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Abstract 

 
Combined-numeral nonlinearity coding problem (CNNLCP) troubles concerning usual 

restrictions and empirical roles and constant then numeral variable quantity frequently appear in 

a production project, substance method business, and organization. Even though several optimize 

techniques need to be established for CNNLCP troubles, these techniques can hold signal 

relationships together with a particular variable quantity. Thus, this analysis intends a different 

approach used to explain a signal CNNLCP trouble and set free variable amount towards achieving 

an internationally optimum explanation. The signal CNNLCP trouble is initially converted into 

an individual with one certain variable quantity. However, the changed trouble is redeveloped as a 

curving combined-numeral system as the Convexness of the approaches and piecewise linearization 

systems. A comprehensive optimal signal CNNLCP trouble can ultimately be realized inside the 

acceptable inaccuracy. Algebraic models are also introduced to establish the effectiveness of the 

recommended approach. 

 

Keywords: Comprehensive Optimize, Combined-numeral nonlinearity coding, 

Set free variable quantity, Convexness. 

 

 

                                                                  I. Introduction 

 
Combined-numeral nonlinearity coding (CNNLCP) troubles concerning together constant and 

distinct variable quantity rise in several claims of a production project, substance method [12,14,26], 

for instance, combination and project of partings [1–4], no intricate isothermal apparatus webs [20], 

stage symmetry [28] and frame-conversation webs [29]. Biegler and Grossmann [7] demonstrate 

optimized procedures that have been affected in development techniques planning. They revealed 

that pattern and creation troubles had been controlled by nonlinearity coding and CNNLCP types. 

Floudas et al.. [13] indicated the investigation activity into comprehensive Optimize for 1998–2003, 

together with the determinist universal optimize improvements into CNNLCPs and connected 

products. Along with the expanding dependence on demonstrating optimized troubles in functional 

troubles, several hypothetical and algorithmic influences of CNNLCP have been planned. Though 

these troubles regularly consist of noncurved roles, the standard local optimize techniques cannot 
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be dealt with to ensure comprehensive optimality. Used to discuss the nonconvexities in CNNLCP 

troubles, the established procedures can be separated into binary attitudes. 

 

 The stochasticity processes consist of arbitrary factors in their pursuit and are dependent on an 

arithmetical dispute to demonstrate their merging. For example, Salcedo et al. [32] proposed an 

increased arbitrary examination process for explaining nonlinearity optimize troubles. Hussain and 

Al-Sultan [19] planned a fusion system for noncurved function minimization by applying the natural 

method to create examine instructions. Yiu et al. [39] established a Combined slope attitude shown 

on a virtual hardening process and slope-established system to explain multidimensional noncurved 

uninterrupted optimize troubles. The experimental method is a variation of stochasticity techniques, 

for example, the restriction analyses system [16]. The collection of all aspirant explanations that can 

be produced in each repetition must vary on the present repetition position and be changed by 

eliminating a subgroup of contestant explanations known as tabu. The meaning of which contestant 

results are tabu goes upon the changes that have got be there created among current repetition 

positions. While the tabu analyses are more efficient than virtual galvanizing, these stochasticity 

systems stated above cannot ensure discovering the universal optimum. Hence, the worth of the 

explanation is not confirmed. Likewise, the likelihood of finding the universal description reduces 

when the difficulty volume strengthens. 

 

Determinist procedures in a typical analysis of optimizing methods [7,17,18], several determinist 

approaches for curved CNNLCP troubles have been evaluated. The processes contain area and 

constrained (CAC) [9,22,33], widespread binges decay(WBD) [15], outward estimate (OE) [10,11,31], 

continued reducing plane technique (CRPT)) [37],and simplified disjunctive coding (SDC) [21]. The 

CAC system can only get the universal explanation when each subproblem can be explained 

worldwide optimality. The WBD system, the OE system, and the CRPT system cannot explain 

CNNLCP troubles with noncurved restrictions since the troubles cannot develop a distinctive 

optimum in the resolution method. Lee and Grossmann [21] planned a resolution system for the 

SDC simulations that parallel distinct/permanent optimization troubles involving disconnections 

and nonlinearity inequities and reasoning proposals. The empirical roles and the restrictions in the 

GDP trouble are expected to be curved and constrained. Maranas and Floudas [25] required a 

process to produce curved estimators for universal geometric coding challenges via the hollow 

words' index conversion and straight dryness. Adjiman et al. [1,2] projected two worldwide 

optimize techniques, SMIN-α BB and GMIN-α BB, for noncurved CNNLCP established on the model 

of separate off-and-constrained and trust on Optimize or period-created changing-required updates 

to improve productivity. Even though one likely method to avoid noncurved ties in CNNLCP shows 

is a reformulation, for example, applying the index revolution to deal with the simplified 

symmetrical coding troubles. 

 

In which a signal phrase 𝑥1
𝛼 𝑥2

𝛽
 is assigned into an index term 𝑒𝛼𝑙𝑛𝑥1+𝛽𝑙𝑛𝑥2   [12,14,26], the index 

alteration procedure can only be utilized to precisely certain variable quantity and is thus incapable 

of trading with noncurved CNNLCP difficulties with set free variable amount. Pörn et al. [30] 

announced separate Convexness approaches for converting noncurved CNNLCP troubles into 

curved issues and explaining them by a CNNLCP solver. They recommended an easy conversion, x 

+τ = 𝑒𝑥, to deal with a free distinct varying. Introducing the converted effect into the earliest 

indication conditions will bring different signal periods, growing computational complications. 

 

                                         II. Transformation of free variables 

 
The mathematical formulation of a signomial CNNLCP problem with free variables considered 

in this study is expressed as follows: 

                                         Minimize 𝑓(𝑥, 𝑦) 

      Subjects to 𝑔𝑖(𝑥, 𝑦) ≤ 0,    𝑖 = 1,2,3, … . . 𝐼                                                                                        (1) 
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                                 𝑥 = (𝑥1, 𝑥2, … … . 𝑥𝑝, 𝑥𝑝+1 … … , 𝑥𝑛), 𝑥𝑖  ≤ 𝑥𝑖 ≤ 𝑥𝑖                                                  (2) 

                                 𝑦 = (𝑦1, 𝑦2, … … . 𝑦, 𝑦𝑞+1 … … , 𝑦𝑚) , 𝑦𝑖  ≤ 𝑦𝑖 ≤ 𝑦𝑖                                                   (3) 

 

 where𝑥𝑖𝜖𝑅+  for 1 ≤ 𝑖 ≤ 𝑝, 𝑥𝑖  are constrained set free variable quantity for   1 + 𝑝 ≤ 𝑖 ≤ 𝑛, 𝑦𝑗 are 

+ve number /distinct variable quantity for   1 ≤ 𝑗 ≤ 𝑞, 𝑦𝑗 are constrained number /distinct variable 

quantity for  𝑞 + 1 ≤ 𝑗 ≤ 𝑚, 𝑓(𝑥, 𝑦)  and 𝑔𝑖(𝑥, 𝑦) are Combined-numeral signal roles, 𝑥𝑖, and 𝑥𝑖  .  

are more diminutive and more significant boundaries of the permanent variable quantity 𝑥𝑖, and 

𝑦𝑗 and 𝑦𝑗 are more minor and more significant boundaries of the distinct variable quantity 𝑦𝑗, 

respectively.  

 

Let                     𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

−, 𝑥𝑖
+𝑥𝑖

− ≥ 0, 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … 𝑛,                                                           (4) 

                           𝑦𝑗 = 𝑦𝑗
+ − 𝑦𝑗

−, 𝑦𝑗
+𝑦𝑗

− ≥ 0, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1, … … 𝑚,                                                         (5) 

And nonlinearity relationships 𝑥𝑖
𝛼𝑖  𝑎𝑛𝑑 𝑦

𝑗

𝛽𝑗   are expressed as  

 

                          𝑥𝑖
𝛼𝑖 =  (𝑥𝑖

+)𝛼𝑖 + (−1)𝛼𝑖(𝑥𝑖
−)𝛼𝑖 , 𝛼𝑖 ∈ 𝑍, 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … 𝑛,                                      (6) 

                          𝑦
𝑗

𝛼𝑗
=  (𝑦𝑗

+)
𝛽𝑗 + (−1)𝛽𝑗(𝑦𝑗

−)
𝛽𝑗 , 𝛽𝑗 ∈ 𝑍, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1, … … 𝑚,                                   (7) 

 

If 𝑥𝑖
+ > 0 and 𝑥𝑖

− = 0 , 𝑡ℎ𝑒𝑛 𝑥𝑖  𝑖𝑠 positive. Otherwise, if 𝑥𝑖
− > 0 𝑎𝑛𝑑 𝑥𝑖

+ = 0, 𝑡ℎ𝑒𝑛 𝑥𝑖  𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 .  

Remark 1  

         Let,          𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

−, 𝑥𝑖
+𝑥𝑖

− ≥ 0, 𝑎𝑛𝑑  𝑥𝑖
+ 𝑎𝑛𝑑 𝑥𝑖

− the resulting inequities.  
 𝑥𝑖

+ ≤ 𝑥𝑖
−𝜃𝑖 

𝑥𝑖
− ≤ 𝑥−𝑖(𝜃𝑖 − 1). 𝑤ℎ𝑒𝑟𝑒𝜃𝑖 ∈ [0,1].  

 

I. Preposition  

 

 Let                     𝑥𝑖
− ∈ 𝑅, 0 ≤ 𝑥𝑖

+ ≤ 𝑥𝑖
−, 𝜆𝑖 ∈ [0,1], 𝜖0 ≤ 𝑥̅𝑖

+ ≤ 𝑥𝑖
−, 𝜖0 > 0,  

         Then,         𝑥𝑖
+ = 𝑥̅𝑖

+, 𝜆𝑖 ⇒ {
(𝑖)0 ≤ 𝑥𝑖

+ ≤ 𝑥𝑖
−, 𝜆𝑖

(𝑖𝑖) 𝑥𝑖
−(𝜆𝑖 − 1) + 𝑥̅𝑖

+ ≤ 𝑥𝑖
+ ≤ 𝑥̅𝑖

+.
 

Proof : 

                If 𝑥𝑖
+ = 0, ⇒    (𝑖) is initiated, then 𝜆𝑖 = 0, hence 𝑥̅𝑖

+ 𝜆𝑖 = 0 then  𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖 

                If 𝑥𝑖
+ > 0 ⇒ (𝑖𝑖) is initiated, then 𝜆𝑖 = 1, hence 𝑥𝑖

+ = 𝑥̅𝑖
+ then 𝑥𝑖

+ = 𝑥̅𝑖
+  𝜆𝑖 

                If 𝑥̅𝑖
+ 𝜆𝑖 = 0 ⇒ 𝜆𝑖 = 0 𝑎𝑛𝑑  (𝑖) is initiated , hence𝑥𝑖

+ = 0 then 𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖 

                If𝑥̅𝑖
+ 𝜆𝑖 > 0, ⇒ 𝜆𝑖 = 1 𝑎𝑛𝑑  (𝑖𝑖) is initiated  hence 𝑥𝑖

+ = 𝑥̅𝑖
+ and 𝑥𝑖

+ = 𝑥̅𝑖
+  𝜆𝑖 

                𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖is determined .  

 

   Now denote 𝑧+𝑎𝑛𝑑 𝑧̃+ as below :  

 

                𝑧+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥𝑝+1
+ )

𝛼𝑝+1
… … . . (𝑥𝑛

+)𝛼𝑛 and  

                𝑧̃+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥̃𝑝+1
+ )

𝛼𝑝+1
… … . . (𝑥̃𝑛)𝛼𝑛  , where 𝑥̃𝑖

+ are positive variables . 

     

   From Proposition  1,  

 

                          𝑧+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥̃𝑝+1
+ 𝜆𝑝+1)

𝛼𝑝+1
… … . . (𝑥̃𝑛

+𝜆𝑛)𝛼𝑛 and it is clear that           

                          𝑧+ = 𝑧̃+𝜆𝑝+1 … … … . 𝜆𝑛 ,    𝜆𝑖 ∈ [0,1]                                                                                (8) 

 

Remark 2  

             Let,       λ , 𝜆𝑖 ∈ [0,1] 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … … … 𝑛. 𝑡ℎ𝑒𝑛 ∶  

                           λ = 𝜆𝑝+1𝜆𝑝+2 … … 𝜆𝑛  ⇒ {
(𝑖)𝜆 ≤ 𝜆𝑖𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … 𝑛,

(𝑖𝑖)  𝜆 ≥ ∑ 𝜆𝑖
𝑛
𝑖=𝑝+1 − 𝑛 + 𝑝 + 1

  

 

      By discussing Remark 2, Eq (8) becomes 
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                                       𝑧+ = 𝑧̃+λ,       λ ∈ [0,1].                                                                                        (9) 

   

       From Proposition 1, Eqs is equivalent to the following two linear inequalities.  
                                       (𝑖)0 ≤ 𝑧+ ≤ 𝑧  ̅λ,  
                                       (𝑖𝑖)  𝑧̃+ + 𝑧̅(λ − 1) ≤ 𝑧+ ≤ 𝑧̃+. 

 

       λ ∈ {0,1}, 𝑧̅ is an upper bound of 𝑧+ 

 

 

          III. Classification of curved relationships and curved relaxation approaches 

 
Convexness policies used for signal periods are essential techniques for worldwide optimization 

efforts. Sun et al. [34] planned a Convexness technique used for international optimize efforts with 

unmodulated roles in various restricted situations. Wu et al.[38] established a more than typical 

Convexness, then coalification conversion was used to explain a standard worldwide optimize 

challenge and specific unmodulated estates.  CNNLCP problem can be redeveloped with several 

Convexness techniques interested in a new curved Combined-numeral program resolvable to 

achieve an almost universal optimum. Björk et al. [8]planned a worldwide optimized system created 

on  Convexness signal conditions. They examined that the correct selection of revolution for 

Convexness noncurved signal conditions strongly impacts the effectiveness of the optimized 

method. Tsai et al. [36] also recommended Convexness systems for the signal conditions with trio 

variable quantity. This analysis introduces general  Convexness systems and laws to convert a 

CNNLCP problem into a curved Combined-numeral system. 

 

I Proposition  

 

 Let ,         f(x) = c ∏ xi
αi , x = (x1, x2, … … … xn)n

i=1 , c, xi, αi ∈ R, for all i , is curved if c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥

                   0(for i = 1,2, … … … n )1 − ∑ αi ≥ 0n
i  

 

Proof : 

Let 𝐻𝑖(𝑥) be the most crucial trivial of a Hessian matrix 𝐻(𝑥)𝑜𝑓 𝑓(𝑥). The determinant   of                

𝐻𝑖(𝑥)    det 𝐻𝑖(𝑥) = (−1)𝑖 (∏ 𝑐𝛼𝑗
𝑖
𝑗∈𝐽𝑖

𝑥
𝑗

𝑖𝛼𝑗−2
) (∏ 𝑥𝐽

𝑖𝛼𝐽𝑛
𝑗𝜖𝐽𝑖,𝐽𝑖≠∅ ) (1 − ∑ 𝛼𝑗𝐽∈𝐽𝑖

). 

Since,        det 𝐻𝑖(𝑥) ≥ 0 when c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥ 0 for all i and 1 − ∑ αi ≥ 0, 𝐻𝑖(𝑥) 𝑖 = 1,2, … … . . 𝑛.n
i  

 

Corollary : 

                  1Letf(x) = c ∏ xi
αi , x = (x1, x2, … … … xn)n

i=1 , c, xi, αiR, for all i , is curved if c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥

                    0(for i = 1,2, … … … n )  

 

II Preposition   

 

A nonlinearity relationship  

                      𝑠 = 𝑥1
𝛼1𝑥2

𝛼2 … … . . 𝑥𝑛
𝛼𝑛 , where x1, x2, … … … xn > 0, αi < 0(𝑓𝑜𝑟 𝑖 = 1,2,3 … … 𝑘 ), 𝑎𝑛𝑑αi ≥

                       0(𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛),   

 

                    (𝑖)   𝑠 =  ∏ 𝑥𝑖
𝛼𝑖𝑘

𝑖=1 ∏ 𝑧𝑖
−𝛼𝑖 ,𝑛

𝑖=𝑘+1  

                    (𝑖𝑖)    𝑧𝑖 + 𝐿(−𝑥𝑖
−1) ≤ 0 𝑓𝑜𝑟  𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛  

                    (𝑖𝑖)    𝑥𝑖
−1 − 𝑧𝑖 ≤ 0 + 𝐿(−𝑥𝑖

−1) ≤ 0 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛  

      

Proof : 

                         𝐿(−𝑥𝑖
−1) = −𝑥𝑖

−1, 𝑧𝑖 = 𝑥𝑖
−1 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … . 𝑛,  

after (ii) and (iii) since , 𝑧𝑖 > 0 𝑎𝑛𝑑 − 𝛼𝑖 ≤ 0 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … 𝑛, 𝑠  is then a curved period 

describing to corollary1.  
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the piecewise straight function L( f (x)) for approaching the hollow role f (x) [27,35]. Splitting should 

be achieved to close the gap since a large enough reduction can be close to the earliest nonlinearity 

problem in any to define beforehand precision. Splitting programs for typical SOS Class 2 cases can 

be noticed, for example, in [5,6]. 

 

 |
𝑓(𝑥)−𝐿(𝑓(𝑥))

𝑓(𝑥)
| is utilized to assess the inaccuracy in the straight calculation. Assume f (x) is an 

empirical task and 𝑥∗ results from the converted system. In that case, the linearity makes non involve 

delicacy till |
𝑓(𝑥∗)−𝐿(𝑓𝑥∗)

𝑓(𝑥∗)
| ≤ 𝜀2, where 𝜀2 is the optimum acceptance. If g(x) < 0 is a restriction and 𝑥∗ 

is the result, then 𝑥∗ is achievable if |
𝑓(𝑥∗)−𝐿(𝑓𝑥∗)

𝑓(𝑥∗)
| ≤ 𝜀1 and 𝐿(𝑔(𝑥∗)) < 𝜀1 where  𝜀1 is the feasibility 

acceptance. 

 

III Proposition   
Let,             s =−𝑥1

𝛼1𝑥2
𝛼2 … … … 𝑥𝑛

𝛼𝑛 where 𝑥1, 𝑥2 … … … . . 𝑥𝑛 > 0, 0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘, ,   0 ≥ 𝑎𝑘+1 +

                     𝑎𝑘+2 ≥ ⋯ ≥ 𝑎𝑛 and∑ 𝛼𝑖
𝑟
𝑖=1 < 1 for some most extensive numeral  r , such that r ≤ k, 

                      𝑆 = − ∏ 𝑥𝑖
𝛼𝑖

𝑟

𝑖=1

∏ 𝑧𝑖
𝛽

𝑛

𝑖=𝑟+1

  , 𝛽 =
1 − ∑ 𝛼𝑖

𝑟
𝑖=1

𝑛 − 𝑟
  ,  

 

• 𝑧𝑖 + 𝐿 (−𝑥𝑖

𝛼𝑖
𝛽 ) ≤ 0  

• −𝑥𝑖

𝛼𝑖
𝛽 − 𝑧𝑖 ≤ 0        

 

       Where  𝐿 (−𝑥𝑖

𝛼𝑖
𝛽 ) is piecewise linearization function of a hollow period  −𝑥𝑖

𝛼𝑖
𝛽      

Proof :    

                           (−𝑥𝑖

𝛼𝑖
𝛽 ) = −𝑥𝑖

𝛼𝑖
𝛽   ,  𝑧𝑖 = 𝑥𝑖

𝛼𝑖
𝛽 𝑓𝑜𝑟 𝑖 = 𝑟 + 1, 𝑟 + 2, … … … 𝑛,   

Since                 𝛼𝑖 > 0  𝑓𝑜𝑟 𝑖 = 1,2, … … … 𝑟. 𝑧𝑖 > 0  𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . 𝑛, 𝛽 > 0  𝑎𝑛𝑑    
                         ∑ 𝛼𝑖

𝑟
𝑖=1 + (𝑛 − 𝑟)𝛽 = 1. 𝑠  

 

Remark 3  

Let  f (x) =  𝑥𝛼 for x > 0 is curved at what time α ≤ 0 or α ≥ 1. f (x) is hollow at what time 0 ≤ α ≤ 1. 

 

Remark 4   

Let                        𝑦 ∈ {𝑑1, 𝑑2 … … 𝑑𝑚}  𝑑𝑗+1  > 𝑑𝑗 > 0𝑓𝑜𝑟  𝑗 = 1,2,3, … . . 𝑚 − 1  

                              𝑦𝛼 =  ∑ 𝑑𝑗
𝛼𝑚

𝑗=1 𝑢𝑗   , 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑢𝑗 = 1 𝑢𝑗 ∈ {0,1}𝑚
𝑗=1  

Remark 5  

Let  s = u f (x) wherever f (x) is a straight serve is equal to the resulting straight variations: 

 

• 𝑓(𝑥)̅̅ ̅̅ ̅̅ (𝑢 − 1) + 𝑓(𝑥) ≤ 𝑠 ≤ 𝑓(𝑥)̅̅ ̅̅ ̅̅ (𝑢 − 1) + 𝑓(𝑥). 

• −𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑢 ≤ 𝑠 ≤ 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑢,    

 

Where  𝑢 ∈ {0,1}, 𝑠 is an unobstructed in symbol flexible, and 𝑓(𝑥)̅̅ ̅̅ ̅̅   is the greater  duty-bound of 

𝑓(𝑥),  

 

IV. Examples 
 
I. Example  

 

Minimize                𝑥1
2𝑥2

−2𝑥3 − 2𝑥2
0.7𝑥3

0.2 + 𝑥4𝑥5
−2 − 2𝑥1 − 4𝑥3 

Subject to               𝑥1 + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2,                                                                                             (10) 
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                                𝑥3
1.5𝑥4 + 0.5𝑥2 + 3𝑥1 ≤ −10                                                                                        (11) 

                      

                                −𝑥1 − 0.5𝑥4 + 𝑥5 ≤ 6,                                                                                                 (12) 
                                −7 ≤ 𝑥1 ≤ 5,   1 ≤ 𝑥2 ≤ 10,   1 ≤ 𝑥3 ≤ 5,   2 ≤ 𝑥4 ≤ 8, 2 ≤ 𝑥5 ≤ 9,   
                                𝑥1, 𝑥2,𝑥4, 𝑥5 ∈ 𝑅,   𝑥3 ∈ 𝑍.    

By Remark 1, 
                               𝑥1 = 𝑥1

+ − 𝑥1
−  , 𝑥1

+, 𝑥1
− ≥ 0,   

  Minimize           (𝑥1
+)2𝑥2

−2𝑥3+(𝑥1
−)2𝑥2

−2𝑥3 − 2𝑥2
0.7𝑥3

0.2 + 𝑥4𝑥5
−2 − 2𝑥1 − 4𝑥3 

                  Subject to         𝑥1 = 𝑥1
+ − 𝑥1

−,                                                                                              (13) 

                                             𝑥1
+ ≤ 5𝜃1,                                                                                                      (14) 

                                            𝑥1
−  ≤ 7(𝜃1 − 1) ,                                                                                           (15) 

                                            𝑥1
+ − 𝑥1

− + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2                                                                  (16) 

 

                                           𝑥3
1.5𝑥4 + 0.5𝑥2 + 3𝑥1

+ − 3𝑥1
− ≤ −10                                                           (17) 

 

                                          −𝑥1
+ + 𝑥1

− − 0.5𝑥4 + 𝑥5 ≤ 6,                                                                        (18) 
                                           0 ≤ 𝑥1

+ ≤ 5,   0 ≤ 𝑥1
−  ≤ 7, 1 ≤  𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 5, 2 ≤ 𝑥4 ≤ 8 

                                          , 2 ≤ 𝑥5 ≤ 9, 𝜃1 ∈ {0,1} , 𝑥2,𝑥4, 𝑥5 ∈ 𝑅, 𝑥3 ∈ 𝑍 

 

Now we familiarize two severely +ve  variables 𝑥̃1
+, 𝑥̃1

−  as follows:  

 

                                             0 ≤ 𝑥1
+ ≤ 5𝜆1,                                                                                               (19) 

                                             𝑥̃1
+ + 5(𝜆1 − 1)  ≤  𝑥̃1

+ ≤  𝑥̃1
+                                                                       (20) 

                                             0 ≤ 𝑥1
− ≤ 7𝜆2                                                                                               (21) 

                                             𝑥̃1
− + 7(𝜆2 − 1) ≤ 𝑥̃1

− ≤ 𝑥̃1
−                                                                         (22) 

  For computer implementation, 

 

                𝑥̃1
+, 𝑥̃1

− ≥ 𝜀0  where 𝜀0 = 10−7 is  a zero acceptance. The signomial times 𝑧1
+ =

(𝑥1
+)2𝑥2

−2𝑥3 𝑎𝑛𝑑𝑧1
− =  (𝑥1

−)2𝑥2
−2𝑥3  𝑧̃1

+ = (𝑥̃1
+)2𝑥2

−2𝑥3  and 𝑧̃1
− =  (𝑥̃1

−)2𝑥2
−2𝑥3 , respectively, where      0 ≤

𝑧1
+ ≤ 𝑧̅𝜆1,   𝑧̃1

+ + 𝑧̅(𝜆1 − 1) ≤ 𝑧1
+ ≤ 𝑧̃1

+, 0 ≤ 𝑧1
− ≤ 𝑧𝜆̅2,   𝑧̃1

− + 𝑧̅(𝜆2 − 1) ≤ 𝑧1
− ≤ 𝑧̃1

− 

 

. From Proposition 2, the nonlinearity term 

                                         - 2𝑥2
0.7. 𝑥3

0.2 is curved.  

 

The noncurved relationships 𝑥3
1.5𝑥4 𝑎𝑛𝑑𝑥4𝑥5

−2  can be changed into curved relations and 𝑧4
−1𝑥5

−2,  

respectively, anywhere 𝑧3 = 𝑥3
−1 and 𝑧4 = 𝑥4

−1  

According to Remark 4,  

                                           𝑧3 = 𝑥3
−1 can be linearized  as 𝑧3 = 𝑢1 +

1

2
𝑢2+

1

3
𝑢3 +

1

4
𝑢4 +

1

5
𝑢5  where 𝑥3 =

                                                 𝑢1 + 2𝑢2+3𝑢3 + 4𝑢4 + 5𝑢5.  

 

• The noncurved relationships (𝑥̃1
+)2𝑥2

−2𝑥3  and (𝑥̃1
−)2𝑥2

−2𝑥3  can be transferred into curved 

relationships 𝑒2𝑦1
+−2𝑦2+𝑦3   and  𝑒2𝑦1

−−2𝑦2+𝑦3  , respectively, where  𝑦1
+ = 𝑙𝑛𝑥̃1

− ,  𝑦1
− = 𝑙𝑛𝑥̃1

− ,  

𝑦2 = ln 𝑥2   and  𝑦3 = ln 𝑥3.   

 

              Minimize             𝑧1
+ + 𝑧1

− − 2𝑥2
0.7. 𝑥3

0.2 + 𝑧4
−1𝑥5

−2 − 2𝑥1 − 4𝑥3 

              subject to             𝑥1 = 𝑥1
+   −   𝑥1

−  
                                           (𝑥1

+   −    𝑥1
− + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2) − (𝑥̃1

− + 7(𝜆2 − 1) ≤  𝑥1
−   ≤  𝑥̃1

−)  
                              𝑧3

−1.5𝑥4
−1 + 0.5𝑥2 + 3𝑥1

+ − 3𝑥1
− ≤ −10,   

                              𝑦1
+ = 𝐿(𝑙𝑛𝑥̃1

+),  𝑦1
− = 𝐿(𝑙𝑛𝑥̃1

−),   𝑦2 = 𝐿 ln 𝑥2, 

                                  𝑦3 == 𝑢1ln1+𝑢2ln2+𝑢3ln3+𝑢4ln4+𝑢2ln5,  

                              0 ≤ 𝑧1
+ ≤ 𝑧̅𝜆1, 𝑒2𝑦1

−−2𝑦2+𝑦3 + 𝑧̅(𝜆1 − 1) ≤ 𝑧1
+ ≤ 𝐿(𝑒2𝑦1

−−2𝑦2+𝑦3), 

                                             0 ≤ 𝑧1
+ ≤ 𝑧̅𝜆2, 𝑒2𝑦1

−−2𝑦2+𝑦3 + 𝑧̅(𝜆2 − 1) ≤ 𝑧1
− ≤ 𝐿(𝑒2𝑦1

−−2𝑦2+𝑦3), 

                                            𝑥3 = 𝑢1 + 2𝑢2+3𝑢3 + 4𝑢4 + 5𝑢5,    
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                                            𝑧3 = 𝑢1 +
1

2
𝑢2+

1

3
𝑢3 +

1

4
𝑢4 +

1

5
𝑢5 

                                            𝑢1 + 𝑢2+𝑢3 + 𝑢4 + 𝑢5 = 1 
                                           𝑥4

−1− 𝑧4 ≤ 0, 𝑧4 + 𝐿(−𝑥4
−1) ≤ 0,  

                                        𝜖0 ≤   𝑥̃1
+ ≤ 5 , 𝜖0 ≤   𝑥̃1

− ≤ 7, 1 ≤ 𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 5 ,2 ≤ 𝑥4 ≤ 8, 2 ≤ 𝑥5 ≤ 9,   

                                           𝜃1, 𝜆1, 𝜆2 ∈ {0,1} ,   𝑢1, 𝑢1, 𝑢1, 𝑢1, 𝑢1 ∈ {0,1}  , 𝑥̃1
+, 𝑥̃1

−, 𝑥2,𝑥4, 𝑥5 ∈ 𝑅, 𝑥3 ∈ 𝑍 

 

 The optimality acceptance and probability acceptance are within the prespecified error of 0.001. The 

universally optimal explanation found is (𝑥1,, 𝑥2,𝑥3, 𝑥4,𝑥5) =  (−5.353, 4.548, 1, 3.787, 2.541) along 

with the empirical cost is 2.803.  

 
Table 1: 

 

                            Number of variables in the reformulated model of each example 

 
Quantity of 

originals 

variable quantity 

Quantity of further 

constant variable 

quantity 

Quantity of further 

second variable 

quantity 

Quantity of originals 

variable quantity 

eradicated 

from construction 

Example 1 5 206 206 1 

Example 2 2 4 4 1 

Example 3 4 201 201 1 

    

 

II. Example  

 
        Minimize                          𝑥1

0.5𝑥2 + 3𝑙𝑛𝑥1, 

 

       Subject                                  −𝑥1 + 𝑥2 ≤ 5,  

                                                  𝑥1
0.5− 𝑥2 ≤ 6, 

                                                  𝑥1 ∈ {0.1, 0.5, 0.7, 1.2}, −6 ≤ 𝑥2 ≤ 4.  

 

 The nonlinearity relationships    𝑥1
0.5𝑥2, 3𝑙𝑛𝑥1,and 𝑥1

0.5 are noncurved  roles. By Remarks 4 and 5, 

 

Minimize          0.10.5𝑠1 + 0.50.5𝑠2 + 0.70.5𝑠3 + 1.20.5𝑠4 + 3(𝑢1𝑙𝑛0.1 + 𝑢2𝑙𝑛0.5 + 𝑢3𝑙𝑛0.7 + 𝑢4𝑙𝑛1.2)  

Subject            −0.1𝑢1−0.5𝑢2−0.7𝑢3−1.2𝑢4+𝑥2 ≤ 5,  

                           𝑢1 + 𝑢2+𝑢3 + 𝑢4 = 1,  

                          0.10.5𝑢1 + 0.50.5𝑢2 + 0.70.5𝑢3 + 1.20.5𝑢4 − 𝑥2 ≤ 6,  
                         −6𝑢𝑖 ≤ 𝑠𝑖 ≤ 6𝑢𝑖   , 6(𝑢𝑖 − 1) + 𝑥2 ≤ 𝑠𝑖 ≤ 6(1 − 𝑢𝑖) + 𝑥2, 𝑖 = 1,2,3,4, 𝑠1, 𝑠2, 𝑠3, 𝑠4  

are unrestricted in sign variables, 𝑢1, 𝑢2,𝑢3, 𝑢4 ∈ {0,1}, −6 ≤ 𝑥2 ≤ 4.  

 

   The converted sequencer can be resolved by LINGO [24] to find the universally optimum 

explanation (𝑥1,𝑥2) = (0.2, −5.753) and the empirical charge −8.705 contained by the optimality 

acceptance0.001 as the probability acceptance 0.001.  

 

III. Example  

 

Minimize                         𝑥1𝑥4
3 − 𝑥3 − 0.5𝑥1 

2  𝑥2 
4  

 Subject                         𝑥1𝑥4
1.5 − 𝑥2 − 𝑥2 

0.5 𝑥3 
0.4 ≤ 4, 

                                      −𝑥1−2𝑥2 + 𝑥3 ≤ −2, 
                                      0 ≤ 𝑥1 ≤ 6  ,  1 ≤ 𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 6, 20 ≤ 𝑥4 ≤ 30, 𝑥1,𝑥2, 𝑥3, 𝑥4 ∈ 𝑅   

 

The nonlinearity relationships  𝑥1𝑥4
3,  𝑥1 

2  𝑥2 four and  𝑥1𝑥4
1.5   where  𝑥1 has zero-value smaller 

constrained Table 1 listing the quantity of variable quantity applied in the converted standard of 

Instance 3. Though the intended system needs the accumulation of variable another amount, 
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variable dual amount, and restrictions, it can prevent imprecision by requiring a little 𝜖 > 0 smaller 

bound for 𝑥1. Explaining this system by the planned technique with LINGO [24], the universally 

optimal explanation achieved is smaller, particularly for x1. Demonstrating this system by the 

intended design and LINGO [24], the universally optimum description achieved is(𝑥1, 𝑥2,𝑥3, 𝑥4,) =

 (0, 4, 6, 20)and the empirical rate is −6. Still, explaining this system by really requiring  𝑥1 ≥ 0.001, 

the universally optimal explanation achieved is(𝑥1, 𝑥2,𝑥3, 𝑥4,) =  (0.001, 10, 6, 20), and the empirical 

rate is 1.995.  

 

                                                                  V. Conclusions 

 
This analysis intends an optimized technique to discuss a signal CNNLCP difficulty and set the free 

variable quantity to achieve a comprehensive optimum. The free variable quantity practical trading 

techniques change over the variable amount and translate the analytical association among the 

variable quantity in a result period into a set of straight inequities, appropriately combined into the 

CNNLCP types. Several valuable instructions to essentially Convexness more than universal signal 

conditions in CNNLCP systems are also produced. Numerical illustrations are demonstrated to 

provide for the impacts of the recommended system. 
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