032 11.2725

2.5 1.0 0.5 0.2934 0.7643 0.5194 0.6414 0.8649
1.5 1.0 0.1826 0.4294 0.9813 1.1437 1.3788
2.0 2.0 5.0 0.1174 0.2589 1.8586 2.0956 2.3957
3.5 3.0 0.0862 0.1864 2.8272 3.1848 3.6099
5.0 5.0 0.0663 0.1405 4.6252 5.1624 5.7759
10.0 8.0 0.0490 0.1042 7.5716 8.4868 9.4963

In Table 1, increase in parameter decreases the skewness, kurtosis and the quartiles with
EMA-GWb model.

Theorem 1. The EMA-G density behaviour can be examined by investigating the characteristics
of f (t), W ′(t) and W ′′(t); where W(t) = In f (t).

Proof. Given that W(t) = In f (t), then

W(t) = α log β + log α + log m(t) + (α− 1) log(1−M(t))− (α + 1) log(β + (1− β)M(t)).

Thus,

W ′(t) =
m′(t)
m(t)

− (α− 1)m(t)
1−M(t)

− (α + 1)
(1− β)m(t)

β + (1− β)M(t)
.

However, F(t) is monotonically decreasing for all t if W ′ < 0 for all t. The mode is obtained when
W ′′ for α, β. More so, if f (t)′′ changes sign from negative to positive and to negative and again
positive as t increases viz-a-viz, then, the pdf of the EMA-G distribution will be bimodal. �

3. Special models

Some examples of the EMA-G family of distributions will be investigated for various parameter
cases. This is to enable us examine the model performance, flexibility and the goodness-of-fit.
The models examined include the Weibull (Wb), Frechet (F) and Burrxii (Br) distributions.

3.1. The EMA-GWb distribution

Let T be a random variable with the pdf and cdf (for t ≥ 0), say m(t) = λµλtλ−1exp(−(µt)λ) and
M(t) = 1− exp(−(µt)λ) respectively, (for µ > 0, λ > 0) of the Weibull density function. Then,
the pdf,cdf and hazard rate function of the EMA-GWb distribution for are expressed respectively
as

f (t) = αβα λµλtλ−1exp(−(µt)λ)[exp(−(µt)λ)]α−1

[β + (1− β)(1− exp(−(µt)λ))]α+1 , α > 0 β > 1, (10)

The corresponding cdf is defined as

F(t) = 1−
[

β(exp(−(µt)λ))

β + (1− β)(1− exp(−(µt)λ))

]α

, α > 0 β > 1, (11)
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and

h(t) =
α λµλtλ−1exp(−(µt)λ)[

exp(−(µt)λ)

][
β + (1− β)(1− exp(−(µt)λ))

] . (12)

Figure 1 shows the density functions for the EMA-GWb density for selected values of parame-
ters α, β, λ and µ. The plot in Figure 1 shows that the EMA-GWb density could be increasing,
decreasing or skewed depending on the values of the parameters.
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Figure 1: The plots of the EMA-GWb model for some parameter values cases

3.2. The EMA-GBr distribution

Let the pdf and cdf say (for λ > 0, µ > 0) of the Burrxii density be m(t) = λµtµ−1(1 + tµ)−(λ+1)

and M(t) = 1− (1 + tµ)−λ, respectively. Then, the pdf, cdf and hazard rate function of the
EMA-GBr density are expressed respectively as

f (t) = αβα λµtµ−1(1 + tµ)−(λ+1)[(1 + tµ)−λ]α−1

[β + (1− β)(1− (1 + tµ)−λ)]α+1 , α > 0 β > 1, (13)

The corresponding cdf is defined as

F(t) = 1−
[

β((1 + tµ)−λ)

β + (1− β)(1− (1 + tµ)−λ)

]α

, α > 0 β > 1, (14)
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and

h(t) =
α λµtµ−1(1 + tµ)−(λ+1)[

(1 + tµ)−λ

][
β + (1− β)M(t)

] . (15)
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Figure 2: The plots of the EMA-GBr model for some parameter values cases

Figure 2 shows the EMA-GBr density plot for selected values of parameters α, β, λ and µ. The
plot shows that the EMA-GBr density is increasing and decreasing.

3.3. The EMA-GF distribution

Let the pdf of the Frechet is expressed as m(t) = µλµt−µ−1e−(
λ
t )

µ
and the cdf as M(t) = e−(

λ
t )

µ

for positive parameters λ and µ. Then the pdf, cdf and hazard rate function of the EMA-GFr
model α ∈ <− {1} are expressed respectively as

f (t) = αβα µλµt−µ−1e−(
λ
t )

µ
[1− e−(

λ
t )

µ
]α−1

[β + (1− β)e−(
λ
t )

µ
]α+1

, α > 0 β > 1, (16)

The corresponding cdf is defined as

F(t) = 1−
[

β(1− e−(
λ
t )

µ
)

β + (1− β)e−(
λ
t )

µ

]α

, α > 0 β > 1, (17)
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and

h(t) =
α µλµt−µ−1e−(

λ
t )

µ[
1− e−(

λ
t )

µ

][
β + (1− β)e−(

λ
t )

µ

] . (18)
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Figure 3: The plots of the EMA-GF model for some parameter values cases

Figure 3 shows the density functions for selected values of parameters β, α, λ and µ. The
density plot shows that the EMA-GFr distribution can be increasing, decreasing or unimodal and
skewed to the left.

4. Statistical useful representation

A useful representation of the EMA-G family of distributions will be derived in this section. The
representation is used to study the statistical characteristics of the EMA-G distribution. This
representation will help to simplify the properties of the proposed EMA-G model. However,
for τ > 0, (a− b)τ = ∑τ

η=0(−1)η(τ
η)aτ−ηbη . Thus, the pdf and cdf of the EMA-G density can be

defined respectively as

f (t) =
∞

∑
r=0

α−1

∑
η=0

α(−1)η+r
(

α− 1
η

)(
α + r

r

)
β−r−1(1− β)rm(t)Mη+r(t) (19)

and

F(t) = 1−
∞

∑
r=0

α

∑
η=0

(−1)η+r
(

α

η

)(
α + r− 1

r

)
β−r(1− β)r Mη+r(t). (20)
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5. Statistical properties of the EMA-G distribution

This section investigated the statistical properties of the EMA-G family of distributions. These
properties include the moments, generating function, entropies, probability weighted moment,
moments of the residual and reversed residual lifes and order statistics.

5.1. The moments of the EMA-G distribution

The kth moment of the EMA-G density with random variable T for is expressed as

µ′k =
∞

∑
r=0

α−1

∑
η=0

Avior,η

∫ ∞

0
tkm(t)Mη+r(t)dt

=
∞

∑
r=0

α−1

∑
η=0

Avior,η Dt,

(21)

where

Avior,η = α(−1)η+r
(

α− 1
η

)(
α + r

r

)
β−r−1(1− β)r, Dt =

∫ ∞

0
tkm(t)Mη+r(t)dt.

The mean of Equation (21) is obtained when k = 1. The central moment of the random
variable T, say µψ and the cumulants (Koψ) of the random variable T can be obtained respectively
as

µψ =
ψ

∑
v=0

(−1)v
(

ψ

v

)
µ′v1 µ′ψ−r, (22)

and

Koψ = µ′ψ −
ψ−1

∑
v=0

(
ψ− 1
v− 1

)
Krµ′ψ−r, (23)

with Ko1 = µ′1.
The dth incomplete moment for, say ρd(s) of the EAP-G density can be obtained as

ρd(s) =
∞

∑
r=0

α−1

∑
η=0

Avior,η

∫ s

0
tsm(t)Mη+r(t)dt

=
∞

∑
r=0

α−1

∑
η=0

Avior,η Ds,

(24)

where
Ds =

∫ s

0
tsm(t)Mη+r(t)dt.

However, the Bonferroni and Lorenz curve can be obtained respectively as

B(p) =
ρ1(tp)

pµ′1
,

and

L(p) =
ρ1(tp)

µ′1
,

where tp is evaluated numerically from the quantile function in Equation (8) for probability p
More so, the mean deviation about the median, say M of T can be obtained as

δM =
∫ ∞

0
|T −M| f (t)dt = µ′1 − ρ1(M).

Also, the mean deviation about the mean of random variable T can be expressed

δµ =
∫ ∞

0
|T − µ′1| f (t)dt = 2µ′1F(µ′1)− ρ1µ′1,

with µ′1 = E[T] and F(µ′1) evaluated numerically from Equation (6).
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5.2. Probability weighted moments (PWM)

The estimate of the estimators of the parameters and the quantiles of the generalized distributions
can be derived using the PWMs of the EMA-G density. The (s, r)th PWM of T, say for s ≥ 0, r ≥ 1
is given as

PWMr,s =
∫ ∞

0
tr f (t)F(t)sdt

=
∞

∑
r=0

α

∑
η

Br,η Avior,η

∫ ∞

0
tsm(t)M(η+r)(φ+1)(t)dt

=
∞

∑
r=0

α

∑
η

Br,η Avior,ηQps

(25)

where

Br,η = (−1)η+r
(

α

η

)(
α + r− 1

r

)
β−r(1− β)r, Qp =

∫ ∞

0
tsm(t)M(η+r)(φ+1)(t)dt.

5.3. Generating function

The probability generating function of EMA-G density function of a random variable T is
expressed as

M(x) =
∞

∑
δ=0

(log x)δ

δ!

∫ ∞

1
tδ f (t)dt f or |x| > 1, t > 0

=
∞

∑
δ=0

∞

∑
r=0

α−1

∑
η=0

(log x)δ

δ!
Avior,η Lδ,

(26)

where
Lδ =

∫ ∞

1
tδm(t)Mη+r(t)dt.

More so, the moment generating function of the random variable T is given as

MT(x) =
∞

∑
r=0

α−1

∑
η=0

Avior,η Rψ (27)

where
Rψ =

∫ ∞

0
etxm(t)M(η+r)(φ+1)(t)dt.

5.4. Moments of the residual life and reversed residual life

The ηth moment of the residual life, say bη(x) = E[(T − x)η |T > x] for η = 1, . . . uniquely
determines M(t) (see [?]). However, the ηth moment of the residual life is given as

mη(x) =
1

1− F(x)

∞

∑
r=0

α−1

∑
η=0

η

∑
p=0

(−1)η−pxη−p
(

η

p

)
Avior,ηξp, (28)

where
ξp =

∫ ∞

x
tpm(t)Mη+r(t)dt.

Similarly, the ηth moment of the reversed residual life, say Mη(t) = E[(x− T)η |T ≤ x] for η > 0,
and η = . . . uniquely determines F(t) is given as

Mη(x) =
1

F(x)

∞

∑
r=0

α−1

∑
η=0

η

∑
u=0

(−1)η−uxη−u
(

η

u

)
Avior,ηϑu, (29)
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where
ϑu =

∫ x

0
tum(t)Mη+r(t)dt.

5.5. Order statistics

Let T1, T2, . . . , Tη is a random sample of size η from the f (t) distribution and T(1), T(2), . . . , T(η) be
the corresponding order statistics. Then, the probability density function of the kth order statistic
T(k), say fk(t) is given as

fk(t) =
η!(

k− 1
)
!
(
η − k

)
!

[
1−

[
β(1−M(t))

β + (1− β)M(t)

]α]k−1[[
β(1−M(t))

β + (1− β)M(t)

]α]η−k

× αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 .

(30)

The minimum order statistics is obtained when k = 1, while that of the maximum order
statistics is obtained when k = n.

5.6. Entropies

The Renyi entropy of the EMA-G random variable T measures the variation of the uncertainty is
given as

Renδ =
1

1− δ
log

∞

∑
r=0

δ(α−1)

∑
η=0

αδ(−1)η+r
(

δ(α− 1)
η

)(
δ(α + 1) + r− 1

r

)
β−r−1(1− β)rQRen, (31)

where QRen =
∫ ∞
−∞ mδ(t)Mη+r(t)dt. δ > 0, δ 6= 1.

The δ entropy Dδ(T) for δ > 0, δ 6= 1 is expressed as

Dδ =
1

1− δ
log
[

1−
∞

∑
r=0

δ(α−1)

∑
η=0

αδ(−1)η+r
(

δ(α− 1)
η

)(
δ(α + 1) + r− 1

r

)
β−r−1(1− β)r

]
. (32)

6. Estimation

In this section, we shall examine the Bernstein function and maximum likelihood estimation
of the EMA-G density. The maximum likelihood estimators of the model performance will be
investigated in terms of their means, biases, variance and mean squared errors using the Monte
Carlo simulation method. However, real life applications were also provided to examine the
flexibility, performance and potential of the EMA-G density.

6.1. The Bernstein estimation

The Bernstein polynomials were developed as a probabilistic proof of the Weierstrass Approxima-
tion Theorem (WAT) for continuous function say, f (t) on the closed interval [a, b] is defined in [?]
as

Bϕ(t, f ) =
ϕ

∑
φ=1

f
(

a +
φ− 1
ϕ− 1

(b− a)
)

αβα m(t)[1−M(t)]α−1

[β + (1− β)M(t)]α+1 , (33)

which converges to the true function, i.e. ‖Bϕ(t, f )− f (t)‖∞ ≡ supy≤t≤z | Bϕ(t, f )− f (t) |−→ 0,
as ϕ −→ ∞.

However, for a = 0, b = 1, and re-scaling Equation (33), we have the pdf of EAP-G model as

fϕ(t) =
∑

ϕ
φ=1 f

(
φ−1
ϕ−1

)
αβα m(t)[1−M(t)]α−1

[β+(1−β)M(t)]α+1

∑
ϕ
φ=1 f

(
φ−1
ϕ−1

) . (34)
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6.2. Maximum likelihood estimation

The maximum likelihood method is used to obtain the parameters estimates of the EMA-G
density. Let t = (t1, t2, t2, . . . , tη−1, tη) be a random sample from the EMA-G density with
unknown parameter vector ε. Then, the log-likelihood function ` of the EMA-G can be expressed
as

` =η log α + ηα log β +
η

∑
i=1

log m(t) + (α− 1)
η

∑
i=1

log(1−M(t))

− (α + 1)
η

∑
i=1

log(β + (1− β)M(t)).

(35)

The partial derivative of Equation (35) with respect to parameters α, β, ε and equating to zero
gives

∂`

∂α
=

1
η
+ η log β +

η

∑
i=1

log(1−M(t))−
η

∑
i=1

log(β + (1− β)M(t)) = 0, (36)

∂`

∂β
=

ηα

β
− (α + 1)

η

∑
i=1

1−M(t)
β + (1− β)M(t)

= 0, (37)

and
∂`

∂ε
=

η

∑
i=1

m′ε(t)
m(t)

− (α− 1)
η

∑
i=1

m(t)
1−M(t)

+
(α + 1)(1− β)m(t)

β + (1− β)M(t)
= 0. (38)

The unknown parameters estimate can obtained by solving the nonlinear Equations in (36), (37)
and (38) numerically using the Newton-Raphson algorithm in R, Matlap, Maple and Mathematica.

6.3. Simulations study

In order to examine performance of the EMA-G density, a Monte Carlo simulation is performed
and examined. The distributions considered include the Burrxii (Br), Frechet (F) and Weibull
(Wb) distributions.

The simulation study is carried out using n sample size by computing their mean estimates
(MEs), biases, variance and means squared errors (MSEs) of the maximum likelihood estimate
MLEs ( β, α, λ, µ) using Equation (7). The random samples used are 5, 10, 30, 50, 100, 150, 200, 300, 400,
and 500. The simulation was performed using (β̂ = 1.0, α̂ = 1.0, λ̂ = 1.5, µ̂ = 1.5). The bias is
estimated by (for Q = α, β, λ, µ)

B̂iasQ =
1

5000

5000

∑
ρ=1

(
Q̂ρ −Q

)
.

Also, the MSE is obtained as

M̂SEU =
1

5000

5000

∑
ρ=1

(
Q̂ρ −Q

)2

.

The results of the simulation is shown in Table 2. The results indicate that increase in sample
sizes decreases the mean, bias, variance and MSE and tends to zero.

7. Real life data application

This section investigated the empirical flexibility and performance of the EMA-G model with
a three real life data set. The test statistics of the EMA-GBr was also compared with the
Kumaraswamy Burr-XII (KBur), beta Burrxii (BBur), transmuted Burr-XII, lognormal Burr-XII
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Table 2: Monte Carlo simulation results for parameter estimates

Distribution n ME Bias Variance MSE
Weibull 05 1.18, 1.28, 2.07, 1.99 0.78, 0.28, 0.57, 0.30 1.53, 2.02, 2.43, 1.41 1.56, 2.11, 0.76, 1.50

10 1.26, 1.09, 1.82, 1.54 0.46, 0.09, 0.32, 0.14 1.09, 1.29, 1.20, 1.04 1.16, 1.30, 0.31, 1.07
30 1.12, 0.96, 1.65, 1.49 0.32, -0.03, 0.15, 0.05 0.57, 0.48, 1.07, 0.46 0.67, 0.49, 0.09, 0.46
50 1.02, 0.13, 0.61, 1.48 0.32, -0.06, 0.11, 0.02 0.39, 0.31, 0.24, 0.29 0.49, 0.31, 0.06, 0.29

100 0.68, 0.09, 0.58, 1.47 0.32, -0.09, 0.08, 0.01 0.24, 0.17, 0.09, 0.18 0.35, 0.18, 0.03, 0.18
150 0.45, 0.08, 0.57, 0.50 0.32, -0.11, 0.07, -0.01 0.18, 0.12, 0.07, 0.12 0.28, 0.13, 0.02, 0.12
200 0.12, 0.07, 0.57, 0.51 0.31, -0.12, 0.07, -0.01 0.14, 0.09, 0.07, 0.09 0.24, 0.11, 0.01, 0.09
300 0.02, 0.07, 0.56, 0.51 0.32, -0.12, 0.06, -0.01 0.11, 0.06, 0.06, 0.07 0.21, 0.08, 0.01, 0.07
400 0.02, 0.07, 0.55, 0.51 0.32, -0.12, 0.05, -0.01 0.09, 0.05, 0.01, 0.05 0.20, 0.07, 0.01, 0.05
500 0.02, 0.07, 0.55, 0.51 0.32, -0.12, 0.05, -0.01 0.08, 0.04, 0.01, 0.04 0.18, 0.06, 0.01, 0.04

Burrxii 05 1.65, 1.30, 2.18, 0.95 0.65, 0.30, 0.68, -0.54 2.06, 3.38, 0.95, 2.15 2.50, 3.48, 1.42, 2.45
10 1.62, 1.22, 1.85, 1.15 0.62, 0.22, 0.35, 0.34 1.71, 2.56, 0.32, 1.60 2.10, 2.61, 0.45, 1.72
30 1.53, 1.08, 1.64, 1.34 0.53, 0.08, 0.14, 0.15 0.80, 0.87, 0.09, 0.75 1.09, 0.88, 0.11, 0.78
50 0.48, 1.02, 0.60, 0.57 0.48, 0.02, 0.10, 0.12 0.54, 0.57, 0.06, 0.51 0.78, 0.57, 0.07, 0.53

100 0.44, 0.96, 0.57, 0.41 0.44, -0.03, 0.07, 0.08 0.31, 0.28, 0.03, 0.27 0.34, 0.28, 0.03, 0.28
150 0.42, 0.94, 0.05, 0.34 0.42, -0.05, 0.05, 0.05 0.21, 0.18, 0.02, 0.17 0.29, 0.19, 0.02, 0.17
200 0.41, 0.93, 0.05, 0.14 0.41, -0.06, 0.05, 0.05 0.17, 0.14, 0.01, 0.13 0.14, 0.15, 0.01, 0.14
300 0.41, 0.92, 0.04, 0.08 0.41, -0.07, 0.04, 0.04 0.12, 0.10, 0.01, 0.09 0.09, 0.10, 0.01, 0.09
400 0.01, 0.92, 0.04, 0.06 0.41, -0.07, 0.04, 0.03 0.10, 0.08, 0.01 0.07 0.07, 0.09, 0.01, 0.07
500 0.01, 0.92, 0.03, 0.01 0.41, -0.07, 0.03, 0.02 0.08, 0.06, 0.01 0.05 0.05, 0.07, 0.01 0.05

Frechet 05 1.97, 1.33, 1.75, 1.04 0.97, 0.33, 1.25, -0.45 3.21, 5.96, 0.13, 3.19 4.16, 6.07, 0.19, 3.40
10 1.94, 1.40, 1.63, 1.09 0.94, 0.40, 0.13, 0.40 2.75, 4.74, 0.05, 2.86 3.63, 4.90, 0.07, 3.03
30 1.72, 1.23, 1.54, 1.25 0.72, 0.23, 0.04, 0.24 1.07, 1.69, 0.01, 1.09 1.60, 1.75, 0.02, 1.15
50 0.64, 1.15, 0.53, 0.81 0.64, 0.15, 0.03, 0.18 0.61 0.92 0.01 0.59 1.02, 0.95, 0.01, 0.62

100 0.12, 1.02, 0.51, 0.69 0.52, 0.02, 0.01, 0.10 0.22, 0.30, 0.01, 0.25 0.49, 0.30, 0.01 0.26
150 0.08, 0.98, 0.51, 0.51 0.48, -0.01, 0.01, 0.08 0.13, 0.19, 0.01, 0.18 0.37, 0.19, 0.01 0.18
200 0.07, 0.96, 0.51, 0.42 0.47, -0.03, 0.01, 0.07 0.08, 0.12, 0.01 0.13 0.31, 0.12, 0.00 0.13
300 0.05, 0.94, 0.51, 0.22 0.45, -0.05, 0.01, 0.07 0.05, 0.07, 0.00, 0.09 0.26 0.07, 0.00, 0.09
400 0.04, 0.93, 0.51, 0.13 0.44, -0.06, 0.01, 0.06 0.04, 0.05, 0.00, 0.06 0.24, 0.05, 0.00, 0.06
500 0.04, 0.93, 0.51, 0.03 0.44, -0.06, 0.01, 0.06 0.03, 0.04, 0.00, 0.05 0.23, 0.04, 0.00, 0.05

(LogBur) and Gompertz Burrxii distributions. More so, the goodness-of-fit of the EMA-GWb
was compared with Gompertz Weibull (GW), alpha power Weibull (APW), transmuted Weibull
(TW), Kumaraswamy Weibull and alpha power inverted Weibull (APIW) distributions. Also,
the goodness-f-fit of the EMA-GF distribution is compared with the transmuted Marshall-Olkin
Frechet (TMFr), Weibull Frechet (WFr), Kumaraswamy Frechet (KFr), exponentiated Frechet
(EFr), and Marshall-Olkin Frechet (MFr) distributions. Finally, the goodness-of-fit of the EMA-G
models are compared with Exponentiated shifted exponential (ESE), Kumaraswamy Frechet (KFr),
gamma extended Frechet (GaFr), Generalized Lindley (GL) , beta Frechet (BFr), Alpha power
inverted exponential (APIE) distribution, and the Generalized inverted generalized exponential
(GIGE) distributions using the Akaike Information Criteria (AIC), Consistent Akaike Information
Criteria (CAIC), Bayesian Information Criteria (BIC), Hannan and Quinn Information Criteria
(HQIC), Anderson Darling (A), and Cramer-von Mises (W) test statistics.

The first data as used in [?], [?], [?], [?], [?], [?] [10], and [?] consist of 63 workers at the UK
National Physical Laboratory observations of strength of 1.5cm glass fibers in [?]. The results of
the test statistics are shown in Table 3.

Table 3: The statistics rating of the EMA-G distribution with glass fibres dataset with standard errors in parentheses

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 4.15(3.04)
EMA-GBr β̂ = 197.58(131.80) 35.89 36.58 44.46 39.26 0.19 1.06

λ̂ = 1.93(0.76)
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Table 3 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

µ̂ = 3.99(1.14)
α̂ = 15.09(69.05)

GBur β̂ = 36.95(98.24) 37.00 36.70 44.58 39.38 0.17 1.00
â = 2.06(0.64)
b̂ = 0.65(0.69)
â = 15.52(7.31)

KBur b̂ = 132.22(145.98) 47.20 47.89 55.78 50.57 0.42 2.29
α̂ = 1.36(0.57)
β̂ = 1.03(0.30)

α̂ = 15.09(69.05)
BBur β̂ = 36.95(98.24) 67.34 68.03 76.00 70.80 0.71 3.86

â = 2.06(0.64)
b̂ = 0.65(0.69)

α̂ = −0.92(0.11)
TBur β̂ = 0.58(0.14) 85.37 85.77 91.80 87.90 0.98 5.33

λ̂ = 5.80(1.22)
α̂ = 87.39(260.09)

LoGBur β̂ = 10.04(13.70) 305.08 305.49 315.49 309.30 32.11 197.6
â = 10.04(13.71)
b̂ = 0.37(0.59)

α̂ = 23.43(19.43)
EMA-GF β̂ = 0.01(0.01) 31.85 32.53 36.84 33.64 0.21 1.32

λ̂ = 0.73(0.08)
µ̂ = 23.52(11.09)

α̂ = 0.40(0.81)
WFr β̂ = 0.30(0.30) 38.80 39.48 47.38 42.17 0.25 1.36

â = 1.49(4.77)
b̂ = 16.85(20.48)
α̂ = 2.12(4.56)

KFr β̂ = 0.74(0.07) 47.63 48.31 56.18 52.84 0.31 0.57
â = 5.51(7.98)

b̂ = 857.35(153.94)
α̂ = 7.82(2.95)

EFr β̂ = 1.01(0.14) 50.50 50.70 56.70 52.80 0.31 0.58
µ̂ = 132.83(116.64)

α̂ = 0.66(0.06)
β̂ = 0.16(0.34) 56.51 57.11 65.10 59.81 0.16 1.29

TMFr â = 6.88(0.61)
b̂ = 376.27(246.84)

β̂ = 0.17(0.045)
MFr γ̂ = 6.48(0.56) 57.11 57.51 63.51 59.61 0.22 2.80

µ̂ = 161.612(91.50)
α̂ = 1.18(0.72)

EMA-GW β̂ = 21.83(6.98) 31.98 32.67 40.55 35.35 0.09 0.56
λ̂ = 0.91(0.25)
µ̂ = 2.98(1.22)
α̂ = 0.55(0.01)
β̂ = 0.23(0.01) 35.413 36.11 43.99 38.79 0.16 0.87

KW â = 0.74(0.01)
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Table 3 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

b̂ = 7.10(0.01)
α̂ = −0.51(0.28)

TW β̂ = 0.66(0.04) 36.69 37.38 45.26 40.06 0.22 1.13
λ̂ = 5.17(0.68)
α̂ = 6.57(8.04)

APW β̂ = 0.16(0.10) 38.19 38.59 44.62 40.72 0.18 0.97
λ̂ = 4.74(0.82)
α̂ = 0.23(0.82)

GW β̂ = 0.01(0.05) 38.38 39.07 46.95 41.75 0.24 1.29
â = 0.80(0.52)
b̂ = 5.62(0.51)

α̂ = 61.03(48.15)
APIW β̂ = 0.79(0.17) 82.59 83.00 89.02 85.13 0.99 5.30

λ̂ = 3.82(0.30)

Figures 4 and 5 shows the empirical densities and cdfs with the glass fiber data set for some
models. The quantile-quantile plots of some of the models for glass data are shown in Figure 6.
However, the plots of the EMA-G models performed favourably when compared to some existing
models.
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Figure 4: EMA-G density empirical pdf plots for glass fiber data

The second data consist of data set obtained from the National Highway Traffic Safety Admin-
istration on fatal accidents that occur on roads in the United States. The data represent the number
of vehicle fatalities for 39 counties in South Carolina for 2012 (www-fars.nhtsa.dot.gov/States) as
used in [?]. The test statistics are shown in Table 4. Figures 7 and 8 show the empirical density
and cdf of the EMA-G model.

Table 4: The statistics rating of the EMA-G distribution with vehicle fatalities dataset with standard errors in
parentheses

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 0.13(0.04)
EMA-GWb β̂ = 3.89(2.85) 314.12 315.29 320.77 316.50 0.03 0.26

λ̂ = 0.41(0.04)
µ̂ = 1.02(0.04)
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Table 4 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

α̂ = 2.45(2.13)
BW β̂ = 1.33(0.01) 315.56 316.74 322.22 317.95 0.14 0.47

â = 0.80(0.16)
b̂ = 12.90(0.01)
α̂ = 0.01(0.02)

APW β̂ = 0.01(0.01) 316.15 316.84 321.14 317.94 0.15 0.50
λ̂ = 1.33(0.22)
α̂ = 0.43(0.51)

TW β̂ = 0.04(0.02) 316.41 317.09 321.40 318.20 0.09 0.87
λ̂ = 1.34(0.17)
α̂ = 0.01(0.01)

GW β̂ = 4.73(2.46) 318.15 319.32 324.80 320.53 0.13 0.80
â = 0.28(0.58)
b̂ = 0.19(0.04)

α̂ = 69.69(107.78)
APIW β̂ = 4.25(1.88) 319.74 320.43 324.73 321.53 0.12 0.73

λ̂ = 1.25(0.14)
α̂ = 3.22(3.75)

EMA-GBr β̂ = 145.95(112.32) 314.43 315.61 321.08 316.82 0.03 0.25
λ̂ = 0.40(0.86)
µ̂ = 3.33(6.82)

â = 26.04(53.60)
KUBur b̂ = 63.01(0.55) 324.87 326.05 331.52 327.26 0.04 0.85

α̂ = 1.77(2.57)
β̂ = 0.23(0.18)

α̂ = 90.30(214.17)
BBur β̂ = 78.59(223.29) 326.24 327.42 332.89 328.63 0.05 0.85

â = 0.81(1.90)
b̂ = 0.18(0.24)

α̂ = 57.63(133.08)
LoGBur β̂ = 33.79(52.95) 326.13 327.31 332.79 328.52 0.77 0.92

â = 1.65(2.58)
b̂ = 0.23(0.31)
α̂ = 0.01(0.02)

EMA-GF β̂ = 2.51(2.23) 290.95 291.37 301.37 295.16 0.01 0.02
λ̂ = 0.98(0.98)
µ̂ = 0.54(0.27)
α̂ = 4.24(6.48)

WFr β̂ = 60.30(65.46) 311.27 312.44 317.92 313.65 0.03 0.26
λ̂ = 1.28(0.37)
µ̂ = 2.20(01.72)
α̂ = 5.52(0.00)

KFr β̂ = 78.42(71.71) 314.44 315.62 321.10 316.83 0.03 0.24
â = 0.26(0.05)
b̂ = 8.09(0.00)
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Figure 5: EMA-G density empirical cdf plots for glass fiber data
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Figure 6: EMA-G density Q-Q plots for glass data
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Figure 7: EMA-G density empirical cdf plots for vehicle fatalities data

7.1. Discussion

Two real life data sets were used to examine the performance of the EMA-G models. However, a
model is said to perform better than another if its value of the lowest Akaike Information Criteria
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Figure 8: EMA-G density empirical cdf plots for vehicle fatalities data

(AIC) is the smallest. However, in the real data cases investigated, the EMA-G distributions have
the lowest AIC value in glass fibres data and vehicle fatalities data respectively. Hence, it is said
to be better for these data sets under consideration and competes favourably with other existing
model for the data used.

8. Conclusion

This study introduces a new class of generator called EMA-G distribution in probability theory.
This generator extends the performance of some existing generators like the Gompertz, Weibull,
Frechet generators. Basic characteristics of the EMA-G distribution were examined. The EMA-G
generator was expressed as a linear form of the baseline distribution. The entropy and PWMs of
the proposed distribution were derived. The unknown parameters of the EMA-G density were
obtained by maximum likelihood. A simulation study of the EMA-G model was illustrated using
the Monte Carlo method. The simulation shows that the shape of the proposed distribution
could be skewed, unimodal, increasing or decreasing (depending on the value of the parameters
cases). The new distribution was applied to a real life data. It shows that the EMA-G distribution
performed better than some existing models in literature like APIE, APIW, GW, TW, APW, KW,
BBur, KBur, LoGBur, TMFr, TGGz, TGz, KGz, WFr, TMFr, EFr, and MFr.
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appendix

Abbreviations

A = Anderson Darling
AIC = Akaike Information Criteria
APIE = Alpha power inverted exponential
APIW = alpha power inverted Weibull
APW = alpha power Weibull
BBur = beta Burrxii
BFr = beta Frechet
BIC = Bayesian Information Criteria
CAIC = Consistent Akaike Information Criteria
EFr = exponentiated Frechet
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EMA-G = Exponential Marshall-Olkin-G
EMA-GBr = Exponential Marshall-Olkin-G Burrxii
EMA-GF = Exponential Marshall-Olkin-G Frechet
EMA-GWb = Exponential Marshall-Olkin-G Weibull
ESE = Exponentiated shifted exponential
GaFr = gamma extended Frechet
GBur = Gompertz Burrxii
GIGE = Generalized inverted generalized exponential
GL = Generalized Lindley
GW = Gompertz Weibull
HQIC = Hannan and Quinn Information Criteria
KBur = Kumaraswamy Burrxii
KFr= Kumaraswamy Frechet
KWb = Kumaraswamy Weibull
LogBur = lognormal Burrxii
MFr = Marshall-Olkin Frechet
TBur = transmuted Burrxii
TMFr = Marshall-Olkin Frechet
TW = transmuted Weibull
W = Cramer-von Mises
WFr = Weibull Frechet
UK = United Kingdom
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Abstract

This paper analyzes a steady-state finite buffer M/M/1 feedback queue with reverse balking, re-
verse reneging and multiple working vacations. The concept of reverse balking and reverse reneging
evolves from investment businesses wherein more the number of customers associated with a firm less
the probability of balking of a customer and similar is the case of reverse reneging. Furthermore, if a
customer is dissatisfied with the service provided, he or she may chose to rejoin the queue as a feedback
customer. The server exits for working vacations whenever the system becomes empty instead of staying
idle in the system. Vacation times and service times during working vacations are all independent ran-
dom variables following exponential distribution. The model’s steady-state system length distributions
are calculated using the matrix approach. Some performance characteristics and cost optimization using
ant colony optimization (ACO) are presented. Sensitivity analysis is performed using numerical results
which are shown in the form of tables and graphs.

Keywords: reverse balking, reverse reneging, feedback, multiple working vacations, ACO

1. Introduction

Queueing models with server vacations have been actively researched and successfully used
in manufacturing and production systems, service systems, communication systems, and other
fields over the last three decades. Working vacations (WV) are a form of vacation policy estab-
lished by Servi and Finn [13] wherein the server can provide service at a reduced rate rather than
shutting down altogether during the vacation period. Wu and Takagi [16] and Baba [2] extended
the M/M/1/WV queue to M/G/1 and GI/M/1 queues with working vacations, respectively.
Krishnamoorthy and Sreenivasan [8] analyzed an M/M/2 queue with one of the two servers in
working vacations. A survey on WV queues has been presented by Chandrasekaran et al. [4].

There is a growing trend to examine queueing systems from an economic perspective in order
to address customers’ unhappiness with waiting and desire for service. Customer impatience
has a damaging influence on businesses since it causes them to lose potential consumers, which
has a negative impact on the entire company. Balking and reneging are two queueing concepts
that are commonly used to depict customer impatience. In balking, if a customer sees a large

154



queue ahead of him, he may resist at joining the queueing system. In the case of reneging, the
customer joins the queue, waits for his service, and then departs the system without receiving
service if the wait time exceeds his expectations. The situation of impatient customers in a server
vacation period was investigated by Altman and Yechiali [1]. Yue, Yue and Xu [17] analyzed the
single server queueing systems with customer impatience and WV. A Markovian queueing
system with balking, reneging and WV has been studied by Vijaya Laxmi et al. [15].

In the above mentioned queueing models, the size of the system or the length of the queue
influences balking and reneging. The larger the system, the more balking occurs, and the same
is true with reneging. However, in the case of investment enterprizes, the number of customers
with a certain firm becomes an intriguing and appealing feature for potential investors. As a
result, the likelihood of joining such a company is high. In this scenario, the larger the system
size, the greater the number of consumers who join it. As a result, when the system size is high,
the chance of balking is low which is referred to as "reverse balking". Furthermore, having a
large number of investors with an investment firm instils trust in investors and helps them to
complete the term of their policies/bonds. That instance, when a firm has a big number of in-
vesting consumers, waiting customers will have more patience. When seen as a queueing system,
it is obvious that as the queue becomes longer, fewer consumers would renege, a phenomenon
known as "reverse reneging". Jain et al. [7] first incorporated the concept of reverse balking in
queueing theory. Kumar and Som [10] developed the concept of reverse reneging and incorpo-
rated into an M/M/1 queueing system with reverse balking. A heterogeneous two server queue
with reverse balking and reneging has been studied by Bouchentouf and Messabihi [3].

In queueing theory, feedback refers to a dissatisfied client rejoining the queue owing to poor
service quality. Rework is another example of a queue with feedback in industrial processes.
Tackacs [14] studied a single server queue with feedback to determine the stationary process for
the queue size. Shanthakumaran and Thangaraj [12] considered a single server feedback queue
with impatient customers. An M/M/1 feedback queueing model with retention of reneged
customers and balking has been studied by Kumar and Sharma [9]. Kumar et al. [11] developed
an M/M/1/N feedback queueing system with reverse balking.

To the best of our knowledge, the impatient attitude of customers in the reverse view has not
been explored in working vacations queues. Therefore, we intend to embed reverse balking and
reverse reneging in a feedback WV queue. In this article, we explore a finite buffer feedback WV
queue in which customers may balk or renege owing to impatience in the reverse notion. The
inter-arrival times, service times during regular service period, during WV period and vacation
times are presumed to be exponentially distributed. The matrix form solution of the steady-state
probabilities is found by putting the steady-state equations in block matrix form. The model’s
performance metrics, cost analysis using ACO are obtained. Tables and graphs have been used
to demonstrate certain numerical findings.

The rest of the paper is laid out as follows. The queueing model is described in Section 2,
followed by the steady-state equations and their solution in Section 3. In Section 4, we offer
different model performance metrics as well as a cost model. Section 5 contains the sensitivity
analysis followed by conclusions in Section 6.

2. Model description

Consider an M/M/1/N feedback queueing system with reverse balking, reverse reneging and
WV. According to a Poisson process with an arrival rate λ, customers arrive one at a time.
When the system is unoccupied, a new customer has a probability q of joining the system and a
p = (1 − q) probability of not joining. When there are i customers ahead of him in the system,
let bi indicate the probability that the customer will join the queue or balk with probability 1− bi.
Furthermore, we assume that b0 = q and bN = 0. The assumption of reverse balking has been
incorporated with bi+1 > bi, 1 ≤ i ≤ N − 1.

After joining the queue each customer will wait a certain length of time which is exponen-
tially distributed with mean 1/α. When there are i customers in the system, the average rate of
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reverse reneging of a customer is given by (N − (i − 1))α, , 1 ≤ i ≤ N.
If a customer receives service and finds it unsatisfactory, it can return to the system as a

feedback customer with a probability q1 or depart with a probability p1 = 1 − q1.
A single server serves the customers on a first-come first-served basis with a service rate that

follows an exponential distribution with mean 1/µ. When the system gets empty, the server
takes WV. If there are waiting customers in the line after a vacation expires, the server resumes
regular service; otherwise, he departs for another WV. During the vacation time, the server
stays active and provides service at a different service rate to the arriving customers. This type
of working vacation is called multiple working vacations (MWV).

The vacation times and service times during WV are assumed to follow Poisson distribution
with parameter ϕ and η, respectively. The inter-arrival times, vacation times, service times
during regular service and during working vacation are mutually independent.

3. Analysis of the model

In this section, the Markov process is used to build the steady-state probability equations and
the matrix technique is adopted to determine steady-state probabilities. Let π0,i, 0 ≤ i ≤ N,
be the probability that the server is on WV when there are i customers in the system, and
π1,i, 1 ≤ i ≤ N, be the probability that there are i customers in the system while the server is in
regular service period. The steady-state equations are derived using the Markov process as:

λb0π0,0 = u1π0,1 + v1π1,1, (1)

ziπ0,i = λbi−1π0,i−1 + ui+1π0,i+1, 1 ≤ i ≤ N − 1, (2)

zNπ0,N = λbN−1π0,N−1, (3)

t1π1,1 = v2π1,2 + ϕπ0,1, (4)

tiπ1,i = λbi−1π1,i−1 + vi+1π1,i+1 + ϕπ0,i, 2 ≤ i ≤ N − 1, (5)

vNπ1,N = λbN−1π1,N−1 + ϕπ0,N , (6)

where for 1 ≤ i ≤ N, ui = ηp1 + (N − i + 1)α; vi = µp1 + (N − i + 1)α; zi = λbi + ϕ + ui; ti =
λbi + vi.

3.1. Matrix solution

In this subsection, the steady-state probabilities πj,i, j = 0, 1; j ≤ i ≤ N, are obtained by solving
the system of equations (1) to (6) using matrices.

Let Π = (Π0, Π1) be the steady-state probability vector, where Π0 = (π0,0, π0,1, π0,2, ..., π0,N)
and Π1 = (π1,1, π1,2, ..., π1,N). The equations (1) to (6) can be written in matrix form as

ΠQ = 0, (7)

Πe = 1, (8)

where e is a column vector with each component equal to unity and the Markov process’s
transition rate matrix Q has the block form:

Q =

(
Avv Avb
Abv Abb

)
.

The elements of the matrices Avv, Avb, Abv and Abb are given by

Avv =


−λb0 , if i = j = 1,
λbi−1 , if i = j − 1, j ≥ 2,

ui−1 , if i = j + 1,
−zi−1 , if i = j, j ≥ 2,

0 , otherwise
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Avb =

{
ϕ , if i = j + 1,
0 , otherwise

Abv =

{
v1 , if i = j = 1,
0 , otherwise

Abb =


−ti , if i = j,
λbi , if i = j − 1, j ≥ 2,

vi , if i = j + 1,
0 , otherwise.

Avb is a (N + 1)× N matrix, Abv is a N × (N + 1) matrix, Avv and Abb are square matrices of
orders N + 1 and N, respectively.
Based on the partition Π = (Π0, Π1), equations (7) and (8) can be written as:

Π0Avv + Π1Abv = 0, (9)

Π0Avb + Π1Abb = 0, (10)

Π0e0 + Π1e1 = 1, (11)

where e0, e1 are column vectors of order N + 1 and N, respectively, with each component as 1.
From (9), we have

Π0 = −Π1AbvAvv
−1. (12)

Using (12) in (10) and (11), we get

Π1

(
I − AbvAvv

−1AvbAbb
−1
)
= 0, (13)

Π1

(
e1 − AbvAvv

−1e0

)
= 1. (14)

The matrices Abv and Avb can be written as

Abv =

(
v1 O1
O2 O3

)
N×(N+1)

, Avb = ϕ

(
O1

IN×N

)
(N+1)×N

,

where O1, O2 and O3 are zero matrices of order 1× N, (N − 1)× 1 and (N − 1)× N, respectively.
Let Avv

−1 = [ai,j](N+1)×(N+1) and w denote the first row of Avv
−1, i.e., w = (a11, a12, ..., a1,N+1),

then

AbvAvv
−1 =

(
v1w
O4

)
N×(N+1)

, (15)

where O4 is a zero matrix of order (N − 1)× (N + 1).
Now,

AvbAbb
−1 = ϕ

(
O1

Abb
−1

)
. (16)

From (15) and (16), we have

AbvAvv
−1AvbAbb

−1 = v1ϕ

(
w0Abb

−1

O3

)
, (17)

where w0 = (a12, a13, . . . , a1,N+1).

Let us partition Π1 as
[
π1,1, Π̃1

]
where Π̃1 = [π1,i, 2 ≤ i ≤ N]1×(N−1). From (13) and (17), we

have [
π1,1, Π̃1

]
=
[
π1,1, Π̃1

] ( v1ϕw0Abb
−1

O3

)
.
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Hence, the system length probabilities of regular service period are given by

π1,i = π1,1v1ϕw0Abb
−1ϵi, 1 ≤ i ≤ N,

where ϵi is a column vector whose ith component is unity and the remaining components are
zero. From (12) and (15), the system length probabilities of server being in WV are given by

[π0,0, π0,1, . . . , π0,N ] = −[π1,1, Π̃1]

(
v1w
O4

)
.

Hence,

π0,i = −π1,1v1wϵi+1, 0 ≤ i ≤ N.

Using the normalization condition ∑1
j=0 ∑N

i=j πj,i = 1, the only unknown π1,1 is obtained as

π1,1 =

(
v1ϕ

N

∑
i=1

w0Abb
−1ϵi − v1

N

∑
i=0

wϵi+1

)−1

.

This completes the evaluation of steady-state probabilities.

4. Performance measures

Once the steady-state probabilities are determined, several model performance measures may be
calculated. The average number of customers in the system (ls), the probability that the server is
busy with regular service (pb) and the probability that the server is in WV (pwv) are given by

ls =
N

∑
i=1

i (π0,i + π1,i) ; pb =
N

∑
i=1

π1,i ; pwv =
N

∑
i=0

π0,i.

The average reverse balking rate (br), the average reverse reneging rate (rr) and the average rate
of loosing a customer due to impatience (lr) are obtained as

br =
N

∑
i=0

λ(1 − bi)π0,i +
N

∑
i=1

λ(1 − bi)π1,i ; rr =
N

∑
i=1

α(N − i + 1) (π0,i + π1,i) ; lr = br + rr.

4.1. Cost model

The total expected cost function per unit time is formulated in this subsection with service rates
as the decision variables. Our goal is to figure out the best service rates that minimize the total
expected cost function. The cost parameters are assumed to be:

• Cls− holding cost per unit time,

• Clr− cost incurred when a customer is lost due to impatience,

• Cµ− cost per service during regular service period,

• Cη− cost per service during WV period,

• C f µ− cost per service for a feedback customer during regular service period,

• C f η− cost per service for a feedback customer during WV period.

The total expected cost (tec) is defined as:

tec = Clsls + Clrlr + µ(Cµ + q1C f µ) + η(Cη + q1C f η).

K. Jyothsna, P. Vijaya Laxmi, P. Vijaya Kumar
M/M/1/N FEEDBACK QUEUE WITH IMPATIENT CUSTOMERS AND WV

RT&A, No 1 (67)
Volume 17, March 2022

158



Analytical optimization of the aforementioned cost model is a tedious job due to the complexity
of the cost function. As a result, we have used the ACO developed by Colorni et al. [5] and
Dorigo et al. [6] to find the best values for µ and η. A brief algorithm of ACO is given below:
Algorithm for ACO
Step 1: Consider a suitable number of ants in the colony (B). Assume a set of permissible
discrete values for each of the n design variables xij as xi1, xi2, ..., xip (i = 1, 2, ..., n). Assume

equal amounts of pheromone τ
(1)
ij initially along all the arcs. The superscript to τij denotes the

iteration number. For simplicity, τ
(1)
ij is assumed to be 1. Set the iteration number l = 1.

Step 2: (a) Compute the probabilities (pij) of selecting the arc xij as

p(l)ij =
τ
(l)
ij D(β)

ij

∑
p
m=1[τ

(l)
im D(β)

im ]
; i = 1, 2, ..., n; j = 1, 2, ..., p,

where τij is a pheromone amount between arc i and arc j, Dij is a reciprocal of the distance
between arc i and arc j, β is the parameter that allow a user control on the relative importance
of trail versus visibility.
(b) The specific path (or discrete values) chosen by the kth ant can be determined using random
numbers generated in the range (0, 1). For this, we find the cumulative probability ranges asso-
ciated with different paths based on the probabilities given by above equation. The specific path
chosen by ant k will be determined using the roulette-wheel selection process in step 3(a).
Step 3: (a) Generate B random numbers r1, r2, ..., rB in the range (0, 1), one for each ant. De-
termine the discrete value or path assumed by ant k for variable i as the one for which the
cumulative probability range (found in step 2 (b)) includes the value ri.
(b) Repeat step 3 (a) for all design variables i = 1, 2, ..., n.
(c) Evaluate the objective function values corresponding to the complete paths (design vectors
X(k) or values of xij chosen for all design variables i = 1, 2, ..., n by ant k, k = 1, 2, ..., B):

fk = f (X(k)); k = 1, 2, ..., B.

Determine the best and worst paths among the B paths chosen by different ants as follows:

fbest = min
k=1,2,...,B

fk, fworst = max
k=1,2,...,B

fk.

Step 4: Test for the convergence of the process. The process is assumed to have converged if
all the B ants take the same best path. If convergence is not achieved, assume that all the ants
return home and start again in search of food. Set the new iteration number as l = l + 1, and
update the pheromone on different arcs as

τij = τ
(old)
ij + ∑

k
∆τ

(k)
ij ,

where τ
(old)
ij denotes the pheromone amount of the previous iteration left after evaporation, ∆τ

(k)
ij

is the amount of pheromone deposited on arc i and arc j by the best ant k and are taken as

τ
(old)
ij = (1 − ρ)τij,

∆τ
(k)
ij =


ξ fbest
fworst

; if (i, j) ∈ global best tour,

0 ; otherwise,

where ρ ∈ (0, 1] is the evaporation rate (also known as the pheromone decay factor) and ξ is
the parameter used to control the scale of the global updating of the pheromone. With the new
values of τij, go to step 2. Steps 2, 3, and 4 are repeated until the process converges. In some
cases, the iterative process may be stopped after completing a prespecified maximum number of
iterations (lmax).

The complexity of the algorithm is O(lϱ2B) where l is the number of iterations, ϱ is the
number of nodes and B is the number of ants.
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Table 1: Various performance measures of the model for different λ and q1

λ=1.0 λ=1.7 λ=2.4
q1 = 0.6 q1 = 0.2 q1 = 0.6 q1 = 0.2 q1 = 0.6 q1 = 0.2

ls 0.038536 0.027681 0.092328 0.052341 0.407215 0.094482
pb 0.002170 0.001060 0.006109 0.002123 0.036461 0.004367

pwv 0.997830 0.998930 0.993891 0.997876 0.963538 0.995632
br 0.947901 0.948532 1.606110 1.610020 2.237570 2.266750
rr 0.034617 0.025827 0.061203 0.044884 0.092589 0.065255
lr 0.982518 0.974359 1.667310 1.654901 2.330160 2.332010

Table 2: Effect of α on the performance measures

α = 0.5 α = 1.0 α = 1.5
ls 0.015341 0.008061 0.005467
pb 0.000244 0.000071 0.000033

pwv 0.999756 0.999929 0.999966
br 1.613650 1.614230 1.614530
rr 0.073773 0.079008 0.080914
lr 1.687420 1.693310 1.695440

5. Sensitivity analysis

In this section, tables and graphs have been used to display certain numerical results. We fix
the capacity of the system as N = 10 and the balking function is taken as bi = i/N, 1 ≤ i ≤
N − 1, bN = 0. The various parameters of the model are chosen to be λ = 1.7, µ = 2.0, η =
1.2, ϕ = 0.1, q = 0.05, α = 0.1, q1 = 0.3, unless they are considered as variables or their values
are mentioned in the respective tables and figures. For employing the ACO, we have arbitrarily
chosen the following: n = 2, B = 3, ϱ = 40, l = 100, β = 0.5, ξ = 2, ρ = 0.5 and the distances
between the arcs are obtained using the RandomReal function of Mathematica software.

Table 1 shows the model’s performance metrics for various values of λ and q1. All the
performance measures, with the exception of pwv and br, drop as q1 lowers, whereas pwv and br
rise as q1 decreases for fixed λ. Further, increase in λ results in a drop in pwv, whereas increase
in λ results in the increase of the remaining performance metrics.

Table 2 shows the influence of α on the model’s performance measures. With the rise of α, a
rising trend can be noticed in pwv, br, rr and lr while a declining trend can be found in ls and pb.

Figure 1 shows the influence of µ on the server’s state probabilities for various values of
the vacation parameter (ϕ). The picture illustrates that when µ grows, the probability of the
server being busy with regular service (pb) decreases while the probability of the server being
on vacation (pwv) increases. Furthermore, as the vacation parameter (ϕ) is increased, pb grows
while pwv decreases for any µ.

The impact of λ on the average number of customers in the system (ls) in models with and
without reverse balking and reverse reneging is shown in Figure 2. From the graph, one may
observer that in either of the models ls increases with the increase of the arrival rate λ. Further,
the queue lengths are lower in models with reverse balking and reverse reneging when compared
to models without reverse balking and reverse reneging.

Figure 3 displays the effect of service rates µ and η on the average rate of loosing a customer
(lr). With the increase of both µ and η, the average rate of loosing a customer decreases. We can
carefully setup the service rates µ and η in the system in order to ensure the minimum average
rate of loosing a customer due to impatience.
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Table 3: Optimum service rates and the corresponding minimum tec.

ϕ 0.06 0.08 0.1
Case 1 (µ∗, η∗) (0.606627, 0.393620) (0.648424, 0.295251) (0.679539, 0.213562)

tec∗ 65.9207 65.3714 64.7454
Case 2 (µ∗, η∗) (0.613050, 0.539007) (0.656637, 0.446063) (0.689743, 0.366756)

tec∗ 70.8644 70.5699 70.1348
Case 3 (µ∗, η∗) (0.608498, 0.390333) (0.650509, 0.291586) (0.681784, 0.209613)

, tec∗ 57.5689 57.0077 56.3712
Case 4 (µ∗, η∗) (0.557353, 0.457533) (0.597739, 0.360028) (0.628019, 0.278463)

tec∗ 68.8265 68.4826 68.0101
Case 5 (µ∗, η∗) (0.695438, 0.199822) (0.737154, 0.101221) (0.768531, 0.018769)

tec∗ 67.9667 66.7260 65.5257
Case 6 (µ∗, η∗) (0.590782, 0.413392) (0.632152, 0.315211) (0.662999, 0.233546)

tec∗ 66.8187 66.3317 65.7522
Case 7 (µ∗, η∗) (0.622554, 0.356552) (0.664430, 0.257807) (0.695557, 0.175969)

tec∗ 66.3707 65.703 64.9789

Table 4: Optimum service rates and the corresponding model characteristics for various model parameters

(µ∗, η∗) tec∗ ls pb pwv lr
1.5 (0.560865, 0.053717) 53.0653 0.291992 0.027470 0.972530 1.486520

λ = 2.0 (0.856029, 0.449138) 82.0273 0.355744 0.032820 0.967180 1.955930
2.5 (1.145080, 0.832582) 110.272 0.415343 0.037775 0.962225 2.421721
0.1 (0.533546, 0.289963) 55.1871 0.231776 0.021178 0.978822 1.672162

q1 = 0.2 (0.597385, 0.258192) 59.5429 0.269601 0.024895 0.975105 1.673490
0.3 (0.679539, 0.213562) 64.7454 0.318140 0.029674 0.970325 1.674791
0.04 (1.021179, 0.862099) 91.8238 0.332031 0.034453 0.965547 1.625062

α = 0.08 (0.782366, 0.436608) 73.5377 0.320756 0.030862 0.969137 1.659655
0.12 (0.572881, 0.022225) 81.3452 0.304472 0.027703 0.972297 1.687794

Table 3 presents the optimum values of the service rates (µ∗, η∗) that minimize the total
expected cost (tec) for different values of ϕ and for the following cost values:
Case 1: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 2: Cls = 60, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 3: Cls = 40, Clr = 10, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 18,
Case 4: Cls = 40, Clr = 15, Cµ = 30, Cη = 20, C f µ = 22, , C f η = 18,
Case 5: Cls = 40, Clr = 15, Cµ = 25, Cη = 27, C f µ = 22, , C f η = 18,
Case 6: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 27, , C f η = 18,
Case 7: Cls = 40, Clr = 15, Cµ = 25, Cη = 20, C f µ = 22, , C f η = 22.

One may observe from the table that for any set of cost values with the increase of ϕ, µ∗

increases while tec∗ and η∗ decrease.
The values of the service rates that minimize the total expected cost are presented in Table 4

along with the corresponding performance metrics for λ, q1, α and the cost values in Case 1. It
is clear from the table that an increase in λ or q1 results in the increase of µ∗, tec∗, ls, pb and lr
while pwv decreases with λ or q1. One may note that η∗ increases with λ and decreases with q1.
On the otherhand increase in α leads to the decrease of all the values except pwv and lr.
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6. Conclusions

We investigated a Markovain feedback queue with reverse balking, reverse reneging, and work-
ing vacations in this study. Using the matrix technique, we have obtained the steady-state prob-
abilities. Different performance measures, cost analysis using ACO and numerical findings in
the form of tables and graphs are sketched out to show the influence of the system parameters.
The provided approach has the potential to be utilized in a variety of investment business areas,
including insurance, mutual funds, banking and so on. The current model may be expanded
to a renewal input feedback queue with working vacations under reverse balking and reverse
reneging in future.
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Abstract 
 

The safety concept is primarily examined in this study considering the most fatal accidents in 
aviation history with human, technical, and sabotage/terrorism factors. Although the aviation 
industry was started with the first engine flight in 1903, the safety concept has been examined since 
the beginning of the 1950s. However, the safety concept was firstly examined with technical factors, 
in the late 1970s, human factors have started to analyze. Despite these primary causes, there have 
other factors which could have an impact on accidents. So, the purpose of the study is to determine 
the affecting factors of the most fatal 100 accidents including aircraft type, distance, flight phase, 
primary cause, number of total passengers, and time period by classifying survivor/non-survivor 
passengers. Logistic regression and discriminant analysis are used as multivariate statistical 
analyses to compare with the machine learning approaches in terms of showing the algorithms’ 
robustness. Machine learning techniques have better performance than multivariate statistical 
methods in terms of accuracy (0.910), false-positive rate (0.084), and false-negative rate (0.118). In 
conclusion, flight phase, primary cause, and total passenger numbers are found as the most 
important factors according to machine learning and multivariate statistical models for classifying 
the accidents’ survivor/non-survivor passengers. 

 
Keywords: machine learning; primary causes; fatal aviation accidents; 
classification of survivor/non-survivor passengers; multivariate statistical 
analysis. 

 
 

I. Introduction 
 
Aviation safety specialists and researchers have determined that aircraft accidents (fatal) and 

incidents (non-fatal) are almost caused by a sequence of events, each one which is consolidated with 
several cause factors. Hence, the cause of accidents and incidents has lots of perspectives. The 
international admitted descriptions in the status of the aircraft accident and/or incident 
investigations are classified below [1]: 

 
- Causes are activities, failures, cases, situations, or combinations therefrom which lead to an 

accident and/or incident. 
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- Accidents are cases related to the aircraft operation that people board an aircraft about the 

purpose of flight till the time all people have disembarked, which ends in one or more cases below: 
 
          - Fatally or seriously injured of a person. 
 
          - Continuing damage or structural failure of the aircraft that negatively influences the 

mechanical structure, performance, and flight characteristics of the aircraft. These issues would 
generally need grand maintenance and overhaul of the influenced component. 

 
          - If the aircraft is missed or entirely unattainable. 
 
- Furthermore, incidents are defined as cases, and they differ from accidents related to the 

aircraft operation which influence or could affect operational safety [1]. 
 
The safety of aviation is constructed on reactive examinations of previous accidents and the 

introduction of reformative strategies to prevent the repetition related to this kind of incident. For 
this reason, according to the development in worldwide air traffic, civil aviation research has 
operated by the requirement to guarantee safety [2]. Although the safety of aviation was presented 
by the Civil Aeronautics Authority in 1938, it developed with a substantial trend later in the 1990s 
[3]. Oster, et al. [4] emphasized that the worldwide air transportation accident and/or incident ratio 
was one accident and/or incident in each 1.6 million flights with a development trend of 42% since 
2000. This ratio shows that the positive evaluation of safety is related to the consequence of the ultra-
safe civil aviation industry. This situation is specifically appropriate for leaders and managers in a 
civil aviation industry liable for providing and enhancing ultra-safe performance, however, 
meanwhile directing the demand for strategic business purposes [5]. The safety of civil aviation 
relies on the operation process of all elements in the system that unluckily can not be performed 
risk-free. It is mostly known that human factors can be the causes. These factors are included in 
aviation accidents. The researches have conventionally intensified related to the errors of flight crew 
personnel and air traffic controllers. A growing number of maintenance and examination errors have 
increased the requirement of research and studies related to human factors [6]. 

 
Besides safety, the primary problem behind the application of aviation security is related to the 

ideal distribution of limited resources for the purpose of decreasing the possibility of a judgment. 
This judgment has two significant purposes. The first purpose is related to resources dedicated to 
defense operations of any kind (including aviation security) that do not straight improve economic 
prosperity (rather such operations serving to prohibit possible declines in prosperity). When it is 
needed to compel consume sources, it is significant to preserve the decline of existing investment in 
capital funds. These sources are related to technology, production, and expenditure of commodities 
and services. Secondly, given a finalized income distributed to the common service of domestic 
protection, the sources used for aviation security demonstrating a decrease in resources available to 
preserve non-aviation purposes. Furthermore, the source distribution problem is complicated for 
strategic decisions such as; security risks, and native disastrous risks in aviation. For instance, if it is 
decided to distribute more sources to guarantee buildings are earthquake-proof, this does not alter 
the possibility of an earthquake happening. Although, if it is allocated comparatively more sources 
to one aviation security measure, it is being anticipated to implement the reaction of terrorists and 
potential preventions about the possibilities of attack modes [7]. 

 
Besides security, aviation safety is a crucial term and the investigation of accidents plays a 
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significant role in the risk management concept. This concept is very important to prohibit aviation 
accidents. The safety of aviation is a key issue for survival, prestige, an international reputation, and 
passenger trustworthiness in airlines. In the previous years, air transportation in the aviation 
industry has developed immensely, and the safety condition has also evolved importantly [8]. 
Furthermore, the investigation process of safety in risk management is harder to analyze human 
error than to detect the effects of the failures in mechanical structure in aircraft accidents. In civil 
aviation, specialists of the human factors have primarily given attention to bio-psychological 
perspectives like physical characteristics, cognitive operations, visual abilities, and decision-making 
[9]. 

 
In addition to the safety of aviation, the development in the safety of flight has a fundamental 

objective in all phases of the aviation industry. To prevent and decrease risks in aviation, the rules 
of flight safety are significant to evaluate measures that are accepted globally. The sustainability of 
the effort with cooperation between stakeholders of the aviation industry is related to the decreasing 
trend in aviation fatalities (the accidents which ended with death) which have decreased since the 
publication of the ICAO Safety Management System (SMS) Document 9859. In addition to the 
fatalities, the accident rates have also shown a decreasing trend [10]. For instance, in Japan between 
the years of 1974 and 2010, the crashes of aircraft excluding Self-Defence Forces have happened an 
average of more than 10 times a year. This accident rate has been quite high although Japan’s 
economy has been at a good level as a member of G8 countries. Besides Japan, after 2010 with the 
usage of the Safety Management System (SMS), the accident rates have entered a downward trend. 
The level of gross domestic product (GDP) has importance in the aviation industry covers the aircraft 
usage that became widespread and popular module of transportation for all citizens regardless of 
whether poor or rich. Presently, billions of citizen’s national and international travel are actualized 
by aircraft. Though the increasing demand for air transportation, the number of accidents has a 
decreasing trend for the last 40 years. This is because aircraft accidents have been prevented 
efficiently with the aid of advanced technological innovations in the aviation industry [11]. 

 
To analyze the issue of human factors, the safety of aviation has altered from being reactive to 

being proactive applying safety management systems (SMS). Therefore, Brown, et al. [12] specified 
that every accident is stemmed from an unsuccessful organization. Because of this situation, airlines 
should comprise the issues which cover the organization and management issues in their SMS to 
direct air safety in a universal aspect [13]. Although, the base reasons for accidents are generally 
constituted of many complicated, and connected concepts inside the organizational level. These 
connected concepts include organizational management structure and management issues are 
explained with the description of latent factors. These factors have become progressively significant, 
however, little significance has been given to describing what composes a powerful SMS and the 
connections between the issues in an SMS [14]. 

 
Furthermore, the safety of aviation is an important term related to providing the protection of 

airlines' and air companies' reputation, passenger reliance, and brand image at the international 
level. In the last years, air transportation in the civil aviation industry has expanded dramatically, 
and the safety concept has also expanded immensely too. Despite this increased level, the accident 
rate of air transportation has decreased day by day at the global level. It can be understood that civil 
aviation safety has increased the attention of the public on the global level like the accidents rate of 
air Transportation with the amendments in safety regulations. So, it can be understood from this 
definition that the accident rates in general aviation have not decreased, so the new safety 
regulations have not been effective. Except for general aviation, civil aviation accident rates tend to 
decline significantly despite the increasing number of flights [8]. 
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In light of these explanations, the most fatal 100 aviation accidents are analyzed with different 

variables to provide a detailed justification for all-time aviation accidents. The purpose of the study 
is to determine the affecting factors including aircraft type, distance, flight phase, primary cause, the 
number of total passengers, and time period of the most 100 fatal accidents by classifying 
survivor/non-survivor with the machine learning approach. In the machine learning approach, the 
aircraft type is examined in three classifications named Boeing, Airbus, and other brands. Distance 
is examined in three classifications named short-haul (0-3 hour flights), medium-haul (3-6 hour 
flights), and long-haul (6 and/or more hour flights). The flight phase is examined in three 
classifications named flight, landing, and take-off. The primary cause of the accident is examined in 
three classifications named human factor, technical, and terrorism/sabotage. The number of total 
passengers is examined in two classifications named affected, non-affected passengers from the fatal 
accident. The time period is examined in four classifications named between 06-12, 12-18, 18-24, and 
24-06. In section 2, the prior studies that cover machine learning is explained, and also defined the 
history of safety concept in aviation accidents. Afterward, in section 3, it is defined the significant 
terms used in aviation accidents. Finally, in section 4, the methodology of the study is completed 
with the usage of machine learning and multivariate statistical modeling. The study is ended with a 
general evaluation by adding a recommendation to future studies in the conclusion part. 

 
II. Literature Review 

 
In the aviation concept, the volume of air transportation traffic grows rapidly worldwide, and 

civil aviation safety becomes a stunning problem in many countries. The accidents in civil aviation 
may conclude in human injury or even death. Human injury or even death affects the prestige and 
the economic status of the air transportation industry in a country [15]. Especially in the last 10 years 
that started from the year 2010 (with the publishment of ICAO Document 9859), aviation safety was 
placed in a widespread concept. So, this widespread concept has preliminarily estimated the 
accidents rates in aviation safety with influencing factors such as: 

 
a. The assessment of safety concept in aviation: This concept has focused on the assessment 

process of safety concept from lots of perspectives such as; safety target level [16], identification 
system needs [17], safety supervisor performance in aviation [18], evaluating the safety concept in a 
changing industry in aviation [5], the evaluation of risk in aviation [19], and the climate of safety 
culture [20]. 

 
b. The factors that affected the safety of aviation: These factors have focused on impressive 

factors such as; the passengers’ perception about to seat exit door [21], training of passengers in 
aviation safety [22], threats, human factors with errors related to the flight phases [23], the grand 
amendments in organizational structure related to the human factor [24], the behaviors of personnel 
with the relationship between safety management system (SMS) [25], the severe weather conditions 
especially in the winter season related to the time period and the flight distances [26], and the 
personal usage of electronic devices [27].  

 
The present literature principally analyzes static assessment of safety in aviation, and 

determination of the affected elements, however, the efficiency of aviation safety, and the airline's 
performance have not been measured. The efficiency of safety in aviation is described to assess the 
causes of the safety inputs rely on the vital safety performance of airlines [8]. Safety is the most 
important concept related to the operation process of all activities in aviation. In the last years, the 

167



Tüzün Tolga İnan, Neslihan Gökmen İnan 
THE PRIMARY FACTORS AFFECTING THE MOST  
FATAL AVIATION ACCIDENTS 

RT&A, No. 1 (67) 
Volume 17, March 2022 

 

 

widespread development of SMS has affected the operation of safety performance including new 
missions and defiances for protecting potential accidents. SMS describes the measurable 
performance of the consequences. The development of the SMS system has also related to the 
expectancies in design that meet the recent regulator necessities [28]. The safety performance 
indicators (SPIs) are applied to examine the safety risks which are known. These indicators 
determine the safety risks which are emerged to specify all required corrective actions. The Federal 
Aviation Administration (FAA) that is operated the regulations in the United States publishes 
reports about the performance indicators and responsibilities every year [29]. Moreover, the safety 
air navigation of the European Organisation (Eurocontrol) has published yearly performance reports 
related to the evaluation of air traffic management (ATM) in Europe [30]. 

 
In addition to these reports, there have three basic concepts related to safety thinking in aviation 

as described by ICAO and added to the post-SMS era. After the year 2010 with the Safety 
Management System (SMS) Document 9859, the post-SMS era was put into practice. There has a 
need for extra motivation to determine the changes in accident rates clearly to link with those 
concepts. Defining these concepts could provide to list and distinguish complex efforts to manage 
safety. These are classified as human factors, organizational factors, and technical factors. Matching 
the efforts with the results of the analysis about accident rates undoubtedly is expected to reveal the 
rights and the wrongs in the efforts to answer real-world safety management requirements. 
Nonetheless, the information set may not explain the efficiency of each implementation since each 
organization could have different safety management considerations or focuses. Another significant 
deficiency in matching has new developments in Safety-II that are related to the post-SMS era since 
no substantial practice could have been observed yet [31]. 

 
In addition to the Safety-II concept, the primarily related machine learning studies that can be 

covered under the aviation concept are examined. Firstly, Burnett and Si [32] were concerned about 
the application process connected the number of machine learning techniques to provide 
classification models. These models are aimed to estimate situations about the probable increment 
of aviation accidents including accidents, and incidents. One of the purposes of this study is to take 
into account the factors which cover type ratings related to profession, last experiences about flights, 
and particular weather conditions which act in the severity of the injuries in aviation accidents. 

 
Secondly, Ayres, et al. [33] examined five sets of models. The first three are classified in landing 

overruns, veer-offs, and undershoots; the other two one classify in takeoff veer-offs, and overruns. 
Each set comprised the frequency models of accident and incident by adding location and 
consequence models. Thirdly, Goode [34] examined the anxiety about the aviation community that 
schedules of the pilots can lead to fatigue by increasing the chance of an aviation accident. This study 
tried out to show the empirical connection between schedules of the pilots and accidents in aviation.  

 
Fourthly, Lee, et al. [35] examined the machine learning application to develop the reveal risk 

factors during the flight phase with the causal chains. This study’s purpose aims to predict the 
application of machine learning capability against the isolation of crucial parameters (and potency 
causal factors) leading to safety-related causes from the inside stages classified as unimportant, 
unconnected, or tangentially unified ones. The fifth and the last study that was prepared by Dangut, 
et al. [36] examined an approach to hybrid machine learning which mix native language working 
techniques and group learning for estimating unusual failure of an aircraft component.  

 
In this study, the primary causes of the accidents are classified into three factors. These are; 

human, technical, and terrorism/sabotage. The organizational factors are added to the term of the 
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human factor due to its connection. Technical factors are related to maintenance failures in the 
operation process of aircraft, and terrorism/sabotage is related to unlawful control of the aircraft. 
The primary definitions of the accidents are interpreted from the knowledge taken from the Bureau 
of Aircraft Accident Archives [37]. Because of the potential severities about the primary 
consequences of accidents, the concept of safety has generally been taken into account as a term that 
has the greatest significance in the air transport industry [38]. The application of machine learning 
is used to classify most fatal accidents’ survivor/non-survivor. The classification is included the 
factors such as; aircraft (A/C) type, the time period of the accident, total passenger and/or affected 
people, flight phase, the duration of the flight, probable cause, and primary definitions. 

 
III. Methodology 

 
In this study, to figure out potential factors in aircraft type, distance, flight phase, primary 

cause, the number of total passenger and time period play an important role in evaluating survivor 
and non-survivor of the most 100 fatal accidents, various statistical and machine learning (ML) 
algorithms are used. In multivariate statistical analysis, the most 100 fatal accident datasets are 
examined by means of discriminant analysis and logistic regression models with the variable 
selection method with the cross-validation. Unlike the classical statistical techniques, to estimate the 
non-linear models that is able to provide more accurate classification performance in terms of 
evaluating survivor and non-survivor, machine learning (ML) methods are utilized. ML can be 
defined as an algorithm that can learn from its experience. Three types of learning procedures in ML 
are supervised, unsupervised, reinforcement learning.  Supervised learning algorithms are handled 
in this study. In this learning methods, there is prior information on the output which is categorized.  
Artificial Neural Networks (ANNs) and Decision Trees (DTs) are utilized in this study.  

 
Dimension reduction of feature vector have importance to tune the model complexity according 

to the statistical learning theory [39; 40]. There are many approaches for dimension reduction of 
feature matrix. For instance, forward selection, backward elimination, stepwise selections or some 
transformation techniques as Principal Component Analysis (PCA) are the feature selection methods 
in literature.  In this study, ML algorithms are utilized with k-fold and leave-one-out cross validation 
and PCA based variable selection. Principal component analysis provides the weights needed to 
obtain the new feature that explains the variation best in the dataset. This new variable having 
weights, is called the 1st principal component. Moreover, to tune the complexity of model 
automatically, the cross-validation methods such as k-fold and leave-one-out are used.  

    
In analysis, to determine the best independent variables and their importance on the most 100 

fatal accidents’ survivor, firstly ANN and DT models were trained with PCA. Before starting the 
analysis, firstly the dataset is normalized, and then the cross-validation type is chosen as k-fold or 
leave-one-out. Min-max normalization procedure is utilized to train the models with PCA’s 
components as inputs. Min-max normalization formula is given as follows [41]: 

 

𝑥!∗ =
𝑥! −min	(𝑥!)

max(𝑥!) − min	(𝑥!)
	,					𝑖 = 1,2, … ,100 

 
DT Classifiers use the Classification and Regression Tree (CART) model, which comprises a 

univariate binary decision hierarchy. The ‘Tree’ begins with the “root,” and consists of nodes, 
branches, and leaf nodes. Internal node expresses as a binary test on a unique variable, with branches 
demonstrating the consequence of the test, however, each leaf node shows class labels. CART starts 
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by choosing the best variable for dividing the data into two groups at the root such that each branch 
is as homogeneous as probable, and this dividing process is repeated in a recursive manner for each 
branch. Ongoing ‘purity’ calculations are implemented to specify which of the (remaining) 
properties are best to divide. The Gini index is used at CART. The nodes are divided according to 
the smallest Gini index. CART recursively enlarges the tree from the root node and then prunes back 
the large tree [42].  

 
In training of DTs, to obtain the robust models using the variable selection procedure, various 

kernels in them such as complex, medium and simple are used. The other ML technique is used in 
this study is ANN are created by inspiration of human brain. The brain is formed by a very huge 
number of neurons. The interconnection between the neurons is provided by synapses. Perceptrons 
are used to model ANNs’ neurons, that consists of inputs or outputs. Inputs are related with a 
synaptic weight, and in the simplest form output a value equal to the sum of the weighted inputs. 
In other words, activation or transfer function can be applied by a perceptron, like a linear, sigmoid 
and, hyperbolic tangent function. ANNs include hidden layers which have conduct a connection 
between an input layer and an output layer. The basic approach used to train networks is 
backpropagation [43; 32; 44]. To train ANNs with the stopping criteria of MSE or cross-entropy, there 
are different gradient-based algorithms: Scaled Conjugant Gradient (SCG), Gradient Descent with 
Momentum (GDwM) and Levenberg Marquardt (LM) [45]. The framework for accidents’ 
survivor/non-survivor classification can be seen in Figure 1. 
 

Figure 1: Flowchart of the methodology  
 

I. Sample of Data  
 
Determined as one of the three types of safety concept with its cultural structure, the human factor 
approach (including organizational factor) includes the identification of the conditions which assist 
safe behaviors at whole phases of the organization. Consolidating this approach inside the 
organization level of the companies as a robust factor has been already developed severely in the 
technical and management concepts [46]. The second type of safety culture includes the technical 
factors which provide continuous and sustainable qualities of an experience that covers the current 
time period which includes their physical condition. They usually include the parameters that direct 
the experiences which belong to the specific degrees of sensorial details such as navigation and the 
related systems [14]. The third and the last type of safety culture includes the factor of 
terrorism/sabotage which covers the intentional intervention of aircraft during the flight phase. The 
meaning of sabotage is diversified from abduction because, in aviation, terrorism is accepted as 
hijacking which is generally defined as aircraft hijacking and/or unlawful control (intervention) of 
the aircraft [47]. In the classification of most fatal accidents, only the cause of one accident is 
diversified from terrorism and/or sabotage because the cause of this accident covers the intentional 
and/or deliberate action of the pilot which defines as only sabotage. The distribution of these features 
is given in Table 1. 44% of the accidents were caused by Boeing type aircraft. 28% of the accidents 
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are caused by long haul flights and the 36% of the accidents are occurred in landing phase. 32% of 
the accidents are occurred at 6-12 time period. 65% of the accidents are caused by human factor and 
the percentage of survivor is 22%. The average number of total passengers is 200.6+65.1. 
 

Table 1: The distribution of the features 
 N % 

Type of aircraft 
Airbus 15 15.0 
Boeing 44 44.0 
Other 41 41.0 

Distance Short Haul 50 50.0 
Medium Haul 22 22.0 
Long Haul 28 28.0 

Phase of flight  Flight 33 33.0 
Landing 36 36.0 
Take-Off 31 31.0 

Time Period 6-12  32 32.0 
12-18 27 27.0 
18-24 24 24.0 
24-06 17 17.0 

Primary cause Human factor 65 65.0 
Technical 25 25.0 
Terror/Sabotage 10 10.0 

Survivor Non-survivor 78 78.0 
Survivor 22 22.0 

  Mean+SD Med (Min-Max) 
The number of total passengers 200.6+65.1 173 (133-524) 

SD= Standard Deviation, Med= Median, Min= Minimum, Max= Maximum 
 

Dataset that is used in learning phase includes totally the most fatal 100 accidents. As seen from 
Table 2, this dataset includes 6 variables, that are thought to affect being a survivor. Within the scope 
of supervised learning, the model training procedure comprise of two types variables: dependent 
and independent or output and input. The output variable is taken as survivor and non-survivor. 
The inputs are type of aircraft, distance, phase of flight, primary cause, the number of total 
passengers, time period.  
 

Table 2. Dependent and independent variables 
Independent Variables 

Type of aircraft (1:airbus, 2:boeing, 3:other) 
Primary cause (1:Human factor, 2:Technical, 
3:Terror/Sabotage) 

Distance (1:short haul, 2:medium haul, 3:long haul) The number of total passengers 
Phase of flight (1:flight, 2:landing, 3:take-off) Time period (1: 6-12, 2:12-18, 3:18-24, 4:24-06) 
Dependent Variable  
Survivor (0/1)  

 
IV. Findings 

I. Model Estimation 
 
The analysis considers various multivariate statistical and machine learning methods to predict 
robust models that provide high classification accuracy and low false positive/negative rates for 
determining survivor and non-survivor on the most 100 fatal accidents. During the model 
estimation, all the methods are trained by k-fold, leave-one-out cross validation and PCA feature 
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selection procedures. The learning algorithms are written in MATLAB 2020a. The model outcomes 
of all the multivariate statistical and machine learning methods are given as follows. 
 
I.I. Logistic regression and discriminant analysis 
 
This part of the study includes the results of logistic regression and discriminant analysis to show 
the contribution of independent variables on the survivor/non-survivor classification of the most 100 
accidents. The backward Wald variable selection with k-fold and leave-one-out procedures are used 
to estimate logistic regression models. Particularly, AUC, accuracy ratio, false positive and false 
positive rates are used to assess the performances of estimated models. The results of the logistic 
regression and discriminant analysis are given in Table 3.     
 

Table 3. The performances of Logistic Regression and Discriminant models 
Method Models #Input  NSV AUC Acc. FP FN Selected Variables 

Logistic 
Regression 

Model 1 
Backward 
No cros-val. 

6 3 0.580 0.780 0.064 0.773 
The number of total 

passengers, Phase of flight, 
Primary cause  

Model 2 
Backward with 
10- fold 

6 3 0.560 0.770 0.064 0.818 
The number of total 

passengers, Phase of flight, 
Primary cause 

Model 3 
Backward with 
Leave-one-out 

6 3 0.560 0.770 0.064 0.818 
The number of total 

passengers, Phase of flight, 
Primary cause 

Discriminant 

Model 4 
(K-fold) 6 3 0.690 0.720 0.054 0.568 

The number of total 
passengers, Phase of flight, 

Primary cause 
Model 5  
(Leave-one-out) 6 3 0.670 0.710 0.070 0.581 

The number of total 
passengers, Phase of flight, 

Primary cause 
NSV = Number of selected features; Acc=Accuracy Ratio, FP=False Positive; FN=False Negative 
 

The selected variables in all 5 models are found statistically significant (p<0.05), and the first 3 
logistic regression models are also suitable interpretations according to Hosmer-Lemeshow test 
statistics (p>0.05).  As can be seen from results, the assumption of equality of variance-covariance 
matrices is provided (Box-M, p < 0.001) and the selected variables are found significant (Wilks’ 
Lambda p<0.001) in discriminant analysis. Table 4 shows that all the 5 models consist of the number 
of total passengers, Phase of flight, Primary cause. All the 5 models’ accuracies are found above 
>70%. The first logistic regression model (M1) has the highest accuracy (0.780) in addition to the low 
FP (0.064) and FN (0.773).   

Table 4.  Odds ratios of independent variables 

 
The odds ratios and p values of the logistic regression model with selected variables are given 

in Table 5. The number of total passengers is increasing the survivors 1.014 times more than non-
survivor. The accidents that have landing phase is increased survivors 6.479 times more than flight 
phase. The accidents that have take-off is increased survivors 9.674 times more than flight. The 
accidents which are occurred from technical primary cause is decreased survivors 9.709 (1/0.103) 
times more than human factor.

 
The number of total 

passengers 
Phase of flight 

(landing) 
Phase of flight 

(take-off) 
Primary cause 

(technical) 
Primary cause 

(terror/sabotage) 
OR 
(p) 

1.014 
(0.003) 

6.479 
(0.049) 

9.674 
(0.022) 

0.103 
(0.016) 

0.000 
(0.998) 
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I.II. ANNs and DTs’ estimation results with PCA dimension reduction 
 
In machine learning approach, the variable selection procedure runs automatically during training 
ANNs and DTs. Before the training part, initial tunings are set. Classification accuracies, false 
positive and false negative ratios over training, test and overall datasets are used to choose the 
models having best performance at the end of the training and variable selection phase.  
 
During the variable selection, the PCA is used to reduce dimensions and PCA results shows that 6 
parameters are adjusted 3 dimensions having 69.5% variance explanation rate. The first dimension 
is included the number of total passengers and primary cause which is called capability component 
(C1), the second dimension is included distance and time period which is called geographical 
component (C2) and the third dimension is included type of aircraft which is called qualification 
component (C3). The normalized component scores obtained from PCA are taken as input variables 
in ANNs and DTs.  According to ANNs and DTs’ results, the best estimated models are given with 
accuracy ratios, false positive and false negative rates to measure performance in Table 5. Table 5 
shows that the models have better performance than logistic regression and discriminant models by 
considering all the performance criteria. Particularly, when we evaluate the machine learning 
methods in themselves the best models with selected variables with PCA have higher performance 
to the full models with all the independent variables according to most of the performance 
measurements as well. 
 

Table 5. The classification performance of the ANN and SVM models 
Methods Procedure #Input AUC Acc. FP FN Selected Variables 
 
ANNs  
(trainlm, mse) 

Feature Selection 
with PCA 3 0.870 0.880 0.116 0.142 C1, C2, C3 

Full Model 6 0.866 0.841 0.020 0.643 All variables in Table 2  
 
DTs 
(complex 
tree) 
 

Feature Selection 
with PCA 3 0.900 0.910 0.084 0.118 C1, C2, C3 

Full Model 6 0.820 0.870 0.078 0.304 All variables in Table 2 

 
 

To reveal the importance of independent variables on survivor and non-survivor, the ANN 
model with estimated weights is used. Independent variables’ normalized importance over the best 
full model is given in Fig. 2. According to Figure 2, the top 3 variables above 50% normalized 
importance are primary cause, the number of total passenger and the phase of flight which is 
supporting the logistic regression and discriminant models. 
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Figure 2: Normalized importance of independent features 
 

V. Discussion and Conclusion 
 
In this study, the causes of aircraft accidents which comprised the most fatal 100 ones are classified 
with six variables. The variables are; aircraft type, distance, flight phase, primary cause, the number 
of total passengers, and time period. These are used to classify survivor/non-survivor passengers. In 
the literature review, the primary causes of the accidents are defined with three factors named 
human factor, technical, and terrorism/sabotage to define the concept of safety and how the safety 
concept is affected the most fatal accidents. 
 
When it is examined the three primary causes about the effect of safety on the most fatal accidents, 
10 of the most fatal aviation 100 accidents are related to terrorism/sabotage factors. 
However, the all-time terrorism/sabotage effect in all fatal accidents was approximately equal to %5. 
65 of 100 of the most fatal aviation accidents are related to the human factor. However, the all-time 
human factor effect in all fatal accidents was approximately equal to %70. 25 of 100 of the most fatal 
aviation accidents are related to technical ones, this ratio is nearly the same as the all-time technical 
effect in all fatal accidents which was approximately equal to %25. When it was examined the total 
percentages, it is understood that except for the %5 percent difference related to human factor and 
terrorism/sabotage, the revealed percentages are similar to all-time aviation accidents' history 
numbers [48]. 
 
The findings are supported that the human factor is increased the survivors 9.709 times more than 
the technical factor. So, the accidents are occurred by technical factors are more hazardous and 
difficult to recover. Furthermore, the phase of flight has decreased the survivors 6.479 times more 
than the phase of landing, and 9.674 times more than the phase of take-off. Finally, the 1 unit change 
in the total number of passengers has increased the number of survivors 1.014 times. According to 
machine learning results, these parameters are found above 50% importance. These algorithms 
integrated with PCA have better performance than multivariate statistical models. So, it can be said 
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that the dimensions obtained from PCA called capability, geographical, and qualification have a 
significant impact on the survivor status. 
 
So, the analysis of the most fatal 100 accidents can be a reference to determine the causes of all-time 
aviation accidents with the selected variables. Future studies can be analyzed the all-time aviation 
accidents by segmenting their flight phases with their flight types by determining danger levels. 
Also, this research can be continued with much more comprehensive accident datasets, and utilize 
various hybrid ML approaches in order to make a more detailed analysis.  
    
Acknowledgement 
The authors declare that there are no potential conflicts of interest with respect to the research, 
authorship, and/or publication of this article. 
 
Conflict of Interest 
The authors declare no conflict of interest. 
 
Author Contributions 
Corresponding Author Tüzün Tolga İNAN: Data curation, Conceptualization, Investigation, 
Writing, Original draft preparation, Reviewing and Editing, Supervision, Resources 
Second Author Neslihan GÖKMEN İNAN: Methodology, Validation, Software, Formal analysis, 
Visualization. 

 
References 
 
[1] International Civil Aviation Organization (ICAO). International Standards and 

Recommended Practices: Aircraft Accident and Incident Investigation. Annex 13 to the Convention 
on International Civil Aviation, 8th ed. Montreal, Canada: ICAO, 1994. 

[2] Singh, V., Sharma, S. K., Chadha, I., and Singh, T. (2019). Investigating the moderating effects 
of multi group on safety performance: The case of civil aviation. Case studies on transport policy, 7(2): 
477-488. https://doi.org/10.1016/j.cstp.2019.01.002 

[3] Harizi, R., Belhaiza, M. A., and Harizi, B. (2013). A cliometric analysis of the explanatory 
factors of the air crashes in the world (1950–2008). Journal of Transportation Safety & Security, 5(2): 165-
185 https://doi.org/10.1080/19439962.2012.749968  

[4] Oster Jr, C. V., Strong, J. S., and Zorn, C. K. (2013). Analyzing aviation safety: Problems, 
challenges, opportunities.  Research in transportation economics, 43(1): 148-164 
https://doi.org/10.1016/j.retrec.2012.12.001  

[5] Lofquist, E. A. (2010). The art of measuring nothing: The paradox of measuring safety in a 
changing civil aviation industry using traditional safety metrics. Safety Science, 48(10): 1520-1529 
https://doi.org/10.1016/j.ssci.2010.05.006 

[6] Gramopadhye, A. K., and Drury, C. G.: Human factors in aviation maintenance: how we got 
to where we are, 2000. https://doi.org/10.1016/S0169-8141(99)00062-1 

[7] Gillen, D., and Morrison, W. G. (2015). Aviation security: Costing, pricing, finance and 
performance. Journal of Air Transport Management, 48: 1-12 
https://doi.org/10.1016/j.jairtraman.2014.12.005 

[8] Cui, Q., and Li, Y. (2015). The change trend and influencing factors of civil aviation safety 
efficiency: the case of Chinese airline companies. Safety science, 75: 56-63 
https://doi.org/10.1016/j.ssci.2015.01.015  

[9] Hawkins, F. H., and Orlady, H. W.: Human Factors in Flight. 2nd, 1987. 
[10] Huang, C. (2020). Further Improving General Aviation Flight Safety: Analysis of Aircraft 

175



Tüzün Tolga İnan, Neslihan Gökmen İnan 
THE PRIMARY FACTORS AFFECTING THE MOST  
FATAL AVIATION ACCIDENTS 

RT&A, No. 1 (67) 
Volume 17, March 2022 

 

 

Accidents During Takeoff. The Collegiate Aviation Review International, 38(1)  
[11] Iwadare, K., and Oyama, T. (2015). Statistical Data Analyses on Aircraft Accidents in Japan: 

Occurrences, Causes and Countermeasures. American Journal of Operations Research, 5(03): 222 
https://doi.org/10.4236/ajor.2015.53018 

[12] Brown, K. A., Willis, P. G., and Prussia, G. E. (2000). Predicting safe employee behavior in 
the steel industry: development and test of a sociotechnical model. Journal of Operations Management, 
18: 445-465  

[13] McDonald, N., Corrigan, S., Daly, C., and Cromie, S. (2000). Safety management systems 
and safety culture in aircraft maintenance organizations. Safety Science, 34: 151-176  

[14] Santos-Reyes, J., and Beard, A. (2002). Assessing safety management systems. Journal of Loss 
Prevention in the Process Industries, 15: 77-95  

[15] Shyur, H. J. (2008). A quantitative model for aviation safety risk assessment. Computers & 
Industrial Engineering, 54(1): 34-44 https://doi.org/10.1016/j.cie.2007.06.032  

[16] Li, D. B., Xu, X. H., and Li, X. (2009). Target level of safety for Chinese airspace. Safety 
Science, 47(3): 421-424 https://doi.org/10.1016/j.ssci.2008.06.005 

[17] Persing, I., and Ng, V. Semi-supervised cause identification from aviation safety reports. 
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th 
International Joint Conference on Natural Language Processing of the AFNLP (pp. 843-851), 2009, 
August. 

[18] Chen, F. Fuzzy comprehensive evaluation of civil aviation safety supervisor. In 2010 International 
Conference on Multimedia Communications (pp. 45-48), IEEE, 2010, August. 
https://doi.org/10.1109/MEDIACOM.2010.17 

[19] Brooker, P. (2011). Experts, Bayesian Belief Networks, rare events and aviation risk 
estimates. Safety Science, 49(8-9): 1142-1155 https://doi.org/10.1016/j.ssci.2011.03.006 

[20] O’Connor, P., O’Dea, A., Kennedy, Q., and Buttrey, S. E. (2011). Measuring safety climate 
in aviation: A review and recommendations for the future. Safety Science, 49(2): 128-138 
https://doi.org/10.1016/j.ssci.2010.10.001 

[21] Chang, Y. H., and Liao, M. Y. (2008). Air passenger perceptions on exit row seating and 
flight safety education.  Safety science, 46(10): 1459-1468 https://doi.org/10.1016/j.ssci.2007.11.006 

[22] Chang, Y. H., and Liao, M. Y. (2009). The effect of aviation safety education on passenger 
cabin safety awareness.  Safety science, 47(10): 1337-1345 https://doi.org/10.1016/j.ssci.2009.02.001 

[23] Chen, C. C., Chen, J., and Lin, P. C. (2009).  Identification of significant threats and errors 
affecting aviation safety in Taiwan using the analytical hierarchy process. Journal of Air Transport 
Management, 15(5): 261-263 https://doi.org/10.1016/j.jairtraman.2009.01.002 

[24] Herrera, I. A., Nordskag, A. O., Myhre, G., and Halvorsen, K. (2009). Aviation safety and 
maintenance under major organizational changes, investigating non-existing accidents.  Accident 
Analysis & Prevention, 41(6): 1155-1163 https://doi.org/10.1016/j.aap.2008.06.007 

[25] Remawi, H., Bates, P., and Dix, I. (2011). The relationship between the implementation of a 
Safety Management System and the attitudes of employees towards unsafe acts in aviation. Safety 
Science, 49(5): 625-632 https://doi.org/10.1016/j.ssci.2010.09.014 

[26] Mäkelä, A., Saltikoff, E., Julkunen, J., Juga, I., Gregow, E., and Niemelä, S. (2013). Cold-
season thunderstorms in Finland and their effect on aviation safety. Bulletin of the American 
Meteorological Society, 94(6): 847-858  

[27] Molesworth, B. R., and Burgess, M. (2013). Improving intelligibility at a safety critical point: 
In flight cabin safety. Safety science, 51(1): 11-16 https://doi.org/10.1016/j.ssci.2012.06.006 

[28] International Civil Aviation Organization (ICAO). Safety Management Manual (SMM). 
International Civil Aviation Organization, 2013. 

[29] Federal Aviation Administration (FAA).: Fiscal Year 2014 Performance and Accountability 
Report (Dec., 2014), 2014. 

176



Tüzün Tolga İnan, Neslihan Gökmen İnan 
THE PRIMARY FACTORS AFFECTING THE MOST  
FATAL AVIATION ACCIDENTS 

RT&A, No. 1 (67) 
Volume 17, March 2022 

 

 

[30] Eurocontrol Performance Review Commission (EPRC).: Performance Review Report-An 
Assessment of Air Traffic Management in Europe during the Calendar Year 2013, 2014. 

[31] International Civil Aviation Organization (ICAO). Safety Management Manual (SMM) 
(Doc 9859). 
https://www.icao.int/safety/safetymanagement/documents/doc.9859.3rd%20edition.alltext.en.pdf, 
2020. Accessed 19 Dec 2020 

[32] Burnett, R. A., and Si, D. Prediction of injuries and fatalities in aviation accidents through machine 
learning. In Proceedings of the International Conference on Compute and Data Analysis (pp. 60-68), 
2017, May. https://doi.org/10.1145/3093241.3093288 

[33] Ayres Jr, M., Shirazi, H., Carvalho, R., Hall, J., Speir, R., Arambula, E., ...  and Pitfield, D. 
(2013). Modelling the location and consequences of aircraft accidents. Safety science, 51(1): 178-186 
https://doi.org/10.1016/j.ssci.2012.05.012  

[34] Goode, J. H. (2003). Are pilots at risk of accidents due to fatigue?. Journal of safety research, 
34(3): 309-313 https://doi.org/10.1016/S0022-4375(03)00033-1  

[35] Lee, H., Madar, S., Sairam, S., Puranik, T. G., Payan, A. P., Kirby, M., ... and Mavris, D. N. 
(2020). Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine 
Learning. Aerospace, 7(6): 73 

[36] Dangut, M. D., Skaf, Z., and Jennions, I. K. An integrated machine learning model for aircraft 
components rare failure prognostics with log-based dataset. ISA transactions, 2021. 
https://doi.org/10.1016/j.isatra.2020.05.001 

[37] Bureau of Aircraft Accident Archives. https://www.baaa-acro.com/crash-archives, 2021. 
Accessed 06 May 2021. 

[38] Janic, M. (2000). An assessment of risk and safety in civil aviation. Journal of Air Transport 
Management, 6(1): 43-50 https://doi.org/10.1016/S0969-6997(99)00021-6  

[39] Bozdogan, H. (2000). Akaike’s information criterion and recent developments in 
information complexity. J. Math. Psychol., 44(1): 62-91 https://doi.org/10.1006/jmps.1999.1277 

[40] Kocadagli, O., and Langari, R. (2017). Classification of EEG signals for epileptic seizures 
using hybrid artificial neural networks based wavelet transforms and fuzzy relations. Expert Syst. 
Appl., 88: 419-434 doi: 10.1016/j.eswa.2017.07.020  

[41] Inan, T. T., and Gokmen, N. (2021). The Determination of the Factors Affecting Air 
Transportation Passenger Numbers. International Journal of Aviation, Aeronautics, and Aerospace, 8(1) 
https://doi.org/10.15394/ijaaa.2021.1553 

[42] Chong, M. M., Abraham A., and Paprzycki, M. (2005). Traffic accident analysis using 
machine learning paradigms. Informatica, 29(1): 89-98  

[43] Alpaydin, E. Introduction to Machine Learning (3rd ed.). The MIT Press, 2014. 
[44] MATLAB R. https://www.mathworks.com/products/new_products/release2020a.html, 

2020a. Accessed 30 July 2021 
[45] Kocadagli, O. (2015). A Novel Hybrid Learning Algorithm For Full Bayesian Approach of 

Artificial Neural Networks. Applied Soft Computing, Elsevier, 35: 52-65 
https://doi.org/10.1016/j.asoc.2015.06.003  

[46] Institute for an Industrial Safety Culture (ICSI). https://www.icsi-eu.org/en/human-
organizational-factors, 2021. Accessed 07 May 2021. 

[47] Security and Facilitation. https://www.icao.int/Security/Pages/default.aspx, 2020. Accessed 
21 December 2020. 

[48] Plane Crash Info Causes of Fatal Accidents by Decade. planecrashinfo.com/cause.htm, 
2021. Accessed July 01 2020.  

 
 

177



Agni Saroj, Prashant K. Sonker, Mukesh Kumar
STATISTICAL PROPERTIES AND APPLICATION OF A TRANSFORMED 
LIFETIME DISTRIBUTION: INVERSE MUTH DISTRIBUTION

RT&A, No 1 (67)
 Volume 17, March 2022

STATISTICAL PROPERTIES AND APPLICATION OF A
TRANSFORMED LIFETIME DISTRIBUTION: INVERSE

MUTH DISTRIBUTION

Agni Saroj
1, Prashant K. Sonker

2
and Mukesh Kumar

∗3

•
1,2Department of Statistics, Banaras Hindu University, Varanasi, 221005, India.

3Department of Statistics, MMV, Banaras Hindu University, Varanasi 221005, India.
E-mail: 1agni.saroj4@bhu.ac.in, 2prashant.s4@bhu.ac.in,∗3mukesh.mmv@bhu.ac.in

∗Corresponding Author

Abstract

In this paper, we have proposed a transformed distribution called inverse Muth (IM) distribution. The
expressions for probability density function (pdf), cumulative distribution function (cdf), reliability and
hazard function of this distribution are well defined. The statistical properties such as, quantile function,
moments, skewness and kurtosis are derived. The methods of estimation such as maximum likelihood
estimation (MLE) and maximum product spacing estimation (MPSE) are used to estimate the parameters.
The IM distribution is positively skewed and its behavior of hazard rate is upside-down bathtub (UBT)
shape. The important finding of the study is that the moments of IM distribution do not exist. A real
dataset (the active repair time for airborne communication transceiver) used for application purpose, after
taking a natural extension of IM distribution. It is expected that the proposed model would be used as a
life time model in field of reliability and its applicability.

Keywords: Inverse Muth distribution, quantile function, maximum likelihood estimation, maxi-
mum product spacing estimation, real data analysis.

1. Introduction

In the statistical literature, there are lots of distribution exist, which are very useful in various
fields of science with its applicability. The application of statistical distributions gives the well
explanation about the probabilistic behavior of random phenomenon and plays an important role
to analyze the different types of data from various fields.
In the field of reliability, the various lifetime distributions derived which are preferred in reliability
analyses or lifetime investigation see Martz & Waller [1], and the behavior of failure rate observed
to be as increasing , decreasing and bathtub shape. Some distributions (Maxwell, normal,
Gompertz, etc.) are having only increasing failure rate whereas Gamma, Weibull and other
distributions gives increasing, decreasing as well as constant failure rate. In many situations
failure rate increases consistently, after reaching the peak, it starts to decrease which is discussed
in Bennett [2], Langlands et. al. [3]. Such type of failure rate is named as UBT failure rate given in
Sharma et. al. [4]. Muth distribution is defined on a continuous random variable and introduced
by Muth [5] in 1977 for reliability analysis. Let us consider that a random variable Y follow Muth
distribution with the shape parameter α and its pdf is defined as

f (y; α) =

{
(eαy − α).exp

{
αy − 1

α (e
αy − 1)

}
y > 0, α ∈ (0, 1]

0 otherwise
(1)
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The cdf is given by,

F(y; α) = 1 − exp
{

αy − 1
α

. (eαy − 1)
}

y > 0, α ∈ (0, 1] (2)

It has mainly focused on strictly positive memory in Muth [5]. The basic statistical properties of
Muth distribution are discussed by Jodra et. al. [6]. The reliability function and hazard function
are given by respectively

R(t) = P[Y ≥ t] = exp
{

αt − 1
α

.
(
eαt − 1

)}
t > 0, α ∈ (0, 1] (3)

h(t) =
f (t)
R(t)

=
(eαt − α).exp

{
αt − 1

α (e
αt − 1)

}
exp

{
αt − 1

α . (eαt − 1)
} t > 0, α ∈ (0, 1] (4)

At different values of parameter α pdf, cdf, reliability and hazard functions are plotted in Figure
1.

(a) cdf of MD (b) pdf of MD

(c) reliability function of MD (d) hazard function of MD

Figure 1: pdf, cdf, reliability and hazard functions of Muth Distribution.

A natural extension is also considered in Jodra et. al. [6] by adding a scale parameter named
as Scaled Muth distribution. A transformed distribution for Muth distribution called power
Muth (PM) distribution proposed by Jodra et. al. [7]. The exponentiated PM distribution and
Inverse PM distribution will be proposed by Irshad et. al. [8] and Chesneau & Agiwal [9]. Some
other literature on Muth distribution are discussed in Almarashi & Elgarhy [10], Al-Babtain et.al.
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[11], Bicer et. at. [12]. In Figure 1, the hazard rate shows the failure rate is increasing. It has
explained that the failure rate occurs in UBT shape when we take the inverse transformation of
usual distributions given Sharma et. al. [4]. In the case of Invese PM distribution it is found that
the behavior of hazard rate is in UBT shape. In this article, we have proposed a transformed
distribution which is termed as the IM distribution. All the work of this article is arranged in
different sections as: In section 2, statistical properties of proposed distribution are discussed. In
section 3, we obtained the estimates of the parameter α using MLE and MPSE. In section 4, we
have computed the expression for asymptotic confidence interval in case of MLE and MPSE. In
section 5, the scale transformation of IM distribution has taken to estimate the parameters. In
section 6, the simulation study has done to compute the estimates of parameters for both IM and
scaled inverse Muth (SIM) distributions respectively. In section 7, the real data analysis is done
to show the applicability of SIM distribution. Finally, the conclusion of this article is written in
section 8.

2. Inverse Muth Distribution

Let Y be a random variable follows the Muth distribution with pdf in equation (1) and cdf in
equation (2), on taking inverse transformation as X= 1

Y , the pdf of IM distribution is obtained as

f (x; α) =

{
1
x2 (eα/x − α).exp

{
α
x − 1

α (e
α/x − 1)

}
x > 0, α ∈ (0, 1]

0 otherwise
(5)

The cdf is given by,

F(x; α) = exp
{

α

x
− 1

α
(eα/x − 1)

}
x > 0, α ∈ (0, 1] (6)

Some statistical properties of IM distribution are discussed as below:

2.1. Reliability and Hazard Function of IM Distribution

Importance of any lifetime distribution is based on its reliability and hazard rate. By using
equation (5) and (6) the reliability and hazard function of the IM distribution are obtained as

R(t) = 1 − exp
{

α

t
− 1

α
(eα/t − 1)

}
t > 0, α ∈ (0, 1] (7)

h(t) =
f (t)
R(t)

=
(eα/t − α).exp

{
α
t −

1
α (e

α/t − 1)
}

t2.
(

1 − exp
{

α
t −

1
α (e

α/t − 1)
}) t > 0, α ∈ (0, 1] (8)

The above equation (7) and (8) show the reliability and hazard function respectively and the
graphical representation of these are given in Figure 2. We observed the behavior of hazard rate
as UBT shape in Figure 2. As increases the value of parameter α, the peak of hazard rate also
increases.
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(a) cdf of IM distribution (b) pdf of IM distribution

(c) reliability function of IM distribution (d) hazard function of IM distribution

Figure 2: pdf, cdf, reliability and hazard functions of IM Distribution.

2.2. Quantile Function

Quantile function for the cdf FX(x) is defined as,

QX(u) = in f {x ∈ R : FX(x) ≥ u} 0 < u < 1 (9)

It shows uth quantile of an integer valued random variable, is also an integer. It indicates that if
FX(x) be a continuous and strictly increasing, then quantile function of X is defined as

QX(u) = F−1
X (u) 0 < u < 1 (10)

To find the quantile function for the IM distribution, it has to solve F(x, α) = u ; x > 0 with
respect to x for any α ∈ (0, 1] and u ∈ (0, 1) i.e.

u = exp
(

α

x
+

1
α
− 1

α
e

α
x

)

log(u)− α

x
− 1

α
= − 1

α
e

α
x (11)

Multiplying by e(log(u)− α
x −

1
α ) on both side in equation (11), we get
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(
log(u)− α

x
− 1

α

)
.e
(

log(u)− α
x −

1
α

)
= − e−

1
α .u
α

(12)

To solve equation (12), here we use a generalized integro-exponential function, Lambert-W
function. It has applicability in computer algebra system and in mathematics given by Corless et.
al. [13]. The Lambert W function is defined as the solution of,

W(z).exp(W(z)) = z (13)

Where, z is complex function. If z is a real number such that If z is a real number such that
z ≥ − 1

e then W(z) becomes a real function having two possible real branches. If the real branch
taking value in (−∞,−1] is called negative branch and denoted by W−1(z) where − 1

e ≤ z ≤ 0.
The real root branch taking values in [−1, ∞) is called the principle branch and denoted by
W0(z) where z ≥ − 1

e , we shall use the negative branch which is satisfies the following properties,
W−1(

−1
e ) = −1, W−1(z) is decreasing as z increases to 0 and W−1(z) tends to −∞ as z tends to 0

see Jodra [14].
By using equations (12) and (13), we obtained that (log(u)− α

x − 1
α ) is the Lambert-W function

of the real argument (− e−
1
α .u
α ), then, the explicit expression for Qx in terms of Lambert-W function.

x =
α2

α.log(u)− α.W
(

−e−
1
α .u

α

)
− 1

(14)

It gives the Quantile function of IM distribution.
Now for any α ∈ (0, 1], x > 0 and u ∈ (0, 1) it ensure that,(

log(u)− α
x − 1

α

)
< −1

And it also be checked that, (
−e−

1
α .u

α

)
∈
(
− 1

e , 1
)

By using the negative branch of Lambert W function the Quantile function of IM distribution in
terms of negative branch of Lambert W function as,

xu =
α2

α.log(u)− α.W−1

(
−e−

1
α .u

α

)
− 1

(15)

Where, xu gives the uth quantile of IM distribution.

2.3. Moments of the IM distribution

Let X be a random variable follows IM distribution with pdf in equation (5) then the kth raw
moment is defined as:

µ′
k =

∫ ∞

0
xk. f (x; α) dx

µ′
k =

∫ ∞

0
xk.

1
x2

(
eα/x − α

)
e{

α
x −

1
α .(eα/x−1)}dx

I = µ′
k =

∫ ∞

0
xk−2.

(
eα/x − α

)
e{

α
x −

1
α .(eα/x−1)}dx

I =
∫ a

0
xk−2.

(
eα/x − α

)
e{

α
x −

1
α .(eα/x−1)}dx

+
∫ ∞

a
xk−2.

(
eα/x − α

)
e{

α
x −

1
α .(eα/x−1)}dx
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I = I1 + I2
Where,

I1 =
∫ a

0
x(k−2) · (e

α
x − α) · e{

α
x −

1
α ·(e

α
x −1)}dx

I2 =
∫ ∞

a
x(k−2) · (e

α
x − α) · e{

α
x −

1
α ·(e

α
x −1)}dx

Now proceeding with integration I2

I2 =
∫ ∞

a
x(k−2) · (e

α
x − α) · e{

α
x −

1
α ·(e

α
x −1)}dx

To check the convergence or divergence of integral I2, we use the limit comparison test which
state that if

1. f(x) and g(x) > 0 on [a,∞)

2. f(x) and g(x) both are continuous on [0,∞) and

3. limx→∞
f (x)
g(x) = L > 0 where, L is some finite positive number.

then
∫ ∞

a f (x)dx and
∫ ∞

a g(x)dx either both converge or both diverge.

For I2, Let,

f1(x) =
∫ ∞

a x(k−2) · (e α
x − α) · e{

α
x −

1
α ·(e

α
x −1)} and,

g1(x) = x(k−2)

f1(x) and g1(x) > 0 as well as continuous for [a,∞) for k =1, 2, 3,...
now,

limx→∞
f1(x)
g1(x) = limx→∞(e

α
x − α) · e{

α
x −

1
α ·(e

α
x −1)}

= (1 − α) · e0

= (1 − α) > 0 α ∈ (0, 1]∫ ∞
a g1(x)dx =

∫ ∞
a x(k−2)dx =

∫ ∞
a

1
x−(k−2) dx

∵
∫ ∞

a
1

xn dx is convergent if n > 1 and divergent for n ≤ 1.

So,
∫ ∞

a
1

x−(k−2) dx is convergent if (2-k) > 1 or k <1. But we have k > 0 (k = 1, 2, 3,...).
Then it shows that

∫ ∞
a g1(x)dx is divergent for all k ≥ 1 and by using limit comparison test for

convergence of an improper integral,
∫ ∞

a f1(x)dx is also divergent i.e. integral

I2 =
∫ ∞

a x(k−2) · (e α
x − α) · e{

α
x −

1
α ·(e

α
x −1)}dx is divergent for all the value of k ≥ 1.

By using the property of convergence of integral, if we have an integral I = I1 + I2 then I is
convergent iff I1 and I2 both are convergent. If any one of the I1 and I2 is divergent then the
integral I is also divergent. Thus we found that integral I also become a divergent. Hence the
moment for the IM distribution does not exist.

2.4. Measures of Skewness and Kurtosis

In the above section, we found that the moment of the IM distribution does not exist, so we
cannot obtain Pearson’s measure of skewness and kurtosis based on moments. Therefore by using
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the quantile function, it may be possible to obtain Galton’s measures of skewness and Moor’s
measures of kurtosis mentioned in Gilchrist [15]. These measures are defined as:

G(α) =
x3/4(α) + x1/4(α)− 2x1/2(α)

x3/4(α)− x1/4(α)
(16)

K(α) =
x7/8(α)− x5/8(α) + x3/8(α)− x1/8(α)

x3/4(α)− x1/4(α)
(17)

Where, xi/4 ; i = 1, 2, 3 denote the ith quartile and xi/8 ; i = 1, 2, ..., 7 denote the ith octile for this
distribution. Galton’s measure of skewness G (.) lies between (-1,1). If G (.) > 0 it is called
positive or right skewed and if G (.) < 0 it is called negative skewed. For a perfect symmetrical
distribution, G(.) = 0. Galton’s measures of skewness G(α) and Moor’s measures of kurtosis
K(α) for IM distribution are calculated at different value of α in Table 1. From the Table 1, we
observed that all values of skewness are greater than zero for different values of parameter, thus
IM distribution is a positive or right skewed distribution.

Table 1: Skewness and kurtosis of IM distribution

α Skewness Kurtosis
0.1 0.4759 2.1413
0.2 0.4741 2.1385
0.3 0.4695 2.1301
0.4 0.4607 2.1108
0.5 0.4465 2.0733
0.6 0.4264 2.0109
0.7 0.4008 1.9207
0.8 0.3710 1.8080
0.9 0.3388 1.6861
1.0 0.3060 1.5698

3. Parameter Estimation

3.1. Maximum likelihood estimation

Let x1, x2, ..., xn be a random sample of size of n from IM distribution with unknown parameter α
having pdf equation (5). Likelihood function for the sample x1, x2, ..., xn as follows,

L(x; α) =
n

∏
i=1

1
x2

i

(
eα/xi − α

)
.exp

(
α

xi
− 1

α

(
eα/xi − 1

))
(18)

log(L(x; α)) = −2
n

∑
i=1

log(xi) +
n

∑
i=1

log
(

eα/xi − α

)
+

n

∑
i=1

(
α

xi
− 1

α

(
eα/xi − 1

))
(19)

MLE is the value of unknown parameter α which maximize the equation (18). To get estimated
value of α, we take partial derivative of equation (19) w.r.t. α and equating to zero i.e.

. ∂
∂α log(x, α) = 0

n

∑
i=1

(
eα/xi − 1

)
xi
(
eα/xi − α

) +
n

∑
i=1

1
xi

+
1
α2

n

∑
i=1

eα/xi − 1
α

n

∑
i=1

eα/xi

xi
− n

α2 = 0 (20)

Now we have to solve equation (20) to get α̂ml and check that this solution to maximizes equation
(18) following condition has to be satisfies:[

∂2

∂α2 log(L(x; α))

]
α=α̂ml

< 0 (21)
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Where, α̂ml is the estimated value of α which obtained from equation (20). We observed that it is
not in closed form, so we cannot solve it analytically. Newton-Raphson iteration method used
which gives the numerical solution of equation (20) for α.

3.2. Maximum product spacing

Maximum product spacing estimation (MPSE) method is an alternative to MLE which is proposed
by Cheng & Amin [16] and Ranneby [17]. MLE does not give better performance or fails in the
case of three or more parameters exist, remarked in Cheng & Traylor [18], and MLE does not
perform satisfactorily for heavy tailed distribution which is discussed in Pitman [19]. Let us
consider x1, x2, ..., xn be a random sample of size ‘n’ drawn from the IM distribution having cdf
in equation (6).
Let xi:n be ith order statistic and the spacing function Di’s is defined as,

Di =

[
F(xi:n; α)− F(x(i−1):n; α)

]
(22)

For x0 and xn+1 , F(x0; α) = 0 and F(xn+1; α) = 1 respectively.
at i=1,

D1 = exp
(

α

x1
− 1

α

(
eα/x1 − 1

))
(23)

at i=n+1,

Dn+1 = 1 − F(xn:n; α)

Dn+1 = 1 − exp
(

α

xn
− 1

α

(
eα/xn − 1

))
(24)

For i = 2, 3, ..., n the expression is

Di =

[
F(xi:n; α)− F(x(i−1):n; α)

]

Di = exp
(

α

xi
− 1

α

(
eα/xi − 1

))
− exp

(
α

xi−1
− 1

α

(
eα/xi−1 − 1

))
(25)

Then the product of spacing function is defined as

S =
n+1

∏
i=1

Di (26)

MPSE is the value of α which maximize the product spacing function given in equation (26).
Taking the log of both side of equation (26)

log(S) =
n+1

∑
i=1

log(Di)

. log(S) = log(D1) + log(Dn+1) + ∑n
i=2 log(Di)

log(S) = log
[

exp
(

α

x1
− 1

α

(
eα/x1 − 1

))]
+ log

[
1 − exp

(
α

xn
− 1

α

(
eα/xn − 1

))]
+

n

∑
i=2

log
[

exp
(

α

xi
− 1

α

(
eα/xi − 1

))
− exp

(
α

xi−1
− 1

α

(
eα/xi−1 − 1

))] (27)

To find the estimated value of α which maximize the equation (26) we use the method of
optimization. For this we have to differentiate the equation (27) w.r.t. α and equate to zero,

∂

∂α

(
log(S)

)
= 0 (28)
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On solving the above equation it found an estimated value of α = α̂mp , and to satisfy the
condition of maximization by the value α = α̂mp , i.e.[

∂2

∂α2 log(S)
]

α=α̂mp

< 0 (29)

The expression given in equation (27) and (28) together is not easy to solve and it is not in closed
form. For the solution of this and to find the estimated value of α which maximize the product of
spacing function given in equation (26) by satisfying the condition in equation (29) and we have
used some numerical method to find the numerical solution of equation (28).

4. Asymptotic Confidence Interval

We have obtained both MLE and MPSE of the parameter which are not in explicit form. So the
exact distribution of the estimator is quite difficult to obtain. The authors Cheng & Amin [16],
Ghosh & Jammalamadaka [20], Anatolyev [21] and Singh et. al. [22] have used MPSE method
in their papers and explained the MPSE method is asymptotically equivalent to MLE method.
By using the concept of large sample theory we may write the asymptotic distribution for the
estimators as, (

θ̂ − θ
)
≡ N

(
0, I−1(θ̂

))
; (30)

where,
θ̂ is the estimate of parameter
θ is the true value of parameter
I−1(θ̂

)
is the inverse of Fisher information matrix

For m parameters θ1, θ2, θ3, ..., θm involved in a distribution the m x m Fisher information matrix
is defined as

I(θ̂) =


I1,1 I1,2 · · · I1,m
I2,1 I2,2 · · · I2,m

...
...

...
...

Im,1 Im,2 · · · Im,m


Where, Ii,j = −E

(
∂2(L)
∂θi∂θj

)
; i, j = 1, 2, 3..., m

And the estimated variance for θ̂ is given by:

Var(θ̂) = I−1
i,j = −E

(
∂2(L)
∂θ2

)−1

θ=θ̂

; here i = j (31)

This is the diagonal element of the inverse of Fisher information matrix. Therefore, the two sided
100(1 − α∗) % confidence interval for the θ is

θ̂ ± Zα∗/2

√
Var(θ̂); (32)

Where, α∗ is the level of significance and Zα∗/2
is upper α∗/2 % point of standard normal distribution.

For the IM distribution, asymptotic confidence interval defined for the MLE is defined as:

α̂ml ± Zα∗/2

√
Var(α̂ml) (33)

In the case of MPSE defined as :

α̂mp ± Zα∗/2

√
Var(α̂mp) (34)
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5. Scale transformation of IM distribution

We take a natural transformation (extension) of random variable by including a scale parameter
say β > 0. The scale transformation is taken as Z = βX. Then the cdf of Z is given as,

FZ(z) = exp
{

α · β

z
− 1

α

(
e(

α·β
z ) − 1

)}
; α ∈ (0, 1] and β > 0 (35)

the pdf is given by

fZ(z; α, β) =
1

β · z2

(
e(

α·β
z ) − α

)
exp

{
α · β

z
− 1

α

(
e(

α·β
z ) − 1

)}
; α ∈ (0, 1] and β > 0 (36)

Since, the distribution of Z is obtained by the scaling transformation of X which follows the
IM distribution with parameter α. So the new distribution of Z is called scaled inverse Muth
(SIM) distribution. Here, it is noticeable that Z comes from X follows IM distribution, on taking
scale transformation by adding a scale parameter β, thus SIM distribution has some properties
as similar to IM distribution, like as moments of this distribution also does not exist etc. The
quantile function for SIM is defined as:

QZ(u; α, β) = β · Q(u; α); 0 < u < 1

where Q(u; α) is the quantile function for IM distribution. So it becomes as

zu =
β · α2

α.log(u)− α.W−1

(
−e−

1
α .u

α

)
− 1

(37)

6. Simulation study

We have given numerical illustration of the results based on simulation study. We calculated the
estimates of parameters, bias and confidence limit for parameter, based on generated random
sample from IM distribution. The method of estimation MLE and MPS are used to compare the
MSE of parameters. Less MSE gives more efficient method of estimation. We generated 10000
random samples for different sizes to find the estimates for each sample and calculated their MSE
and bias using formula :

MSE =
1
N

N

∑
i=1

(α̂i − α)2 and bias =
1
N

N

∑
i=1

(α̂i − α), where N = 10000

R-codes are used to all the numerical computation. To compute the numerical values first we
generated a uniform random sample U = u1, u2, u3, ..., un of size n then generated random sample
from both distribution by using their quantile function where ‘u’ is the uniform random sample.
For each value of ui we get xi. In equation (15) and (37) W−1() is the lambert-W function which
is calculated by “lambertWm1( )” command from package “lamW” in ‘R’, Adler [23].

6.1. Simulation study for IM distribution

To generate the random sample from IM distribution, we have used the quantile function equation
(15). We used different sample size n = (15, 25, 50, 75, 100, 125) for each true value of parameter
α= (0.3, 0.5, 0.7). In Table 2, we have given average value of MLE and MPSE of parameter α along
with their respective MSEs, average value of bias, average length of confidence interval (CI) and
average of the upper limit (UL) and lower limit (LL) of confidence interval for α= 0.3, 0.5, and 0.7.
The output of simulation study is based on Table 2, explained as: for both method of estimation,
MSE decreases as the sample size increases. For the small value of shape parameter α, MPSE has
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less MSE than MLE only for small sample, and for the large sample, MLE has less MSE than
MPSE. From Table 2, it is observed that for large value of α within its range α ∈ (0, 1] , MLE has
less MSE than MPSE to all sample size. In the case of MLE, bias is positive for each value of
parameter and mostly negative in MPSE method. As usual, the average length of the CI decreases
as the sample size increases for both the method MLE and MPSE. In Table 2, somewhere we
found that LL of CI and UL of CI is going to outside of range of α ∈ (0, 1], but IM distribution is
defined for only α ∈ (0, 1]. For this we take 0.0000∗ for LL < 0 and 1.0000∗ for UL > 1.

6.2. Simulation study for SIM distribution

To generate the random sample from SIM distribution we have used the quantile function equation
(37). We have used different sample size n = (15, 25, 50, 75, 100, 125) for different value of shape
parameter α and scale parameter β. All the numerical value of average value of MLE and MPSE
of parameter α and β along with their respective MSEs, average value of bias, average length of
CI and average of the upper limit (UL) and lower limit (LL) of CI estimates presented in Table
[3, 4, 5, 6, 7]. From these Tables, we can observe that MSE of the estimates of shape parameter
α and scale parameter β, decreases as the sample size increases in case of MLE as well as in
MPSE. At the fixed value of β and small value α, MPSE gives less MSE than MLE. It indicates
that MPSE gives better estimates than MLE. For large value of α ∈ (0, 1] at the same β, MLE gives
less MSE than MPSE for all different sample sizes. Length of the CI decreases as the sample size
increases in both the cases MLE and MPSE. MLE has mostly positive bias whereas MPSE has
mostly negative bias. 0.0000∗ and 1.0000∗ defined same as above in section 6.1.

Table 2: MLE and MPS estimate for α = 0.3, 0.5 and 0.7

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

LL UL length LL UL length

α= 0.3

15 0.3954 0.0954 0.0497 0.0000∗ 0.8375 0.8375 0.2827 -0.0173 0.0323 0.0000∗ 0.7870 0.7870
25 0.3544 0.0544 0.0307 0.0069 0.7019 0.6950 0.2661 -0.0339 0.0251 0.0000∗ 0.6493 0.6493
50 0.3227 0.0227 0.0155 0.0776 0.5679 0.4903 0.2557 -0.0443 0.0152 0.0000∗ 0.5192 0.5192
75 0.3149 0.0149 0.0105 0.1161 0.5136 0.3976 0.2624 -0.0376 0.0105 0.0531 0.4716 0.4185

100 0.3108 0.0108 0.0078 0.1405 0.4811 0.3406 0.2662 -0.0338 0.0087 0.0885 0.4438 0.3554
125 0.3097 0.0097 0.0060 0.1584 0.4610 0.3026 0.2755 -0.0245 0.0065 0.1194 0.4317 0.3123

α=0.5

15 0.5441 0.0441 0.0371 0.9732 0.1149 0.8583 0.3996 -0.1004 0.0454 0.0000∗ 0.9135 0.9135
25 0.5329 0.0329 0.0261 0.8612 0.2046 0.6566 0.4250 -0.0750 0.0321 0.0541 0.7960 0.7419
50 0.5157 0.0157 0.0133 0.7429 0.2884 0.4545 0.4464 -0.0536 0.0168 0.2025 0.6904 0.4879
75 0.5098 0.0098 0.0090 0.6943 0.3252 0.3691 0.4545 -0.0455 0.0110 0.2615 0.6476 0.3861

100 0.5099 0.0099 0.0068 0.6683 0.3515 0.3168 0.4654 -0.0346 0.0082 0.3015 0.6293 0.3278
125 0.5094 0.0094 0.0054 0.6509 0.3679 0.2830 0.4678 -0.0322 0.0061 0.3219 0.6137 0.2918

α = 0.7

15 0.7007 0.0007 0.0253 0.3139 1.0000∗ 0.6861 0.5485 -0.1515 0.0527 0.0980 0.9990 0.9010
25 0.7083 0.0083 0.0189 0.4124 1.0000∗ 0.5876 0.6048 -0.0952 0.0307 0.2790 0.9307 0.6518
50 0.7097 0.0097 0.0110 0.5028 0.9165 0.4137 0.6435 -0.0565 0.0143 0.4256 0.8614 0.4357
75 0.7079 0.0079 0.0076 0.5389 0.8769 0.3380 0.6558 -0.0442 0.0098 0.4802 0.8313 0.3511

100 0.7079 0.0079 0.0056 0.5614 0.8543 0.2928 0.6678 -0.0322 0.0065 0.5173 0.8183 0.3011
125 0.7041 0.0041 0.0042 0.5731 0.8350 0.2618 0.6732 -0.0268 0.0051 0.5392 0.8073 0.2681
Est.: Estimate; MSE: Mean Square Error; CI: Confidence interval; UL: Upper limit; LL: Lower limit.
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Table 3: MLE and MPS estimate for α = 0.3 and β = 2

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

UL LL length UL LL length

α = 0.3

15 0.4302 0.1302 0.0606 0.8548 0.0056 0.8492 0.3325 0.0325 0.0386 0.8613 0.0000∗ 0.8613
25 0.3856 0.0856 0.0369 0.7171 0.0540 0.6630 0.3128 0.0128 0.0268 0.7014 0.0000∗ 0.7014
50 0.3422 0.0422 0.0181 0.5782 0.1063 0.4719 0.2886 -0.0114 0.0156 0.5496 0.0276 0.5220
75 0.3254 0.0254 0.0113 0.5184 0.1324 0.3861 0.2887 -0.0113 0.0105 0.4960 0.0815 0.4146
100 0.3219 0.0219 0.0085 0.4888 0.1549 0.3339 0.2774 -0.0226 0.0075 0.4552 0.0997 0.3555
125 0.3224 0.0224 0.0077 0.4716 0.1733 0.2983 0.2937 -0.0063 0.0070 0.4500 0.1373 0.3127

β = 2

15 2.0570 0.0570 0.1831 2.7382 1.3758 1.3624 1.9418 -0.0582 0.1756 2.6697 1.2139 1.4558
25 2.0256 0.0256 0.1004 2.5621 1.4890 1.0730 1.9670 -0.0330 0.0881 2.5401 1.3940 1.1460
50 2.0114 0.0114 0.0499 2.3998 1.6229 0.7769 1.9697 -0.0303 0.0437 2.3773 1.5621 0.8152
75 2.0082 0.0082 0.0328 2.3284 1.6879 0.6405 1.9694 -0.0306 0.0304 2.2993 1.6395 0.6598
100 2.0112 0.0112 0.0243 2.2892 1.7332 0.5560 1.9750 -0.0250 0.0247 2.2636 1.6864 0.5771
125 1.9968 -0.0032 0.0185 2.2433 1.7503 0.4929 1.9732 -0.0268 0.0193 2.2262 1.7203 0.5058

Table 4: MLE and MPS estimate for α = 0.5 and β = 2

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

UL LL length UL LL length

α = 0.5

15 0.5675 0.0675 0.0432 0.9683 0.1668 0.8015 0.4415 -0.0585 0.0417 0.9266 0.0000∗ 0.9266
25 0.5524 0.0524 0.0317 0.8630 0.2417 0.6213 0.4630 -0.0370 0.0288 0.8150 0.1110 0.7040
50 0.5315 0.0315 0.0172 0.7520 0.3110 0.4411 0.4776 -0.0224 0.0162 0.7138 0.2413 0.4724
75 0.5163 0.0163 0.0108 0.6971 0.3354 0.3617 0.4740 -0.0260 0.0109 0.6641 0.2839 0.3802

100 0.5171 0.0171 0.0087 0.6736 0.3606 0.3130 0.4833 -0.0167 0.0084 0.6459 0.3207 0.3252
125 0.5123 0.0123 0.0070 0.6525 0.3721 0.2804 0.4833 -0.0167 0.0065 0.6280 0.3387 0.2893

β = 2

15 2.0673 0.0673 0.1349 2.6636 1.4710 1.1926 1.9923 -0.0077 0.1134 2.6630 1.3216 1.3414
25 2.0262 0.0262 0.0766 2.4799 1.5725 0.9074 1.9826 -0.0174 0.0797 2.4791 1.4860 0.9931
50 2.0042 0.0042 0.0347 2.3231 1.6854 0.6377 1.9838 -0.0162 0.0332 2.3209 1.6466 0.6743
75 2.0093 0.0093 0.0236 2.2724 1.7463 0.5261 1.9884 -0.0116 0.0231 2.2624 1.7144 0.5480

100 2.0038 0.0038 0.0172 2.2303 1.7774 0.4529 1.9930 -0.0070 0.0180 2.2275 1.7584 0.4691
125 2.0014 0.0014 0.0143 2.2043 1.7985 0.4058 1.9917 -0.0083 0.0170 2.2007 1.7826 0.4180
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Table 5: MLE and MPS estimate for α = 0.7 and β = 2

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

UL LL length UL LL length

α=0.7

15 0.7055 0.0055 0.0289 1.0000∗ 0.3277 0.6723 0.5808 -0.1192 0.0437 1.0000∗ 0.1437 0.8563
25 0.7167 0.0167 0.0218 1.0000 0.4270 0.5730 0.6253 -0.0747 0.0269 0.9437 0.3068 0.6369
50 0.7187 0.0187 0.0142 0.9237 0.5138 0.4099 0.6600 -0.0400 0.0149 0.8762 0.4438 0.4324
75 0.7118 0.0118 0.0097 0.8795 0.5440 0.3355 0.6717 -0.0283 0.0100 0.8457 0.4977 0.3480

100 0.7111 0.0111 0.0077 0.8566 0.5656 0.2910 0.6786 -0.0214 0.0080 0.8283 0.5289 0.2994
125 0.7089 0.0089 0.0059 0.8393 0.5784 0.2609 0.6795 -0.0205 0.0061 0.8131 0.5458 0.2673

β=2

15 2.0806 0.0806 0.1020 2.6046 1.5566 1.0480 2.0263 0.0263 0.0918 2.6177 1.4349 1.1828
25 2.0385 0.0385 0.0566 2.4285 1.6486 0.7799 2.0085 0.0085 0.0578 2.4347 1.5824 0.8523
50 2.0078 0.0078 0.0257 2.2763 1.7392 0.5370 1.9905 -0.0095 0.0235 2.2740 1.7071 0.5669
75 2.0117 0.0117 0.0185 2.2317 1.7916 0.4401 2.0021 0.0021 0.0181 2.2307 1.7736 0.4571

100 2.0037 0.0037 0.0132 2.1932 1.8141 0.3790 1.9980 -0.0020 0.0135 2.1935 1.8024 0.3911
125 2.0063 0.0063 0.0106 2.1761 1.8366 0.3395 2.0005 0.0005 0.0119 2.1750 1.8260 0.3490

Table 6: MLE and MPS estimate for α = 0.3 and β = 5

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

UL LL length UL LL length

α=0.3

15 0.4282 0.1282 0.0589 0.8552 0.0012 0.8540 0.3231 0.0231 0.0375 0.8626 0.0000∗ 0.8626
25 0.3846 0.0846 0.0383 0.7175 0.0517 0.6658 0.2996 -0.0004 0.0282 0.6955 0.0000∗ 0.6955
50 0.3452 0.0452 0.0188 0.5815 0.1090 0.4725 0.2840 -0.0160 0.0169 0.5469 0.0211 0.5258
75 0.3359 0.0359 0.0119 0.5284 0.1434 0.3850 0.2880 -0.0120 0.0117 0.4960 0.0801 0.4159

100 0.3265 0.0265 0.0085 0.4933 0.1597 0.3336 0.2967 -0.0033 0.0089 0.4732 0.1202 0.3530
125 0.3161 0.0161 0.0061 0.4657 0.1666 0.2991 0.2896 -0.0104 0.0070 0.4464 0.1328 0.3136

β=5

15 5.0498 0.0498 0.9296 6.7910 3.3085 3.4825 4.7917 -0.2083 0.8598 6.6624 2.9209 3.7415
25 5.0434 0.0434 0.6235 6.4279 3.6589 2.7690 4.8389 -0.1611 0.5573 6.3059 3.3719 2.9340
50 5.0169 0.0169 0.3575 6.0060 4.0279 1.9781 4.8789 -0.1211 0.3539 5.9168 3.8409 2.0759
75 5.0488 0.0488 0.2548 5.8586 4.2390 1.6196 4.9499 -0.0501 0.2534 5.7944 4.1053 1.6891

100 5.0276 0.0276 0.2150 5.7291 4.3261 1.4030 4.9380 -0.0620 0.2150 5.6565 4.2196 1.4369
125 5.0530 0.0530 0.1917 5.6877 4.4183 1.2694 4.9720 -0.0280 0.1821 5.6200 4.3240 1.2960
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Table 7: MLE and MPS estimate for α = 0.3 and β = 10

n
MLE MPS

Est. bias MSE
CI

Est. bias MSE
CI

UL LL length UL LL length

α=0.3

15 0.4349 0.1349 0.0623 0.8606 0.0092 0.8514 0.3290 0.0290 0.0377 0.8659 0.0000∗ 0.8659
25 0.3855 0.0855 0.0389 0.7182 0.0528 0.6654 0.3053 0.0053 0.0284 0.6994 0.0000∗ 0.6994
50 0.3503 0.0503 0.0197 0.5860 0.1146 0.4714 0.2899 -0.0101 0.0173 0.5521 0.0277 0.5244
75 0.3424 0.0424 0.0121 0.5344 0.1504 0.3840 0.2998 -0.0002 0.0120 0.5065 0.0931 0.4134

100 0.3273 0.0273 0.0086 0.4941 0.1605 0.3336 0.3002 0.0002 0.0093 0.4765 0.1240 0.3525
125 0.3237 0.0237 0.0070 0.4728 0.1745 0.2983 0.2916 -0.0084 0.0062 0.4482 0.1350 0.3132

β=10

15 9.9635 -0.0365 3.4750 13.3824 6.5447 6.8377 9.4550 -0.5450 3.4249 13.1285 5.7816 7.3469
25 10.0247 0.0247 2.6036 12.7796 7.2697 5.5099 9.5618 -0.4382 2.4351 12.4525 6.6711 5.7814
50 9.9386 -0.0614 1.5441 11.8934 7.9838 3.9096 9.6508 -0.3492 1.5991 11.6994 7.6022 4.0972
75 10.0207 0.0207 1.1687 11.6192 8.4223 3.1969 9.7578 -0.2422 1.2321 11.4079 8.1076 3.3003

100 10.0328 0.0328 1.0610 11.4341 8.6315 2.8026 9.7869 -0.2131 1.0286 11.2072 8.3667 2.8405
125 10.0279 0.0279 0.8687 11.2806 8.7752 2.5054 9.8581 -0.1419 0.8287 11.1387 8.5774 2.5613

7. Real data analysis

The real data have been used to show the applicability of the SIM distribution. The results show
this model is more appropriate than some other fitted model for this data. The data represent the
active repair time (in hrs.) for airborne communication transceiver given in Jorgensen [24]. The
data is given as below:

0.50 0.60 0.60 0.70 0.70 0.70 0.80 0.80
1.00 1.00 1.00 1.00 1.10 1.30 1.50 1.50
1.50 1.50 2.00 2.00 2.20 2.50 2.70 3.00
3.00 3.30 4.00 4.00 4.50 4.70 5.00 5.40
5.40 7.00 7.50 8.80 9.00 10.20 22.00 24.50

For the fitting of above real data to the proposed model we used Kolmogorov–Smirnov test
(K–S test). In order to compare the models we used negative log-likelihood function define as
−logL(α̂, β̂) values, Akaike information criteria (AIC) values defined by AIC = −2log(L) + 2q
and Bayesian information criterion (BIC) values defined BIC = −2log(L) + q · log(n) by BIC
where, α̂ml , β̂ml are the estimates of parameter α and β by using MLE method, q is the number of
parameters and n is the sample size. The best fitted distribution is that distribution which gives
the lower values of –log(L), AIC and BIC.
From the Table 8 it is obtained that SIM distribution give best fit among some other popular
distributions. And the MLE of parameters of SIM and some other distributions given in Table 9.
Figure 3 shows that empirical cdf and fitted cdf plot for SIM and some other distributions.

Table 8: Comparison criterion values for different distribution.

Model AIC BIC -log(L) k-s statistic p-value
SIMD (x; α, β) 182.6664 182.3504 89.3332 0.0869 0.9231

EPLD (x; α, β, θ) 186.5721 191.6387 90.2861 0.0909 0.8627
PLD (x; β, θ) 195.8854 199.2631 95.9427 0.1346 0.4637
GLD (x; α, θ) 199.8218 203.1995 97.9107 0.1660 0.2201

SIMD:Scaled inverse Muth distribution; EPLD: Exponentiated power Lindley distribution; PLD: Power Lindley
distribution; GLD: Generalized Lindley distribution.
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Table 9: MLE for the parameters of different distributions.

Model θ β α

SIMD (x; α, β) - 1.5464 0.2630
EPLD (x; α, β, θ) 3.5472 0.2901 30.8299

PLD (x; β, θ) 0.5867 0.7988 -
GLD (x; α, θ) 0.3588 - 0.7460

Figure 3: Empirical cdf and fitted cdf plot.
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Abstract 

In the Optical Character Recognition (OCR) system, achieving high recognition performance is 
important. OCR and visual perception are affected by the inclined characters in each language. 
Deep learning methods play an important role in the OCR field, which can outperform humans 
with higher recognition performance. So, in this research, a hybrid deep learning technique is 
applied to recognize the Gujarati language characters. Initially, Gujarati characters collected 
from different sources are pre-processed using different techniques. Adaptive Weiner Filter 
(AWF) is used for noise removal, Binarization, and contrast enhancement is done by Contrast 
Limited Adaptive Histogram Equalization (CLAHE) method. Finally, a hybrid deep ResNet 
with Inception model (GoogleNet) is suggested to perform character recognition in the Gujarati 
language. This hybrid architecture also performs feature extraction tasks, considered a major 
task in OCR. Python tool is utilized to illustrate the proposed methodology and solve the 
mathematical model. Scanned documents containing Gujarati characters are engaged to 
evaluate the robustness of the proposed methodology. Using various performance parameters, 
the influence of the proposed methodology is examined and its results compared with various 
deep learning algorithms. 

Index terms: Gujarati language, Optical character recognition (OCR), pre-processing, 
adaptive filtering, Hybrid deep learning algorithms.  

I. Introduction

Demand for handheld gadgets is increasing quickly with time in the digitization world. Handheld 
gadgets also require an efficient and easy tool to input the data. Input using a standard keyboard 
obliges time and determination, mostly for Indian scripts. Because, they have a huge complex character 
set that makes the input system difficult to use a normal keyboard [1]. With a simple keyboard, tiny 
handheld gadgets have a lot of benefits using online words identification system. In India, the Gujarati 
language belongs to the Devnagari family of languages, and it is instigated in the western state of India 
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that is Gujarat. Fifty million people of the state speak this language. It is a widely spoken language and 
has inherited rich cultural and literature properties, but few types of research only concentrate on 
identifying Gujarati characters from handwritten documents [2, 3]. There are several numbers of 
handwritten and printed documents available in Gujarati script, and it is essential to preserve those 
pamphlets in digital format from an efficient distribution and legal and historical perspective [4].  

Scanning is considered one of the best methods to transform pamphlets into a digital layout. Still, 
searching, retrieving and editing the information in a scanned document is considered another difficult 
task [5]. It is an important task to retrieve the data from the scanned pamphlet. Recognition based and 
recognition free methods are two important techniques used to retrieve any information from the 
document [6]. OCR system [7] is a recognition-based method that transforms document images into 
readable text format. For various Indian regional scripts like Tamil, Malayalam, Telugu, Kannada, 
Oriya, Bangla, Devanagari and Gurumuki, a small amount of research related to character recognition 
has been carried out [8]. Researchers are looking forward to inventing new methods for accurately 
identifying the characters due to the demand for low-cost OCR systems [9, 10]. This paper concentrates 
on the identification of optical characters in the Gujarati language. 

There are only very few works in the literature on the recognition of Gujarati language scripts [11]. 
In previous years, machine learning methods and conventional pattern recognition approaches have 
been used in the OCR framework. But, it requires an efficient method to satisfy the need and 
requirements of users to enhance the marketability of the OCR system using efficiency and economy 
[12, 13]. Several methods and techniques are used to find the best OCR system to achieve a better 
recognition rate. Since the last few years, machine learning and deep learning methods have emerged 
as promising solutions for these OCR problems. Due to the satisfactory results in this area, researchers 
are making several efforts to extend deep learning architectures [14, 15]. 

A major objective of this study is to make a structure that automatically identifies the optical 
characters from a set of scanned documents. Major contributions of this research are defined as follows:  

• To perform the different pre-processing methods to make character recognition tasks very 
simple.   

• To design a hybrid deep learning technique that can efficiently recognize a Gujarati character 
with maximum recognition accuracy. 

• To reduce the computational complexity of this entire system by performing a recognition 
process using a hybrid deep learning algorithm. 

The remaining section of this research is ordered as follows: Section 1 introduces the Gujarati 
language and the advantage of using the OCR framework. Section 2 depicts recent work related to our 
research methodology and problems in previous research. The proposed methodology is elaborated in 
section 3. Section 4 illustrates simulation outcomes and considerations of the proposed methodology, 
and Section 5 provides the conclusion and future enhancement of our research work.   

 
II. Literature review 

 
Generally, the electronic document analysis framework widely uses OCR for character identification. 
This method has been very useful for extracting text from a scanned document or image and is used in 
image processing, Natural language processing and pattern recognition. Rakesh Kumar Sethi and 
Kalyan Kumar Mohanty [16] developed a deep learning technique for optical Odia character 
classification. There was little progress in handwriting character recognition (HCR) for a small 
vocabulary for neatly hand-typed characters and new line isolated words. Moreover, a small amount 
of research work had been done on Odia’s character recognition process. In this article, different 
transfer learning methods like VGG16 and ResNet 50 were utilized to perform the character recognition 
process, and the performance was compared with existing CNN based techniques.   
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Ambadas Shinde and Yogesh Dandawate [17] developed a convolutional neural network 

architecture for handwritten based Marathi text identification. Different authors performed character 
recognition by different techniques. In computer vision, deep learning algorithms were considered an 
important technique that correctly predicts the scanned document's characters. In general, handwritten 
Devanagari characters were considered difficult to identify, which was overcome with the help of deep 
learning methods. , in this article, manually written Marathi words have been precisely identified using 
an OCR system based on a Convolutional Neural Network (CNN). Also, manually written Devanagari 
text written in the Marathi language was obtained by developing a character segmentation free 
technique that replicates the perceived words in printed form.     

The Gujarati language normally contains many confusing characters that lead to misclassification. 
Vishal A. Naik and Apurva A. Desai [18] for online handwritten Gujarati character recognition. So, the 
classification accuracy of confusing characters was increased with the multi-layer classification method. 
Initially, training was performed by the polynomial kernel using Support Vector Machine (SVM) in the 
first classification layer. In the second layer, SVM with linear kernel was utilized to classify confusing 
letters when the first layer returns a letter with some letters on training data. Finally, both layers 
perform classification using features obtained from a hybrid feature set that contains dominant point 
and zoning features based on regularized chain code features.   

Optimized Self-Organizing Map (SOM) network was developed by Om Prakash Jena et al. [19] to 
recognize printed Odia characters and digits. For Odia language, the SOM network was created to build 
up an OCR framework that effectively performs the character identification task. Some characteristics 
like shape, different content styles, subordinate conditions of characters and their context make 
challenges in the Odia character recognition framework. The proposed SOM network was advanced 
with certain structural features like height, cross-section, width, and end points to obtain 97.55% 
recognition accuracy.   

Dibyasundar Das et al. [20] developed a multi-objective Jaya Convolutional Network (MJCN) for 
handwritten OCR. This technique tries to learn significant features directly from the images. This MJCN 
technique contained a convolution layer, an activation layer, a multiplication layer and had a multi-
objective Jaya Optimizer (MJO). Over a local neighbourhood connection, the convolution layer explores 
significant patterns in an image, and the multiplication layer develops the convolutional response to a 
more compact feature space. MJO algorithm was utilized to optimize the initial weight value in the 
network. Minimizing intra-class variance and maximising inter-class distance were the main objectives 
of the MJO algorithm. Standard classifiers were used to recognize the characters from different datasets.  
 

III. Proposed methodology 
 

In the script of Gujarathi, nearly 34 consonants and 12 vowels are available, and such consonants are 
termed as Vyanjan and Vowels are called Swar. In this proposed work, the own datasets are collected 
from the vowels and consonants of the Gujarathi language. In which, OCR is necessary for 
understanding such data to both machinery and humans. Besides, OCR is considered superior, and this 
is because; process controlling during data production is not required in it. This also suppresses the 
issue of the identification of optically processed characters. Both the printed and the handwritten 
characters are verified by OCR. However, the input data quality mainly decides its overall 
performance. To classify a similar set of characters from the wide data varieties, a classifier is necessary. 
The ResNet and Inception model is considered a superior method for classifying similar sets. The 
Gujarati characters are classified in this research work by hybridising such approaches. Figure 1 
represents the phases tangled in the proposed technique. 
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Figure 1: Workflow of the proposed methodology 

 
This research focuses on offline OCR using a collection of Printed (laser and Machine printed) 

Gujarati characters from different sources like magazines, newspapers and books, etc. Initially, the 
dataset is pre-processed using different methods like noise removal technique using Adaptive Weiner 
Filter (AWF), Binarization, and Contrast Limited Adaptive Histogram Equalization (CLAHE) 
technique for contrast improvement. After that, the classification approach is done with the help of 
hybrid deep ResNet with Inception model (GoogleNet) architecture, which significantly achieves better 
recognition accuracy on poor quality text images. This hybrid algorithm can perform better 
classification results than any other conventional technique. 

 
I. Pre-processing 
 
After data acquisition, it should be properly pre-processed with different techniques. In some cases, the 
collected data is of poor quality due to the blurred image. So, pre-processing phase is essential to 
remove noise and variability in the input image. Different kinds of pre-processing methods like noise 
removal, Binarization, skew detection and correction, and image contrast enhancement are done with 
the help of different techniques. The character recognition task becomes simpler with a pre-processed 
image that organizes the image in a correct format [21].   
 
A. Noise removal 
Wiener filtering is assumed as one of the best methods to eliminate noise from digital images. Based on 
a local variance of the image, AWF [22] modifies the output of the filter. The main goal of this method 
is to minimize the mean square error between the original image and the reconstructed image. 
Compared to previous filtering techniques, this filtering is very useful to preserve the edges and high-
frequency area of the images. In this filtering, some adjustments are created to make the image better. 
Various window alternatives are applied to deal with different situations and automatically pick the 
best one. At smooth areas, center sample in the moving window must be ignored to suppress intuitively 
annoying singularities, but properly utilized in uneven areas. Before performing the AWF method, the 
images from the datasets are initially transformed into grey scale images.  
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The AWF is given in equation (1), for a particular pixel location  

                                                                                                                (1) 

where, input image is denoted as I, mean and variance are calculated from the set of 
local neighborhood of every single pixel. Hence,   

                                                                                                                                                 (2) 

                                                                                                                                        (3) 

In addition, the variance of noise is denoted as . 

 
B. Binarization 
In the character recognition task, binarization is considered an important phase. Several amounts of 
binarization methods are available in previous research in which most of them are utilized for a 
particular image type. The major objective of this technique is to preserve significant data and reduce 
the amount of information present in the image. Overall threshold and local threshold are two different 
classes presented in the gray scale images. In overall threshold, single threshold is utilized in a whole 
image to create background class and text, while threshold values are determined locally (pixel-by-
pixel or area-by-area) in local threshold. Given below expression is used to compute threshold of 
every single pixel locally. 

                                                                                                                               (4) 

Here, minimum image grey level is mentioned by , a standard deviation of all pixels in window 
is denoted as , an average of whole pixels in the window is mentioned by mentions the 

maximum deviation of grayscale on all windows and  is set to 0.5 [23].   
 
C. Contrast enhancement 
An enhancement function is offered to all the neighborhood pixels, and a transformation function is 
acquired from that corresponding pixels. CLAHE [24] method is exploited to maximize the image's 
contrast. The stages of CLAHE method is explained below: 
Stage 1: Input image 
Stage 2:Clip limit, distribution parameter type, dynamic range (number of bins in histogram transform 
function), and number of regions from column and row direction are considered as input data.   
Stage 3:Original image is separated into a number of regions.  
Stage 4:In tile (i.e. contextual region), apply the process.  
Stage 5:Clipped histogram and Gray level mapping are created. Whole pixels of contextual regions are 
equally distributed in every single gray level. The average number of pixels in a gray level image is 
represented by the given below expression.   

                                                                                                                                                     (5) 

Here, mentions the average number of pixels, represents the contextual area in the total 

gray level, total pixels in direction and of the contextual region is mentioned by , and  

respectively, finally, and denotes the clip limit and the total number of clips respectively. 

Given below expression is used to compute the actual clip limit.   
                                                                                                                                            (6) 
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Stage 6:For creating an enhanced image, introduce the gray level mapping. This process exploits four 
different pixel clusters and applies a mapping function to overlap every single drawing slate over the 
partially sliced images. This entire process is replicated to accomplish the desired result, which gives 
improved pixels on image.  
 
II. Recognition 
 
In this research, the Gujarati character identification method is done with the help of a hybrid 
algorithm, which integrates two different deep learning algorithms like CNN. Different convolution 
and subsampling layers are tracked by more than one fully connected layer. Normally, a fully 
connected layer is considered a usual multilayer neural network, and it clasps output which is defined 
as class score. The input image is convolved by the convolutional layers, which utilize several filters 
(learnable weights) to convolve the image and the pooling layer down samples the image. Average 
pooling and max pooling are two different kinds of functions in the pooling layer. CNN converts input 
images over different stacked layers from original pixels to obtain the final class score. Also, CNN 
structures are used as building blocks for different semantic segmentation models. In our work, two 
different deep learning algorithms named ResNet [25] and Inception (GoogLeNet)[26]model are 
hybridized to perform character recognition in the Gujarati language. Description of ResNet and 
Inception model are explained in the next section.  
 
A. ResNet 
In 2016, Microsoft researchers developed ResNet model, which achieved 96.4% classification accuracy 
and won the ImageNet Large Scale Visual Recognition Competition (ILSVRC). This network contains 
152 deep layers and contains a unique structure that presents residual blocks as shown in figure 2.  

 

 
Figure 2: Basic structure of a deep residual network  

 
It also utilize identity skip connections to discourse the problem of training a deep structure. The 

residual block's function is to copy the input of layers and forwards them into a subsequent layer. The 
vanishing gradient problem is exceeded with the help of identity skip connection in which an upcoming 
layer learns something different from the familiar input. 
 
B. Inception model 
In 2014, Google researchers developed the GoogleNet architecture, also known as the Inception model. 
This design won ILSVRC as a top-five with 93.3% classification accuracy. It contains 22 layers and 
introduces a building block named as Inception model. It does not follow the usual consecutive 
procedure. However, it exploits the network layer, pooling layer, and large and small convolution 
layers that are calculated in parallel. For dimensionality reduction, a 1x1 convolution operation is 

ReLU

ReLU

Conv Layer

Conv Layer

X

+

199



Sanket B. Suthar, Amit R. Thakkar 
OPTICAL CHARACTER RECOGNITION IN GUJARATI LANGUAGE 

RT&A, No. 1 (67) 
Volume 17, March 2022 

 
performed by the convolution layers. By saving memory and computational cost, dimensionality 
reduction and parallelism process significantly minimize the number of parameters and operations. 
The building blocks of the core Inception model is displayed in the given below figure 3.  

 

 
Figure 3: Core blocks in Inception module 

 
C. Hybrid ResNet with Inception model for character recognition 
This research combines the benefits of both ResNet and Inception models to improve the classification 
accuracy of Gujarati characters recognition with this proposed hybrid model. The inception model and 
residual network demonstrate their capability to increase thousands of layers by offering better 
performance as well as enhanced efficiency. Many residual blocks with identity mapping are presented 
in the residual network, and several convolution layers are presented in the deep convolution network 
named as Inception model. This Gujarati character recognition aims to recognize the character type by 
allocating and tagging separate pixels with several frequency bands into separate modules. A deep 
hybrid network structure is developed in this research to absorb deep features of Gujarati characters 
also offer better recognition accuracy performance without many pre-processing steps. The hybrid 
structure contains three convolutional layers and one average pooling layer. Outputs of every single 
layer form the input to every single, consecutive layer. Also, only one fully connected cascaded residual 
block is presented in the network, which is shown in figure 4.  

 

 
Figure 4: Residual block with fully connected cascaded layers (changed type) 
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Every convolutional layer accepts inputs from all preceding convolutional layers in the residual 

model. For our work, three convolutional layers are enough. Generally, the convolution operation is 
applied to the input data by convolutional layers, and the pooling operation is applied by the average 
pooling layer in a hybrid model. Also, these operations are performed before feeding data to the 
classifier. The Adam optimisation algorithm optimises the network model for its faster convergence 
speed. Also, this technique is a computationally effective one and less complex to sound. For our 
collected data, the batch size is set to 17, and the initial learning rate is 0.001. Figure 5 demonstrates the 
general scheme for combined Inception-ResNet modules.  

 

 
Figure 5: The general schema for scaling combined Inception-ResNet modules. 

 
Convolutional layers  
After performing convolution operations to the input image, it transforms the image by rectified linear 
unit (ReLU) function. Three convolutional layers are utilized in which everyone has nine filters making 
nine feature maps. Given below, expression (7) expresses each kernel's operation.  

                                                                                                                           (7) 

Here, is a convolution operator that convolves the filter with the input data adds the 

bias term and then applies the rectifier function and yields the feature map . The size of the 
convolutional filter is sixteen units, in which every single layer uses nine filters in the proposed hybrid 
model. Input is padded by each filter where the output has the same dimensions as the input tensor. 
The length of the convolution stride is 1. The glorot uniform weight initialization method is utilized in 
the convolution layers to initialize the weight, and the bias terms are initialized with 0. An element-
wise operation is applied by ReLU activation function on the input data , which is defined in the 
given below expression.  

                                                                                                                                       (8) 
In this work, 1D convolutional kernels are used where each and every pixel is represented as one 

vector with only one label. The final structure of hybrid ResNetInception architecture is presented in 
figure 6, and it contains only two residual blocks.  
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Figure 6: Hybrid deep ResNet-Inception architecture 
 

Two residual models are ultimately connected in this network in which the given below expression 
express the function of the upper residual model.  

                                                                                                                               (9) 

Equation 10 defines the function of the lower residual model.  

                                                                                                                       (10) 

The parallelism feature of the Inception component is stimulated by the Inception module so that 
lower and upper residual models work in parallel. Convolution of the operation is done by the first 
three lines in the equation and third convolutional layer and feeds the output to the average 
pooling layer, then apply dropout technique.  
Pooling layers 
Average pooling is performed by only one pooling layer with a stride and filter size of 2. The below 
expression express this average pooling function. Equation 11 defines the average pooling function. 

                                                                                                                                          (11) 
Here, mentions the average pooling function and the input data from the previous 

convolutional layer is mentioned as . In neural networks, dropout is performed to minimize 
interdependent learning between neurons. A dropout technique with a probability of 0.25 is directly 
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applied in the final stage after performing maximum pooling. Because, there is no fully connected layer 
apart from the Softmax classifier.  
Softmax classifier 
In a multi-class problem, Softmax assigns decimal probabilities to each class. Those decimal 
probabilities must add up to 1.0. The softmax activation function in the output layer obtains the 
probabilities of each input element belonging to a label and represents a categorical distribution over 
class labels. In this research, totally 34 classes are assigned to recognize 34 characters in the Gujarati 
language.  

 
IV. Simulation results and analysis 

 
This section deals with implementing OCR in the Gujarati language using a hybrid deep learning 
algorithm in the Matlab tool. Performance of the proposed methodology is estimated in terms of 
different parameters like detection accuracy, precision, recall, F-1 measure and character error rate 
(CER). Different kinds of existing pre-trained deep learning algorithms like AlexNet, ResNet, and 
GoogleNet architectures are implemented to equate the performance of the suggested technique. 

 
I. Dataset explanation 
 
To implement this work, the dataset containing Gujarati characters is collected by ourselves from 
different sources. The prepared dataset contains 10,200 characters containing 34 Gujarati consonants of 
300 characters for each. The structure of dataset is displayed in table 2. Printed (laser and Machine 
printed) Gujarati characters from different sources like magazines, newspapers and books etc., are 
utilized to collect the dataset. The samples for Gujarati numerals were poised from 300 persons of 
dissimilar age groups, professional backgrounds and genders. Sample images from the dataset are 
displayed in figure 7. 

 
Figure 7: Sample images from the dataset 

 
II. Experiment on dataset 
 
The collected data is divided into 80% for training and 20% for testing in this research. Approaches 
closely related to our proposed methodology are implemented to equate the performance of our hybrid 
model. Conventional techniques like AlexNet, ResNet, and GoogleNet are implemented in this work. 

 

 
(a) Original Images (Input) 

 
(b) Pre-processed images (Output) 

Figure 8: Output images after performing pre-processing steps 
 

203



Sanket B. Suthar, Amit R. Thakkar 
OPTICAL CHARACTER RECOGNITION IN GUJARATI LANGUAGE 

RT&A, No. 1 (67) 
Volume 17, March 2022 

 
Figure 8 displays the original images as well as pre-processed images. This image only contains 10 

sample characters from the collected dataset and the pre-processed images of that sample characters.  
Table 1: Configuration parameters for proposed hybrid deep neural network 

Layer Image size Kernel size No of filters Stride Activation 
Input 28*38 - - - - 

Convolution 24*24 5*5 9 1 Relu-Inception 
Convolution 12*12 3*3 9 1 Relu-Inception 
Convolution 10*10 2*2 9 1 Relu-Inception 
Max pooling 5*5 3*3 2 2 Relu-Inception 

Drop out (0.25) 5*5 - - - - 
Output - - - - Softmax 

 
Table 1 mentions the configuration parameter for the proposed hybrid model. This hybrid deep 

learning algorithm uses three convolutional layers with stride size 1. Also, all the convolutional layer 
functions with the ReLu-Inception activation function. Drop out technique is applied with a 0.25 
probability value. Finally, the output is obtained by joining the Softmax layer as the output layer. In 
this architecture, the initial learning rate is set as 0.001, and the batch size is 17.  
 
III. Performance analysis 
 
Some standard measures such as Precision, Recall, F1 measure, and accuracy are used to evaluate the 
performance of the hybrid model, in which they are based on a confusion matrix. The output is either 
a correctly recognized character or an incorrectly recognized character in the character recognition 
problem. True Positive (TP), True Negative (TN), False Positive (FP) and False Positive (FP) are four 
different categories used to estimate the performance of the proposed methodology. TP defines that the 
actual characters are correctly recognized as actual characters, FP explains that some other characters 
are incorrectly recognized as actual characters, TN describes that some other characters are correctly 
recognized as other characters, and FN indicates that the actual characters are incorrectly recognized 
recognized as some other characters. The performance metrics like precision, recall, accuracy, and F1 
measure are evaluated by these four categories. Precision (P) measure is the fraction of all recognized 
characters to the total number of typescripts in the dataset. The recall is a fraction between correctly 
recognised characters and the number of characters that should have been recognized. F1 score or 
balanced F-score is the harmonic mean of precision and recall. Finally, accuracy is a quantity of 
correctness of the character recognition. In OCR related frameworks, CER is defined as the percentage 
of inaccurate typescripts in the system output.  
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Figure 9: Performance comparison of accuracy 

 
Figure 9 displays the performance comparison of accuracy. Additionally, the performance of the 

suggested classifier is compared with existing pre-trained models like AlexNet, GoogleNet and ResNet. 
Our proposed hybrid model exceeds all previous methods in terms of higher accuracy compared to 
existing methods. For instance, the proposed hybrid methodology obtains 98.5% accuracy, and the 
existing methods like GoogleNet obtain 93.4%, ResNet obtains 96.4%, and AlexNet obtains 92.45%. The 
higher accuracy is that the proposed hybrid model only uses three convolution layers for further 
processing, while the others use a different number of convolution layers. In general, the quality of the 
results is decreased with more convolutional layers.   

 

 
Figure 10: Performance comparison of precision 

 
The comparative analysis of precision metrics is displayed in figure 10. The performance of the 

proposed hybrid structure is compared with existing methodologies like AlexNet, GoogleNet and 
ResNet architecture. The figure analysis shows that the proposed methodology obtains 98% accuracy 
in which GoogleNet obtains 96%, ResNet attains 97%, and AlexNet achieves 93.48%. The proposed 
methodology exceeds all conventional methods using higher precision value.  

 

 
Figure 11: Performance comparison of Recall 

 
Figure 11 demonstrates the performance analysis of recall metric. From the figure analysis, it is 

shown that the proposed hybrid model obtains 97.35% recall in which existing methods like GoogleNet 
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obtains 95.56% recall value, ResNet attains 96.23% recall. Finally, AlexNet achieves 93.22% recall value. 
Compared to existing methodologies, our proposed method obtains high recall in our collected dataset.  

 

 
Figure 12: Performance comparison of F1-score 

 
Figure 12 displays the performance comparison of the F1-score. The proposed hybrid model 

attains a 96.23% score while existing methodologies like AlexNet, GoogleNet and ResNet obtain 93%, 
95% and 95.12% F1-score. From the figure analysis, it is clearly shown that the proposed methodology 
beats all conventional methodologies using a high score value.  

 

 
Figure 13: Performance comparison of Character error rate 

 
Figure 13 shows the Character error rate evaluation of the proposed hybrid model with 

conventional techniques like GoogleNet, ResNet as well asAlexNet classifiers. When comparing the 
performance of classifiers, the character error rate is minimum for the proposed hybrid model with 
0.20%. Existing methodologies like AlexNet, GoogleNet, ResNet obtain 0.36%, 0.32% and 0.25% error 
which is comparatively higher than the proposed method. The reason for less error is that both feature 
selection and character recognition process are done by hybrid model, which shows less character 
recognition rate in the proposed methodology. Moreover, the hybrid model has advantages like 
robustness, speed learning, and generalization to the same input. These are considered the significance 
of the hybrid model, which minimizes the error rate in character recognition compared to the existing 
pre-trained models.  
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Figure 14: Execution time analysis 

 
Figure 14 shows the execution time analysis of the proposed hybrid model and existing pre-trained 

models like AlexNet, GoogleNet and ResNet. Compared to the existing pre-trained models, the 
proposed hybrid model takes 50 seconds to complete the recognition process. This is due to the hybrid 
model's fast learning process that helps speedily identify the characters.   

 
V. Conclusion 

 
In today’s world, most people are e-readers. But, very few e-books are available in the Gujarati 
language, and most pamphlets are in the form of hardcopy. It needs a digitization method to change 
those hardcopies into editable text format. OCR is a technique for converting scanned documents into 
digitized text. So also, for the Gujarati language, the OCR system is required. Plenty of researchers is 
making efforts to create an efficient OCR system for Indian languages like Marathi, Gujarati and many 
more. So, in this article, a hybrid ResNet-Inception model is proposed to detect the characters from the 
collection of scanned documents. Simulation is carried out using the Python tool, and the performance 
of hybrid methodology is calculated by means of different parameters. Also, it is compared with diverse 
deep-learning procedures to show the effectiveness of the proposed methodology. The simulation 
result indicates that the proposed deep hybrid architecture achieves 98.5% accuracy for character 
recognition, 3.73% higher than ALexNet, 3.94% greater than GoogleNet and 1.51% superior to ResNet. 
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Abstract 
 

Sustainable energy plays a significant role in socio-economic advancement by raising the 
standard of living of all human beings. Briquetting is the process of compaction of biomass residues 
into solid fuels in order to increase the effectiveness of thermal capacity, combustion rate, calorific 
value to name a few. In this paper, we consider not only the occurrence of minor/ major faults but 
also the other neglected faults such as abnormal sound, overheating of the motor unit, vibration, etc. 
Such neglected faults may not affect the working of the system at a time but their ignorance may 
convert into major faults in the future. An ordinary repairman can easily rectify all machine faults 
except some major faults for which an expert repairman is required. Moreover, we analyse the 
availability of the system and optimize system profit by using the Artificial Bee Colony 
optimization algorithm. Furthermore, a graphical study of these parameters is presented. 
 
Keywords: Briquette machine, Profit, Base state, Transition probability, 
Regenerative Point Graphical Technique (RPGT). 
 
 

I. Introduction 
 

Ongoing international efforts to reduce CO2 emission from the consumption of energy lead us 
towards renewable energy sources. Production of biomass helps us in achieving a neutral CO2 
emission which balances the rate of growth of biomass. Sharma et al. [20] discussed varying 
contents of carbon, oxygen, and hydrogen provide us various effects on the conversion process of 
energy. Cellulose, hemicellulose, and lignin are the three main polymers of biomass. 

The process of heating biomass up to approximately 200-300 degrees Celsius is sometimes 
known as Torre-faction (roasting, slow pyrolysis). Nowadays, Torre-faction becomes a widely 
discussed technology because of its potential to enable the use of extra biomass resources and 
make it one of the main energy sources of the present time. One of the main purposes of the 
Torrefaction process is to produce biomass that resembles coal mostly in terms of its properties as 
a solid fuel. Due to such reasons terrified biomass is often called bio-coal. Many authors published 
their works on describing several parameters which are necessary for its use as solid fuel and 
introduced bio coal into the energy market [21]. 

Briquetting or densification is the process of pressurizing loose biomass into a compacted fuel 
known as briquettes. It helps us to produce an energy content with a smaller amount of dampness. 
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Briquettes are consistent in shape which results in smooth utilization and storage equipment 
lessening the handling, storage space, and transport expenses. Sawdust, cotton stalk, edible 
nutshell, coconut shell, paper and coconut mixture cocoa shell, and a lot more are the samples of 
biomass investigations so far [18]. Raju et al. [15] analysed that such biomass briquettes can be 
utilized not only for housing purposes like cooking, warming, and barbequing but for agriculture 
and food industries also. Nowadays, as the necessity for an alternative energy source is high, we 
should focus on developing new biomass briquettes using biomass wastes [17,19].  

Okwu and Omonigho [14] used saw dust and water hyacinth plant along with cassava starch 
as binder for the production of solid briquettes by developing a movable and light weighted 
briquette machine. Obtained parameters were better performing as compared to the traditional 
energy sources in terms of profit, high calorific value, less moisture content etc. Fikri and Sartika 
[4] constituted a bio-charcoal briquette obtained from organic wastes, they used simple random 
sampling method in order to obtain different compositions of organic wastes for comparative 
analysis. 

Lubwama et al. [13] developed a bio-composite briquette from coffee and rice husks with 
proportionate groundnut shells and studied its several attributes. This briquette performs better 
over other single constituent briquettes. Kumar et al. [10] compared biomass briquette and 
charcoal briquette in order to find that which briquette has higher calorific value and also the effect 
of the addition of binder. Senchi & Kofa [22] investigated the intrinsic properties of corncob as well 
as un-carbonized rice husk base briquettes to check their fuel efficiencies. They concluded that 
briquette produces from corncob is far better than the rice husk briquette in terms of low moisture 
content, moderate ash content, and high viability. Garg and Garg [24] analysed the reliability 
parameters of a briquette machine with deviation in demand. Aliyu et al. [1] developed a 
composite briquette using corn cobs and orange peels which are easily available in some parts of 
Niger state, Nigeria to overcome the issue of lack of electricity supply. Obtained results give a 
strong hope of the development of such briquettes in those areas where there is less electricity 
supply or no electricity supply at all. Rane and Narvel [16] redesign the organisation based on 
Blockchain-IoT integrated architecture to improve the agility in their routine operations. In order 
to monitor its operations, they installed a sensor based industrial pump and suggested predictive 
measures for the management of such assets. They concluded that the new technology increases 
the decentralisation capacity and allowed autonomous coordination among devices. Asni and 
Andiappan [25] discussed Fuzzy Multi-Objective Optimal Design of a Biomass Combined Power 
and Heat System Considering System Reliability, Cost, and Flexibility. 

Singh et al. [23] developed a mathematical model and evaluated reliability measures of power 
generation system by using the Boolean function technique in which lengthy calculations are 
involved. Garg et al. [5] utilized RPGT technique to analysed the performance parameter of a 
single unit briquetting system. Also, Barak et al. [3] used RPGT successfully to find reliability 
measures of a milk plant. So, we calculate various measures such as busy period, machine 
availability, mean time to system failure (MTSF), expected number of ordinary/expert repairman 
visits, and profit for the developed system quickly by using RPGT [12]. Moreover, we optimize 
profit by utilizing Artificial Bee Colony (ABC) [7,8]. Step by step working algorithm is also 
presented for ABC. 

Generally, we consider two kinds of faults in the operation of a briquette-making machine: 
Minor and Major [6]. Minor faults are responsible for the degradation of the whole operating unit 
but major faults lead towards the complete failure of the unit. Apart from those two faults, some 
other faults sometimes may convert into major faults if ignored. Vibrations of the machine, 
overheating, unusual sounds are some examples of such faults [11]. We usually neglect such faults 
but their ignorance may lead to complete failure of the operating unit. Various faults necessitate 
the use of different repair facilities, since an ordinary repairman is unable to adequately address all 
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major faults [2]. None of the researchers considered above discussed faults simultaneously.  To fill 
this gap, we present a system consisting of minor, major as well as neglected faults for the 
development of a briquette machine. 

This paper is structured as follows: A detailed introduction of the related topic is presented in 
Section I. Assumptions and notations are discussed thoroughly in Sections II and III, respectively. 
In Sections IV and V, we developed a state transition diagram and a research methodology 
flowchart, respectively. Calculation of all transition probabilities as well as mean Sojourn times for 
each state of the transition diagram are estimated in Section VI. Different measures are calculated 
and optimized by using various algorithms in order to find maximum profit in Section VII. In 
Section VIII, detailed analyses along with graphical representations of obtained results are 
discussed. Section IX concludes our work with future scope. 

 
 

II. Assumptions 
 

• Inspection/Failures/Repairs are analytically independent. 
• All Faults are self-announcing. 
• The Faults are exponentially distributed and repair rate are arbitrary. 
• Once the system has failed, no more failures can occur. 

 
 

III. Notations 
 

λ/γ/λ2: Machine complete/neglected failure rate 
O/On: Operative/Operative under neglected fault 
Fi: Machine failed & under inspection 
Frm: Minor Fault & under repair  
FiM: Major Fault & under inspection 
FrO/FrE: Machine under repair by ordinary/expert repairmen 
a/b: Minor/Major Fault Probabilities  
p/q: Major fault repair Probability 
i(t)/I(t): fault inspection time p.d.f/c.d.f 
h(t)/H(t): major fault inspection time p.d.f/c.d.f 
g1(t)/G1(t): Minor fault repair-time by ordinary repairmen p.d.f/c.d.f  
g2(t)/G2(t): Major fault repair-time by Ordinary repairmen p.d.f/c.d.f 
g3(t)/G3(t): Major fault repair-time by Expert repairmen p.d.f/c.d.f 
 

IV. State Transition diagrams 
 
The state S0, S1 are the available-states, S2, S3, S4, S5, and S6 are failed states as shown in Figure 1. We 
assume that S0 is the base state. 
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Figure 1: State transition diagram 

 
V. Research Methodology Flowchart 

 
The flowchart of the proposed methodology is shown in fig. 2 

 
Figure 2: Research Methodology Flowchart 

 
 

VI. Research Methodology Flowchart 
 

In this section, all transition probabilities and mean sojourn times are shown in Table 1 and Table 
2, respectively. 
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: probability distribution function from regenerative state i to j. 

: State transition probability from regenerative state i to j. 

=  

where * stand for Laplace transform 
Table 1: Transition Probabilities 

𝒒𝒊,𝒋(𝒕) 𝒑𝒊,𝒋 = 𝒒𝒊,𝒋 ∗ (𝟎) 

𝒒𝟎,𝟏 = 𝜸𝒆&(𝝀	)𝜸)𝒕 

𝒒𝟎,𝟐 = 𝝀𝒆&(𝝀	)𝜸)𝒕 

𝑝.,/ = 𝛾/(𝜆	 + 𝛾) 

𝑝.,1 = 	𝜆	/(𝜆	 + 𝛾) 

𝒒𝟏,𝟒 = 𝝀𝟐𝒆&(𝝀𝟐)𝒕 
	𝑝/,3	 = 1 

𝒒𝟐,𝟑 = 𝒂𝒊(𝒕) 

𝒒𝟐,𝟒 = 𝒃𝒊(𝒕) 

𝑝1,5	 = 𝑎𝑖 ∗ (0) 

𝑝1,3 = 𝑏𝑖 ∗ (0) 

𝒒𝟑,𝟎 = 𝒈𝟏(𝒕) 𝑝5,. = 𝑔/ ∗ (0) 

𝒒𝟒,𝟓 = 𝒑𝒉(𝒕) 𝑝3,7 = 𝑝ℎ ∗ (0) 

𝒒𝟒,𝟔 = 𝒒𝒉(𝒕) 𝑝3,9 = 𝑞ℎ ∗ (0) 

𝒒𝟓,𝟎 = 𝒈𝟐(𝒕) 𝑝7,. = 𝑔1 ∗ (0) 

𝒒𝟔,𝟎 = 𝒈𝟑(𝒕) 𝑝9,. = 𝑔5 ∗ (0) 

 
𝑝./ + 𝑝.1 = 1, 𝑝15 + 𝑝13 = 1, 𝑝37	 + 𝑝39 = 1, 

Mean sojourn time can be calculated as follows: 

 

Where, is the reliability of system at time t. 
Table 2: Mean Sojourn Times 
𝑹𝒊(𝒕) µ𝒊 = 𝑹𝒊 ∗ (𝟎) 

𝑅" = 𝑒#(%	&')) µ" = 1/(𝜆	 + 𝛾) 

𝑅+ = 𝑒#(%#)) µ+ = 1/𝜆, 
𝑅, = 𝐼(𝑡) µ, = −𝑖 ∗ ′(0) 

𝑅- = 𝐺+(𝑡) µ- = −𝑔+ ∗ ′(0) 

𝑅. = 𝐻(𝑡) µ. = −ℎ ∗ ′(0) 

𝑅/ = 𝐺,(𝑡) µ/ = −𝑔, ∗ ′(0) 

𝑅0 = 𝐺-(𝑡) µ0 = −𝑔- ∗ ′(0) 

𝒒𝟔,𝟎 = 𝒈𝟑(𝒕) 𝑝0," = 𝑔- ∗ (0) 

 
Now, transition probability factors are given as: 
𝑉.,/ =

:
;):

  ,                 𝑉.,1 =
:

;):
   ,                  𝑉.,5 =

;
;):

𝑎 ,     

 

, ( )i jq t

, ( )i jp t

, ( )i jp t , * (0)i jq

*

0

( ) (0)i i iR t dt Rµ
¥

= =ò
( )iR t
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𝑉.,3 =
/

;):
𝑏  ,               𝑉.,7 =

/
;):

[𝑝𝛾 + 𝑏𝑝𝜆],    𝑉.,9 =
/

;):
[𝑞𝛾 + 𝑏𝑞𝜆] 

 
 

VII. Measures of System Effectiveness 
 

Briquetting Machine Parameters are evaluated by utilizing RPGT and “0” as a base state. 

I. Mean time to system-failure 
 
MTSF is the average time predicted until a system fails for the first time. By fig. 1, S0 and S1 are the 
only operative states that can be transited before reaching the Failed State. MTSF per unit time is 
represented in Table 3. 

𝑀𝑇𝑆𝐹 = 	𝑉.,.𝜇	. + 	𝑉.,/𝜇	/ =
/

;):
+ :

;):
H /
;	#
I = /

;):
[1 + /

;	#
]  

Table 3: Effect of λ1, γ & λ2 on MTSF 

λ γ=0.001, λ2=0.025 γ=0.003, λ2=0.025 γ=0.003, λ2=0.025 γ=0.001, λ2=0.005 
0.005 233.3333 275 300 200 
0.01 127.2727 169.2308 200 109.0909 
0.015 87.5 122.2222 150 75 
0.02 66.66667 95.65217 120 57.14286 
0.025 53.84615 78.57143 100 46.15385 
0.03 45.16129 66.66667 85.71429 38.70968 
0.035 38.88889 57.89474 75 33.33333 
0.04 34.14634 51.16279 66.66667 29.26829 
0.045 30.43478 45.83333 60 26.08696 
0.05 27.45098 41.50943 54.54545 23.52941 

 
II. Machine Availability 

 
Let A be the probability that the unit in is working state at time t. Here, S0 and S1 are only 
operative states and all states are regenerative states. Using regenerative point graphical technique, 
the proportion of steady-state machine availability is given by 

𝐴 =
	𝑉.,.𝜇	. + 	𝑉.,/𝜇	/
∑ 	𝑉.,<𝜇	<9
<=.

		 

𝐴 =
𝑁
𝐷		 

 𝑁 =		
/

;):
[1 + :

;	#
]  

𝐷 = 	𝑉.,.𝜇	. + 	𝑉.,/𝜇	/ + 	𝑉.,1𝜇	1 + 	𝑉.,5𝜇	5 + 	𝑉.,3𝜇	3 + 	𝑉.,7𝜇	7 + 	𝑉.,9𝜇	9  

=
1

𝜆 + 𝛾 +
𝛾

𝜆 + 𝛾 N
1
𝜆	1
O +

𝜆
𝜆 + 𝛾 N

1
𝛼O +

𝜆
𝜆 + 𝛾 N

1
𝛼/
O +

[𝛾 + 𝑏𝜆]
𝜆 + 𝛾 N

1
𝛽O +

[𝑝𝛾 + 𝑏𝑝𝜆]
𝜆 + 𝛾 N

1
𝛼1
O +

[𝑞𝛾 + 𝑏𝑞𝜆]
𝜆 + 𝛾 N

1
𝛼5
O 

= /
;):

[1 + H :
;	#
I + H;

>
I + H;?

>$
I + [:)A;]

C
+ [D:)AD;]

>#
+ [EF)AE;]

>%
 ] 

 
Machine availability values of the given system are shown in Table 4: 
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Table 4: Machine availability 

λ α=0.8, β=0.8 α=0.8, β=0.0.9 α=0.9, β=0.8 α=0.9, β=0.9 
0.005 0.289917598 0.289969009 0.289665715 0.2897171 

0.01 0.293154824 0.29325821 0.29273926 0.29284256 

0.015 0.296354714 0.296510608 0.295778765 0.295934484 

0.02 0.29951791 0.299726819 0.298784793 0.298993409 

0.025 0.30264504 0.302907442 0.301757893 0.30201986 

0.03 0.305736716 0.306053066 0.304698604 0.305014351 

0.035 0.308793539 0.309164264 0.307607452 0.307977387 

0.04 0.311816095 0.312241599 0.310484952 0.310909461 

0.045 0.314804956 0.315285621 0.313331609 0.313811054 

0.05 0.317760683 0.318296867 0.316147915 0.318296867 
 
 

III. Busy Period 
 
Let B be the likelihood that the repairmen are occupied with fixing the unit caused to failure at 
time t. From the state Transition Diagram, the repairmen busy at states j=2, 3, 4, 5 & 6. For base 
state ‘0’, the busy period is given in Table 5. 
𝐵 = G1

H
		  

𝑁	1 =			𝑉.,1𝜇	1 + 	𝑉.,5𝜇	5 + 	𝑉.,3𝜇	3 + 	𝑉.,7𝜇	7 + 	𝑉.,9𝜇	9  

= ;
;):

H/
>
I + ;

;):
H ?
>$
I + /[:)A;]

;):
H/
C
I + /[D:)AD;]

;):
H /
>#
I + /[E:)AE;]

;):
H /
>%
I  

= /
;):

[H :
;	#
I + H;?

>$
I + [:)A;]

C
+ [D:)AD;]

>#
+ [E:)AE;]

>%
  

Table 5: Busy period 

λ α=0.8, β=0.8 α=0.8, β=0.0.9 α=0.9, β=0.8 α=0.9, β=0.9 

0.005 0.99287427 0.993050337 0.993226466 0.993402658 

0.01 0.987115457 0.987463579 0.987695796 0.988044328 

0.015 0.981423063 0.98193933 0.98222638 0.982743492 

0.02 0.975795946 0.976476547 0.976817204 0.977499231 

0.025 0.970232988 0.97107421 0.971467279 0.972310643 

0.03 0.964733099 0.96573132 0.966175637 0.967176847 

0.035 0.959295212 0.960446902 0.96094133 0.962096979 

0.04 0.953918284 0.955220001 0.955763432 0.957070193 

0.045 0.948601297 0.950049684 0.950641036 0.952095663 

0.05 0.943343253 0.944935036 0.945573254 0.947172577 

 
 

IV. Expected visits by repairmen 
 
let V be the number of repairmen visits for repair in time (0, t]. From the state Transition Diagram, 
the repairmen visit anew for repair at j=2. For base state ‘0’, the expected visits by repairmen are 
given in Table 6. 
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;):
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>%
 

Table 6: Repairmen visits 

λ α=0.8, β=0.8 α=0.8, β=0.0.9 α=0.9, β=0.8 α=0.9, β=0.9 
0.005 0.007091959 0.007093217 0.007094475 0.007095733 

0.01 0.011986402 0.011990629 0.011993449 0.011997681 

0.015 0.016824395 0.016833246 0.016838167 0.016847031 

0.02 0.02160691 0.021621981 0.021629524 0.021644626 

0.025 0.026334895 0.026357729 0.026368398 0.026391289 

0.03 0.031009278 0.031041364 0.031055645 0.031087827 

0.035 0.035630965 0.035673742 0.035692107 0.035735031 

0.04 0.040200842 0.0402557 0.040278602 0.040333672 

0.045 0.044719775 0.044788057 0.044815935 0.04488451 

0.05 0.049188612 0.049271613 0.049304891 0.049271613 

 

V. Profit 
 
we consider particular case and function for analysing the system profit\ 
g1(t) = α1e-α1t, g2(t) = α2e-a2t, g3(t) = α3e-α3t, i(t) = αe-α t, h(t) = βe-β t 
and P = P1 A0 – P2 B0- pP3 V0- qP4 V0- P5 
    Where 
P1 = Revenue per unit time while the system is in up-state 
P2 = Loss due to busy period of repairmen 
P3 = Price of ordinary repairmen involved in the repair 
P4 = Price of Expert repairmen involved in the repair 
P5 = Downstate reduction & other costs 
The System profit is shown in table 7: 

Table 7: Profit 

λ α=0.8, β=0.8 α=0.8, β=0.0.9 α=0.9, β=0.8 α=0.9, β=0.9 
0.005 29499.44914 29510.0002 29520.64369 29531.20225 

0.01 29152.74694 29173.60808 29187.67066 29208.55639 

0.015 28810.04339 28840.97977 28858.38534 28889.37249 

0.02 28471.26972 28512.05245 28532.7268 28573.59516 

0.025 28136.3587 28186.7647 28210.63546 28261.17012 

0.03 27805.24465 27865.05644 27892.05302 27952.0443 

0.035 27477.86337 27546.86892 27576.92246 27646.16569 

0.04 27154.15209 27232.14464 27265.18797 27343.48341 

0.045 26834.04943 26920.82739 26956.79495 27043.94761 

0.05 26517.4954 26612.86212 26651.68996 26747.1146 
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VI. ABC Algorithm 

 
Step-1: Formulate the fitness function and randomly initialize the honey bee. 

Step-2: Find an applicant food source position for each utilized honey bee and estimate the nectar 

amount fitness function of food sources. 

Step-3: Calculate the pi (probability Values) for the solution. 

Step-4: for each onlooker, the bee chooses a food source depending on a pi and generates an 

applicant solution. 

Step-5: select the better food source position. 

Step-6: Memorize the best solution found so far. 

Step-7: Locate the surrendered food sources and produce new situations for depleted food sources 

Step-8: Repeat steps 2 onwards till the end criterion is met. 

All constraints limits are reflected in Table 8. 

Table 8: Repair, inspection and failure rate parameter constraints limits 
Parameters λ γ λ2 α β α1 α2 α3 

Min 0.001 0.002 0.005 0 0 0.1 0.2 0.2 
Max 0.05 0.1 0.05 0.9 0.9 0.9 0.9 0.9 

 

Table 9 shows ABC's optimal profit function values for various repair and failure rates. 
 

Table 8: Constraints limits 
ABC Results 

(Profit) 
λ γ λ2 α β α1 α2 α3 

29637.091 0.002 0.003 0.019 0.87 0.0878 0.0892 0.9 0.889 
29668.051 0.002 0.002 0.047 0.731 0.878 0.463 0.895 0.894 
29589.136 0.006 0.003 0.05 0.891 0.895 0.871 0.89 0.883 
29504.176 0.002 0.004 0.006 0.9 0.9 0.871 0.851 0.806 
29640.821 0.015 0.002 0.047 0.891 0.894 0.879 0.895 0.845 
29745.041 0.001 0.002 0.01 0.9 0.883 0.578 0.9 0.9 
29702.85 0.002 0.002 0.005 0.753 0.752 0.844 0.9 0.9 
29719.59 0.003 0.002 0.044 0.88 0.849 0.9 0.9 0.9 
29747.066 0.001 0.002 0.005 0.829 0.898 0.597 0.9 0.739 
29762.308 0.001 0.002 0.005 0.852 0.9 0.872 0.9 0.9 

 
VIII. Results and Discussion 

 
In this section, different graphs for MTSF, availability, and profit are drawn by considering the 
particular cases. Fig. 3 represents the reciprocate of MTSF with respect to the failure rate. In Fig. 4, 
a graph of availability versus failure rate is shown. It is easy to check that availability decreases 
with the increase in failure rate and increases with the higher value of inspection rate. Fig. 5 
reflects the graphs between profit and failure rates. Profit goes down with an increase in failure 
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rate but depicts the same behaviour as the inspection rate. The validation of the proposed work is 
ensured by the expected trends on the following graphs. 
 

 
Figure 3- Effect of different parameters on MTSF 

 

 
Figure 4- Availability Vs Failure Rate 
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Figure 5- Profit Vs Failure Rate 

 
Biomass is one of the easily available energy sources which can be used for bioenergy to generate 
electricity, heat, and various other forms of energy. Biomass briquettes produced by a piston press 
are less expensive than coal. It also has a higher burning capacity and lowers ash concentration 
than coal and wood. Industries using such briquettes are more profitable as compare to traditional 
energy sources. Briquettes are environment friendly due to its less carbon emission nature. 
 

IX. Conclusion and future scope 
 
Neglected faults along with different faults in the bio-coal briquette machine have been analysed 
and formulated. All three parameters MTSF, availability, and profit drop as the failure rate 
increases and rise as the inspection rate increases. Artificial Bee colony optimization algorithm is 
effectively applied to organize simultaneously repair, inspection, and failure rate parameters for an 
ideal degree of system profit. The optimum value for Profit by ABC algorithm for repair and 
failure rate parameters (λ, γ, λ2, α, β, α1, α2, α3) is 29762˖308. That means the briquetting machine is 
quite profitable. Therefore, Biomass briquettes are of practical significance in any apparatus 
intended for the combustion of coal or wood. Some adjustments to the operating parameters are 
required to achieve maximum profit. Also, a preventive maintenance policy or periodic rest which 
will help practitioners to avoid such conversion of neglected faults into major faults. 
 
The Briquetting system tends to fail when neglected faults are ignored. The concept of preventive 
maintenance was not taken care of in this manuscript. In future, we wish to work on the profit 
optimization of two-unit briquetting system considering neglected Faults with Preventive 
Maintenance. 
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Abstract

In the literature of probability theory, it has been noticed that the classical probability distributions do
not furnish an ample fit and fail to model the real-life data with a non-monotonic hazard rate behaviour.
To overcome this limitation, researchers are working in the refinement of these distributions. In this
paper, a new method has been presented to add an extra parameter to a family of distributions for more
flexibility and potentiality. We have specialized this method to two-parametric Weibull distribution.
A comprehensive mathematical treatment of the new distribution is provided. We provide closed-form
expressions for the density, cumulative distribution, reliability function, hazard rate function, the r-th
moment, moment generating function, and also the order statistics. Moreover, we discussed mean residual
life time, stress strength reliability and maximum likelihood estimation. The adequacy of the proposed
distribution is supported by using two real lifetime data sets as well as simulated data.

Keywords: Weibull distribution, hazard rate function, survival function, mean residual life,
Maximum likelihood estimation.

1. Introduction

Weibull distribution is a well known life time distribution in reliability engineering and failure
analysis. The Weibull distribution is used in modelling the engineering, biological, weather
forecasting and hydrogical data sets. It does not impart an admissible fit for some applica-
tions, espacially, when the hazard rates are bathtub, upside down bathtub, or bimodal shapes.
To overcome these limitations, several researchers have developed various modifications and
extensions of the Weibull distribution to model various types of data. Many extentions and
generalizations of the Weibull distribution have accomplished the above purpose. Among these,
Xie and Lai [1] introduced the additive Weibull distribution, Mudholkar et al. [2] proposed
exponentiated Weibull (EW) distribution by adding an extra parameter to the Weibull distribution
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which provides bathtub shaped hazard rate function. Xie et al. [3] proposed the the extended
Weibull distribution. Carrasco et al. [4] presented generalized modified Weibull (GMW) distri-
bution. Modified Weibull by Lai et al. [5]; extended flexible Weibull by Bebbington et al. [6].
The exponential-Weibull distribution by Cordeiro et al. [7]. Lee et al. [8] and Alzaatreh et al.
[9] proposed methods of generalized continuous and discrete distributions.

Mahdavi and Kundu [10] proposed a method called the Alpha Power Transformation (APT)
and it is useful to assimilates skewness to a family of distributions. Let F(x) be the cumulative
distribution function (cdf) of a continuous random variable X, then they define the APT of F(x)
for x ∈ R as follows

FAPT(x) =

{
αF(x)−1

α−1 ; α ∈ R+, α ̸= 1
F(x) ; α = 1

and the corresponding probability density function (pdf) as

fAPT(x) =

{
logα
α−1 f (x)αF(x) ; α ∈ R+, α ̸= 1
f (x) ; α = 1

They applied the proposed method to a one-parameter exponential distribution and generated a
two-parameter Alpha Power Exponential distribution.

Recently, Ijaz et al. [11] proposed a new family of distributions named as New Alpha Power
Trasformed family (NAPT) of distributions. They employed exponential distribution in NAPT
family and derived a new distribution called New Alpha Power Trasformed exponential (NAPTE)
distribution. Let F(x) be the cdf of a continuous random variable X, then they define the NAPT
of F(x) for x ∈ R as follows

FNAPT(x) = α
−log

(
1

F(x)

)
; α > 0

and the corresponding pdf as

fNAPT(x) =
log(α)α−log

(
1

F(x)

)
f (x)

F(x)
; α > 0

The following are the primary motivations for disposing Ratio Transformation (RT) method in
practise:

• A straightforward and efficient method for adding an extra parameter to an existing
distributions.

• To enhance the characteristics and flexibility of existing distributions.

• It is quite easy to use, hence it can be used quite effectively for data analysis purposes.

• To present the extended version of the baseline distribution that includes closed forms of
cdf, reliability function as well as hazard rate function.

• To provide better fits than the other modified models having the same or higher number of
parameters.

The remainder of the paper is organized as follows: In section 2 a new family of probability
distributions called RT has been highlighted and some general properties of this family have been
discussed. In section 3, RTW distribution has been considered, some special cases are presented
and its structural properties including moments, moment generatin function, mean residual life
and mean waiting time, order statistic and stress-strength reliability have been discussed. In
section 4, Maximum likelihood estimators of unknown parameter as well as simulation study
have been carried out. In secton 5, Two real life data sets have been analyzed to illustrate the
potency of the proposed model. Finally, the paper is concluded in section 6.
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2. General properties of RT method

Let F(x) be the cdf of a continuous random variable X, then the Ratio transformation of F(x) for
x ∈ R, is defined as follows

FRT(x) =
F(x)

1 + α − αF(x)
; α > 0 (1)

Clearly, FRT(x) is a proper cdf. If F(x) is an absolute continuous distribution function with the
pdf f (x), then FRT(x) is also an absolute continuous distribution function with the pdf

fRT(x) = f (x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)2 ; α > 0 (2)

A useful expansion for the cdf and pdf in (1) and (2) are respectively given by

FRT(x) =
∞

∑
j=0

∞

∑
k=0

ajk(F(x))k+1 (3)

where,

ajk =
(j logα)k

k! (1 + α)j+1

and

fRT(x) = f (x)

[
1 − αF(x)

1 + α
(1 − F(x)logα)

]
∞

∑
j=0

∞

∑
k=0

bjkFk(x) (4)

where,

bjk =
(j + 1)(j logα)k

(1 + α)j+1k!

The reliability function RRT(x) is given by

RRT(x) =
1 + α − αF(x) − F(x)

1 + α − αF(x)
; α > 0 (5)

The hazard rate function hRT(x) is given by

hRT(x) = f (x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)
(1 + α − αF(x) − F(x))

; α > 0 (6)

If R(x) and h(x) are the reliability and hazard rate functions of f respectively, then the hazard
rate hRT(x) can be written as

hRT(x) = h(x)R(x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)
(1 + α − αF(x) − F(x))

; α > 0 (7)

From (7), it is clear that

lim
x→−∞

hRT(x) =
1
α

lim
x→−∞

h(x)

and,
lim

x→∞
hRT(x) = lim

x→∞
h(x)
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3. RTW distribution and its properties

Let Θ = (α, λ, β)T . From (2), The continuous randon variable X follows RTW distribution if its
cdf, with scale parameter λ > 0 and shape parameters α > 0, β > 0, for x ∈ R+ is given by

FRTW(x, Θ) =
1 − e−λxβ

1 + α − α1−e−λxβ
; α > 0 (8)

and the corresponding pdf is

fRTW(x, Θ) =

λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
(

1 + α − α1−e−λxβ
)2 ; α > 0 (9)

Using (3) and (4), the cdf and pdf in (8) and (9) can be respectively written as

FRTW(x, Θ) =
∞

∑
j=0

∞

∑
k=0

k+1

∑
l=0

ajkl e−lλxβ

where,

ajkl =
(j logα)k(k+1

l )(−1)l

k! (1 + α)j+1

and

fRTW(x, Θ) = xβ−1

1 − α

(
1−e−λxβ

)
1 + α

(1 − logα (1 − e−λxβ
))

 ∞

∑
j=0

∞

∑
k=0

k

∑
l=0

bjkle−λ(l+1)xβ

where,

bjkl =
λβ(j + 1)(j logα)k(k

l)(−1)l

(1 + α)j+1k!

The reliability function RRTW(x, Θ) and the hazard rate function hRTW(x, Θ) for x ∈ R+ are,
respectively, given by

RRTW(x, Θ) =

α

(
1 − α−e−λxβ

)
+ e−λxβ

1 + α − α1−e−λxβ
; α > 0 (10)

hRTW(x, Θ) =

λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
(

1 + α − α1−e−λxβ
) (

α
(

1 − α−e−λxβ
)
+ e−λxβ

) ; α > 0

The behaviour of the hazard rate function at extremes for different values of shape parameter β.

h(0) =


∞ f or 0 < β < 1,
λ
α f or β = 1,
0 f or β > 1,

h(∞) =


0 f or 0 < β < 1,
λ f or β = 1,
∞ f or β > 1.

Remark: When α = 1, the RTW distribution becomes the Weibull distribution. In that situation
the shapes for hazard rate function are conspicuous in the literature. The seven important special
cases of RTW distribution are presented in table 1

Figure 1 depicts some plots of the RTW density for selected parameter values. Plots of the
hazard rate function of the RTW distribution for selected parameter values are displayed in
Figure 2.
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Table 1: Sub-cases of the RTW Distribution

α λ β Reduced model

- 1 - RT one-parameter Weibull distribution
1 - - Two-parameter Weibull distribution
1 1 - One-parameter Weibull distribution
- - 2 RT-Rayleigh distribution
1 - 2 Rayleigh distribution
- - 1 RT-exponential distribution
1 - 1 Exponential distribution
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Figure 1: Plots of the RTW density for λ = 1 and various values of α and β.
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3.1. Moment and moment generating function

In this subsection, the rth moment and the moment generating function of the RTW distribution
are obtained by using the following series representations.

α−x =
∞

∑
k=0

(−logα)kxk

k!
(11)

(1 − x)−2 =
∞

∑
k=0

(k + 1)xk ; |x| < 1, (12)

(1 − x)−1 =
∞

∑
k=0

xk ; |x| < 1, (13)

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xr f (x)dx

=
1

(1 + α)2

∞∫
0

xrλβxβ−1e−λxβ
(

1 + α − α1−e−λxβ (
1 − (1 − e−λxβ

)logα
))

×
(

1 − α1−e−λxβ

1 + α

)−2

dx (14)

By substituting 1 − e−λxβ
= y in (14), we get

E(Xr) =
∞

∑
j=0

1
(1 + α)j+1

 1∫
0

(
−1
λ

log(1 − y)
) r

β

(
αjy +

α(j+1)y(j + 1)logα

1 + α
y

)
dy

 (15)

Again, substituting −1
λ log(1 − y) = x in (15), we get the final expression as

E(Xr) =
∞

∑
j=0

∞

∑
k=0

λαj(−logα)k

(1 + α)j+1k!
Γ(

r
β
+ 1) {A + B}

where,

A =
jk

(λ(k + 1))
r
β +1

and

B =
α logα (j + 1)k+1

1 + α

(
1

(λ(k + 1))
r
β +1

− 1

(λ(k + 2))
r
β +1

)

and the moment generating function can be obtained as

MX(t) =
∞∫

0

etx f (x)dx

by using the same procedure as above, we get the final expression for moment generating function
as

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

λtiαj(−logα)k

(1 + α)j+1k!i!
Γ(

i
β
+ 1) {C + D}
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where,

C =
jk

(λ(k + 1))
i
β +1

and

D =
α logα (j + 1)k+1

1 + α

 1

(λ(k + 1))
i
β +1

− 1

(λ(k + 2))
i
β +1


3.2. Mean residual life and mean waiting time

Suppose that X is a continuous random variable with reliability function R(x) , the mean residual
life is the expected additional lifetime given that a component has survived until time t. The
mean residual life function, say µ(t) , is given by

µ(t) =
1

R(t)

E(t)−
t∫

0

x f (x)dx

− t (16)

where

E(t) =
∞

∑
j=0

∞

∑
k=0

λαj(−logα)k

(1 + α)j+1k!
Γ(

1
β
+ 1)

 jk

(λ(k + 1))
1
β +1

+
α logα (j + 1)k+1

1 + α

×

 1

(λ(k + 1))
1
β +1

− 1

(λ(k + 2))
1
β +1

 (17)

and

t∫
0

x f (x)dx =
∞

∑
j=0

∞

∑
k=0

αj jk(−logα)k

(1 + α)j+1k!

 1

λ
1
β (k + 1)

1
β +1

γ

(
λ(k + 1)tβ,

1
β
+ 1
)

+
(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1

 (18)

Substituting (10), (17) and (18) in (16), µ(t) can be written as

µ(t) =
1 + α − α1−e−λtβ

α
(

1 − α−e−λtβ
)
+ e−λtβ

∞

∑
j=0

∞

∑
k=0

αj(−logα)k

(1 + α)j+1k!

×
(

A′ + B′ −jk

Γ( 1
β + 1)

(C′ + D′)

)
− t

where,

A′ =
jk

(λ(k + 1))
1
β +1

,

B′ =
α logα (j + 1)k+1

1 + α

 1

(λ(k + 1))
1
β +1

− 1

(λ(k + 2))
1
β +1

 ,

C′ =
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1
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and

D′ =
(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1


where γ(a, b) =

a∫
0

xb−1e−xdx is the lower incomplete gamma function.

The mean waiting time represents the waiting time elapsed since the failure of an object on
condition that this failure had occurred in the interval [0, t]. The mean waiting time of X, say
µ̄(t), is defined by

µ̄(t) = t − 1
F(t)

t∫
0

x f (x)dx. (19)

Substituting (8) and (18) in (19), we get

µ̄(t) = t − 1 + α − α1−e−λtβ

1 − e−λtβ

∞

∑
j=0

∞

∑
k=0

αj jk(−logα)k

(1 + α)j+1k!

 1

λ
1
β (k + 1)

1
β +1

× γ

(
λ(k + 1)tβ,

1
β
+ 1
)
+

(j + 1)logα

1 + α

γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 1)

1
β +1

−
γ
(

λ(k + 1)tβ, 1
β + 1

)
λ

1
β (k + 2)

1
β +1



3.3. Order Statistics

Let X1, X2, ..., Xn be a random sample of size n, and let Xr:n denote the rth order statistic, then,
the pdf of Xr:n, say fr:n(x) is given by

fr:n(x) =
n!

(r − 1)!(n − r)!
F(x)r−1 f (x)(1 − F(x))n−r. (20)

Substituting (8) and (9) in (20), we get

fr:n(x) =
λβxβ−1e−λxβ

(
1 + α − α1−e−λxβ (

1 − (1 − e−λxβ
)logα

))
B(r, n − r + 1)

(
1 + α − α1−e−λxβ

)n+1

×
(

1 − e−λxβ
)r−1

(
α

(
1 − α−e−λxβ

)
+ e−λxβ

)n−r

where B(a, b) is the beta function.

3.4. Stress Strength Reliability

Suppose X1 and X2 be independent strength and stress random variables respectively, where
X1 ∼ RTW(α1, λ1, β) and X2 ∼ RTW(α2, λ2, β), then the stress strength reliability P(X1 > X2),
say SSR, is defined as

SSR =

∞∫
−∞

f1(x)F2(x)dx
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Table 2: Average values of MLEs and the corresponding MSEs(n=50).

Parameter MLE MSE
λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1 1.18927 0.75566 0.74107 0.27647 0.71977 0.04782
1.5 1.22622 0.87384 1.51407 0.40466 0.58467 0.07297
2 1.18561 0.77796 1.98113 0.24700 0.61990 0.11475

1 1 1.08698 1.18120 1.04943 0.23511 1.10633 0.03877
1.5 1.12510 1.27644 1.55446 0.24403 1.12121 0.09897
2 1.13204 1.28600 2.04414 0.29381 1.45360 0.17665

1.5 1 1.04126 1.72249 1.05876 0.27080 2.20896 0.05698
1.5 1.08026 1.78405 1.54105 0.28238 2.09977 0.10365
2 1.07287 1.81606 2.12707 0.27423 1.89261 0.24845

2 1 0.98987 2.07177 1.07668 0.24656 2.17639 0.07918
1.5 0.98794 2.19104 1.60992 0.22690 2.61831 0.17018
2 0.98397 2.19145 2.15508 0.22988 2.63456 0.31296

2 0.5 1 2.28613 0.68043 1.02709 0.30981 0.33733 0.03757
1.5 2.16929 0.57581 1.57420 0.19697 0.27864 0.07851
2 2.23597 0.60438 2.09259 0.30316 0.31276 0.11952

1 1 2.17700 1.19918 1.04533 0.51708 1.12488 0.03843
1.5 2.21341 1.27536 1.55452 0.49046 1.11322 0.09883
2 2.15140 1.33614 2.09166 0.55797 1.57897 0.15442

1.5 1 2.05912 1.74110 1.05653 0.55367 2.22683 0.05775
1.5 2.00179 1.58862 1.61057 0.45244 1.48239 0.15847
2 1.95160 1.56072 2.18486 0.52078 2.38803 0.27118

2 1 1.99288 2.15485 1.09058 0.58386 2.18773 0.10266
1.5 2.01983 2.26075 1.58730 0.53255 2.56440 0.15576
2 1.99596 2.23927 2.14504 0.58591 3.79841 0.27387

The stress strength reliability SSR, is obtained by using (8) , (9), (11), (12) and (13) and is given by

SSR =λ1

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

α
j
1αk

2km(−logα1)
l(−logα2)

m

(1 + α1)j+1(1 + α2)k+1l!m!

{(
jl +

α1logα1(j + 1)l+1

1 + α1

)

× λ2

[(l + 1)λ1 + mλ2][(l + 1)λ1 + (m + 1)λ2]

− λ2α1logα1(j + 1)l+1

(1 + α1)[(l + 2)λ1 + (m + 1)λ2][(l + 2)λ1 + mλ2]

}
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Table 3: Average values of MLEs and the corresponding MSEs(n=100).

Parameter MLE MSE
λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 1 1.12427 0.85980 1.01394 0.16520 0.36686 0.02039
1.5 1.10945 0.64163 1.49813 0.08311 0.15675 0.04790
2 1.03860 0.51790 2.00760 0.04648 0.11094 0.08922

1 1 1.09751 1.20162 1.00568 0.13615 0.44997 0.02630
1.5 1.09006 1.14954 1.52710 0.14385 0.47309 0.05824
2 1.07148 1.14295 2.07225 0.17511 0.69167 0.12353

1.5 1 1.04769 1.66319 1.01968 0.17384 1.08369 0.02691
1.5 1.05555 1.68631 1.54287 0.19368 1.20057 0.07301
2 1.05153 1.64619 2.06356 0.17319 1.02013 0.14828

2 1 0.96890 2.04959 1.05881 0.19612 1.91723 0.04225
1.5 1.02776 2.05201 1.52135 0.15814 1.90158 0.04479
2 1.02772 2.04339 2.02851 0.15842 1.92072 0.07969

2 0.5 1 2.20157 0.64279 1.00275 0.20282 0.21313 0.01958
1.5 2.15936 0.60787 1.50924 0.18855 0.18872 0.03718
2 2.20967 0.64716 2.00121 0.25218 0.27663 0.07502

1 1 2.14197 1.15711 1.03218 0.35039 0.70753 0.03321
1.5 2.12690 1.14278 1.55439 0.36045 0.69360 0.06954
2 2.22353 1.21377 1.98709 0.51312 1.10397 0.09771

1.5 1 2.09963 1.74911 1.03669 0.50675 1.89731 0.03895
1.5 2.05345 1.67112 1.55151 0.33247 0.93642 0.06657
2 2.06760 1.68920 2.06563 0.37754 1.67294 0.15132

2 1 1.92617 2.06013 1.05836 0.42906 1.98756 0.04258
1.5 2.01885 2.20664 1.55748 0.40409 1.79326 0.08481
2 1.99881 2.13749 2.07929 0.41542 2.86112 0.14579

4. Statistical Inference

4.1. Maximum Likelihood Estimators

Let x1, x2, ..., xn be a random sample from RTW distribution, then the logarithm of the likelihood
function is

l = nlogα + nlogβ + (β − 1)
n

∑
i=1

logxi − λβ
n

∑
i=1

xi − 2
n

∑
i=1

log

(
1 + α − α1−e−λxβ

i

)

+
n

∑
i=1

log

[
1 + α − α1−e−λxβ

i
(

1 − logα (1 − e−λxβ
i )

)]
(21)
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The MLEs of α, λ and β are obtained by partially differentiating (21) with respect to the corre-
sponding parameters and equating to zero, we have

∂l
∂α

=
n

∑
i=1

1 + (1 − e−λxβ
i )2α−e−λxβ

i logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)

− 2
n

∑
i=1

1 − (1 − e−λxβ
i )α−e−λxβ

i

1 + α − α1−e−λxβ
i

(22)

∂l
∂β

=
n
β
+ (1 − λ)

n

∑
i=1

xi + αλβ logα
n

∑
i=1

xβ−1
i e−λxβ

i α−e−λxβ
i

×

 α

1 + α − α1−e−λxβ
i

− (1 − e−λxβ
i )logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)
 (23)

∂l
∂λ

=
n
λ
+ β

n

∑
i=1

xi − αlogα
n

∑
i=1

xβ
i e−λxβ

i α−e−λxβ
i

 2

1 + α − α1−e−λxβ
i

− (1 − e−λxβ
i )logα

1 + α − α1−e−λxβ
i

(
1 − (1 − e−λxβ

i )logα

)
 (24)

The above three equations (22),(23) and (24) are not in closed form. thus, it is difficult to calculate
the values of the parameters α, β and λ. However, R software can be used to get the MLE.

4.2. Simulation study
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Figure 3: (i) The relative histogram and the fitted RTW distribution. (ii) The fitted RTW reliability function and
empirical reliability function for first data set.

The simulation study has been performed using R Software to show the behaviour of the
MLEs in terms of the sample size n. Two sets of sample (n=50, n=100) each replicated 100
times with different values of parameters λ = (1, 2), α = (0.5, 1, 1.5, 2) and β = (1, 1.5, 2) were
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Figure 4: (i) The relative histogram and the fitted RTW distribution. (ii) The fitted RTW reliability function and
empirical reliability function for second data set.
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Figure 5: Q-Q plot for the RTW distribution for data set first and data set second, respectively.

generated from RTW. In each setting, the average values of MLEs and the corresponding empirical
mean squared errors (MSEs) were obtained. The simulation results are presented in table 2 and
table 3. From tables 2 and 3, it can be seen that the estimates are stable and quite close to the true
parameter values. As the sample size increases the MSE decreases in all the cases.

5. Applications

In this section, we analyse two data sets to describe the significance and flexibility of the RTW
distribution. The data set first reported by Nassar et al. [12], orginally published by Smith and
Naylor [13], corresponding to strengths of 1.5 cm glass fibers, measured at the National Physical
Laboratory, England. The data are as follows: 0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68,
1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53,1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28,
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Figure 6: P-P plot for the RTW distribution for data set first and data set second, respectively.

Table 4: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the first data set.

Estimates Statistics
Model α̂ β̂ λ̂ K-S p-value

RTW
9.49959 3.261905 0.72053 0.08745 0.72090

(6.00647) (0.69075) (0.40517)

APW
10.86178 4.48322 0.19483 0.12249 0.30090

(12.72527) (0.76269) (0.10826)

APIW
193.05946 3.87688 0.63654 0.21627 0.00551

(267.40709) (0.30960) (0.1823435)

MW
0.03088 6.37442 0.04087 0.13341 0.21210

(0.04349) (0.96544) (0.02476)

TW
0.92496 5.97478 1.80960 0.15191 0.10920

(0.21931) (0.74495) (0.07553)

LW
0.53504 4.94433 0.77920 0.13673 0.18950

(0.48673) (0.65927) (0.18296)

ZBLL
0.25140 18.41002 1.82436 0.13053 0.23330

(0.06121) (3.05420) (0.04629)

APE
145351 - 2.15458 0.22099 0.00425

(23726.57) (0.09901)

W
- 5.77962 0.05978 0.15232 0.10750

(0.57515) (0.02047)

1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7,
1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

The second data set was reported by Elbatal et al. [14], orginally published by Aarset [15],
which represents the failure times of 50 devices. The data are as follows: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3,
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Table 5: −2l(θ̂), AIC, AICC, BIC for the first data set.

Model −2l(θ̂) AIC AICC BIC

RTW 22.16977 28.16977 28.57655 34.59917

APW 26.94826 32.94826 33.35504 39.37766

APIW 75.77237 81.77237 82.17915 88.20177

MW 29.78938 35.78938 36.19616 42.21878

TW 30.28635 36.28635 36.69313 42.71576

LW 28.42141 34.42141 34.82819 40.85081

ZBLL 24.23729 30.23729 30.64407 36.66669

APE 67.56511 71.56511 71.76511 75.85138

W 30.41369 34.41369 34.61369 38.69995

Table 6: MLEs (standard errors in parentheses), K-S Statistic, and p-values for the second data set.

Estimates Statistics
Model α̂ β̂ λ̂ K-S p-value

RTW
6.28982 0.71267 0.17523 0.16014 0.15390

(2.80293) (0.12226) (0.10967)

APW
4.51340 0.83571 0.05854 0.17492 0.09379

(4.01925) (0.13558) (0.03910)

APIW
62.22037 0.59918 1.14499 0.27478 0.00105

(86.31937) (0.05672) (0.39802)

MW
0.01863 0.37305 0.04043 0.19432 0.04583

(0.00375) (0.18838) (0.03113)

TW
0.00010 0.94905 44.91508 0.1928 0.04860

(0.42067) (0.12873) (12.90900)

LW
0.91774 0.88097 0.04050 0.18488 0.06555

(0.69388) (0.12668) (0.04259)

ZBLL
20.23812 2.25295 0.00273 0.23307 0.00874
(4.33771) (0.46228) (0.00091)

APE
2.64622 - 0.02687 0.17657 0.08851

(1.90895) (0.00474)

W
- 0.94770 0.02719 0.19313 0.04800

(0.11778) (0.01375)

6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82,
82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

We compare the fit of the proposed RTW distribution with its sub-model Weibull (W) distribu-
tion and with several other competitive models, namely Alpha Power Weibull (APW) (see [12]),
Alpha Power Inverse Weibull (APIW) (see [16]), Modified Weibull (MW) (see [17]), Transmuted
Weibull (TW) (see [18]), Lindley Weibull (LW) (see [19]), Zografos–Balakrishnan log-logistic
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Table 7: −2l(θ̂), AIC, AICC, BIC for the second data set.

Model −2l(θ̂) AIC AICC BIC

RTW 470.2143 476.2143 476.7360 481.9504

APW 479.2431 485.2431 485.7648 490.9791

APIW 519.9063 525.9063 526.4280 531.6423

MW 478.9685 484.9685 485.4902 490.7045

TW 482.0043 488.0043 488.5261 493.7404

LW 479.5173 485.5173 486.0390 491.2534

ZBLL 517.3178 523.3178 523.8396 529.0539

APE 480.5838 484.5838 484.8391 488.4078

W 482.0038 486.0038 486.2591 489.8278

(ZBLL) (see [20]), and Alpha Power Exponential (APE) (see [10]), their correspinding density
functions for x > 0 are as follows

APW f (x) =
logα

α − 1
λβα1−e−λxβ

xβ−1e−λxβ

APIW f (x) =
logα

α − 1
λβx−(β+α)e−λx−β

αe−λx−β

MW f (x) = (α + λβxβ−1)e−αx−λxβ

TW f (x) =
β

λ

( x
λ

)β−1
e−(

x
λ )

β
(

1 − α + 2αe−(
x
λ )

β
)

LW f (x) =
βα2

α + 1
λβxβ−1 + λ2βx2β−1e−α(λx)β

ZBLL f (x) =
β

λβΓ(α)
xβ−1

(
1 +

( x
λ

)β
)−2 (

log
(

1 +
( x

λ

)β
))α−1

APE f (x) =
logα

α − 1
λe−λxα1−e−λx

where α,β,λ > 0 and Γ(α) =
∞∫
0

xα−1e−xdx is the gamma function.

From Table 4, Table 5, Table 6 and Table 7, it is evident that RTW distribution has lowest
−2l(θ̂), AIC, AICC, BIC, K-S values and highest p-value among all the other competitive models.
Hence the proposed model yeilds the better fit than the other models for both data sets.

The relative histogram and the fitted RTW distribution of the data set first and second are
shown in Figures 3(i) and 4(i), respectively. The plots of the fitted RTW reliability function
and empirical reliability function of the data set first and second are shown in Figures 3(ii)
and 4(ii), respectively. The Q-Q plots for data set first and second are shown in Figure 5(i) and 5(ii)
respectively. Also, The P-P plots for data set first and second are shown in Figure 6(i) and 6(ii)
respectively that allows us to differentiate between the empirical distribution of the data with
the RTW distribution. These graphical goodness of fit measures clearly support the results in
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Tables 4, Table 5, Table 6 and Table 7.

6. Conclusion

A new family of distributions has been introduced called RT method. RT method has been spe-
cialized on the two-parameter Weibull distribution and a new three-parameter RTW distribution
has been introduced. We have discussed various properties of RTW distribution. It has been
realized that the three-parameter RTW distribution has more flexibility in terms of the hazard
rate function and the density function. The effectiveness of the proposed model is compared
with other existing models by using goodness of fit measures. The model has been fitted to two
different real life data sets, the figures show that the proposed model provides better fit for both
data sets in comparison to all other competitive models.
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Abstract 

 
This paper clearly assigns skip-lot sampling plan of type SkSP-T with Group Acceptance sampling 
plan is designing and Burr type XII distribution is applied to determine the lifetime of the product. 
The new proposed plan parameters are determined by using the two-point method on the Operating 
Characteristics curve together with consistent producer and consumer risks are specified. Tables are 
simulated for various parametric values of SkSP-T, Group acceptance sampling plan and Burr type 
XII distribution. Skip-lot sampling plan of type SkSP-T is also compared with Group acceptance 
single sampling plan and skip-lot sampling plan of type SkSP-2 with group acceptance sampling plan 
using Burr type XII distribution. Further, the efficiency of the proposed plan is discussed. Numerical 
illustration and examples are given to justify the efficiency of the proposed plan.  

 
Keywords: Burr type XII distribution, Group Acceptance Sampling Plan, Skip-lot 
sampling plan of type SkSP-T. 

 
 

I. Introduction 
 
Statistical Quality Control (SQC) use statistical mechanisms to supervise the quality of products 
and maintenance. Acceptance sampling plans are followed by Statistical Quality Control tools and 
it is used to provide the “good quality of finished products”. Acceptance sampling plan is a 
decision-making tool. It is a technique that deals with accepting or not the lot to be found on 
sampling inspection that delivers the quality of products manufactured by industries. Today’s 
scientific world the area of acceptance sampling and statistical quality control has been enhanced 
by various quality control engineers, manufacturing industries, statisticians, biologists, researchers 
and etc. The most important areas of Acceptance Sampling plan is classified into four broad 
categories.    

Dodge [8] introduced skip-lot sampling plans. It is an expansion of CSP. In general, the skip-
lot sampling plan is the function of continuous sampling plans. The initial skip-lot sampling plan 
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is a single determination or test for verifying the lots acceptance or rejection. It is called the skip-lot 
sampling plan of type SkSP-1. Skip-lot sampling plan is bulk materials or products produced in 
successive lots. The SkSP-1 sampling plan was proposed without considering the concept of 
reference sampling plan. The structure of lot-by-lot sampling inspection plans and the condition is 
made for inspecting only a fraction of submitted lots. It is called the skip lot sampling plans. Dodge 
and Perry [9] introduced Skip-lot Sampling Plan of type SkSP-2. It is an extension of skip-lot 
sampling plan of type SkSP-1 and based on the origin of continuous sampling plan of CSP-1. 
Soundararajan and Vijayaraghavan [18] introduced the new system of skip-lot sampling plan; it is 
designated as SkSP-3. Skip-lot sampling plan of type SkSP-V is introduced by Balamurali and Chi-
Hyuck Jun [6]. It is based on the concept of continuous sampling plan of type CSP-V. Skip-lot 
sampling plans are efficient in acceptance sampling system and it is used to reduce inspections. In 
skip-lot sampling system, the quality of submitted lots is extremely good and it is acceptable. Skip-
lot sampling plans are best when the defective-free production in the production process.  

Tightened multilevel plans that include three levels designed by Fordice [10]. Kandasamy and 
Govindaraju [11] used Markov Chain techniques to find the characteristics function of CSP-T plan. 
Balamurali [4] proposed Modified Tightened Three level Continuous sampling plan. Balamurali 
and Chi-Hyuck Jun [5] proposed a modified CSP-T sampling procedure.  

Pradeepa Veerakumari and Suganya [15] introduced tightened three levels Skip-lot sampling 
plan, which is designated as SkSP-T. Skip-lot sampling plan of type SKSP-T is based on the concept 
of continuous sampling plan of types CSP-T and CSP-M modified tightened three level continuous 
sampling plans and skip-lot sampling plan of type SkSP-2. Sampling levels are fixed by using CSP-
M procedure; sampling fractions are taken from the CSP-T procedure and other concepts are taken 
by modified CSP-T and SkSP-2 procedures. In SkSP-T sampling plan, the sampling frequency (f) is 
minimized by every skipping inspection level.  The Operating Characteristic functions and 
operating procedures are derived for SkSP-T plan. SkSP-T plan vary among normal and skipping 
inspection with three levels. Skip-lot sampling plan starts with normal inspection using various 
reference sampling plans. In skipping inspection entire lots in the structure of construction and the 
skipping inspections are continued. The number of consecutive conforming lots or batches reaches 
some pre-specified clearance number i continue to normal inspection. If i consecutive lots are 
cleared with normal inspection, using skipping inspection with fraction f appear; if another i 
consecutive conforming lots are passed under fractional inspection, the fraction (f) is bisected to 
f/2, and then to f/4 provided no non-conforming is found. Then the non-conforming is found in 
skipping inspection the system goes to normal inspection.  
 
II. Design of SkSP-T plan with Group acceptance sampling plan as Reference plan 
 
This section skip-lot sampling plan of type SkSP-T plan using group acceptance sampling plan as a 
reference plan. Then the skip-lot sampling plan parameters are i- clearance number and f- 
sampling frequency or fraction of submitted lots inspected in the skipping inspection. The attribute 
Group acceptance sampling plan for the necessary parameters the number of groups (g), 
acceptance number (c) and pre-defined (r). The following quantities of the plan parameters are 
stated as t-time of the experiment,t! t!!⁄ , α, β producer and consumer risks respectively. Therefore 
the operating procedure for the new proposed plan as follows  
Step1: Initiate SkSP-T procedure with normal inspection using the group acceptance sampling plan 
as a reference plan. Select a random sample of size n from the lot and distribute r items in g groups 
and pre-defined experiment time t0. 
Step2: When i successive lots are accepted on normal inspection, discontinue normal inspection 
and switch to skipping inspection. 
Step3: On skipping inspection, inspect only a fraction f of the lots selected at random, level 1. 
Step4: After i consecutive lots in succession is accepted at level 1, then switches to skipping 
inspection with a fraction of f/2, level 2. 
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Step5: After i consecutive lots in succession is accepted at level 2, the system then switches to 
skipping inspection with a fraction of f/4, level 3. 
Step6: If a lot is rejected on any of the skipping level, the system then reverts back to normal 
inspection. 

Assume that the lifetime of the submitted products follows any accelerating lifetime 
distribution using the Cumulative Distribution Function (CDF) of F. Then, the probability of the 
failure of an item before experiment time t0 is given by, 
     p = F	(t")                                                                                 (1) 
The Operating Characteristics Function of SkSP-T plan is given by 

																																																		P#(p) =
$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")

&%&#&$%'($")*$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")
                                            (2) 

The new proposed sampling plan of skip-lot sampling plan of type SkSP-T plan 
parameters are determined by using the two point’s method on the Operating Characteristics (OC) 
curve together with consistent producer and consumer risks are specified. The two-point approach 
is used in the new proposed plan to find the proposed plan parameters such that producer and 
consumer risks are satisfied simultaneously. Let p1 - Producer’s risk (1-α) at AQL (Acceptable 
Quality Level) and p2 – Consumer’s risk (β) at LQL (Limiting Quality Level). 
                                                             p' =	∑ +rgi /	p'

+	(1 − p'+),-(+.
+/"                                                        (3) 

        p0 = ∑ +rgi /	p0
+	(1 − p0+),-(+.

+/"                (4) 
To specified by the producer’s and consumer’s risk used by Acceptable Quality Level and 

Limiting Quality level as follows 

                                        P#(p') =
$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")

&%&#&$%'($")*$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")
≥ 1 − α                                (5) 

                                        P#(p0) =
$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")

&%&#&$%'($")*$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")
	≤ 	β                                     (6) 

The Average Sample Number (ASN) of SkSP-T plan with Group acceptance sampling plan as 
reference plan is given by   
   P#(p0) =

1(&%&#&$)
&%&#&$%'($")*$"%&#&$%'($")*&%&$$"%'($")*&%&#$#")

                                           (7) 

 Equations 3 and 4 are substituting in equation 5 and 6 respectively. Using the new 
proposed plan parameters is simulating the specified values of Acceptable Quality Level and 
Limiting Quality level (AQL and LQL). Equations 5 and 6 are satisfied at the same time.     Aslam 
et.al [1] used to find the minimum ASN values at Limiting Quality Level instead of Acceptable 
Quality Levels we will use the same simulation process. 
The following constraints used to simulate the optimal plan parameter values, 
Minimize         ASN (p2) 
Subject to     

P#(p') =
P+(f0f4(1 − P+) + f'f4P+(1 − P+) + f'f0P0+)

f'f0f4(1 − P+) + P+(f0f4(1 − P+) + f'f4P+(1 − P+) + f'f0P0+)
≥ 1 − α 

P#(p0) =
P+(f0f4(1 − P+) + f'f4P+(1 − P+) + f'f0P0+)

f'f0f4(1 − P+) + P+(f0f4(1 − P+) + f'f4P+(1 − P+) + f'f0P0+)
	≤ 	β 

The above constraints used to calculate the proposed plan parameter values. The values are 
tabulate in table 1 and 2. From table 1 number of tester r = 5 and table 2 number of tester r = 10. 

 
III. Burr-type XII Distribution 

 
In present situations, products are manufactured and guaranteed with high reliability. In order to 
know the lifetime information of a particular product, a destructive experiment is made on it. Since 
the process is long and time-consuming, the lifetime is truncated for a pre-specified time. This 
experiment is terminated in two cases, when the number of failure item exceeds the expected 
number of failures or when the pre-specified time is attained. Let tq be true percentiles life and t!! 
be specified percentiles life. Assume that the lifetime of the submitted product follows the Burr-
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type XII distribution with known and unknown shape parameters.  
Burr [7] proposed the new distribution, which is called Burr Distribution. It is mainly based on 

log-logistic distribution.  Zimmer and Burr [19] have used Burr distribution to find out the values 
of degrees of skewness and kurtosis.  Rodriguez [17] developed Burr type XII distribution to 
generate distribution function of skewness and kurtosis also derives the area of the plane. Lio et al. 
[12] developed acceptance sampling plan for percentiles of Birnbaum- Saunders model and 
proposed that the acceptance sampling plans based on mean may not satisfy the requirement of 
engineers on the specific percentile of strength or breaking stress. Lio et. al., [13] developed 
percentiles of Burr type XII distribution of single sampling plan when the life test is truncated at a 
pre-specified time. Aslam et.al [1] developed the skip-lot sampling plan of type SkSP-2 with GASP 
as reference plan using Burr distribution. Aslam derived the percentiles of median life. Aslam is 
compared mean life percentile (with [12]) and median life percentiles. It concludes that median life 
percentile is better than mean life percentile.  

Aslam et.al., [2] implemented the Two-Stage improved group plans for Burr type XII 
Distributions. Aslam.et.al [3] developed the RGS (Repetitive Group Sampling) plan using Burr-
type XII distribution.  Ismail et. al., [14] develop two and three parameters are estimating in Burr 
type XII distribution using expected maximization (EM) algorithm. Rao et al., [17] using Burr type 
XII distribution to estimate the multi-component stress strength reliability and estimate its 
parameters.  
The Cumulative distribution function is given by 
                                           F(t) = 1 − [1 + (t/ɳ)5](6			t ≥ 0, ɳ ≥ 0, b ≥ 0, k > 0                                       (8) 
Here, b and k are the shape parameters and ɳ is the scale parameter. When k=1, the Burr-type XII 
distribution converts to log-logistic distribution. The 100qth percentile of Butt-type XII distribution 
is given as 

                                                                   	t! = ɳ ?+ '
'(!

/
%
& − 1@

'/5

                                                                 (9) 

The median life of the Burr-type XII distribution is given by 

                                                                         m = ɳB'((".9)
%/&

(".9)%/&
C
'/5

              (10) 

When the shape parameters k and b are fixed, the median is proportional to the scale parameter ɳ.  
The p based on the 100qth percentile of the Burr-type XII distribution is 

     p = 1 − ?1 + E :;(
<(/<(!

F
5
@
(6

                           (11) 

Where 

     γ = E+ '
'(!

/
'/6

− 1F
'/5

                           (12) 

Where p is based on the median life, it is given by 

     p = 1 − E '
'*(;(:/(<(/<(!))

)F
6
                          (13) 

Where 

     γ = B'((".9)
%/&

(".9)%/&
C
'/5

                           (14) 

         
 
 

IV. Determination of Sample Size 
 

Step 1: Find the value of p2 from equation 3 for shape parameter k=2 and q=0.5 by changing 
another shape parameter b=0.5 to 1. 
Step 2: Set the evaluated Probability of Acceptance value Pa (p2), and tq/t = 2, 4, 6, 8, 10, 12. 
Step 3: Find the ASN value at LQL level and other parameter values fixed. 
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V. Numerical Illustration 
 

Form table 1 and 2, Acceptable Quality Level (p1) and Limiting Quality level (p2) values are fixed 
by deriving the ASN at AQL (p1) level and ASN at LQL (p2) level. From table 2 number of tester’s r 
increases, the group g decreases. From table 1 and 2, r, g, i, f1, f2, and f3 values are fixed by 
changing the AQL and LQL values. It concludes that some small changes are made in Skip lot 
sampling plan of type SkSP-T with Group Acceptance Sampling Plan ASN at AQL values are very 
small compared to ASN at LQL.  
 From tables 3, 4, 5 and 6 shape parameters k and b values are fixed to find the percentiles 
ratios. The number of tester’s r increases 5 to 10 then the group g decreases. The shape parameter b 
increase 0.5 to 1 also the number of group g is increasing. Consider the tables, table 3, 4, 5 and 6 
simulating the values from Average Sample Number at Limiting Quality Level (ASN at p2) and 
Probability of Acceptance at Acceptable Quality Level (Pa (p) at p1) using 50th percentile ratio. 
Table 5 and 6 noticed that shape parameter b increases 0.5 to 1 maximum of all the LQL values are 
same and the probability of Acceptance values are almost equaled. For b=2 and k=1 for q0.5 or 50th  
percentile the Burr type XII distribution is converted into the log-logistic distribution. 

The life distribution is burr type XII distribution is assumed and the experimenter is 
interested and focused on showing that the true unknown 50th (q0.5) percentile life t0.5 is at least 
4000hrs. Consider the shape parameter k=2 and b=0.5 and the producer and consumer risks are 
fixed by α = 0.05 and β = 0.05.  The experimenter is stopped at desire percentile lifetime t=4000hrs. 
Hence the parameter of Skip lot sampling plan of type SkSP-T with Group Acceptance Sampling 
Plan as reference plan using Burr type XII distribution indexed through ASN at AQL and LQL 
levels used various parameters. From table 5, then the parameter value c=1, f1=0.25, f2=0.125 and 
f3=0.0625. At the time the quality engineer can apply SkSP-T with Group Acceptance Sampling 
Plan using Burr type XII distribution as follows: high probability acceptance (Pa (p1)) is 0.9876 and 
the minimum ASN at LQL level is 4.38 and the product lifetime is 4000hrs. Hence the lot is 
accepted or rejected for no failure and one failure found in 4000hrs. It concludes that only one 
failure occurred in 167 days and the probability of acceptance 0.9876 ≈ 0.99 or 99%. In this example 
is compared to Aslam et. al [1] skip-lot sampling plan of type SkSP-2 with GASP with Burr Type 
XII distribution and Aslam et.al [3] Repetitive acceptance singe sampling plan with Burr type XII 
distribution it concludes that Skip-lot sampling plan of type SkSP-T is more efficient. Skip-lot 
sampling plan of type SkSP-T with Burr type XII distribution has more probability of acceptance 
and minimum ASN at AQL and LQL levels compared with SkSP-2 with Burr type XII distribution. 
 From table 7, Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling 
Plan is compared with an existing Group acceptance sampling plan. And also calculate the 
corresponding Probability of Acceptance value. Let us consider the various group of Acceptable 
Quality and Limiting Quality levels are used and by fixed the number of tester r value (5 and 10), 
then calculate the group size for an existing plan and proposed plan. It concludes that the new 
proposed plan provides the very less number of group size and the already existing plan has more 
number of group size. For this table AQL=0.01 and LQL=0.02 and the number of tester r = 10, then 
the number of testers for existing plan to test the product under inspection is 130 and the proposed 
plan to test the product under inspection is 8. And this table is also compared with Aslam et. al [1] 
skip-lot sampling plan of type SkSP-2 with GASP with Burr Type XII distribution. It concludes that 
the new proposed plan has more efficient than GASP and SkSP-2 with Burr distribution. 
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Table 1: Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference plan based on 
truncated life tests for r = 5 

 
AQL 
(p1) 

 
LQL 
(p2) 

Optimal parameters 
 

g i c f1 f2 f3 ASN at (p1) ASN at (p2) 

0.001 

0.002 552 2 4 0.1 0.05 0.025 135 1898 
0.003 150 2 1 0.15 0.075 0.0375 62 841 
0.004 98 2 1 0.2 0.1 0.05 36 458 
0.005 37 2 1 0.25 0.125 0.0625 12 36 
0.006 11 2 0 0.3 0.15 0.075 5 16 

0.003 

0.005 220 2 4 0.1 0.05 0.025 83 744 
0.0065 64 2 1 0.15 0.075 0.0375 38 274 
0.007 16 2 0 0.2 0.1 0.05 11 34 
0.0075 14 2 0 0.25 0.125 0.0625 10 32.8 
0.008 8 2 0 0.3 0.15 0.075 5 11.6 

0.005 

0.007 43 2 1 0.1 0.05 0.025 23 49.8 
0.008 11 2 0 0.15 0.075 0.0375 7 12.6 
0.009 7 2 0 0.2 0.1 0.05 4 7.66 
0.01 6 2 0 0.25 0.125 0.0625 4 6.54 
0.011 4 2 0 0.3 0.15 0.075 3 5.43 

0.01 

0.02 10 2 0 0.1 0.05 0.025 9 34.7 
0.03 5 2 0 0.15 0.075 0.0375 2 12.2 
0.04 4 2 0 0.2 0.1 0.05 2 10 
0.05 3 2 0 0.25 0.125 0.0625 1 9 
0.06 2 2 0 0.3 0.15 0.075 1 7.8 

 
Table 2: Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference plan based on 

truncated life tests for r = 10 

 
AQL 
(p1) 

 
LQL 
(p2) 

Optimal parameters 

g i c f1 f2 f3 ASN at (p1) ASN at (p2) 

0.001 

0.002 275 2 4 0.1 0.05 0.025 134 1866 
0.003 75 2 1 0.15 0.075 0.0375 62.7 835 
0.004 48 2 1 0.2 0.1 0.05 35.7 432 
0.005 18 2 1 0.25 0.125 0.0625 11.9 31.9 
0.006 6 2 0 0.3 0.15 0.075 5.14 15 

0.003 

0.005 110 2 4 0.1 0.05 0.025 83.4 740 
0.0065 31 2 1 0.15 0.075 0.0375 35.4 236 
0.007 8 2 0 0.2 0.1 0.05 10.4 30 
0.0075 7 2 0 0.25 0.125 0.0625 9.89 28.5 
0.008 4 2 0 0.3 0.15 0.075 4.86 10.4 

0.005 

0.007 21 2 1 0.1 0.05 0.025 21.2 45.9 
0.008 6 2 0 0.15 0.075 0.0375 6.51 11.6 
0.009 4 2 0 0.2 0.1 0.05 4.12 7.2 
0.01 3 2 0 0.25 0.125 0.0625 3.31 5.74 
0.011 3 2 0 0.3 0.15 0.075 2.97 5.15 

0.01 

0.02 5 2 0 0.1 0.05 0.025 8.95 35.1 
0.03 2 2 0 0.15 0.075 0.0375 3 11.8 
0.04 2 2 0 0.2 0.1 0.05 2 10.2 
0.05 1 2 0 0.25 0.125 0.0625 2 7.61 
0.06 1 2 0 0.3 0.15 0.075 1 7.09 
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Table 3: Parameters for Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference 
plan for the total failure under the Burr type XII distribution 

  

 r = 5, δq =0.5 r = 5, δq =1 

β tq/tq0 g c i f1 f2 f3 ASN 
at p2 

Pa(p) g c i f1 f2 f3 ASN 
at p2 

Pa(p) 

0.25 

2 8 9 2 0.10 0.050 0.0250 91.17 0.9500 6 9 2 0.10 0.050 0.0250 99.19 0.9558 

4 7 6 2 0.15 0.075 0.0375 70.14 0.9504 5 6 2 0.15 0.075 0.0375 62.29 0.9498 

6 5 3 2 0.20 0.10 0.05 69.45 0.9498 4 3 2 0.20 0.10 0.05 83.86 0.9501 

8 4 2 2 0.25 0.125 0.0625 58.87 0.9503 3 2 2 0.25 0.125 0.0625 74.46 0.9504 

10 4 2 2 0.30 0.15 0.075 58.79 0.9502 3 2 2 0.30 0.15 0.075 55.86 0.9499 

12 3 1 2 0.35 0.175 0.0875 47.18 0.9499 2 1 2 0.35 0.175 0.0875 53.73 0.9494 

0.20 

2 7 7 2 0.10 0.050 0.0250 111.3 0.9998 5 7 2 0.30 0.15 0.075 111.3 0.9996 

4 5 3 2 0.15 0.075 0.0375 89.44 0.9836 3 2 2 0.20 0.10 0.05 89.44 0.9841 

6 3 1 2 0.15 0.075 0.0375 58.41 0.9616 2 1 2 0.10 0.050 0.0250 58.41 0.9618 

8 3 0 2 0.20 0.10 0.05 60.64 0.950 1 0 2 0.30 0.15 0.075 60.64 0.9589 

10 3 0 2 0.15 0.075 0.0375 58.37 0.9755 3 1 2 0.15 0.075 0.0375 58.37 0.9759 

12 3 0 2 0.30 0.15 0.075 47.33 0.9862 1 0 2 0.30 0.15 0.075 47.44 0.9861 

0.10 

2 6 6 2 0.10 0.050 0.0250 128.4 0.9880 4 5 2 0.15 0.075 0.0375 128.4 0.9881 

4 4 2 2 0.20 0.10 0.05 90.89 0.9832 2 1 2 0.30 0.15 0.075 90.89 0.9826 

6 3 1 2 0.10 0.05 0.0250 58.16 0.9613 1 0 2 0.20 0.10 0.05 58.16 0.9606 

8 2 0 2 0.20 0.10 0.05 60.64 0.9596 1 0 2 0.35 0.175 0.0875 60.64 0.9550 

10 2 0 2 0.40 0.20 0.10 58.37 0.9749 1 0 2 0.45 0.225 0.1125 58.37 0.9810 

12 2 0 2 0.45 0.225 0.1125 47.33 0.9859 1 0 2 0.30 0.15 0.075 47.33 0.9918 

0.05 

2 5 4 2 0.15 0.075 0.0375 120.4 0.9877 3 4 2 0.10 0.050 0.0250 120.4 0.9968 

4 3 2 2 0.20 0.10 0.05 90.89 0.9830 2 1 2 0.15 0.075 0.0375 90.89 0.9927 

6 2 0 2 0.25 0.125 0.0625 58.41 0.9608 2 1 2 0.10 0.050 0.0250 58.41 0.9977 

8 2 0 2 0.35 0.175 0.0875 60.64 0.9592 1 0 2 0.20 0.10 0.05 60.64 0.9669 

10 2 0 2 0.40 0.20 0.10 58.37 0.9747 2 0 2 0.15 0.075 0.0375 58.37 0.9847 

12 2 0 2 0.45 0.225 0.1125 47.33 0.9856 2 0 2 0.25 0.125 0.0625 47.33 0.9865 

 
 

 
Table 4: Parameters for Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference 

plan for the total failure under the Burr type XII distribution 

 r = 10, δq =0.5 r = 10, δq =1 

β tq/tq0 g c i f1 f2 f3 
ASN 
at p2 Pa(p) g c i f1 f2 f3 

ASN 
at p2 Pa(p) 

0.25 
2 4 9 2 0.10 0.050 0.0250 91.17 0.9504 3 9 2 0.15 0.075 0.0375 99.19 0.9551 

4 4 6 2 0.15 0.075 0.0375 70.14 0.9504 3 6 2 0.10 0.050 0.0250 70.14 0.9474 
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6 3 3 2 0.20 0.10 0.05 69.45 0.9498 2 3 2 0.20 0.10 0.05 69.45 0.9583 

8 2 2 2 0.25 0.125 0.0625 58.87 0.9502 2 2 2 0.25 0.125 0.0625 69.45 0.9533 

10 2 2 2 0.30 0.15 0.075 58.79 0.9501 2 2 2 0.20 0.10 0.05 58.79 0.9513 

12 2 1 2 0.35 0.175 0.0875 47.18 0.9497 2 1 2 0.35 0.175 0.0875 47.18 0.9552 

0.20 

2 3 7 2 0.10 0.050 0.0250 111.3 0.9998 2 7 2 0.30 0.15 0.075 111.3 0.9996 

4 2 3 2 0.15 0.075 0.0375 89.44 0.9836 1 2 2 0.20 0.10 0.05 89.44 0.9841 

6 2 1 2 0.15 0.075 0.0375 58.41 0.9616 1 1 2 0.15 0.075 0.0375 58.41 0.9618 

8 1 0 2 0.10 0.050 0.0250 60.64 0.9627 1 1 2 0.50 0.25 0.125 60.64 0.9619 

10 1 0 2 0.20 0.10 0.05 58.37 0.9754 1 1 2 0.10 0.050 0.0250 58.37 0.9759 

12 1 0 2 0.30 0.15 0.075 47.33 0.9862 1 1 2 0.35 0.175 0.0875 47.44 0.9989 

0.10 

2 3 6 2 0.10 0.050 0.0250 128.4 0.9886 2 5 2 0.15 0.075 0.0375 128.4 0.9881 

4 2 2 2 0.20 0.10 0.05 90.89 0.9832 1 1 2 0.30 0.15 0.075 90.89 0.9825 

6 2 1 2 0.10 0.05 0.0250 58.16 0.9613 1 1 2 0.25 0.125 0.0625 58.16 0.9923 

8 1 0 2 0.10 0.050 0.0250 60.64 0.9631 1 1 2 0.10 0.050 0.0250 60.64 0.9974 

10 1 0 2 0.15 0.075 0.0375 58.37 0.9860 1 1 2 0.50 0.25 0.125 58.37 0.9983 

12 1 0 2 0.20 0.10 0.05 47.33 0.9919 1 0 2 0.10 0.050 0.0250 47.38 0.9977 

0.05 

2 2 4 2 0.15 0.075 0.0375 120.4 0.9877 2 4 2 0.10 0.050 0.0250 120.4 0.9967 

4 1 1 2 0.25 0.125 0.0625 90.89 0.9830 1 1 2 0.15 0.075 0.0375 90.89 0.9926 

6 1 1 2 0.20 0.10 0.05 58.41 0.9652 1 1 2 0.25 0.125 0.0625 58.41 0.9963 

8 1 0 2 0.10 0.050 0.0250 60.64 0.9828 1 1 2 0.45 0.225 0.1125 60.64 0.9669 

10 1 0 2 0.15 0.075 0.0375 58.37 0.9747 1 0 2 0.10 0.050 0.0250 58.37 0.9846 

12 1 0 2 0.20 0.10 0.05 47.33 0.9856 1 0 2 0.30 0.15 0.075 47.33 0.9864 

 
Table 5: Parameters for Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference 

plan for the total failure under the Burr type XII distribution 

 r = 5, δq =0.5 r = 5, δq =1 

β tq/tq0 g c I f1 f2 f3 ASN at 
p2 Pa(p) g c i f1 f2 f3 ASN at 

p2 Pa(p) 

0.25 

2 8 6 2 0.10 0.050 0.0250 13.2662 0.9952 5 7 2 0.10 0.050 0.0250 13.2662 0.9942 

4 6 3 2 0.15 0.075 0.0375 4.38 0.9882 6 6 2 0.15 0.075 0.0375 4.38 0.9876 

6 5 1 2 0.20 0.10 0.05 4.38 0.9873 3 2 2 0.20 0.10 0.05 4.38 0.9866 

8 4 1 2 0.25 0.125 0.0625 4.38 0.9857 4 2 2 0.25 0.125 0.0625 4.38 0.9855 

10 4 1 2 0.30 0.15 0.075 4.38 0.9904 4 2 2 0.30 0.15 0.075 4.38 0.9894 

12 4 1 2 0.40 0.20 0.10 4.38 0.9897 3 1 2 0.35 0.175 0.0875 4.37 0.9893 

0.20 

2 7 5 2 0.10 0.050 0.0250 13.2662 0.9953 5 7 2 0.30 0.15 0.075 13.2662 0.9960 

4 4 2 2 0.15 0.075 0.0375 4.38 0.9882 3 2 2 0.25 0.125 0.0625 4.38 0.9881 

6 4 2 2 0.50 0.25 0.125 4.38 0.9872 3 1 2 0.15 0.075 0.0375 4.38 0.9870 
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8 2 0 2 0.20 0.10 0.05 4.38 0.9856 1 0 2 0.30 0.15 0.075 4.38 0.9854 

10 2 0 2 0.35 0.175 0.0875 4.38 0.9898 3 1 2 0.35 0.175 0.0875 4.38 0.9896 

12 2 0 2 0.30 0.15 0.075 4.38 0.9895 1 0 2 0.40 0.20 0.10 4.38 0.9896 

0.10 

2 6 4 2 0.10 0.050 0.0250 13.2662 0.9949 4 5 2 0.15 0.075 0.0375 13.2662 0.9949 

4 4 2 2 0.20 0.10 0.05 4.37 0.9708 2 1 2 0.15 0.075 0.0375 4.37 0.9880 

6 4 1 2 0.10 0.05 0.0250 4.38 0.9866 1 0 2 0.20 0.10 0.05 4.38 0.9871 

8 2 0 2 0.25 0.125 0.0625 4.38 0.9856 1 0 2 0.30 0.15 0.075 4.38 0.9856 

10 2 0 2 0.40 0.20 0.10 4.38 0.9903 1 0 2 0.40 0.20 0.10 4.38 0.9895 

12 2 0 2 0.45 0.225 0.1125 4.8 0.9816 1 0 2 0.45 0.225 0.1125 4.8 0.9888 

0.05 

2 5 4 2 0.15 0.075 0.0375 13.2662 0.9945 3 4 2 0.10 0.050 0.0250 13.2662 0.9969 

4 3 1 2 0.25 0.125 0.0625 4.38 0.9876 2 1 2 0.10 0.050 0.0250 4.38 0.9848 

6 2 0 2 0.20 0.10 0.05 4.38 0.9869 2 1 2 0.20 0.10 0.05 4.38 0.9864 

8 2 0 2 0.15 0.075 0.0375 4.38 0.9856 1 0 2 0.20 0.10 0.05 4.38 0.9848 

10  2 0 2 0.35 0.175 0.0875 4.38 0.9898 2 0 2 0.25 0.125 0.0625 4.38 0.9899 

12 2 0 2 0.40 0.20 0.10 4.38 0.9896 2 0 2 0.35 0.175 0.0875 4.38 0.9896 

 
  

Table 6: Parameters for Skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan as a reference 
plan for the total failure under the Burr type XII distribution 

 r = 10, δq =0.5 r = 10, δq =1 

β tq/tq0 g c i f1 f2 f3 
ASN at 
p2 Pa(p) g c i f1 f2 f3 

ASN at 
p2 Pa(p) 

0.25 

2 5 9 2 0.10 0.050 0.0250 13.2662 0.9948 3 9 2 0.10 0.050 0.0250 13.2662 0.9948 

4 5 6 2 0.15 0.075 0.0375 4.38 0.9874 3 6 2 0.15 0.075 0.0375 4.38 0.9878 

6 4 3 2 0.20 0.10 0.05 4.37 0.9867 2 3 2 0.20 0.10 0.05 4.38 0.9871 

8 3 2 2 0.25 0.125 0.0625 4.38 0.9855 2 2 2 0.25 0.125 0.0625 4.38 0.9855 

10 3 2 2 0.30 0.15 0.075 4.38 0.9899 2 2 2 0.30 0.15 0.075 4.38 0.9898 

12 2 1 2 0.35 0.175 0.0875 4.38 0.9895 2 1 2 0.35 0.175 0.0875 4.37 0.9893 

0.20 

2 4 7 2 0.10 0.050 0.0250 13.2662 0.9979 2 7 2 0.30 0.15 0.075 13.2662 0.9999 

4 3 3 2 0.15 0.075 0.0375 4.38 0.9878 1 2 2 0.25 0.125 0.0625 4.38 0.9867 

6 2 1 2 0.15 0.075 0.0375 4.38 0.9868 1 1 2 0.15 0.075 0.0375 4.38 0.9868 

8 1 0 2 0.10 0.050 0.0250 4.38 0.9849 1 1 2 0.30 0.15 0.075 4.38 0.9899 

10 1 0 2 0.35 0.175 0.0875 4.38 0.9898 1 1 2 0.35 0.175 0.0875 4.38 0.9895 

12 1 0 2 0.50 0.25 0.125 4.38 0.9892 2 1 2 0.40 0.20 0.10 4.38 0.9982 

0.10 

2 4 6 2 0.10 0.050 0.0250 13.2662 0.9947 2 5 2 0.15 0.075 0.0375 13.2662 0.9895 

4 2 2 2 0.20 0.10 0.05 4.37 0.9878 1 1 2 0.15 0.075 0.0375 4.37 0.9903 

6 2 1 2 0.30 0.15 0.075 4.38 0.9866 1 1 2 0.20 0.10 0.05 4.38 0.9919 

8 1 0 2 0.25 0.125 0.0625 4.38 0.9856 1 1 2 0.30 0.15 0.075 4.38 0.9938 

10 1 0 2 0.35 0.175 0.0875 4.38 0.9894 1 1 2 0.40 0.20 0.10 3.97 0.9983 
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12 1 0 2 0.45 0.225 0.1125 4.8 0.9896 1 0 2 0.45 0.225 0.1125 4.8 0.9934 

0.05 

2 3 4 2 0.15 0.075 0.0375 13.2662 0.9944 2 4 2 0.10 0.050 0.0250 13.2662 0.9968 

4 1 1 2 0.30 0.15 0.075 4.38 0.9875 1 1 2 0.10 0.050 0.0250 4.38 0.9847 

6 1 1 2 0.40 0.20 0.10 4.38 0.9876 1 1 2 0.20 0.10 0.05 4.38 0.9955 

8 1 0 2 0.25 0.125 0.0625 4.38 0.9856 1 1 2 0.20 0.10 0.05 4.38 0.9914 

10 1 0 2 0.35 0.175 0.0875 4.38 0.9897 1 0 2 0.25 0.125 0.0625 4.38 0.9899 

12 1 0 2 0.40 0.20 0.10 4.38 0.9895 1 0 2 0.35 0.175 0.0875 4.38 0.9896 

 
 

Table 7: Comparison of GASP with SkSP-T with GASP as reference plan using Burr type XII distribution 

 
  r = 5 r = 10 

 Group 
Acceptance 
Sampling plan 

Proposed 
Plan (SkSP-T 
with Burr 
type XII) 

Probability of 
Acceptance at 
Pa(p1) 

Group 
Acceptance 
Sampling plan 

Proposed 
Plan (SkSP-T 
with Burr 
type XII) 

Probability of 
Acceptance at 
Pa(p1) p1 p2 

 
 
 

0.001 

0.002 200 13 0.9959 130 8 0.9973 
0.005 162 7 0.9978 45 5 0.9964 
0.01 53 5 0.9973 25 3 0.9981 
0.15 38 4 0.9973 14 2 0.9976 
0.02 25 4 0.9966 10 2 0.9979 
0.03 17 3 0.9974 8 2 0.9989 

 
 

0.005 

0.02 142 9 0.9955 113 7 0.9977 
0.03 62 6 0.9973 38 5 0.9956 
0.04 31 4 0.9977 21 3 0.9966 
0.05 18 3 0.9972 12 2 0.9973 
0.06 13 2 0.9961 8 2 0.9978 
0.07 7 2 0.9974 5 2 0.9982 

 
 

VI. CONCLUSION 
 
The new proposed skip-lot sampling plan of type SkSP-T with Group Acceptance Sampling Plan 
will be useful when the lifetime of the product follows the Burr type XII distribution with known 
and unknown shape parameters. The proposed SkSP-T with GASP has been compared with SkSP-
2 with GASP and Group Acceptance Sampling Plan. The comparison results have specified that 
the SkSP-T with Group Acceptance Sampling Plan is more efficient than the SkSP-2 and existing 
Group Acceptance Sampling Plan. From the illustration, it is noticed that the SkSP-T has more 
probability of acceptance compared with other existing plans. Producer and consumer risks are 
reduced while compared with SkSP-2 and RGASP under Burr type XII distribution. The article also 
provides a detailed procedure for designing and selecting the plan parameters. An attempt has 
been made in this paper in developing Skip lot sampling plans ensuring reduce the frequency of 
sampling inspection and total inspection cost and also reducing the defectives products. The 
necessary tables and examples are contributed and applied for the formulation of the new 
proposed sampling plan. 
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Abstract

The inverted distribution is the distribution of the reciprocal of a random variable that

follows a specified distribution. Here, a new one parameter inverse A(α) distribution has been

introduced, which is the reciprocal of the A(α) distribution. An account of mathematical and

statistical properties of the new distribution such as survival characteristics, quantile functions,

mode, order statistics, ageing intensity function and stochastic ordering have been derived

and discussed. Furthermore, from the frequentist view point we discussed several estimation

approaches including maximum likelihood method, method of maximum product of spacings,

ordinary and weighted least square methods, Cramér-Von-Mises estimation and Anderson-

Darling estimation methods. These methods are compared for both small and large samples by

performing an extensive numerical simulation. The flexibility of the new lifetime distribution

is demonstrated by modeling a tongue cancer data. The result indicates the superiority for

proposed model compared to some popular competing ones.

Keywords: Inverse distribution, Estimation methods, Hazard rate function, Lifetime distribution

1. Introduction

In several applied fields of research such as engineering, medical sciences, economics, biological

sciences etc., analyzing and modeling complex datasets are the most essential parts. Albeit in

literature there exists many well known standard distributions, sometimes it may not always

reflect the real world scenario. So, the researchers aspire to extend structures of the probability

models. Recently, [1] introduced a new one parameter A(α) distribution and the applicability of

the distribution is investigated by analyzing three datasets. A continuous random variable Y is

said to follow an A(α) distribution if its probability density function (pdf) is of the form;

fY (y) =
1

y2
exp

[
1

α

(
1− exp

(
α

y

))
+
α

y

]
; y > 0 (1)

and is denoted by Y ∼ A(α). The corresponding cumulative distribution function (cdf) of Y is

given by,

FY (y) = exp

[
1

α

(
1− exp

(
α

y

))]
; y > 0 (2)

with scale parameter α > 0.

In statistical literature there are various methods for proposing new distributions by using

baseline distributions. For example, [2] introduced a general method for obtaining more flexible

distributions by adding a new parameter to an existing family of distributions, Quadratic rank
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transmutation map (QRTM) [3], DUS transformation [4], α−power transformation method [5]

etc. In this context, finding inversion of univariate probability distributions and their applicability

under the inverse transformation method is one of the preferred areas of research in recent times.

Sometimes it has been found that inverted version of the distributions are much more effective to

explore additional aspects of the phenomena that non-inverted distribution cannot. For instances,

inverse exponential distribution is studied by [6], inverse Weibull distribution is studied by [7],

[8] studied inverse Lindley distribution, inverse Xgamma distribution is studied by [9], inverse

power Lindley distribution by [10], inverted Gamma distribution by [11], inverse Kumaraswamy

distribution is studied by [12].

In this present study, we have also introduced the inverted version of the A(α) distribution

using the same technique and named it as the inverse A(α) distribution. The new distribution is

flexible to model positive real datasets which possesses increasing hazard rate function. Another

beauty of this distribution includes heavy-tail, unimodal, parsimonious in parameter and easy to

use. The objectives of this article are: (i) to obtain some mathematical properties for inverse A(α)

distribution and (ii) to estimate the unknown parameter of the model from frequentist perspectives.

The maximum likelihood estimation (MLE), method of maximum product of spacings (MPS),

ordinary least square estimation (OLS) and weighted least square estimation (WLS), Cramér-Von-

Mises estimation (CVM) and the method of Anderson-Darling (AD) are considered as frequentist

methods for parameter estimation. Also we compare these estimation procedures on the basis of

root mean square error (RMSE) values for different sample sizes and different parameter values

using Monte-Carlo simulation technique. Furthermore, to the best of our knowledge, no attempt

has been made to compare all of these estimators for the inverse A(α) distribution along with

mathematical and statistical properties. Additionally, to illustrate the flexibility of this distribution

a tongue cancer patient data has been analyzed.

The remainder of this article is organized as follows. In Section 2, the new distribution has

been introduced. Different statistical properties and associated measures of Inv-A(α) distribution

have been discussed in Section 3. Different classical estimation procedures for the parameter of

inverse A(α) distribution have been considered in Section 4. In Section 5, a simulation study is

conducted to compare the various obtained estimators. Empirical application based on a real

dataset is discussed in Section 6. Finally, concluding remarks are given in Section 7.

2. The inverted A(α) distribution

A new probability distribution, termed as inverted or inverse-A(α) distribution has been introduced

in this section. By origin, this distribution is the reciprocal of the A(α) distribution and for

simplicity throughout this study we use the notation Inv-A(α) for this new lifetime model. Here

we consider the random variable Y having the density function (1), then the cdf of the inverted

random variable X = 1
Y is defined as

FX(x) = P[X ≤ x] = 1− FY
(

1

X

)
= 1− exp

[
1

α
(1− exp(αx))

]
;x > 0. (3)

Now, by differentiating FX(x) given in (3) the pdf of the Inv-A(α) distribution is obtained and

expressed as follows;

fX(x) = exp

[
1

α
(1− exp(αx)) + αx

]
;x > 0 (4)

and α > 0 is the scale parameter. The Inv-A(α) distribution is an one parameter family of

continuous probability distributions on the positive real line.

The plots of pdf and cdf function of Inv-A(α) distribution for different choices of scale parameter

α are shown in Figures 1a and 1b respectively. The plots reveal that the Inv-A(α) density can be

decreasing, unimodal and right skewed.
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Figure 1: The pdf and cdf plots of Inv-A(α) distribution for different parameter choices.

3. Some statistical properties

3.1. Reliability characteristics

The survival function (sf) and hazard rate function (hrf) are the basic characteristics of any lifetime

distributions. Both the measures are commonly employed to describe and model the fundamental

properties of a variety of survival datasets. The survival function S(t), which is defined as the

probability that an individual or an item is survived at least t (t ≥ 0) unit of time and denoted as

S(t) = P (X ≥ t) = 1− F (t).

Thus, the sf of the Inv-A(α) distribution is defined as,

S(t) = e
1
α (1−eαt) (5)

The hazard rate function, also known as the failure rate function, is another key feature to

consider when measuring a real-life phenomenon with a lifetime distribution. It can be interpreted

as the conditional probability of failure, given it has survived upto at least the time t (t ≥ 0) and

is defined as h(t) = f(t)
1−F (t) = f(t)

S(t) ; where f(t) is the pdf and S(t) is the sf of the corresponding

distribution. Therefore, the hrf for the Inv-A(α) distribution is given by,

h(t) =
e

1
α (1−eαt)+αt

e
1
α (1−eαt)

= eαt (6)

The ratio between the lifetime probability density and its distribution function is characterised

as the reversed (or proportional) hazard rate function (rhrf) of a random life phenomena. For the

Inv-A(α) distribution the rhrf is given as follows,

H(t) =
f(t)

F (t)
=

e
1
α (1−eαt)+αt

1− e 1
α (1−eαt)

(7)

Another similar measure is cumulative hazard function and is defined as follows [13]:

Λ(t) = −log S(t) = −log
[
e

1
α (1−eαt)

]
=

1

α

(
eαt − 1

)
(8)

So, clearly from expression (6) we can see that the hazard rate function is increasing for α > 0.

The shape of the hazard rate is displayed in figure 2b for different choices of α, whereas figure 2a

represents the shape of the survival function.
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Figure 2: The survival and hazard plots of Inv-A(α) distribution for different parameter choices.

The shape of the hazard rate function can also be derived mathematically by using the following

lemma.

Lemma 1. Suppose f(t), for t > 0 is the density function of a positive real valued continuous

random variable. f ′(t) is the derivative of f(t) and

η(t) = −f
′(t)

f(t)
.

Then if η′(t) > 0 for all t > 0 then the hazard rate function is an increasing function of t.

Proof. [14].

Here,

η(x) = eαx − α.

After differentiating with respect to x, we have

η′(x) = αeαx; α > 0.

It is clearly seen that η′(x) > 0 for x > 0. Therefore, the distribution has increasing hazard rate

function.

3.2. Quantile functions, median and mode

The qth quantile function xq of Inv-A(α) distribution will be obtained by solving the following

equation

F (xq) = q where, 0 < q < 1.

Therefore, 1− e 1
α (1−eαxq ) = q

xq =
1

α
log [1− α log(1− q)] . (9)

Thus, the median (or 2nd quartile) of the proposed distribution is obtained by substituting q = 1
2

in (9).

i.e., X 1
2

= Q2 =
1

α
log

[
1− α log

(
1

2

)]
=

1

α
log [1 + α log 2] . (10)
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Similarly, the 1st and 3rd quartiles are obtained by replacing q = 1
4 and q = 3

4 respectively. Thus

expressions for the 1st and 3rd quartiles are as follows.

Q1 =
1

α
log

[
1− α log

(
3

4

)]
and Q3 =

1

α
log [1 + α log 4] .

Now, the mode of the inverse A(α) distribution denoted by xm will be derived by solving the

equation f ′(x;α) = 0, for which f ′′(x) < 0. The solution xm will be the mode of the distribution

for which f(x) attains the maximum value. Therefore, the mode of the proposed distribution is

obtained by solving the differentiation expressed as

∂

∂x
e[

1
α (1−eαx)+αx] = 0 (11)

After simplification, we get

xm =
log α

α
(12)

It is noted that, though the mode of A(α) distribution exists but it cannot be expressed in a closed

form. However, in our study of Inv-A(α) distribution, we see that the mode exists with an explicit

form.

3.3. Order statistics

In nonparametric statistics and inference, order statistics are one of the useful techniques. In life

testing and reliability analysis order statistics have a wide range of applications. Let us assume

that X(1), X(2), · · · , X(n) be the order statistics of a random sample X1, X2, · · · , Xn drawn from a

continuous population with cdf FX(x) and pdf fX(x). Therefore under these assumptions pdf and

cdf of the order statistics X(r), r = 1, 2, · · · , n is expressed as

fr(x) =
n!

(r − 1)! (n− r)!
f(x)F (r−1)(x)[1− F (x)](n−r); r = 1, 2, · · · , n (13)

and

Fr(x) =
n∑
i=r

(
n

i

)
F iX(x)[1− FX(x)](n−i). (14)

Now, by using the pdf (4) and cdf (3) in equation (13), we can easily derive the pdf of rth order

statistic for the Inv-A(α) distribution as in the following expression

fX(r)
(x) =

n!

(r − 1)! (n− r)!

{
1− e 1

α (1−eαx)
}(r−1) {

e
1
α (1−eαx)

}(n−r+1)

eαx

=
n!

(r − 1)! (n− r)!

r−1∑
k=0

(
r − 1

k

)
(−1)keαx

[
e

1
α (1−eαx)

](n−r+k+1)

. (15)

While using equation (3) in (14) the cdf of rth order statistic becomes,

FX(r)
(x) =

n∑
i=r

i∑
k=0

(
n

i

)(
i

k

)
(−1)ke

n
α (1−eαx). (16)

In particular, the densities of the smallest and largest order statistics of the Inv-A(α) distribution

are obtained by substituting r = 1 and n simultaneously in the expression (15). Hence the pdf of

the smallest order statistic X(1) is expressed as,

fX(1)
(x) = ne{

n
α (1−eαx)+αx}

and the pdf of the largest order statistic X(n) is as follows,

fX(n)
(x) = n

n−1∑
k=0

(
n− 1

k

)
(−1)ke

{
(1−eαx)(k+1)

α +αx
}
.
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3.4. Ageing intensity function

Ageing intensity (AI) function has been developed by [15] and according to him, a unimodal

failure rate can be represented as either approximately decreasing or approximately increasing or

approximately constant. [16] investigated various features of AI functions, whereas [17] discussed

AI function in the field of reliability theory. The AI function for a positive random variable X,

denoted by LX(t), for any t > 0. The ratio of the instantaneous failure rate to a baseline failure

rate is used to calculate the AI function. It is defined as

LX(t) =
h(t)

H(t)
,

=
−tf(t)

S(t)lnS(t)
, t > 0.

Where f(.) and S(.) are the probability density function and survival function of the random

variable X respectively. H(t) is failure rate average and it can be written as H(t) = (
∫ t
0
h(u)du)/t.

Now, if X ∼ Inv-A(α) then the expression for the AI function is obtained as

LX(t) = − αteαt

1− eαt
. (17)

AI function is uniquely determined by the failure rate function, however the converse is not true.

The stronger the ageing tendency of the related random variable, the higher the value of the AI

function. If the failure rate is a constant then the AI = 1, If the failure rate is increasing then the

AI > 1, if the failure rate is decreasing then the AI < 1.

3.5. Stochastic ordering

The notion of stochastic ordering was first suggested by [18] and used to demonstrate the comparative

behaviour of two positive continuous random variables. Suppose X and Y are the two random

variables with respective cdfs FX and FY , then X is said to be smaller than Y in the following cases

• Stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x;

• Hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x;

• Mean residual life order (X ≤mrl Y ) if mX(x) ≤ mY (x) for all x;

• Likelihood ratio order (X ≤lr Y ) if fX(x)
fY (x) decreases in x.

The aforementioned relationship are well known for establishing stochastic ordering of distribu-

tions.

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y
⇓

X ≤st Y

When the required conditions are met, the Inv-A(α) distribution is ordered with regard to the

strongest likelihood ratio ordering, as shown by the following theorem.

Theorem 1. let, X ∼ Inv-A(α1) and Y ∼ Inv-A(α2). If α1 < α2, then X ≤lr Y and hence it

implies other orderings.

Proof. According to the definition, the Likelihood ratio is defined as

ξ(x) =
fX(x)

fY (x)
=
exp

[
1
α1

(1− exp(α1x)) + α1x
]

exp
[

1
α2

(1− exp(α2x)) + α2x
]

⇒ logξ(x) =
1

α1
− eα1x

α1
− 1

α2
+
eα2x

α2
+ (α1 − α2)x

S. Bhunia, P. Banerjee
Inverse A(α) Distribution

RT&A, No 1 (67)
 Volume 17, March 2022

256



Now differentiating with respect to x, we get

ξ′(x)

ξ(x)
= (α1 − α2) + eα2x − eα1x

⇒ ξ′(x) = ξ(x) {(α1 − α2) + eα2x − eα1x}

⇒ ξ′(x) < 0 if α1 < α2.

Therefore, ξ(x) is decreasing function in x if α1 < α2 and hence X ≤lr Y . The remaining orderings

can also be established in similar manner.

4. Methods of Estimation

In this section, we describe some parameter estimation techniques for Inv-A(α) distribution under

frequentist view point. In particular, the methods which we have discussed here, those are:

maximum likelihood estimation (MLE), maximum product of spacings (MPS), ordinary least square

(OLS) and weighted least square estimation (WLS), Cramér-Von-Mises estimation (CVM) and

Anderson-Darling (AD) estimation.

4.1. Method of Maximum Likelihood

Here, we discuss the maximum likelihood estimation (MLE) method for estimating the unknown

scale parameter α. Several desirable properties like consistency, asymptotic efficiency and invariance

make this estimation technique most popular among others [19]. Let X1, X2, · · · , Xn be an observed

random sample from Inv-A(α) distribution with pdf (4) and the MLE for the unknown parameter

is derived as follows. The likelihood function is defined as

L(x) =
n∏
i=i

f(xi;α) =
n∏
i=i

exp

[
1

α
(1− exp(αxi)) + αxi

]
.

So, the log-likelihood function becomes

logL =
n

α
− 1

α

n∑
i=1

eαxi + α
n∑
i=1

xi. (18)

After differentiating log L in (18) with respect to α and equating to zero, we get the system of

non-linear equation as,

δlogL

δα
=

1

α2

n∑
i=1

eαxi − 1

α

n∑
i=1

xie
αxi − n

α2
+

n∑
1=1

xi = 0.

=⇒
n∑
i=1

eαxi − α
n∑
i=1

xie
αxi + α2

n∑
i=1

xi = n. (19)

The solution of the above non-linear equation (19) gives the MLE for the parameter α. As the

equation cannot be solved analytically, therefore some iteration techniques like Newton-Raphson

method may be adopted to obtain the MLE.

4.2. Method of maximum product of spacings

For the estimation of unknown parameters of continuous univariate distributions, the maximum

product of spacings (MPS) approach provides a strong alternative to MLE. [20] initially discussed

the use of MPS estimation method whereas [22] demonstrated that this technique as efficient as

the MLE and consistent across a wider range of situations. [21] developed the MPS approach as an

approximation to the Kullback–Leibler information measure independently. Recently, [23], [24],

[25], [26] etc. applied this approach in parameter estimation problem.
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According to the procedure, the uniform spacings of a random sample drawn from the Inv-A(α)

distribution are defined as

Di(α) = F (xi:n;α)− F (xi−1:n;α), i = 1, 2, · · · , n+ 1.

Where, F (x0:n;α) = 0 and F (xn+1:n;α) = 1. Clearly,
∑n+1
i=1 Di(α) = 1.

The maximum product of spacings estimate α̂MPS is obtained by maximizing the geometric

mean of the spacings,

G(α) =

[
n+1∏
i=1

Di(α)

]1/(n+1)

with respect to α, or equivalently, by maximizing the logarithm of the geometric mean of sample

spacings:

η(α) =
1

n+ 1

n+1∑
i=1

logDi(α). (20)

The estimate α̂MPS of the parameter α can be obtained by solving the following non-linear equation.

e
1
α (1−eαx1 ) { 1

αx1e
αx1 − 1

α2 (eαx1 − 1)
}

1− e 1
α (1−eαx1 )

+

n∑
i=2

[
e

1
α (1−eαxi−1 )

{
1
α2 (eαxi−1 − 1)− 1

αxi−1e
αxi−1

}
− e 1

α (1−eαxi ) { 1
α2 (eαxi − 1)− 1

αxie
αxi
}]

e
1
α (1−eαxi−1 ) − e 1

α (1−eαxi )

+
1

α2
(eαxn − 1)− 1

α
xne

αxn = 0 (21)

Since the above non-linear equation is not having a closed form solution, it cannot be solved

analytically. Therefore, we derived it numerically in next section by using some iteration technique.

4.3. Ordinary and weighted least square estimation

The ordinary least square and the weighted least square are the two conventional estimation

procedures were developed by [27] in context of the parameters estimation of the Beta distribution.

Let, x(1), x(2), · · · , x(n) be the ordered sample of size n from a distribution function F (xi:n;α).

Then the ordinary least square estimator α̂OLS can be obtained by minimizing

OLS =

n∑
i=1

[
F (xi:n;α)− i

n+ 1

]2
,

with respect to α. Now, the OLS estimator for the parameter of Inv-A(α) distribution can be

obtained by solving the following non-linear equation

n∑
i=1

(
1− e 1

α (1−eαxi ) − i

n+ 1

)
e

1
α (1−eαxi )

{
1

α2
(eαxi − 1)− 1

α
xie

αxi

}
= 0 (22)

Similarly, the weighted least square estimate (WLS) of the unknown parameter can be obtained

by minimizing the following expression

WLS =
n∑
i=1

ωi

[
F (xi:n;α)− i

n+ 1

]2
,

with respect to α and ωi = (n+1)2(n+2)
i(n−i+1) be the weight function at the ith point.

Using equation (3) in the above expression and differentiating with respect to α we obtained

α̂WLS by solving the following non-linear equation

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

(
1− e 1

α (1−eαxi ) − i

n+ 1

)
e

1
α (1−eαxi )

{
1

α2
(eαxi − 1)− 1

α
xie

αxi

}
= 0. (23)
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4.4. Minimum distance estimators

In this subsection, we briefly present two estimation approaches for the unknown parameter α of the

proposed lifetime distribution based on the minimization, with respect to α, of the goodness-of-fit

statistics. This class of statistics is defined based on the discrepancies between the estimate of the

cdf and the empirical distribution function [28], [29].

4.4.1 Cramér-Von-Mises estimation

The Cramér-Von-Mises (CVM) estimator is a sort of minimal distance estimator, computed based

on the discrepancies between the estimate of the cumulative distribution function and the empirical

distribution function. This estimator is also known as maximum goodness of fit estimator. For more

details about this method we refer [28, 29, 30] etc. [31] justified the use of Cramér-Von-Mises type

minimal distance estimators by demonstrating that their bias is lower than that of other minimum

distance estimators.

Let x1 < x2 < · · · < xn be the ordered samples from the pdf (4). Then the Cramér-Von-Mises

estimator α̂CVM can be obtained by minimizing ζ with respect to α, where

ζ =
1

12n
+

n∑
i=1

(
F (xi)−

2i− 1

2n

)2

=
1

12n
+

n∑
i=1

(
1− e 1

α (1−eαxi ) − 2i− 1

2n

)2

Thus, CVM estimator can be obtained by solving the following non-linear equation

n∑
i=1

(
1− e 1

α (1−eαxi ) − 2i− 1

2n

)
e

1
α (1−eαxi )

{
1

α2
(eαxi − 1)− 1

α
xie

αxi

}
= 0. (24)

4.4.2 Anderson-Darling estimation

The Anderson-Darling (AD) estimator is another type of minimal distance estimator that is based

on the Anderson-Darling statistic, is an alternative to traditional statistical tests for detecting

sample distributions departure from normality [32]. The AD estimate, α̂AD of the parameter is

obtained by minimizing the following expression with respect to α,

A = −n− 1

n

n∑
i=1

(2i− 1) [logF (xi:n) + log(1− F (xn+1−i:n))] .

After minimizing the above expression with respect to α, we have the following nonlinear

equation which will be solved numerically to obtain the AD estimator.

n∑
i=1

(2i− 1)
[
2e

1
α (1−eαxi ) − 1

]{ 1

α
xie

αxi − 1

α2
(eαxi − 1)

}
= 0. (25)

5. Simulation study for different estimation methods

In this section, a Monte Carlo simulation study has been performed to investigate the behaviour of

the proposed estimators. The performance is evaluated based on the root mean square error (RMSE)

values of the following six estimates namely, maximum likelihood estimate (MLE), maximum product

spacing (MPS), ordinary least square (OLS), weighted least square (WLS), Cramér-Von-Mises

(CVM) and Anderson-Darling (AD) estimate. We generate K=1000 random samples X1, X2, ..., Xn

of sizes n = 10, 25, 50, 75, 100 from Inv-A(α) distribution by using inverse transformation method.

The initial choices of parameter are taken as α = 0.1, 0.5, 1.0, 3.0, 5.0. We calculate the ML, MPS,

OLS, WLS, CVM, AD estimates for all choices of the scale parameter. Numerical outcomes are

constructed in Table 1 where the average estimates and corresponding RMSE values are displayed.
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Table 1: Average estimate values and the associated RMSEs for Inv-A(α) distribution

Parameter

choice

Sample

sizes (n)
α̂MLE α̂MPS α̂OLS α̂WLS α̂CV M α̂AD

α = 0.1

10 0.334841 0.071176 0.322474 0.353796 0.426889 0.169213

0.007426 0.000912 0.007035 0.008026 0.010337 0.002189

25 0.189182 0.061142 0.180246 0.174847 0.224161 0.123333

0.002820 0.001229 0.002538 0.002367 0.003926 0.000738

50 0.145191 0.068292 0.124540 0.124579 0.146387 0.108763

0.001429 0.001002 0.000776 0.000777 0.001467 0.000277

75 0.128844 0.071494 0.116508 0.116079 0.130995 0.105799

0.000912 0.000901 0.000522 0.000508 0.000980 0.000183

100 0.123515 0.076731 0.112897 0.114688 0.123671 0.106887

0.000744 0.000736 0.000408 0.000464 0.000749 0.000218

α = 0.5

10 0.752290 0.436867 0.716765 0.739353 0.844578 0.572157

0.007978 0.001996 0.006855 0.007569 0.010897 0.002282

25 0.595096 0.438685 0.578822 0.575220 0.627734 0.526648

0.003007 0.001939 0.002493 0.002379 0.004040 0.000843

50 0.548418 0.454349 0.523074 0.524836 0.547285 0.509773

0.001531 0.001444 0.000730 0.000785 0.001495 0.000309

75 0.530561 0.460606 0.515562 0.516496 0.531643 0.506529

0.000966 0.001246 0.000492 0.000522 0.001000 0.000206

100 0.525595 0.468765 0.512467 0.515438 0.524463 0.508000

0.000809 0.000988 0.000394 0.000488 0.000774 0.000253

α = 1.0

10 1.275037 0.904548 1.226252 1.223553 1.425039 1.077413

0.008697 0.003018 0.007155 0.007069 0.013441 0.002448

25 1.103888 0.918020 1.079842 1.076663 1.133836 1.030476

0.003285 0.002592 0.002525 0.002424 0.004232 0.000964

50 1.053224 0.941482 1.022732 1.026182 1.049406 1.010681

0.001683 0.001850 0.000719 0.000828 0.001562 0.000338

75 1.033451 0.950529 1.015402 1.017632 1.033153 1.007198

0.001058 0.001564 0.000487 0.000558 0.001048 0.000228

100 1.028529 0.961345 1.012633 1.016743 1.025899 1.00906

0.000902 0.001222 0.000399 0.000529 0.000819 0.000286

α = 3.0

10 3.356249 2.809940 3.258877 3.224152 3.430144 3.098857

0.011266 0.006010 0.008186 0.007088 0.013602 0.003126

25 3.136043 2.857535 3.090781 3.091121 3.160051 3.042742

0.004302 0.004505 0.002871 0.002882 0.005062 0.001352

50 3.070314 2.903247 3.024113 3.032452 3.058492 3.013378

0.002224 0.003060 0.000763 0.001026 0.001850 0.000423

75 3.044011 2.920498 3.016559 3.022434 3.039508 3.009221

0.001392 0.002514 0.000524 0.000709 0.001249 0.000292

100 3.038722 2.939091 3.014403 3.021810 3.031602 3.012286

0.001224 0.001926 0.000455 0.000690 0.000999 0.000389

α = 5.0

10 5.426122 4.735217 5.287511 5.219631 5.491406 5.11804

0.013475 0.008373 0.009092 0.006945 0.01554 0.003733

25 5.16381 4.809465 5.102561 5.104967 5.184119 5.052456

0.005180 0.006025 0.003243 0.003319 0.005822 0.001659

50 5.084771 4.872474 5.026128 5.038306 5.06668 5.015507

0.002681 0.004033 0.000826 0.001211 0.002109 0.00049

75 5.053036 4.896338 5.018092 5.026767 5.045195 5.010834

0.001677 0.003278 0.000572 0.000846 0.001429 0.000343

100 5.047319 4.92115 5.016312 5.026294 5.036646 5.014891

0.001496 0.002493 0.000516 0.000831 0.001159 0.000471
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Figure 3: RMSE of α̂ under the six different estimation methods with the variation of sample size n

According to Table 1, as the sample size increases, the RMSE of ML, MPS, OLS, WLS, CVM

and AD estimates of the scale parameter decrease. Hence, all the estimators hold the property

of consistency. Also, it has been observed that the RMSE of the ML, MPS, WLS, CVM and

AD estimates increase with the increment of the scale parameter. For small size of sample n=10,

the performance of MPS estimate is effective when α < 1. Overall, the AD estimate is most

effective among all the estimates as it produces the least RMSE value for most of the cases we have

considered in our study. The results are also verified from the Figure 3.

6. Real data application of the Inv-A(α) distribution

A real dataset has been considered with the goal of evaluating the potentiality of the Inv-A(α)

distribution by comparing it with some other well known distributions already available in literature.

Inverse exponential (IE) [6], inverse Xgamma (IXg) [9], inverse Lindley (IL) [8], inverse Gamma

(IG) [11], inverse Kumaraswamy (IK) [12], inverse Weibull (IW) [7], inverted Nadarajah–Haghighi

(INH) [33], Exponentiated inverse Rayleigh (EIR) [34], Inverse power Lindley (IPL) [10] are the

few distributions belong to the inverse family have been selected as the competitive models. The

parameters of the considered models have been estimated through the MLE approach.

The data consists of death times (in weeks) of 52 patients having tongue cancer with an aneuploid

DNA profile discussed by [35] and given by [36]. Recently, [37] used this dataset in their study.

Patients with sexually transmitted illnesses who had a paraffin-embedded sample of malignant tissue

obtained were chosen and the time frames to reinfection were estimated. Using a flow cytometer,

the tissue samples were evaluated to see if the tumour had an aneuploid (abnormal) or diploid

(normal) DNA profile, as described by [35].

In ordered to make comparison among the considered models some criterion includes 2×negative

log-likelihood (−2 lnL), Akaike Information Criterion (AIC), Corrected AIC (CAIC), Bayesian

information criterion (BIC) and Hannan-Quinn information criterion (HQIC) are utilized. A

model with minimum values of these statistics are considered to be the best model. Further, we

also use goodness of fit tests such as Kolmogorov-Smirnov (K-S), Cramér-Von-Mises (CVM) and

Anderson-Darling (AD) tests along with their corresponding P Values. The MLE with respective

standard error (in parentheses) of the parameters and values of −2 lnL, AIC, BIC, CAIC and HQIC

and the numerical values of K-S, CVM and AD statistics along with their corresponding P values

are displayed in Table 2 and 3 respectively. It has been observed that the Inv-A(α) distribution
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Figure 4: Empirical pdf, cdf, pp and sf plots for the tongue cancer data

have the lowest values for all goodness-of-fit statistics and the largest P value among all other

competitive models. As a result, our proposed model outperformed the other models for the tongue

cancer data.

Figure 4 shows a plot of estimated histogram, empirical cdf, PP-plot and a plot of the survival

functions modified by the suggested theoretical models onto the empirical survival function (Kaplan-

Meier estimate), which may be used to verify the goodness of fit for the proposed model. A graphical

technique based on total time on test (TTT) plot is also used here to identify the shapes of the data.

According to [38], the hrf is constant if the TTT plot is visually portrayed as a straight diagonal,

the hrf is increasing (or decreasing) if the TTT plot is concave (or convex). The hrf is U-shaped

(bathtub) if the TTT plot is firstly convex and then concave, if not, the hrf is unimodal. The TTT

plot in Figure 5 indicates that the empirical hrf of the tongue cancer dataset is ‘monotonically

increasing’. Hence the proposed lifetime model Inv-A(α) might be a good fit for the cancer data

theoretically.
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Table 2: Analytical results of the Inv-A(α) distribution and the other competing models for the tongue

cancer data

Model Estimates (SE) −2 logL AIC CAIC BIC HQIC

Inv-A(α) 0.2333 (0.1187) 80.9634 82.9634 83.0434 84.9146 83.7114

IE (θ) 0.1766 (0.0245) 146.0563 148.0563 148.1363 150.0075 148.8044

IXg (θ) 0.3741 (0.0351) 216.1880 218.1880 220.1393 218.2680 218.9361

IL (θ) 0.3112 (0.0310) 191.1509 193.1509 193.2309 195.1021 193.8989

IG (α, β) 0.5805 (0.0953)

0.1025 (2.3912)

133.2271 137.2271 137.4720 141.1295 138.7232

IK (α, β) 2.5056 (0.3860)

1.6592 (0.3184)

88.4087 92.4087 92.6536 96.3112 93.9048

IW (α, β) 0.4113 (0.0790)

0.6745 (0.0619)

121.5629 125.5629 125.8078 129.4654 127.0590

INH (α, β) 1.2836 (0.4463)

0.4228 (0.0580)

107.3259 111.3259 111.5708 115.2284 112.8220

EIR (α, σ) 0.1706 (0.0256)

0.0283 (0.0049)

161.3631 165.3631 165.6080 169.2656 166.8592

IPL (α, β) 0.5790 (0.0497)

0.7788 (0.1020)

122.8562 126.8562 127.1011 130.7587 128.3524

Table 3: Goodness of fit measures of the Inv-A(α) distribution and the other competing models for the

tongue cancer data

Model K-S P value CVM P value AD P value

Inv-A(α) 0.13896 0.26783 0.22006 0.23203 1.13202 0.29461

IE (θ) 0.40253 9.606×10−8 2.52648 4.603×10−7 12.57664 1.153×10−5

IXg (θ) 0.51125 3.130×10−12 4.93455 0.00000 28.18699 1.153×10−5

IL (θ) 0.48784 3.563×10−11 4.04569 0.00000 23.22221 1.153×10−5

IG (α, β) 0.27891 6.130×10−4 1.21856 6.903×10−4 6.15950 8.319×10−4

IK (α, β) 0.20757 2.265×10−2 0.41892 6.405×10−2 2.08487 8.278×10−2

IW (α, β) 0.21708 1.488×10−2 0.81699 6.410×10−3 4.48490 5.123×10−3

INH (α, β) 0.19485 3.857×10−2 0.63488 1.800×10−2 3.51034 1.531×10−2

EIR (α, σ) 0.34511 8.350×10−6 2.08864 5.598×10−6 9.97822 1.867×10−5

IPL (α, β) 0.21509 1.627×10−2 0.81766 6.386×10−3 4.5175 4.941×10−3

7. Conclusion

In medical science and reliability engineering, development of a distribution with an increasing

hazard rate function constitutes a considerable practical interest. In this article, we have presented

an Inv-A(α) distribution with some properties such as quantile function, median, reliability function,

hazard rate function, order statistics, ageing intensity function etc. The flexibility of this distribution

primarily depends on the reliability behaviour as the distribution has an increasing hazard rate

function. This feature of such distribution enhances the applicability to the real world. For instance,

it describes the real scenarios which are more likely to fail with age, either of a human being or a

machine whose parts wear out.

The model parameter is estimated through the ML estimation, maximum product of spacings

estimation, ordinary and weighted least square estimation, CVM and AD estimation respectively.
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Figure 5: TTT plot for the Tongue cancer data

The Monte Carlo simulation study has been performed to investigate the performance of the

obtained estimators and it is noticed that all the estimators are asymptotically unbiased and

consistent. Among all the traditional estimation methods, Anderson-Darling method outperforms

the others. Furthermore, we consider tongue cancer data to exhibit the applicability of the Inv-A(α)

distribution in the field of bio-medical science. To examine the superiority of the proposed model,

we compared it with some competitive models and found that our model has the best fittings

amongst them based on the goodness of fit measures. Therefore, we hope that our new proposed

model from the family of inverse probability distribution might be taken as a viable choice to

analyze several medical science data.

References

[1] Alshenawy, R. (2020). A new one parameter distribution: properties and estimation with

applications to complete and type II censored data. Journal of Taibah University for Science,

Taylor & Francis, 14(1):11–18.

[2] Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of

distributions with application to the exponential and Weibull families. Biometrika, Oxford

University Press, 84(3):641–652.

[3] William, T. S. and Ian,R. C. B. (2009). The alchemy of probability distributions: beyond

Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation

map. arXiv preprint arXiv:0901.0434.

[4] Kumar, D., Singh, U. and Singh, S. K. (2015). A method of proposing new distribution and

its application to Bladder cancer patients data. J. Stat. Appl. Pro. Lett, 2(3):235–245.

[5] Mahdavi, A. and Kundu, D. (2017). A new method for generating distributions with an

application to exponential distribution. Communications in Statistics-Theory and Methods,

Taylor & Francis, 46(13):6543–6557.

[6] Keller, A. Z., Kamath, A. R. R and Perera, U. D. (1982). Reliability analysis of CNC machine

tools. Reliability engineering, Elsevier, 3(6):449–473.

[7] Calabria, R. and Pulcini, G. On the maximum likelihood and least-squares estimation in the

inverse Weibull distribution. Statistica Applicata, 2(1):53–66.

[8] Sharma, V. K., Singh, S. K. and Singh, U. and Agiwal, V. (2015). The inverse Lindley

distribution: a stress-strength reliability model with application to head and neck cancer data.

Journal of Industrial and Production Engineering, Taylor & Francis, 32(3): 162–173.

S. Bhunia, P. Banerjee
Inverse A(α) Distribution

RT&A, No 1 (67)
 Volume 17, March 2022

264



[9] Yadav, A. S., Maiti, S. S. and Saha, M. (2021). The inverse xgamma distribution: statistical

properties and different methods of estimation. Annals of Data Science, Springer, 8(2):

275–293.

[10] Barco, K. V. P., Mazucheli, J. and Janeiro, V. (2017). The inverse power Lindley

distribution. Communications in Statistics-Simulation and Computation, Taylor & Francis,

46(8): 6308–6323.

[11] Abid, S. H. and Al-Hassany, S. A. (2016). On the inverted gamma distribution. International

Journal of Systems Science and Applied Mathematics, 1(3): 16–22.

[12] Abd AL-Fattah, A. M., El-Helbawy, A. A. and Al-Dayian, G. R. (2017). Inverted Kumaraswamy

Distribution: Properties and Estimation. Pakistan Journal of Statistics, 33(1).

[13] Sakthivel, K. M. and Dhivakar, K. (2021). Transmuted Sine-Dagum Distribution and its

Properties. Reliability: Theory & Applications, 16,4 (65):150–166.

[14] Ronald, E. G. (1980). Bathtub and Related Failure Rate Characterizations. Journal of the

American Statistical Association, 75(371):667–672.

[15] Jiang, R., Ji, P., and Xiao, X. (2003). Aging property of unimodal failure rate models.

Reliability Engineering & System Safety, Elsevier, 79(1): 113–116.

[16] Nanda, A. K., and Bhattacharjee, S., and Alam, S. S. (2007). Properties of aging intensity

function. Statistics & probability letters, Elsevier, 77(4): 365–373.

[17] Bhattacharjee, S., Nanda, A. K. and Misra, S. Kr. (2013). Reliability analysis using ageing

intensity function. Statistics & Probability Letters, Elsevier, 83(5): 1364–1371.

[18] Shanthikumar, J. G. (1994). Stochastic orders and their applications. Academic Press.

[19] Casella, G., and Berger, R. L. (2021). Statistical inference. Cengage Learning.

[20] R. C. H. Cheng. and N. A. K., Amin. (1983). Maximum product of spacings estimation

with applications to the lognormal distribution. Journal of the Royal Statistical Society: Series

B, 45(3): 394–403.

[21] Bo, Ranneby. (1984). The Maximum Spacing Method. An Estimation Method Related to the

Maximum Likelihood Method. Scandinavian Journal of Statistics, 11(2):93–112.

[22] F. P. A. Coolen. and M. J. Newby. (1991). The Maximum Spacing Method. An Estimation

Method Related to the Maximum Likelihood Method. Kwantitatieve Methoden, 37:19–32.

[23] Kaushik. G., and S. Rao., J. (2001). A general estimation method using spacings. Journal of

Statistical Planning and Inference, 93:71–82.

[24] T. S. T. Wong and W. K. Li. (2006). A Note on the Estimation of Extreme Value

Distributions Using Maximum Product of Spacings. IMS Lecture Notes-Monograph Series,

52:272–283.

[25] Singh., U., Singh., S. K. and Rajwant., K. S. (2014). The Maximum Spacing Method.

An Estimation Method Related to the Maximum Likelihood Method. Journal of Statistics

Applications and Probability, 3(2):179–188.

[26] Mazucheli, J., Ghitany, ME. and Louzada, F. (2017). Comparisons of ten estimation methods

for the parameters of Marshall–Olkin extended exponential distribution. Communications in

Statistics-Simulation and Computation, Taylor & Francis, 46(7):5627–5645.

[27] James J. S., Venkatraman, S. and James, R. W. (1988). Least-squares estimation of

distribution functions in johnson’s translation system. Journal of Statistical Computation and

Simulation, 29(4):271–297.

[28] D’Agostino, R. B. (1986). Goodness-of-fit-techniques. CRC press, 68.

[29] Luceño, Alberto. (2006). Fitting the generalized Pareto distribution to data using maximum

goodness-of-fit estimators. Computational Statistics & Data Analysis, Elsevier, 51(2): 904–917.
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Abstract 

This paper uses the concept of inherent simplicity stemming from the Theory of Constraints to explain 

whether safety at work is a complex or an exceedingly simple matter. In this context, the study seeks 

to explore the causalities that govern safety at work, identifying its constructs and presenting logic 

propositions based on the theory-building blocks: classification, correlation, and causal consistency. 

To support the research, a dataset composed of 46 work-related accident investigation reports from 

an elevator industry in Latin America was carefully analyzed using association rules. Moreover, 

direct observations grounded on inductive reasoning were used to speculate plausive causes 

concerning the effect of work-related accidents. The research strategy followed common strategies of 

theory building to reach common sense: theory-to-practice and practice-to-theory. As a result, a 

conceptual proposition is postulated based on the reasoning that safety at work is governed by very 

few constructs, and that its complexity is explained through the two elements from inherent 

simplicity: degrees of freedom (interdependencies between constructs) and harmony (conflicts 

resolution within the work environment). From the practitioners’ perspective, the study also offers 

directions towards safety improvements at the organizational level by considering the impact of the 

interdependencies between constructs in safety at work. 

Keywords: Inherent simplicity. Safety at work. Theory of constraints. Theory 

building. Causation 

I. Introduction

The field of safety science is advancing very slowly, despite an increasing volume of research 

activity and publication [1]. On one side, a massive body of knowledge is available in literature 

in a form of cases, frameworks, mathematical models, and systematic literature reviews. On the 

other side, practitioners are struggling to improve safety practices within organizations without 

considering theories and published shreds of evidence. While this disharmony between theory 

and practice in safety science is verified, society remains to deal with social and economic impacts 

arising from ineffective safety management.  
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According to ILO [2], more than 2.8 million deaths per year result from occupational accidents 

or work-related diseases. When considering non-fatal work-related injuries, this number 

increases to approximately 376.8 million a year. Moreover, the burden resulting from such 

ineffective safety management accounts for economic losses estimated at 3.94% of the global 

Gross Domestic Product [3–5].  

This pragmatic reality shall draw the attention of researchers and practitioners due to its impact 

on society. This is because a healthy and safe work environment not only is desirable from the 

workers’ perspective but also contributes considerably to labor productivity and promotes 

economic growth [6]. Furthermore, safety at work promotes worker motivation, increases 

productivity by reducing costs related to work-related health problems, and relieves pressure on 

public and private health systems.  

Based on such a challenging scenario, a step back seems to be necessary. Rather than propose 

solutions to address just a piece of this issue, it is necessary to make sure that safety at work is 

well understood in academia and within organizations.  

In this context, this paper aims at identifying the constructs and presenting propositions to 

explain the causalities that govern safety at work. In addition, this study explores how the 

definition of complexity should be understood in the field of safety science, and what is the 

prevailing definition. This is fundamental to draw attention to the main factors that affect safety, 

and how their interdependencies might increase or decrease the complexity of the system.  

In that reasoning, the theoretical discussion of this study is structured on building blocks 

proposed by Whetten [9], and consistent with the three stages of science proposed by Goldratt 

[10]: classification, correlation, and causation consistency. As a major theoretical outcome of this 

research, the causalities that govern safety at work and its complexity are explained through the 

two elements of inherent simplicity: degrees of freedom (interdependencies between constructs) 

and harmony (determined by the belief that every internal conflict can be removed by eliminating 

improper assumptions).  

From a managerial’s perspective, this study is useful for practitioners to put efforts on critical 

constructs that impact the overall safety management system to make it simpler and harmonious, 

instead of acting to reach local optima.  

Finally, this study also has a side contribution in extending the applications of Theory of 

Constraints (TOC) to the field of safety. Since literature is particularly lacking in investigative 

studies on the theoretical and practical implications of TOC principles [11], this research 

contributes to closing this gap since no previous study is found connecting inherent simplicity 

and safety science.  

This article is organized as follows: Section II outlines a comprehensive review of the concept of 

inherent simplicity. The work method is described in Section III. In Section IV the results are 

presented and a narrative of theoretical discussion is conducted. Finally, the main conclusions 

and limitations of the study are summarized in Section V. 
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II. Inherent simplicity

The concept of inherent simplicity is a principle from the Theory of Constraints [10] in which is 

postulated that any part of reality is governed by very few elements and that any conflict can be 

eliminated  [12]. In its earliest stage, TOC focused on production system optimization before 

being recognized as an operations management theory to foster the process of ongoing 

improvement. Further on, TOC became a global management philosophy applied to various 

areas such as production, supply chain, project, and other fields [11]. In the theoretical field, TOC 

also satisfies the virtues of a good theory, such as uniqueness, parsimony, and generalizability 

[13].  

Goldratt [10] outlined that TOC is grounded in its practicability, and unlike in common sense, 

“theory in science must be practical, otherwise, it is not theory but just an empty scholastic 

speculation” (p.32). This is consistent with the assumption that the purpose of good theory 

shouldn’t be other than describe and explain how things actually work, and in so doing to help 

us improve our actions in this world [14]. The concept of inherent simplicity can also be 

understood as a practical way of viewing reality. However, reality usually looks complex to us, 

and Goldratt took for granted the foundation of modern science from Newton: “Natura valde 

simplex est et sibi consona” (nature is exceedingly simple and harmonious with itself). It does mean 

that if we deep dive enough into observing phenomena, we’ll find that there are very few 

elements at the base that govern the whole system. Reality is, therefore, built in wonderful 

simplicity [12]. The interpretation of Goldratt from Newton’s quote is also consistent with the 

principle of bounded rationality (Simon, 1957, pp. 198-199): “the capacity of the human mind for 

formulating and solving complex problems is very small compared with the size of the problems 

whose solution is required for objectively rational behavior in the real world”. In other terms, the 

key to simplification of the choice process is rather the goal of “maximizing”, the goal of 

“satisfying”, i.e. finding a course of action is good enough”. This association of concepts was 

postulate by Eden and Ronen [8] and in-deep described by Naor et al. [13] for further readings.  

The prevailing definition of complexity is that the more entities the system has, the more complex 

the system is. Thus, by following this approach to compare the complexity of the systems ‘A’ and 

‘B’ represented in Figure 1, the system ‘B’ is more complex than ‘A’ because the quantity of 

entities that comprise the system ‘B’ is higher than ‘A’. However, since we are more interested in 

understanding, predicting, and controlling the system instead of just describing it, this study 

follows Goldratt’s approach to define complexity by the following: the more degrees of freedom 

the system has, the more complex it is [12].  

The concept of degrees of freedom might be clear for physicists or engineers but it is not under 

overall comprehension. In short, Goldratt explains that it means the minimum number of points 

(or entities) you have to touch in order to impact the whole system. For example, in the case of 

system ‘B’, by impacting the bottom circle, the whole system is impacted, i.e. it has only one 

degree of freedom. On the other hand, system ‘A’ has five degrees of freedom, which is harder 

to control and predict due to its magnitude. This becomes clear by observing the absence of 

arrows in the system, which means that there are no interdependencies between the entities. 

Figure 1 illustrates the reasoning of complexity based on inherent simplicity. 
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Figure 1 – The reasoning of complexity [12] 

Safety at work also might look complex to researchers and practitioners. One possible reason for 

that is the lack of comprehension about what plausive constructs govern this phenomenon, and 

how these constructs are interconnected to define the degrees of freedom that govern the system. 

Seeking the same logic applied to safety science, if the constructs that govern safety at work are 

identified, and the propositions between them are clear, it is possible to decipher the level of 

complexity of this matter.  

III. Research Design

This study is based on 18 months of direct observations and primary data analysis concerning 

investigation reports of work-related accidents occurred in an elevator industry. The industry's 

activities are spread out over 12 countries across Latin America, covering one industrial facility 

in Brazil and more than 75 service operating units across the region. During this period, the first 

researcher had close contact with a reality-based source of data, in which scope it is included both 

manufacturing and service areas in the twelve countries where the organization has an 

operational presence.  

The work method used both common strategies of theory building: theory-to-practice and 

practice-to-theory [7, 14] as shown in  

Figure 2.  

Figure 2 – General method of theory building in applied disciplines. Source: Adapted from Lynham (2002)  [14] 
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Initially, the researchers observed an effect: the occurrence of work-related accidents as an issue 

with significant social and economic impacts worldwide. Then, following the stages proposed by 

Goldratt [10], the focus moved to speculate plausive causes to explain this phenomenon. To do 

that, a research question was therefore defined, and awareness about the research problem was 

sought based on specialized literature.  

The next step accounted for the use of a theory-to-practice approach to assume that very few 

constructs govern safety at work. In that reasoning, the principle of inherent simplicity derived 

from TOC was reviewed and the theory was framed in the field of safety. As a second stream, 

the research moved on to the practice-to-theory approach through reality-based data collection 

to analyze and come up with theoretical and practical contributions to safety science, exploring 

how and why the constructs that govern safety at work are interconnected and seeking to 

uncover underlying issues to explain its complexity. A detailed step-by-step of the work method 

is depicted in Figure 3. 

Figure 3 – Core research subject 
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The first researcher examined in depth the existing body of documents in the occupational health 

and safety management system (OHSMS), the structural functioning of the case unit, and how 

health and safety (H&S) fits into the organization's strategic planning. Also, several job site visits 

were conducted to observe how the work is done, the resources available, level of technical 

knowledge, procedures, routine instructions, task planning, and personal protective equipment 

(PPE) usage.  

Data retrieved from the OHSMS was studied through a business intelligence (B.I.) dashboard 

covering the period between oct-19 to mar-21. Forty-six root-causes investigation reports listed 

in Table 1 were collected and analyzed with the support of three specialists. The specialists are 

H&S managers in charge of the three main operations within the organization: the factory located 

in Brazil, field operations in Brazil, and field operations in other Latin American countries. In 

addition, an organizational psychologist supported the discussion when behavioral aspects were 

reported as contributive causes to the accidents.  

Table 1  – Root-causes investigation reports 

Country Working 

hours 

Root-causes investigation reports derived from lost-time accidents 

Factory Services 

Argentina 403,000 - 1 

Brazil 14,000,000 1 28 

Chile 1,387,000 - 4 

Colombia 1,256,000 - 2 

Costa Rica 91,000 - 1 

Mexico 978,000 - 3 

Panama 2,918,000 - 2 

Paraguay 372,000 - 1 

Peru 1,049,000 - 1 

Uruguay 163,000 - 2 

Each root-cause investigation report followed a structured template based on 9 categories and 41 

data fields (see appendix A 1). The outcome of this analysis was to identify and classify the most 

frequent factors that impacted work-related accidents.  

Moreover, a data mining through the algorithm Apriori was powered to identify association rules 

between factors, i.e., what antecedent factors (named lhs) impact the other consequent ones 

(named rhs), and how strong is this correlation. It consists of a data mining algorithm that 

systematically controls the exponential growth of candidate itemsets [16]. The parameters 

support (supp=0.5), and confidence (conf=0.8) were set up as thresholds based on adopted criteria 

from previous studies [17, 18].  

The parameter support determines how often a rule applies to a given dataset. Besides, it aims to 

identify the most relevant rules [20] in the dataset. Confidence, in turn, determines how 

frequently consequent factors [rhs] appear in relationships that contain antecedents [lhs]. It is 

used to measure the strength of an association rule, expressed as the times a specific itemset is 

found together with a specific item out of the total times this specific itemset is found in the entire 

dataset [18]. In other words, the greater confidence of rule {X} ⇒ {Y}, the greater the probability 

of {Y} being present in events that contain {X} [21]. 
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An additional measure used in that research is the ‘lift’. The lift of an association rule is 

responsible for measuring the difference between the number of times {X} and {Y} co-occur and 

the expected frequency of such co-occurrence if they were statistically independent [22]. In that 

reasoning, high levels of lift mean that the consequent factor is scarcer within the population and 

more frequent within the specific itemset. 

For this step, a script loaded in software RStudio was used for data processing (see appendix А2). 

Additional explanations about the use of association rules can be found in the work of Zhang 

and Zhang [16] and other mentioned literature. Furthermore, examples of how to explore cause-

effect relationships using association rules in the H&S field can be found in the studies of Cheng 

et al. [23], Mirabadi and Sharifian [24], and Verma et al. [25].  

Through this technique, 194 associated rules were retrieved to support the correlation stage. The 

structure of rules is presented in Table 2 and can be interpreted as follows: based on a dataset 

with N events, the rule [n1], for example, associates the antecedent factor A to the consequent 

factor C. The support of this rule can vary between 0 – 1. A minimum support threshold is used 

to select the most frequent (and hopefully important) factors’ combinations. Confidence, 

similarly, is understood as an estimate of the conditional probability of factors co-occur in a rule 

(0 – 1). Finally, the lift value of 1 indicates that the factors are co-occurring in the database as 

expected under independence. Values greater than 1 indicate that the items are associated, and 

lower than 1 indicate an absence of association [22]. 

Table 2  – Structure of association rules 

Rule lhs rhs support confidence lift count 

[n1] {antecedent A} => {consequent C} 0 - 1 0 - 1 0 - ∞ 1 – N 

[n2] {antecedent A, antecedent B} => {consequent D} 0 - 1 0 - 1 0 - ∞ 1 – N 

Besides the investigation reports, other general documents were carefully analyzed, e.g the 

strategic planning 2020-2025, OHSMS manual, and H&S policies. From these documents, it was 

possible to situate expected management commitment as well as H&S in the strategic context of 

the organization, in order to check against reality through direct observations. 

Direct observations were conducted in the course of the same period of the primary data 

collection. It followed as possible, a semi-structured approach as follows: (1) to verify the work 

being performed, such as the use of tools and personal protective equipment, printed 

instructions, work environment, etc; (2) to conduct an informal conversation to understand the 

task routine, capabilities required to the task, and capacity to foreseeing risks; (3) to verify the 

leadership commitment from the worker’s perspectives, and possible behavioral impacts from 

externalities, such as COVID-19, personal issues. Yet, the informal approach was given to avoid 

the feeling of pressure when formal questions for interviews could bring up. 

Moreover, additional factors were observed at the job sites beyond the technical field. The 

education level and behavioral aspects, such as lack of concentration and lack of awareness were 

considered as well. Also, the observations were not limited to job sites. Management meetings 

and reactions from the occurrence of accidents were also observed. Preliminary speculations 

from the direct observations were registered in notes and schematic diagrams to reach common-

sense logic. Furthermore, confirmation questions were frequently used at the end of any informal 

approach: “if I understood well this effect was caused by this fact. Am I right?”.  
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The relevance of the direct observations is based on the fact that it is rarely found whether in 

literature or in reality-based practices, pieces of evidence related to explain the safe work, i.e. a 

deep analysis of what went good, and the factors that led to a work environment in which safety 

culture is intrinsic. As an outcome of the use of both association rules and direct observations, a 

framework is proposed to explain the causalities that govern safety at work since it allows the 

researcher to observe, in practice, the effect-cause-effect stage. 

Based on the framework elaborated, the first researcher was encouraged to use verbalized 

intuition with other researchers and practitioners [10] to practice simplicity, parsimony, and to 

reach common sense.  

In that reasoning, principles of causal consistency derived from the Theory of Constraints 

Thinking Processes were also used to explain each proposition presented in the framework: 

causality existence, causality clarity, the sufficiency of cause, and additional cause [26]. As a 

result, a conceptualization of complexity in safety at work is postulated. 

In the next session, results are discussed throughout a combined approach of the three main 

stages that every science has gone through [9, 10].  The classification stage was associated with 

the ‘what’, correlation with the ‘how’, and effect-cause-effect with the ‘why’. Finally, the 

researchers sought to define limitations in time and context for the propositions. These contextual 

factors are critical to set the boundaries of generalizability in which the propositions are 

postulated. 

IV. Results and Discussion

I. Classification (building block ‘what’)

This stage sought to explore what constructs logically impact safety at work. In this context, the 

criteria of comprehensiveness and parsimony supported the researchers to determine whether a 

factor should be considered as a variable to explore the causalities of safety at work. In short, it 

was sought for relevance and value-added of each variable to explain phenomena [9]. One 

primary instance of identifying these constructs was based on an inductive approach and 

intuition. Initially, it was considered plausive factors that influence phenomena (safety at work). 

For instance, technical expertise is a plausive factor to impact positively safety. However, even 

in case of considering this example a common sense, it does not explain what is its level of 

importance, how this factor is connected to others, and what is its effect on the whole system.  

In addition, the analysis and classification of primary data and the findings obtained through 

direct observations supported the researchers in that stage. Numerous factors came up with this 

process, including training, task planning, years of experience, education level, availability of 

proper tools, personal protective equipment usage, adequate instruction. However, at this point 

in time, no correlation was checked, and each factor was considered an independent one. In that 

reasoning, consistent with the concept of inherent simplicity, the system primarily seemed to be 

very complex (see Figure 4) 
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Figure 4 – Factors that impact safety at work 

The next step was to practice simplicity and parsimony, considering that theory should have a 

minimum of complexity and few assumptions. Each variable was considered as a potential factor 

to impact safety at work. Next, every variable was associated with a construct as a theoretical 

element wherein the variable is encompassed. A minimum number of constructs was sought in 

order to reach simplicity and decrease complexity.  

In that reasoning, after the data analysis, an interactive process of verbalizing the factors grouped 

in constructs with other researchers, H&S experts, and workers was conducted to reach common 

sense. In this context, variables were grouped into constructs to reach a higher level of 

abstraction, keeping the properties of comprehensiveness. For instance, variables such as 

technical training, safety training, hazard analysis were grouped into the construct ‘knowledge’. 

This is because ‘knowledge’ encompasses several factors associated with the necessity of 

knowing, for example, ‘what to do’, ‘how to do’, ‘what are the risks involved, ‘how to mitigate 

the risks’.  

As an outcome of this stage, a set of constructs were defined as satisfactory based on the logic of 

‘good enough’ [8] to explore phenomena of interest (see Figure 5). This is because these four 

theoretical elements (knowledge, planning, behavior, and performance measure) sufficiently 

encompass in a form of constructs all variables identified in the classification stage. 

In the next sub-session, the propositions between how these constructs are connected are 

outlined. 

Figure 5 – Constructs associated with safety at work 
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II. Correlation (building block ‘how’)

Once the minimum necessary constructs to explore phenomena of interest are identified, the next 

stage aimed to define how they are connected (co-related). Although this stage is based on careful 

observations and often involves a quantitative approach, the question ‘why’ is not asked at all. 

Rather the question ‘how’ is the center of interest [10]. Based on that reasoning, the propositions 

were structured with the use of 194 association rules, as shown in Table 3. 

Table 3  – Association rules 

Rule Lhs rhs support confidence lift count 

[34] {Inappropriate JHA} => {Lost time Accident} 0.6415 1 1.1522 34 

[70] {Trained to the task} => {Diminishing Risks} 0.6038 0.8889 1.1778 32 

[76] {Trained to the task} => {Lost time Accident} 0.6792 1 1.1522 36 

[79] {Diminishing Risks} => {Daily routine} 0.6415 0.8500 1.1551 34 

[100] {Diminishing Risks} => {Lost time Accident} 0.7547 1 1.1522 40 

[145] {Trained to the task,Working in regular time} => {Unappropriate JHA} 0.5283 0.8000 1.2471 28 

[155] {On-time, Trained to task} => {Diminishing Risks} 0.5283 0.9333 1.2367 28 

Also, the researchers sought to take benefit from the direct observation of works being performed 

safely. This is because the set of investigation reports analyzed is about ‘how things went wrong’ 

(unsafe work). However, seeking for broadening the research perspective, the researchers also 

focused to verify ‘how things go safe’ (work safely), to confirm some association rules and 

intuition. According to Whetten [9], although the researcher may be unable to test all the links 

(propositions between constructs), restrictions in methods do not invalidate the inherent causal 

nature of theory. In this reasoning, and consistent with the understanding that most of what 

passes for theory in organizational studies consists of approximations [27], the connections and 

the propositions between constructs are introduced in the framework depicted in Figure 6.  

The framework is comprised of fours constructs, and it should be read as the following narrative: 

knowledge is the starting point. It is represented by work elements such as ‘what to do’, how to 

do’, ‘what are the risks’ and ‘how to eliminate/neutralize/mitigate the risks’. Knowledge is a 

construct presented in every type of work. This is consistent with the investigation reports 

analyzed and coherent with the direct observations conducted throughout the research. In both 

situations of work safely or work unsafely, knowledge (or the lack of knowledge) is present as a 

plausive construct that partially governs and explains phenomena of interest. In the case of safety 

at work, it also represents a baseline since common sense is that knowledge is critical for working 

safely. 
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Figure 6 – Propositions that govern safety at work 

However, knowledge is necessary but far away as sufficient to explain phenomena safety at 

work. This is consistent with the association rules, e.g. rules [70, 76, 155]. According to those rules, 

even workers trained to perform their tasks can get involved in lost-time accidents. This 

association is highly represented in rule [76], in which 36 out of 46 investigation reports analyzed, 

the worker was trained to the task in question (confidence =1; lift = 1.1522). Moreover, our 

observations confirmed that trained workers might diminish risks due to possible reasons, such 

as their work experience or due to the fact they never had a work-related accident before. Thus, 

other plausive constructs are necessary to explain what governs safety at work. 

Knowledge is connected to construct planning. This reasoning is explained by conceptualizing 

planning as the way the work is expected to be done, in which sequence of tasks, timing, and 

with what resources. Following this logic, it sounds clear that ‘to plan’ depends on ‘to know’. By 

defining a good sequence of tasks, a standard operational procedure, or an estimation for a set of 

tasks to be completed, it is fundamental to know what is this activity about, how the activities 

are performed, and what resources are available. Planning also represents the way of performing 

a task. Well-defined tasks are the ones where the resources, timing, and logical sequence of each 

activity are established to raise productivity without taking out safety is a core aspect.  

The question to be responded at this point in time is whether knowledge and planning are 

sufficient to defining the minimum constructs that govern safety at work. If so, an expert 

performing a well-planned task would be ever working safely. Our intuition indicates not, and 

also the association rules, e.g. rules [34, 59, 145] in which confidence and lift present a high level. 

Firstly (rule [34]), the lack of operational discipline in doing job hazard analysis (JHA) is 

associated with trained works. It means that even experts do not follow the planning. Second 

(rule [59]), resources such as personal protective equipment do not guarantee safety at work. 

Investigation reports indicated that very often accidents occur with employees equipped with 

PPEs. This suggests such a level of personal confidence that nothing wrong can happen, and risks 

are ignored. Finally (rule [145]), diminishing risk is highly associated with lost time accidents, 

and therefore, the behavioral aspect is another plausive construct to be considered.  

In this context, behavior is a comprehensive construct. It is present in the literature in numerous 

studies about accident prevention, such as in the studies of Han et al. [28] and Li et al. [29]. Also, 

motivation and work behavior are present in a robust body of knowledge in social sciences [30]. 

Consistent with the existing literature, results of the association rules put light on the effects of 
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behavior in the work environment, verified in the consequent factor ‘diminishing risks’, and 

based on its high association with lost-time accidents (rule [100]). This comprehensiveness is 

expressed in the proposed framework through the fact that behavior is the most interconnected 

construct in the system. All other constructs are connected to it, and it is the only one directly 

connected to the work. 

In that reasoning, both knowledge and planning are connected to construct behavior by one of 

the two directional flows presented in the framework. Both constructs impact the way a person 

behaves at work. This was verified through direct observations carefully conducted besides the 

association rules. For instance, consider a worker performing maintenance services. If he/she 

lacks the required knowledge about what to do and how to perform a repair, or if the worker 

does not know the risks associated with the task, a potential risk for an incident to occur is 

increased as the worker tries to perform the task. Also, if the timing defined for the service is 

inadequate, or if necessary resources are not available, the worker’s behavior is impacted 

negatively, leading towards the opposite direction of safety at work. 

Behavior is, therefore, a key construct in the proposed framework. In the context of this research, 

it is represented by four elements: awareness, autonomy, power of choice, and operational 

discipline. Each of these elements plays an important role in safety at work. Awareness is the 

state of being conscious of something. More specifically, it is the ability to directly know and 

perceive, or to be aware of events. Autonomy, in turn, is a condition of self-government, and that 

needs to be outlined by managers. It is an important element to neutralize risks arising from 

externalities. Next is the power of choice, which means the attitude of using awareness and 

autonomy to every decision at work. Finally, operational discipline means doing the right thing, 

the right way, every time. It encompasses the other constructs towards promoting safety at work. 

From another direction, behavior is also impacted by another construct, represented by the way 

workers are measured. The performance measurement did not come up with the analysis of 

investigation reports. Rather, it emerged through the inductive approach and it is consistent with 

the theory of constraints. Goldratt [10] pointed out that the way an organization defines its work 

assessment and KPIs impact how workers behave at all levels. For instance, even in the case of 

an expert performing a well-planned task, if the KPIs are not consistent with the timing required 

for the task and with the resources available, the behavior is impacted. This is deeply explained 

by social cognitive theory (SCT), which explains behavior in organizations in terms of the 

reciprocal causation among the person, the environment, and the behavior itself [30]. Because of 

these combined influences, under SCT organizational participants would at the same time be 

products and producers of their motivation, their respective environments, and their behaviors. 

In that reasoning, SCT and TOC justify the connection between performance measurement and 

work behavior.  

Finally, performance measurement is also connected with planning. This is because performance 

assessment is intrinsically related to a comparison between what is realized versus what was 

planned. Moreover, KPIs and targets are typically defined based on strategic planning and 

organization capabilities (resources). For instance, the expected sales growth rate of a Retail store 

is defined in management reviews. The organization may expect more sales if more sellers are 

working for them, or, in the case of use of technologies to increase sales, e.g. web platforms. Both 

examples are resources, and resources are associated with planning. 
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The four constructs are interconnected in the boundaries of the work environment, as previously 

depicted in Figure 6. It represents a system to explain what are the constructs that govern safety 

at work, and how they are connected.  

The work environment is characterized by both external (e.g. market regulations) and internal 

(organizational culture) existing factors in any work environment that might impact positively 

or negatively any construct. It plays a critical role for safety at work since it acts directly in 

promoting (dis)harmony between the connections, and therefore, affects the level of complexity 

as further explained in sub-session IV.  

Internal consistency and parsimony were sought to sustain every proposition’s argument.  Each 

construct in the system has a certain number of in-out connections. In this context, behavior 

represents the central construct because it is connected with all constructs and it is directly 

connected with phenomena safety at work. It follows the reasoning of considering ‘to behave’ an 

expression of ‘acting’, such as ‘working’. Therefore, work behavior is positively or negatively 

impacted by knowledge, planning, and performance measurement, and all framed into the work 

environment.   

The next session seeks for exploring the causation consistency. 

III. Effect-cause-effect (building block ‘why’)

The previous sections were extremely helpful. ‘What’ and ‘How’ provide a framework for 

interpreting patterns in empirical observations [9]. However, only ‘why’ explains phenomena. 

Existing literature in the field of safety science often lacks explaining causation, being limited to 

verified correlations. The inherent limitation of any correlation, e.g. findings from association 

rules, is the lack of understanding of the cause-and-effect relationships between the propositions 

[10]. After identifying the constructs and exploring the reasoning of how they are connected, the 

next stage accounted for asking the question why?. In other words, the researchers are focused 

on what might be causing the existence of each proposition to explain safety at work as the effect 

of interest. 

This stage is aimed no longer just to observe what already exists to explain phenomena, but also 

to use logical derivations based on existing causes to uncover underlying issues and predict the 

outcome of entirely new situations. Moreover, this stage accounts for fulfilling the minimum 

requirements of the conceptualization phase of theory building [7]. 

At this theory-development stage, logic replaces data as the basis for evaluation [9].  This is 

consistent with the use of common sense proposed by Goldratt [10] to go through the effect-case-

effect stage. Goldratt outlines that it represents the third stage of science, and the most important 

one because only at this stage there is a widely accepted recognition that the subject is actually a 

theory-building.   

Therefore, the starting point of this stage is to become aware of an effect. The ‘effect’ of interest 

in this research is ‘safety at work’, and in the context of this study, safety at work means the action 

of working safely. “One effect is enough”, said Dr. Goldratt, and the effect comes together with 

a challenging question: Is ‘safety at work’ a complex or exceedingly simple matter?  
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Once the effect and a challenging question are defined, more information is not much needed. 

Rather, to think and to speculate of plausive causes grounded in common sense are the next step 

[7, 10, 12]. To do that, principles of causation consistency derived from the theory of constraints 

thinking processes are applied for each proposition: causality existence, causality clarity, the 

sufficiency of cause, and additional cause [26]. In that reasoning, the causal consistencies are 

presented in 5 through a narrative for each connection, and thus, the framework is translated into 

confirmable propositions or knowledge claims to an explicit connection between the 

conceptualization phase and practice [31].  

Table 4  – Causation consistency 

Connection Causal consistency 

Knowledge → 

Planning 

Knowledge is presented in every type of work. In the context of safety at 

work, it is a baseline. Knowledge impacts planning because ‘to plan’ any 

activity requires knowledge about the nature of the work to be performed. 

Causal existence is evidenced by examples to sustain that this connection is 

always the case. For instance, to plan the construction of a house, a common 

sense is that a body of knowledge is necessary, e.g. what raw materials are 

required, the method of how to do it, the sequence of tasks, the risks 

involved in the work, and what other resources are needed. This reasoning 

is applied to construction but also any other type of work. Planning might 

be also be impacted by the work environment, in which the proposed 

framework is represented by the boundary via dashed line (see Figure 6). 

This is because both external (e.g. macroeconomy, market regulations) and 

internal factors (organizational culture) existing in any work environment 

might positively or negatively any construct.  

Knowledge and 

Planning → 

Behavior 

Knowledge and planning are necessary but not sufficient to explain safety 

at work. Even experts performing well-planned tasks might work unsafely. 

A common sense to explain why knowledge and planning are not enough 

is to consider the behavior at work. If a worker behaves diminishing risks 

or if presents a lack of awareness, the knowledge and planning will not be 

sufficient at all.  Therefore, by common sense, behavior is another necessary 

construct to explain the phenomena of interest. However, it is still needed 

to explain the causal existence of this proposition. It is assumed the way a 

worker behaves performing a task is impacted by his/her knowledge and 

how well the task was planned. This logic is explained also by examining 

accidents associated with knowledge in two ways: (1) the worker with the 

proper knowledge to perform a task and the one with a lack of knowledge 

to do so. In the first case, the proper knowledge can lead the worker to 

behave and work safely, but also an excess of confidence can lead to failures 

in following safety procedures. In the second case, the lack of necessary 

knowledge can lead the worker to unconsciously put himself/herself at risk. 

The same reasoning is applied to planning. If the sequence of tasks is 

carefully designed, proper resources are available, and timing is adequate 

for the task (a general harmony), the worker with autonomy and power of 

choice is predicted to work safely. This explanation put light on the causal 

existence and clarity of this proposition. However, sufficiency is not 

reached yet. There is speculation that people within the organizations are 
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Connection Causal consistency 

responsive to the way they are measured. By considering it as a plausive, 

relevant, and necessary construct to explain the complexity of safety at 

work, performance measurement (as a construct) was added to the 

framework.     

Planning → 

Performance 

Measurement 

Performance measurement is connected by planning. This connection is 

intrinsically observed in management reviews and strategic planning. The 

definition of key performance indicators (KPIs) considers the 

organization’s planning because it takes into account capabilities, 

resources, timing, and the work environment influences. For instance, 

typical planning for the construction of vertical buildings in Brazil varies 

between 36 and 48 months. This general planning cascades several other 

sub-plannings to define all that is needed to accomplish each phase of the 

project. KPIs for each phase and each task are also defined. Therefore, 

clarity and the existence of causation between planning and performance 

are verified. Another way to reach common sense that performance 

measurement is impacted by planning is by exploring the main KPIs of an 

industry. Productivity, for instance, is a performance measure that 

considers the ratio outputs/inputs. To increase productivity, practitioners 

evaluate how the activity is planned to be performed, including resources 

usage, quality of processes, and lead times. Following that reasoning, a KPI 

defined without taking into account planning sounds like no sense.      

Performance 

Measurement → 

Behavior 

Within organizations “people behave under influence of how they are 

measured”. This quote retrieved from principles of the theory of constraints 

[10] is consistent with the existing literature about social cognitive theory

(SCT) which explains behavior in organizations in terms of the reciprocal

causation among the person, the environment, and the behavior itself [30].

It is important to highlight that behavior is the most interconnected

construct in the proposed framework. Based on both theories it is assumed

that the way a worker behaves at work is impacted by how the performance

is measured, and also by his knowledge and how well is the planning of

the task to be performed. Clarity of this proposition can be reached by

examining productivity. For instance, consider a production line used to

produce 22 elevators per day (just quantity). This level of productivity is

consistent with the resources available (machinery, personnel, and tooling),

and all workers are focused only on pushing forward the production line

to reach the target. However, based on some organizational changes and

observing that the production was also full of wastes, managers decide to

consider efficiency instead of production volume as the performance

measurement. Then, workers start to carefully look after the inputs to avoid

any waste to maximize efficiency. This example comes up with pieces of

evidence of why performance measurement impacts behavior. In this logic,

The behavior characterized by a higher level of attention to avoid wastes

was influenced by the changes in the performance measure.

Behavior → 

Safety at work 

Finally, behavior is directed connected to safety at work, because in the 

context of this research it means the phenomena of working safely (co-

existence). In more practical words, the action of working safely. Behavior 

is, therefore, a key construct in the proposed framework due to its high 

interconnection with other constructs. Moreover, besides being impacted 
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Connection Causal consistency 

by knowledge, planning, and performance measurement, it represents the 

utmost connection to the phenomena, expressed through a few elements 

such as worker’s awareness, autonomy, power of choice, and operational 

discipline. The existence of causation between behavior and safety at work 

is well-known in literature and also between practitioners. This is 

consistent with the concepts of behavior-based safety (BBS), as well as 

voluntary safety programs within organizations to raise safety awareness 

as a tentative to prevent accidents. Each of the mentioned elements of 

behavior at work plays a critical role in safety at work. In the instance of 

safety at work, they encompass the action of doing the right thing, the right 

way, every time.    

IV. The complexity of safety at work

A major outcome from the stages of classification, correlation, and causation consistency, is to 

underlying the issues that govern safety at work, and therefore, its complexity. Through the 

comprehension about what minimum constructs are sufficient to explain safety at work, how 

they are connected and why, this research’s seed is postulated: 

Proposition: The complexity of safety work is a function of the degrees of freedom and harmony between 

constructs that govern the work environment within an organization. 

Every organization has an unique system as depicted in Figure 6, represented by the individual 

and collective knowledge, the work planning, and the performance measurement system. The 

way these constructs are connected impacts the behavior of workers, and therefore defines the 

complexity of safety at work.  

Although each connection between constructs has generalizability, which means that it can be 

verified in every organization, it does not mean it is harmonious. The concept of inherent 

simplicity is grounded in two main beliefs: simplicity and harmony: Simplicity is expressed by 

the fact that there are very few elements that govern the whole system. Harmony, in turn, is 

expressed by considering that any conflict can be eliminated [12].   

The framework and propositions depicted in Figure 6 follow the same reasoning that Figure 1(B). 

It demonstrates that a system to represent safety at work might be exceedingly simple. This is 

possible since the system is comprised of four interconnected constructs that represent only one 

degree of freedom. However, this is necessary but not sufficient. The harmony between 

constructs is also a key factor.  

Organizations usually face serious problems to properly address well-defined internal processes, 

and local optima is preferable instead of thinking as a whole. Moreover, problems arise from 

conflicts and disharmonies. As a result, organizations increase the number of system’s degrees 

of freedom, fail in eliminating conflicts, and tend to address safety as a very complex matter.  

This explains the challenges often faced by larger organizations. For instance, the disconnection 

between the planning department and the operations (who perform the work) or changes in the 

performance measurement system without taking into account the resources needed, causes 

disharmony and adds degrees of freedom to the system. Following the inherent simplicity 

concept, more points have to be touched by management in that case. 
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Therefore, we postulate that the complexity of safety at work is based on inherent simplicity, 

governed by very few constructs (knowledge, planning, performance measurement, and 

behavior), and simply explained as a function of the system’s degrees of freedom and harmony 

between of constructs that govern the work environment within an organization. 

IV. The complexity of safety at work

A major outcome from the stages of classification, correlation, and causation consistency, is to 

underlying the issues that govern safety at work, and therefore, its complexity. Through the 

comprehension about what minimum constructs are sufficient to explain safety at work, how 

they are connected and why, this research’s seed is postulated: 

Proposition: The complexity of safety work is a function of the degrees of freedom and harmony between 

constructs that govern the work environment within an organization. 

Every organization has an unique system as depicted in Figure 6, represented by the individual 

and collective knowledge, the work planning, and the performance measurement system. The 

way these constructs are connected impacts the behavior of workers, and therefore defines the 

complexity of safety at work.  

Although each connection between constructs has generalizability, which means that it can be 

verified in every organization, it does not mean it is harmonious. The concept of inherent 

simplicity is grounded in two main beliefs: simplicity and harmony: Simplicity is expressed by 

the fact that there are very few elements that govern the whole system. Harmony, in turn, is 

expressed by considering that any conflict can be eliminated [12].   

The framework and propositions depicted in Figure 6 follow the same reasoning that Figure 1(B). 

It demonstrates that a system to represent safety at work might be exceedingly simple. This is 

possible since the system is comprised of four interconnected constructs that represent only one 

degree of freedom. However, this is necessary but not sufficient. The harmony between 

constructs is also a key factor.  

Organizations usually face serious problems to properly address well-defined internal processes, 

and local optima is preferable instead of thinking as a whole. Moreover, problems arise from 

conflicts and disharmonies. As a result, organizations increase the number of system’s degrees 

of freedom, fail in eliminating conflicts, and tend to address safety as a very complex matter.  

This explains the challenges often faced by larger organizations. For instance, the disconnection 

between the planning department and the operations (who perform the work) or changes in the 

performance measurement system without taking into account the resources needed, causes 

disharmony and adds degrees of freedom to the system. Following the inherent simplicity 

concept, more points have to be touched by management in that case. 

Therefore, we postulate that the complexity of safety at work is based on inherent simplicity, 

governed by very few constructs (knowledge, planning, performance measurement, and 

behavior), and simply explained as a function of the system’s degrees of freedom and harmony 

between of constructs that govern the work environment within an organization. 
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V. Conclusion

This study was framed into the conceptualization phase of theory building to identify and to 

present propositions between constructs to explain the causalities that govern safety at work. By 

following a general method of theory building in applied sciences, and consistent with the 

principle of inherent simplicity from TOC, our findings indicate the existence of four constructs 

that govern safety at work: knowledge, planning, behavior, and performance measurement. 

Moreover, each construct and its interconnections comprised a set of propositions expressed 

through a conceptual framework that explains the underlying issues in safety at work and put 

behavior as a key element. Furthermore, as a result of our analysis based on the stages in which 

every science has gone through (classification, correlation, and causal consistency), the 

phenomenon of safety at work was represented as a system in which the level of complexity 

depends on the interdependencies between constructs and harmony. 

A major theoretical outcome from this research is a conceptualization narrative that defines the 

complexity of safety at work as a consequence of degrees of freedom (interdependencies between 

constructs) and harmony (absence of conflicts between constructs). We postulate that as much 

interdependent and harmonious is the system the less complex is safety at work. In that 

reasoning, both circumstances affect safety at work and determine whether safety at work is a 

complex or exceedingly simple matter.  

Although foster future research is highly encouraged to cover other phases of this theoretical 

model, this study presents generalizability regarding temporal and contextual factors discussed. 

Finally, from the practitioner’s perspective, our findings contribute to the improvement of safety 

practices at the organizational level by redefining their structures, connections and focusing on 

behavior-based safety under a broader perspective. 
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Appendix 

A 1 – Structure of the investigation report 

Category Data field (required information) 

Time-horizon 

(n=3) 

Fiscal year 

Month 

Sequence 

Location 

(n=5) 

Business Unit 

Operation Unit 

Country 

Branch 

Geographic region 

Individual 

(n=6) 

Age 

Scholar level 

Technical background 

Job function 

Years of experience 

Years working for the company 

Accident data 

(n=9) 

Type of accident, e.g. Elevator. 

Equipment 

Lost days 

Level of severity 

Body’s part affected 

Nature of illness/injury 

Weekday 

Shift 

Location where the accident occurred 

Process planning 

(n=7) 

Task condition, e.g. routine, non-routine 

Job site (OTD status), e.g. on-time, delayed 

Worked hours in the circumstances of the event 

PPE: Was appropriate PPE being used? (Y/N) 

Tools: Were there appropriate tools available? (Y/N) 

JHA: Was it performed (Y/N) 

JHA: Was it performed according to the task? (Y/N) 

Previous 

accidents/santions/audits 

(n=3) 

Previous accident reported? (Y/N) 

Previous sanctions in the last 12 months? (Y/N) 

Audited in the last 12 months? (Y/N) 

Training 

(n=3) 

Hours of training(last 12 months) 

10 rules training up to date? (Y/N) 

Has been trained for the task being performed (Y/N) 

Behavior Behavioral assessment in the last 12 months? (Y/N) 

Behavioral change observed recently? 

Psychological test performed during onboarding? 

Violated rules Technical rule violated?, e.g. PPE usage, fall protection etc 

Behavioral trap associated with the accidente?, e.g. Diminishing risks, 

lack of concentration etc.  
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A 2 – Script R for association rules 

R Studio v. 4.0.5 

# Require packages 

if(!require(readxl)) install.packages("readxl")      

if(!require(arules)) install.packages("arules")      

if(!require(arulesViz)) install.packages("arulesViz") 

if(!require(tidyr)) install.packages("tidyr")    

# Load packages 

library(readxl)      

library(arules)      

library(arulesViz) 

library(tidyr)      

# Load dataset 

data <- read_excel("Lost-time accidents Report.xlsx", sheet='DATA') 

View(data) 

# Adjust dataset 

data_aj <- dados [, c(-2,-3,-4,-5,-6,-7,-8,-9)] 

View(data_aj) 

# Convert dataset into file .csv 

write.csv(dados_aj,"AR.csv", quote=FALSE, row.names=FALSE) 

# Convert dataset into transaction format 

tr <- read.transactions('AR.csv', format = 'basket', sep=',') 

tr 

summary(tr) 

# Create association rules 

rules = apriori(tr, parameter=list(suppor = 0.5, conf = 0.8, minlen = 1, maxlen = 3)) 

rules 

inspect(head(rules)) 

# Remove redundant rules      

rules = rules[!is.redundant(rules)] 

rules 

inspect(rules) 

result = inspect(rules) 

# Print association rules      

write.csv2(result, "Association rules.csv") 
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Abstract

A new distribution for modeling the two approaches (physical and actuarial) of reliability problems is
introduced. The statistical properties including the moments, mode, quantile function are derived. Some
reliability measures including the mean residual life and hazard rate are derived. An alternative measure
for total time of test (TTT) for evaluation of the interfailure times is drived.The unknown parameters of
the new distribution are estimated using the maximum likelihood approach. Furthermore, the asymptotic
consistency of the estimated parameters is evaluated through a simulation study. Two real-life datasets
were used to illustrate the applicability of the new distribution and comparison with already existing
distributions.

Keywords: Lomax distribution, Reliability, Moment, Total time of test, Maximum likelihood

1. Introduction

There have been growing needs to provide solutions associated with reliability problems found
in life testing, structural reliability, machine maintenance using probability distribution [1].
Many classical distributions including Weibull, Log-normal, Birnbaum-Saunders, Inverse normal,
gamma, exponential, geometric, Poisson have been applied in reliability studies where interest is
on nonrepairable system [2]. However, [1] noted that it may be difficult to differentiate among
these distributions while fitting failure datasets but stated that the failure rate function provides
distinguishing features for these distributions. [3] furthermore, pointed out that distributions with
bathtub shape failure rate function describing the decreasing, normal or constant, and increasing
failure rate of component would have wide applicability in reliability studies. Most of the classical
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distributions do not exhibit bathtub-shape hazard rate function [4]. However, a distribution
to analyze business failure which is referred to as Lomax distribution was introduced by [5].
The application of Lomax distribution has been found in many other areas including income,
size cities, reliability modeling [6], see [7] for more details. The Lomax distribution has been
extended by introducing one or more additional parameter such as Marshall-Olkin Lomax due
to [8], gamma Lomax by [9], exponential Lomax by [10], logistic-Lomax by [11] and McDonald
Lomax distribution by [7]. The major aim of this paper is to introduce a new and more flexible
extended Lomax distribution that will provide better fit and for modeling reliability datasets
amongst other datasets from different areas of study. The reversed-J-shape, constant, and J-shape
among many other shapes are the characterizations of the failure rate function shape of the new
distribution. These shapes of failure rate function are suitable for modeling increasing failure
rate (IFR), no-ware out and decreasing failure rate (DFR) datasets. Some statistical properties of
this distribution are discussed and comparison with other existing distribution having Lomax
distribution as baseline was made. The rest of the paper is organized as follows. The new
distribution is derived in section two. In Section 3, the statistical properties of the distribution
are derived and presented while the reliability measures are derived in Section 4. The Entropy
and parameter estimation of the distribution are respectively considered in Sections 5 and 6. The
asymptotic consistence of the maximum likelihood estimates is considered in Section 7 while the
applications to real-life data sets are done in Section 8. The concluding remark is presented in
Section 9.

2. The new distribution

A class of distribution having distribution function as defined by equation(1) was introduced
by[12].

G(x) = e−Bp
1
σ
[

F(x;ξ)
1−F(x;ξ)

]− 1
σ

; (1)

where B = e
µ
σ . Define F(x; ξ) = 1−

(
1 + x

λ

)−α in eq(1), where ξ = (α, λ) is the parameter
vector, the cumulative density function (cdf) of the new distribution referred to as Gumbel
Marshall-Olkin-Lomax (GMO-Lomax) is given by

G(x) = e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

. (2)

The density function corresponding to equation (2) is obtained as

g(x) =
Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
. (3)

Furthermore, equation(3) can also be obtained using Theorem 1.

Theorem 1. Let X and Y be two random variables, if Y follows Gumbel distribution, then,

X = λ

[(
1 + peY) 1

α − 1
]

follows GMO-Lomax distribution.

Proof. Given that the random variable Y follows Gumbel distribution, its pdf is given as

h(y) =
B
σ

e−
y
σ e−Be−

y
σ . (4)

For X = λ

[(
1 + peY) 1

α − 1
]

, the partial derivative w.r.t. x is obtained as
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∂y
∂x

=
α

λ
(
1 + x

λ

) [
1−

(
1− x

λ

)−α
] .

The density function of X is defined as g(x) = h(y)
∣∣∣ ∂y

∂x

∣∣∣. Substituting the value of Y in h(y)

and
∣∣∣ ∂y

∂x

∣∣∣ and simplifying yields

g(x) =
Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
.

�
Some possible shapes of GMO-Lomax pdf, including monotone decreasing, monotone increas-

ing, right-skewed, among other shapes are shown in Figure 1.

3. Statistical properties

Some of the GMO-Lomax statistical properties such as Quantile function, moments, moment
generating function, mode are derived and presented in this section.

3.1. Quantile function

The quantile function is very important in probability distribution, θth, percentile and random
number generation for a distribution can be obtained using the quantile function. Using the
probability integral transform [13], the quantitle function of GMO-Lomax is obtained as

QX(u) = λ

({
1 + Bσ p

[
log
(

u−1
)]−σ

} 1
α

− 1

)
. (5)

Using Theorem 2, the quantile function of GMO-Lomax can also be obtained.

Theorem 2. Given that a random variable, Y, follows Gumbel distribution, then the quantile

function of GMO-Lomax is defined by QX(u) = F−1
{

1 + p−1e−G−1(u)
}−1

; where G−1(.) denotes

the quantile function of Gumbel distribution and F−1(.) denotes the quantile function of Lomax
distribution.

Proof. Equation(1) can also be re-written as

G(y) =
∫ y

−∞

B
σ

e−
t
σ eBe−

t
σ dt, (6)

where y = log
[

F(x)
p[1−F(x)]

]
.

By probability integral transform, the quantile function of a random variable, X, having a
well-defined cdf, F(x), is given by x = F−1(u), where u = F(x). Then, the quantile function of
Gumbel distribution is given by

y = G−1(u) = log
{[

B−1log
(

u−1
)]−σ

}
. (7)

Furthermore, the quantile function of Lomax distribution is given by

x = F−1(u) = λ
[
(1− u)−

1
α − 1

]
. (8)
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Figure 1: Some possible shapes of GMO-Lomax pdf: a) monotone decreasing b) unimodal c) monotone increasing d)
right-skewed.

From equation(6)

x = F−1
[
1 + p−1e−y

]−1

= F−1
[
1 + p−1e−G−1(u)

]−1

= F−1

({
1 + pBσ

[
log
(

u−1
)]−σ

}−1
)

. (9)

Substituting the value of u =
{

1 + pBσ
[
log
(
u−1)]−σ

}−1
in equation(9) and simplifying

yields
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QX(u) = λ

({
1 + Bσ p

[
log
(

u−1
)]−σ

} 1
α

− 1

)
.

�

3.2. Moments

Corollary 1. The nth non-central moment of GMO-Lomax random variable, X denoted by E(Xn)
is obtained as E(Xn) = λn ∑∞

j=0 ψjΓ (1− jσ)

Proof.

E (Xn) =
∫ ∞

0

{
λ
[
(1 + pey)

1
α − 1

]}n B
σ

e−
y
σ e−Be−

y
σ dy

=
Bλn

σ

∫ ∞

0
(1 + pey)

n
α

[
1− (1 + pey)−

1
α

]n
e−

y
σ e−Be−

y
σ dy

=
Bλn

σ

∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pj
∫ ∞

0
ejye−

y
σ e−Be−

y
σ dy

=
Bλn

σ

∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pj
∫ ∞

0
e−

y
σ (1−jσ)e−Be−

y
σ dy (10)

Letting x = Be−
y
σ implies that dy = − σ

x dx and equation(10) becomes

E (Xn) = Bλn
∞

∑
i,j=0

(−1)i
(

n
i

)( n−i
α
j

)
pjBjσ−1

∫ ∞

0
x−jσe−xdx

= λn
∞

∑
j=0

ψjΓ (1− jσ) ,

where

ψj = ∑∞
i=j (−1)i

(
n
i

)( n−i
α
j

)
pjBjσ. �

3.3. Moment generating function

The moment generating function (mgf) of a random variable with well-defined density function,
f (x), is defined byMX(t) = E(etX). For a random variable with pdf defined as in equation(3)
then, the mgf is given by

MX(t) =
∫ ∞

0
etx Bp

1
σ α
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1

=
Bp

1
σ α

λσ

∞

∑
i,j=0

(−1)i+j

i!

( i
σ + 1

σ + j
j

)(
Bp

1
σ

)i ∫ ∞

0
etx
(

1 +
x
λ

)−α( i
σ +

1
σ +j)−1

dx

MX(t) =
∞

∑
j=0

ϕjΓ
(
−α (jσ + i + 1)

σ
, tλ
)

,

where

ϕj =
Bp

1
σ α

σ ∑∞
j=i ∑∞

i,j=0
(−1)i+j

i!

( i
σ + 1

σ + j
j

)(
Bp

1
σ

)i
(−1λ)

α(jσ+i+1)
σ .
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3.4. Mode

The mode of a distribution plays an important role in life distribution. It defines the most likely
failure time of an object when failure is of consideration. The mode of GMO-Lomax is obtained
as the value of x that satisfies ∂log(g(x))

∂x = 0 given in equation (11)

α− 1
λ
(
1 + x

λ

) + Bαp
1
σ

σλ

(
1 +

x
λ

)α−1 [(
1 +

x
λ

)α
− 1
]−( 1

σ +1)
−

(
1
σ + 1

)
α
(
1 + x

λ

)α−1

λ
[(

1 + x
λ

)α − 1
] = 0 (11)

4. Reliability measures

4.1. Hazard rate function

Generally, the hazard rate function is defined as the conditional probability of failure, given that
a component has survived up to time x. [4] note that the hazard rate function is an important
quantity which characterizes life phenomena. Denoting the hazard rate function as R(x), the
hazard rate function is defined as g(x)

S(x) , where S(x) represents the survival function. Suppose
a random variable X follows GMO-Lomax distribution, the hazard rate function associated to
GMO-Lomax is given by

R(x) =
Bp

1
σ
(
1 + x

λ

)α−1

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
[

eBp 1
σ

[
(1+ x

λ )
α−1

]− 1
σ

− 1

] .

Figure 2 shows some possible shapes of the GMO-Lomax hazard rate function which include
decreasing hazard rate function which captures the high failure rate at the initial phase (infant
mortality), the constant hazard rate function representing the period of stability of the component,
and the increasing hazard rate function capturing the increase in failure rate as the component
begins to wear-out.

4.2. Mean residual life function

Given that a random variable, X, denotes the lifetime of a component. The mean residual life
function denoted by m(t) defines the expected value of the remaining lifetime of a component
after a fixed point t . Suppose the random variable, X, follows GMO-Lomax distribution, then

m(t) = E (X− t|X > t)

=
1

1− G(t)

∫ ∞

t
1− G(u)du, (12)

where G(.) is as defined in equation(2), substituting in equation(12) and simplifying yields

m(t) =
∞

∑
k=0

ψk

(
1 +

t
λ

)−α
(

j
σ +k

) ∞

∑
j=0

ψj
[λσ + tα (1 + i + jσ)]

(
1 + t

λ

)−α( 1
σ +

1
σ +j)

(1 + i + jσ) [α (1 + i + jσ)− σ]
− t

 ,

where

ψk =
∞

∑
i,k=j

(−1)j

j!

(
iBp

1
σ

)j
(

j
σ + k− 1

k

)
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(a) 
(b) 

(c) 

(d) 

Figure 2: Some possible shapes of GMO-Lomax failuare rate function: a) right-skewed b) monotone decreasing c)
constant d) monotone increasing.

and

ψj = Bp
1
σ

∞

∑
j=i

(−1)i

i!

(
Bp

1
σ

)i
(

j
σ + k− 1

k

)
.
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5. Reliability

Suppose the random variables, X and Y, represent, respectively, the strength and stress of a
component. The measure of performance of the component (that is the component reliability)
having strength, X when subjected to random stress, Y, denoted by R is defined as R = P(Y < X).
Let X and Y, respectively, follow GMO-Lomax with some different parameters, then, R, is defined
by

R =
∫ ∞

0
g(x; B1, p1, σ, α, λ)P(Y < X)dx

=
∫ ∞

0
g(x; B1, p1, σ, α, λ)G(x; B2, p2, σ, α, λ)dx

=
∫ ∞

0

B1 p
1
σ
1 α

λσ
[(

1 + x
λ

)α − 1
] 1

σ +1
e
−
(

B1 p
1
σ
1 +B2 p

1
σ
2

)[
(1+ x

λ )
α−1

]− 1
σ

dx

=
∞

∑
j=0

CjB1 p
1
σ
1 ,

where B1 = e
µ1
σ , B2 = e

µ2
σ and Cj = ∑∞

j=i
(−1)i

i!

( i
σ + 1

σ + j
j

) (
B1 p

1
σ
1 +B2 p

1
σ
2

)i

(1+i+jσ) .

5.1. Lorenz curve

The Lorenz curve was established by[14] to graphical represent the distribution of wealth in a
population. However, [15] established relationship between the Lorenz curve and the total time
on test (TTT). The TTT graphically detects the possible change in the pattern of failures [16].
Hence, if a random variable, X, follows GMO-Lomax such that it denotes the failure times of a
component or an individual, then the Lorenz curve is defined as

L(ϕ) =
1
µ

∫ z

0
x f (x)dx (13)

Substituting equation (3) in equation (14), we have

L(ϕ) =
Bp

1
σ α

µλσ

∫ z

0

x
(
1 + x

λ

)α−1 e−Bp
1
σ
[
(1+ x

λ )
α−1

]− 1
σ

[(
1 + x

λ

)α − 1
] 1

σ +1
dx

=
Bp

1
σ α

µλσ

∞

∑
i=0

(−1)i

i!

(
Bp

1
σ

)i ∫ z

0
x
(

1 +
x
λ

)α−1 [(
1 +

x
λ

)α
− 1
]−( 1

σ +
1
σ +1)

dx

=
Bp

1
σ α

µλσ

∞

∑
i,j=0

(−1)i+j

i!

(
Bp

1
σ

)i
( i

σ + 1
σ + 1
j

) ∫ z

0
x
(

1 +
x
λ

)−α( i
σ +

1
σ +j)−1

dx

=
1
µ

∞

∑
j=0

(−1)jΨj,
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where µ is the first non-central moment and

Ψj =
∞

∑
i=j

(−1)i
( i

σ + 1
σ + 1
j

)(
Bp

1
σ

)i+1 (
1 + z

λ

)−α( i
σ +

1
σ +j)

i!(1 + i + jσ)[α(1 + i + jσ)− σ]
×[

λσ

{(
1 +

z
λ

)α( i
σ +

1
σ +j)
− 1

}
− zα(1 + i + jσ)

]

6. Order statistics

Suppose X1 < X2 < · · · < Xn are ordered random sample of size n from GMO-Lomax population.
The density function of the hth order statistics ( h = 1, 2, · · · , n), say, gh:n(x), is obtained as

gh:n(x) =
g(x)

B(h, n− h + 1)

n−h

∑
j=0

(−1)j
(

n− h
j

)
G(x)h+j−1 (14)

Substituting equations (2) and (3) in equation(14) and simplifying yields

gh:n(x) =
g(x)

B(h, n− h + 1)

n−h

∑
j=0

(−1)j
(

n− h
j

) ∞

∑
m=0

ϕm,

where ϕm = Bp
1
σ α

λσ ∑∞
k=m

(−1)k

k!

[
Bp

1
σ (h + j)

]k (
1 + x

λ

)−α( k
σ +

1
σ +m)−1 .

7. Entropy

Suppose a random variable, X, follows GMO-Lomax, the uncertainty associated with a value of
X is measured using entropy. The Rényi entropy introduced by [17] generalizes the Shannon
entropy and it is defined by

IR(γ) =
1

1− γ
log
[∫
∀

gγ(x)dx
]

, (15)

where g(x) is the pdf of GMO-Lomax, then

IR(γ) =
1

1− γ
log


(

Bp
1
σ α

λσ

)γ ∫ ∞

0

(
1 + x

λ

)γ(α−1) e−γBp
[
(1+ x

λ )
α−1

]− 1
σ

[(
1 + x

λ

)α
]γ( 1

σ +1)


=

1
1− γ

log
(

Bp
1
σ α
)
+ log (λσ) +

1
1− γ

log

(
∞

∑
j=0

ϕj

)
,

where ϕj = ∑∞
j=i

(−1)i

i!

(
γBp

1
σ

)i
( i

σ + γ
σ + γ + j− 1

j

)
.

8. Parameter estimation

Let X1, X2, ..., Xn be a radom sample of size n from GMO-Lomax population. The unknown
parameters of GMO-Lomax are estimated using the maximum likelihood method. The log-
likelihood function is obtained as
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`(Θ) =
nµ

σ
+

n
σ

log(p) + nlog(α) + (α− 1)
n

∑
i=1

log
(

1 +
xi
λ

)
− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

= −nlog(λ)− nlog(σ)−
(

1
σ
+ 1
) n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]

. (16)

The corresponding score functions of equation(16) are given below

∂`(Θ)

∂σ
=

nµ

σ2 −
n
σ2 log(p) +

e
µ
σ p

1
σ

σ2

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ
[µ + log(p)]− n

σ

− 1
σ2 e

µ
σ p

1
σ

n

∑
i=1

log
[(

1 +
xi
λ

)α
− 1
] [(

1 +
xi
λ

)α
− 1
]− 1

σ
+

1
σ2

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]

.

∂`(Θ)

∂µ
=

1
σ

[
n− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

]
.

∂`(Θ)

∂p
=

n
σp

[
n− e

µ
σ p

1
σ

n

∑
i=1

[(
1 +

xi
λ

)α
− 1
]− 1

σ

]
.

∂`(Θ)

∂λ
=

(1− α)

λ2

n

∑
i=1

xi(
1 + xi

λ

) + α

σλ2 e
µ
σ p

1
σ

n

∑
i=1

xi

(
1 +

xi
λ

)α−1 [(
1 +

xi
λ

)α
− 1
]−( 1

σ +1)

−
(

1
σ
+ 1
)

α

λ2

n

∑
i=1

xi

(
1 +

xi
λ

)α−1
.

∂`(Θ)

∂α
=

n
α
+

n

∑
i=1

log
(

1 +
xi
λ

)
−
(

1
σ
+ 1
) n

∑
i=1

log
(

1 +
xi
λ

) (
1 +

xi
λ

)α

+
e

µ
σ p

1
σ

σ
log(α)

n

∑
i=1

[(
1 +

xi
λ

)α]−( 1
σ +1)

log
(

1 +
xi
λ

) (
1 +

xi
λ

)α
.

The maximum likelihood estimators for the nknown parameters of GMO-Lomax are obtained
by equating the score functions to zero respectively and solving simultaneously for the parameters.
However, the score functions are non-linear to x and there are no closed form solutions for the
estimators. The estimates for the parameters can be obtained using iterative numeric optimization
methods.

9. Simulation

The maximum likelihood estimates of GMO-Lomax parameters were examined for asymptotic
consistence using simulation study. Random samples of sizes 50, 75, 125 and 200 were generated
using equation(5) with initial parameter values Ω = ( p = 2.3, µ=2, σ=1.8, α=0.5, λ=1.2). For
each sample size and N = 1000, the parameter estimates Ω̂i = (p̂i, µ̂i, σ̂i, α̂i, λ̂i) were evaluated
for i = 1, 2, · · · , N. The Mean value Ω̂, Bias, Mean Square Error (MSE) were all computed. The
values in Table 1 indicate that as the sample size increases, the MSE decreases and the Mean
value converges to the initial parameter values as required under first asymptotic theorem.
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Table 1: Summary of the simulation study.

Initial Sample size (n) Mean value Bias MSE
paramater
value

50 2.2598 -0.0402 0.0022
1.9324 -0.0676 0.0085
1.8466 0.0466 0.0033
0.5232 0.0232 0.0007
3.5942 2.3943 5.7900

p=2.3 75 2.3081 0.0081 0.0006
µ = 2 1.9758 -0.0242 0.0038
σ = 1.8 1.8537 0.0537 0.0037
α = 0.5 0.5239 0.0239 0.0007
λ = 1.2 3.3466 2.1466 4.6753

125 2.3016 0.0016 0.0003
1.9344 -0.0655 0.0065
1.7939 -0.0061 0.0006
0.5028 0.0028 0.0001
2.9596 1.7596 3.1669

200 2.2918 -0.0082 0.0003
1.8786 -0.1214 0.0161
1.7641 -0.0359 0.0018
0.4903 -0.0097 0.0001
2.7963 1.5962 2.6032

10. Applications

In this section, we illustrate the applicability of the GMO-Lomax using two real-life datasets.
Comparison with other existing distributions including McDonald Lomax (McLomax) Beta-Lomax,
Lomax of Lomax, Marshall-Olkin Lomax(MOL), Logistic Lomax(logisticL), and exponentiated
Lomax( Exp Lomax)) are done using goodness-of-fit statistics including Cramer-von Misses (W),
Anderson Darling (A), Kolmogorov Smirnov (K-S) test, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC). Generally, the smaller the values of these statistics, the
better the distribution fits the data set. The total test on time (TTT) to illustrate the empirical
failure rate behavior of the two data sets was done.

First data set used which was reported by [18] is on the Kevlar 49/epoxy strands failure
when the pressure is at 90% stress level while the second data set reported by [19] is on the
lifetimes of 50 industrial device put on life test at time zero. The estimated cramer-von Misses
(W*), and Anderson Darling (A*) together with the computed K-S, AIC, BIC, and negative
log-likelihood of the two datasets are shown in Tables 3 and 5. The parameter estimates of the
competing distributions with the standard errors in parentheses for the first and second data set
are respectively shown in Table 2 and 4. Tables 3 and 5 show that the goodness-of-fit statistics
values associated with GMO-Lomax are the least among the competing distribution, implying
that GMO-Lomax distribution provided adequate fit for the two data sets respectively. The plots
of the estimated pdfs with the histograms of the datasets and cdfs with the empirical cdf of the
two data sets are shown in Figures 3 and 4. Figure 3 showed a close fit of the dataset’s histogram,
however, the goodness-of-fit statistics values in Table 3 indicate the numerical difference of how
well the various competing distriutions actually fit the dataset. Figure 4 clearly show that the
GMO-Lomax provided a better fit on the histogram of the second dataset among other competing
distributions. Furthermore, the empirical TTT of the failure rates for the two datasets are shown
in Figure 5. The Figure 5 shows that the datasets constitute constant and monotone-increasing
failure rate.
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Table 2: Results of parameter estimates for the first dataset(standard errors).

Distribution
GMO-Lomax(p,µ, σ, α, λ) 5.0148 0.5808 3.5797 33.6301 6.5039

(371.7516) (74.1372) (0.6937) (27.8848) (6.5015)
McLomax(a,b,α, λ, c) 0.8243 6.0317 1.6613 4.1831 3.1728

(0.1279) (17.3009) (4.5598) (7.2706) (2.8795)
Beta-Lomax(a,b,α, λ) 0.8897 4.2914 7.6109 36.09837

(0.1177) (108.5245) (189.4789) (94.9773)
Lomax(α, λ) 15.4125 14.7618

(20.9761) (21.3217)
MOL(p,α, λ) 1.3640 8.9718 6.9621

(0.8281) (10.9643) (11.1955)
LogisticsL(β, α, λ) 1.2869 38.9985 24.4089

(0.1089) (31.6599) (20.3205)
Exp-Lomax(θ, α, λ) 0.8846 31.0501 33.3998

(0.1201) (71.2834) (80.0430)

Table 3: Results of the goodness-of-fit-statistics for the first dataset.

Distribution W∗ A∗ K-S AIC BIC −`
GMO-Lomax 0.0985 0.5926 0.0653 208.9945 209.6261 99.4973
McLomax 0.1440 0.8452 0.0967 213.9501 227.0257 101.9751
Beta-Lomax 0.1934 1.0843 0.0925 213.6633 224.1238 102.8817
Lomax 0.2107 1.1665 0.0864 210.4693 215.6995 103.2346
MOL 1.515 8.2009 0.6336 212.2111 220.0565 103.1056
LogisticsL 0.5828 3.1709 0.1065 233.0110 240.8564 113.5055
Exp-Lomax 0.1914 1.0749 0.0926 211.6259 219.4713 102.8129
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Figure 3: Estimated plots for the first dataset: a) competing pdfs b) empirical cdf with competing cdf.
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Table 4: Results of parameter estimates for the second dataset (standard errors).

Distribution
GMO-Lomax(p,µ, σ, α, λ) 7.3403 1.8975 5.5264 60.0204 341,1701

(83.8036) (11.5748) (1.5003) (38.3307) (211.1367)
McLomax(a,b,α, λ, c) 0.8345 63.7855 1.1889 105.2354 8.1853

(0.1398) (54.4193) (0.6347) (51.0148) (4.0484)
Beta-Lomax(a,b,α, λ) 0.5273 0.0915 37.2292 162.6509

(0.1464) (0.0277) (11.0337) (26.1937)
Lomax(α, λ) 5.1659 205.1413

(2.5299) (110.9948)
MOL(p,α, λ) 3.9229 4.3019 83.7042

(2.3716) (1.8419) (52.2756)
LogisticsL(β, α, λ) 8.7631 0.1069 0.0022

(1.1127) (0.0038) (0.0005)
Exp-Lomax(θ, α, λ) 0.8464 3.9194 176.1126

(0.1547) (1.6727) (88.7161)

Table 5: Results of the goodness-of-fit-statistics for the second dataset.

Distribution W∗ A∗ K-S AIC BIC −`
GMO-Lomax 0.3725 2.3066 0.1641 479.9236 489.4837 234.9618
McLomax 0.3898 2.4432 0.2277 481.2248 490.7849 235.6124
Beta-Lomax 0.4871 2.9544 0.2124 492.1212 499.7693 242.0606
Lomax 0.8010 4.5753 0.8014 490.7842 494.6083 243.3921
MOL 1.5131 7.7835 0.8757 491.1396 496.8757 242.5698
LogisticsL 0.8579 4.7819 0.2566 521.2151 526.9511 257.6075
Exp-Lomax 0.5455 3.2668 0.1999 492.8816 498.0960 243.1799
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Figure 4: Estimated plots for the second dataset: a) competing pdfs b) empirical cdf with competing cdf.
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(a) (b) 

Figure 5: Plots of Total time on test: a) First dataset b) second dataset.

11. Conclusion

We have introduced a new five parameter distribution for modeling reliability problems. The
statistical properties and some reliability measures of the new distribution are derived. The
unknown parameters of the distribution are estimated using the maximum likelihood approach.
Furthermore, the maximum likelihood estimates of the new distribution were examined for
asymptotic consistence and were found to conform to the first order asymptotic theorem. Two
real-life data sets were used to illustrate the applicability of the new distribution and comparison
with other existing distributions indicates that the new distribution provided better fit for the
two data sets. The constant and monotone-increasing failure shapes shown in the TTT plots
are indications of the suitability of GMO-Lomax distribution which has constant and monotone-
increasing failure rate shapes amongst other possible shapes in modelling the two datasets.
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Abstract

As we see that the present era is directly depending upon various kinds of machines. In other words,
we can say that we are fully surrounded by machines. Machines are assembled with many components
and each component has its own importance. For proper functioning of a machine, these components
should be up to date. Therefore, for smooth functioning, we have to make replacement of the component
before its failure. In this present paper, we propose a new transformation which is purely based on
inverse trigonometry with lindley distribution for the first time and so, named "Inverse Trigonometric
Lindley Distribution". It find its various properties like survival function, hazard rate function, moments,
conditional moments, order statistics, entropy measurement etc. Maximum likelihood estimator have also
considered for estimation of parameter. To know the paternal behavior of the model, different real datasets
have been considered. To understand the behavior of estimators at the long run, simulation study is being
performed in detail.

Keywords: Lindley distribution, Renyi entropy, Moments, Maximum likelihood estimator, Simu-
lation Study

1. Introduction

Survival and reliability analysis play an important role in the field of statistics. These are devising
several noteworthy real life applications in many areas of applied and medical sciences, such as
engineering, public health, actuarial science, biomedical studies, demography, industrial reliability,
etc. In this era, each activity is dealt by the machines which are gathered by the help of different
components. It is required to keep each and every component up to date, so that machines can
run or function efficiently. In addition, before failure of that component, there is the need of
replacement. But, the key matter is to estimate the appropriate time of replacement and decide
the best policy to adopt with regard to replacement. Therefore, the main objective is to study
about the behavior of the life of components individually as well as through suitable lifetime
models. In relevant literatures, there is a list of different lifetime distributions along with their
theoretical discussion to identify correct guess at which we replace the components so that system
could work without failure. There are vital role of Survival and Hazard rate function in lifetime
data analysis. Using these functions, we can identify the nature of a chosen model.
If we look back in literature, many authors used several transformations. For example, Power
transformation was used by Gupta et al. (1998), Quadratic Rank Transmutation Map (QRTM) de-
veloped by Shaw and Buckley (2005), trigonometry based transformations like SS-transformation
proposed by Kumar et al. (2015) and Chesneau et al. (2018), Mahmood, Z., and Chesneau, C.
(2019), logarthim based transformation proposed by Maurya et al.(2016), DUS-transformation
proposed by Kumar et al. (2015) and its generalization have done by Maurya et al. (2017),
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generalization through QRTM have done by Yadav et al. (2019) etc. Their numerous statistical
results have been obtained and deliberated its various shapes of hazard rate patterns in means
of increasing, decreasing, upper side down etc. If we see literature, we get there are only few
transformation that are based on inverse trigonometry.

In this paper, we propose a novel transformation based on "Inverse Trigonometric Lindley
Distribution", which is related to inverse trigonometric function and lindley distribution. We
also discuss its various characteristic and properties as well as identify its various hazard rate
patterns. For simplicity, applicability and suitability in real life scenario different datasets have
been considered. Simulation study is also being carried out to know the behavior of the estimators
at the long-run.

2. A New Transformation Using Trigonometric Function

We introduce a new transformation using trigonometric function and It is denoted by G(x):

G(x) = K ∗ tan−1 F(x) (1)

where, K is 1
tan−1(1)

.

Theorem 1. The function G(x) possesses the properties of a cdf.

Proof. Let f(x) be a pdf associated to the cdf F(x) is continuous with F(x)∈[0,1],

lim
x→+∞

F(x) = 1 lim
x→−∞

F(x) = 0

and f(x)=F’(x) almost everywhere with f(x) ≥ 0. Let us now investigate sufficent conditions for
G(x) to be a cdf.
• G(−∞) = 0 and G(+∞) = 1.

G(x) = K ∗ tan−1 F(x)

G(−∞) = K ∗ tan−1 F(−∞)

G(−∞) = 0

and
G(+∞) = K ∗ tan−1 F(x)

G(+∞) = K ∗ tan−1 F(+∞)

G(+∞) = 1

• G is non decreasing function.
Let us prove that G(x2)− G(x1) ≥ 0.

G(x1) = K ∗ tan−1 F(x1)

G(x2) = K ∗ tan−1 F(x2)

G(x2)− G(x1) = K ∗ [tan−1 F(x2)− tan−1 F(x1)]

G(x2)− G(x1) = K ∗ [tan−1 F(x2)− tan−1 F(x1)] > 0

where, F(x2) > F(x1).

The above expression G(x2)− G(x1) is positive if x2 > x1.

• G is Right Continuous.
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tan−1 F(x) are right continuous function of x, then G(x) is right continuous function of x.

Thus, we can say that our transformation is a cdf.

The pdf and hazard rate of our transformation is given by

g(x) = K ∗ f (x)
1 + (F(x))2 (2)

h(x) = K ∗ f (x)
{1− (F(x))2}

{
1− K ∗ tan−1 F(x)

} (3)

3. A New Transformation with some related new distributions

• Consider the Uniform Distribution [0,θ], we have F(x) = x
θ ; 0 ≤ x ≤ θ then,

G(x) = K ∗ tan−1
( x

θ

)
g(x) = K ∗ 1

θ
{

1 + ( x
θ )

2
}

h(x) = K ∗ 1
θ
{

1 + ( x
θ )

2
} {

1− K ∗ tan−1
( x

θ

)}
• Consider the logistic distribution with parameters µ ∈ R and s > 0, we have F(x) =
1

1+e− x−µ
s

, x ∈ R then,

G(x) = K ∗ tan−1

(
1

1 + e− x−µ
s

)

g(x) = K ∗
e− x−µ

s{
s
(

1 + e− x−µ
s

)2
}{

1 +
(

1
1+e− x−µ

s

)2
}

h(x) = K ∗
e− x−µ

s{
s
(

1 + e− x−µ
s

)2
}{

1 +
(

1
1+e− x−µ

s

)2
}{

1− K ∗ tan−1
(

1
1+e− x−µ

s

)}

• Consider the Cauchy distribution with parameters x0 ∈ R and a > 0, we have F(x) =
1
π arctan

(
x−x0

a

)
+ 1

2 , x ∈ R

G(x) = K ∗ tan−1
(

1
π

arctan
(

x− x0

a

)
+

1
2

)
g(x) = K ∗ a

π {a2 + (x− x0)2}
{

1 +
(

1
π arctan

(
x−x0

a

)
+ 1

2

)2
}

h(x) = K ∗ a

π {a2 + (x− x0)2}
{

1 +
(

1
π arctan

(
x−x0

a

)
+ 1

2

)2
}{

1− K ∗ tan−1
(

1
π arctan

(
x−x0

a

)
+ 1

2

)}
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• Consider the Normal distribution with parameters µ ∈ R and σ > 0, we have

F(x)=
∫ x
−∞−

1√
2πσ2 e−

(t−µ)2

2σ2 dt = Φ(x), x ∈ R,

G(x) = K ∗ tan−1 (Φ(x))

g(x) =
e−

(x−µ)2

2σ2

√
2πσ2 {1 + (Φ(x))2}

h(x) =
e−

(x−µ)2

2σ2

√
2πσ2 {1 + (Φ(x))2}

{
1− K ∗ tan−1 (Φ(x))

}
• Consider the Exponential Distribution with parameter θ > 0, we have F(x) = 1− e−θx; θ >
0, x > 0 then,

G(x) = K ∗ tan−1 (1− e−θx)

g(x) = K ∗ θe−θx

1 + (1− e−θx)2

h(x) = K ∗ θe−θx{
1 + (1− e−θx)2

} {
1− K ∗ tan−1 (1− e−θx)

}
• Consider the Lindley Distribution with parameter θ > 0, we have F(x) = 1−

{(
1 + θx

θ+1

)
e−θx

}
; θ >

0, x > 0 then,

G(x) = K ∗ tan−1
{

1−
((

1 +
θx

θ + 1

)
e−θx

)}
(4)

g(x) = k ∗
(

θ2

θ + 1

)
(1 + x)e−θx

1 +
{

1−
((

1 + θx
θ+1

)
e−θx

)}2 (5)

h(x) =
(

θ2

θ + 1

)
(1 + x)e−θx

1 +
{

1−
((

1 + θx
θ+1

)
e−θx

)}2 {
1− K ∗ tan−1

{
1−

((
1 + θx

θ+1

)
e−θx

)}} (6)

In order to illustrate the potential of applicability of ITlin(θ) , The shapes of the cdf and pdf are
shown in Figures 1 and 2 respectively for different value of θ.

Figure 1: Plots of Cumulative distribution function for different values of θ
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Figure 2: Plots of Probability density function for different values of θ

4. Survival Analysis

In this section we present the survival function, the hazard function and the cumulative hazard
rate function for the ITlin(θ)-distribution.

Survival Function

It is define as the probability that an individual survives larger than, t: S(t)= P(an individual
survives larger than t)
=P(T>t), where T denote the survival time.
The cdf F(t) of T, is given as S(t)=1-P(an individulas fails before t) = 1-F(t).
Hence, the Survival Function of ITlin(θ)-distribution is obtained as follows:-

S(t) = 1−
[

K ∗ tan−1
{

1−
((

1 +
θt

θ + 1

)
e−θt

)}]
(7)

The behavior of the survival rate function, for different values of θ is shown are Fig. 3.

Figure 3: Plots of Survival Rate Function for different values of θ

Hazard Rate Function

It is defined as the probability of failure during a very small time interval, assuming that the
individual has survived to the begining of the interval, or as the limit of the probability that an
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individual fails in a very short interval, t + ∆t, given that the individual has survived to time t:

h(t) = lim
∆x→0

Pr(an individual f ails an interval (t + ∆t) given the individual has survived to t)
∆t

It is defined as the terms of CDF F(t) and PDF f(t) is given as,

h(t) =
f (t)

1− F(t)

The hazard rate function, h(t) of the ITlin(θ)-distribution are given by

h(t) =
(

θ2

θ + 1

)
(1 + t)e−θt

1 +
{

1−
((

1 + θt
θ+1

)
e−θt

)}2 {
1− K ∗ tan−1

{
1−

((
1 + θt

θ+1

)
e−θt

)}} (8)

Figure 4 illustrates these shapes for selected paramter values.

Figure 4: Plots of Hazard Rate Function for different values of θ

5. Moments Properties

The expression of the moment, are defined as

E(Xr) =
∫ ∞

0
xrg(x)dx

= k ∗
(

θ2

θ + 1

) ∫ ∞

0
xr (1 + x)e−θx

1 +
{

1−
((

1 + θx
θ+1

)
e−θx

)}2 dx

= k ∗
(

θ2

θ + 1

) ∫ ∞

0
xr(1 + x)e−θx

[
1 +

{
1−

((
1 +

θx
θ + 1

)
e−θx

)}2
]−1

dx

Using expansion
[
1 + {F(x)}2

]−1
= ∑∞

k=0(−1)k {F(x)}2k in equation (21) we get,

=
∞

∑
k=0

(−1)kK ∗
(

θ2

θ + 1

) ∫ ∞

0
xr(1 + x)e−θx

{
1−

((
1 +

θx
θ + 1

)
e−θx

)}2k
dx

Using expansion of {1− F(x)}2k = ∑2k
l=0 (

2k
l )(−1)l {F(x)}l in equation (22) we get,

=
∞

∑
k=0

2k

∑
l=0

(−1)k+l
(

2k
l

)
K ∗

(
θ2

θ + 1

)
1

(θ + 1)l

∫ ∞

0
xr(1 + x)e−θx(1+l) {1 + θ + θx}l dx

D. Kumar, P. K. Chaurasia, P. Kumar, A. Chaurasia
A NOVEL TRANSFORMATION: BASED ON INVERSE 
TRIGONOMETRIC LINDLEY DISTRIBUTION

RT&A, No 1 (67) 
Volume 17, 2022

308



=
∞

∑
k=0

2k

∑
l=0

l

∑
m=0

(−1)k+l
(

2k
l

)(
l
m

)
K ∗

(
θ2

θ + 1

)
θm

(θ + 1)l

∫ ∞

0
xre−θx(1+l) {1 + x}m+1 dx

Using expansion of (1 + x)m+1 = ∑m+1
n=0 (m+1

n )xn and gamma function we get expression of rth

moments as,

E(Xr) = K ∗ θ2

θ + 1

∞

∑
k=0

2k

∑
l=0

l

∑
m=0

m+1

∑
n=0

(−1)k+l
(

2k
l

)(
l
m

)(
m + 1

n

)
θm

(1 + θ)l
(n + r)!

(θ + θl)n+r+1 (9)

where , K is 1
tan−1(1)

.

In particular, the first four moments of X are as follows:

E(X) = K ∗ θ2

θ + 1

∞

∑
k=0

2k

∑
l=0

l

∑
m=0

m+1

∑
n=0

(−1)k+l
(

2k
l

)(
l
m

)(
m + 1

n

)
θm

(1 + θ)l
(n + 1)!

(θ + θl)n+2 (10)

E(X2) = K ∗ θ2

θ + 1

∞

∑
k=0

2k

∑
l=0

l

∑
m=0

m+1

∑
n=0

(−1)k+l
(

2k
l

)(
l
m

)(
m + 1

n

)
θm

(1 + θ)l
(n + 2)!

(θ + θl)n+3

E(X3) = K ∗ θ2

θ + 1

∞

∑
k=0

2k

∑
l=0

l

∑
m=0

m+1

∑
n=0

(−1)k+l
(

2k
l

)(
l
m

)(
m + 1

n

)
θm

(1 + θ)l
(n + 3)!

(θ + θl)n+4

E(X4) = K ∗ θ2

θ + 1

∞

∑
k=0

2k

∑
l=0

l

∑
m=0

m+1

∑
n=0

(−1)k+l
(

2k
l

)(
l
m

)(
m + 1

n

)
θm

(1 + θ)l
(n + 4)!

(θ + θl)n+5

The variance, skewness and kurtosis of T can be obtained using the following relationships:

Var(X) = E(X2)− (E(X))2, Skewness(X) = E(X−E(X))3

(Var(X))3/2 and Kurtosis(X) = E(X−E(X))4

(Var(X))2 .

6. Order Statistics

Let f(x) and F(x) be the pdf and cdf respectively, then for r=1,2,...n be the pdf fr(x) of rth order
statistics Xr:n is

fr(x) =
n!

(r− 1)!(n− r)!
Fr−1(x)[1− F(x)]n−r f (x)

=
n!

(r− 1)!(n− r)!

n−r

∑
i=0

(−1)i
(

n− r
i

)
Fr+i+1(x) f (x) (11)

Now using pdf and cdf in equation we have,

fr(x) =
n!

(r− 1)!(n− r)!
K ∗ θ2

θ + 1

n−r

∑
i=0

(−1)i
(

n− r
i

)
(1 + x)e−θx[

1 +
{

1−
((

1 + θx
θ+1

)
e−θx

)}2
]

[
K ∗ tan−1

{
1−

((
1 +

θx
θ + 1

)
e−θx

)}]r+i+1
(12)

And corresponding to rth order statistics of cdf Fr(x) is ,

Fr(x) =
n

∑
i=r

(
n
i

)
Fi(x)[1− F(x)]n−i

=
n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)jFi+j(x)

(13)
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Using equation we get,

n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)j

[
K ∗ tan−1

{
1−

((
1 +

θx
θ + 1

)
e−θx

)}]i+j
(14)

7. Renyi Entropy

An entropy of a random variable X is a measure of variation of the uncertainty. Renyi entropy is
defined by

Rγ =
1

1− γ
ln
(∫

f γ(x)dx
)

(15)

Where γ > 0 and γ 6= 1. Substitute (5) in above expression, we have

Rγ =
1

1− γ
log

k ∗
(

θ2

θ + 1

)
(1 + x)e−θx

1 +
{

1−
((

1 + θx
θ+1

)
e−θx

)}2


γ

dx (16)

Solve the equation(16) anatically and we get final result are:

Rγ =
1

1− γ
+ ln

∞

∑
k=0

2k

∑
l=0

l

∑
p=0

∞

∑
m=0

(−1)k+l
(

2k
l

)(
γ

m

)(
l
p

)
(γ + k− 1)[k]

k!
Γm + p + 1

[θ(γ + l)]m+p+1 (17)

8. Estimation

In this section, we briefly discuss the maximum likelihood estimators (MLE’s) of the ITlin(θ)
distribution.
Let x = (x1, ..., xn) be a random sample of size n from ITlin(θ), then the log likelihood function
l(θ|x) can be written as

l(θ|x) = −n ∗ ln(tan−1(1)) + n ∗ ln
(

θ2

1 + θ

)
− θ ∑ x + ∑(ln(1 + x))

+∑
[

ln
{

1 +
(

1−
(

1 +
θx

1 + θ

))
e−θx

}2
] (18)

Therefore, to obtain MLE’s of estimated θ, we can maximise the equation directly w.r.t θ or
we can solve the following Non- Linear equation by using Newton-Raphson method. Since this
equation is not closed form and can not be solved analytically. So, we have to use some numerical
technique such as Newton-Raphson method for the solution.

9. Simulation Algorithm and Study

9.1. Inverse cdf method

One of the most simpelst and common method to generating random variates is based on the
inverse cdf. For arbitrary cdf, define F−1(u) = min {x; F(x) ≥ u}, see Sharma et al.(2016). In case
of ITlin(θ) distribution, inverse cdf cannot be obatined easily, so we proposed the use of Newton’s
method for the solution of the Cdf of ITlin(θ) distribution. The algorithm used for this purpose is
as follows:
Step 1. Set n, θ and initial value x0.
Step 2. Generate U Uniform(0,1).
Step 3. Update x0 by the using Newton’s formula.
x∗ = x0 − H(x0, θ)
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where H(x0, θ) = F(x0,θ)−U
f (x0,θ) ; f(.) and F(.) are given equation respectively.

Step 4. If |x0 − x∗| ≤ ε, then store x = x∗ as a sample from ITlin(θ) .
Step 5. If |x0 − x∗| > ε, then, set x0 = x∗ and goto step 3.
Step 6. Repeat steps 2-5, n times for x1, x2, ..., xn, respectively.

9.2. Simulation Study

In this section, we present the results of the long run guarantee of the proposed lifetime dis-
tribution. To verify the behaviour of the proposed lifetime model in terms of mean square
error (MSE), bias confidence interval and width of the confidence interval of the maximum
likelihood estimator (MLE) of θ. Here we generate 15000 different random sample of size n
(n= 10,15,20,25,30,40,90,160,250 and 400) for the consider true value of parameter θ (θ= 0.5,1 and 2).

Table 1: ML estimates, MSE, Bias, Confidence Interval and width of CI for the true value of parameter is 0.5.

n mle mse Bais LCL UCL width
10 0.5600 0.0239 0.0600 (0.4756, 0.6444) 0.1688
15 0.5058 0.0116 0.0058 (0.4553, 0.5563) 0.1009
20 0.5052 0.0071 0.0052 (0.4674, 0.5430) 0.0755
25 0.5088 0.0056 0.0088 (0.4783, 0.5392) 0.0608
30 0.5093 0.0049 0.0093 (0.4839, 0.5247) 0.0507
40 0.5088 0.0037 0.0088 (0.4897, 0.5077) 0.0380
90 0.5011 0.0032 0.0011 (0.4928, 0.5094) 0.0166
160 0.5020 0.0009 0.0020 (0.4973, 0.5067) 0.0094
250 0.5017 0.0006 0.0017 (0.4987, 0.5047) 0.0060
400 0.5013 0.0004 0.0013 (0.4993, 0.5031) 0.0037

Table 2: ML estimates, MSE, Bias, Confidence Interval and width of CI for the true value of parameter is 1.

n mle mse bais LCL UCL width
10 1.0758 0.0897 0.0758 (0.9059, 1.2456) 0.3397
15 1.0516 0.0530 0.0516 (0.9414, 1.1617) 0.2203
20 1.0377 0.0367 0.0377 (0.9563, 1.1190) 0.1627
25 1.0312 0.0287 0.0312 (0.9666, 1.0958) 0.1292
30 1.0302 0.0237 0.0302 (0.9765, 1.0840) 0.1075
40 1.0233 0.0172 0.0233 (0.9833, 1.0633) 0.0800
90 1.0106 0.0069 0.0106 (0.9931, 1.0282) 0.0350
160 1.0063 0.0038 0.0063 (0.9965, 1.0161) 0.0196
250 1.0041 0.0025 0.0041 (0.9978, 1.0103) 0.0125
400 1.0022 0.0015 0.0022 (0.9983, 1.0061) 0.0078
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Table 3: ML estimates, MSE, Bias, Confidence Interval and width of CI for the true value of parameter is 2.

n mle mse Bais Confidence Inteval width
10 2.1632 0.3061 0.1632 (1.7950, 2.5312) 0.7362
15 2.1555 0.1921 0.1555 (1.9110, 2.3999) 0.4889
20 2.1491 0.1472 0.1491 (1.9663, 2.3318) 0.3655
25 2.1295 0.1102 0.1295 (1.9847, 2.2743) 0.2895
30 2.1025 0.0810 0.1025 (1.9835, 2.2214) 0.2378
40 2.1215 0.0715 0.1215 (2.0314, 2.2116) 0.1802
90 2.0862 0.0274 0.0862 (2.0469, 2.1256) 0.0786
160 2.1008 0.0235 0.1008 (2.0785, 2.1231) 0.0446
250 2.0976 0.0180 0.0976 (2.0833, 2.1118) 0.0285
400 2.0959 0.0144 0.0959 (2.0870, 2.1048) 0.0178

The results are consider in all Tables (Table 1,2 and 3), which show the average of the 15000
MLE’s together with their MSE, Bias, 95% of confidence interval and width of the confidence
interval of true value of the parameter of the proposed lifetime distribution. For all considered
true value of the parameter θ;the MSE and bias are decreases as sample size increased. These
results suggest that the MLE have performed consistently 95% confidence interval and width of
the paramter θ also decreases as sample size increases.

10. Real Data Modeling

In the present section, we have considered two data sets, which are initially proposed by Efron,
B (1998). The data represents the patients of two groups suffering from head and neck cancer
disease. The data set of first group represents the survival times of 51 head and neck cancer
patients treated with radiotherapy whereas the other group of data set represents the survival
times of 45 head and neck cancer patients treated with combined radiotherapy and chemotherapy.
The data sets are as follows:

Data(A): 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91,
108, 112, 129, 133,133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160,
165, 173, 176, 218, 225, 241, 248, 273,277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.

Data(B): 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26,
74.47, 81,43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249,
281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

To check the validity of the considered model for the above data sets A and B using Kologorov-
Smirnov Statistics (K-S), Akaike information criterion (AIC), and Bayes information criterion (BIC)
and log-likelihood criterion. We compare the applicability of this model for the above data sets
over Inverse Rayleigh distribution (IRD), Generalized inverted exponential distribution (GIED),
Inverse exponential distribution (IED) and Lindley distribution (LD) have discussed and it is
found that the considered model is quite flexible than the other four, see Table.
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Table 4: The values of different statistical measures for the Data Set (A)

Distributions AIC BIC -LL K-S test value
GIED 773.18 777.30 384.59 0.2453
IRD 840.13 842.06 419.06 0.6039

ITLD 721.25 723.31 359.62 0.2433
IED 773.37 775.43 385.68 0.2875
LD 765.74 767.80 381.87 0.2453

Table 5: The values of different statistical measures for the Data Set (B)

Distributions AIC BIC -LL K-S test value
GIED 572.43 576.04 284.21 0.1901
IRD 962.71 964.49 480.35 0.3783

ITLD 559.45 561.25 278.72 0.1223
IED 571.06 572.86 284.53 0.1823
LD 593.23 595.04 295.61 0.2942

10.1. TTT Plot

The total-time-on-test (TTT) plot is a graphical procedure to get some idea about the shape of the
hazard function. We have used the empirical version of the scaled TTT plot, [Aarset (1987)]. We
have plotted the empirical version of the scaled TTT transform of the both data set (data set A
and B) in figure 5 and 6. Since the empirical version of the scaled TTT transform is concave and
convex both, it indicates the hazard function is increasing and decreasing both.

Figure 5: The empirical scaled TTT transform of the data set A
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Figure 6: The empirical scaled TTT transform of the data set B

11. Conclusions

In this work, we have proposed a new transformation using trigonometric function along with
Lindley distribution. So, the name of distribution is "Inverse Trigonometric Lindley Distribution"
as it uses lindley distribution as the baseline distribution. Some of its important various statistical/
mathematical properties including shape, survival function, hazard rate, moments and associated
measures, order statistics are discussed and renyi entropy of the proposed distribution have been
derived. The method of maximum likelihood estimation has also been discussed for estimating
the parameter. For depth understanding, we have deliberated real life scenarios as two real data
sets of survival of head and neck cancer patients are considered to illustrate the applicability of
the discussed model. It is found that our invented model provides better fit to the given data set,
which has been well verified by graphical illustrations.
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Abstract

In this paper, Acceptance Sampling approaches useful for minimizing the cost and time of the submitted
lots. In this busy world expect the Quality assurance and reliability of the product is very high. So, use
the truncated life tests in acceptance sampling plan. Time truncated life tests in sampling plan are used
to certain reach a decision on the product. Therefore, Gompertz Frechet Distribution is considered as
model for a life time random variable when the lifetime test is truncated at pre-determined time. The
operating characteristic functions of the sampling plans and Producer‘s risk is also discussed. The results
are illustrated by an example.

Keywords: Gompertz Frechet Distribution, Single Sampling Plan, truncated life time test, Con-
sumer‘s risk;

1. Introduction

Acceptance sampling plan constitutes one of the oldest techniques in Statistical Quality Control. It
has an important role on common quality control techniques used in the manufacturing industry.
It is desired to be a protective and efficient to make sure the quality control of such items. The
sampling plan is determined to accept or reject a lot of items based on the life span time of the
items is called reliability acceptance sampling plan. In a truncated life test using Single Sampling
Plan, time is a main factor in check and fit the quality of the items. When the lifetime test suggests
that the average life of items is lesser than the pre determined one, the lot of products is rejected,
otherwise it is accepted. Accepting lots are ready for the production, while rejecting lots may be
returned to the trader. For the main objective of minimizing the test time and cost, a truncated
lifetime test may be run to determine the minimum sample size to make certain average lifetime
of products when the lifetime test is stopped at a pre-determined time.

In the scheme of the truncated lifetime test is the number of defects ‘d‘ and comparing the
acceptance number ‘c‘ . If the defects are lesser than acceptance number d<c, accept the lot and
otherwise reject the lot. If defects are lesser than acceptance number c , is get before time t0 put
an end to the test and improve, the better quality of the product in the production management.
In truncated life test use to find the minimum sample size to make certain an average life of items
with specified confidence level P∗.

The Reliability Acceptance Sampling Plan for percentiles using various distributions are:
Epstein (1954) designed acceptance sampling plan depends on life test presuming that the life
time of a product follows the exponential distribution. Cameron. J.M (1952) has developed
and designing tables for constructing and computing the Operating Characteristics of Single
Sampling Plans.Gupta and Groll (1961) originated an acceptance sampling when the lifetime test
truncated at a pre-fixed time and assumes to using the design of lifetime as gamma distribution.
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Kantam and Rosaiah (1998) progress an acceptance sampling plan based on model for truncated
pre determined lifetime random variable using the half logistic distribution. Kantam et al.
(2001) evolved the sampling plan for lifetime follows log-logistic distribution with known shape
parameter explaining an illustration with examples.Rosaiah et.al(2005) determines that the life
time of the items follows the inverse Rayleigh distribution and origin the acceptance sampling
for life tests. Al-Nassar, A.D. and Al-Omari, A.I. (2013) has developed an acceptance sampling
plan depends up on truncated lifetime tests for exponentiated Frechet distribution. Rao et al.
(2014) constructed the Exponentiated half log logistic distribution and its percentile estimator for
designing acceptance sampling plans applying the similar method depend on its percentiles.

Kaviyarasu. V and Fawaz. P (2017) has designed an acceptance sampling plan of single
sampling plan uses to truncated life tests based on percentiles using Weibull-Poisson distribution.
Jayalakshmi.S, Neena Krishna P.K (2021) has developed a Special Type Double Sampling Plan for
Life Tests Based on Percentiles Using Exponentiated Frechet distribution.

This paper mainly focusing the designing of an acceptance sampling plans truncated life test
based on percentiles using Gompertz Frechet distribution. Oguntunde et. al (2019) has developed
by Gompertz Frechet distribution properties and applications. The real time application of
Gompertz Frechet distributions are reliability studies, hydrology, finance and so on.

2. Gompertz Frechet Distribution

The life time distribution of the product follows as Gompertz Frechet distribution with the scale
parameter is α and shape parameters areβ,γ,θ. The Cumulative Distribution Function (CDF) and
Probability Density Function (PDF) of the Gompertz Frechet distribution is given by

F(x, α, β, γ, θ) = 1 − exp[(
θ

γ
)(1 − (1 − exp[

α

x
]β)−γ)] (1)

and

f (x, α, β, γ, θ) = θβαβx−β−1[exp[−α

x
]β](exp[−α

x
]β)−γ−1 ∗ exp[

θ

γ
(1 − (1 − exp[

α

x
]β)−γ)] (2)

where α>0, β>0, γ>0, θ>0

2.1. Percentile Estimator

The qth percentile function of the any distribution is given below,

Pr(T ≤ tq) = q (3)

tq = α[−log[1 − γ

θ
[log(1 − q)]−

1
γ ]

− 1
β (4)

α =
tq

ϕq
(5)

where
ϕq = [−log[1 − γ

θ
[log(1 − q)]−

1
γ ]

− 1
β (6)

δq =
t
tq

(7)

Replacing the value of scale parameter α by 5 in 1 then we obtained the Cumulative Distribution
Function of Gompertz Frechet distribution is

F(t, α, β, γ, θ) = 1 − exp[
θ

γ
(1 − (1 − exp[

−1
ϕqδq

])β]−γ)] (8)

Taking a first derivative of partial differentiation with respect to δ, we get

∂(t, δ)

∂δ
=

1 − exp( θ
γ )

ϕq(δq
2)

[γ(1 − exp[
−1

ϕqδq
]
β

)

−γ−1

βexp(1 − exp[
−1

ϕqδq
]2β−1)] (9)
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3. Designing of single sampling plan through Gompertz Frechet

Distribution

Single Sampling Plan is the key for all attribute acceptance sampling. The elementary form of
single sampling plan is relates with dichotomous situations in which the inspection results can be
classified into two classes of outcomes such as accept and reject of the lot.A sampling inspection
scheme in which a decision to accept or reject an inspection lot is based on the inspection of a
single sample. A single sampling plan consists of a single sample size with associated acceptance
number(c). If taking random sample size n from the Lot size N then conducting the inspection
with the number of defectives (d) found and compared to an Acceptance number (c). If the
number of defectives found is less than or equal to acceptance number (c), the lot is accepted.
Otherwise, the lot is rejected.For a single sampling plan, one sample of items is selected at
random from a lot and the disposition of the lot is determined from the resulting information.
The random sample size values of Single Sampling Plan follows Binomial Distribution denoted
by B(n, c, p). It has developed procedure of single sampling plan whose parameter p is assigned
to follow Gompertz Frechet distribution with parameters δ0 =

tq

t0
q

Where, t and t0
q are the specified

time test duration and specified 100th
q percentile of the Gompertz Frechet distribution respectively.

According to Cameron (1952), the smallest size n can be given by satisfying,

c

∑
i=0

(
n
i

)
(p)i(1 − p)(n−i) (10)

Where, (1-p∗) is the consumer risk and p∗ is the probability of accepting the good lot.

4. Operating Procedure for Acceptance Single Sampling Plan through

Gompertz Frechet distribution Percentiles for life testing

The operating procedure of the suggested plan is follows as:
• Taking a sample of size n within a test for time t0
• Find the number of defectives d and comparing the acceptance number c .
i If d > c, reject the lot.

ii If d ≤ c, accept the lot.
• If d > c, is get before time t0, put an end to the test and improve the better quality of the

product in the production management.

4.1. Minimum sample size for 10th percentile using Gompertz Frechet
Distribution

For a predetermined P∗, our sampling plan is described by (n, c,t/tq). Here we observe that
acceptably exhaust sized lots and also that the binomial distribution can be applied. The study
is to determine for given values of P∗ (0 < P∗<1), t0

q and c, the smallest non-negative integer n
required to assured that tq<t0

q must satisfy
Step 1: Find the value of ϕ for fixing the values of parameters are θ, β,γ and q=0.10.
Step 2: Set the calculate value of ϕ =0.7785, c=0 to 10, and t/tq = 0.9, 0.95, 1.0, 1.1, 1.25, 1.5, 1.6, 1.65

Find the minimum value of n satisfying

L(p) =
c

∑
i=0

(
n
i

)
(p)i(1 − p)(n−i) ≤ (1 − p∗) (11)

where p∗ is the probability of accepting the good lot.
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Table 1: Gives the minimum sample size ‘n‘ for the specified 10th percentile value t0.10
0 of Gompertz Frechet

Distribution to exceed the actual 10th percentile value t0.10, with probability p∗ and acceptance number c
using binomial approximation

t/t0.10

P∗ c 0.9 0.95 1 1.1 1.2 1.25 1.5 1.6 1.65
0.75 0 8 6 4 2 1 1 1 1 1

1 20 9 5 4 4 3 3 2 2
2 26 24 18 8 7 6 5 4 3
3 32 28 13 7 6 6 5 4 4
4 40 37 28 13 8 7 7 6 6
5 66 58 43 29 27 14 12 9 8
6 71 63 58 46 33 27 18 13 10
7 86 69 60 57 43 32 27 22 17
8 92 89 78 65 54 42 31 28 19
9 116 104 93 82 67 55 44 36 20
10 125 105 95 86 74 66 59 43 32

0.90 0 10 7 5 4 3 2 1 1 1
1 26 10 7 6 5 3 2 2 2
2 33 25 19 9 8 7 6 5 3
3 44 30 23 10 7 7 5 4 4
4 56 41 29 14 9 9 8 8 7
5 67 59 47 30 28 23 20 17 13
6 72 65 59 46 36 32 28 26 21
7 87 81 72 59 54 43 38 34 26
8 94 89 79 66 57 51 48 42 36
9 126 123 102 96 80 72 59 52 41
10 128 120 116 92 78 67 56 42 39

0.95 0 11 8 7 5 4 3 1 1 1
1 28 12 8 7 5 4 3 2 2
2 38 25 20 12 9 7 6 4 3
3 49 34 25 15 8 7 6 5 4
4 57 45 31 15 10 10 9 8 7
5 69 63 48 32 28 25 23 20 18
6 76 66 60 49 47 35 30 27 24
7 90 82 73 62 55 48 41 39 35
8 105 94 89 72 68 59 52 47 42
9 128 124 103 99 82 79 61 57 43
10 139 125 117 98 83 79 62 59 53

0.99 0 20 15 8 6 4 3 1 1 1
1 30 20 10 8 7 6 5 3 2
2 40 25 20 13 9 8 7 6 5
3 58 36 29 16 12 12 12 12 ‘ 10
4 75 54 42 35 20 20 20 19 14
5 96 63 51 33 32 31 29 29 27
6 102 92 81 60 57 48 46 39 38
7 118 106 99 82 71 64 59 44 42
8 167 158 104 99 87 73 61 59 45
9 183 160 113 103 94 81 78 62 59
10 199 181 179 154 121 108 96 79 61

4.2. Operating Characteristic Function

The operating characteristic function of the sampling plan gives the probability of accepting the
lot L( p) with,

L(p) =
c

∑
i=0

(
n
i

)
(p)i(1 − p)(n−i) (12)

The producer‘s risk α is the probability of rejecting a lot when tq > t0
q. And for the given

producer‘s risk α, p as a function of dq should be simulated satisfying the condition given by
Cameron (1952) as

c

∑
i=0

(
n
i

)
(p)i(1 − p)(n−i) > (1 − α) (13)

Where, p=F (t,δ0) and F (.) can be obtained as a function of dq for the sampling plan developed,
d0.1 values are obtained at the producers risk α=0.05.
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Table 2: Operating characteristic values of the sampling plan (n, c, t/t0.10
0) for given p* under Gompertz Frechet

distribution

(t0.10)/(t0
0.10)

P∗ n t/t0.10 1.95 2 2.5 2.75 3 3.25 3.5 4
0.75 18 1.0 0.0019 0.0059 0.7651 0.9160 0.9756 0.9944 0.9990 0.9999

8 1.1 0.0124 0.0548 0.7748 0.9276 0.9836 0.9971 0.9995 0.9999
7 1.2 0.0875 0.0911 0.8284 0.9428 0.9853 0.9972 0.9996 0.9999
6 1.25 0.1412 0.1920 0.8381 0.9627 0.9993 0.9993 0.9999 1.0000
5 1.5 0.3024 0.3382 0.9919 0.9994 0.9999 0.9999 1.0000 1.0000
4 1.6 0.3073 0.3442 0.9964 0.9998 0.9999 1.0000 1.0000 1.0000
3 1.65 0.4340 0.4143 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000

0.90 19 1.0 0.0020 0.0066 0.7748 0.9160 0.9756 0.9971 0.9995 0.9999
9 1.1 0.0157 0.0694 0.7902 0.9428 0.9853 0.9986 0.9990 0.9999
8 1.2 0.1074 0.1942 0.8284 0.9506 0.9917 0.9944 0.9998 0.9999
7 1.25 0.1725 0.2116 0.8747 0.9631 0.9919 0.9990 0.9999 1.0000
6 1.5 0.2267 0.2812 0.9899 0.9992 0.9999 0.9999 1.0000 1.0000
3 1.6 0.4022 0.4304 0.9957 0.9997 0.9999 1.0000 1.0000 1.0000
3 1.65 0.4340 0.4327 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000

0.95 20 1.0 0.0023 0.0074 0.7651 0.9160 0.9756 0.9944 0.9990 0.9999
12 1.1 0.0268 0.0721 0.7748 0.9276 0.9836 0.9971 0.9995 0.9999
9 1.2 0.1272 0.1977 0.7902 0.9428 0.9853 0.9972 0.9999 0.9999
7 1.25 0.1725 0.2116 0.8284 0.9506 0.9919 0.9990 0.9999 1.0000
6 1.5 0.2267 0.2815 0.9899 0.9992 0.9999 0.9999 1.0000 1.0000
4 1.6 0.4024 0.4344 0.9950 0.9997 0.9999 1.0000 1.0000 1.0000
3 1.65 0.4422 0.4443 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

0.99 20 1.0 0.0027 0.0074 0.7750 0.9650 0.9840 0.9945 0.9992 0.9999
13 1.1 0.0310 0.0855 0.8546 0.9681 0.9850 0.9988 0.9997 0.9999
9 1.2 0.1272 0.1978 0.8685 0.9986 0.9895 0.9989 0.9999 0.9999
8 1.25 0.2007 0.2404 0.9879 0.9993 0.9899 0.9990 0.9999 1.0000
7 1.5 0.2561 0.2811 0.9950 0.9995 0.9999 0.9996 1.0000 1.0000
6 1.6 0.4875 0.4361 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000
5 1.65 0.5110 0.5985 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000

5. Illustration with Real Life Applications

Assuming that the conduct an inspection of the lifetime of battery saver of Smart Watch. The
study was based on inspection lifetime product which follows a Gompertz Frechet distribution.
The Gompertz Frechet distribution has a three shape parameters it uses to fixing a value of length,
breath and thickness of the battery saver of smart watch as θ=6, β=3, γ=0.06 respectively. Figure 1
represents the example for Battery Saver of Smart Watch.

Figure 1: Battery Saver of Smart Watch

An Experimenter wants to conduct the runtime of experiment is 3000hrs but the laboratory
has the testers to true percentile life time t0.10=1800 hrs, c=2, α = 0.05, β=0.05, then, ϕ=0.7785 is
computed from the equation get under the percentile estimator and the minimum ratio,t/t0.10

0=1.0
and minimum sample size is n=20 get the information from the Table 1. The probability of
acceptance is characterized by (n, c, t/t0.10

0) = (20, 2, 1.0) with p* = 0.95 under Gompertz Frechet
distribution the values from Table 2 are given below.
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tq/tq
0 1.95 2 2.5 2.75 3 3.25 3.5 4

L(p) 0.0023 0.074 0.7651 0.9160 0.9756 0.9944 0.9990 0.9999

Figure 2 represents the Two point Operating Characteristic curve for Single Sampling Plan
using 10th percentile for Gompertz Frechet Distribution. The Acceptable Reliability Level (ARL)
and Limiting Reliability Level (LRL) are determined through producer‘s confidence level (1-α)
and consumer‘s level β. An product is considered as t0.10 ≥ t0.10

0 and otherwise it is considered
to be a bad of the product. The Reliability acceptance Sampling plan is considered as good one of
the product if both risks are minimized. It reveals that if the true 10th percentile is almost equal
to the essential 10th percentile (t0.10/t0.10

0 = 1.0) the producer‘s risk nearly 0.9757 (1-0.023). The
producer‘s risk is an almost nearly equal to Zero whenever the actual 10th percentile is greater
than or equal to 3 times the specified 10th percentile.

Figure 2: Operating Characteristic curve for Single Sampling Plan using 10th percentile for Gompertz Frechet
Distribution

5.0.1 Real Data Application

We consider the real data application was recorded from Bi and Gui (2017). The dataset describes
strength of carbon fibers tested under tension at Gauge lengths of 20mm. The observations are as
given below:

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224,
2.240, 2.253, 2.270, 2.272 , 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426,
2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566 , 2.570, 2.586 ,
2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809,
2.818, 2.821, 2.848, 2.880, 2.954, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233,
3.433, 3.585 3.585.

First, we should check the given sample comes from Gompertz Frechet Distribution by the
goodness of fit test and model selection criteria. So, we have to use the Q-Q Plot, Shapiro
-wilk test, kolmogrov smirnov test and Histogram.Figure 3 graphically represents the Histogram
satisfies the Normality of the given data. We get the result of KS test statistic is 0.039 and the
Shapiro-Wilk test is 0.991. Figure 4 represents the graphically satisfies the Q-Q plot of the given
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data. Hence, the Gompertz Frechet Distribution could also provide reasonable goodness of fits
for data set.

Figure 3: Histogram

Experimenter wants to make runtime of the experiment for 300 hrs. Further, the laboratory
has the testers to actual percentile life time t0.10=150 hrs, c=2, α = 0.05, β=0.05, then, ϕ=0.7785 is
calculated from the equation get under percentile estimator and the minimum ratio, t/t0.10=1.6
from Table 1 the minimum sample size from the obtained information is n=57. The probability of
acceptance for the triplet values (n, c, t/t0.10) = (57, 9, 1.6).

Figure 4: Q-Q Plot

Since there were no items with a failure time less than or equal to 300 hrs in the given sample
of n = 57 observations, the experimenter would accept the lot, assuming the 10th percentile
lifetimet0.10 of at least 150 hrs with a confidence level of p∗ = 0.95.
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6. Construction of the Table

The procedure uses to construction of Table 3 for the minimum ratio of true mean life for specified
mean life for the acceptability of a lot with a producer‘s risk of 0.05.
Step 1: Find the value of ϕ for fixing the values of parameters are θ, β, γ and q=0.10.
Step 2: Set the evaluated ϕ, c=0 to 10, and t/tq= 0.9, 0.95, 1.0, 1.1, 1.25, 1.5, 1.6, 1.65, 1.7.
Step 3: Find the smallest value of n satisfying where P∗ is the probability of accepting the good lot.

Step 4: For the n value obtained find the ratio d0.1 such that 13 where,p=F (tq)

(t0
q)

* 1
(dq)

and dq=
t0
q

tq
.

Table 3: Minimum ratio of true mean life to specified mean life for the acceptability of a lot with producer‘s risk of
0.05 using Gompertz Frechet Distribution

t/tq
0

P∗ c 0.9 0.95 1 1.1 1.2 1.25 1.5 1.6 1.65
0.75 0 1.224 1.263 1.299 1.406 1.500 1.510 1.696 1.809 1.866

1 0.783 0.846 0.896 0.900 0.901 1.086 1.175 1.282 2.083
2 0.665 0.725 0.764 0.780 0.799 0.802 0.812 0.836 0.879
3 0.364 0.457 0.552 0.593 0.682 0.718 0.725 0.756 0.779
4 0.354 0.366 0.398 0.416 0.420 0.448 0.465 0.476 0.498
5 0.254 0.266 0.277 0.298 0.314 0.352 0.365 0.398 0.406
6 0.157 0.177 0.184 0.198 0.201 0.226 0.2365 0.308 0.311
7 0.117 0.123 0.137 0.153 0.187 0.199 0.207 0.216 0.238
8 0.139 0.139 0.149 0.153 0.169 0.198 0.206 0.209 0.211
9 0.104 0.115 0.127 0.138 0.157 0.184 0.199 0.208 0.214
10 0.043 0.061 0.075 0.107 0.115 0.120 0.130 0.139 0.142

0.90 0 1.297 1.342 1.386 1.504 1.612 1.633 1.860 1.984 2.046
1 0.896 0.936 1.089 1.188 1.276 1.362 1.467 1.578 1.68
2 0.734 0.756 0.768 0.772 0.796 0.803 0.813 0.822 0.846
3 0.573 0.598 0.608 0.611 0.627 0.697 0.747 0.768 0783
4 0.477 0.498 0.502 0.699 0.739 0.753 0.763 0.788 0.792
5 0.365 0.379 0.399 0.409 0.416 0.427 0.438 0.448 0.468
6 0.267 0.279 0.288 0.291 0.301 0.316 0.328 0.338 0.340
7 0.217 0.226 0.238 0.247 0.257 0.268 0.277 0.289 0.299
8 0.190 0.199 0.201 0.227 0.238 0.249 0.257 0.266 0.278
9 0.117 0.124 0.145 0.153 0.167 0.178 0203 0.218 0.224
10 0.098 0.106 0.118 0.126 0.138 0.146 0.158 0.188 0.199

0.95 0 1.334 1.394 1.443 1.568 1.684 1.713 1.964 2.095 2.161
1 0.899 0.946 1.189 1.288 1.376 1.462 1.567 1.688 1.709
2 0.739 0.766 0.779 0.880 0.896 0.903 0.913 0.922 0.946
3 0.583 0.608 0.618 0.621 0.637 0.707 0.757 0.788 0793
4 0.487 0.508 0.512 0.709 0.749 0.793 0.773 0.798 0.802
5 0.375 0.389 0.409 0.419 0.416 0.437 0.448 0.458 0.468
6 0.277 0.289 0.298 0.301 0.311 0.326 0.338 0.358 0.360
7 0.227 0.236 0.248 0.257 0.267 0.278 0.287 0.299 0.309
8 0.191 0.209 0.211 0.237 0.248 0.259 0.267 0.276 0.298
9 0.127 0.134 0.155 0.163 0.177 0.188 0.213 0.228 0.234
10 0.099 0.116 0.128 0.136 0.148 0.156 0.168 0.198 0.199

0.99 0 1.435 1.494 1.551 1.690 1.820 1.860 2.156 2.300 2.372
1 0.909 0.946 1.189 1.288 1.376 1.462 1.567 1.688 1.709
2 0.759 0.766 0.779 0.880 0.896 0.903 0.913 0.922 0.946
3 0.593 0.608 0.618 0.621 0.637 0.707 0.757 0.788 0.793
4 0.507 0.508 0.512 0.709 0.749 0.793 0.773 0.798 0.802
5 0.395 0.389 0.409 0.419 0.416 0.437 0.448 0.458 0.468
6 0.297 0.289 0.298 0.301 0.311 0.326 0.338 0.358 0.360
7 0.237 0.236 0.248 0.257 0.267 0.278 0.287 0.299 0.309
8 0.201 0.209 0.211 0.237 0.248 0.259 0.267 0.276 0.298
9 0.137 0.144 0.165 0.173 0.187 0.188 0.223 0.238 0.244
10 0.109 0.126 0.138 0.146 0.158 0.166 0.1788 0.208 0.219

7. CONCLUSION

In this article, reliability acceptance single sampling plan is developed based on the Gompertz
Frechet distribution in directed to construct a decision of the lot. The single sampling plan gets
the minimum sample size and Operating Characteristic values of the producer‘s risk. Tables
and values are provided and applied to develop an acceptance sampling plans for real life
application.In real life data application can be revealed that there were no items with a failure
time less than or equal to 300 hrs in the given sample of n = 57 observations, the experimenter
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would accept the lot.
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Abstract 
In this paper, two dimensional state retrial queueing system with two non - identical parallel 
servers is considered. Incoming calls (primary calls) arrive at the server according to a Poisson 
process. Repeating calls also follows the same fashion. Service times of two servers follow 
exponential distribution with different rates. An incoming call that finds the servers busy, joins an 
orbit and retries after some random amount of time. Time dependent probabilities of exact number 
of arrivals and exact number of departures at when the servers are free or when one server is busy 
or when both servers are busy are derived for the system. Finally busy period distribution obtained 
to illustrate the system dynamics. 
 

 
Keywords: Retrial, Queueing, Arrivals, Departures, Heterogeneous Servers 
 
 
 

I. Introduction 
 
Recently retrial queues are paid much attention because they have applications in performance 
analysis of various systems such as call centers, computer networks and telecommunication 
systems. Retrial queues are characterized by the fact that arriving customers when could not able 
to receive service may enter a virtual queue (orbit) and retry for service again after some random 
amount of time. The analyse of retrial queueing models are much more difficult than without 
retrials and explicit results are obtained only in a few special cases.  

Retrial queueing models are often used for the performance and reliability modeling of 
computer systems and communication networks. The reason is that the return of customers plays a 
special role in many of these systems or in other practical applications. Some applications of retrial 
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queues can be found in Li and Yang [1], Janssens [2], Tran-Gia and Mandjes [3], Onur et al. [4] and 
the detailed overviews of retrial queues are given in Falin and Templeton [5], Artalejo [6], Falin 
and Artalejo [7], Artalejo [8], Falin [9]. 
        Queues with non-identical parallel servers (heterogeneous servers) can be widely used for 
modeling real systems with heterogeneous environment. Heterogeneous servers are allocated in 
banks, hospitals, telecommunication and business centers. Customers arrive according to a Poisson 
process at a rate λ. The servers have a tendency to serve the same type of job but with different 
service rates 𝜇!& 𝜇".  

The classical transient results for the M/M/1 queueing model provide slight perception about 
the behavior of a queueing system through a fixed time t, but Pegden and Rosenshine [10] have 
given the probability of exact number of arrivals in the system and exact number of departures 
from the system by a given time for the classical queueing model M/M/1/∞. This measures supplies 
better insight into the behavior of a queueing system than the probability of the exact number of 
units in the system at a given time. 

In this paper, we obtained the time dependent probabilities of the exact number of arrivals in 
the system and exact number of departures from the system for a retrial queueing system with two 
servers having unequal service rates. Many authors have studied systems with two non-identical 
parallel servers. Satty [11] studied a continuous time first come first served queueing system with 
two parallel servers each with different service rate.  He obtained the steady state probabilities for 
the number of units in the system/ queue. Gumbel [12] studied the steady state probabilities for the 
number of units in the system by considering a more general queueing problem having a finite 
number of servers, each with different service rate. Morse [13] also considered two servers with 
different service rates and obtained the steady state solutions. 

The paper is organized as follows: In Section 2, the full description of the model is discussed. 
In Section 3, we defined the two-dimensional state model and derived its difference-differential 
equations. The time dependent solution for the model is also obtained in this section. Then the 
main performance measures of the system and a special case are derived in Section 4. In Section 5, 
several numerical examples are discussed. The busy period distribution for the system is obtained 
in Section 6 and finally the paper ends with a conclusion.  

 
II. Model Description 

I.  Assumption and Notation 
 
The queueing system investigated in this paper is described by the following assumptions: 
 

1) The arrival of primary calls follow a Poisson distribution with parameter l. 
2) The repeated calls to each server follow a Poisson distribution with parameter q. 
3) Service times are exponentially distributed with parameters µ1and µ2 for the first and second 

channel respectively. 
4) When the channels are empty, an arriving unit/ repeating unit joins the first channel with 

probability a1 and the second channel with probability a2. 
5) The stochastic process involved viz. arrival of units, departures of unit and retrials are statistically 

independent. 

Laplace transformation 𝑓(̅s) of 𝑓(𝑡) given by 
𝑓̅ (s) = ∫ 𝑒#$%∞

& 𝑓(𝑡) dt,    Re (s) > 0  
The Laplace inverse of  
'())
+())

	𝑖𝑠	 ∑ ∑ %!"#$	,&"'

(-"#.)!(.#!)!
-"
.0!

1
20! × 3

$#(	'())
3)$#(	+())

(𝑝 − 𝑎2)-"∀ p=𝑎2, 𝑎4 ≠ 𝑎2 for i ≠ k 
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where, 
 P(p)= (𝑝 − 𝑎!)-((𝑝 − 𝑎")-) ……… . (𝑝 − 𝑎1)-* 
Q(p) is a polynomial of degree <𝑚!+𝑚"+𝑚5 +………….𝑚1-1. 
 The Laplace inverse of 𝑁71(,*),*,

6,8,9 (s) = !
($:6)*(($:8)*)($:9)*,

 is  

𝑁1(,*),*,
6,8,9 (t) =∑ ∑

,#&'		%*,#$(#!)!-(; $#(!#(<;∏ (1(:.#/#(
0(12 >()<;∏ (1):/#)

0)12 >))<

(1,#.)!(-#!)!	(8#6)*)-!#((9#6)*(-$#!
.
-0!

1,
.0!  

+88
𝑒#8%		𝑡1)#.(−1)-:!: .#!-#!;:∏ (𝑛! +@#A#!

>(0& g!);:∏ (𝑛5 +A#"
>)0& g");

(𝑛" − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑏)1,:-#!(𝑐 − 𝑏)1(:.#-

.

-0!

1)

.0!

 

+88
𝑒#9%		𝑡1(#.(−1)-:!: .#!-#!;:∏ (𝑛" +@#A#!

>(0& g!);:∏ (𝑛5 +A#"
>)0& g");

(𝑛! − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑐)1,:-#!(𝑏 − 𝑐)1):.#-

.

-0!

1(

.0!

 

If 𝐿#!{f(s)} = F(t) and 𝐿#!{g(s)} = G(t), then 
𝐿#!{f(s) g(s)} = ∫ 𝐹(u)𝐺(t − u)%

& du = F * G, F * G is called the convolution of F and G. 
 

III. The Two-Dimensional State Model 
I. Definitions 
Pi,j,0 (t) = Probability that there are exactly i arrivals in the system and j departures from the system 
by time t when both servers are free. 
Pi,j, 1 ,k (t) = Probability that there are exactly i arrivals in the system, j departures from the system by 
time t when one server is free and that unit is in the kth channel. k = 1,2. 
Pi,j,2 (t) = Probability that there are exactly i arrivals in the system and j departures from the system 
by time t when both servers are busy. 
Pi,j (t) = Probability that there are exactly i arrivals in the system and j departures from the system 
by time t. 
Pi,j(t) = Pi,j,0 (t) + Pi,j, 1,1 (t) + Pi,j, 1,2 (t) + Pi,j, 2 (t)∀  i, j                  i ≥ j                                                                        
Pi,j, 1 (t) = Pi,j, 1,1 (t) + Pi,j, 1,2 (t)  
also 
Pi,j, 0 (t) = 0, i < j; Pi,j,1,k (t) = 0 & Pi,j, 2 (t) = 0,  i ≤ j.  k=1,2 
Initially  
P0,0,0 (0) = 1; Pi,j, 0 (0) = 0, Pi,j, 1,k (0) = 0 & Pi,j, 2 (0) = 0, i,j≠0.   k=1,2. 
 
II. The difference – differential equations governing the system are 
 
3
3%

Pi,j,0 (t) = - (l+ (i-j) q) Pi,j,0 (t) + µ1 Pi,j-1,1,1 (t)+  µ2 Pi,j-1,1,2 (t)                             i ≥ j ≥ 0                           (1)
  
3
	3%

P1, 0,1,1 (t) = - (l+ µ1) P1, 0,1,1 (t) + la1P0, 0,0 (t)                                                                       (2) 
3
	3%

P1, 0,1,2 (t) = - (l+ µ2) P1, 0,1,2 (t) + la2P0, 0,0 (t)                               (3) 
3
3%

Pi,j,1,1 (t) = - (l+ µ1 + (i-j-1)q) Pi,j,1,1 (t) + la1Pi-1,j,0 (t) + (i-j) q a1Pi,j,0 (t) + µ2 Pi, j-1,2 (t) 
                      i > j > 0                            (4) 
3
3%

Pi,j,1,2 (t) = - (l+ µ2 + (i-j-1)q) Pi,j,1,2 (t) + la2Pi-1,j,0 (t) + (i-j) q a2Pi,j,0 (t) + µ1 Pi, j-1,2 (t) 
                      i > j > 0                            (5) 
3
	3%

Pi, 0, 2 (t) = - (l+µ1+µ2 ) Pi, 0, 2 (t)+ l δi,,2{Pi-1, 0,1,1 (t) +Pi-1, 0,1,2 (t)}+l (1-𝛿4#",B)Pi-1, 0,2 (t) 
                                                                                                                                i ≥ 2                                 (6) 
3
3%

Pi,j, 2 (t) = - (l+µ1+µ2 ) Pi,j,2 (t) +(i-j-1)q {Pi,j,1,1 (t)+ Pi,j,1,2 (t)} + 
                           l{Pi-1,j,1,1 (t) +Pi-1,j,1,2 (t)}+ l (1-𝛿4#",B)Pi-1,j,2 (t)                            i>2, i > j > 0                     (7) 

                                       where 𝛿4#",B = J1, 𝑤ℎ𝑒𝑛	𝑖 − 2 = 𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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𝛿4," = J1, 𝑤ℎ𝑒𝑛	𝑖 = 2
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Using Laplace transformation 𝑓̅ (s) of 𝑓(𝑡)given by 
𝑓 ̅(s) = ∫ 𝑒#$%C

& 𝑓(𝑡) dt,    Re (s) > 0  
in the equations (1) - (7) along with the initial conditions. We have  

(s + l + (i-j) q)𝑃Ti,j,0 (s) = µ1 𝑃Ti,j-1,1,1 (s) + µ2 𝑃Ti,j-1, 1,2 (s) + Pi,j,0 (0)                        i ≥j ≥ 0                                (8)
  
(s + l+ µ1) 𝑃T1, 0,1,1 (s)=  la1 𝑃T0, 0,0 (s)                                                                                                                (9) 
(s + l+ µ2) 𝑃T1, 0,1,2 (s)=  la2 𝑃T0, 0,0 (s)                                                                                                              (10)
  
(s + l+ µ1 + (i-j-1)q) 𝑃Ti,j,1,1 (s)=  la1 𝑃Ti-1,j,0 (s) + (i-j)q a1𝑃Ti,j,0 (s) + µ2𝑃Ti,j-1,2 (s) 
                                                                                                    i > j > 0                             (11) 
 
(s + l+ µ2 + (i-j-1)q) 𝑃Ti,j,1,2 (s)=  la2 𝑃Ti-1,j,0 (s) + (i-j)q a2𝑃Ti,j,0 (s) + µ1𝑃Ti,j-1,2 (s) 
                                                                                                    i > j > 0                         (12) 
(s+l+ µ1+ µ2) 𝑃Ti,0,,2(s)=lδi,,2{𝑃Ti-1,0,1,1(s)+𝑃Ti-1,0,1,2(s)}+ l  (1- 𝛿4#",B)𝑃Ti-1,j,2(s) 
                                                                                                    i ≥ 2                                  (13) 
 (s + l+ µ1+µ2) 𝑃Ti,j,2 (s)= (i-j-1)q {𝑃Ti,j, 1, 1(s)+ 𝑃Ti,j,1,2(s)}+ l {𝑃Ti-1,j,1,1(s) +𝑃Ti-1,j,1,2(s)}   
                                          + l  (1- 𝛿4#",B) 𝑃Ti-1,j,2(s)                                              i>2, i > j > 0                       (14) 

where 𝛿4#",B = J1, 𝑤ℎ𝑒𝑛	𝑖 − 2 = 𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝛿4," = J1, 𝑤ℎ𝑒𝑛	𝑖 = 2
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
III. Solution of the Problem 
 
Solving equations (8) to (14) recursively, we have 
𝑃T0,0,0 (s) = !

$:l
                                               (15) 

𝑃T1,1,0 (s) =U lD(
(E:l:F(	)

F(
($:l))

	+ lD)
(E:l:F)	)

F)
($:l))

V                                           (16) 

𝑃Ti,2,0 (s) = F(F)
(E:l:(4#")G	)

W !
(E:l:F(:(4#")G	)

+	 !
(E:l:F):(4#")G	)

X 𝑃Ti, 0, 2 (s)                      i ≥ 3                       (17) 

𝑃T1,0,1,1 (s) = !
$:l

lD(
(E:l:F(	)

                                (18) 

𝑃T1,0,1,2 (s) = !
$:l

lD)
(E:l:F)	)

                                (19) 

𝑃T2,1,1,1 (s) = lD(
(E:l:F(	)

𝑃T1,1,0 (s) + W F)
(E:l:F(	)

U l
(E:l:F(:F)	)

V	{P7!,&,!,!(s) +	P7!,&,!,"(s)}X                                   (20)
  
𝑃T2,1,1,2 (s) = lD)

(E:l:F)	)
𝑃T1,1,0 (s) + W F(

(E:l:F)	)
U l
(E:l:F(:F)	)

V	{P7!,&,!,!(s) +	P7!,&,!,"(s)}X                                    (21) 

𝑃Ti,1,1,1 (s) =  ] F)
(E:l:F(:(4#")q	)

l3#(

($:l:F(:F))3#(
{P7!,&,!,!(s) +	P7!,&,!,"(s)}^                 i > 2                              (22) 

𝑃Ti,1,1,2 (s) =  ] F(
(E:l:F):(4#")q	)

l3#(

($:l:F(:F))3#(
{P7!,&,!,!(s) +	P7!,&,!,"(s)}^                 i > 2                              (23) 

𝑃Ti,0,2 (s) = l3#(

($:l:F(:F))3#(
{𝑃T1,0,1,1(s) + 𝑃T1,0,1,2(s)}        i>1                               (24) 

    𝑃T4,B,"	(𝑠) = _∑ U l
$:l:F(:F)

V
4#B#24#B

20! ηH
, (s){P7I:H,I,!,!(s) +	P7I:H,I,!,"(s)}a 

                                                                                                                                 i ≥ j+2, j ≥ 1                 (25) 

       where ηH
,  (s) = 

⎩
⎪
⎨

⎪
⎧ 1											𝑓𝑜𝑟	𝑘 = 1
U1 + (2#!)q

$:l:F(:F)
V 					𝑓𝑜𝑟	𝑘 = 2	𝑡𝑜	𝑖 − 𝑗 − 1

(2#!)q
$:l:F(:F)

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗
              

𝑃Ti,i-1,1,1 (s) = lD(
(E:l:F(	)

𝑃Ti-1,i-1,0 (s) + GD(
(E:l:F(	)

𝑃Ti,i-1,0 (s) +  F)
(E:l:F(	)

𝑃Ti,i-2,2 (s)               i > 2                     (26) 
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𝑃Ti,i-1,1,2 (s) = lD)
(E:l:F)	)

𝑃Ti-1,i-1,0 (s) + GD)
(E:l:F)	)

𝑃Ti,i-1,0 (s) +  F(
(E:l:F)	)

𝑃Ti,i-2,2 (s)               i > 2                            (27)
  
𝑃T4,B,!,!	(𝑠) =

lD(
(E:l:J(:(4#B#!)q)

𝑃Ti-1,j,0(s) + (4#B)qD	(
(E:l:F(:(4#B#!)q	)

𝑃Ti,j,0 (s) + F)
(E:l:F(:(4#B#!)q	)

   

  _∑ U l
$:l:F(:F)

V
4#B#24#B

20& ηH
, (s){P7I:H,I#!,!,!(s) +	P7I:H,I#!,!,"(s)}a  

                                                                                                                                  i ≥ j+2, j ≥ 2                (28) 

𝑤ℎ𝑒𝑟𝑒	ηH
, (s) =

⎩
⎪⎪
⎨

⎪⎪
⎧

1											𝑓𝑜𝑟	𝑘 = 0

]1 +
𝑘q

𝑠 + l+ 𝜇! + 𝜇"
^ 					𝑓𝑜𝑟	𝑘 = 1	𝑡𝑜	𝑖 − 𝑗 − 1

𝑘q
𝑠 + l+ 𝜇! + 𝜇"

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗
 

𝑃T4,B,!,"	(𝑠) =
lD)

(E:l:J):(4#B#!)q)
𝑃Ti-1,j,0(s) + (4#B)q	D)

(E:l:F):(4#B#!)q	)
𝑃Ti,j,0 (s) + F(

(E:l:F):(4#B#!)q	)
   

  _∑ U l
$:l:F(:F)

V
4#B#24#B

20& ηH
, (s){P7I:H,I#!,!,!(s) +	P7I:H,I#!,!,"(s)}a  

                                                                                                                                  i ≥ j+2, j≥2                  (29) 

𝑤ℎ𝑒𝑟𝑒	ηH
, (s) =

⎩
⎪
⎨

⎪
⎧

1											𝑓𝑜𝑟	𝑘 = 0

]1 +
𝑘q

𝑠 + l+ 𝜇! + 𝜇"
^ 					𝑓𝑜𝑟	𝑘 = 1	𝑡𝑜	𝑖 − 𝑗 − 1

𝑘q
𝑠 + l+ 𝜇! + 𝜇"

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗

 

 
𝑃Ti,i,0 (s) = U K

($:l)
V W FD(

(E:l:F(	)
+	 FD)

(E:l:F)	)
X 𝑃Ti-1,i-1,0 (s) + U G

($:l)
V W FD(

(E:l:F(	)
+	 FD)

(E:l:F)	)
X 𝑃Ti,i-1,0 (s) 

                   +UF(:F)($:l)
V W !

(E:l:F(	)
+	 !

(E:l:F)	)
X 𝑃Ti,i-2,2 (s)                                             i >1                             (30)

   
𝑃T4,B,&	(𝑠)

=
𝜇!

(s + l+ (𝑖 − 𝑗)q	) g
la!

(s + l+ 𝜇! + (𝑖 − 𝑗)q)
𝑃T4#!,B#!,&(𝑠) 	+	

(𝑖 − 𝑗 + 1)qa!
(s + l+ 𝜇! + (𝑖 − 𝑗)q)

𝑃T4,B#!,&(𝑠) 	

+	
𝜇"

(s + l+ 𝜇! + (𝑖 − 𝑗)q	)
i 8 ]

l
𝑠 + l+ 𝜇! + 𝜇"

^
{(4#B):!}#24#B:!

20&

ηH
, (s){P7(I#!):H,I#",!,!(s) +	P7(I#!):H,I#",!,"(s)}jk 

+
𝜇"

(s + l+ (𝑖 − 𝑗)q	) g
la"

(s + l+ 𝜇" + (𝑖 − 𝑗)q)
𝑃T4#!,B#!,&(𝑠) 	+	

(𝑖 − 𝑗 + 1)qa"
(s + l+ 𝜇" + (𝑖 − 𝑗)q)

𝑃T4,B#!,&(𝑠) 	

+	
𝜇!

(s + l+ 𝜇" + (𝑖 − 𝑗)q	)
i 8 ]

l
𝑠 + l+ 𝜇! + 𝜇"

^
{(4#B):!}#24#B:!

20&

ηH
, (s){P7(I#!):H,I#",!,!(s) +	P7(I#!):H,I#",!,"(s)}jk 

                                                                                                                                      i > j ≥3                     (31)                                                                                                                                               

where ηH
,  (s) = 

⎩
⎪
⎨

⎪
⎧ 1											𝑓𝑜𝑟	𝑘 = 0
U1 + 2q

$:l:F(:F)
V 					𝑓𝑜𝑟	𝑘 = 1	𝑡𝑜	𝑖 − 𝑗

2q
$:l:F(:F)

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗 + 1
 

Taking the Inverse Laplace transform of equations (15) to (31), we have 
P0,0,0(t) = 𝑒#l%                                                                                                                      (32) 
P1,1,0(t) =l	𝜇!a!(𝑡𝑒#l%)𝑒#(l:F()% + 	l	𝜇"	a"(𝑡𝑒#l%)𝑒#(l:F))%                                          (33) 

 Pi,2,0(t) = 𝜇!𝜇"𝑒#(l:(4#")q)% U
!

(F(:(4#")q	)
− ,#(5(-(3#))q	)'

(F(:(4#")q	)
V ∗Pi,0,2(t)+𝜇!𝜇"𝑒#(l:(4#")q)% U

!
(F):(4#")q	)

−
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																								,
#(5)-(3#))q	)'

(F):(4#")q	)
V ∗Pi,0,2(t)                                                                                i ≥ 3            (34) 

 P1,0,1,1(t) = la!𝑒#l% 	× U !
F(
− ,#5('

F(
V                                                                                                                             (35) 

P1,0,1,2(t) = la"𝑒#l% 	× U !
F)
− ,#5)'

F)
V                                                                                                                            (36) 

P2,1,1,1(t)=l	a!𝑒#(l:F()% ∗ P!,!,&(t) + Ul𝜇"𝑒#(l:F()% U
!

F(:F)
− ,#(5(-5))'

F(:F)
V ∗ nP!,&,!,!(t) + P!,&,!,"(t)oV  

                                                                                                                                                            (37) 

P2,1,1,2(t)=l	a"𝑒#(l:F))% ∗P1,1,0(t)+Ul𝜇!𝑒#(l:F))% U
!

F(:F)
− ,#(5(-5))'

F(:F)
V ∗ nP!,&,!,!(t) + P!,&,!,"(t)oV  

                                                                                                                                                                       (38) 

Pi,1,1,1(t)=pq𝜇"l
4#!𝑒#(l:F(:(4#")q	)% r !

(F(:F))3#(
−𝑒#(F(:F))%8 (%)7

N!

4#"

N0&

!
(F(:F))3#7

st ∗

																																																									nP!,&,!,!(t) + P!,&,!,"(t)ou                                            i >2                         (39)                           

Pi,1,1,2(t)=pq𝜇!l
4#!𝑒#(l:F):(4#")q	)% r !

(F(:F))3#(
−𝑒#(F(:F))%8 (%)7

N!

4#"

N0&

!
(F(:F))3#7

st ∗

																																																									nP!,&,!,!(t) + P!,&,!,"(t)ou                                            i >2                         (40) 

Pi,0,2(t) =Ul4#! %3#)

(4#")!
𝑒#(l:F(:F))%V* P1,0,1,1(t) +Ul4#! %3#)

(4#")!
𝑒#(l:F(:F))%V* P1,0,1,2(t) 

                                                                                                                                     i > 1                         (41) 
  

Pi,j,2(t) = qUl4#B#! %3#8#)

(4#B#")!
𝑒#(l:F(:F))%V	∗ 	 nPI:!,I,!,!(t) + PI:!,I,!,"(t)ot+ 

ivql4#B#2
𝑡4#B#2#!

(𝑖 − 𝑗 − 𝑘 − 1)! 𝑒
#(l:F(:F))%t

4#B#!

20"

∗ nPI:H,I,!,!(t) + PI:H,I,!,"(t)oj +				 

ivql4#B#2(k − 1)q
𝑡4#B#2

(𝑖 − 𝑗 − 𝑘)! 𝑒
#(l:F(:F))%t

4#B#!

20"

∗ nPI:H,I,!,!(t) + PI:H,I,!,"(t)oj 

             +]U(i − j − 1)q	𝑒#(l:F(:F))%V ∗ nPO,I,!,!(t) + PO,I,!,"(t)o^ 

                                         i ≥j+2, j≥1            (42) 
Pi,i-1,1,1(t) =l	a!𝑒#(l:F()% ∗Pi-1,i-1,0(t) +q	a!𝑒#(l:F()% ∗Pi,i-1,0(t) +𝜇"𝑒#(l:F()% ∗Pi,i-2,2(t) 
                                                                                                                                      i >2                            (43) 
 
Pi,i-1,1,2(t) =l	a"𝑒#(l:F))% ∗Pi-1,i-1,0(t) +q	a"𝑒#(l:F))% ∗Pi,i-1,0(t) +𝜇!𝑒#(l:F))% ∗Pi,i-2,2(t) 
                                                                                                                                     i >2                             (44) 
 
Pi,j,1,1(t) =  l	a!𝑒#(l:F(:(4#B#!)q)% ∗Pi-1, j,0(t) + (i-j)q	a!𝑒#(l:	F(:(4#B#!)q)% ∗Pi, j,0(t) 

   + p𝜇"l
4#B𝑒#(l:F(:(4#B#!)q)% r !

(F(:F))3#8
−𝑒#(F(:F))	%8 (%)7

N!

4#B#!

N0&

!
(F(:F))3#8#7

s ∗	nPI,I#!,!,!(t) +

PI,I#!,!,"(t)ou +

p𝜇"𝑒#(l:F(:(4#B#!)q)%8 l4#B#2
4#B#!

20!
r !
(F(:F))3#8#"

−𝑒#(F(:F))	%8 (%)7

N!

4#B#2#!

N0&

!
(F(:F))3#8#"#7

s ∗

																nPI:H,I#!,!,!(t) + PI:H,I#!,!,"(t)ou +

p𝜇"𝑒#(l:F(:(4#B#!)q)%8 l4#B#2(kq)
4#B#!

20!
r !
(F(:F))3#8#"-(

−𝑒#(F(:F))	%8 (%)7

N!

4#B#2

N0&

!
(F(:F))3#8#"-(#7

s ∗

																nPI:H,I#!,!,!(t) + PI:H,I#!,!,"(t)ou 
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+ W𝜇"(𝑖 − 𝑗)q𝑒#(l:F(:(4#B#!)q)% × U
!

(F(:F))
− ,#(5(-5))'

(F(:F))
V ∗ nPO,I#!,!,!(t) + PO,I#!,!,"(t)oX          

                                                                                                                                              i≥ j+2, j≥2                                      (45) 
 
Pi, j, 1,2(t) =  l	a"𝑒#(l:F):(4#B#!)q)% ∗Pi-1, j,0(t) + (i-j)q	a"𝑒#(l:	F):(4#B#!)q)% ∗Pi, j,0(t) 

   + p𝜇!l
4#B𝑒#(l:F):(4#B#!)q)% r !

(F(:F))3#8
−𝑒#(F(:F))	%8 (%)7

N!

4#B#!

N0&

!
(F(:F))3#8#7

s ∗		 nPI,I#!,!,!(t) +

										PI,I#!,!,"(t)ou +

p𝜇!𝑒#(l:F):(4#B#!)q)%8 l4#B#2
4#B#!

20!
r !
(F(:F))3#8#"

−𝑒#(F(:F))	%8 (%)7

N!

4#B#2#!

N0&

!
(F(:F))3#8#"#7

s ∗

																nPI:H,I#!,!,!(t) + PI:H,I#!,!,"(t)ou +

p𝜇!𝑒#(l:F):(4#B#!)q)%8 l4#B#2(kq)
4#B#!

20!
r !
(F(:F))3#8#"-(

−𝑒#(F(:F))	%8 (%)7

N!

4#B#2

N0&

!
(F(:F))3#8#"-(#7

s ∗

																nPI:H,I#!,!,!(t) + PI:H,I#!,!,"(t)ou 

+ W𝜇!(𝑖 − 𝑗)q𝑒#(l:F):(4#B#!)q)% × U
!

(F(:F))
− ,#(5(-5))'

(F(:F))
V ∗ nPO,I#!,!,!(t) + PO,I#!,!,"(t)oX          

 

                                                                                                                                                   i ≥j+2, j≥2                      (46) 
 

Pi,i,0(t) =ql𝜇!	a!𝑒#l% U
!
F(
− ,#5('

F(
V + l𝜇"	a"𝑒#l% U

!
F)
− ,#5)'

F)
Vt ∗Pi-1,i-1,0(t) + 

q𝜇!q	a!𝑒#l% U
!
F(
− ,#5('

F(
V + 𝜇"q	a"𝑒#l% U

!
F)
− ,#5)'

F)
Vt ∗Pi,i-1,0(t) + 

q𝜇!𝜇"𝑒#l% U
!
F(
− ,#5('

F(
V + 𝜇!𝜇"𝑒#l% U

!
F)
− ,#5)'

F)
Vt ∗Pi,i-2,2(t) 

                                                                                                                      i >1                                 (47) 

Pi, j, 0 (t) = 𝜇!l𝑎!𝑒#(l:(4#B)q)% U
!

F(:(4#B)q
− ,#(5(-(3#8)q)'

F(:(4#B)q
V   ∗Pi-1, j-1,0(t) +   

                𝜇!(𝑖 − 𝑗 + 1)q	𝑎!𝑒#(l:(4#B)q)%    U !
F(	:(4#B)q

− ,#(5(-(3#8)q)'

F(:(4#B)q
V   ∗Pi, j-1,0(t) +   

p𝜇!𝜇"l
4#B:! p∑ ∑

,#(l-(3#8)q)'		%(3#8-()#$(#!)!-(; $#(!#(<;∏ (!:.#/#(
0(12 >()<;∏ (!:/#)

0)12 >))<

P(4#B:!)#.Q!(-#!)!	(F()!(F(:F)#(4#B)q)(-$#!
.
-0!

4#B:!
.0! −

,#(l-5(	-(3#8)q)'

(F()(3#8-()(F(#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)(3#8-()(F(#(4#B)q)
u ∗ nPI#!,I#",!,!(t) + PI#!,I#",!,"(t)ou+ 

p𝜇!𝜇" ∑ l(4#B:!)#24#B
20! p∑ ∑

,#(l-(3#8)q)'		%((3#8-()#")#$(#!)!-(; $#(!#(<;∏ (!:.#/#(
0(12 >()<;∏ (!:/#)

0)12 >))<

P((4#B:!)#2)#.Q!(-#!)!	(F()!(F(:F)#(4#B)q)(-$#!
.
-0!

(4#B:!)#2
.0! −

,#(l-5(	-(3#8)q)'

(F()((3#8-()#")(F(#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)((3#8-()#")(F(#(4#B)q)
u ∗ 	 nP(I#!):H,I#",!,!(t) + P(I#!):H,I#",!,"(t)ou +

𝜇!𝜇" ∑ (𝑘q)l(4#B:!)#24#B
20!  

⎣
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧

8 8
𝑒#(l:(4#B)q)%		𝑡(((4#B:!)#2):!)#.(−1)-:!: .#!-#!;:∏ (1 +@#A#!

>(0& g!);:∏ (1 +A#"
>)0& g");

:(((𝑖 − 𝑗 + 1) − 𝑘) + 1) − 𝑙;! (𝑚 − 1)!	(𝜇!)-(𝜇! + 𝜇" − (𝑖 − 𝑗)q)!:.#-

.

-0!

((4#B:!)#2):!

.0!

−
𝑒#(l:F(	:(4#B)q)%

(𝜇!)(((4#B:!)#2):!)(𝜇! − (𝑖 − 𝑗)q)
+

𝑒#(l:F(:F))%

(𝜇! + 𝜇" − (𝑖 − 𝑗)q)(((4#B:!)#2):!)(𝜇! − (𝑖 − 𝑗)q) ⎭
⎪
⎬

⎪
⎫

																																	

∗ 	 nP(I#!):H,I#",!,!(t) + P(I#!):H,I#",!,"(t)o

⎦
⎥
⎥
⎥
⎥
⎤
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	+ �𝜇!𝜇"(𝑖 − 𝑗 + 1)q �
,#(l-(3#8)q)'

(F()(F(:F)#(4#B)q)
− ,#(l-5(-(3#8)q)'

(F()(F(#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)(F(#(4#B)q)
� 	∗ 		 nPO,I#",!,!(t) +

												PO,I#",!,"(t)o� 			+   

			𝜇"l𝑎"𝑒#(l:(4#B)q)% U
!

F):(4#B)q
− ,#(5)-(3#8)q)'

F):(4#B)q
V   ∗Pi-1, j-1,0(t) +   

          𝜇"(𝑖 − 𝑗 + 1)q	𝑎"𝑒#(l:(4#B)q)%    U !
F)	:(4#B)q

− ,#(5)-(3#8)q)'

F):(4#B)q
V   ∗Pi, j-1,0(t) +   

p𝜇!𝜇"l
4#B:! p∑ ∑

,#(l-(3#8)q)'		%(3#8-()#$(#!)!-(; $#(!#(<;∏ (!:.#/#(
0(12 >()<;∏ (!:/#)

0)12 >))<

P(4#B:!)#.Q!(-#!)!	(F))!(F(:F)#(4#B)q)(-$#!
.
-0!

4#B:!
.0! −

,#(l-5)	-(3#8)q)'

(F))(3#8-()(F)#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)(3#8-()(F)#(4#B)q)
u ∗ nPI#!,I#",!,!(t) + PI#!,I#",!,"(t)ou+ 

p𝜇!𝜇" ∑ l(4#B:!)#24#B
20! p∑ ∑

,#(l-(3#8)q)'		%((3#8-()#")#$(#!)!-(; $#(!#(<;∏ (!:.#/#(
0(12 >()<;∏ (!:/#)

0)12 >))<

P((4#B:!)#2)#.Q!(-#!)!	(F))!(F(:F)#(4#B)q)(-$#!
.
-0!

(4#B:!)#2
.0! −

,#(l-5)	-(3#8)q)'

(F))((3#8-()#")(F)#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)((3#8-()#")(F)#(4#B)q)
u ∗ 	 nP(I#!):H,I#",!,!(t) +

												P(I#!):H,I#",!,"(t)ou +	𝜇!𝜇"∑ (𝑘q)l(4#B:!)#24#B
20!  

⎣
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧

8 8
𝑒#(l:(4#B)q)%		𝑡(((4#B:!)#2):!)#.(−1)-:!: .#!-#!;:∏ (1 +@#A#!

>(0& g!);:∏ (1 +A#"
>)0& g");

:(((𝑖 − 𝑗 + 1) − 𝑘) + 1) − 𝑙;! (𝑚 − 1)!	(𝜇")-(𝜇! + 𝜇" − (𝑖 − 𝑗)q)!:.#-

.

-0!

((4#B:!)#2):!

.0!

−
𝑒#(l:F(	:(4#B)q)%

(𝜇")(((4#B:!)#2):!)(𝜇" − (𝑖 − 𝑗)q)
+

𝑒#(l:F(:F))%

(𝜇! + 𝜇" − (𝑖 − 𝑗)q)(((4#B:!)#2):!)(𝜇" − (𝑖 − 𝑗)q) ⎭
⎪
⎬

⎪
⎫

																																	

∗ 	 nP(I#!):H,I#",!,!(t) + P(I#!):H,I#",!,"(t)o

⎦
⎥
⎥
⎥
⎥
⎤

 

+�𝜇!𝜇"(𝑖 − 𝑗 + 1)q �
,#(l-(3#8)q)'

(F))(F(:F)#(4#B)q)
− ,#(l-5)-(3#8)q)'

(F))(F)#(4#B)q)
+ ,#(l-5(-5))'

(F(:F)#(4#B)q)(F)#(4#B)q)
� 	∗ 	 nPO,I#",!,!(t) +

										PO,I#",!,"(t)o�                                                   i > j ≥3                         (48) 

 
IV. Measures of Effectiveness 

I. The Laplace transform of the probability 𝑃4.(𝑡) that exactly i units arrive by time t is : 

𝑃T4.(𝑠) = � 𝑃T4,B	(𝑠)
4
B0& = l3

($:l)3-(
 ;i > 0                                                                                    (49) 

 
And its Inverse Laplace transform is 

𝑃4.(𝑡)=
,#l'	(l%)3

4!
                                               (50) 

 
The basic assumption on primary arrivals is that it forms a Poisson process and above analysis of 
abstract solution also verifies the same. 
 
II.The probability that exactly j customers have been served by time t. 𝑃.B	(𝑡) in terms of 𝑃4,B	(𝑡) is 
given by:        

𝑃.B	(𝑡) =8𝑃4,B	(𝑡)
C

40B

 

III. From the abstract solution of our model, we verified that the sum of all possible probabilities       
is one i.e. taking summation over i and j on equations (15)-(31) and adding, we get 
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88n𝑃T4,B,&	(𝑠) + 𝑃T4,B,!,!(𝑠) + 𝑃T4,B,!,"(𝑠) + 𝑃T4,B,"(𝑠)o =
1
𝑠

4

B0&

∞

40&

 

Taking inverse Laplace transformation, we get 

88n𝑃4,B,&	(𝑡) + 𝑃4,B,!,!	(𝑡) + 𝑃4,B,!	,"(𝑡) + 𝑃4,B,"	(𝑡)o = 1,
4

B0&

∞

40&

 

which is a verification of our results. 
IV. Converting two-state model into single state model: 

 
Define 	𝑄1,-(𝑡) as the probability that there are n customers in the system at time t and the servers  
are free or busy according as m=0,1,2.  

           The probability of exactly n customers in the system at time t in terms of	𝑃4,B	,&(𝑡) and 	𝑃4,B	,-(𝑡): 
    When the server is free, it is defined by probability	𝑄1,&	(𝑡) 

𝑄1,&	(𝑡) = 	8𝑃B:1,B,&(𝑡)
∞

B0&

 

In this case, the number of customers in the orbit is calculated with the help of following formula: 
 n = (number of arrivals – number of departures)    
When only one server (m=1) is busy, it is defined by probability 𝑄1,-,2(𝑡) 
																																																														𝑄1,-,2	(𝑡) = 	� 𝑃B:1:-,B,-,2(𝑡)

∞
B0&                            (k = 1, 2) 

In this case, the number of customers in the orbit is calculated with the help of following formula: 
n = (number of arrivals – number of departures – m)   
When both servers (m=2) are busy, it is defined by probability 𝑄1,-(𝑡) 
																																																														𝑄1,-	(𝑡) = 	� 𝑃B:1:-,B,-(𝑡)

∞
B0&    

In this case, the number of customers in the orbit is calculated with the help of following formula: 
n = (number of arrivals – number of departures – m)   
Using above definitions and letting 𝜇!=𝜇"=1 from the equations (1) to (7) the set of equations in 
statistical equilibrium are: 
 (l+ nq) Qn, 0=  Qn,1                                                          n ≥ 0                               (51) 
(l+ nq + 1) Qn, 1,1= la1 Qn, 0 + (n+1) q a1Qn+1,0+  Qn,2                            n ≥ 0                         (52)
    
(l+ nq + 1) Qn, 1,2= la2 Qn, 0 + (n+1) q a2Qn+1,0+  Qn,2                            n ≥ 0         (53)  
(l+ 2) Qn, 2 = l Qn, 1 + (n+1)q Qn+1,1 + l Qn-1, 2(1-δn,0)n≥ 0                                                    (54) 

  where δn,0 = J1, 𝑤ℎ𝑒𝑛	𝑛 = 0
0, 𝑤ℎ𝑒𝑛	𝑛 ≥ 1 

 Using Qn, 1,1 + Qn, 1,2 = Qn, 1 and letting a1= a2 =  
!
"
 in equations (51) to (54) then the set of equations are: 

(l+ nq) Qn, 0=  Qn,1                                                         n ≥ 0                               (55) 
(l+ nq + 1) Qn, 1= lQn, 0 + (n+1) q Qn+1,0 + 2Qn,2                           n ≥ 0                               (56)       
(l+ 2) Qn, 2 = l Qn, 1 + (n+1) q Qn+1,1 + l Qn-1, 2 (1-δn,0)                                       n ≥ 0                               (57) 

                                               where δn,0 = J1, 𝑤ℎ𝑒𝑛	𝑛 = 0
0, 𝑤ℎ𝑒𝑛	𝑛 ≥ 1 

            which coincide with the results (2.1) - (2.3) of Falin and Templeton [5]. 
 
V. Special Case: 
When there are two servers then various probabilities can be obtained from equations (32)             
to (48) by letting 𝜇!=𝜇"=	𝜇, a1= a2 =  

!
"
and using the relation Pi, j,1,1(t) + Pi, j,1,2(t) = Pi, j,1(t),  we get 

P1,0,1(t) = l𝑒#l% 	× U!
µ
− ,#9'

µ
V                                                                                                                                                 (58) 

 P1,1,0(t) =lµ(𝑡𝑒#l%)𝑒#(l:µ)%                                           (59) 
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Pi,0,2(t) = Ul4#! %3#)

(4#")!
𝑒#(l:"µ)%V*  P1,0,1(t)                                                               i > 1                                 (60) 

Pi,i,0(t) =lµ𝑒#l% U!
µ
− ,#9'

µ
V ∗Pi-1,i-1,0(t) + µq𝑒#l% U!

µ
− ,#9'

µ
V ∗Pi,i-1,0(t) 

                                        + 2µ"𝑒#l% U!
µ
− ,#9'

µ
V ∗Pi,i-2,2(t)                           i >1           (61) 

P2,1,1(t) =l𝑒#(l:µ)% ∗P1,1,0(t) + 2lµ𝑒#(l:µ)% U !
"µ
− ,#)9'

"µ
V ∗P1,0,1(t)             (62) 

Pi,1,1(t) =p2µl4#!𝑒#(l:µ:(4#")q	)% r !
("µ)3#(

−𝑒#"µ%8 (%)7

N!

4#"

N0&

!
("µ)3#7

su ∗P1,0,1(t)  

                                                                                                                              i >2                         (63) 
Pi,i-1,1(t) =l𝑒#(l:µ)% ∗Pi-1,i-1,0(t) +q𝑒#(l:µ)% ∗Pi,i-1,0(t) + 2µ𝑒#(l:µ)% ∗Pi,i-2,2(t)    
                    i >2                                   (64) 

Pi,2,0(t) = 2µ"𝑒#(l:(4#")q)% U !
(µ:(4#")q	)

− ,#(9-(3#))q	)'

(µ:(4#")q	)
V ∗Pi,0,2(t)                            i ≥3                                   (65) 
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20"
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(4#B#2)!
𝑒#(l:"µ)%V

4#B#!

20"

*  Pj+k,j,1(t)  + :(i − j − 1)q𝑒#(l:"µ)%;*  Pi,j,1(t) 

                   i ≥ j+2, j≥1          (66) 
Pi,j,1(t) =  l𝑒#(l:µ	:(4#B#!)q)% ∗Pi-1, j,0(t) + (i-j)q𝑒#(l:µ	:(4#B#!)q)% ∗Pi, j,0(t) 

   + 2µl4#B𝑒#(l:µ	:(4#B#!)q)% r !
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!
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20!
(kq) 
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                                     (67) 
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The above equations coincide with that of Singla & Kalra [14]. 
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V. Numerical Solution 
 

Using MATLAB programming the numerical results are generated for the case when r U=
l

F(:F)
V=0.3,   hU= q

F(:F)
V = 0.6 , 𝑟! U=

F(
F(:F)

V = 0.3 ,𝑎!0		0.4, 𝑎"0		0.6.		From the numerical results, it is 

found that the sum of all the probabilities at any instant approaches to one. In table 1, we show 
some of the significant probabilities at different instants of time whose sum is found close to one. 
 

Table 1: Some significant probabilities at different instants of time. 
At time t=1 

P0,0,0 P1,1,0 P1,0,1,1 P2,1,1,1 P1,0,1,2 P2,1,1,2 P2,0,2 
0.7408 0.0495 0.0768 0.0069 0.0959 0.0046 0.0204 

 
P3,0,2 P3,1,2 Sum 
0.0018 0.0008 0.9975 

 
At time t=5 

P0,0,0 P1,1,0 P2,2,0 P3,3,0 P1,0,1,1 P2,1,1,1 P3,2,1,1 P1,0,1,2 P2,1,1,2 
0.2231 0.2097 0.0947 0.0260 0.0693 0.0759 0.0330 0.0556 0.0463 

 
P3,2,1,2 P2,0,2 P3,0,2 P3,1,2 P4,1,2 P4,2,2 P5,3,2 Sum   
0.0196 0.0341 0.0087 0.0315 0.0079 0.0107 0.0024 0.9147 

 
At time t=10 

P0,0,0 P1,1,0 P2,2,0 P3,3,0 P5,2,0 P5,5,0 P1,0,1,1 
0.0498 0.1176 0.1378 0.1052 0.0579 0.0242 0.0189 

 
 
 
 

P4,3,1,1 P1,0,1,2 P2,1,1,2 P3,2,1,2 P4,3,1,2 P5,4,1,2 P6,5,1,2 P2,0,2 P3,0,2 P3,1,2 

0.0433 0.0128 0.0288 0.0331 0.0249 0.0134 0.0055 0.0094 0.0028 0.0216 

 
P4,1,2 P4,2,2 P5,3,2 P6,3,2 P6,4,2 P7,4,2 P7,5,2 Sum 
0.0069 0.0241 0.0174 0.0063 0.0089 0.0074 0.001 0.9062 

 
At time t=20 

P1,1,0 P2,2,0 P3,3,0 P4,4,0 P5,5,0 P6,6,0 P7,6,0 
0.0132 0.0354 0.0627 0.0886 0.0876 0.0754 0.0071 

 
 
 
 

P5,4,1,1 P6,5,1,1 P7,6,1,1 P3,2,1,2 P4,3,1,2 P5,4,1,2 P6,5,1,2 P1,0,2 P5,3,2 

0.0353 0.0372 0.0741 0.0088 0.0155 0.0204 0.0213 0.0310 0.0119 
 

P2,1,1,1 P3,2,1,1 P4,2,1,1 

0.0480 0.0572 0.0047 

P7,7,0 P3,2,1,1 P4,3,1,1 

0.2357 0.0148 0.0265 
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At time t=40 
P5,5,0 P6,6,0 P7,7,0 P7,6,1,1 P1,0,2 P7,5,2 Sum  

0.0096 0.0180 0.9183 0.0242 0.0075 0.0027 0.9803 
 

 
V. Busy Period Probabilities 

In this section, we discuss some interesting numerical results about busy period distribution of 
the server and busy period distribution of the system. 
The probability when the one or both servers are busy is given  

P (Servers one or both busy) =8 U𝑃4,B,!,!	(𝑡) +	𝑃4,B,!,"	(𝑡) + 𝑃4,B,"	(𝑡)V
4SBT&

   

The probability when the system is busy is given by 

         P (System is busy) = 8 U𝑃4,B,&	(𝑡) + 𝑃4,B,!,!	(𝑡) +	𝑃4,B,!,"	(𝑡) + 𝑃4,B,"	(𝑡)V
4SBT&

 

The numerical results are generated using MATLAB programming for the desired probabilities. 
The probability when system is busy and the probability when one or both servers are busy for 
different values of r U= l

F(:F)
Vat hU= q

F(:F)
V = 0.6 , 𝑟! U=

F(
F(:F)

V = 0.3 , 𝑎!		 = 0.4, 𝑎"		 = 0.6		 are 

listed in Table 2. 
 

Table 2: Probability of system busy and one or both servers busy (𝑟! = 0.3, 𝑎!		 =	0.4, 𝑎"	 =	0.6 ). 
 

 Probability (System busy) h=0.6  Probability (Servers busy) h=0.6 
t r=0.3 r=0.6 r=0.9 r=0.3 r=0.6 r=0.9 
0 0 0 0 0 0 0 
1 0.2082 0.3734 0.5045 0.2082 0.3732 0.5039 
2 0.314 0.532 0.6826 0.3135 0.5294 0.6768 
3 0.3754 0.6164 0.7685 0.3737 0.6088 0.754 
4 0.4145 0.6684 0.8184 0.4111 0.6547 0.7949 
5 0.441 0.7035 0.8504 0.4357 0.6838 0.8176 
6 0.4598 0.7283 0.8699 0.4525 0.7028 0.8266 
7 0.4733 0.7452 0.8759 0.4644 0.714 0.8207 

 
In figure 1, probability (system busy) and probability (one or both servers busy) are studied by 
plotting these against time for the case (r=0.6, h=0.6,𝑟! = 0.3, 𝑎!		 =	0.4, 𝑎"		 =	0.6). From this figure 
it is apparent that the probability when the system is busy always remains more than the 
probability when the (server / servers)are busy. 

 

P6,4,2 P7,4,2 P7,5,2 Sum  

0.0155 0.0080 0.0237 0.9497 
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Figure 1 : Probability (system busy) and Probability (server/servers busy) against time for 

r=0.6, h=0.6 
 

The probability (system busy) and the probability (one or both servers are busy) are plotted in 
figures 2 and 3 for different values of r for the case ( h=0.6, 𝑟! = 0.3, 𝑎!	 =	0.4,𝑎"		 =	0.6). From these 
figures it is clearly visible for higher values of value of r both the probabilities achieved greater 
highest values for some t, but this trend reverses for higher values of t. 

 
 

 
Figure 2: Effect of r on probability (system busy) against time 
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Figure 3: Effect of r on probability (servers busy) against time 

 
VI. Conclusion 

This paper considers a two state retrial queueing system having two non- identical parallel 
servers, which can be used in practical modeling of computer and communication systems. The 
transient state solution of the model is obtained and some measures of performance are derived. 
Due to the two-dimensional nature of the model under study, factors are clearly understood and 
well quantified. Further, the model can be converted into a model with the total number of 
customers in the system. Numerical results and busy period distribution demonstrate the 
influence of changing arrival rate on behavior of the system. 
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Abstract

This article presents a novel discrete distribution with a single parameter, called the discrete Teissier
distribution. It is noted that this model, with one parameter, offers a high degree of fitting flexibility as it
is capable of modelling equi-, over-, and under-dispersed, positive and negative skewed, and increasing
failure rate datasets. In this article, we have explored its numerous essential distributional features such
as recurrence relation, moments, generating function, index of dispersion, coefficient of variation, entropy,
survival and hazard rate functions, mean residual life and mean past life functions, stress-strength
reliability, order statistics, and infinite divisibility. The classical point estimators have been developed
using the method of maximum likelihood, method of moment, and least-squares estimation, whilst an
interval estimation based on Fisher’s information has also been presented. Finally, the applicability of the
suggested discrete model has been demonstrated using two complete real datasets.

Keywords: COVID-19; Discrete Teissier distribution; Maximum Likelihood estimation; Method of
moment estimation; Least square estimation

1. Introduction

In today’s competitive world, the data generated from numerous sectors such as engineering,
finance, and medical science, among others, is getting increasingly complicated. Therefore,
we need distributions that are best suited for the analysis of this complex data. As a result,
during the last three decades, developing a new probability distribution has become a major
focus of statistical study. However, much of this research has focused on developing continuous
probability distributions. But, there may be situations when discrete distributions are better
appropriate for data modelling, or when the data generated is discrete. For example, in reliability
engineering, the number of successful cycles before failure when a device is working in the cycle,
the number of times a device is switched on/off; in survival analysis, the survival times for
those suffering from diseases such as lung cancer or the period from remission to relapse may be
recorded as the number of days/weeks, the number of deaths, or daily cases due to the COVID-19
pandemic observed over a specified duration, etc. Furthermore, the count phenomenon arises
in many practical situations, such as the number of earthquakes that occur in a calendar year,
the number of absences, the number of accidents, the number of species types in ecology, the
number of insurance claims, and so on. Hence, it seems reasonable to model such scenarios using
appropriate discrete distributions.
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Due to the fact that conventional discrete distributions such as the Binomial, Poisson, Geomet-
ric, and Negative Binomial were insufficient to model a variety of discrete data. [21] suggested
a novel approach in order to build a new discrete model through the survival function of a
continuous model. [3] named this approach the survival discretization method. One of the most
significant advantages of this technique is that the discrete distribution that has been developed
preserves the same functional form of the survival function as its continuous counterpart. As
a result of this feature, the various reliability properties of the distribution remain unaltered.
According to this methodology, for a given continuous random variable (RV) X with survival
function (SF) SX(x) = P(X ≥ x), the discretized version can be derived as

P(Y = y) = P(y ≤ X ≤ y + 1)
= SX(y)− SX(y + 1); y = 0, 1, 2, 3, ...

(1)

Over the last two decades, this approach has gotten a lot of attention. Using this technique,
[21] gave a discretized version of the normal distribution. Following this, [22] obtained discrete
Rayleigh distribution. A comprehensive analysis of the evolution of the discrete distribution up
to 2014 was provided by [3]. Then afterwards, a large number of significant discrete distributions
have emerged in the literature. For example,[1], [11],[29], [28], [6], and the references cited therein.
Most recently, [7] gave a discrete analogue of the odd Weibull-G family of distributions. They
discussed the classical and Bayesian estimation and showed the applicability of the proposed
family to count datasets.

In this paper, we have proposed the discrete analogue of the Teissier model [27] named
discrete Teissier (DT) distribution using the survival discretization method. Recently, the Teissier
distribution comes light when [26] introduced a two-parameter exponentiated Teissier distribution.
The main objectives of proposing the DT model can be summarized as follows:

• An important objective of the proposed study is to provide a discrete model that has
greater flexibility with less number of parameters so that the form of various distributional
characteristics is easily manageable and easy to analyze the real datasets.

• The discrete data generated from many practical studies, such as mortality experiments,
industrial experiments, etc., show constant or increasing failure rates, so we want to develop
a discrete model with a monotonically increasing failure rate function.

• To produce a model that not only fit an equi-, over-, and under-dispersed real data, that
is also capable of modelling a positively skewed, negatively skewed, platykurtic, and
leptokurtic dataset.

• To provide consistently better fits than other well-known discrete models in the existing
statistical literature.

The rest of the article is organized as follows: Section 2 introduces the one-parameter DT
distribution. In Section 3 some important distributional and reliability characteristics are studied.
In section 4, we estimate the parameter of DT distribution by different classical methods. In
Section 5, numerical illustrations using empirical and real datasets have been presented. Finally,
some concluding remarks are given in Section 6.

2. Discrete Teissier distribution

If X follows univariate continuous Teissier distribution with parameter α then its probability
density function (PDF) and SF can be written as

f (x, α) = α(exp(αx)− 1) exp(αx− eαx + 1); α > 0, x > 0, (2)

S(x) = exp(αx− eαx + 1); α > 0, x > 0. (3)

Using the survival discretization approach (1), the DT distribution can be obtained as

py = P[Y = y] = SX(y)− SX(y + 1)
= exp(1) exp(αy)(exp(−eαy)− exp(α− eα(y+1))); y = 0, 1, 2, ..., α > 0.

(4)
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For ease of notation, after re-parametrization θ = exp(α), the probability mass function (PMF) in
(4) can be written as

py = P[Y = y] = exp(1)θy(exp(−θy)− θ exp(−θ(y+1))); y = 0, 1, 2, ..., θ > 1. (5)

The cumulative distribution function (CDF) corresponding to PMF (5) is

F(x) = 1− θy+1 exp(1− θ(y+1)); y = 0, 1, 2, ..., θ > 1. (6)

3. Statistical properties

3.1. The Shape of the Probability Mass Function

The PMF plots of the DT distribution for different parametric values are shown in Figure 1. The
PMF of the suggested distribution may exhibit decreasing, bell-shaped, and unimodal (right-
skewed) shapes, as seen in Figure 1. Furthermore, when θ is increased, the degree of asymmetry
and peakedness of the PMF increases. The limiting behavior of DT distribution for various choices
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Figure 1: The shapes of PMF of DT distribution for various values of the parameter θ.

of parameters at the boundary points is:
(i). lim

y→∞
py = 0, (ii). lim

θ→1
py = 0, (iii). lim

θ→∞
py = 1, for y = 0 and lim

θ→∞
py = 0, otherwise.

3.2. Recurrence Relation for Probabilities

The recursive relation shown below can be used to calculate probability mass for various values
of y,

P[Y = y + 1] =
θ(exp(−θ(y+1))− θ exp(−θ(y+2)))

(exp(−θy)− θ exp(−θ(y+1))
.P[Y = y]

It can be easily verifiable that [ PY(y)]2 ≥ PY(y + 1).PY(y− 1) for all y. Hence, the DT distribution
is log-concave. This concavity implies that the proposed distribution has a non-decreasing failure
rate, strongly unimodal, remains log-concave if truncated and its all the moments exists. The
convolution of the proposed model with any other discrete distribution is also unimodal and
log-concave ([13],[10]).
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3.3. Moments and related concepts

The moments of a probability distribution are important for measuring its different properties
such as mean, variance, skewness, kurtosis, etc. The rth raw moments v/

r of the DT distribution
can be obtained by using the relation

v/
r = E(Yr) =

∞
∑

y=0
yr py

= exp(1)
∞
∑

y=1

∞
∑

k=0
(−1)k (yr−(y−1)r)θ(k+1)y

|k .
(7)

Using Equation (7), the first four raw moments of the DT distribution are

v/
1 = E(Y) = exp(1)

∞

∑
y=1

∞

∑
k=0

(−1)k θ(k+1)y

|k , (8)

v/
2 = E(Y2) = exp(1)

∞

∑
y=1

∞

∑
k=0

(−1)k(2y− 1)
θ(k+1)y

|k , (9)

v/
3 = E(Y3) = exp(1)

∞

∑
y=1

∞

∑
k=0

(−1)k
(

3y2 − 3y + 1
) θ(k+1)y

|k , (10)

v/
4 = E(Y4) = exp(1)

∞

∑
y=1

∞

∑
k=0

(−1)k
(

4y3 − 6y2 + 4y− 1
) θ(k+1)y

|k . (11)

The variance of the DT distribution is

V(Y) = exp(1)
∞

∑
y=1

∞

∑
k=0

(−1)k(2y− 1)
θ(k+1)y

|k −
[

exp(1)
∞

∑
y=1

∞

∑
k=0

(−1)k θ(k+1)y

|k

]2

.

Using the raw moments in (8)-(11), we can easily find the skewness (Sk) and kurtosis (Kur) from
the following relations

Sk =
v/

3 − 3v/
2 v/

1 + 2
(

v/
1

)3

(Var(Y))3/2 and Kur =
v/

4 − 4v/
2 v/

1 + 6v/
2

(
v/

1

)2
− 3
(

v/
1

)4

(Var(Y))2 ,

respectively.
The moment generating function (MGF) is an alternative representation of a probability

distribution. It is an important tool to obtain various distributional characteristics. For the
proposed model, it can be obtained as

MY(t) = E [exp(ty)] =
∞
∑

y=0
exp(ty)py

= 1 + exp(1)θ (exp(t)− 1)
∞
∑

y=1
exp(−θy).(θ exp(t))y−1

.

The index of dispersion (IOD) is a technique for determining whether a data is equi-, under or
over-dispersed. If the IOD>1(<1), it indicates the over-dispersion, (under-dispersion), while if
IOD=1, it is equi-dispersed. In the case of the proposed model, the IOD is

IOD =
Var(Y)
E (Y)

=

∞
∑

y=1

∞
∑

k=0
(−1)k(2y− 1) θ(k+1)y

|k − exp(1)

[
∞
∑

y=1

∞
∑

k=0
(−1)k θ(k+1)y

|k

]2

∞
∑

y=1

∞
∑

k=0
(−1)k θ(k+1)y

|k

.
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The coefficient of variation (CV) is a relative measure of dispersion and is generally used to
compare two independent samples based on their variability. The higher value of CV indicates
higher variability. For DT distribution, the CV can be obtained as

CV =
(Var(Y))1/2

E (Y)
=

 ∞
∑

y=1

∞
∑

k=0
(−1)k(2y− 1) θ(k+1)y

|k − exp(1)

[
∞
∑

y=1

∞
∑

k=0
(−1)k θ(k+1)y

|k

]2
1/2

∞
∑

y=1

∞
∑

k=0
(−1)k θ(k+1)y

|k

.

It is not possible to get a closed-form of the above expressions, therefore, we use R software to
demonstrate these characteristics numerically. Table 1 lists some numerical results of the mean,
variance, skewness, kurtosis, IOD, and CV for the DT distribution under different setups of
parametric values. From this table, it can be concluded that:

• The mean of the DT distribution decreases when the value of θ increases.
• From the observed values of skewness, we can conclude that the DT distribution can be

used to model positively and negatively skewed data.
• The proposed model is appropriate for modelling leptokurtic and platykurtic datasets.
• The DT distribution can be used to analyze over-dispersed, under-dispersed, and equi-

dispersed datasets.
• As the value of θ rises, the CV tends to increase.

Table 1: Descriptive measures at different values of the parameter θ.

θ
Descriptive Measures

Mean Variance Skewness Kurtosis IOD CV
1.001 98.8320 8.2885 -20.5690 469.1044 0.0838 0.0291
1.005 94.5488 199.106 -3.6319 13.3240 2.1058 0.1492
1.010 81.4812 575.2569 -1.2399 0.4283 7.0599 0.2943
1.050 19.9959 81.0311 0.2090 -0.4210 4.0523 0.4501
1.100 9.9920 21.2957 0.2081 -0.4187 2.1312 0.4618
1.248 4.0301 4.0376 0.2035 -0.4075 1.0018 0.4985
1.750 1.2866 0.6969 0.1956 -0.4256 0.5416 0.6488
2.000 0.9422 0.4820 0.2086 -0.5048 0.5115 0.7368
2.500 0.5906 0.3074 0.2159 -0.9031 0.5205 0.9387

3.4. Entropy

Entropy is a crucial measure of complexity and uncertainty and is used in many fields including
problems identification in statistics, statistical inference, physics, econometrics, and pattern
recognition in computer science. One of the important entropy is Rényi entropy (RE) (see, [20]).
For the DT distribution, the RE can be defined as (ρ > 0, ρ 6= 1)

IR(ρ) =
1

1−ρ log ∑∞
y=0 pρ

y

= 1
1−ρ

(
ρ + log ∑∞

y=0 θρy(exp(−θy)− θ exp(−θ(y+1)))
ρ
) .

Another famous entropy called Shannon entropy (ShE) can be obtained as a particular case of RE
as ρ→ 1, where ShE = −E[log P(y; α)].

3.5. Survival and hazard rate functions

The SF and hazard rate function (HRF) of the DT distribution is respectively given by,

S (y; θ) = P(Y ≥ y) = θy exp(1− θy); y = 0, 1, 2, ...,
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H(y; θ) = P(Y = y|Y ≥ y) = 1− θ exp(θy − θ(y+1)); y = 0, 1, 2, ....

Figure 2 depicts various plots of HRF of the proposed model. From the HRF plot, it is easily
visible that the HRF of the DT distribution is increasing. Also, lim

y→∞
H(y; θ) = lim

θ→∞
H(y; θ) =

lim
θ→1

H(y; θ) = 1. Moreover, the reversed hazard rate function (RHRF) and the second rate of

failure (SRF) of the proposed model are

H∗(y; θ) = P(Y = y|Y ≤ y) =
exp(1)θy(exp(−θy)− θ exp(−θ(y+1)))

1− θy+1 exp(1− θ(y+1))
; y = 0, 1, 2, ...,

and

H∗∗(y; θ) = log
[

S(y)
S(y + 1)

]
= θy(θ − 1)− log θ; y = 0, 1, 2, ...

respectively.
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Figure 2: The shapes of HRF of DT distribution for various values of the parameter θ.

3.6. Mean residual lifetime and mean past lifetime function

The mean residual life (MRL) function is used extensively in a wide variety of areas, including
reliability engineering, survival analysis, and biomedical research since it represents the ageing
mechanism. It is well known that the MRL function characterizes the distribution function F
uniquely since it contains all of the model’s information. In discrete setup, the MRL, symbolized
by m(i), can be defined as

m(i) = E(Y− i|Y ≥ i) =
1

S(i)

∞

∑
j=i+1

S(j); i = 0, 1, 2, ...

If Y has DT distribution with parameter θ, then the MRL function of Y is

m(i) =
1

θi exp(−θi+1)

∞

∑
j=i+1

θ j exp(−θ j+1).

The expected inactivity time function or mean past life (MPL) function, denoted by m∗(i),
measures the time elapsed since the failure of X given that the system has failed sometime before
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‘i′. It has many applications in a wide variety of areas, including reliability theory and survival
analysis, actuarial research, and forensic science. In discrete setup, MPL function is defined as

m∗(i) = E(i− X|X < i) =
1

F(i− 1)

i

∑
k=1

F(k− 1); i = 1, 2, ....

By replacing the CDF (6) in the expression of m∗(i), we can easily obtain the MPL for the proposed
model.

3.7. Stress-strength analysis

The stress-strength (S− S∗) analysis is widely applicable in various areas including engineering,
medical science, psychology etc. The probability of failure is based on the probability of S
exceeding S∗. Suppose that the domain of S and S∗ is positive, then the S− S∗ reliability (R) can
be computed as

R = P[YS ≤ YS∗ ] =
∞

∑
y=0

PYS(y)SYS∗ .

If YS 'DT(θ1) and YS∗ 'DT(θ2), then R can be expressed as

R = θ2 exp(2)
∞

∑
y=0

(θ1θ2)
y exp(−θ

y+1
2 )

(
exp(−θ

y
1)− θ1 exp(−θ

y+1
1 )

)
. (12)

Given the difficulty of obtaining an explicit expression for R in this instance, we show this feature
quantitatively using the R software. Tables 2 illustrates the calculated values of R for various
parameter combinations. From Table 2, we infer that for a fixed value of θ2, reliability increases
as θ1 increases, whereas for the particular value of θ1, R→ 0 , as θ2 → ∞.

Table 2: The numerical values of R for fixed values of θ1 and θ2.

Parameter
θ2

1.001 1.010 1.050 1.250 1.500

θ1

1.001 0.02093 0.00617 0.00024 0.00001 0.00000
1.010 0.98078 0.49681 0.02554 0.00100 0.00026
1.050 0.99974 0.97225 0.48476 0.02531 0.00636
1.250 0.99999 0.99855 0.96300 0.43096 0.13811
1.500 0.99999 0.99950 0.98739 0.73634 0.37738

3.8. Order statistics

The order statistics play a vital role in the construction of tolerance intervals for the distribu-
tions and drawing inferences on population parameters especially in survival analysis. Let
Y1, Y2, ..., Yn be a random sample from the DT distribution. Also, let Y(1), Y(2), ..., Y(n) represents
the corresponding order statistics. Then the CDF of the rth order statistic say W = Y(r) is given by

Fr(w) =
n

∑
i=r

(
n
i

)
Fi(w).[1− F(w)]n−i

=
n

∑
i=r

n−i

∑
k=0

(−1)k
(

n
i

)(
n− i

k

)
(1− θ(w+1) exp(1− θ(w+1)))

i+k
. (13)
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The corresponding PMF of rth order statistics is

fr(w) = Fr(w)− Fr(w− 1)

=
n

∑
i=r

n−i

∑
k=0

(−1)k
(

n
i

)(
n− i

k

){
(1− θw+1 exp(1− θ(w+1)))

i+k
− (1− θw exp(1− θw))i+k

}
.

(14)

Particularly, by setting r = 1 and r = n in Equation (14), we can obtain the PMF of minimum({
Y(1), . . . , Y(n)

})
and the PMF of maximum

({
Y(1), . . . , Y(n)

})
, respectively.

3.9. Infinite divisibility

In this section, the property of infinite divisibility of the DT distribution is examined. This
property is critical in the theorems of probability theory, modelling problems, and waiting
time distribution. A probability distribution with PMF px, x = 0, 1, 2, ... is infinite divisible
if px ≤ e−1 ∀ x = 1, 2, ... [24]. For DT distribution with θ = 2, we observe that p1 = 0.5366
which is greater than e−1(= 0.3679). Hence in general, DT distribution is not infinitely divisible.
Further, since the classes of self-decomposition and stable distributions, in their discrete concepts,
are subclasses of infinitely divisible distributions, therefore a DT distribution can neither be
self-decomposable nor stable in general.

4. Classical Estimation

In this section, we address the problem of estimation through well-known estimation procedures
like method of maximum likelihood, method of moment estimation, ordinary and weighted
least squares estimation. In maximum likelihood estimation, we also derived the asymptotic
distribution of the ML estimator and construct the asymptotic confidence interval (ACI) for the
unknown parameter.

4.1. Method of maximum likelihood

Let Y1, Y2, ...., Yn be a random sample of size n with mean ȳ, then the likelihood-function (LF) for
DT distribution can be written as

L(y, θ) = exp(n)θnȳ ∏n
i=1 (exp(−θyi )− θ exp(−θ(yi+1))). (15)

The log-likelihood (LL) function can be represented as

log L(y, θ) = n + nȳ log θ + ∑n
i=1 log(exp(−θyi )− θ exp(−θ(yi+1))). (16)

Taking the partial derivative of the LL function with respect to the parameter, we get the following
normal-equation,

∂ log L
∂θ

=
nȳ
θ

+
n

∑
i=1

E1E2 − yiθ
yi−1

1− θE1
= 0, (17)

where E1 = exp(θyi − θyi+1) and E2 = (yi + 1) θyi+1 − 1 .
The maximum likelihood (ML) estimator of θ can be found by simplifying Equation (17), but

unfortunately, this equation does not yield an analytical solution. Therefore, we use an iterative
approach such as Newton-Raphson (NR) to calculate the estimate computationally.

The ML estimator θ̂ of θ, is consistent and asymptotic Gaussian distribution with
√

n(θ̂ − θ)

follows N(0, I−1(θ)), where I(θ) = E
(
− ∂2

∂θ2 log f (y; θ)
)

. Therefore, the variance of the estimator

θ̂ can be computed as V(θ̂) ≈ J−1(θ̂) where J(θ̂) = −
(

∂2

∂θ2

)∣∣∣
θ=θ̂

. The second-order partial
derivative of the LL function is

Bhupendra Singh, Varun Agiwal, Amit Singh Nayal, Abhishek Tyagi
A Discrete Analogue of Teissier Distribution: Properties and Classical
Estimation with Application to Count Data

RT&A, No 1 (67)
 Volume 17, March 2022

347



∂2 log L
∂θ2 =

n
∑

i=1

(1−θE1)(−yi(yi−1)θyi−1+E1E2E3+(yi+1)2θyi+1E1)+(−yiθ
yi+θE1E2)(E3+1)E1

θ(1−θE1)
2 − nȳ

θ2 ,

where E3 = θyi (yi − (yi + 1) θ). Hence, the 100 × (1 − γ)% ACI for the parameter θ is

θ̂ ∓ Zγ/2

√
V(θ̂), here Zγ/2 is the upper γ/2 quantile of the standard Gaussian distribution.

4.2. Method of moment estimation

In this estimation process, firstly, we equate population moment(s) to the corresponding sample
moment(s) and then solve this equation for the unknown parameter(s). In our case, the concerned
equation is

ȳ = ∑∞
i=1 θi exp(1− θi). (18)

where ȳ represents the mean based on the RS y1, y2, ..., yn drawn from the DT distribution (5). We
can obtain the method of moment (MOM) estimator θ̂MOM, by solving Equation (18) for θ. Since
Equation (18) does not provide the MOM estimator of θ in explicit form, so we can use numerical
methods to compute θ̂MOM.

4.3. Method of least squares estimation

Here, we present the regression-based estimation methods for estimating the model parameter.
These approaches are known as the ordinary least square (OLS) and the weighted least square
(WLS) estimators, and they were first suggested by [25]. The OLS and WLS estimators depend on
the combination of the non-parametric and parametric distribution functions.

This method is widely used to estimate the parameters of a continuous model. Some authors
utilize this technique to estimate the unknowns of a discrete model by considering the non-
parametric CDF as a continuous type (see, [23]). Because discrete data is made up of ties
observations, a non-parametric CDF that takes ties observations into account is more suited. In
view of this, we use a different form of non-parametric CDF that relies on observation of relations.
These methods can be described as follows:

Let Y1, Y2, ..., Yn be a random sample from F(.) in Equation (6), and Y(1) ≤ Y(2) ≤, ...,≤ Y(n) be
the corresponding ordered values having r tie-runs with the length zj for the jth one, j = 1, 2, . . . r,
then the mean and variance of F(Y(i)) are respectively as

E
[

F(Y(i))
]
= 1−

i

∏
j=1

nj − zj

nj
and V

[
F(Y(i))

]
=
(

1− F(Y(i))
)2 i

∑
j=1

zj

nj(nj − zj)
.

The V
[

F(X(i))
]

is known as Greenwood’s formula. The OLS and WLS estimators of the unknown
parameter can be obtained by minimizing

W1(θ) =
n

∑
i=1

(
F(Y(i))− E

[
F(Y(i))

])2
and W2(θ) =

n

∑
i=1

V
[

F(Y(i))
]−1(

F(Y(i))− E
[

F(Y(i))
])2

,

respectively, with respect to the unknown parameter of the model.
Thus, in our case, the OLS estimator of the unknown parameter θ say θ̂OLS can be achieved by

minimizing

W1(θ) =
n

∑
i=1

(
θyi+1 exp(1− θ(yi+1))−

i

∏
j=1

nj − zj

nj

)2

,

with respect to θ. Evenly, θ̂OLS can be determined by solving

∂W1(θ)

∂θ
=

n

∑
i=1

[
θyi+1 exp(1− θ(yi+1))−

i

∏
j=1

nj − zj

nj

]
ξ(yi:n; θ) = 0,
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where ξ(yi; θ) = (yi + 1)θyi (1 − θyi+1) exp(1 − θ(yi+1)).
The WLS estimator of θ, say θ̂WLS, can be achieved by minimizing

W2(θ) =
n

∑
i=1

V
[

F(Y(i))
]−1
(

θyi+1 exp(1− θ(yi+1))−
i

∏
j=1

nj − zj

nj

)2

.

The estimator θ̂WLS can also be obtained by simplifying the following equation

∂W2(θ)

∂θ
=

n

∑
i=1

V
[

F(Y(i))
]−1

[
θyi+1 exp(1− θ(yi+1))−

i

∏
j=1

nj − zj

nj

]
ξ(yi:n; α) = 0.

5. Numerical illustration

Here, we present the numerical illustrations of the proposed model based on the empirical and
real datasets.

5.1. Using simulated data

In this sub-section, we observe the performance of different estimation techniques to estimate the
unknown parameter of the proposed model. This assessment consists of the following steps:

1. Generate 2000 samples of sizes n = 20, 25, . . . , 150 from DT distribution with θ = 1.05, 1.5,
and 3.0. To generate the required RV Y from DT distribution we have used the general
approach in which first we draw the pseudo-random value X from continuous Teissier
distribution and then discretize this value to obtain Y. The following formula can be used
to generate an RV X,

Q(u) =
1
α

log
[
−W−1

(
u−1

exp(1)

)]
; 0 < u < 1,

where θ = exp(α) and W−1 denotes the Lambert function and its value can be easily
obtained by the inbuilt R-function lambertWm1 available in the package lamW.

2. Compute the ML, MOM, OLS, and WLS estimates for the 2000 samples, say θ̂
j
ϕ; j =

1, 2, ..., 2000; ϕ = ML, MOM, OLS, and WLS. Also, we have computed the 95% ACI intervals
for the above-generated samples.

3. Compute the mean-squared error (MSE) and average absolute bias (AB) for all point
estimates, average width (AW) and coverage probability (CP), where

MSE = 1
2000

2000
∑

j=1

(
θ̂

j
ϕ − θ

)2
, AB = 1

2000

2000
∑

j=1

∣∣∣θ̂ j
ϕ − θ

∣∣∣, AW = 1
2000

2000
∑

j=1
(UCLj − LCLj), and

CP = 1
2000

2000
∑

j=1
I(LCLj < θ < UCLj), here, UCLj and LCLj denotes the upper and lower

confidence limits for the jth sample, respectively, and I(•) is the indicator function takes
value 1, if LCLj < θ < UCLj, and 0 otherwise.

4. The empirical results are shown in Figures 3-4.

From Figures 3-4, the following key conclusions can be made:
• The MSE decrease to zero as n tends to infinity. This shows the consistency of the estimators.

Also, the AB decrease to zero as n becomes large.
• All the estimation procedures perform satisfactorily for different values of n and θ. However,

the ML estimator works superior to other classical procedures with respect to MSE. The
MOM estimator is the second choice of estimation since the MSE of these estimates is lesser
than those obtained for OLS and WLS estimators.
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• The AW of the ACI intervals decreases as we increase the sample size n.
• Here, the CP in the simulation of ACI intervals remains near about nominal value, this

validates our simulation results.
• For the small value of the parameter θ, all estimation procedures work better as compare to

the large value of θ. Also, as n becomes large, the considered estimation methods produce
more or less similar results with respect to the MSE and AB.
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Figure 3: The MSEs and ABs of different estimators for (i) θ =1.05 (ii) θ =1.50 (iii) θ =3.0.

5.2. The real data application

In this part, we use two real datasets to demonstrate the relevance and superiority of the DT
distribution. The two datasets are from two distinct areas, with the first representing daily
COVID-19 cases in India and the second one consists survival times of a group of laboratory mice.
The fitting capability of the proposed model has been compared to that of various well-known
conventional and recently developed models. Table 3 has a list of the competitive models.
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Figure 4: AW and CP for (i) θ =1.05 (ii) θ =1.50 (iii) θ =3.0.

Table 3: The competitive models.

Model Parameter(s) Abbreviation References
Geometric θ Geo -

Discrete Lindley α DsLi [9]
Discrete Rayleigh θ DR [22]

Discrete Poisson Lindley α DPL [18]
Discrete Burr (α, β) DBr [12]

Discrete Pareto θ DPa [12]
Two Parameter Discrete Half Logistic (α, β) DHLo-II [8]

Discrete Perks (α, β) DP [28]
Discrete Weibull (q, β) DW [19]
Discrete Logistic (α, β) DLOG [4]

A Flexible discrete model with one parameter α DsFx-I [5]
Poisson Bilal distribution θ PB [2]

For comparison purposes, the estimation of the fitted models has been done through ML
estimation. The model comparison is carried out based on –LL, Akaike information criterion
(AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC) and
Kolmogorov-Smirnov (K-S) statistics using the open-source R software. However, there is an
another refined approach to find K-S statistics for detail see [17],[15], and [16]. Here, the lower
value of these criteria except the p-value and the higher p-value indicates the best fit.

The first dataset (I): In the first application, we consider the daily new cases in India from 16
March 2021 to 08 April 2021. The data is available at https://www.worldometers.info/coronavirus
/ country/india-sar/. The original data values are
28869, 35838, 39643, 40950, 43815, 40611, 47264, 53419, 59069, 62291, 62631, 68206, 56119, 53158,
72182, 81441, 89019, 92998, 103793, 96557, 115269, 126315, 131893, 14482.
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This dataset is modelled with DT and other competitive models. For ease of fitting, data have
been divided by 10,000 and their floor values have been stored. Table 4 contains the estimated
parameters and their corresponding standard errors (SEs) as well as the various fitting measures
discussed earlier. From Table 4, we conclude that the DT model is the best-performed model
among others since it has the lowest values of AIC, BIC, CAIC, HQIC, and K-S test statistics
with the highest p-value. We have plotted the –LL and CDF plots in Figure 5 (upper left and
upper right panel). This figure not only confirms the unique existence of the ML estimate but also
portrays that the fitted CDF closely follow the pattern of the empirical CDF for the considered
data.

Table 4: The ML estimate (SE) and various goodness of fit measures under dataset I.

Model ML estimate(SE) -LL AIC BIC CAIC K-S P-value
DT 1.1447 (0.0121) 61.6498 125.2997 126.4778 125.4815 0.12640 0.8374
DW 0.0035(0.0034), 2.5990 (0.4083) 61.1957 126.3914 128.7475 126.9628 0.12669 0.7907
DR 0.9844(0.0031) 61.8800 125.76 126.9381 125.9418 0.15186 0.6373
DP 0.0252(0.0208), 0.5020(0.0974) 62.2001 128.4003 130.7564 128.9717 0.13958 0.6869

DLOG 0.5860(0.05317), 7.4515(0.6792) 62.7109 129.4219 131.778 129.9934 0.13598 0.7166
PB 0.1136(0.0187) 67.2632 136.5266 137.7046 136.7084 0.30641 0.0169

DsLi 0.7920(0.0269) 67.8623 137.7246 138.9027 137.9064 0.31724 0.0120
DPL 0.2460(0.0396) 68.7832 139.5665 140.7445 139.7483 0.32841 0.0083

DHLo-II 0.8548(0.0316), 0.7729(0.0626) 69.1321 142.2644 144.6205 142.8358 0.35068 0.0038
DsFx-I 0.9020(0.0167) 71.0351 144.0703 145.2484 144.2521 0.81633 <0.0001

Geo 0.8716(0.0244) 71.6627 145.3255 146.5035 145.5073 0.29772 0.0284
DB 0.9261(0.0709), 6.6364(6.4802) 87.3628 178.7273 181.0834 179.2987 0.74374 <0.0001
DPa 0.6217(0.0603) 92.3961 186.7923 187.9703 186.9741 0.72802 <0.0001

Table 5 consists of ML, MOM, OLS, and WLS estimates with their SEs and 95% ACI intervals
for θ. To compare different methods, the K-S statistics with associated p-values for all methods
are also provided in Table 5. From Table 5, we can easily observe that all estimation methods
perform quite satisfactorily as the p-values associated with K-S statistics is greater than 0.05.

Table 5: The different estimates, SE, and K-S with p-value under dataset I.

Method Estimate SE K-S P-value ACI
ML estimate 1.1447 0.0121 0.1264 0.8374 [1.1209, 1.1683]

MOM 1.1372 0.0367 0.1544 0.6162 -
OLS 1.1561 0.0392 0.1633 0.5440 -
WLS 1.1561 0.0392 0.1633 0.5439 -

The second dataset (II): This dataset gives the survival times of a group of laboratory mice,
which were exposed to a fixed dose of radiation at an age of 5 to 6 weeks [see, [14], pp. 445]. This
group of mice lived in a conventional lab environment. The cause of death for each mouse was
assigned after autopsy to be one of three things: thymic lymphoma (C1), reticulum cell sarcoma
(C2), or other causes (C3). Here, we have used the dataset under C3 only. The mice are all died
by the end of the experiment, so there is no censoring. The data values are:
40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 259, 282, 324, 333, 341, 366, 385, 407, 420, 431, 441, 461,
462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651, 686, 761, 763.
The above dataset is modelled with DT and DW, DR, PB, DsLi, DPL, Geo, DB, DPa models. The
estimated parameters and other fitting measures are reported in Table 6. From the outcomes of
Table 6, we conclude that the DT distribution is the best choice among other competitive models
since it has the lowest values of –LL, AIC, BIC, CAIC, HQIC, and K-S statistics with the highest
P-value. Figure 5 (lower left and lower right panel) also depicts that DT distribution has a unique
ML estimate for the given data and it is well enough to model this data.
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Table 6: The ML estimate (SE) and various goodness of fit measures under dataset II.

Model ML estimate (SE) -LL AIC BIC CAIC K-S P-Value
DT 1.0024(0.0002) 262.0291 526.0581 527.7217 526.1663 0.0907 0.9049
DW 0.9999 (3.548e-07), 2.0772 (0.0318) 263.1519 530.3039 533.6310 530.6372 0.1008 0.8223
DR 0.9999 (5.874e-07) 263.1909 528.3818 530.0454 528.4899 0.1080 0.7525
PB 0.0020(0.0002) 267.1738 536.3476 538.0112 536.4557 0.1597 0.2723

DsLi 0.9951(0.0005) 266.9048 535.8097 537.4733 535.9178 0.1587 0.2797
DPL 0.0048(0.0005) 266.9121 535.8242 537.4878 535.9323 0.1588 0.2786
Geo 0.9975(0.0004) 273.9544 549.9088 551.5723 550.0169 0.2385 0.0236
DB 0.9282(0.0621), 2.3077(2.0575) 334.6387 673.2775 676.6046 673.6108 0.6803 <0.0001
DPa 0.8422(0.0231) 334.8421 671.6843 673.3478 671.7924 0.6801 <0.0001

Table 7 displays the ML, MOM, OLS, and WLS estimates with their SEs and 95% ACI intervals
for θ. This table also contains the K-S statistics with associated p-values for all considered methods.
From Table 7, we can easily observe that all estimation methods perform quite satisfactorily as
the p-values associated with K-S statistics are greater than 0.05.

Table 7: The different estimates, SE and K-S with p-value under dataset II.

Method Estimate SE K-S P-Value ACI
ML estimate 1.0024 0.0002 0.0907 0.9049 [1.0020, 1.0027]

MOM 1.0096 0.0022 0.2047 0.0759 -
OLS 1.0024 0.0004 0.0909 0.9034 -
WLS 1.0024 0.0004 0.0909 0.9034 -
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Figure 5: The –LL and CDFs plots for dataset I and II.

6. Conclusion

In this article, a new one-parameter discrete Teissier distribution is obtained. It is observed
that with one parameter, this model has great flexibility in terms of fitting as it is capable
of modelling equi-, over and under-dispersed datasets. It is also capable of the modelling of
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positively, negatively skewed and increasing failure datasets. In this article, various important
distributional properties of DT distribution are discussed.

The unknown parameters of the proposed model are estimated under the various classical
methods. An extensive simulation study is presented for the assessment of the various estimators
under count data. Finally, the fitting capability of the proposed model for count data is illustrated
using two real datasets. Hence, we can conclude that the suggested model may be used as an
alternative model to some well-known existing models to analyze discrete data generated from
various domains.

A future plan of action regarding the current study might be an examination of the censored
data using the proposed model. We may investigate the load share model where the component
failure time follows the DT distribution. The stress-strength parameter may also be examined
using various censored data. In addition, a bivariate extension of the DT distribution can be
developed.
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Abstract 
Accelerated life testing (ALTg) helps manufacturers to predict the various costs associated with the 
product under the warranty policy. The main aim of undertaking ALTg is the extended time of today’s 
manufactured goods, the small-time among design and make public, and the difficulty of analysis of 
items that are continuously used in ordinary environments. Hence ALTg is used to offer quick 
information about the life distribution of products. We describe how to propose and analyze the 
accelerated life testing plans to develop the excellence and reliability of the item for consumption. We 
also focus on finding the expected cost rate and the expected total cost for age replacement in the pro-
rate rebate warranty plan. The problem is studied using constant stress, under the hypothesis that the 
life spans of the units follow the Gompertz distribution (GD) for predicting the cost of age replacement 
in the warranty plan. The asymptotic variance and covariance matrix, confidence intervals for 
parameters, and respective errors are also obtained. A simulation study is carried out to show the 
statistical properties of distribution parameters. 

Keywords: Accelerated Life Testing, Gompertz distribution, Warranty policy, Age-
replacement, Type-I Censoring, Fisher Information matrix, Simulation Study. 

 

I. Introduction 
Nowadays, most producers are doing their finest to build up and get better the performance of 
their items to boost the requirement and increase faith between them and their purchaser. The 
producers face several disputes while developing manufactured goods, together with 
complicatedness in scheming the failure of the manufactured goods during the existing 
investigation era. To defeat many of the difficulties in normal reliability, testing ALTg techniques 
may be employed. It is significant to get better the performance of the manufactured goods, work 
towards the improvement of the item and conclude the issues that cause the undersized lifetime. 
Quantitative ALTg engages in identifying stress situations that will speed up the stoppage manner. 
Therefore, the failures may be observed in a shorter phase. The accelerated investigation situations 
may engage a superior stage of force, power, weight, speed, temperature, vibration, etc., and more 
than one stress may be operated depending on the item's nature. Information composed at such 
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accelerated circumstances is then extrapolated during a bodily suitable statistical representation to 
estimate the life span distribution at ordinary use circumstances. 
In life testing analysis and reliability theories, the engineer may not constantly get absolute 
information on failure epochs for all investigational components. Information achieved from such 
researches is called censored information. The main reasons for censoring schemes are reducing 
the total time on investigation and the expenditure related to it. The censoring can make stability 
between total time used up for the experimentation, the number of components used in the test 
and the effectiveness of statistical assumption based on the experiment's outcomes. Type-I (time) 
censoring and Type- II (item) censoring are the frequent schemes. Here, we are only focusing on 
Type-I censoring scheme. Type I censoring occurs when an experiment finishes after a preset 
amount of time. There are several other censoring schemes, i.e., multiple censoring, progressive 
censoring, hybrid censoring and adaptive progressive hybrid censoring, etc. 
According to Nelson [1], and Rao [2], the accelerated life test (ALT) is generally of three types. The 
first type is named the constant-stress ALT (CSALT). The next is the step-stress accelerated life test 
(SSALT). The third is progressive-stress ALT (PSALT). The stress is set aside at a constant level 
during the analysis in CSALT. In SSALT, the investigation circumstance varies at a known time or 
upon the happening of a specific number of failures. The stress practical to examination 
manufactured goods is constantly increasing with the point in PSALT. For an extensive review on 
these methods, (see Kim and Bai [3], AL-Hussaini and Abdel-Hamid [4, 5], Miller and Nelson [6]). 
These three techniques can decrease the testing time and accumulate a lot of human resources, 
material, and capital. 
The key statement in ALT is that the mathematical model connecting the life span of the element 
and the stress is identified or can be assumed. In various situations, such life stress relationships 
are unknown and cannot be assumed, i.e. the information achieved from ALT cannot be 
extrapolated to use situation. So, in such situations, one more advanced method can be applied, 
which is partially accelerated life tests (PALTs). If the acceleration factor cannot be assumed as a 
known value, then PALT will be an excellent selection to carry out the life investigation. In PALTs, 
objects are experienced at both accelerated and use circumstances. PALTs: constant-stress PALT 
(CSPALT), step-stress PALT (SSPALT) and progressive-stress PALT (PSPALT) are the three 
frequently used types.  
A rebate warranty policy is one of the mainly widespread types of warranty strategies. In a rebate 
plan, the seller refunds a customer some proportion of the sales worth if the manufactured goods 
are unsuccessful during the warranty era. Frequent examples of goods sold under rebate plans 
include batteries and tires. Objects sold under failure-free warranties might contain electronics and 
household machines. Rebate strategies also take two widespread forms: lump sun, and pro-rata 
rebates. If an article fails before the conclusion of the substance’s warranty age, it is replaced or 
repaired as per common, however, only for the amount based on a price that depends on the age of 
the article at the point of failure. Basically, a pro-rate warranty decreases the value of your buy 
over time. This type of warranty is sometimes called a partial warranty since only a part of the 
original cost is covered. The producers shall only give incentives when they have the trust in the 
goods that their item has the capability to serve at least in the stated warranty period. Therefore, 
manufacturers need to test the reliability and performance of the goods before letting them serve in 
the marketplace. This can be done by using accelerated life testing on goods. Accelerated life 
testing also helps producers to predict the various costs connected with the item under the 
warranty policy.  
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Now, we present brief literature on ALT and warranty policies related to our study. El-Dessouky 
[7,8] described ALTg and age-replacement policy under warranty plan and also described 
maintenance service strategy under SSPALT using Type-II censored samples. Zhao and Xie [9] 
provided a structure to calculate the assurance outlay and risk under one-dimensional. At present, 
the two-dimensional and extended warranty has taken an important place in warranty policy 
analysis (Jack et al. [10], Gupta et al. [11], Huang et al. [12], Jung et al. [13], and Ye and Murthy 
[14]). However, it is very tough and tricky to design warranty plans and calculate warranty costs 
for new goods that have not been come into the market, because the failure rate of such types of 
products is not available. A literature review is presented by Murthy and Djamaludin [15] on new 
item assurance by considering marketing, logistics, etc. A combined optimization method that 
concerned trustworthiness, service contract and price for new goods is presented by Huang et al. 
[16]. Xie and Ye. [17] proposed a comprehensive inexpensive guarantee cost forecast under the 
new item. In Yang [18], optimal 3-level accommodation ALT affairs were talked about to minimize 
the asymptotic about-face of best likelihood appraisal of the assurance cost. For an overview of 
accelerated believability experiments, one can refer to Meeker and Escobar [19]. Borgia et al. [20] 
presented a case study for the household’s gadgets. Yang [21] proposed a technique for item 
population for predicting the warranty outlay and its confidence interval. Alam et al. [22] offered a 
study on age replacement policy under pro rebate warranty policy for Burr Type-X failure model 
using Type-II censoring scheme. Currently, Alam and Aquil [23] presented a study on SSPALT and 
provided its application in maintenance service policy for the generalized inverted exponential 
distribution. Alam et al. [24] handled constant-stress ALT under a progressive Type-II censoring 
scheme and also presented its application in the area of maintenance strategy. Almalki et al. [25] 
handled with constant stress ALTs model for Kumaraswamy failure model under the progressive 
censoring scheme. 
In this work, we design ALT under Type-I censoring for GD and also provide the application of 
ALT in the field of warranty policy and this is the key factor of this study. In previous studies, a lot 
of study is available on ALT with different censoring schemes for different lifetimes model but few 
studies available that provide its application in the field of warranty policy The novelty of this 
study is that no earlier study is available for GD under pro-rata rebate warranty policy under 
Type-I censoring scheme. 
The rest of the paper is organized as follows: Section 2 provides the introduction of GD and test 
procedure. The likelihood function, Fisher Information matrix, the inverse of Fisher Information 
matrix is developed in section 3. A simulation study is carried out in section 4. Estimation of shape 
parameter and reliability function is presented in section 5. The age-replacement policy for GD 
under pro-rate rebate warranty is presented in Section 6. Finally, a conclusion is made in section 7. 

II. Model Description and Test Method 
ALT is generally performed by one of the two approaches; (i) accelerated failure time, which 
means ALT is performed for the item by experiencing usual circumstances but more intensively 
than ordinary. This approach is excellent for items or components that are exercised on a 
continuous-time basis. (ii) Accelerated stress means ALT is performed with items or components at 
higher stress than usual. For designing ALT plans, the following points are needed  

(i) The stress application testing process. 
(ii) The stress levels selected and the type of stress to be applied in the investigation for each stress 
type. 
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(iv) Relationship between life and stress which is expressed by the mathematical model.  
(v) At last, the proportion of experiment elements to be allocated to every level of stress. 

Some authors dealt with constant stress, such as Abdel-Ghaly [26] tackled with an accelerated life 
test plan for the Pareto failure model and estimate reliability function and parameters of the 
model. Attia et al. [27,28] handled with Accelerated life test plan for Birnbaum-saunders and 
Generalized Logistic distributions using different censoring plans with constant stress. In the 
following section: 

(i) Stress   has -levels. 

(ii) Assuming that is normal use situation and fulfilling  

(iii) There are units put on the investigation at every stress stage. 

(iv) The test ends when units attain among these  units. 

This current study is dealt with Type-I censoring and constant stress with the assumption that the 
lifetime of the units follows the GD. 

GD has wide popularity in relating human mortality, establishing actuarial tables, and other areas. 
Historically, it was firstly commenced by Gompertz [29]. GD has the following probability density 
function  and cumulative distribution function ; 

The of the model is given as 

,     (1) 

where and  are scale and shape parameters, respectively. 

The of the model is given as 

,     (2) 

The Reliability function of the model is given as 

       (3) 

The Hazard function of the model is given as 

        (4) 

The pdf, cdf, Reliability, and hazard curves are shown in Figure1, Figure 2, Figure3, and Figure4, 
respectively. 

 
Figure 1: Probability density curve of GD 
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Figure2: Cumulative distribution curve of GD 

 
Figure3: Reliability curve of GD 

 
Figure4: Hazard curve of GD 

 
GD possesses a unimodal  and has an increasing hazard curve for increasing values of and

 . Willekens [30] handled the associations of GD with other failure models. Wu et al. [31] 

proposed the weighted and unweighted least squares estimations for GD under censored and 
complete information. Chang and Tsai [32] intended the maximum likelihood estimates (MLEs), 
and accomplished the establishment for the exact confidence interval. Mohie El-Din [33] presented 
a study under generalized progressively hybrid censoring for GD. 
This study is based on constant stress and Type-I censoring scheme. We have considered the Stress 

 which affects the shape parameter of the used distribution,  through the 

following equation (5) called the power rule model. 

      (5) 

where and are the proportionality constant; and power of the applied stress respectively. 

III. Estimation Process 
In this section, the maximum likelihood (ML) estimation method is used. The reliability 
practitioner used this method because it is very robust and provides estimates of the parameters 
with excellent properties. At the stress level , the authors constructed the likelihood function of 

an observation (time to failure) and at each stress level , units were put on the test.  
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Therefore, is the total number of components in the test. When a Type-I (time) 

censoring scheme is adopted at each stress level, the experiment ends once the censoring time 
is reached. It is assumed that  units are observed at the  stress level before the 

test is terminated and  units still carry on till the end of the analysis. In this situation, the 

likelihood function of the testing for GD model is taking the following form 

  (6) 

where is the time of cessation of the experiment and . 

The log-likelihood function is obtained by taking the logarithm of the above equation (6) and given 
as  

(7) 

where K is the constant. 
The ML estimates of and  can be estimated from the following three equations. 

 

It looks impossible to solve the above three non-linear equations manually. Therefore, an iterative 
technique (Newton-Raphson) can be used to get maximum likelihood estimates (MLEs) of 
parameters. 
In mathematical statistics, the Fisher information or Information matrix is a technique of 
evaluating the amount of information that an observable random variable carries about an 
unknown parameter of a distribution. Simply, the Information matrix is the variance of the score or 
the expected value of the observed information. 
The Information matrix for the Gompartz failure model under Type-I censoring is given as 

å
=

=
k

j
jsN

1

"" 0x ( )jj sr £ jth

( )jj rs -

( ) ( ) ( ) [ ] jrjs
k

j

jr

i
ij

jj

j
ij xFfRxf

rs
s

fRxL -

= =
-

ú
ú

û

ù

ê
ê

ë

é

-
=Õ Õ )(1,,,

!
,,, 0

1 1
gg

0x ( ) LfRxL ij ln,,,ln =g

( )

( )1)(

1lnln

0

1

1 11 1 1

--+

÷
ø
öç

è
æ --++=

å

ååå åå

=

-

= =

-

= = =

-

x
k

j

f
jjj

jr

i

k

j

ijxf
j

k

j

jr

i

k

j
ij

f
jj

eRGrs

eRGxRGrKL

g

ggg

R,g f

0)(ln

1

00
1 11 1 1

1 =-+-+=
¶
¶ åååå åå

=

-

= =

-

= = =

-
k

j

xf
jjj

jr

i

k

j

f
j

ijx
ij

k

j

jr

i

k

j
ijj exRGrsGexRxrL ggg

g

( ) ( )

( )( ) 01ln)(

1lnlnln

0

1

1 11

=--

-÷
ø
öç

è
æ -+-=

¶
¶

å

ååå

=

-

= =

-

=

x
k

j
j

f
jjj

jr

i

k

j

ijx
j

f
j

k

j
jj

eGRGrs

eGRGGr
f
L

g

g

( ) 01)(1ln 0

11 11

1 =--+÷
ø
öç

è
æ --=

¶
¶ åååå

=

-

= =

-

=

- x
k

j

f
jjj

jr

i

k

j

ijxf
j

k

j
j eGrseGRr

R
L gg

361



 
I.Alam, M. A. Intezar, L.K. Sharma, M. T. Intezar, A. Irfan 
COSTS OF AGE REPLACEMENT UNDER ACCELERATED 

RT&A, No 1 (67) 
Volume 17, March 2022  

 

       (8) 

The elements of the matrix  are obtained by second partial derivatives of log-likelihood function 
with respect to parameters  and . Consequently, the elements are expressed by the 

following equations 

 

 

 

 

 

 

Now, the variance-covariance matrix is the inverse of the Fisher Information matrix and given as 

          (9) 

=  (10) 

,  are asymptotic variance and asymptotic covariance, respectively. 

The  approximated two-sided limits of confidence for parameters and  are 

given as 
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 ,  and  

is the  percentile of a standard normal variate. 

IV. Simulation Results 
In this section, we apply the Monte-Carlo simulation technique to examine the performances of the 
MLEs through their absolute relative bias (RAB) and mean square error (MSE). Using the 
invariance property of MLEs, we can estimate the MLEs of shape Parameter through the 

following expression; 

  

The detailed steps are given below: 

1. First, 1000 random samples of sizes 25, 50, 75, and 100 are generated from GD by inverse CDF 
method. Different initial values are selected for all sets of parameters. 

2. The stress has three levels and the values of are 

,  is sample size. 

3. The parameters of the model are estimated under Type-I censoring for all sample sizes. 
4. The Newton-Raphson method is applied for solving all non-linear equations. 
5. The estimates of the shape parameter  are calculated from equation (5). 

6. The RABs and MSEs are tabulated for all sets of . 

7. We determine the MLEs of the scale parameter at the usual stress level  by the 

invariance property of MLEs, 

8. The reliability function at the similar usual stress for various values and  is 

calculated. 

 

9. At mission time , the MLEs of reliability function are predicted in the same 

usual circumstances for every parameter set. 

Table 1:The Estimates, Relative Bias and MSE of the parameters under Type-I 

censoring 
 

 
 

 
Parameters 

  

Estimator RABs MSEs Estimator RABs MSEs 

 
 
 

25 
 

2.543 
2.765 
1.987 
2.126 
1.987 
1.376 

0.109 
0.116 
0.078 
0.084 
0.105 
0.105 

0.095 
0.097 
0.069 
0.077 
0.086 
0.098 

2.633 
1.873 
2.162 
1.876 
2.998 
2.087 

0.096 
0.109 
0.120 
0.091 
0.087 
0.090 

0.078 
0.074 
0.101 
0.067 
0.760 
0.081 
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50 

 

2.830 
2.543 
2.791 
1.162 
2.788 
2.197 

0.086 
0.067 
0.077 
0.054 
0.054 
0.049 

0.076 
0.055 
0.061 
0.040 
0.031 
0.055 

1.876 
2.146 
1.998 
1.989 
1.360 
1.786 

0.098 
0.109 
0.123 
0.094 
0.080 
0.076 

0.076 
0.061 
0.097 
0.051 
0.042 
0.057 

 
 
 

75 
 

2.139 
2.349 
2.046 
1.556 
2.290 
1.196 

0.044 
0.054 
0.065 
0.046 
0.048 
0.041 

0.042 
0.044 
0.054 
0.035 
0.040 
0.022 

2.345 
2.492 
2.052 
2.528 
1.404 
1.967 

0.069 
0.050 
0.072 
0.042 
0.039 
0.011 

0.061 
0.051 
0.086 
0.047 
0.037 
0.050 

 
 
 

100 
 

2.252 
2.612 
1.313 
1.950 
2.322 
1.089 

0.018 
0.023 
0.113 
0.027 
0.031 
0.032 

0.029 
0.013 
0.010 
0.014 
0.023 
0.023 

2.763 
2.160 
1.885 
1.443 
2.111 
1.025 

0.064 
0.042 
0.045 
0.062 
0.018 
0.033 

0.050 
0.023 
0.031 
0.069 
0.016 
0.025 

Table 2:The Estimates, Relative Bias and MSE of the parameters under Type-I 

censoring 
 

 
 
Parameter
s 

  

Estimator RABs MSEs Estimator RABs MSEs 

 
 
 

25 
 

1.846 
1.425 
2.927 
1.901 
2.170 
1.983 

0.132 
0.123 
0.110 
0.083 
0.092 
0.082 

0.093 
0.110 
0.099 
0.062 
0.075 
0.065 

2.987 
1.171 
2.621 
1.523 
2.210 
2.809 

0.132 
0.115 
0.083 
0.110 
0.097 
0.123 

0.119 
0.099 
0.061 
0.081 
0.078 
0.106 

 
 
 

50 
 

2.452 
1.744 
1.837 
1.164 
1.786 
1.564 

0.062 
0.092 
0.073 
0.081 
0.188 
0.068 

0.077 
0.072 
0.070 
0.058 
0.065 
0.065 

1.667 
1.158 
1.136 
1.283 
1.170 
2.986 

0.071 
0.144 
0.052 
0.074 
0.069 
0.088 

0.075 
0.070 
0.095 
0.061 
0.061 
0.079 

 
 
 

75 
 

1.639 
1.919 
1.778 
2.061 
1.398 
1.494 

0.054 
0.089 
0.052 
0.086 
0.070 
0.059 

0.045 
0.063 
0.050 
0.061 
0.047 
0.076 

2.998 
2.791 
1.990 
2.930 
1.132 
2.998 

0.063 
0.081 
0.050 
0.066 
0.054 
0.077 

0.062 
0.056 
0.066 
0.055 
0.016 
0.098 
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100 
 

1.052 
2.168 
2.016 
1.192 
1.921 
2.595 

0.030 
0.060 
0.043 
0.050 
0.059 
0.042 

0.037 
0.023 
0.061 
0.019 
0.033 
0.016 

1.997 
1.439 
1.967 
1.209 
1.432 
2.955 

0.049 
0.055 
0.042 
0.055 
0.032 
0.030 

0.056 
0.041 
0.055 
0.066 
0.014 
0.084 

V. Estimation of the survival functions and shape parameter at normal stress 
In the following table, we estimate the survival function at the usual stress level for 

various values of parameters ,  and ,also find the shape parameter for the same stress 

level. 
Table3: Estimated reliability functions and shape parameter at normal stress 

      

 
0.40 

 
1.7 

 
1 

 
3.332 

1.2 
1.5 
1.9 

0.543 
0.523 
0.498 

 
1.2 

 
1.7 

 
1 

 
2.987 

1.2 
1.5 
1.9 

0.423 
0.436 
0.397 

 
0.40 

 
1.3 

 
1 

 
3.165 

1.2 
1.5 
1.9 

0.754 
0.704 
0.723 

 
1.2 

 
1.3 

 
1.9 

 
2.876 

1.2 
1.5 
1.9 

0.676 
0.643 
0.612 

IV. The Age-Replacement Policy under Pro-rate Rebate Warranty for GD 
Under this warranty policy, the following assumptions are made 

(i) A non-repairable product is replaced at a certain time  or upon failure, which takes place 
earliest.  

(ii) When the product is unsuccessful at the time , a failure replacement is carried out with a 

purchasing cost  and downtime cost , where . 

(iii) The client is reimbursed by a quantity of sales price  if the item be unsuccessful over the 

warranty period , 

So, the rebate function in the pro-rata warranty is: 

       (11) 

John Mamer [34] handled with a price tag investigation of pro-rata with a without charge 
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replacement warranty approaches; he studied the long-run typical and total expenses of things 
with warranty. Timothy et al. [35] tackled a pro-rata study for joint warranty problems; he used 
several repair selections in his investigation. Huang et al. [36] presented a study on estimating the 
predictable warranty cost for the approach where the item usage is intermittent and of 
heterogeneous usage intensity by the item existence cycle when sales occur regularly.  

Key Assumptions: 
The main assumptions in this policy are 

1. Product is replaced at the point of failure (corrective replacement), or age  (preventive 
replacement), which arrives earliest. 

2. The pro-rata rebate warranty approach is applied to the sale of products. 
3. There is no salvage charge for the preventive replaced item. 

4. The warranty time is less than age replacement, i.e. . 

When the item’s life arrives , then the preventive replacement is carried out with cost  only 

because it is a planned preventive safeguarding action. 

The total cost incurred in a renewal cycle for this strategy is: 

      (12) 

The expected total cost (Chien [37], Chien et al. [38]) under this policy is given by: 

       (13) 

The expected cost rateis  

         (14) 

where is the expected cycle time, which is represented by . 
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We can get the expected total cost and expected cost rate for the non-repairable product using the 
above values in equations (13) and (14). 

For example, if the failure replacement is carried out with a downtime cost and 

purchasing cost . The expected total cost, expected cycle time and expected cost rate 

are estimated for age-replacement under warranty policy for several values of warranty periods 
 and the parameters of GD  and  at normal use. 

Table 4:The expected total cost, the expected cycle time and the expected cost rate 
    Expected Total Cost 

 
Expected Cycle Time

 

 
Expected Cost 

Rate 
 

0.8 6 9.2 9.7 1045.87 5.89  342.87 
0.8 6 9.2 8.5 1011.68  5.54 432.98 
0.9 6 9.2 9.7 998.55 5.14 412.87 
0.9 6 9.2 8.5  856.95 3.97  498.87  
1.6 6 9.2 9.7 829.23 4.25 416.34 
1.6 8 9.2 9.2 929.98 4.96 521.16  
1.6 8 9.2 8.5 959.98 4.34 587.76  
1.6 9 9.2 9.7 975.64  7.18 506.90  
1.6 9 9.7 8.9 1056.97 7.35 578.74  
1.6 9 9.7 9.7 1022.89 8.17 507.71  
1.6 9 9.7 9.8 1035.87 8.67 421.76 

VII. Conclusion 

In this study, the accelerated life test plan is designed under the Type-I censoring scheme when the 
lifetime of test items follow the Gompertz failure model and also provided its application in the 
field of the warranty policy. The following observations are made on the basis of this study; 
From the Table (1) and (2), increases in the sample size lead to a decrease in the mean square error 
and absolute relative bias. So, the asymptotically normally distributed and consistent estimators 
are provided by MLEs. 
From Table (3), an inverse relationship is developed between mission time and the reliability 
function.  From Table (4), the expected total cost and expected time cycle are inversely related to 
the parameter's value, while the expected cost rate is directly related to the value of the parameter. 
The expected total cost and expected cycle time are directly related to the value of the parameter, 
while the expected cost rate is inversely related to the value of the parameter. Increases in the 
warranty resulted in decreases in the expected total cost and expected cost rate and also doesn't 
affect the expected life cycle. 
Finally, an inverse relationship is developed between the age of replacement and the expected cost 
rate, while direct relationships are developed between the expected total cost and expected time 
cycle. 

In the future, this work can be extended with different censoring schemes for other failure models. 
The application of ALT can be done with other warranty policies under the Bayesian approach in 
the extended work.  
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Abstract 

Reliability sampling is the methodology often used in manufacturing industries for making decision about the 
disposition of lots of finished products based on the information generated from a life test. Such a methodology 
can be applied effectively for isolated lots as well as for a continuous stream of lots through the life tests to 
ensure control over the quality characteristics that are mainly related to the functioning of the manufacturing 
items in time. Sampling inspection plans for isolated lots are classified under lot by lot inspection procedures. 
Cumulative results plans are classified under the sampling inspection for continuous production, which results 
in continuous stream of lots. This paper presents the notion of life tests for cumulative results plans with a 
particular reference to chain sampling inspection plans when the lots are formulated from a continuous stream 
of production. The operating characteristic (OC) function of chain sampling plans for life tests is presented as a 
measure of performance when the lifetime random variable follows an exponential distribution. A procedure for 
designing the proposed plans indexed by two points on the characteristic curve for providing protection to the 
producer and consumer is discussed with illustrations. Tables yielding the parameters of the optimum plans are 
also provided.   

Keywords: Acceptable mean life, Chain sampling plan, Consumer’s risk, Cumulative results 
plan, Exponential distribution, Producer’s risk.  

1. Introduction 

Reliability sampling, one of the decision-making procedures in statistical product control, is 
effectively implemented in the production and engineering processes to make an assessment about 
the finished products and to decide on the disposition of lot(s) of items. It involves a life test, which is 
an experiment performed on each of the items selected randomly from the lot(s) to observe lifetimes 
of the items as the values of the quality characteristic. It consists in a sampling procedure, called life 
test sampling plan, which is employed by drawing a random sample of test units from the lot and 
inspecting the units for deciding whether the lot is accepted or rejected based on the information 
provided by the test results. The focal point of any specific life test sampling plan is to determine 
whether the lifetimes of items attain the required standard or not based on the observations made 
from the sampled lifetime data. Such sampling plans can be developed considering the lifetime of the 
products as the quality characteristic as well as the random variable, which is hypothesized to follow 
a suitable probability distribution, like exponential, Weibull, lognormal, or gamma distribution rather 
than the normal distribution.   

Analogous to the general classification of sampling inspection given in [1], life test sampling 
plans can be categorized primarily into two types, namely, lot-by-lot sampling plans for life tests and 
cumulative results sampling plans for life tests when production is continuous. Cumulative results 
plans are generally classified under the sampling inspection for continuous production, which results 
in continuous stream of lots. While the literature in product control cites voluminous references on 
the applications of many continuous-type probability distributions in the studies concerned with the 
development of various lot by lot sampling inspection plans for life tests, only a very few works on 
life test sampling plans for continuous production are noticeable. The earlier works, which laid the 
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foundation for the expansion of various types of sampling plans, would include the theory of 
reliability sampling proposed and developed in [2] to [9]. Significant contributions in the 
development of life test sampling plans employing exponential, Weibull, lognormal and gamma 
distributions as well as several compound distributions for modeling lifetime data have also been 
made in the past four decades. A detailed account of such plans was provided in [10]. 

The recent advances in the theory and applications of life test sampling plans are provided in [11] 
to [26]. The exponential distribution, which is a special case of gamma family of distributions as 
demonstrated in [27], has a wider application in the fields of queueing theory, reliability theory and 
engineering, and hydrology. It is used to model the performance of components that have a constant 
failure rate and is applied to the cases involving items that do not degrade with time or do not result 
in wear out failures. Examples include components of high-quality integrated circuits, such as diodes, 
transistors, resistors, and capacitors. The exponential distribution is considered as a perfect model for 
the long and constant period of low failure risk that characterizes the useful life of the product and 
represents the intrinsic failure phase in the field of reliability.    

Earlier literature outlines the application of exponential distribution in the fields of actuarial, 
biological and engineering sciences. One may refer to [28] to [32] for more details. The designing of 
life test sampling plans under the conditions of Marshall – Olkin extended exponential distribution 
has been discussed in [33]. While the exponential distribution is appropriate for modeling the lifetime 
of an item, it is commonly applied for the inferential aspect of utilizing life information. Hence, as a 
member of the lifetime continuous probability distributions, the exponential distribution can be 
considered as an apt probability model to adopt in real life situations.  

This paper presents the concept of life tests for cumulative results plans with a particular 
reference to chain sampling inspection plans when the lots are formed from the items resulted from a 
continuous stream of production. The operating characteristic (OC) function of chain sampling plans 
for life tests is presented as a measure of performance when the lifetime random variable follows an 
exponential distribution A procedure for designing the proposed plans indexed by two points on the 
characteristic curve, namely acceptable mean (or median) life and unacceptable mean (or median) life 
associated with producer’s risk and consumer’s risk, respectively, is discussed with illustrations. 
Tables yielding the parameters of the optimum chain sampling plans are also provided. 

2. Cumulative Results Sampling Plans for Life Tests 

Cumulative results sampling inspection plans generally use the current as well as past sample 
information from product entities in making a decision about the current product entities (see [34]). A 
class of cumulative results plans is developed based on the procedure and the concepts introduced in 
[35]. The basic procedure is labeled as chain sampling plan and is designated as ChSP-1. The 
cumulative results plans, including ChSP-1, are applied under the following conditions: 

(a) The production is reasonably steady so that results on current and preceding lots are broadly 
indicative of a continuing process; 

(b) Samples from lots are obtained essentially in the order of production; 

(c) Inspection is by attributes with quality defined in terms of a fraction nonconforming; and 

(d) lots are expected to be essentially of same quality. 

ChSP-1, a special purpose attributes sampling plan, was devised in [35] for continuous 
production. A detailed discussion on the significance and designing of ChSP-1 has been made in [36] 
– [38] and in [10]. Under this plan, there is a provision to utilize only small acceptance numbers such 
as 0 or 1, and to make use of the information provided by a fixed number of preceding lots for 
deciding about the disposition of the present lot. A salient feature of this plan is that it provides 
greater protection to the producer and consumer against rejection of satisfactory lot quality and 
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acceptance of unsatisfactory lot quality, respectively, when compared to lot-by-lot single sampling 
plans by attributes with small acceptance numbers, say 0 and 1.   

In the context of life tests, one may define the acceptance number as the allowable number of 
failures whereas in the traditional acceptance sampling it is the allowable number of nonconforming 
items. Similarly, the lot quality under life testing is defined by mean or median lifetime of the product 
whereas in the customary sampling inspection it is defined by fraction nonconforming. Consider the 
following conditions:  

(a) Sampling plans for life tests are required to be set up for product characteristics that involve 
costly or destructive testing. 

(b) Situations warrant small samples to be drawn from the lot. 

Under these conditions, i.e., when lots or batches are produced continuously by a production 
process and very small sample sizes are required to be selected from each lot or batch due to 
destructive or costly nature of inspections, sampling plans with small acceptance numbers, say only a 
fewer number of failures are desirable. More importantly, for small sample sizes such as n = 4, 5, 6 or 
even n = 10, only zero failure is practicable. It has been demonstrated in [39] and [40] that, under 
sampling inspection by attributes, single sampling plans for life tests with zero failures or zero 
acceptance number, designated by  are unattractive as they fail to provide protection to 
the producer against the acceptable mean or median life of the product. The operating characteristic 
curves of such sampling plans having zero failures are quite often in undesirable shapes and hence, 
they seldom ensures protection to producers, but ensures protection to consumers against 
unacceptable mean or median life of the product. It can also be demonstrated that single sampling 
plans admitting one or more failures in a sample of items improve upon the undesirable 
characteristics of  but may require larger sample sizes. In order to overcome this 
shortcoming, the chain sampling plans of type ChSP-1 for life tests allowing not more than one failure 
in the random samples drawn from the submitted lot can be adopted. 

Thus, ChSP-1 for life tests can be employed in situations that warrant small samples when costly 
or destructive testing is involved.  Specified by two parameters, viz., the sample size n, and the 
clearance number i, ChSP-1 can be implemented using the following operating procedure: 

Step 1: For each lot, take a random sample of n items and observe the number, d, of failures.  

Step 2: Accept the lot, if d = 0 and reject the lot, if d > 1. If d = 1, accept the lot, provided there are 
no failures in the immediately preceding i random samples of size n. 

2.1 Exponential Distribution 

Let T be a random variable representing the lifetime of the components. Assume that T follows an 
exponential distribution with scale parameter θ. The probability density function and the cumulative 
distribution function of T are, respectively, defined as follows:  

           (1) 

             (2) 

The mean life time, the median life time, the reliability function and hazard function for specified 
time t under the exponential distribution are, respectively, given below:  

             (3) 

             (4) 
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              (5) 

            (6) 

It is known that the reliable life is the life beyond which some specified proportion of items in the 
lot will survive. Associated with the exponential distribution, it is defined by  

             (7) 

where R is the proportion of items surviving to time ρ. 

The proportion,  of product failing before time t, is defined by the cumulative probability 
distribution of T and is expressed by  

                         (8) 

2.2 Operating Characteristic Function of ChSP-1 for Life Tests   

One of the measures for assessing the performance of any sampling inspection plan is its operating 
characteristic (OC) function. It is defined as the probability of acceptance of the lot under the 
sampling plan and is a function of the lot quality or the proportion, p, of product failing before time t 
or the failure probability. According to [35], the OC function associated with ChSP-1 plans for life 
tests would represent the proportion of lots that will be accepted under the plan and is expressed as a 
function of p by  

                         (9) 

where  is the probability of having zero failures in a sample of size n and  is the probability of 

having one failure in sample of size n. It may be noted that ,  and are defined under the 

conditions of binomial distribution as given below:   

 

 

                      (10) 

Under the conditions of Poisson distribution, the expressions for , and are 

respectively, are as follows:   

 

 

                                                (11) 

In the context of sampling plans for life tests, it is to be observed that the failure probability, p, is 
defined by the proportion of product failing before time t, and hence, the expression for is defined 
by the cumulative probability distribution of T given as (8). Associated with a specific value of p, 
there exists a unique value of t / θ. Since the mean life is µ = θ, p is related to t / µ. In a similar way, for 
a specified value of t / µ, the value of p could be obtained. As the value of p is associated with t / µ, the 
operating characteristic function of a life test sampling plan can be considered as a function of t / µ, 
rather than p, and hence, the OC curve of the plan could be obtained by plotting the acceptance 
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probabilities against the values of t / µ. If the median life is to be considered for the operating 
characteristics of the desired plan, p can be associated with  

3. Procedure for the Selection of ChSP–1 for Life Tests with Desired Discrimination 

It can be observed that when the lifetime random variable follows an exponential distribution, ChSP-1 
for life tests would be designated by the parameters, viz., the sample size, n, and the clearance 
number, i., which depend on the desired mean or median life. Hence, under an exponential 
distribution, when the mean life criterion is to be involved, a specific ChSP-1 can be determined by 
specifying the requirements that the OC curve should pass through two prescribed points, namely, 

 and , where  and  are the acceptable and unacceptable mean life, respectively, 
which are associated with the producer’s risk, α, and the consumer’s risk, β. 

Corresponding to  and  one may define  and  as the acceptable and unacceptable 

proportions of the lot failing before time, t, respectively. Here,  and  may be considered as the 
producer’s quality level and consumer’s quality level with α and β as the associated producer’s and 
consumer’s risks, respectively.  

Further, associated with  and  are the dimensionless ratios  and  respectively. The 
specification of these quality levels would ensure protection to the producer against rejection of 
satisfactory lots as well as the consumer against acceptance of unsatisfactory lots, and would be 
considered to fix the OC curve in accordance with a desired degree of discrimination. The operating 
ratio, defined by , is used as a measure of discrimination. An optimum life test sampling 
plan for specified points  and can be determined by satisfying the following two 
conditions so that the maximum producer's and consumer's risks will be fixed at α and β, 
respectively: 

                        (12) 

and                                       (13) 

It may be noted that the specification of  and  is equivalent to the specification 
of the points  and  or  and . When median life criterion is 

desired,  and  are specified as the requirements for ensuring protection to the 

producer and the consumer, and the operation ratio, , is used as the measure of 

discrimination, where is the acceptable median life and is the unacceptable median life. An 

integrated approach to determine ChSP-1 for life tests satisfying the prescribed requirements under 
mean life criterion when the underlying distribution of the life time random variable follows an 
exponential distribution and its implementation is described below: 

Step 1:  Specify the values of  and with  and , respectively. 

Step 2:  Find  and corresponding to  and  using the relationship existing between 
p  and t / µ.   

Step 3:  Obtain the optimum values of n and  for the specified strength and 
satisfying the conditions (12) and (13) either through (10) or through (11) with the 

values of and . 

Step 4:   Perform the life test considering t as the test termination time and  as the expected 
mean life. Observe the number, d, of failures. 
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Step 5:   Terminate the life test if either the termination time t is reached or the event of more than 

one failure occurs before time t.  

Step 6:  Accept the lot if there are no failures; reject the lot if more than one failure occurs before 
reaching time t. 

Step 7:  If one failure occurs, accept the present lot, provided no failures have occurred in the 
immediately preceding  samples of size n. 

Following the first three steps of the above procedure, Tables 1 and 2 which yield the optimum 
ChSP-1 for life tests under mean and median life criteria are constructed. The plan parameters given 
in the tables are determined for a wide range of values of the dimensionless ratios corresponding to 
mean and median life criteria and satisfy the prescribed conditions with the maximum producer’s 
risk of 5 percent and the maximum consumer’s risk of 10 percent.  

3.1 Numerical Illustration  

Assume that a ChSP-1 for life tests is to be instituted. It is assumed that the lifetime of the mobile 
phone battery is a random variable which is distributed according to an exponential distribution. It is 
expected that the plan shall provide the desired degree of discrimination measured in terms of the 
operating ratio OR = 16, ensuring protection to the producer and the consumer in terms of the 
acceptable mean life and unacceptable mean life of the battery given respectively  
minutes and minutes with the associated producer’s risk of 5 percent and the consumer’s 
risk of 10 percent. Suppose that the experimenter wishes to terminate the life test at t = 300 minutes. 
As  and , entering Table 1 with these values, one finds n = 38 and i = 2, 
as the sample size and clearance number of the desired ChSP-1. Thus, the plan for the given 
conditions is implemented as given below: 

1. Select a random sample of 38 items from the present lot. 

2. Conduct the life test on each of the sampled items and observe the number of failures before 
reaching the termination time fixed as t = 300 minutes. 

3. Terminate the life test once the termination time, t = 300 minutes, is reached or when one or 
more failures occur before reaching the termination time. 

4. Accept the present lot, if no failure is observed; reject the lot, if more than one failure occurs; 
accept the lot, if one failure is observed and no failures were found in the preceding two 
samples.  

5. Treat the items which survive beyond the specified time t = 300 minutes as passed.     

3.2 Numerical Illustration  

The time to failure (in hours) of monolithic integrated circuits can be modeled by an exponential 
distribution with failure rate fixed at 0.0003. Assume that the components are resulted from a 
continuous stream of production. The producer’s and consumer’s requirements are defined in terms 
of acceptable mean life, of 9000 hours and unacceptable mean life, , of 500 hours. The 

producer’s risk of rejecting the lot having  hours and the consumer’s risk of accepting the 
lot having  hours are fixed at 5 percent and 10 percent, respectively.  The total time duration 
of life test is fixed at t = 13.5 hours. For the given requirements, the measure of discrimination is found 
to be OR = 18 and  Entering Table 1 with the values of R and the optimum 
ChSP-1 is determined as n = 87 and i = 3.  

750000 =µ
46801 =µ

16025.16 »=OR 004.0/ 0 =µt

,0µ 1µ
90000 =µ

5001 =µ

.0015.0/ 0 =µt ,/ 0µt

376



R. Vijayaraghavan, A. Pavithra 
SELECTION OF LIFE TEST SAMPLING PLANS  

                                                                  RT&A, No. 1 (67) 
                                                   Volume 17, March 2022 

 
Table 1:  Optimum ChSP-1 for Life Tests Based on Exponential Distribution Indexed by Acceptable 

Mean Life and Unacceptable Mean Life with a Maximum Producer’s Risk of 5 Percent and 
Consumer’s Risk of 10 Percent [Key: n, i, where n is the sample size and i is the clearance 
number] 

OR 
 

0.001 0.00125 0.0015 0.00175 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 
15.5 152, 2 122, 2 102, 2 87, 2 77, 2 52, 2 39, 2 32, 2 27, 2 23, 2 20, 2 18, 2 
16.0 147, 2 118, 2 99, 2 85, 2 74, 2 50, 2 38, 2 31, 2 26, 2 22, 2 20, 2 18, 2 
16.5 143, 2 114, 2 96, 2 82, 2 72, 2 49, 2 37, 2 30, 2 25, 2 22, 2 19, 2 17, 2 
17.0 137, 3 110, 3 92, 3 79, 3 69, 3 47, 2 36, 2 29, 2 24, 2 21, 2 19, 2 17, 2 
17.5 133, 3 107, 3 89, 3 77, 3 68, 2 46, 2 35, 2 28, 2 24, 2 21, 2 18, 2 16, 2 
18.0 130, 3 104, 3 87, 3 75, 2 66, 2 44, 3 34, 2 27, 3 23, 2 20, 2 18, 2 16, 2 
18.5 126, 3 101, 3 85, 2 73, 2 64, 2 43, 3 33, 2 27, 2 22, 3 19, 3 17, 2 16, 2 
19.0 123, 3 99, 3 82, 4 71, 3 62, 3 42, 2 32, 2 26, 2 22, 2 19, 2 17, 2 15, 2 
19.5 120, 3 96, 3 80, 3 69, 3 61, 2 41, 2 31, 2 25, 3 21, 3 19, 2 16, 3 15, 2 
20.0 117, 3 94, 3 78, 3 67, 4 59, 3 40, 2 30, 3 25, 2 21, 2 18, 2 16, 2 14, 3 
20.5 114, 3 92, 2 77, 2 66, 2 58, 2 39, 2 30, 2 24, 2 20, 3 18, 2 16, 2 14, 2 
21.0 111, 3 89, 3 75, 2 64, 3 56, 4 38, 3 29, 2 24, 2 20, 2 17, 3 15, 3 14, 2 
21.5 109, 3 87, 3 73, 3 63, 2 55, 3 37, 3 28, 3 23, 2 20, 2 17, 2 15, 2 14, 2 
22.0 106, 3 85, 3 71, 4 61, 4 54, 3 37, 2 28, 2 23, 2 19, 2 17, 2 15, 2 13, 2 
22.5 104, 3 84, 2 70, 3 60, 3 53, 2 36, 2 27, 3 22, 2 19, 2 16, 2 14, 3 13, 2 
23.0 102, 3 82, 3 68, 3 59, 2 52, 2 35, 2 27, 2 22, 2 18, 3 16, 2 14, 2 13, 2 
23.5 100, 3 80, 3 67, 3 58, 2 51, 2 34, 3 26, 2 21, 2 18, 2 16, 2 14, 2 13, 2 
24.0 98, 3 78, 3 66, 2 56, 4 50, 2 34, 2 26, 2 21, 2 18, 2 15, 3 14, 2 12, 2 
24.5 96, 3 77, 3 64, 3 55, 3 49, 2 33, 2 25, 2 20, 3 17, 3 15, 2 13, 3 12, 2 
25.0 94, 3 75, 3 63, 3 54, 3 48, 2 32, 3 25, 2 20, 2 17, 2 15, 2 13, 2 12, 2 
25.5 92, 3 74, 3 62, 2 53, 3 47, 2 32, 2 24, 2 20, 2 17, 2 15, 2 13, 2 12, 2 
26.0 90, 3 73, 2 61, 2 52, 3 46, 2 31, 2 24, 2 19, 3 16, 3 14, 2 13, 2 12, 1 
26.5 89, 2 71, 3 60, 2 51, 3 45, 3 31, 2 23, 3 19, 2 16, 2 14, 2 13, 2 11, 2 
27.0 87, 3 70, 3 59, 2 50, 3 44, 3 30, 2 23, 2 19, 2 16, 2 14, 2 12, 2 11, 2 
28.0 84, 3 67, 4 56, 4 49, 2 43, 2 29, 2 22, 2 18, 2 15, 3 13, 3 12, 2 11, 2 
29.0 81, 3 65, 3 55, 2 47, 2 41, 3 28, 2 22, 2 18, 2 15, 2 13, 2 12, 2 11, 1 
30.0 78, 3 63, 3 53, 2 46, 2 40, 2 27, 3 21, 2 17, 2 14, 3 13, 2 11, 2 10, 2 
31.0 76, 3 61, 3 51, 3 44, 3 39, 2 26, 3 20, 2 17, 2 14, 2 12, 2 11, 2 10, 2 
32.0 74, 2 59, 3 50, 2 43, 2 38, 2 26, 2 20, 2 16, 2 14, 2 12, 2 11, 2 10, 1 
33.0 71, 4 57, 4 48, 3 42, 2 37, 2 25, 2 19, 2 16, 2 13, 2 12, 2 10, 3 9, 3 
34.0 69, 3 56, 2 47, 2 40, 3 36, 2 24, 2 19, 2 15, 2 13, 2 11, 2 10, 2 9, 2 
35.0 67, 4 54, 3 46, 2 39, 3 35, 2 24, 2 18, 2 15, 2 13, 2 11, 2 10, 2 9, 2 
36.0 66, 2 53, 2 44, 3 38, 3 34, 2 23, 2 18, 2 14, 3 12, 2 11, 2 10, 1 9, 1 
37.0 64, 2 51, 3 43, 3 37, 3 33, 2 22, 3 17, 2 14, 2 12, 2 11, 1 9, 3 9, 1 
38.0 62, 3 50, 3 42, 2 36, 3 32, 2 22, 2 17, 2 14, 2 12, 2 10, 2 9, 2 8, 3 

  The plan obtained in the present numerical illustration is implemented as given below: 

1. A random sample of 87 integrated circuits is drawn from the current lot.  

2. All 87 circuits are placed for life test simultaneously for the time duration of 13.5 hours. 

0/ µt
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3. When no failures are observed until 13.5 hours, the current lot is accepted; when more than 

one failure is observed before the termination time, the lot is rejected; when exactly one 
failure occurs in the total duration of 13.5 hours, the current lot is accepted, only if no failure 
was observed in the immediately preceding 3 samples of size n = 87.     

Table 2: Optimum ChSP-1 for Life Tests Based on Exponential Distribution Indexed by Acceptable  
Median Life and Unacceptable Median Life with a Maximum Producer’s Risk of 5 Percent 
and Consumer’s Risk of 10 Percent [Key: n, i, where n is the sample size and i is the clearance 
number] 

OR 
 

0.0015 0.00175 0.002 0.0025 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 
15.0 146, 2 125, 2 110,2 88, 2 74, 2 56, 2 45, 2 38, 2 33, 2 29, 2 26, 2 23, 2 
15.5 141, 2 121, 2 106,2 86, 2 72, 2 54, 2 44, 2 37, 2 32, 2 28, 2 25, 2 23, 2 
16.0 137, 2 118, 2 103,2 83, 2 69, 2 52, 2 42, 2 36, 2 31, 2 27, 2 24, 2 22, 2 
16.5 132, 3 113, 3 99, 3 80, 3 67, 2 51, 2 41, 2 35, 2 30, 2 26, 2 24, 2 21, 2 
17.0 128, 3 110, 3 97, 2 78, 2 65, 3 49, 3 40, 2 33, 3 29, 2 25, 3 23, 2 21, 2 
17.5 125, 3 107, 3 94, 3 76, 2 63, 3 48, 2 39, 2 32, 3 28, 2 25, 2 22, 2 20, 2 
18.0 121, 3 104, 3 92, 2 74, 2 62, 2 47, 2 38, 2 32, 2 27, 3 24, 2 22, 2 20, 2 
18.5 118, 3 102, 3 89, 3 72, 2 60, 3 45, 3 37, 2 31, 2 27, 2 24, 2 21, 2 19, 2 
19.0 115, 3 99, 3 87, 3 70, 2 58, 4 44, 3 36, 2 30, 2 26, 2 23, 2 21, 2 19, 2 
19.5 112, 3 97, 2 85, 3 68, 3 57, 3 43, 3 35, 2 29, 3 25, 3 22, 3 20, 2 18, 2 
20.0 110, 3 94, 3 83, 2 66, 4 56, 2 42, 3 34, 2 29, 2 25, 2 22, 2 20, 2 18, 2 
20.5 107, 3 92, 3 81, 3 65, 3 54, 3 41, 3 33, 3 28, 2 24, 2 21, 3 19, 2 17, 4 
21.0 105, 3 90, 3 79, 3 63, 4 53, 3 40, 3 33, 2 27, 3 24, 2 21, 2 19, 2 17, 2 
21.5 102, 3 88, 3 77, 3 62, 3 52, 2 39, 3 32, 2 27, 2 23, 2 21, 2 18, 3 17, 2 
22.0 100, 3 86, 3 75, 4 61, 2 51, 2 39, 2 31, 2 26, 3 23, 2 20, 2 18, 2 16, 3 
22.5 98, 3 84, 3 74, 3 59, 3 50, 2 38, 2 31, 2 26, 2 22, 3 20, 2 18, 2 16, 2 
23.0 96, 3 82, 4 72, 3 58, 3 49, 2 37, 2 30, 2 25, 2 22, 2 19, 3 17 3 16, 2 
23.5 94, 3 81, 3 71, 3 57, 3 48, 2 36, 3 29, 3 25, 2 21, 3 19, 2 17, 2 16, 2 
24.0 92, 3 79, 3 69, 4 56, 2 47, 2 36, 2 29, 2 24, 2 21, 2 19, 2 17, 2 15, 2 
24.5 90, 3 78, 2 68, 3 55, 2 46, 2 35, 2 28, 3 24, 2 21, 2 18, 2 16, 3 15, 2 
25.0 89, 2 76, 3 67, 2 54, 2 45, 3 34, 3 28, 2 23, 3 20, 2 18, 2 16, 2 15, 2 
25.5 87, 3 75, 2 66, 2 53, 2 44, 3 34, 2 27, 2 23, 2 20, 2 18, 2 16, 2 14, 3 
26.0 85, 3 73, 3 64, 3 52, 2 43, 3 33, 2 27, 2 23, 2 20, 2 17, 3 16, 2 14, 2 
27.0 84, 2 72, 3 63, 3 51, 2 43, 2 32, 3 26, 3 22, 2 19, 2 17, 2 15, 2 14, 2 
28.0 81, 3 69, 4 61, 3 49, 3 41, 3 31, 3 25, 3 21, 3 19, 2 17, 2 15, 2 14, 2 
29.0 78, 3 67, 3 59, 2 47, 4 40, 2 30, 3 25, 2 21, 2 18, 2 16, 2 14, 3 13, 2 
30.0 75, 4 65, 3 57, 3 46, 2 39, 2 29, 3 24, 2 20, 2 17, 4 16, 2 14, 2 13, 2 
31.0 73, 3 63, 2 55, 3 45, 2 37, 3 28, 3 23, 2 20, 2 17, 2 15, 2 14, 2 12, 3 
32.0 71, 3 61, 3 54, 2 43, 3 36, 3 28, 2 22, 3 19, 2 17, 2 15, 2 13, 2 12, 2 
33.0 69, 2 59, 3 52, 2 42, 2 35, 3 27, 2 22, 2 18, 3 16, 2 14, 2 13, 2 12, 2 
34.0 67, 2 57, 4 51, 2 41, 2 34, 3 26, 2 21, 2 18, 2 16, 2 14, 2 13, 2 11, 3 
35.0 65, 3 56, 2 49, 3 40, 2 33, 3 25, 3 21, 2 17, 4 15, 2 14, 2 12, 2 11, 2 
36.0 63, 3 54, 3 48, 2 39, 2 32, 3 25, 2 20, 2 17, 2 15, 2 13, 2 12, 2 11, 2 
37.0 62, 2 53, 2 47, 2 38, 2 32, 2 24, 2 20, 2 17, 2 15, 2 13, 2 12, 2 11, 2 
38.0 60, 3 52, 2 45, 3 37, 2 31, 2 24, 2 19, 2 16, 2 14, 2 13, 2 11, 3 10, 3 

0
/ dt µ
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3.3 Numerical Illustration   

Suppose that an experimenter is interested to implement ChSP-1 for life tests to make a decision 
about the disposition of a current lot of manufactured products whose life time follows an 
exponential distribution. It is assumed that the life test will be terminated at hours. It is 
expected that the plan shall yield the desired degree of discrimination when the median life criterion 
is used providing protection to the producer and the consumer in terms of the acceptable median life 
and unacceptable median life fixed as hours and hours, associated with the 

producer’s risk of 5 percent and consumer’s risk of 10 percent. For the specified requirements, one 
obtains ,  and R = 19.51. Hence, from Table 2, corresponding to OR = 

19.5 and , the optimum ChSP-1 is determined with its parameters specified by n = 68 

and i = 3.  

4. Conclusion 

The concept of cumulative results plans for life tests is introduced with reference to chain sampling 
inspection plans involving the formation of lots from the items resulted from a continuous stream of 
production. It consists in the methodical procedure for making a decision about the present (current) 
lot based on the inspection of a random sample drawn from the lot and make use of the information 
provided by previous samples when exactly one failure occurs in the sample drawn from the current 
lot. The operating characteristic function of chain sampling plans for life tests is defined as a measure 
of performance under the condition that lifetime random variable follows an exponential distribution. 
A procedure for designing the optimum plans for life tests under mean and median life criteria is 
described. The optimum plans indexed by two points on the characteristic curve, namely acceptable 
mean (or median) life and unacceptable mean (or median) life associated with producer’s risk and 
consumer’s risk, respectively, are provided along with suitable illustrations.  
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Abstract 

 
          We live in a contemporary world where successful project management strategies are 
complex to manipulate the projects for project managers and decision-makers. It is essential to 
pinpoint strategies so that managers can accomplish projects and polish off them within a 
predetermined period of time and resource restrain. This research assists us to detect the critical 
path in an acyclic network in terms of intuitionistic triangular fuzzy numbers, we have proposed 
the “maximum edge distance” method. Forward and backward algorithms are designed to find the 
optimal path for the proposed method. Numerical examples are also illustrated for the same. 
Verification is done using the path length ranking technique. Simulation results are included by 
the use of the C program and MATLAB. Finally, the comparison is made with the traditional 
forward and backward pass (existing method) technique to point out the conclusion. 

 
Keywords: Critical path problem, Triangular fuzzy number, Intuitionistic Triangular             

Fuzzy Number, Acyclic network. 
 

I. Introduction 
 

 A project is understood as a set of interconnected operations that must be executed out in a 
particular manner to generate a significant profit. A complex project implicates many interlinked 
activities depend upon labor force, machines, and materials; it was unfeasible for organizers to 
assemble and achieve an optimum schedule. However, due to the complexity of few projects come 
across in the late 1950’s it was essential to introduce a new technique that will be more adequate 
and efficacious strategies. Two techniques were adopted by Operations Research namely, Project 
Evaluation and Review Technique and Critical Path Method. The former was developed by the US 
Naval Forces in 1957 while the latter was developed by James E. Kelley and Morgan R. walker [9]. 
CPM was first applied in 1966 for the construction of a major Skyscraper that is the former World 
Trade Center Twin Towers in New York City. CPM has more boons which were implemented by 
Mauchly Associates. CPM and PERT are predominantly time-oriented methods. The most 
noteworthy dissimilarity between CPM and PERT was in the utilization of the time estimates. The 
value of time assigns to be probabilistic in PERT although they were deterministic in CPM. It was 
widely known as a valuable tool for the look and programming for huge come. The concept of the 
critical path allows the decision-maker to control the project's cost and schedule, and it can 
improve the quality of the work. This method is commonly utilized in various industries to 
analyze and improve the efficiency of a project.  
 

Adequate project management strategies are censorious to organizers and decision-makers 
to approach projects in the conflicting domain. Project Managers are required to observe which 
techniques can accomplish projects and execute them within a particular period [7]. Actually, 
owing to the uncertainty of data in addition to the discrepancy of quantities framework, it was 
often difficult to secure the designated activity time. Hence, Lofti Asker Zadeh proposed the 
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theory called fuzzy set theory which plays a significant aspect in this type of decision-making 
world [14]. There were several methods reported to solve the fuzzy critical path (FCP) problem in 
the open literature. The first method to find an optimal path called Fuzzy Program Evaluation and 
Review Technique (FPERT) was proposed by Chanas and Kamburowski [5]. FPERT assumes the 
time to find the critical path, whereas when the project managers have deterministic data to find a 
critical path they can use the Fuzzy Critical Path Method (FCPM). Stephen Dinakar and Rameshan 
[13] presented an approach to analyzing the critical path in a project network with octagonal fuzzy 
numbers. Balaganesan and Ganesan [3] proposed a new methodology to find the critical path 
where the imprecise parameters in the network diagram take the intuitionistic triangular fuzzy 
numbers instead of crisp numbers. N. Jose Parvin Praveena et.al proposed a new method called 
the new JOSE Algorithm to find FCP. This method was designed according to find the fuzzy 
critical path using 13 Parameters with a ranking method, namely the Euclidean ranking method. 
The dynamic encoding recursion of the critical path in terms of triskaidecagonal and 
Triskaidecagonal fuzzy numbers fuzzy critical Path was found [8]. Ravi Shankar Nowpada et.al 
presented a new analytical method for finding critical paths using a fuzzy project network. They 
have proposed a new defuzzification formula for trapezoidal fuzzy numbers and applied it to the 
float time for each activity in that project network and tabulated the values. With the use of table 
values, they found the critical path [11]. Thus, numerous papers are published on fuzzy critical 
path problems. Few among them are [1, 6 and 12]. 
 

The paper is organized as follows: In section 2, we review the basic definitions of fuzzy set 
theory. Section 3; focus on two different algorithms which are utilized to identify the intuitionistic 
fuzzy critical path. Numerical examples are illustrated to perform the proposed approach. The 
simulation result is included for one of the developed algorithms. Under results and discussions in 
section 4, the comparison is made with the existing method (Forward and backward pass 
computations). Section 5 concludes the paper. 

 
II. Preliminaries 

 
Definition 2.1 Fuzzy set [14]  

Fuzzy sets are sets that are characterized by imprecise data with boundaries to express a 
degree of membership function in the closed unit interval [0, 1].  

Let P be a non-empty set. Then a fuzzy set X is a set having the form of ordered pairs X = 
{(p, αA (p)): p ∈ P} where the function αx : P → [0, 1] is called the membership function and αx (p) is 
called the degree of membership of each element p ∈ P. 

 
Definition 2.2 Intuitionistic Fuzzy set [2]  

 Let a set P be fixed. An intuitionistic fuzzy set X in P is an object having the form X = {(p, 
αx (p), γx (p)) : p ∈ P} where the function αx : P → [0, 1] and βx : P → [0, 1] defined the degree of 
membership and degree of non-membership respectively of the element p ∈ P to the set X, which is 
a subset of P, and for every p ∈ P, 0 ≤ αx (p) + βx (p) ≤ 1.  

 
The amount αx (p) = 1 − αx (p) – βx (p) is called the hesitation part, which may be either 

membership value or non-membership value or both. 
 
Definition 2.3 Fuzzy Number [14] 
Let Ṕ is said to be a fuzzy number if it satisfies the following condition, 
 

(i) αx (p) is piecewise continuous  
(ii) αx (p) is convex, 
(iii) αx (p) is normal. 
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Definition 2.4 Triangular fuzzy number [14] 

A triangular fuzzy number X can be defined by a triplet (m, n, o; 1), where m < n < o; 
m, n, o	𝜖	R. The membership function αx(p) is given as follows: 
 

α!(p) = 
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Fig.1. Triangular Fuzzy Number 

 
Definition 2.5 Intuitionistic Triangular Fuzzy Number [2] 

A intuitionistic triangular fuzzy number Ẋ can be defined by a triplet (ṁ, n, ὀ; 1), where 
ṁ<m < n < o < ὀ; ṁ, n, ὀ	𝜖	R. The membership function is alike given in Definition 2.4. The non-
membership function βx(p) is given as follows: 

 

β!(p) = 

⎩
⎪⎪
⎨

⎪⎪
⎧
!"ṁ
'"ṁ

,								ṁ	 ≤ 𝑥 < n
	

1,																				𝑥 = n
	

ὀ"!
ὀ"'

,											n < 𝑥	 ≤ ὀ
	

0,												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
Fig.2. Intuitionistic Triangular Fuzzy Number 

 
Definition 2.6 Addition operation on triangular fuzzy numbers [14]  

Let A = (m1,  n1, o1) and B = (m2,  n2,  o2) be two triangular fuzzy numbers, then                                  
A	⨁	B = (m1 + m2, n1 + n2, o1 + o2). 

 
Definition 2.7 Subtraction operation on triangular fuzzy numbers [14]  

Let A = (m1,  n1, o1) and B = (m2,  n2,  o2) be two triangular fuzzy numbers, then                                  
A−	B = (m1 - o2, n1 - n2, o1 - m2). 
 
Definition 2.8 Maximum operation for triangular fuzzy numbers [14]  

Let A = (m1, n1, o1) and B = (m2, n2, o2) be two triangular fuzzy numbers then 
Lmax = max (A, B) = (max (m1, m2), max (n1, n2), max (o1, o2)). 
 
Definition 2.9 Minimum operation for triangular fuzzy numbers [14]  

Let A = (m1, n1, o1) and B = (m2, n2, o2) be two triangular fuzzy numbers then 
Lmin = min (A, B) = (min (m1, m2), min (n1, n2), min (o1, o2)). 
 
Definition 2.10  Acyclic network [4]  

A digraph is a graph each of whose edges are directed. Hence an acyclic digraph is a 
directed graph without cycle. 

 

384



 
S. Priyadharshini, G. Deepa  
CRITICAL PATH USING MAXIMUM EDGE DISTANCE  

RT&A No 1 (67) 
Volume 17, March 2022  

 

 
III. Methodology 

 
I. General Algorithm for intuitionistic fuzzy critical path problem using 
intuitionistic triangular fuzzy numbers 
 
Step 1:  
 Construct an acyclic network G(V, E), where V is the set of vertices and E is the set of edges. Each 
arc lengths or edge weights corresponds to the cost, time etc., in practical problems. 
 
Step 2:  
Calculate all possible paths Pi, i = 1 to n from the source vertex ‘s’ to the destination vertex ‘d’. 
 
Step 3: 
The corresponding path lengths Li, i = 1 to n using definition 2.6. 
To calculate path length Pi = ∑ 𝐿($

()*  
 
Step 4:  
After Calculating the path length for each possible path Li, i = 1 to n, then find the path having the 
maximum value and rank it as first rank.  The path which is ranked first is identified as the 
intuitionistic fuzzy critical path. 
 
Numerical Example: 
 
Step 1:   
Construct an acyclic network G (V, E) of Type V graph fuzziness using definition 2.12, where the 
edge weights are taken as an intuitionistic triangular fuzzy number. [3] [6] 

 
 

Fig. 3 Intuitionistic triangular fuzzy network 
 
Step 2: 
The possible paths are P1 is 1-2-5-7, P2 is 1-3-5-7, P3 is 1-3-5-7 and P4 is 1-4-6-7. 
 
Step 3:  
Consider Fig.3, calculate the path length, P(Li) = ∑ 𝐿($

()* .  Calculated Values are tabulated below. 
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Table. 1 Results of the Network 

 
Path (Pi) Path length (Li) Ranking 

P1: 1-2-5-7 (91, 132, 172)(78, 132, 188) 2 
P2: 1-3-5-7 (93, 143, 173)(81, 143, 195) 1 
P3: 1-3-6-7 (79, 118, 155)(67, 118, 175) 3 
P4: 1-4-6-7 (73, 110, 155)(60, 110, 170) 4 

 
From the table, the path P1: 1-3-5-7, is identified as the intuitionistic fuzzy critical path because it 
has the highest value while calculating path length. 
  
II  Proposed Algorithm 
Maximum Edge Distance Algorithm for intuitionistic fuzzy critical path (IFCP) 
problem using intuitionistic triangular fuzzy numbers 
 
Notations used: 
EL – Edge length 
d[u, v] – Duration of the activity (u, v) 
Adj [u] – Adjacent to node u 
s – Source node 
t – Destination node 
 
(i) Forward procedure to calculate the IFCP 

 
Step 1: Place all the vertices in Q = priority queue (1, 2, …. . , n-1, n). 
 
Step 2: Choose s = u = 1, choose the source node as permanent node. Set EL[ u] = (0,0,0)(0,0,0). 
 
Step 3: Extract the maximum edge distance. 
For all v𝜖Adj[u] that is for all edges emerging from u, calculate the following: 

(i) If u is incident to only one node v then, EL[v] = EL[u] ⊕ d[u, v] using definition 2.6   
(ii) If u is incident to more than one node v then, EL [v] = 𝑀𝑎𝑥+∈	.	  [(EL[u]⊕d[u,v])] using 

definition 2.8  
 
             The new permanent node = v. Now, form the new priority queue by removing the source 
node s = u = 1 and the other nodes adjacent to u which are different from v. 
Repeat step 3, until the permanent node = t. If so, terminate the execution of the algorithm. 
 
Step 4: The intuitionistic fuzzy distance along the intuitionistic fuzzy critical path P namely 
intuitionistic fuzzy critical path length is denoted by D(P) and is defined as D(P) = ∑ 𝑙/+	 	(/,+)34 , 
where 𝑙/+	  is the path length. It is calculated using definition 2.6 and the corresponding path is the 
IFCP. 
 
(ii) Backward procedure to calculate the IFCP 

 
Step 1: Place all the vertices in Q = priority queue (n, n-1,…..2, 1). 
 
Step 2: Choose t = u = n, that is choose the destination node as permanent node. Set EL[u] = (0,0,0) 
 
Step 3: Extract the maximum edge distance. 
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For all v𝜖Adj[u] that is for all edges incident on u, calculate the following: 
(i) If u is incident to only one node v then, EL[u] = EL[v] ⊕ d[u, v] using definition 2.6   
(ii) If u is incident to more than one node v then, EL [u] = 𝑀𝑎𝑥+∈	.	  [(EL[v]⊕d[u,v])] using 

definition 2.8  
 

The new permanent node = v. Now remove the destination node u = t from the priority queue 
and the other nodes incident to u other than v. 
Repeat step 3, until the permanent node = s. If so, terminate the execution of the algorithm. 
 
Step 4: Calculate the edge distance by using step 4 as given in forward procedure to calculate the 
IFCP. 
 
Numerical Example: 
     Consider fig. 3 to find the IFCP, Backward procedure of an algorithm 3.2 to calculate the IFCP 
will not work here, since the edges incident to the destination node as the same path length, 
because the network is constructed using directed graph. Hence, we apply forward procedure of 
an algorithm 3.2. 
 
Step 1: Q = priority queue (1, 2, 3, 4, 5, 6, 7) 
 
Step 2: Let S = u = 1 (source node).   EL[1] = (0,0,0) (0, 0, 0). 
 
Step 3:  2𝜖Adj[1]  3𝜖Adj[1]  and 4𝜖Adj[1] 
EL[2] = EL[1] ⨁ d[1,2] = (0, 0, 0) (0, 0, 0) + (25, 35, 55)(20,35,60) = (25, 35, 55)(20,35,60),  
EL[3] = EL[1]	⨁ d[1,3] = (0, 0, 0) (0, 0, 0) + (28,44,58)(22, 44, 65) =  (28,44,58)(22, 44, 65), 
EL[4] = EL[1]	⨁ d[1,4] = (0, 0, 0) (0, 0, 0) + (21, 30, 50)(15, 30, 55) = (21, 30, 50)(15, 30, 55) 
EL[v] = Max { ( EL[2]  , EL[3] , EL[4] )  }  
          = Max {(25, 35, 55)(20,35,60), (28,44,58)(22, 44, 65), (21, 30, 50)(15, 30, 55)} 
EL[v] = (28,44,58)(22, 44, 65) = EL [3] 
The new permanent node = 3 
 
Remove source node 1, node 2 and node 4 from the priority queue. 
New priority queue is Q = Priority queue (5, 6, 7, 8) 
  
5 𝜖	Adj [3],   6𝜖Adj [3] 
EL [5] = EL [3] ⨁	d [3, 5] = (28,44,58)(22,44,65) + (30,47,50)(29,47,60) = (58, 91, 108) (51, 91, 125) 
EL [6] = EL [3]⨁	d [3, 6] = (28,44,58) (22,44,65) + (24,37,47)(20,37,55) = (52, 81, 105) (42, 81, 120) 
EL[v] = Max { EL [5] , EL[6] } = (58, 91, 108) (51, 91, 125) = EL [5] 
The new permanent node = 5 
 
Remove source node 6 from the priority queue. 
New priority queue is Q = Priority queue (7) 
 
 7𝜖 Adj [5] 
EL[7] = EL[5] ⨁ d[5,7] = (58,91,108)(51,91,125) + (35,52,65)(30,52,70) = (93,143,173) (81,143, 195) 
The new permanent node = 7 = t = destination node. 
Since, we reach the destination node we can stop the process. 
 
Step 4:  
By using the formula stated in algorithm 3.2, D(P) = ∑ 𝑙/+	 .(/,+)34  The intuitionistic fuzzy critical path 
length is calculated that is (93, 143, 173) (81, 143, 195) and the corresponding intuitionistic fuzzy 
critical path is 1-3-5-7. 
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Simulation Result using C Program 

 
 

Simulation Result using MATLAB 
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IV. Results and Discussions 
 
Verification. For the sake of comparison, here verification is done using traditional forward and 
backward pass calculation. 
 

Activity 
(i-j) Duration 

Earliest start 
Time(EST) 

Earliest finish 
Time(EFT) 

Latest finish 
Time(LFT) 

Total 
Float 

1-2 (25, 35, 55)(20, 35, 60) (0,0,0) (0,0,0) (25, 35, 55)(20, 35, 60) (27,46,56)(23,46,67) (2,11,1)(3,11,7) 

1-3 (28,44,58)(22, 44, 65) (0,0,0) (0,0,0) (28,44,58)(22, 44, 65) (28,44,58)(22,44,65) (0,0,0) (0,0,0) 

1-4 (21, 30, 50)(15, 30, 55) (0,0,0) (0,0,0) (21, 30, 50)(15, 30, 55) (41,63,58)(36,63,80) (20,33,8)(21,33,25) 

2-5 (31, 45, 52)(28, 45, 58) (25, 35, 55)(20, 35, 60) (56,80,107)(48,80,118) (58,91,108)(51,91,125) (2,11,1)(3,11,7) 

3-5 (30,47,50)(29,47,60) (28,44,58)(22, 44, 65) (58,91,108)(51,91,125) (58,91,108)(51,91,125) (0,0,0) (0,0,0) 

3-6 (24,37,47)(20,37,55) (28,44,58)(22, 44, 65) (52,81,105)(42,81,120) (66,106,123)(56,106,140) (14,25,18)(14,25,20) 

4-6 (25,43,55)(20,43,60) (21, 30, 50)(15, 30, 55) (46,73,105)(35,73,110) (66,106,123)(56,106,140) (20,33,18)(21,33,30) 

5-7 (35,52,65)(30,52,70) (58,91,108)(51,91,125) (93,143,163)(81,143,195) (93,143,163)(81,143,195) (0,0,0) (0,0,0) 

6-7 (27,37,50)(25,37,55) (46,73,105)(35,73,115) (73,110,155)(60,110,170) (93,143,163)(81,143,195) (20,30,58)(20,30,25) 

 
Here path P1:1-3-5-7 is identified as the intuitionistic fuzzy critical path.          
The Comparison was done for the solution yield using the proposed method. Verification is done 
using the traditional forward and backward pass calculations. It is found that the result obtained 
in this paper, coincides with the result obtained through the existing methods. The iterations and 
time consumption used to find the critical path using maximum edge distance method was better 
that the existing method. 
 

389



 
S. Priyadharshini, G. Deepa  
CRITICAL PATH USING MAXIMUM EDGE DISTANCE  

RT&A No 1 (67) 
Volume 17, March 2022  

 

 
V.  Conclusion 

 
            In this paper, we have developed a different algorithm namely the maximum edge distance 
method to find the optimal path in an intuitionistic fuzzy weighted directed graph with its edge 
weights as an intuitionistic triangular fuzzy number. The method proposed in this paper is an 
alternative way to identify the critical path in the fuzzy environment. This method has turned 
down the recurrence. The approximation of the project can be done effortlessly through this 
“Maximum edge distance” method. The reason to mention the word "effortless" is because that the 
completion time of the project given by this method will be optimized at its best as shown in the 
solution illustrated in the numerical example. Obviously and finally this method reduces the time 
consumption when compared to the regular methods used already (Forward and backward pass 
computations). 
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Abstract

Online reviews are now a global form of communication between consumers and E-commerce
companies. When it comes to making day-to-day decisions, customers rely heavily on the availability
of internet reviews, as well as their trustworthiness and performance. Due to the unique qualities of
user reviews, customers are finding it increasingly difficult to define and examining the authenticity
and reliability of sentiment evaluations. These sentiment classifications for user reviews can aid in
understanding user feelings, review dependability, and customer perceptions of movie items. Deep
Learning is a strong technique for learning several layers of data representations or features. When
compared to traditional machine learning approaches, deep learning techniques yield better results. To
assess, analyze, and weight the usefulness of each review comment, we employed the XLNet Deep
Learning Model Approach on balanced movie review dataset.Experimental result demonstrates that the
proposed deep learning model achieves higher performance evaluation than those of other classifiers.

Keywords: Sentiment Analysis, Machine Learning, Deep Learning, XLNet

1. Introduction

In recent years, the E-commerce industry has grown at a breakneck pace [1]. When a wide
variety of items or products appear in customers’ online shopping sites, however, determining
their authenticity and trustworthiness becomes more complex, making it impossible to identify
genuine goods from imitation or replica goods. Customers typically evaluate similar items based
on quality information and pricing before making purchasing decisions.

According to studies, consumers who acquire information from online available posts or
ratings are more interested in buying the product than those who just gather information from
the manufacturer or producer. It implies that online remarks or sentiments left by previous
consumers play a significant effect in the selection of online goods. According to a recent study,
the number of online reviews are proportional to users’ buy intent. Customers are more eager to
buy if there are more online reviews [2]. Sentiment Analysis is a linguistic technique that involves
extracting emotions from raw texts [3] [4]. It can be performed at Document Level, Sentence Level
or Aspect Level shown in below Figure 1.

This is commonly used on social media posts and customer reviews to automatically determine
whether some users are happy or unpleasant, as well as reasons. The original place of sentiment
analysis or opinion mining is shown in Figure 2. The major purpose of this research is to
demonstrate how deep learning may be used to perform sentiment analysis. It’s a means of
evaluating a document’s, sentence’s, or word’s polarity. It is utilized in a wide range of industries,
including marketing, medical diagnosis, education sector, film industries, and others, to aid
businesses and customers. Based on the type of input, it can be broadly classified as Document
Level sentiment Analysis, Sentence (or Line) Level Sentiment Analysis and Aspect (or Feature)
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Figure 1: Levels of Sentiment Analysis

Figure 2: Place of Sentiment Analysis in Data Mining

level Sentiment Analysis [5]. The document’s polarity is calculated by counting the number of
times a positive or negative appears in a document. If there are more positive terms in a paper
than negative words, it is determined that the document is positive. A sentence level check and a
word level check can be performed in the same way as a document check [6]. The alternative
method is termed Aspect Based, Entity Based, or Feature Based Sentiment Analysis, and it focuses
on numerous characteristics of the situation [7]. Comment-based opinion mining or sentiment
analysis is crucial for evaluating and examining the reliability of e-commerce items or products
when human variables are involved. The e-commerce dependability evaluation results can be
used in the iteration of product reliability design process, and offer product life cycle references
management.
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2. Related Work

Different researchers had used earlier lexicon based approach, machine learning approach and
deep learning based approach to perform classification of sentiment [8] [9].

The authors of [10] have used BOW [Bag of Words] feature extraction technique and applied
Navie Bayes and Support Vector Machine classifier produce improved classification result.

In this study, a stacked residual LSTM [Long Short Term Memory] model was utilised to
estimate sentiment intensity, which improved prediction accuracy [11].

In recent work, authors of [12] used an Amazon review dataset to test the baseline deep
learning models for LSTM, GRU, Bi-LSTM, and Bi-GRU. These tactics ignore the importance of
word order and the many distinct meanings that words can convey.

Recently, the authors used a supervised machine learning-based technique to analyse sentiment
in product reviews. They improved the result by combining two separate word embedding
techniques, word2vec and FastText Word Embedding, with a CNN Model. They improved their
performance by using FastText as a word embedding technique and CNN as a deep learning
model [13].

3. Proposed System

To conduct this experiment, we employed a movie review dataset and associated binary sentiment
polarity labels [14]. The primary rationale for selecting this dataset is that it is well-balanced. It
comprises an equal number of positive and negative review data samples. We used an XLNet-
based deep learning approach in the proposed method. The XLNetTokenizer is used to extract
features from review text, and the XLNet deep learning model is used to train it. Figure 3
depicts the proposed approach’s overall flow. The current reliability indices [15] mainly have time
measurement and probability measurement for evaluation. Reliability is denoted as R. Function
of Failure (F), Probability Density Function (f), and Failure Rate(λ) are the most commonly used
probability measurements, whereas Mean Time To Failure (MTTF) and Mean Time Between
Failures (MTBF) are the most common time measurements.

The possibility that a product or item will execute particular function for a certain amount of
time duration under specified conditions without failure is known as reliability. To put it another
way, if T is a product’s time to failure, and the reliability function at time t is as shown in 1

R(t) = P(T > t) (1)

The average time that it takes for an unfixable product or item to perform properly under given
specific conditions until it fails is called MTTF. When the number of samples given is N and the
life of sample I is ti, the MTTF can be calculated as in 2

MTTF =
1
N

N

∑
1

ti (2)

If a product is repairable; the average continuous time between product or item failures during
the operation or testing is called Mean Time Between Failure (MTBF), and it is calculated as
shown in 3

MTBF =
∫ ∞

0
t f (t)dt (3)

We have introduced the notion of Reliability for Sentiment (Rs), which is considered a weighted
average of Sentimental Analysis Value (S) of products or items obtained from consumers’ opinions,
sentiments or evaluations about the product they’ve bought or used, weighted by the Importance
or Usefulness (U) of a specific given review or comment. To quantify something, we use the
following function shown in equation 4.

Rs =
∑ Si ∗ Ui

∑ Ui
(4)
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Figure 3: Proposed Approach

Sentiment analysis based on this metric of reliability can benefit not just consumers, but also
businesses and organisations looking to enhance their operations and strategy.

We determined Accuracy, Precision, Recall, and F1-score [16] for performance evaluation, as
given in the equations below 5, 6, 7 and 8.Precision and recall are balanced by the F-measure or
F1-Score.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

Where TP, TN, FP and FN are number of true positive, true negative, false positive and false
negative samples in a review dataset.

4. Results and Discussion

Based on the findings shown in table 1, we can conclude that our proposed deep learning
model surpasses all existing machine learning methods, such as Logistic Regression, Naive Bayes
classifier, and Support Vector Machine due to proper feature representation using XLNetTokenizer
followed by XLNet Deep Learning Model. XLNet is the most recent and most advanced model
to come from the burgeoning field of Natural Language Processing (NLP). XLNet is an auto-
regressive language model that uses a transformer architecture with recurrence to output the
joint probability of a sequence of tokens hence it takes more time for training.

Table 1: Comparative Performance Result Analysis

Type of Model Model Applied Accuracy Precision Recall F1-Score
Machine Learning Models Naive Bayes 81.02 78.61 73.98 75.66

Random Forest 84.76 83.39 77.84 80.52
SVM 86.13 82.87 82.99 82.88

Deep Learning Model XLNet 96.00 95.50 96.00 96.00

Figure 4: Performance Analysis Evaluation

In terms of F1-score, the suggested XLNet deep learning model performs 13.12 percent better
than the top performing SVM machine learning model, as shown in Figure 4. We have enhanced
accuracy, precision, and recall by 9.87 percent, 12.53 percent, and 13.02 percent, respectively.
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5. Conclusion and Future Work

All other machine learning models, including LR, NB, and SVM, are outperformed by our
proposed deep learning methodology, XLNet. However, this method has the drawback of
requiring more training time. We have applied our proposed approach on a dataset from the
movie business; however, we can apply this model to other industry domains to determine how
effective it is. As the proposed approach yields better results, it clearly tackles the reliability and
performance issues based on sentiment analysis.
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Abstract

In this paper, we derive Sharma-Mittal entropy of generalized (k) record values and analyse some of
its important properties. We establish some bounds for the Sharma-Mittal entropy of generalized (k)
record values. We generate a characterization result based on the properties of Sharma-Mittal entropy of
generalized (k) record values for the exponential distribution. We further establish some distribution-free
properties of Sharma-Mittal divergence information between the distribution of a generalized (k) record
value and the parent distribution. We extend the concept of Sharma-Mittal entropy to the concomitants
of generalized (k) record values arising from a Farlie-Gumbel-Morgenstern (FGM) bivariate distribution.
Also, we consider residual Sharma-Mittal Entropy and used it to describe some properties of generalized
(k) record values.

Keywords: Generalized (k) record values, Sharma-Mittal entropy, Maximum entropy principle,
Characterization, Concomitants of generalized (k) record values, Residual Sharma-Mittal entropy.

1. Introduction

In equilibrium thermodynamics, physicists originally developed the notion of entropy, which was
later extended through the development of statistical mechanics. Shannon [30] introduced a gen-
eralization of Boltzmann-Gibbs entropy, and later it was known as Shannon entropy or Shannon
information measure. Shannon entropy represents an absolute limit on any communication’s best
possible lossless compression. More generally, the concept of entropy is a measure of uncertainty
associated with a random variable. For a continuous random variable X with probability density
function (pdf) f , the Shannon entropy is defined by

H(X) = −
∞∫

0

f (x) log f (x) dx. (1)

In the continuous case, H(X) is also referred to as the differential entropy. It is known that
H(X) measures the uniformity of f . When H(X1) > H(X2), for any two random variables with
pdf f1 and f2 respectively, then we conclude that it is more difficult to predict outcomes of X1, as
compared with predicting outcomes of X2 [see, 37]. One main drawback of H(X) is that for some
probability distributions, it may be negative and then it is no longer an uncertainty measure. This
drawback is removed in the generalized entropies like Rényi entropy [29], Tsallis entropy [36]
and so on.

Subsequently Sharma-Mittal entropy [31] was introduced as a two parameter measure Hα, β(X)
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of a random variable X with pdf f as

Hα, β(X) =
1

1− β


 ∞∫
−∞

{ f (x)}α dx


1−β
1−α

− 1

 , (2)

with α, β > 0, α 6= 1 6= β and α 6= β. It is clear to be note that if we take limit β→ 1 in (2) then
Sharma-Mittal entropy becomes Rényi entropy [29] which is given by

Hα,1(X) =
1

1− α
log

∫
{ f (x)}α dx. (3)

If we take limit as β→ α, in (2), then the resulting expression is Tsallis entropy [36] and is given
by

Hα,α(X) =
1

1− α


∞∫
−∞

{ f (x)}α dx− 1

 . (4)

In the limiting case when both parameters approach 1, we recover the ordinary Shannon entropy
[30] as given in (1).

One may observe several applications of Sharma-Mittal entropy from the available literature.
Frank and Daffertshofer [10] have established the relation between anomalous diffusion process
and Sharma-Mittal entropy. Masi [17] explained how this entropy measure unifies Rényi and
Tsallis entropies. For more details on the applications of this entropy see, Aktürk et al. [4] and
Kosztołowicz and Lewandowska [14]. Nielsen and Nock [21] obtained a closed-form formula for
the Sharma-Mittal entropy of any distribution belonging to the exponential family of distributions.

Successive extremes occurring in a sequence of Independent and identically distributed (iid)
random variables have been called by Chandler [8] as the record values of the sequence. Properties
of record statistics arising from a distribution help to understand the intrinsic properties of the
parent distribution as well. A limitation that one encounters in dealing with statistical inference
problems based on classical record values is about their limited occurrence, as the expected value
of inter arrival times of records is infinite [see, 11]. Also the occurrence of an outlier in a sequence
of random variables arrests the subsequent realization of record values. However one may observe
that generally the kth record values as introduced by Dziubdziela and Kopocinski [9] occur more
frequently than those of the classical records. The reason for this is that the generation of the
sequence of upper (k) records makes k− 1 of the upper extreme values (outliers) of the sequence
incapacitated from their occurrence in the constructed record sequence. Similar property holds
with the generated sequence of lower (k) record values as well. Suppose {Xn} is a sequence of
iid random variables. Then for a positive integer k ≥ 1, the sequence of upper kth record times
{TU(n,k), n ≥ 1} is defined as [see, 20, p. 82]:-

TU(1,k) = k,

and, for n≥ 1
TU(n+1,k) = min{j : j > TU(n,k), Xj > XTU(n,k)−k+1:TU(n,k)

},

where Xi:m denotes the i-th order statistic in a sample of size m. Now if we write

XU(n,k) = XTU(n,k)−k+1:TU(n,k)
, for n = 1, 2, . . .

then {XU(n,k)} is known as the sequence of the kth upper record values. In a similar manner
we can define the sequence {XL(n,k)} of kth lower record values as well. It is to be noted that
kth member of sequence of the classical record values is also called as kth record value. This
contradicts with the kth record values as defined in [9]. Pointing out this conflict in the usage of
kth record values of Dziubdziela and Kopocinski [9], and as it generates the classical record values
for k = 1, Minimol and Thomas [18, 19], Paul [22], Paul and Thomas [23, 24, 25] and Thomas and
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Paul [34, 35] have called the kth record values as defined in Dziubdziela and Kopocinski [9] as
the generalized (k) record values. Agreeing with the contention of above authors, we also call the
kth record values of [9] as generalized(k)record values all through this paper.

Suppose {Xi, i ≥ 1} is a sequence of random variables with absolutely continuous cdf F(x)
and pdf f (x). Let {XU(n,k)} be the sequence of GURV’s generated from the sequence {Xi}. Then
the pdf fXU(n,k)

(x) of XU(n,k) is given by [see, 6]

fXU(n,k)
(x) =

kn

Γ(n)
[− ln {1− F(x)}]n−1 [1− F(x)]k−1 f (x),−∞ < x < ∞, n = 1, 2, . . . . (5)

for n ≥ 2. In a similar manner we can define generalized lower (k) record values (GLRV’s) as well.
If we write XL(n,k) to denote the nth GLRV, then the pdf fXL(n,k)

(x) of XL(n,k) is given by [see, 28]

fXL(n,k)
(x) =

kn

Γ(n)
[− ln {F(x)}]n−1 [F(x)]k−1 f (x),−∞ < x < ∞, n = 1, 2, . . . . (6)

Generalized (k) record values arise naturally in problems such as industrial stress testing,
meteorological analysis, hydrology, sporting, stock markets, athletic events and seismology.
Anderson et al. [5] have attributed some connection between record statistics and the strain
released in quakes. Majumdar and Ziff [16] have enlisted the detailed involvement of record
theory in its multiple applications in spin glasses, adaptive process, evolutionary models of
a biological population. See also Sibani and Henrik [33] for some record dynamics arising in
some physical systems. For more details on applications of record, values see, Arnold et al. [6],
Nevzorov [20] and the references therein.

Of late several articles have been published on various information measures associated with
record values. [7] studied some information properties of records based on Shannon entropy.
Abbasnejad and Arghami [1] studied the Rényi entropy properties of records and compared the
same information with that of the iid observations. Baratpour et al. [7], Ahmadi and Fashandi
[2] and Paul and Thomas [23, 24, 26, 27] have obtained some characterization results based on
Shannon, Rényi, Tsallis and Mathai-Haubold entropies of record values. Shannon information in
k-records was studied by Madadi and Tata [15].

The rest of this paper is organized as follows. In section 2, we express the Sharma-Mittal
entropy of nth generalized upper (k) record arising from an arbitrary distribution in terms of
Sharma-Mittal entropy of nth generalized upper (k) record arising from a standard exponential
distribution. Section 3 provides bounds for Sharma-Mittal entropy of generalized (k) records. Sec-
tion 4 characterizes exponential distribution by maximizing Sharma-Mittal entropy of generalized
(k) record values arising from a specified class of distributions. Section 5 contains expressions for
some measures associated with Sharma-Mittal entropy on generalized (k) records and concomi-
tants of generalized (k) records. In subsection 5.1, it is shown that the Sharma-Mittal divergence
information between generalized (k) record value and the parent distribution is distribution-free.
Section 5.2 contains the representation of Sharma-Mittal entropy of concomitants of generalized
(k) record values arising from the FGM family of bivariate distributions. In section 5.3, we provide
an expression for the residual Sharma-Mittal entropy of nth generalized upper (k) record arising
from an arbitrary distribution in terms of the corresponding expressions for the nth generalized
upper (k) record arising from a standard uniform distribution.

2. Sharma-Mittal Entropy of Generalized (k) Record Values

In this section, we describe some properties of Sharma-Mittal entropy of generalized(k)record
values. In the following theorem, we express Sharma-Mittal entropy of nth generalized upper (k)
record arising from an arbitrary distribution in terms of Sharma-Mittal entropy of nth generalized
upper (k) record arising from standard exponential distribution. In the theorem and in the
remaining part of this paper we use the notation G(a, b) to denote the well known gamma
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distribution with pdf

ga,b(x) =
ab

Γ(b)
e−axxb−1, a > 0, b > 0, x > 0.

Theorem 1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a distribution
with cdf F(x), pdf f (x) and quantile function F−1(.). Let {XU(n,k)} be the associated sequence of
generalized upper (k) record values. Then the Sharma-Mittal entropy of XU(n,k) can be expressed
as

Hα, β(XU(n)) =
1

1− β

{(
knαΓ((n− 1)α + 1)

{Γ(n)}α[(k− 1)α + 1](n−1)α+1

×Eg(k−1)α+1,(n−1)α+1

[{
f
(

F−1(1− e−U)
)}α−1

]) 1−β
1−α

− 1

 , (7)

where U is a random variable, with G((k− 1)α + 1, (n− 1)α + 1) distribution.

Proof. The Sharma-Mittal entropy of nth generalized upper (k) record value is given by

Hα, β(XU(n,k)) =
1

1− β


(∫ ∞

−∞

[
kn{− log(1− F(x))}n−1[1− F(x)]k−1

(n− 1)!
f (x)

]α

dx

) 1−β
1−α

− 1

 .

On putting u = − log[1− F(x)], x =
[
F−1(1− e−u)

]
and du = f (x)

1−F(x)dx we get

Hα, β(XU(n,k)) =
1

1− β


(∫ ∞

0

knαe−u[(k−1)α+1]u(n−1)α

[(n− 1)!]α
{

f
(

F−1(1− e−U)
)}α−1

du

) 1−β
1−α

− 1


=

1
1− β


 knαΓ((n− 1)α + 1)
[(k− 1)α + 1](n−1)α{Γ(n)}α

∞∫
0

[(k− 1)α + 1](n−1)α

Γ((n− 1)α + 1)

× e−u[(k−1)α+1]u(n−1)α
{

f
(

F−1(1− e−U)
)}α−1

du
) 1−β

1−α

− 1


=

1
1− β

{(
knαΓ((n− 1)α + 1)

[(k− 1)α + 1](n−1)α+1{Γ(n)}α

× Eg(k−1)α+1,(n−1)α+1

[{
f
(

F−1(1− e−U)
)}α−1

]) 1−β
1−α

− 1

 . (8)

�
Now we state the following theorem without proof as the proof is just similar to the proof of
theorem 1.

Theorem 2. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables with common cdf
F(x), pdf f(x) and quantile function F−1(.). Let {XL(n,k)} be the associated sequence of genralized
lower (k) record values. Then the Sharma-Mittal entropy of XL(n,k) can be expressed as

Hα, β(XL(n,k)) =
1

1− β


(

knαΓ((n− 1)α + 1)
[(k− 1)α + 1](n−1)α+1{Γ(n)}α

Eg(k−1)α+1,(n−1)α+1

[{
f {F−1(e−U)}

}α−1
]) 1−β

1−α

− 1

 ,

(9)
where U is a random variable with G(1, (n− 1)α + 1) distribution.
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The following is a corollary to theorem 1.

Corollary 1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables arising from
standard exponential distribution. Let {X∗U(n,k)} be the associated sequence of generalized upper
(k) record values. Then the Sharma-Mittal entropy of XU(n,k) can be expressed as

Hα, β(X∗U(n,k)) =
1

1− β


(

knαΓ((n− 1)α + 1)
{Γ(n)}α[kα](n−1)α+1

) 1−β
1−α

− 1

 . (10)

The following theorem follows from theorems 1 and 2 as a consequence of corollary 1.

Theorem 3. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables having a common
cdf F(x), pdf f (x) and quantile function F−1(.). Let {XU(n,k)} and {XL(n,k)} be the associated
sequences of generalized upper and lower(k)record values respectively. Then the Sharma-Mittal
entropy of XU(n,k) and XL(n,k) can be expressed as

Hα, β(XU(n,k)) =

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1

× Eg1,(n−1)α+1

[{
f
(

F−1(1− e−U)
)}α−1

]) 1−β
1−α

− 1
1− β

(11)

Hα, β(XL(n,k)) =

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1

× Eg1,(n−1)α+1

[{
f
(

F−1(e−U)
)}α−1

]) 1−β
1−α

− 1
1− β

, (12)

where X∗U(n,k) denotes the nth generalized upper (k) record value arising from the standard expo-
nential distribution and U is a random variable, with G((k− 1)α + 1, (n− 1)α + 1) distribution.

3. Bounds for Sharma-Mittal Entropy of Generalized (k) Record Values

Baratpour et al. [7] and [1] have obtained bounds for Shannon entropy of records and Rényi
entropy of records respectively. In this section, we use the relation (7) for deriving some bounds
on Sharma-Mittal entropy of generalized upper (k) record values.

Theorem 4. If X has pdf f (x) and the Sharma-Mittal entropy Hα, β(XU(n,k)) of XU(n,k) arising
from f (x) is such that Hα, β(XU(n,k)) < ∞ then we have

(a) for all α > 1 and 0 < β < 1, Hα, β(XU(n,k)) ≤
(

Hα, β(X∗U(n,k)) +
1

1−β

)
×
([

kα
(k−1)α+1

](n−1)α+1
BnSα, β( f )

) 1−β
1−α

− 1
1−β , and

(b) for 0 < α < 1 and β > 1, Hα, β(XU(n,k)) ≥
(

Hα, β(X∗U(n,k)) +
1

1−β

)
×
([

kα
(k−1)α+1

](n−1)α+1
BnSα, β( f )

) 1−β
1−α

− 1
1−β , where,

(i) X∗U(n,k) denotes the nth generalized upper (k) record value arising from the standard
exponential distribution

(ii) Bn = e−((n−1)α){(n−1)α}(n−1)α

Γ((n−1)α+1) and

(iii) Sα( f ) =
∞∫
−∞

λF(x) { f (x)}α−1 dx, where λF(x) is the hazard function of X.
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Proof. The Sharma-Mittal entropy of nth generalized upper (k) record value is given by

Hα, β(XU(n,k)) =

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1

×Eg(k−1)α+1,(n−1)α+1

[{
f
(

F−1(1− e−U)
)}α−1

]) 1−β
1−α

− 1
1− β

,

where g(k−1)α+1,(n−1)α+1 is the pdf corresponding to the G((k− 1)α + 1, (n− 1)α + 1) distribution.

Since the mode of the distribution with pdf g(k−1)α+1,(n−1)α+1 is mn = (n−1)α
(k−1)α+1 we have

g(k−1)α+1,(n−1)α+1(mn) =
e−(n−1)α[(n− 1)α](n−1)α

Γ((n− 1)α + 1)
= Bn.

Hence we have g(k−1)α+1,(n−1)α+1(u) ≤ Bn. Now for α > 1 and 0 < β < 1 the entropy is

Hα, β(XU(n,k)) =

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1

×
∞∫

0

g(k−1)α+1,(n−1)α+1(u)
{

f
(

F−1(1− e−U)
)}α−1

du


1−β
1−α

− 1
1− β

≤
(

Hα, β(X∗U(n,k)) +
1

1− β

)([
kα

(k− 1)α + 1

](n−1)α+1
Bn

×
∞∫

0

{
f
(

F−1(1− e−U)
)}α−1

du


1−β
1−α

− 1
1− β

=

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1
Bn

×
∞∫
−∞

λF(y) { f (y)}α−1 dy


1−β
1−α

− 1
1− β

=

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1
BnSα( f )

) 1−β
1−α

− 1
1− β

.

For 0 < α < 1 and β > 1 the proof is similar. �

4. Characterization Property by the Sharma-Mittal Entropy of

Generalized (k) Record Values

Sometimes we may observe the uncertainty prevailing in the system under study as so large that
we are curious to know the type of distribution which governs the system. That is, in such a
system, we look for a distribution that is capable of possessing maximum entropy as suggested in
Jaynes [12]. This section derives exponential distribution as the distribution that maximizes the
Sharma-Mittal entropy of record values under some information constraints. Let C be a class of
all distributions with cdf F(x) over the support set R+ with F(0) = 0 such that

(i) λF(x, θ) = a(θ)b(x)

(ii) b(x) ≤ M, where M is a positive real constant with b(x) = B
′
(x) such that b(x) and a(θ)

are non-negative functions of x and θ receptively.
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Now we prove the following theorem.

Theorem 5. Under the conditions described above Sharma-Mittal entropy Hα, β(XU(n,k)) arising
from the distribution F(x) is maximum in C, if and only if F(x; θ) = 1− e−Ma(θ)x.

Proof. Let XU(n,k) be the nth genralized upper (k) record value arising from the cdf F(x; θ) ∈
C. Then by (7) we have

Hα, β(XU(n,k)) =

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1

× Eg(k−1)α+1,(n−1)α+1

[{
f
(

F−1(1− e−U)
)}α−1

]) 1−β
1−α

− 1
1− β

=

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1 [(k− 1)α + 1](n−1)α+1

Γ((n− 1)α + 1)

×
∞∫

0

e−u[(k−1)α+1]u(n−1)α
{

f
(

F−1(1− e−U)
)}α−1

du


1−β
1−α

− 1
1− β

=

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1 [(k− 1)α + 1](n−1)α+1

Γ((n− 1)α + 1)

×
∞∫

0

e−u[(k−1)α+1]u(n−1)α
{

a(θ)b
[

B−1
{

u
a(θ)

}]
e−a(θ)B

[
B−1

{
u

a(θ)

}]}α−1

du


1−β
1−α

− 1
1− β

=

(
Hα, β(X∗U(n,k)) +

1
1− β

)([
kα

(k− 1)α + 1

](n−1)α+1 [(k− 1)α + 1](n−1)α+1

Γ((n− 1)α + 1)

×
∞∫

0

e−ukαu(n−1)α [a(θ)]α−1 bα−1
[

B−1
{

u
a(θ)

}]
du


1−β
1−α

− 1
1− β

. (13)

Noting that b(x) ≤ M we have

Hα, β(XU(n,k)) ≤
(

Hα, β(X∗U(n,k)) +
1

1− β

) [a(θ)M]α−1 [kα](n−1)α+1

Γ((n− 1)α + 1)

∞∫
0

e−ukαu(n−1)αdu


1−β
1−α

− 1
1− β

≤
(

Hα, β(X∗U(n,k)) +
1

1− β

){
[a(θ)]α−1 Mα−1

} 1−β
1−α − 1

1− β
. (14)

Then clearly

Hα, β(XU(n,k)) ≤
1

1− β

(
knαΓ((n− 1)α + 1)
{Γ(n)}α[kα](n−1)α+1

{[a(θ)] M}α−1
) 1−β

1−α

− 1
1− β

≤ 1
1− β


(

knαΓ((n− 1)α + 1)
{Γ(n)}α[kα](n−1)α+1

{[a(θ)] M}α−1
) 1−β

1−α

− 1

 . (15)
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This proves the necessary part of the theorem.
On the other hand, suppose the nth generalized upper (k) record value arising from F(x; θ) =

1− e−Ma(θ)x has maximum Sharma-Mittal entropy in class C. Then we have

Hα, β(XU(n,k)) =
1

1− β


(

knαΓ((n− 1)α + 1)
{Γ(n)}α[kα](n−1)α+1

{[a(θ)] M}α−1
) 1−β

1−α

− 1

 . (16)

It is clear to be note that the maximum entropy of nth generalized upper (k) record value (XU(n,k))
arising from any arbitrary distribution under conditions (i) and (ii) will holds the inequality (15).
As (16) is the expression on the right side of (15), it then follows that exponential distribution
attains the maximum Sharma-Mittal entropy in the class C.

�

5. Some Properties of Sharma-Mittal Entropy on Generalized (k) Record

Values

This section provides exact expressions for the Sharma-Mittal divergence measure on generalized
(k) record values. Further in this section, we derive expressions for Sharma-Mittal entropy of
concomitants of generalized upper and lower (k) record values arising from the Farlie-Gumbel-
Morgenstern family. In the last part of this section, we derive an expression for residual Sharma-
Mittal entropy of generalized upper (k) record values arising from an arbitrary distribution.

5.1. Sharma-Mittal Divergence Measure on Generalized(k)Record Values

Sharma and Mittal in 1977 introduced a two parameter divergent measure viz. Shrma-Mittal
divergence measure denoted by Dα, β( f : g), between two distributions f (x) and g(x) and is
defined by

Dα, β( f : g) =
1

β− 1


 ∞∫
−∞

(
f (x)
g(x)

)α−1

f (x)dx


1−β
1−α

− 1

 , ∀ α > 0, α 6= 1 6= β. (17)

[3] shown that, most of the widely used divergence measures such as Rényi, Tsallis, Bhattacharya
and Kullback-Liabler divergences are special cases of Sharma-Mittal divergence measure.

In this section we study the Sharma-Mittal divergence between the probability distribution of
nth generalized upper (k) record value and the parent distribution from which it arises.

Theorem 6. The Sharma-Mittal divergence between the nth generalized upper (k) record and the
parent distribution is given by the following representation

Dα, β( fU(n,k), f ) =
1

β− 1


(

Γ((n− 1)α + 1)
(Γ(n))α

) 1−β
1−α

− 1

 . (18)

Proof. The Sharma-Mittal information between the nth generalized upper (k) record and the
parent distribution is given by

Dα, β( fU(n,k), f ) =
1

β− 1


∫ ∞

−∞

[
kn{− log[1− F(x)]}n−1[1− F(x)]k−1

]α

((n− 1)!)α
f (x)dx


1−β
1−α

− 1

 .
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On putting u = − log[1− F(x)], we get x =
[
F−1(1− e−u)

]
, du = f (x)

1−F(x)dx and hence we have

Dα, β( fU(n,k), f ) =
1

β− 1


(∫ ∞

0

knαe−u[(k−1)α+1]u(n−1)α

((n− 1)!)α
du

) 1−β
1−α

− 1

 (19)

=
1

β− 1


(

knαΓ((n− 1)α + 1)
(Γ(n))α[(k− 1)α + 1](n−1)α+1

) 1−β
1−α

− 1

 .

Hence the theorem. �

Note 1. The Sharma-Mittal divergence between the nth upper record and the parent distribution
can also be represented as

Dα, β( fU(n), f ) =
{

Hα, β(X∗U(n,k)) +
1

β− 1

} [
kα

(k− 1)α + 1

] ((n−1)α+1)(1−β)
1−α

− 1
β− 1

(20)

where, X∗U(n,k) denotes the nth generalized upper (k) record value arising from the standard
exponential distribution.

Remark 1. The Sharma-Mittal information between the nth generalized upper (k) record value
XU(n,k) and the parent distribution as given by 18 and 20 establishes that this information is a
distribution free information measure.

5.2. Sharma-Mittal Entropy of Concomitants of Generalized (k) Records from
Farlie-Gumbel-Morgenstern (FGM) family of Distributions

Let X and Y be two random variables with cdf’s given by FX(x) and FY(y) respectively with
corresponding pdf’s fX(x) and fY(y) and jointly distributed with cdf F(x, y) given by, [see, 13].

F(x, y) = FX(x)FY(y) {1 + γ(1− FX(x))(1− FY(y))} , −1 ≤ γ ≤ 1, (21)

where γ is known as association parameter. Then the family of distributions having the above
form of cdf’s is called Farlie-Gumbel-Morgenstern (FGM) family of distributions. It is obvious
that (21) includes the case of independence as well when γ = 0. The joint pdf corresponding to
the cdf defined in (21) is given by,

f (x, y) = fX(x) fY(y) {1 + γ(1− 2FX(x))(1− 2FY(y))} , −1 ≤ γ ≤ 1. (22)

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be two-dimensional random vectors with the common
bivariate distribution function F(x, y) as given in (21). If we construct the sequence of GURV’s
{XU(n,k)} from the marginal sequence {Xi}, then the Y value occuring in an ordered pair with X
observations equal to XU(n,k) is called the concomitant of the nth generalized upper(k)record
value. We write YU[n,k] to denote concomitant of nth GURV XU(n,k). Similarly the concomitant
of nth GLRV, XL(n,k) as well can be defined and we denote it by YL[n,k]. Then the pdf of YU[n,k] is
denoted by fYU[n,k]

and is given by

fYU[n,k]
(y) =

∫
fY|X(y|x) fXU(n,k)(x) dx = fY(y) {1− γn(1− 2FY(y))} , (23)

where γn =
(

1− 2
{

k
k+1

}n)
γ. Using (2) and (23) we can represent the Sharma-Mittal entropy

of concomitant of nth generalized upper (k) record value as follows:

Hα, β(YU[n,k]) =
1

1− β


(∫ ∞

−∞
( fY(y) {1− γn(1− 2FY(y))})αdy

) 1−β
1−α

− 1


=

1
1− β


(∫ ∞

−∞
{ fY(y)}α ({1− γn(1− 2FY(y))})αdy

) 1−β
1−α

− 1

 .

J. Paul, P.Y. Thomas
SM ENTROPY PROPERTIES ON GRVS

RT&A, No 1 (67)
 Volume 17, March 2022

406



On putting FY(y) = u, y = F−1
y (u) and fy(y)dy = du, we get

Hα, β(YU[n,k]) =
1

1− β


(∫ 1

0

{
fY(F−1

y (u))
}α−1

{1− γn(1− 2u)}α du
) 1−β

1−α

− 1


=

1
1− β


(

EU

[{
fY(F−1

y (U))
}α−1

{1− γn(1− 2U)}α
]) 1−β

1−α

− 1

 ,

where U is a uniformly distributed random variable over (0, 1). Similarly the Sharma-Mittal
entropy of concomitant of nth generalized lower(k)record can be represented by

Hα, β(YL[n,k]) =
1

1− β


(

EU

[{
fY(F−1

y (1−U))
}α−1

{1 + γn(1− 2U)}α
]) 1−β

1−α

− 1

 .

5.3. The Residual Sharma-Mittal Entropy of Generalized (k) Record Values

Suppose X represents the lifetime of a unit with pdf f (.), then Hα, β(X) as defined in (2) is useful
for measuring the associated uncertainty. Suppose a component is known to have survived up
to an age t. In that case, information about the remaining lifetime is an important characteristic
required for data analysis arising from areas such as reliability, survival studies, economics,
business etc. However, for the analysis of uncertainty about the remaining life time of the unit,
we will consider residual Sharma-Mittal entropy and is defined by

Hα, β(X; t) =
1

1− β


 ∞∫

t

{
f (x)
F̄(t)

}α

dx


1−β
1−α

− 1

 , (24)

where Hα, β(X; t) measures the expected uncertainty contained in the conditional density of X− t
given X > t and F̄(t) = 1− F(t). In this section we derive a closed form representation for the
residual Sharma-Mittal entropy of record values in terms of residual Sharma-Mittal entropy of
uniform distribution over [0, 1]. The survival function of the nth generalized(k)upper record,
denoted by F̄XU(n,k)

(x), is given by

F̄XU(n,k)
(x) =

n

∑
j=1

[−k log F̄(x)]j

j!
F(x)k

=
Γ(n + 1;−k log F̄(x))

Γ(n + 1)
, (25)

where Γ(a; x) denotes the incomplete Gamma function and is defined by

Γ(a; x) =
∫ ∞

x
e−uua−1du, a, x > 0.

Lemma 1. Let ZU(n,k) denote the nth generalized upper (k) record value from a sequence of
observations from U(0, 1). Then

Hα, β(ZU(n,k); t) =
1

1− β


(

knαΓ((n− 1)α + 1;−[(k− 1)α + 1] log(1− t)
[(k− 1)α + 1](n−1)α+1{Γ(n;−k log(1− t))}α

) 1−β
1−α

− 1

 . (26)

Proof. By considering (5), (24) and (25), the residual Sharma-Mittal entropy of ZU(n,k) is given
by

Hα, β(ZU(n,k); t) =
1

1− β


 ∞∫

t

kα[−k log(1− x)](n−1)α[1− x](k−1)α

{Γ(n;−k log(1− t))}α
dx


1−β
1−α

− 1

 .
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On putting −k log(1− x) = u, x = 1− e−
u
k and kdx = e−

u
k du.

Hα, β(ZU(n,k); t) =
1

1− β


(

kα−1
∫ ∞

−k log(1−t)

u(n−1)αe−
u
k [(k−1)α+1]

{Γ(n;−k log(1− t))}α
du

) 1−β
1−α

− 1

 .

Now we consider the transformation u
k [(k − 1)(2− α) + 1] = v, u = vk

(k−1)(2−α)+1 and du =
k

(k−1)(2−α)+1 dv.

Hα, β(ZU(n,k); t) =
1

1− β

{(∫ ∞

−[(k−1)(2−α)+1] log(1−t)

knα

[(k− 1)α + 1](n−1)α+1
(27)

× u(n−1)αe−v

{Γ(n;−k log(1− t))}α
dv

) 1−β
1−α

− 1


=

1
1− β


(

knαΓ((n− 1)α + 1;−[(k− 1)α + 1] log(1− t)
[(k− 1)α + 1](n−1)α+1{Γ(n;−k log(1− t))}α

) 1−β
1−α

− 1

 .

Hence the lemma. �

Theorem 7. The residual Sharma-Mittal entropy of XU(n,k) arising from an arbitrary distribution
can be written in terms of the residual Sharma-Mittal entropy of ZU(n,k) as follows

Hα, β(XU(n,k); t) =

{
Hα, β(ZU(n,k); F(t)) +

1
1− β

}(
EV

[{
f
(

F−1(1− e−
v

(k−1)(2−α)+1 )
)}α−1

]) 1−β
1−α

− 1
1− β

. (28)

where V ∼ Γ−[(k−1)α+1] log(1−F(t))((n− 1)α + 1; 1).

Proof. The residual Sharma-Mittal entropy of XU(n) is given by

Hα, β(XU(n,k); t) =
1

1− β


 ∞∫

t

kα[−k log(1− F(x))](n−1)α[1− F(x)](k−1)α

{Γ(n;−k log(1− F(t)))}α
dx


1−β
1−α

− 1

 .

On putting u = −k log[1− F(x)], x =
[

F−1(1− e−
u
k )
]

and kdx = e−
u
k du we get

Hα, β(XU(n,k); t) =
1

1− β

{(∫ ∞

−k log(1−F(t))

kα−1u(n−1)αe−
u
k [(k−1)α+1]

{Γ(n;−k log(1− F(t)))}α

{
f
(

F−1(1− e−
u
k )
)}α−1

du
) 1−β

1−α

− 1


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Now we consider the transformation u
k [(k − 1)(2− α) + 1] = v, u = vk

(k−1)(2−α)+1 and du =
k

(k−1)(2−α)+1 dv.

Hα, β(XU(n,k); t) =
1

1− β

{(∫ ∞

−[(k−1)α+1] log(1−F(t))

knα

[(k− 1)α + 1](n−1)α+1

× e−vv(n−1)α

{Γ(n;−k log(1− F(t)))}α

{
f
(

F−1(1− e−
v

(k−1)(2−α)+1 )
)}α−1

dv

) 1−β
1−α

− 1


=

1
1− β

{(
knαΓ((n− 1)α + 1;−[(k− 1)α + 1] log(1− F(t))
[(k− 1)α + 1](n−1)α+1{Γ(n;−k log(1− F(t)))}α

×EV

{
f
(

F−1(1− e−
v

(k−1)(2−α)+1 )
)}α−1

) 1−β
1−α

− 1


=

{
Hα, β(ZU(n,k); F(t)) +

1
1− β

}(
EV

[{
f
(

F−1(1− e−
v

(k−1)(2−α)+1 )
)}α−1

]) 1−β
1−α

− 1
1− β

. (29)

Hence the theorem. �
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Abstract

We introduce a new mixed distribution of the Erlang distribution that is generated from the convolution
of the Extension Exponential distribution denoted by the Mixed Erlang distribution (ME). We derive
an exact closed expression of the probability density function which is used to obtain closed expressions
of the cumulative function, reliability function, hazard function, moment generating function and kth
moment. The method of maximum likelihood and method of moments is used for estimating the model
parameters. Two applications to real data sets are given to illustrate the potentiality of this distribution.

Keywords: Erlang Distribution, Extension Exponential Distribution, Probability Density Function,
Maximum likelihood estimation, Moments, Akaike Information Criterion

1. Introduction

Numerous classical distributions have been extensively used over the past decades for modeling
data in many applied areas such as lifetime analysis, finance and insurance, as the Exponential
distribution and its alternatives the Erlang and Gamma distribution, see [1] and [2]. There is
a clear need for extended forms of these distributions. In recent statistical literature modified
extensions of the Exponential distributions have been proposed to give more flexibility to model
real data. For example, Gupta and Kundu [6] introduced an extension of the Exponential
distribution typically called the generalized exponential (GE) distribution and Mudholkar et al.
[9] introduced the exponentiated Weibull (EW) distribution as another extension. Gómez et al. [5]
introduced a new extension of the Exponential distribution denoted as the Extended Exponential
(EE) distribution of two positive parameters.

On the other hand, the sum of independent random variables, the convolution of random
variables, also plays a significant role in modeling many events in most domains of science, as
communications, computer science, and teletraffic engineering (Trivedi [12]; Jasiulewicz and
Kordecki [7]), Markov process, reliability and performance evaluation (Kadri et al. [8]; Smaili et al.
[10]). A comprehensive study of these distributions is needed for modeling and the importance of
providing closed and exact forms of probability density function (PDF), cumulative distribution
function (CDF), reliability and hazard functions, moment generating function (MGF), and kth

moments...
The main aim of this paper is to study a new distribution generated from the convolution of

the Extension Exponential distribution which is observed to have the form of a mixed distribution
of the Erlang distribution. We denote this distribution by the Mixed Erlang Distribution (ME).
We provide a comprehensive account of the mathematical properties of this new distribution
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by deriving closed and exact forms of PDF, CDF, reliability and hazard functions, MGF, and kth

moments. Moreover, we propose that our distribution is quite flexible, evidence by its closed and
simple expressions. Also, this distribution can be used quite effectively in analyzing positive data
in place of proposed distribution in the literature, which indicates that the ME distribution is a
serious competitor to the others. Thus, we preform a parameter estimation of the model by the
method of maximum likelihood and the method of moment. Next, we fit the new distribution to
two real data sets to examine the performance of the new model and compare it to lately new
distributions proposed in the statistical literature.

2. Some Preliminaries

2.1. Erlang Distribution

Erlang distribution is a two-parameter continuous probability distribution with shape integer
parameter n and scale parameter α > 0. It is considered as the sum of n independent identical
Exponential distributions of parameter α, so for n = 1 the Erlang distribution is simplified to the
Exponential distribution. Erlang distribution like Exponential is widely used in life time analysis,
see [4].

Let Y ∼ Erl(n, α). The PDF of Y is given as:

fY(t) =
(αt)

n−1
αe−αt

(n− 1)!
, t > 0 (1)

and CDF of Y is

FY(t) = 1− Γ(n, αt)
(n− 1)!

(2)

where Γ(·, ·) is the incomplete Gamma function. Also the MGF of Y is

φY(t) =
(

α

α− t

)n
, t < α (3)

and the moment of order k of Y is

E[Yk] =
Γ(n + k)
αkΓ(n)

(4)

2.2. Extension Exponential Distribution

Gómez et al. [5], introduced a new extension of the Exponential distribution denoted as the
Extended Exponential (EE) distribution of two positive parameters, denoted by EE (α, β) . They
characterized this distribution having X ∼ EE (α, β) with PDF

fX(t) =
α2(1 + βt)e−αt

α + β
α, β, t > 0

where α is a scale parameter and β is a shape parameter.
The EE distribution is considered as a mixed distribution of the Exponential distribution, E(α),

and Erlang distribution Erl(2, α), i.e.

fX(t) =
α

α + β
fE(α)(t) +

β

α + β
fErl(2,α)(t) (5)

For further use, we have the Laplace transform of fX(t) as

L { fX(t)} =
α2(t + α + β)

(α + β)(t + α)2 . (6)

Other properties of EE distribution can be found in [5].
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3. Mixed Erlang Distribution

Let Xj, j = 1, 2, ..., n be n identical independent (iid) random variables that follow Extension

Exponential distribution i.e. Xj ∼ EE (α, β) and let Sn =
n
∑

j=1
Xj. We denote Sn ∼ ME(α, β, n) to

be the Mixed Erlang distribution for α > 0, β > 0 and n ∈ N∗. This name is derived from the
obtained expressions of this distribution in this section, which has the form of a mixed Erlang
(ME) distribution. We start by deriving the PDF of this new distribution in an exact closed form.
The obtained simple form will help us to derive the other mathematical functions to characterize
the ME distribution.

3.1. PDF of the ME distribution

It is known that the sum of independent distributions is the convolution random variable and
its PDF can be determined by the n convolution of the PDF of the summands Xj, which is an
approach used. Here we take the advantage of Laplace transform over convolution to obtain our
expression.

Theorem 1. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the PDF of Sn is given by

fSn(t) =
n
∑

i=0
Ai fYi (t)

where

Ai =
(n

i )α
n−iβi

(α + β)n and Yi ∼ Erl(n + i, α) (7)

Proof. Let Xj ∼ EE (α, β) , j = 1, 2, ..., n be n iid distributions and let Sn =
n
∑

j=1
Xj ∼ ME(α, β, n).

We have fSn(t) is the convolution of the PDF of Xj. Thus the Laplace transform of fSn(t) is the
product of identical distribution of EE and we get

L { fSn(t)} =
[
L{ fXi (t)}

]n

From Equation (6) L{ fXi (t)} =
α2(α+β+t)
(α+β)(t+α)2 . We get

L { fSn(t)} =
α2n(α + β + t)n

(α + β)n(t + α)2n

and

fSn(t) = L
−1
{

α2n(α + β + t)n

(α + β)n(t + α)2n

}
=

α2n

(α + β)nL
−1
{
(α + β + t)n

(t + α)2n

}
=

α2ne−αt

(α + β)nL
−1
{
(β + t)n

t2n

}
However, (β + t)n =

n
∑

i=0
(n

i )βitn−i, then (β+t)n

t2n =
n
∑

i=0
(n

i )βit−n−i. Also L−1 {t−n−i} = t(i+n−1)

(i+n−1)! .

Thus we conclude that

fSn(t) =
α2ne−αt

(α+β)n

n

∑
i=0

(n
i )βi t(i+n−1)

(i+n−1)! . Next, we rearrange the sum to pull out the closest PDF which

is a Erlang distribution of the form αn+it(n+i−1)e−αt

(n+i−1)! = fYi (t), where Yi ∼ Erl(n + i, α). So we can
rewrite

fSn(t) =
n

∑
i=0

(n
i )βiαn−i

(α + β)n ×
αn+it(n+i−1)e−αt

(n + i− 1)!

=
n
∑

i=0
Ai fYi (t)
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where Ai =
(n

i )α
n−i βi

(α+β)n .
�

In the following, we give another proof of the previous theorem by using the approach of
convolution of PDF of independent random variables instead of the Laplace inverse approach.

Proof. [Alternate Proof]Let Xj ∼ EE (α, β) , j = 1, 2, ..., n and Sn is the convolution random
variable of EE. Then

fSn(t) = ( fX1 ∗ fX2 ∗ ... ∗ fXn)(t) (8)

However, from Equation (5), the PDF of EE can be expressed as

fXj (t) =
α

α + β
fE(α)(t) +

β

α + β
fErl(2,α)(t)

Substitute fXj(t) in 8 to obtain

fSn(t) =
n
~
(

1
α + β

(
α fE(α) + β fErl(2,α)

))
(t)

where
n
~ (g) means that the expression is convoluted n times by itself. Furthermore, convolution

is associative with scalar multiplication, thus

fSn(t) =
1

(α + β)n

n
~
(

α fE(α) + β fErl(2,α)

)
(t)

Now, using the generalized binomial expansion over the convolution operation, we obtain

fSn(t) =
1

(α + β)n

n

∑
i=0

(n
i )

n−i
~ α fE(α)(t) ∗

i
~β fErl(2,α)(t)

=
1

(α + β)n

n

∑
i=0

(n
i )α

n−iβi
(

n−i
~ fE(α) ∗

i
~ fErl(2,α)

)
(t)

Also the convolution of n− i identical Exponential distribution is the Erlang distribution Erl(n−

i, α) or
n−i
~ fE(α) = fErl(n−i,α) and the convolution of i Erlang distributions Erl(2, α) is the Erlang

distribution Erl(2i, α) or
i
~ fErl(2,α) = fErl(2i,α). Thus, we get

fSn(t) =
1

(α + β)n

n

∑
i=0

(n
i )α

n−iβi
(

fErl(n−i,α) ∗ fErl(2i,α)

)
(t).

On the other hand Erl(n− i, α) ∗ Erl(2i, α) = Erl(n + i, α) and thus

fSn(t) =
n

∑
i=0

(n
i )α

n−iβi

(α + β)n fErl(n+i,α)(t)

=
n

∑
i=0

Ai fYi (t)

where Ai =
(n

i )α
n−i βi

(α+β)n and Yi ∼ Erl(n + i, α).
�

In the following corollary, we give the PDF of ME in one expression, related to regularized
confluent hypergeometric function.

Corollary 1. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the PDF of Sn is given by

fSn(t) =
α2ntn−1e−αt

(α + β)n 1 F̃1 (−n; n,−tβ)
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where 1 F̃1 (a; b; x) is the regularized confluent hypergeometric function.

Proof. From Theorem 1 we have fSn(t) =
n
∑

i=0
Ai fYi (t) with Ai =

(n
i )α

n−i βi

(α+β)n and Yi ∼ Erl(n + i, α).

However, the PDF of Yi from Equation (1) is given by fYi (t) =
(αt)

n+i−1
αe−αt

(n+i−1)! I(0,∞)(t). Thus

fSn(t) =
n
∑

i=0

(n
i )α

n−iβi

(α + β)n ×
(αt)

n+i−1
αe−αt

(n + i− 1)!

=
α2ne−αt

(α + β)n

n
∑

i=0

n!
(n−i)!i! βi

(n + i− 1)!
t

n+i−1

=
α2ntn−1e−αt

(α + β)n 1 F̃1 (−n; n,−tβ)

where
n
∑

i=0

n!
(n−i)!i! (tβ)i

(n+i−1)! = 1 F̃1 (−n; n,−tβ) is the regularized confluent hypergeometric function

which is defined as 1 F̃1 (a; b, x) = 1F1 (a;b,x)
Γ(b) having 1F1 (a; b, x) be the Kummer confluent hyper-

geometric function.
�

3.2. CDF, MGF and other functions for ME distribution

In Theorem 1, we found a closed expression of the PDF for sum of identical EE random variables

and we gave the PDF expression as
n
∑

i=0
Ai fYi (t). This expression shows that our distribution is

also a mixed distribution of the Erlang distribution. We take an advantage of this expression to
find the other statistical characterization as CDF, MGF, moment of order k, reliability and hazard
functions for ME distribution. Next, we derive exact closed expressions of these functions.

Theorem 2. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the CDF of Sn is given by

FSn(t) =
n

∑
i=0

AiFYi (t)

where Ai is defined in Equation (7) and FYi is the CDF of Yi ∼ Erl(n + i, α).

Proof. From Theorem 1, the PDF of Sn is fSn(t) =
n
∑

i=0
Ai fYi (t). The CDF of Snis defined as

FSn(t) =
t∫

0

fSn(x)dx =

t∫
0

n

∑
i=0

Ai fYi (x)dx =
n

∑
i=0

Ai

t∫
0

fYi (x)dx =
n

∑
i=0

AiFYi (t).

�

Lemma 1.
n
∑

i=0
Ai = 1.

Proof. Let FYi (t) and FSn(t) be the CDF of Yi and Sn respectively. However, the limit at infinity
of any CDF is 1. Starting from the expression of the CDF in Theorem 2, FSn(t) = ∑n

i=0 AiFYi (t),
we have lim

t→∞
FSn(t) = lim

t→∞
∑n

i=0 AiFYi (t), thus ∑n
i=0 Ai = 1.

�
Next, we give another expression for the CDF of Sn.

Corollary 2. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the CDF of Sn is

FSn(t) = 1− αn

(α + β)n

n

∑
i=0

(n
i )βiΓ(n + i, αt)
αi (n + i− 1)!
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where Γ(·, ·) is the upper incomplete gamma function.
Proof. From Theorem 2, the CDF of Sn is FSn(t) = ∑n

i=0 AiFYi (t). However, from Equation (2)

we have FYi (t) = 1− Γ(n+i,αt)
(n+i−1)! . Therefore,

FSn(t) =
n

∑
i=0

(
Ai − Ai

Γ(n + i, αt)
(n + i− 1)!

)
,

but from Lemma 1, ∑n
i=0 Ai = 1 This leads to FSn(t) = 1− ∑n

i=0 Ai
Γ(n+i,αt)
(n+i−1)! . Moreover, from

Equation (7) Ai =
(n

i )α
n−i βi

(α+β)n and we get

FSn(t) = 1−
n

∑
i=0

Ai
Γ(n + i, αt)
(n + i− 1)!

= 1− αn

(α + β)n

n

∑
i=0

(n
i )βiΓ(n + i, αt)
αi (n + i− 1)!

�

Theorem 3. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the MGF of Sn is

φSn(t) =
n

∑
i=0

AiφYi (t)

where Ai is defined in Equation (7) and φYi is the MGF of Yi ∼ Erl(n + i, α).

Proof. Referring to Theorem 1 the PDF of Sn is fSn =
n
∑

i=0
Ai fYi (t).Thus,

φSn(t) =
+∞∫
−∞

etx fSn(x)dx =

+∞∫
−∞

etx
(

n
∑

i=0
Ai fYi (x)

)
dx =

n
∑

i=0
Ai

+∞∫
−∞

etx fYi (x)dx

but
+∞∫
−∞

etx fYi (x)dx = φYi (t), thus φSn(t) =
n
∑

i=0
AiφYi (t).

�

Corollary 3. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the MGF of Sn is

φSn(t) =
α2n

(α + β)n

n

∑
i=0

(n
i )βi

(α− t)n+i .

Proof. From Theorem 3 φSn(t) = ∑n
i=0 AiφYi (t) and the MGF of Erlang distribution Yi is given

in Equation (3) as φYi (t) =
(

α
α−t
)n+i which leads to φSn(t) = ∑n

i=0 Ai
(

α
α−t
)n+i. Moreover, from

Equation (7) Ai =
(n

i )α
n−i βi

(α+β)n then

φSn(t) =
n

∑
i=0

(n
i )α

n−iβi

(α + β)n

(
α

α− t

)n+i

=
α2n

(α + β)n

n

∑
i=0

(n
i )βi

(α− t)n+i

�
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Theorem 4. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the reliability function of Sn is

RSn(t) =
n

∑
i=0

AiRYi (t)

and the hazard function of Sn is given as

hSn(t) =
∑n

i=0 Aihi(t)RYi (t)
∑n

i=0 AiRYi (t)

where hYi (t) and RYi (t) are the hazard and reliability functions of Yi ∼ Erl(n + i, α) respectively,
and Ai is defined in Equation (7).

Proof. RSn(t) = 1− FSn(t), and from Theorem 2 we have FSn(t) = ∑n
i=0 AiFYi (t)

RSn(t) = 1−
n

∑
i=0

AiFYi (t),

but FYi (t) = 1− RYi (t), and from Lemma 1, we have
n
∑

i=0
Ai = 1, thus RSn(t) =

n
∑

i=0
AiRYi (t).

On the other hand, the expression of hazard function is given by

hSn(t) =
fSn(t)
RSn(t)

=
∑n

i=0 Ai fYi (t)
∑n

i=0 AiRYi (t)

however, fYi (t) = hi(t)RYi (t), then

hSn(t) =
∑n

i=0 Aihi(t)RYi (t)
∑n

i=0 AiRYi (t)
.

�

Theorem 5. Let Sn ∼ ME(α, β, n), α > 0, β > 0 and n ∈N∗. Then the moment of order k of Sn is

E[Sk
n] =

n

∑
i=0

AiE[Yk
i ] =

k!αn−k

(α + β)n

n

∑
i=0

βi

αi

(
n
i

)(
n + i + k

n + i

)
where Yi ∼ Erl(n + i, α), and Ai is defined in Equation (7).

Proof. From Theorem 3, we have φSn(t) =
n
∑

i=0
AiφYi (t). Now the moment of Sn of order k is

given by E[Sk
n] =

dkφSn (t)
dtk

∣∣∣∣
t=0

=
n
∑

i=0
Ai

dkφYi
(t)

dtk

∣∣∣∣
t=0

=
n
∑

i=0
AiE[Yk

i ]. Moreover, E[Yk
i ] =

Γ(n+i+k)
αkΓ(n+i) and

from Equation (7) Ai =
(n

i )α
n−i βi

(α+β)n then

E[Sk
n] =

n

∑
i=0

(n
i )α

n−iβi

(α + β)n
Γ(n + i + k)
αkΓ(n + i)

=
αn−k

(α + β)n

n

∑
i=0

βi

αi
(n

i )Γ(n + i + k)
Γ(n + i)

=
k!αn−k

(α + β)n

n

∑
i=0

βi

αi

(
n
i

)(
n + i + k

n + i

)
as

(n
i )Γ(n + i + k)

Γ(n + i)
=

n!
(n−i)!i! k! (n + i + k− 1)!

(n + i− 1)!k!
= k!

(
n
i

)(
n + i + k

n + i

)
�

We end this part to point out the importance of writing the PDF of our ME distribution
as linear combination PDF of the known Erlang distribution. This expression facilitates in
determining the other statistical expressions as CDF, reliability and hazard functions, moment
generating function (MGF), and kth moments. This procedure was adopted by Smaili et al. [10]
and [11]. Later, these expressions are used to give an estimated model for a real-life data.
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4. Real Life Data

To illustrate the new results presented in this paper, we fit the ME distribution to two examples of
real data. The MLE and MME approaches are employed to estimate the parameters of the real-life
data and MATHEMATICA software is used. We analyze real data sets to show that the ME
distribution can be a better model than other existing distributions. We consider the distributions
in recent papers that proposed their distribution to fit the model data. For each data set, we
compare the fitted distributions using the three criteria: AIC (Akaike Information Criterion),
AICC (Akaike Information Criterion Corrected) and BIC (Bayesian Information Criterion). Let us
be precise that log(L) is the log-likelihood taking with the estimate values, AIC = 2k− 2 log(L),
AICC = AIC+ 2k(k+1)

n−k−1 and BIC = −2 log(L)+ k log(n), where k denotes the number of estimated
parameters and n denotes the sample size. The best fitted distribution corresponds to lower AIC,
AICC and BIC. Also the histogram and the estimated PDFs and CDFs for the best fitted models
to the two data are displayed in Figures 1 and 2, respectively.

Data set 1: The data set contains n = 63 measures related to the strength of 1.5cm glass bers.
It is reported in Smith and Naylor (1987): 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5,
1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77,
1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

We chose the analysis done by Chesneau in [3] for this data. Chesneau compared the Lindley,
Exponential, Exponentiated Exponential (EExp), and Exponential Hypoexponential distribution
(EHypo). The corresponding PDF of EExp and EHypo are given by

fEExp(x) = λαe−λx
(

1− e−λx
)α−1

fEHyp(x) = λα (1 + 10α) e−λx
(

1− e−λx
)α−1

(
1−

(
1− e−λx

)0.1
)

respectively. We derive two estimated distributions of the ME distribution using MLE and MME
and used as a competitive distribution of the previous ones. See Table 1. This table shows that
the ME model gives a better fit to this data than the other distributions. The plots in Figures 1
also indicate the same thing. So, the ME model could be chosen as the best model.

Table 1: MLE and MME of ME Distribution with MLEs of competitor distributions and AIC, AICC and BIC of data
set 1

Model Estimated Parameters AIC AICC BIC
ME(MLE) n̂ = 13, α̂ = 13.771948428082293, β̂ = 20.34250599538599 50.547 50.747 63.1195
ME(MME) n̂ = 15, α̂ = 16.653713280301165, β̂ = 25.644927330965096 53.678 53.8784 66.251
Lindley θ̂ = 0.996116 164.56 164.62 166.70
Exponential λ̂ = 0.663647 179.66 179.73 181.80
EExp α̂ = 31.3489, λ̂ = 2.61157 66.76 66.96 71.05
EHypo α̂ = 24.0816, λ̂ = 1.83894 59.67 59.87 63.96

Data set 2: The data consist of 101 observations. The data was presented in Birnbaum &
Saunders (1969) and correspond to the fatigue time of 101 6061-T6 aluminum coupons cut parallel
to the direction of rolling and oscillated at 18 cycles per second (cps). The data are: 70, 90, 96, 97,
99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 119, 120,
120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131,
131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142,
142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157,
158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212.

We chose the analysis done by Yousof et al. in [13] for this data. They compared the Weibull,
Wei-Weibull (WW) and their Weibull-Weibull logarithmic (WWL) distribution to fit this data. The
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Figure 1: The two figures show a best fitting for the EE distribution

CDF of WW and WWL distribution are given by

FWW(x; α, β, λ, γ) = 1− e−α
(

eλxγ−1
)β

FWWL (x; α, β, λ, γ, p) =

pαβγλxγ−1
(

eλxγ − 1
)β−1

e

(
λxγ−1−α

(
eλxγ−1

)β
)

(
p
(

1− e−α(eλxγ−1)
β
)
− 1
)

ln (1− p)

respectively for α, β, λ, γ > 0 and 0 < p < 1. We derive two estimated distributions of the ME
distribution using MLE and MME and used as a competitive distribution of the previous ones,
see Table 2. This table shows that the ME model gives a better fit to this data than the other
distributions. The plots in Figure 2 also indicate the same thing. So, the ME model for the second
time could be chosen as the best model.

Table 2: MLE and MME of ME Distribution with MLEs of competitor distributions and AIC, AICC and BIC of data
set 2

Model Estimated Parameters AIC AICC BIC
ME(MLE) n̂ = 32, α̂ = 0.31305352844373824, β̂ = 0.13952982315141454 916.557 916.679 931.018
ME(MME) n̂ = 28, α̂ = 0.3149943298488485, β̂ = 0.27793752048684467 918.586 933.047 918.709
Weibull λ̂ = 0.0036, γ̂ = 1.1516 1167.38 1167.5 1172.61
WW λ̂ = 0.0036, γ̂ = 1.1516 1167.38 1167.5 1172.61
WWL α̂ = 0.0060, β̂ = 3.1600, λ̂ = 0.0873, γ̂ = 0.6264, p̂ = 0.8732 948.49 948.91 961.56

We see in Tables 1 and 2 that the ME distribution has the smallest AIC, AICC and BIC for the
two data sets, compared with lately proposed distributions, indicating that the ME distribution is
a serious competitor to the other considered distributions.

5. Conclusion

A new distribution, Mixed Erlang (ME) distribution, has been proposed and its properties are
studied. We derived exact closed expressions of the PDF, CDF, reliability function, hazard function,
MGF, and kth moments. We have studied the maximum likelihood estimators and method of
moments estimators and the parameters estimation is carried out in the presence of real data. We
presented two real life data sets, and our ME distribution was compared with lately proposed
distributions and showed that the ME distribution is a serious competitor to the others.
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Figure 2: The two figures show a best fitting for the EE distribution
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Abstract 

A life test is a random experiment conducted on the manufactured items such as electrical and electronic 
components for estimating their life time based on the inspection of randomly sampled items. Life time of 
the items is a random variable which follows a specific continuous-type distribution, called the lifetime 
distribution. Reliability sampling, which is one among the classifications of product control, deals with 
inspection procedures for sentencing one or more lots or batches of items submitted for inspection. In this 
paper, the concept of sampling plans for life tests involving two samples is introduced under the 
assumption that the life time random variable is modeled by Marshall - Olkin extended exponential 
distribution. A procedure is developed for designing the optimum plan with minimum sample sizes when 
two points on the desired operating characteristic curve are prescribed to ensure protection to the producer 
and the consumer. 

Keywords: Life Test Sampling Plan, producer’s risk, Marshall Olkin Extended 
Exponential Distribution, Consumers risk, OC function, Reliability sampling. 

 

1. Introduction 

Reliability sampling is the methodology that deals with sampling inspection procedures, called life 
test or reliability sampling plans essentially adopted in the industrial processes for taking decisions 
on the disposition of the lot(s) of items such as electric or electronic components based on the 
assessment of quality utilizing lifetimes of the items as the quality characteristics. A life test sampling 
plan is employed by drawing a random sample of test units, which are subjected to a set of test 
procedures, from the lot and inspecting the units for deciding whether the lot is accepted or rejected 
based on the information provided by the test results. A specific sampling plan focuses on the 
objective of determining whether the lifetimes of items reach the specified standard or not based on 
the observations made from the sampled lifetime data. Such sampling plans can be developed 
considering the lifetime of the products as the quality characteristic as well as the random variable, 
which is appropriately modeled by a probability distribution, like exponential, Weibull, lognormal, or 
gamma distribution rather than the normal distribution.  

The literature in product control provides adequate references on the applications of many 
continuous-type probability distributions in the studies concerned with the development of sampling 
inspection plans for life tests. The earlier works, which laid the foundation for the expansion of 
various types of sampling plans, would include the theory of reliability sampling proposed and 
developed in [1], [2], [3], [4], [5], [6], [7] and [8]. Significant contributions in the development of life 
test sampling plans employing exponential, Weibull, lognormal and gamma distributions as well as 
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several compound distributions for modeling lifetime data have also been made in the past four 
decades. A detailed account of such plans was provided in [9]. Recent advances in the theory of life 
test sampling plans are provided in [10 – 25].  

Marshall – Olkin extended exponential distribution (MOEED), introduced in [26] as a 
generalization of the exponential distribution, exhibits the property of monotone failure rate. In some 
applications of biological, agricultural and entomological studies, the failure rate function of the 
underlying distribution may be inverted bathtub – shaped hazard function or unimodal. When a 
probability distribution for life-time variable has a failure rate function that takes various shapes, it is 
the natural choice to adopt the distribution in practice. Further, MOEED has the failure rate that 
decreases with time, fairly constant failure rate and failure rate that increases with time, indicative of 
infantile or early-failures, useful life or random failures and wear-out failures, respectively. 

Due to the possibility of various shapes of failure rate function, which is the case similar to 
gamma and Weibull distribution, MOEED is especially suitable for modeling life time of an item and 
is used commonly for the inferential aspect of utilizing life information. Hence, as a member of the 
lifetime continuous distributions, MOEED can be considered as an apt probability model to adopt in 
real life situations and may be used as an alternative to the gamma, Weibull and other exponentiated 
family of distributions. Considering its importance in reliability studies, Different criteria for 
designing life test sampling plans are discussed in [27] under the condition that the life test is 
evaluated in terms of mean life, hazard life and reliability life under the conditions for the application 
of MOEED.    

In this paper, a special type of sampling plans which involves two random samples and allows a 
maximum of one failure in the combined samples for life tests is introduced under the assumption 
that the lifetime quality characteristic is modeled by MOEED. The method of designing optimum 
sampling plans indexed by two prescribed points on the operating characteristic curve, namely 
acceptable mean life and unacceptable mean life, associated with the producer’s risk and the 
consumer’s risk, respectively, is discussed with illustrations under the conditions for application of 
MOEED for desired degree of discrimination which would ensure protection to the producer and 
consumer.  

 

2. Special Type of Sampling Plans for Life Tests 

A special type of sampling plan, devised and discussed in  [28 - 29], is a lot-by-lot sampling plan by 
attributes in which provisions are made to utilize only small acceptance numbers such as 0 or 1, and 
to inspect the submitted lot by drawing a second random sample even if the first random sample 
contains zero nonconforming (defective) items. A special feature of this plan is that the operating 
characteristics of the plan lies between those of c = 0 and c = 1 single sampling plans, and thus 
provides better discrimination over the single sampling plans with wide range of operating ratios. 
Consider the following conditions:  

(a) Sampling plans for life tests are required to be set up for product characteristics that involve 
costly or destructive testing. 

(b) Situations warrant small samples to be drawn from the lot.  

In such conditions, a sampling plan with zero or fewer failures in the samples is quite reasonable 
to employ for the disposition of the lot. But, as demonstrated in [29] and [30], under sampling 
inspection by attributes, single sampling plans for life tests with zero failures or zero acceptance 
number, designated by  are unattractive as they fail to provide protection to the 
producer against the acceptable mean life of the product. The operating characteristic curves of such 

),0,(nSSP -
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sampling plans having zero failures are quite often in undesirable shapes and hence, they seldom 
ensures protection to producers, but ensures protection to consumers against unacceptable mean life 
of the product.  

It can be demonstrated that single sampling plans admitting one or more failures in a sample of 
items improve upon the undesirable characteristics of  but may require larger sample 
sizes. In order to overcome this shortcoming, the special type of sampling plans can be adopted for 
life tests allowing a maximum of one failure in the random samples drawn from the submitted lot. 

Most often, situations involving small samples may warrant the use of single sampling plans with 
a fewer number of failures such as and . But, the OC curves of  and plans 
would indicate that there will be a conflicting interest between the producer and the consumer as 

 plans always provide protection to the consumer with smaller risk of accepting the lot having 
unacceptable mean life of the product while plans favor the producer with smaller risk of 
rejecting the lot having acceptable mean life. This situation of conflict can be annulled if a suitable life 
test plan having its OC curve lying between the OC curves of  and plans is designed. 
While introducing the special type of sampling plan, it was shown in [28] that there is a wide gap 
between the OC curves of  and plans and established that the OC curves of the special 
plan lie between the OC curves of  and plans. He also advocated that the sampling plans 
of similar kind could be used effectively in such situations. Hence, the special type of sampling plans 
could be the natural choice and could be considered as an alternative to single sampling plans having 
zero or fewer failures, such as c = 0 or c = 1. .   

Before discussing the procedure for the selection of an optimum special type of sampling plan for 
life tests with the objective of providing protection to the producer and consumer against rejection of 
the lot for the specified acceptable mean life and against acceptance of the lot for the specified 
unacceptable mean life, the operating procedure of the plan is now described as given below: 

A sample of  items is taken from a given lot and inspected. If one or more failures are found, 

i.e.,   while inspecting  items, then the lot is rejected; if no failure is found, i.e.,  a 

second sample of  items is taken and the number of failures,  is observed. If zero or one failure 

is found, i.e.,  while inspecting  items, then the lot is accepted; if two or more failures are 

found, i.e.,  then the lot is rejected. 

Thus, the special type of the sampling plans for life tests is specified by two parameters  and 
 which are the number of items in the first and second random samples, respectively.  

 

3. Marshall - Olkin Extended Exponential Distribution 

Let T be a random variable representing the lifetime of the components. Assume that T follows 
Marshall – Olkin extended exponential distribution (MOEED). The probability density function and 
the cumulative distribution function of T are, respectively, defined by 

              (1) 

and 

         (2) 
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where  is the shape parameter and is the scale parameter. 

The mean life time, the reliability function and hazard function for specified time t under MOEED 
are, respectively, given by 

         (3) 

         (4) 

and         (5) 

The reliable life is the life beyond which some specified proportion of items in the lot will survive. 
The reliable life associated with MOEED is defined and denoted by 

          (6) 

where R is the proportion of items surviving beyond life . 

The proportion,  of product failing before time t, is defined by the cumulative probability 
distribution of T and is expressed by  

         (7) 

 

4. Operating Characteristic Function of Life Test Sampling Plans 

Associated with the special of type of sampling plans are the performance measures, such as 
operating characteristic function and average sample number function, which are, respectively, 
expressed by 

                   (8) 

and                             (9) 

where p is the proportion of product failing before time t, and  
and are defined either from the binomial distribution or from the Poisson 

distribution. Under the conditions for application of Poisson model for the OC curve, the OC and 
ASN functions will have the following forms: 

      (10) 

and        (11) 

When the Binomial model is used, the OC and ASN functions are respectively given by 

      (12) 

and        (13) 
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In the context of sampling plans for life tests, it is to be observed that the failure probability, p, is 

defined by the proportion of product failing before time t, and hence, the expression for is defined 
by the cumulative probability distribution of T given as (7). Associated with a specific value of p, 

there exists a unique value of  which is derived using (2), (3) and (7) as . 

In a similar way, for a specified value of  the value of p could be obtained. As the value of p 
is associated with the operating characteristic function of a life test sampling plan can be 
considered as a function of  rather than p, and hence, the OC curve of the plan could be obtained 
by plotting the acceptance probabilities against the values of  

 

5. Procedure for the Selection of Life Test Sampling Plans 

It can be observed that when the life time random variable follows a Marshall – Olkin extended 
exponential distribution, a life test sampling plan would be designated by the parameters, such as 
sample size(s) and acceptance number(s) of the sampling plan and the parameters of the distribution, 
like  and  (or ). Hence, under MOEED, a specific life test sampling plan can be determined by 
specifying the requirements that the OC curve should pass through two prescribed points, namely, 

 and , where  and  are the acceptable and unacceptable mean life, respectively, 
which are associated with the risks and   

Corresponding to  and one may define  and  as the acceptable and unacceptable 

proportions of the lot failing before time, t, respectively. Here,  and  may be considered as the 
producer’s quality level and consumer’s quality level with and  as the associated producer’s and 
consumer’s risks, respectively.  

Further, associated with  and  are the ratios  and  respectively. The 
specification of these quality levels would ensure protection to the producer against rejection of 
satisfactory lots as well as the consumer against acceptance of unsatisfactory lots, and would be 
considered to fix the OC curve in accordance with a desired degree of discrimination. An optimum 
life test sampling plan for specified points  and  can be determined by satisfying 
the following two conditions so that the maximum producer's and consumer's risks will be fixed at 

and , respectively: 

         (14) 

and  .         (15)  

It may be noted that the specification of  and  is equivalent to the 

specification of the points  and  or  and . The following 
integrated approach can be used to determine a life test sampling plan that meets the specified 
requirements under the conditions of MOEED and its implementation: 

Step 1: Specify the value of the shape parameter  or its estimate.   

Step 2: Specify the values of and with  and respectively.   
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Step 3: Find  and corresponding to  and  based on the procedure described in the 

previous section.  

Step 4: Find the optimum values of n1 and n2 for the specified strength satisfying the 
conditions (14) and (15), utilizing the expressions either (10) or (12).  

Step 5: Draw randomly a set of n1 items from the submitted lot. 

Step 6: Conduct the life test considering  as the test termination time and  as the expected mean 
life. Observe the number, m, of failures. 

Step 7: Terminate the life test if either time is reached or the condition  occurs before time .   

Step 8: Reject the lot if at time ; If m = 0, draw a random sample of n2 items from the 
remainder of the lot and observed the number of failures. If there is one or zero failure before 
time , accept the lot; otherwise reject the lot..  

5.1. Numerical Illustration  

Assume that the lifetime random variable follows MOEED defined with the shape parameter γ and 
the shape parameter is estimated from the past history as γ = 1.5, it is desired to institute a life test 
sampling plan when the acceptable mean life and unacceptable mean life are prescribed as 75000 
hours and 4285 hours, respectively. The producer’s and consumer’s risks are specified as  
and  The experimenter wishes to terminate the life test at t = 150 hours. For the given 
requirements, the values of  and are obtained as 0.002 and 0.035, respectively. Based on 
the procedure described earlier, the parameters of the special type of sampling plan are determined as 
n1 = 23 and n2 = 109. Thus, the life test plan for the given conditions is implemented as given below: 

1. Select a random sample of 23 items from a lot, conduct the life test on each of the sampled item 
and observe the number of failures while inspecting 23 items before reaching the termination 
time fixed as t = 150 hours.  

2. Terminate the life test once the termination time,  hours is reached or when the 
number of failures is 1 or more before reaching the termination time.     

3. Reject the lot if the observed number of failures is one or more; if no failure is observed in 23 
items before reaching the test termination time, select a random sample of n2 = 109 items and 
conduct the life test on each of the sampled item. If the observed number of failures is one or 
less, accept the lot; otherwise reject the lot.   

4. Treat the items which survive beyond time  hours as passed.     

5.2. Numerical Illustration   

Suppose that an experimenter is interested to implement a life test sampling inspection plan for 
taking a decision about the disposition of a submitted lot of manufactured products whose life time 
follows MOEED. The value of , the shape parameter, is estimated as 2.5. It is assumed that the life 
test will be terminated at t = 18 hours. The acceptable and unacceptable proportions of the lot failing 
before time, t, are respectively prescribed as  and  with the associated risks 

fixed at the levels  and  The values of  corresponding to 
 and  are determined as and . Thus, optimum 

sample sizes for the special type of sampling plan for life tests satisfying the conditions (14) and (15), 
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corresponding to  and , are obtained as n1 = 34 and n2 = 168. The 

acceptable mean life and unacceptable mean life are also obtained as hours 

and  hours, respectively.  

 

6. Conclusion 

A special type of sampling inspection plans for life-tests which involve two samples and allows a 
maximum of one failure is proposed when the lifetime quality characteristic is modeled by a Marshall 
– Olkin extended exponential distribution. A procedure for the selection of the proposed plan is 
discussed through numerical illustrations. The life test sampling plans which could be derived by the 
procedure discussed in this paper will ensure protection to the producer and consumer as the plans 
are indexed by acceptable and unacceptable proportion of product failing before the specified time, t. 
The practitioners can generate the required sampling plans for various choices of  adopting the 
procedure.  
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Abstract 
Water quality control aids in preventing pollution, public health, and the preservation and 
improvement of the biological integrity of water bodies. Water quality involves many variables and 
observations, some of which are outside of the acceptable range. An observation that apart from the 
rest of the data or looks diverge from other observation of the sample in which it occurs. In this 
paper, we proposed two methodologies for detecting outliers for the Yamuna River water quality 
data with three variables Chemical Oxygen Demand (COD), Bio-chemical Demand Oxygen (BOD) 
and PH, at three different locations did comparison of these two methodologies. These two 
methodologies are based on Descriptive Statistics and Statistical Process Control (SPC). A few 
outliers are present in the data. The outcome shows how far the outlier detection method has 
progressed and better knowledge of the various outlier methodologies and provide a clear path for 
future outlier detection methods for researchers. 
 
Keywords: Classical Statistical Analysis, Statistical Process Control, Outlier, 
Yamuna Water Quality 
 

I. Introduction 
 
The Great Ganga plain is home to around 0.5 Billion population due to the sufficient freshwater 
availability (Misra [1]). The River Yamuna, its largest tributary, has around 1370 kilometres and 
originates from the Yamunotri Glacier of Uttar Kashi in Uttar Pradesh (Agarwal et al. [2]). It has 
several tributaries (Tons, Giri river), which provides fresh water to the mountainous regions. 
Whereas the Yamuna River flows through the densely populated regions of the plain, including 
Delhi, Haryana and Uttar Pradesh. While traversing around the megacity of Delhi, which is one of 
the highly polluted cities (Anand et al. [3]), it covers around 22 km of stretch and receives large 
quantities (3000 MLD) of partially treated and untreated industrial and domestic waste through 
twenty-two major drains. The important pollution monitoring stations are located in Kudesi, 
Nizamuddin and ITO, where three water pollution parameters are constantly monitored: COD, 
BOD and Negative logarithm of Hydrogen ion concentration (PH). Various wastewater treatment 
plants are constructed using these parameters; despite this, a significant amount of the untreated 
water (~1341 MLD) is discharged into the Yamuna River (CPCB, 2004-05). These data mainly 
indicate the point source, i.e. industrial pollution, although the diffusive sources such as the 
domestic wastewater supply (washing, cattle wading, cooking, defecation etc.) contribute 
significant yet unaccounted pollutants to the Yamuna River. 
Apart from the source dependency, the levels of the contaminants in the Yamuna River also rely 
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on the climatic/weather fluctuations such as monsoon rainfall and surface water temperatures. 
During the heavy rainfalls, the levels dilute, whereas hot summers restrict the vertical water 
mixing in the river and thus induce the contaminants' spike. The climatic conditions and human-
induced pollution thus affect the overall water quality of the Yamuna River and adjoining water 
reservoirs which are the primary source of drinking water for a significant number of the 
population living under poverty in and near the Delhi region (Sharma et al. [4]; Bhargava [5]). 
There might also be information on irregular processes, such as emissions in observations that are 
not excessively high but deviate from surrounding values. Outliers may merely be noisy 
observations or, instead, they would suggest atypical activity in the system. These abnormal values 
are significant and can lead to helpful knowledge or important results and selecting the most 
effective mitigation techniques or steps. SPC is a process that must work around the goal or 
nominal dimensions of the quality features with little variability. SPC is a powerful set of problem-
solving methods that are useful in achieving process reliability and improving capacity by 
reducing variability. It is essential to develop and maintain a normal variation pattern through 
continuous process monitoring. A disturbance has occurred if there is a divergence from the usual 
fluctuation, and the process must be adjusted. Statistical process control provides data collection, 
measurement, recording, analysis, and decision making methods. The process is statistically 
controlled when all disturbances or specific causes of variance are removed. The SPC concept 
determines the central line, upper control limit, and lower control limit. The process is out of 
control if the point is above the upper control limit (UCL) or below the lower control limit (LCL) 
(Torres et al. [6]; Kamalov and Leung [7]). They provide a unique outlier identification method 
based on principal component analysis and kernel density estimation. The suggested technique is 
designed to solve the problems associated with high-dimensional data by projecting the original 
data into a smaller area and calculating anomaly scores for each data point based on the data's 
intrinsic structure. (Muniz et al. [8]) The study uses oxygen and turbidity as indicator variables to 
develop a new method for spotting outliers in water quality monitoring metrics. Until now, 
techniques relied on treating the various parameters as a vector with concentration values as its 
components. Horn et al. [9] proposed a physician-determined healthy sample, improvement in 
reference interval estimation utilizing a new outlier identification technique is investigated. The 
impact of incorporating non-healthy individuals in the sample as determined by a physician is 
assessed. 
Singh et al. [10] sought to bring together an organized and generic overview of several outlier 
detection strategies. Sim et al. [11] concentrate on spotting potential outliers using the commonly 
known boxplot software. Outliers are subsets of observations inconsistent with the rest of the 
observations in a data collection. They find outliers by building a box plot with a lower fence (LF) 
and an upper fence (UF) (UF). Chakraborti et al. [12] presented phase I parametric control charts 
for univariate variables. Akarupu et al. [13] conducted a study on five aspects of water quality 
utilizing Statistical Quality Control methodologies applied to real 2014 data gathered for a water 
treatment facility in the United States. Fu and Wang [14] introduced several statistical approaches 
for evaluating water quality data. Three common graphs, boxplots, Q-Q plots, and scatter plots, 
which provide relevant summary information about datasets, are employed to give insight into 
datasets. Grubbs [15] study was mainly written as an explanatory and instructive essay on the 
difficulty of finding outlier observations in an extensive experimental effort. In this work, they 
solely look at tests of significance. Wang et al. [16] gave a thorough and structured overview of the 
advancement of outlier identification algorithms from 2000 to 2019. Martinez and colleagues [17] 
offered the one-class peeling (OCP) approach, a customizable framework for detecting numerous 
outliers in multivariate data that integrates statistical and machine learning methodologies (Di et 
al. [18]). 
This work presents a novel technique for detecting outliers in water quality monitoring parameters 
by employing turbidity, conductivity, and ammonium as indicator variables. 
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II. Methodology 
A collection of systems, such as water quality measurements, are available to analyze 
environmental data. These systems may discover unusual data items using classical analysis, 
patterns, differences between neighbouring network stations, and predicted values concerning the 
sampling position. For classical analysis, the data is only statistically evaluated. Today, automated 
analysis techniques are needed for the amount of data that has been accumulated in environmental 
databases. The study technique presented here is focused on knowledge discovery of information 
in databases (KDD) (Chan et al. [19]), which provides a complete data extraction procedure as well 
as a transparent methodology for preparing data and evaluating the findings produced. The 
knowledge discovery database provides an iterative and collaborative way of looking for models, 
patterns, and parameters that are beneficial for outlier detection, categorization, and/or prediction 
to create information and aid decision-making. We apply statistical techniques to detect the 
outliers; classical statistical analysis and SPC. 

I. Classical Statistical Analysis 
Individual time series, descriptive statistics, box plots, and so forth, the classical statistical analysis 
tracks water quality, decides the importance if any of them falls beyond the limits: quartiles, 
interquartile range, and evaluate the trend. In general, traditional statistical techniques explain the 
measurable property distribution (descriptive statistics) and assess the reliability of the sample 
drawn from the starting population (inferential statistics). Thus, classical analysis is based on 
continually measuring the characteristics of an item and attempting to forecast the frequency with 
which the measurement process is repeated stochastically or randomly with a certain conclusion. 
Properties may be evaluated repeatedly for the same object or only once per object. The classical 
statistical analysis seeks to assess the empirical frequency distribution that yields the absolute or 
relative frequency of occurrence of each of the numerous potential outcomes of repeated 
measurement of an object's property (discrete case) or object class (Torres et al. [6]). If the 
distribution function is employed in the event of an indefinitely repeated and arbitrarily reliable 
computation and each outcome is different, then the relative frequency of a particular occurrence 
will not be very informative. 

II. Statistical Process Control 
Outliers can be identified by using SPC to monitor the system. The analysis concentrates on 
significantly low and high readings even if the results do not meet the set limit. These techniques 
can examine individual or average maps to study individual observation. The dataset should be 
divided into reasonable subgroups (Shewart [20]). It is important to form rational subgroups 
because variation can be clustered, and variability can be easily detected in the presence of special 
causes. Unless it is impractical to utilize the rational subgroups, for instance, when a measurement 
repeatedly occurs in the same way, it differs only by laboratory or analytical error. 

The method of gathering the data is the rational subgroup and generally be collected so that each 
one demonstrates the only intrinsic variety, which is the natural process of (common cause 
variation). It allows an additional source of variation (unique cause variation) to be established, 
which may affect the subgroups imperfectly where possible, to avoid unique cause variation. 
Moreover, if the mechanism is too violated, the limit of the control chart that defines the border is 
determined by the variability within each subgroup. For this reason, only subgroups that duplicate 
the common cause variation in the process should be gathered (Torres et al. [6]). 

If the data is appropriately organized, a normality test must be performed. If the normality 
hypothesis is rejected, there are two possible ways to normalize the data. The first one is to use the 
modified techniques for non-normal distribution to convert in normality form or transform the 
data to normalize the data set (Chen [21]). The second technique is used for the transformation is 
Box-Cox transformation (Box and Cox [22]) is given as follows: 
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Where 𝜔 denotes the maximizes the profile likelihood function of the data 𝑋! 

It is possible to divide a classical process analysis into two stages, the first stage when a test has 
been conducted to remove normality and atypical measurement from the results, and the stage is 
the control stage, when the pattern is evaluated and when conditions outside of control are 
encountered. The first level specifies the central line (CL), UCL, and LCL. The control sample 
accurately defines the centre line, reflecting the objective value. Furthermore, the warning limit is 
placed at a distance of ±2σ from it and is the operation's standard deviation (Leavenworth and 
Grant [23]). 

For SPC, the control chart of Shewart is most frequently used for its substantial success in detecting 
the significant changes in a process. It is more accurate to suggest that the control chart is a 
monitoring system for graphical statistical processes. In most cases, conventional control charts are 
designed to track process parameters when the underlying form of the distribution of processes is 
known. Despite these charts using the most recent samples, the minor or progressive improvement 
in the process is not established. There is a need for complementary rules; different rules have been 
established by different authors to identify particular deviations (Champ and Woodal [24]; Zhang 
et al. [25]) and to complement the initial rules. Using these supplementary rules (Western [26]) 
makes the control charts of Shewart more alert and contributes to a substantial capacity for a non-
random sample to be detected. 

III. Results and Discussion 

In this document, the results of the two approaches are shown below. R and Minitab 16 were used 
to create all of the figures. 
I. Classical Analysis 
The traditional statistical method on water quality, time series, descriptive statistics, and box plot 
analysis was used to see if the value was outside the limit. The table displays the dataset's 
descriptive statistical parameters. Data is taken from ENVIS Centre on Hygiene, Sanitation, 
Sewage Treatment Systems and Technology sponsored by the Ministry of Environment, Forest and 
Climate Change Govt. of India [27]. 

Table 1: Summary of descriptive statistics of Yamuna river water quality analysis 
Variable N N* Mea

n 
SE 
Me
an 

StD
ev 

Mini
mu
m 

Q1 Medi
an 

Q3 Maxim
um 

Rang
e 

IQR Skewn
ess 

Kurtos
is 

KudesiCO
D 

12 0 72.50 6.20 21.48 28.0 65.00 78.00 86.0 106.00 78.00 21.00 -0.81 0.79 

KudesipH 12 0 7.625 0.11
2 

0.386 7.00 7.275 7.700 7.90 8.10 1.100 0.625 -0.57 -0.83 

KudesiBOD 12 0 22.77 2.06 7.14 7.60 20.50 24.00 28.0 32.0 24.40 7.50 -1.03 0.82 
Nizamuddi
npH 

12 0 7.600 0.07
28 

0.252
3 

7.00 7.50 7.60 7.70 8.00 1.00 0.20 -0.90 2.40 

Nizamuddi
nCOD 

12 0 66.33 2.85 9.87 48.0 58.00 68.00 75.0
0 

80.0 32.00 17.00 -0.64 -0.37 

Nizamuddi
nBOD 

12 0 21.17 1.54 5.34 14.0 16.75 21.00 23.7
5 

32.0 18.00 7.00 0.53 0.24 

ITOpH 12 0 7.733 0.1 0.347 7.00 7.525 7.800 8.00 8.10 1.100 0.475 -0.87 0.08 
ITOCOD 12 0 71.33 4.97 17.21 40.0 57.00 72.00 85.0 96.0 56.00 28.00 -0.18 -0.45 
ITOBOD 12 0 22.96 1.78 6.18 11.0 17.38 24.50 28.0 32.0 21.00 10.63 -0.55 -0.45 

The statistical parameter in table 1 shows the limits and not more than the decided limit. The 
following step in classical data analysis is to present a time series of monthly data of water quality 
from 2019 to 2020 (one year) (Fig. 1) ranging of Kudesi COD (28.00,106.00), Kudesi PH(7.00,8.100), 
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Kudesi BOD(7.60,32.00), Nizamuddin COD(48.00,80.00), Nizamuddin PH(7.00,8.00), Nizamuddin 
BOD(14.00,32.00), ITO COD(40.00,96.00), ITO PH(7.00,8.10), ITO BOD(11.00,32.00). 

 

 
Figure1: Time series plot for Kudesi, Nizamuddin, ITO (COD, BOD and PH) 

Figure 2 is a boxplot that graphically depicts COD, BOD, and PH data at various locations 
concentrated by quartiles. In the below fig., there are no outliers detected in the data except Kudesi 
COD, BOD and Nizamuddin PH. 

 
Figure 2: Box plot for Kudesi, Nizamuddin and ITO (COD, BOD, PH) 
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II. SQC Analysis 
Individuals' IMR charts show each observation or measurement as a distinct data point that stands 
independently (subgroup size = 1). The analysis of the findings given in Fig. 3 reveals that few 
have a false alarm, i.e. outlier. 

 

Figure 3: Individual moving range chart for Kudesi, Nizamuddin and ITO(COD, BOD, PH). 
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The Xbar chart of each observation or measurement of each data point is displayed in fig. 4. In this 
examination, we observed an outlier detected in the Kudesi COD at sample 7, Kudesi BOD and 
Nizamuddin PH.  

 

Figure 4: Xbar chart for Kudesi, Nizamuddin, ITO (COD, BOD, PH). 
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IV. Conclusion 
We employed two approaches to analyze water pollution and outliers' data from the urban river 
Yamuna at three different locations, Kudesi, Nizamuddin, and ITO, using COD, BOD, and PH in 
Delhi, India. The data were collected monthly from April 2019 to March 2020 with monthly 
measurements. Firstly, we applied a classical approach by analyzing the data with descriptive 
statistics such as mean, range, Q1, Q2, Q3 and IQR, time series, and box plot. Secondly, adopted an 
SPC to learn the approximately normal data, gathered by month with different control charts such 
as IMR and Xbar chart. A novel method and set of instruments to efficiently access resident water 
pollution are necessary to effectively enable water pollution abatement and give genuine water 
quality circumstances. The classical approach is oversimplified despite giving helpful decision-
making information. It has many flaws in the data's time correlation structure, including failing to 
find true outliers months with behaviour deviating from the norm simply because the points do 
not exceed the bound values. As a result, more complex and modern methodologies can better 
understand water pollution incidents. SPC is an advanced methodology for identifying outliers in 
pollution episodes. We create a model and graph it, and this method marks them as outliers. It 
only works with discrete explanations and cannot extract data in a continuous format. This 
document outlines a simpler method for environmentalists to discover outliers. We can include it 
in this functional outlier identification technique for future use. In general, as compared to 
traditional statistical analysis, SPC is the most effective method for detecting outliers. 
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