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Abstract 

 
Consider a multi-processors computer system consisting of a ready queue of different jobs to be 

executed/processed. Lottery scheduling is fair enough to schedule the resources for each and every 

job. The research idea assumes condition where one can observe some processes to be fully executed; 

some partially executed few blocked/suspended/ terminated, after sudden system breakdown. An 

estimation strategy has been designed for the estimation of the total time required to process all 

these types of processes (processed, partially processed and blocked processes). How much time is 

required to process the remaining in any hazardous situation? A regression type estimator of 

sampling theory is used to perform this task. This remaining time estimation technique deals with 

the backup cost and recovery management as well. Sampling techniques are used in proposed 

approach for the testing purpose and a simulation has been performed. Another tool adopted is the 

confidence intervals which are calculated and gives proper précised values in comparison to the true 

mean for the total remaining time. The linear, square root and square cost function model are 

adopted for the calculation of backup cost and recovery management. In addition some auxiliary 

information is also incorporated in the form of size measure of the processes which is an effective 

approach to calculate the complete remaining time of the processes in multiprocessor environment. 

The purpose of the proposed research has been served effectively as one can observe the results of 

disaster and recovery management of the computer system. 

 

Keywords: Ready Queue, Lottery scheduling, Multiprocessors, Simulation, Random 

Sampling, Estimation, Confidence Interval, Jobs(Processes), Size measure, Estimator 

 

I. Introduction 
 

In the scenario of cloud computing, ready queue is a setup among many servers and processors. 

For optimal resource allocation there exists several priority scheduling methodologies in the 

literature of scheduling schemes. In same way lottery scheduling scheme works on randomness of 

selection of process and distribution of resources providing fair chances. A random number is 

generated by processors in multiprocessor environment and some token numbers are assigned to 

each of the process. The execution of process depends upon the condition when the token number 

of a process is matches with the token number of the processor. The process which has the highest 

number of tokens has the chance to be allocated the resource for execution of the task. The jobs 

waiting in the queue always have the chance to be allocated the resource. lottery scheduling 

maintains the fairness between processes and gives equal chance to each and every process to be 

allocated the resource. Due to this reason Lottery scheduling is also known as starvation free 

scheme. In multiprocessor cloud based environment working of Lottery scheduling scheme is 
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similar to draw a random sample through the sampling technique. The remaining time parameter 

estimation of the ready queue can be executed using the sampling techniques. A job in the ready 

queue has its process ID, the CPU time(in terms of bytes)  as well as the process size (in terms of 

bytes). With the use of information of process size, it is expected to estimate better the unknown 

parameter. This paper exploit the approach of use of size measure information for efficient 

prediction. 

 Let (t1, x1), (t2, x2), (t3, x3)……......( ti, xi)........(tk, xk) be the time consumed by ith process in the 

waiting queue having size measure xi. Further let Q1, Q2, Q3, ........Qr be the r processors ( r < k) in a 

computer system who generate random numbers to select processes for resource allocation. Figure 

1 describes the general setup of multiprocessors and ready queue. The Figure 2 and 3 are showing 

the same but in the classified and categorized manner.  

 

 
 

Figure 1: Ready queue with waiting Processes and Multiprocessor, Figure 2: Small size processes and Multiprocessors 

 

This paper takes into account the approach of [4] but adds additional feature of partially 

processed, blocked processes and size measure of processes for time estimation. All these features 

are under assumption that the multiprocessor computer system fails at an instant due to 

unavoidable reasons and backup/recovery management is required. How much the backup cost is 

needed while sudden breakdown is a question of interest and can be predicted by using the 

suggested methodology of this paper. 

 
Figure 3: Big size processes and Multiprocessors 
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II. A Review 
 

The priority scheduling is used when any of the jobs is to prefer over others in the waiting queue. 

Lottery scheduling is one such similar [8] where the job having highest number of tickets has the 

high chance of being allocated the desired resource. In Linux kernel setup, the lottery scheduling is 

useful [18] and it could be utilized as a framework [5, 7] for applying the sampling techniques. The 

similar job group formation scheme for mean time estimation of a ready queue [6] came into 

picture using lottery scheduling. A review on ready queue mean estimation [3] has opened up 

avenues for developing new methods in this area. The lottery scheduling types and model based 

utilization [16, 17] exists in literature as hybrid multilevel structure using Markov chain model 

along with analysis and chance based prediction. A sample can be used as a suitable input source 

for mean value prediction [9, 11, 16]. Many various sampling methodologies exist [10, 13, 14] who 

are comparatively better over another. The best method of selection among them [15] is always 

possible for precise prediction of unknown parameter. For missing data, the imputation techniques 

are popular who to replace the non-responding units [19, 20, 21] by known values. Some of most 

popular imputation methods are mean imputation, deductive imputation, mean imputation within 

classes, deductive imputation within classes, hot deck imputation, cold deck imputation etc. ([22, 

23, 24, 25]). The content of this paper follows idea of [5] and [4] and uses them as input sources in 

order to resolve the issue of remaining time estimation in presence of sudden breakdown of the 

system. The contribution in [26] has opened up avenues to think for the use of size measure of 

processes. 
 

I. Remaining Time Estimation Problem 
 Let there are finite number of N processes in a ready queue and n (n < N) have been processed 

completely before the system breakdown, obviously (N-n) are still in waiting to get signal for 

resource allocation. One can assume that n processes are just like a random sample selected from 

ready queue of size N using lottery scheduling. If θ is mean time obtained through sample then 

remaining total time estimate is Δ = [(N-n) θ] which is an unknown quantity. For numbers ‘c’ and 

‘d’,  if Δ is predicted as Δ∈ (c, d) who is an interval containing Δ with very high probability, then Δ 

1 = [(N-n) c] is lowest, Δ 2 = [(N-n) d] is upper expected remaining time. If highest expected time is 

precisely estimated then it could be used for backup management during system failure. The 

efficient estimation of this expected range is a problem which is chosen in this paper for strategy 

formation in the multiprocessor setup with the consideration of multiple real life possibilities.  

 

II. Confidence Interval (CI) 
 A confidence interval is a kind of predictive range for catching of unknown parameter. The 

feature of a confidence interval is that it contains the true value with 95% precision. Let P[A] 

denotes the probability of happening of an event A. In statistical theory, contains for any two real 

numbers a', b', the 95% confidence interval is defined as P [a' < true unknown value < b'] = 0.95. It 

could be interpreted as chance of being true value within a', b' is 95 percent. The length of 

confidence interval is a tool for measure of betterment. It is a difference of lower limit and upper 

limit. Let there are m different confidence intervals of length (l1, l2, l3, l4 ... lm) who all catch the true 

value than an efficiency measure is: Best Confidence Interval = min [l1, l2, l3, l4 ... lm]  

 

III. Simulated Cost Aspect 
  Let C0 be the fixed cost and C1 be the cost per unit predicted time. If 𝛿1 is the minimum and 𝛿2 

is the maximum remaining time after the occurrence of breakdown than  

(a) Linear cost function is total cost (Tc)1A = C0 + C1 * 𝛿1  and (Tc)2A  = C0 + C1 * 𝛿2   

(b) Square root cost function (Tc)1B  = C0 + C1 √ 𝛿1  and (Tc)2B  = C0 + C1 √ 𝛿2 
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(c) Squared cost function is (Tc)1C  = C0 + C1 * 𝛿12  and (Tc)2C  = C0 + C1 * 𝛿22 

Overall average cost = [Linear cost + Square root cost + Squared cost] / 3 

The average cost is likely to incur in the recovery management of resources after the system 

breakdown. Averaging over linear, squared function and square-root function is taken to control 

the sampling fluctuations due to lottery scheduling sample. 

 

IV. Sample based Estimation Method 
     Let (Y1, X1), (Y2, X2), (Y3, X3)......... (YN, XN) be the data of totality of size N where Y is variable of 

main interest and X is the support correlated information. For example, the Y may be expenditure 

of army officers in a country while x is income data which is known from the salary register of 

organization/head quarter. The mean of population is 𝑌 = (1/N) ∑ Yi and 𝑋 = (1/N) ∑Xi 

 

 

 

Figure 4: Sample selection from Aggregate (n<N) 

 

A sample of size n (n<N) is drawn randomly from N by simple random sampling without 

replacement method. Sample values are (y1, x1), (y2, x2), (y3, x3) ... (yn, xn). 

Sample mean are 𝑦 = (1/n) ∑ yi and 𝑥 = (1/n) ∑xi 

The objective is to estimate unknown parameter 𝑌 using known 𝑋 along with sample means 

𝑦 and 𝑥. Some well known estimators are: 

• Sample mean estimator:  𝑦 

• Ratio-estimator:  𝑦𝑟 = 𝑦 (𝑋/𝑥) 

• Difference estimator:  yd = 𝑦 + d (𝑋 − 𝑥) 

 

III. Motivation 
 Earlier contributions (specially [4], [5]) were under assumption that processes who exist in a 

multiprocessors system are completed before sudden failure. But this is not a practical reality. 

Since some jobs may complete, some may partially processed and some may blocked by the 

processors [see figure 4]. The processed and unprocessed case was considered in [4] [see figure 

(6)]. This paper extends the approach of [4] and [26] by applying the tools of random imputation 

method against the blocked processes.        

 

 
Figure 5: Ready Queue Processing under Lottery Scheduling (due to [6]) 
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Figure 6: Setup of ready queue and multiprocessor environment (due to[23]) 

 

IV. Proposed Generalized Computational Setup 
 

Assume the existence a virtual sampled ready queue in a computer system having multiprocessors 

environment. Some jobs are randomly selected using lottery scheduling from the ready queue and 

placed in the sampled ready queue from top to bottom in the sequential manner of their selection. 

Processors are assigned processes in the ordered manner from top to bottom of the virtual sampled 

ready queue. Figure 5 shows basic setup of this approach but without the size measure while 

figure 5 shows the earlier approaches [4], [5], [6], [7]. Moreover, figure 6 reveals the special case 

when all sample units processed before the occurrence of breakdown. 

 

 
 

Figure 7: Sampled Ready Queue Processing Time Estimation setup without size measure                        
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V. Generalized Assumption and Model 
 

As per figure 7, let the selection of processes is according to lottery scheduling. The process who 

selects first is placed at the top of the virtual queue who is segment or group of processes likely to 

allocate to the multi-processors. 

1. Assume r processors and a ready queue of N processes in a system like denoted as [P1, P2, 

P3…......PN] waiting for allocation of resources. 

2. The selection of process for resource allocation is on priority basis using lottery scheduling. 

3. If all N are processed completely, time consumed are [t1, t2, t3 ….tN] who has known size 

measure [x1, x2, x3 ….xN]. 

4. Overall ready queue mean time 𝑡̅= 
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1 , mean size measure �̅� = 

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  mean squares 

St2 = 
1

𝑁−1
∑ (𝑡𝑖 − 𝑡̅)2𝑁

𝑖=1 , Sx
2 =   

1

𝑁−1
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1 .  

5. The Pi of known size Xi consumes time ti( i = 1,2,3,……N) when all assumed processed. 

6. Consider r multiprocessors Q1, Q2, Q3…..Qr, (r < N) and time consumed by the ith process in 

the jth processor is tij with corresponding size measures xij (j = 1,2,3,……r) 

7. The unknown total completion time of ready queue is 𝑁𝑡,̅ which is an unknown quantity. 

This paper is focused to estimate such using sampling methodology. Lottery scheduling is 

a tool for such estimation where process Pi has a bunch of token numbers and Qj generates 

a random number. A process who receives the random number gets the desired resource 

from Qj. This scheduling produces a random sample. 

8. A virtual ready queue of size k (k < N, k>3r) exists to store sequentially the records of 

randomly selected k processes from N. The jth segment of virtual sampled queue is kj( k 

=∑
 𝑘𝑗

𝑟
𝑗=1  ), who is allocated to the jth processor Qj in sequential manner.  

9. In sample, let sxjl denotes the file size measure and stjl denotes time consumed by ith process 

in Qj (l = 1,2,3,...kj) when all processed completely who are included in the sample of size k. 

▪ Sample mean of time 𝑠�̅�=  
1

𝑘
∑ ∑ 𝑠𝑡jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1  

▪ Sample mean square of time, (es)t2 = 
1

𝑘−1
∑ ∑ (𝑠𝑡jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1 − 𝑠�̅� )2 

▪ Sample mean of size, ( 𝑠𝑥̅̅ ̅)=  
1

𝐾−1
∑ ∑ (𝑠𝑥jl

𝑘𝑗
 𝑙=1

𝑘𝑗
𝑗=1 ) 

▪ Sample mean square of size, (es)x2 = 
1

𝑘−1
∑ ∑ (𝑠𝑥jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1 − 𝑠𝑥̅̅ ̅ )2 

i. The term 𝑠�̅�, 𝑠𝑥̅̅ ̅, (es)t2 , (es)x2 hold when system runs without failure. 

10. Assume system breakdown occurs at the time instant T and there are (kj – n′j – n′′j) 

processes completed in Qj, but n′j remain partially processed and n′′j remain unprocessed 

(blocked). This is an assumed generalized model shown in figure 7. Define g = ∑ n′j
r
𝑗=1  and 

u = ∑ n′′j
r
𝑗=1  

11. Let (st')jl is time consumed by the lth process in the processor Qj [l =1, 2, 3... (kj – n′j – 

n′′j)],who is among those processed completely before the occurrence of T. 

12. Some sample mean related measures are: 

▪ Sample mean of (kj – n′j – n′′j) process,  (𝑠�̅�′)
j
=

1

(kj – n′j – n′′j)
∑ (𝑠𝑡′jl

(kj – n′j – n′′j)

𝑙=1
) 

▪ Sample mean square, (es')
𝑗

 2 = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑡′jl − (𝑠�̅�′)j)

2(kj – n′j – n′′j)

𝑙=1
 

▪ Similar is for size measure also as (𝑠𝑥′jl) represents size of lth process who is in Qj 

before T. 

▪ Sample mean,(𝑠𝑥̅̅ ̅′) j=  
1

(kj – n′j – n′′j)
∑ (𝑠𝑥′

jl)
(kj – n′j – n′′j)

𝑙=1
 

▪ (𝑠𝑥̅̅ ̅)j= 
1

(kj – n′j – n′′j)
∑ (𝑠𝑥′

jl)
(kj – n′j – n′′j)

𝑙=1
is sample mean of all kj known values related to x 

in jth segment of ready queue. 

▪ Sample mean square, (ex')
𝑗

2 = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑥′

jl − (𝑠𝑥̅̅ ̅′)j)
2(kj – n′j – n′′j)

𝑙=1
 

▪ Sample Covariance, (es'x') j = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑡′

𝑗𝑙 − (𝑠�̅�′)j)
(kj – n′

j – n′′
j)

𝑙=1
(𝑠𝑥′

𝑗𝑙 − (𝑠𝑥̅̅ ̅′)j) 
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13. Assume 𝑡𝑚
∗  is partially processed time of a process in Qj (j = m =1,2,3....r) whose sample 

mean under T is  

14. (𝑡 ̅*/T) =  
1

𝑟
∑ tm

∗r
m=1 , Variance (𝑡̅ * / T) = V(𝑡̅ * / T) = ( 

1

𝑔
−

1

𝑁−𝑘+𝑔
 ) ST2, where ST2 is the conditional 

ready queue mean square of the remaining un-sampled part [N- k + g] expressed as: 

ST2 = 
1

(𝑁−𝑘+𝑔−1)
∑ (𝑡i

𝑁−𝑘+𝑔
𝑖=𝑖 -t̅T  

)2 where   t̅
𝑇 =  

1

𝑁−𝑘+𝑔
∑ (𝑡𝑖)

𝑁−𝑘+𝑔 
𝑖=1  where g = ∑ n′j

r
𝑗=1  

15. Herein to mention that ST2 and t̅
𝑇contain time ti only from non-sampled processes (N-k) of 

the main ready queue with the addition of those g who partially processed. For such, the 

size converts from N into (N - k + g) and only those processes are the part of  t̅
T and ST2 

who are in (N – k + g). 

16. The u blocked processes are imputed by Random Imputation Method using random 

selection of a process among  (kj –  n′j –  n′′j) relating to Qj. Let from Qj all random imputed 

time are denoted as 𝑡m
**.   

▪ Sample mean of all random imputed time, 𝑡̅ ** = 
1

𝑢
∑ 𝑡𝑚

∗𝑢
𝑚=1

* 

▪ Variance of imputation under T,V(𝑡̅ **/T) =(
1

𝑢
−

1

𝑘
) (es)2,  u < k. 

17. Sample based estimate of (es)2 can be obtained by using all k values of time consumption 

in sample including the partially processed time  𝑡𝑚
* and imputed time value 𝑡m

**. It is 

denoted as (es*)2 and mathematically expressed as (es*)2  = 
1

𝑘−1
∑ ∑ (st

∗
jl −  𝑠𝑡̅̅ ̅ ∗

)2𝑘𝑗
 𝑙=1 

𝑟
𝑗=1  

where (st*jl) and  𝑠�̅�
∗
include completely processed time st*ij , partially processed 𝑡𝑚

* and 

imputed 𝑡m
**.  

18. The sample estimate of ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

19. Bias of estimation strategy is assumed negligible wherever appears and applicable in 

mathematical expressions 

 

I. Computational Set-up 
 Aim is to compute the remaining ready queue processing time after occurrence of sudden 

failure of system at time instant T. This is subject to condition that r processes are partially 

processed, r is unprocessed (blocked) and remaining fully completed. Blocked and partially 

processed are nj′ and nj′′ from every Qj and known size measures are the part of computation. 

Some frequently used symbols for process time t and process size measure X are as under: 

 

 t̅= 
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1  = 

1

𝑁
 ∑ ∑ tij  (1) 

𝑡̅ * =  
1

𝑔
∑ 𝑡𝑚

∗𝑔
𝑚=1                                                                                                                                          (2) 

𝑡̅ ** = 
1

𝑢
∑ 𝑡𝑚

∗𝑢
𝑚=1

*                                                                                                                                                                                                                        (3) 

(𝑠�̅� ′)j= 
1

(kj – n′
j – n′′

j−1)
∑ (st′

jl
(kj – n′j – n′′j)
𝑗=1 )                                                                                                  (4) 

(𝑠𝑥̅̅ ̅′)j= 
1

(kj – n′
j – n′′

j−1)
∑ (sx′jl

(kj – n′j – n′′j)
𝑗=1 )                                                                                                  (5) 

(𝑠𝑥̅̅ ̅) j=  
1

(𝑘𝑗)
∑ (𝑠𝑥′

jl)
𝑘𝑗
𝑙=1

                                                                                                                            (6) 

(es')j2 = 1/(kj –  n′j –  n′′j − 1) ∑ (st′jl
(kj – n′j – n′′j)
𝑙=1 − (𝑠�̅� ′)j)

2                                                                    (7) 

(ex')j2 = 1/(kj –  n′j –  n′′j − 1) ∑ (sx′jl
(kj – n′j – n′′j)
𝑙=1 − (𝑠𝑥̅̅ ̅′)j)

2                                                                  (8) 

(es'x') j=
1

(kj – n′j – n′′j−1)
∑ (𝑠𝑡′

𝑗𝑙 − (𝑠�̅� ′)j)
(kj – n′j – n′′j)

𝑙=1
(𝑠𝑥′

𝑗𝑙 − (𝑠𝑥̅̅ ̅′))j                                                                                         (9) 

(es*)2  = 
1

𝑘−1
∑ ∑ (st

∗
jl −  𝑠𝑡̅̅ ̅ ∗

)2     𝑘𝑗
 𝑙=1 

𝑟
𝑗=1                                                                                                                                                         (10) 

𝑡̅
𝑟𝑗 = [(𝑠�̅� ′)j + dj{(𝑠𝑥̅̅ ̅)j − (𝑠𝑥̅̅ ̅′)j}],  dj being constant, (0< dj < ∞)                                                     (11) 

 

Note: The 𝑡̅
𝑟𝑗

 is a Difference type estimator as stated in subsection IV of section II. 
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II. Estimation Strategy 
The sample based proposed estimation strategy for mean time is: 

       (tmean/T) = €1 [ ∑ wj
𝑟
𝑗=1  (𝑡̅𝑟𝑗/T) ] + €2  (𝑡̅ */ T) +  (1- €1 – €2) (𝑡̅ **/T)               (12) 

with condition that ∑ €p
3
𝑝=1 = 1 and €pdenotes constants to be determine suitability and wj= (kj/k) is known 

weight (∑wj =1). With the help of Cochran [16; see page 166, page 27, 29] for tmean, the expected value E[.] is 

expressed as: 

       E [tmean/T] =E[ €1 [ ∑ wj
𝑟
𝑗=1 (𝑡�̅�𝑗 /T)] + €2  (𝑡̅ */T) + (1- €1 – €2) (𝑡̅ **/T)]  

                   =€1 [ ∑ 𝑊𝑗𝐸𝑟
𝑗=1  (�̅�𝑟𝑗 /T)] + €2 E (𝑡̅ */T) + (1- €1 – €2)E (𝑡̅ **/T)]                                                     (13) 

                   ≠𝑡̅ which shows estimator (tmean/T) is biased. 

 

III. Mean Squared Error 
Let MSE (.), V (.) and B (.) denote mean squared error, variance and bias respectively. One can 

express  

MSE (tmean/T) = Variance (tmean/T) + [Bias (tmean/T)]2 which holds in general. Assume the bias is small, 

therefore negligible (as in assumption no. 16) 

MSE (tmean/T) = Variance (tmean/T) = €12[ ∑ wj
2𝑟

𝑗=1 V(𝑡̅𝑟𝑗/T)]+ €2
2V (𝑡̅ */T) + (1- €1 – €2)V (𝑡̅ **/T)] 

                       = €12 [∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2{(𝑒𝑠′)j2+𝑑j

2(𝑒𝑥′)j2 –2𝑑j(𝑒𝑠′𝑥′)𝑗}]+€22[(
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2]+(1- €1 

– €2)2         ∑ (1 −
1

(kj – n′j – n′′j)
) wj(es′)j

2
𝑟

𝑗=1
] (as per Cochran[12] page 24, page 29  

and page 164)                                                                                                                (14) 

The expressions P, Q, R are in the sample based estimate form of population parameters 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗},  

      Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

      R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

The above expression is re-written as: 

V[tmean/T] = [€12 P + €22 Q+ (1- €1 – €2)2𝑅 ] ignoring the covariance terms due to independency. For 

optimum variance, differentiate V[tmean/T] with respect to €1 and €2 and equate to zero, one gets  

(€1) opt  = (QR) / [PQ+PR+QR] = QM                                                                                                       (15) 

(€2) opt  = PQ/ [PQ+PR+QR] = PM where M = R/ [PQ+PR+QR]                                                          (16) 

One can differentiate the variance expression by  𝑑j  
also to get optimum value which is 

(dj)opt=[(𝑒𝑠′𝑥′)𝑗/(𝑒𝑥′)j2] Substituting optimum choices in expression, the optimum variance is: 

V[tmean/T]opt = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2𝑅] with (dj)opt                                                   (17) 

 

VI. Numerical Illustration 
Consider the 150 processes with processed CPU time whose details are in table 1 with assumption 

that all 150 processes have been completed.  
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Table 1: System Ready Queue Processes with time (N = 150) 

Process J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 

CPU 

Time 
30 20 42 45 59 35 25 48 50 60 32 55 62 47 69 

Process 

Size 
41 71 103 142 316 82 199 163 220 127 76 192 251 52 133 

Process J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 

CPU 

Time 
34 24 44 70 57 65 38 84 101 66 80 90 92 111 85 

Process 

Size 
318 202 106 181 242 148 46 252 136 222 261 97 109 271 116 

Process J31 J32 J33 J34 J35 J36 J37 J38 J39 J40 J41 J42 J43 J44 J45 

CPU 

Time 
61 52 72 75 89 67 51 78 80 91 63 86 93 77 99 

Process 

Size 
172 243 253 262 83 203 183 166 219 193 223 272 281 301 289 

Process J46 J47 J48 J49 J50 J51 J52 J53 J54 J55 J56 J57 J58 J59 J60 

CPU 

Time 
64 54 74 100 87 95 68 114 131 96 110 123 122 141 49 

Process 

Size 
205 244 223 254 146 263 53 218 273 139 282 302 173 309 290 

Process J61 J62 J63 J64 J65 J66 J67 J68 J69 J70 J71 J72 J73 J74 J75 

CPU 

Time 
118 81 102 105 119 97 88 108 110 121 240 113 122 107 129 

Process 

Size 
313 194 153 255 225 169 206 264 58 274 283 303 184 291 216 

Process J76 J77 J78 J79 J80 J81 J82 J83 J84 J85 J86 J87 J88 J89 J90 

CPU 

Time 
94 73 104 130 117 234 98 237 161 126 143 236 152 171 233 

Process 

Size 
207 246 228 360 256 275 217 265 226 195 284 292 304 300 280 

Process J91 J92 J93 J94 J95 J96 J97 J98 J99 J100 J101 J102 J103 J104 J105 

CPU 

Time 
120 112 132 135 149 125 115 138 140 150 122 232 152 137 159 

Process 

Size 
247 79 208 276 285 257 56 293 266 187 305 178 310 299 215 

Process J106 J107 J108 J109 J110 J111 J112 J113 J114 J115 J116 J117 J118 J119 J120 

CPU 

Time 
124 114 134 160 147 155 128 174 191 156 170 180 182 201 175 

Process 

Size 
277 286 211 248 227 294 157 258 229 267 196 298 188 306 270 

Process J121 J122 J123 J124 J125 J126 J127 J128 J129 J130 J131 J132 J133 J134 J135 

CPU 

Time 
235 142 162 165 179 151 145 168 171 238 152 175 189 167 241 

Process 

Size 
287 278 295 197 249 307 268 311 213 350 112 314 259 297 230 

Process J136 J137 J138 J139 J140 J141 J142 J143 J144 J145 J146 J147 J148 J149 J150 

CPU 

Time 
154 144 164 190 177 185 158 204 221 186 200 210 212 231 209 

Process 

Size 
214 250 260 279 288 296 308 269 312 245 317 198 319 315 239 
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Table 2: Descriptive Statistics of Table 1 

S. No. Parameters Name Calculated value 

1 Number of Processes N 150 

2 Mean time (𝑡̅) 122.56 

 

 

I. Case-I: where each sample size k=40, and dj = 0 (d1 = 0, d2 = 0, d3 = 0) 
 

Table 3: Calculation for Sample No. 1 

k1:16 k2:13 k3:11 

{(J01),(30),(41)},{(J31),(61),(172)}, 

{(J61),(118),(313)},{(J91),(120),(247)}, 

{(J121,(235),287)},{(J63),(102),(153)}, 

{(J32),(52),(243)},{(J62),(81),(194)}, 

{(J92),(112),(79)},{(J122),(142),(278)}, 

{(J3),(42),103)},{(J33),(72),(253)}, 

{(J141),(185),(296)},{(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

{(J49),(100),(254)},{(J 34),(75),(262)},  

{(J 64),(105),(255)},{(J94),(135),(276)}, 

{(J124),(165),(197)},{(J135),(241),(230)} 

{(J 35),(89),(83)},{(J65),(119),(225)}, 

{(J95),(149),(285)},{(J150),(209),(239)}, 

{(J99),(140),(266)},{(J143),(204),(269)}, 

{(J116),(170),(196)} 

 

{(J29),(111),(271)},{(J59),(141),(309)} 

{(J28),(92),(109)},{(J96),(125),(257)} 

{(J119)(201)(306)},{(J149)(231)(315)}, 

{(J142),(158),(308)},{(J97),(115),(56)}, 

{(J108),(134),(211)},{(J112)(128)(157)}, 

{(J120), (175), (270)} 

ni’ = 2, ni’’ = 3 ni’ = 2, ni’’ = 2 ni’ = 2, ni’’ = 3 

Partial Processed 

={(J33),(72)(253)}{(J141),(185),(296)} 

(Processed=50 unprocessed=22) 

(Processed=90 unprocessed=95) 

Partial Processed={(J150)(209)(239)} 

{(J99),(140),(266)} 

(Processed=120, unprocessed=89) 

(Processed=90, unprocessed=50), 

Partial Processed = 

{(J142)(158)(308)} {(J97)(115)(56)} 

   (Processed=110unprocessed=48), 

(Processed=65 unprocessed=55), 

Blocked = {(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)}

Blocked replaced  

α1' = {(J91),(120),(247)} 

α2' ={(J32),(52),(243)}  

α3' = {(J01),(30),(41)} 

Blocked={(J143),(204),(269)}, 

{(J116),(170),(196)} 

Blocked replaced  

β1' ={(J64),(105),(255)} 

β2' ={(J135),(241),(230)} 

Blocked={(J108),(134),(211)}, 

{(J112)(128)(157)},{(J120)(175)(270)} 

Blocked replaced  

γ1' = {(J119)(201)(306)} 

γ2' = {(J59),(141),(309)} 

γ3' ={(J29),(111),(271)} 

[𝑠�̅�1' = 99.54, from eq.(4.4),  

(𝑒𝑠′)12 = 3330.87, from eq.(4.7)], 

[sx̅1=3583/16 = 223.94, from 

eq.(4.5) 

sx̅1'=2110/11=191.81
from eq. (4.6)],  

[(𝑒𝑥′)12 =8210.36, from eq.(4.8)]  

[(es'x')1 = 3230.60, from eq.(4.9)] 

[𝑠�̅�2' = 130.88, from eq. (4.4),  

(𝑒𝑠′)22 = 2534.61 from eq.(4.7)]  

[sx̅2 =3149/13 =242.23, from 

eq.(4.5), 

sx̅2'=
2067

9
=

229.66, from eq. (4.6), 

(𝑒𝑥′)22 =3761,from eq.(4.8)] 

[(es'x')2 = 387.45, from eq.(4.9)] 

[𝑠�̅�3' = 150.16, from eq.(4.4), 

(𝑒𝑠′)32 = 2950.56 from eq.(4.7)]  

[sx̅3 =2641/11=240.09,from eq.(4.5) 

sx̅3'=
1567

6
= 261.16, from eq. (4.6) 

[(𝑒𝑥′)32 = 6092.96, from eq.(4.8)] 

[(es'x')3 = 2952.56, from eq.(4.9)] 

 

�̅�* = (50+90+120+90+110+65)/6 = 87.5 

�̅�** = (α' + β' + γ')/8 = (120+52+30+105+241+201+141+111) / 8 = 125.13 

Estimated [sT2 = 2,204.16] (using point 15) ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

[(50-87.5)2 +(90-87.5)2 +(190-87.5)2 +(110-87.5)2 +(140-87.5)2+(95-87.5)2]/5  

=[4,333.58+1,167.58+4,117.78+250.58+200.78+950.48]= 2,204.16 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗}, Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

P = ( 
1

16−2−3
–

1

40
) (0.4)2 *{3330.87}+ ( 

1

13−2−2
–

1

40
) (0.33)2 {2534.61}+ ( 

1

11−2−3
–

1

40
) (0.28)2 {2950.56} 

         = 0.0659 *0.16*3330.87+ 0.0861*0.1089*2534.61+0.1416*0.0784*2950.56= 91.64 
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Q = ( 
1

3
−

1

150−40+3
) 2,204.16  = 0.3245 *2,204.16 = 715.25 

R = ( 1 −
1

16−2−3
 ) (0.4)2*3330.87+ ( 1–

1

13−2−2
) (0.33)2 *2534.61 +( 1–

1

11−2−3
) (0.28)2 *2950.56 

    = 0.9091 *0.16*3330.87+ 0.8889*0.1089*2534.61 +0.8334*0.0784*2950.56 = 922.63 

Calculation of mean and Variance V[tmean/𝐓] at 𝐝𝐣 = 0 (for all j = 1,2,3) 

(€1)opt= (QR) / [PQ+PR+QR] = QM = 715.25*922.63/[91.64*715.25+91.64*922.63+715.25*922.63] 

       = 659911.1075/810006.4307 = 0.8147 

(€2)opt= PQ/ [PQ+PR+QR] = PM = 91.64*715.25/[91.64*715.25+91.64*870.50+715.25*870.50] 

      = 65545.51/ 810006.4307= 0.0809 

(tmean/T) = (€1)opt [ ∑ wj
𝑟
𝑗=1  𝑡̅𝑟𝑗] + (€2)opt  (𝑡̅ *) +  (1- (€1)opt – (€2)opt)  (𝑡̅ **) 

𝑡rj= [(𝑠�̅� ′)j + dj{(𝑠𝑥̅̅ ̅)j −
 
(𝑠𝑥̅̅ ̅′)j}], 

𝑡rj= [0.4*99.54+0*(223.94-191.81)]+[0.33*130.88+0*(242.45-229.66)] +[0.28*150.16+0*(240.09-261.16)]  

    =  39.82+43.19+42.04 = 125.05 

(tmean/T) = 0.8147*125.05+0.0809*87.5+0.1044*125.13 = 122.02 

V[tmean/T] = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2R] 

V[tmean/T] = [(0.8147)2 *91.64+ (0.0809)2*715.25 + 0.0108*922.63] = 60.82+4.68+9.96 = 75.46 

The 95% confidence intervals for t̅,    P [(tmean/T) ± 1.96√[ V (tmean/T)] = 0.95  

= 122.02± 1.96√75.46 = 122.02 ± 17.02 = (104.99, 139.04) 

 
Table 4: Estimated Sample Mean, Variance and Confidence Interval (CI) of Ten Random Samples 

 

 

 

Figure 8: Graphical representation of Confidence Interval range of Ten Random Samples  

for Case-I of Table 4 ( X-axis has sample number as shown in table 4) 

Case-I: At (€1)opt,  (€2)opt, dj = 0 (d1 = 0, d2 = 0, d3 = 0) where True mean = 122.51 

S.No. 
Estimated Sample 

Mean 
V[tmean/T] 

95% Confidence Interval 

(CI) 
CI Length 

1 122.02 75.46 (104.99, 139.04) 34.05 

2 134.58 64.83 (118.79, 150.36) 31.57 

3 117.56 74.36 (100.66, 134.46) 33.80 

4 113.89 48.45 (100.25, 127.53) 27.28 

5 127.00 85.37 (108.89, 145.11) 36.22 

6 119.27 46.42 (105.92, 132.62) 26.70 

7 123.39 45.41 (110.18, 136.60) 26.42 

8 113.12 97.36 (93.78, 132.46) 38.68 

9 115.01 53.05 (100.73, 129.28) 28.55 

10 120.21 60.91 (104.91, 135.51) 30.60 

Average Length (3138/10) = 31.38 
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II. Case-II: where each sample size k=40, and (dopt)j = (es′x′)j / (ex′)j2 
 

Table 5: Calculation for Sample No. 1 

k1:16 k2:13 k3:11 

{(J01),(30),(41)},{(J31),(61),(172)}, 

{(J61),(118),(313)},{(J91),(120),(247)}, 

{(J121,(235),287)},{(J63),(102),(153)}, 

{(J32),(52),(243)},{(J62),(81),(194)}, 

{(J92),(112),(79)},{(J122),(142),(278)}, 

{(J3),(42),103)},{(J33),(72),(253)}, 

{(J141),(185),(296)},{(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

{(J49),(100),(254)},{(J 34),(75),(262)},  

{(J 64),(105),(255)},{(J94),(135),(276)}, 

{(J124),(165),(197)},{(J135),(241),(230)} 

{(J 35),(89),(83)},{(J65),(119),(225)}, 

{(J95),(149),(285)},{(J150),(209),(239)}, 

{(J99),(140),(266)},{(J143),(204),(269)}, 

{(J116),(170),(196)} 

 

{(J29),(111),(271)},{(J59),(141),(309)} 

{(J28),(92),(109)},{(J96),(125),(257)} 

{(J119)(201)(306)},{(J149)(231)(315)}, 

{(J142),(158),(308)},{(J97),(115),(56)}, 

{(J108),(134),(211)},{(J112)(128)(157)}, 

{(J120), (175), (270)} 

ni’ = 2, ni’’ = 3 ni’ = 2, ni’’ = 2 ni’ = 2, ni’’ = 3 

Partial Processed = {(J33),(72),(253)}, 

{(J141),(185),(296)} 

(Processed=50, unprocessed=22), 

(Processed=90, unprocessed=95), 

Partial 

Processed={(J150),(209),(239)}, 

{(J99),(140),(266)} 

(Processed=120, unprocessed=89) 

(Processed=90, unprocessed=50), 

Partial Processed = 

{(J142),(158),(308)},{(J97)(115)(56)} 

   (Processed=110, unprocessed=48), 

(Processed=65, unprocessed=55), 

Blocked = {(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

Blocked replaced  

α1'={(J91),(120),(247)},α2'={(J32),(52),(243

)}  

α3' = {(J01),(30),(41)} 

Blocked={(J143),(204),(269)}, 

{(J116),(170),(196)} 

Blocked replaced  

β1' ={(J64),(105),(255)} 

β2' ={(J135),(241),(230)} 

Blocked={(J108),(134),(211)}, 

{(J112)(128)(157)},{(J120)(175)(270)} 

Blocked replaced 

γ1'={(J119)(201)(306)},γ2'={(J59),(141),(309

)} 

γ3' ={(J29),(111),(271)} 

[𝑠�̅�1' = 99.54, from eq.(4.4), (𝑒𝑠′)12 = 

3330.87, from eq.(4.7)],[sx̅1=3583/16 

= 223.94, from eq.(4.5), 

sx̅1'=2110/11=191.81from eq. (4.6)],  

[(𝑒𝑥′)12 =8210.36, from eq.(4.8)] 

,[(es'x')1 = 3230.60, from 

eq.(4.9)],(dopt)1 = (𝑒𝑠′𝑥′)1 / (𝑒𝑥′)12 = 

3230.60/8210.36 =0.3935 

[𝑠�̅�2' = 130.88, 

from eq. (4.4), (𝑒𝑠′)22 = 2534.61 

from eq.(4.7)],[sx̅2 =3149/13 

=242.23, from eq.(4.5),sx̅2'=
2067

9
=

229.66, from eq. (4.6), (𝑒𝑥′)22 

=3761,from eq.(4.8)],[(es'x')2 = 

387.45, from eq.(4.9)],(dopt)2= 

(𝑒𝑠′𝑥′)2 / (𝑒𝑥′)22 = 387.45/3761 = 

0.1030 

[𝑠�̅�3' = 150.16, from eq.(4.4),(𝑒𝑠′)32 = 

2950.56 from eq.(4.7)] ,[sx̅3 

=2641/11=240.09,from eq.(4.5),sx̅3'=
1567

6
= 261.16, from eq. (4.6),[(𝑒𝑥′)32 = 

6092.96, from eq.(4.8)],[(es'x')3 = 

2952.56, from eq.(4.9)],(dopt)3= 

(𝑒𝑠′𝑥′)3 / (𝑒𝑥′)32  

=2952.56/6092.96 = 0.48 

 

�̅�* = (50+90+120+90+110+65)/6 = 87.5 

�̅�** = (α' + β' + γ')/8 = (120+52+30+105+241+201+141+111) / 8 = 125.13 

Estimated [sT2 = 2,204.16] (using point 15) ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

[(50-87.5)2 +(90-87.5)2 +(190-87.5)2 +(110-87.5)2 +(140-87.5)2+(95-87.5)2]/5  

=[4,333.58+1,167.58+4,117.78+250.58+200.78+950.48]= 2,204.16 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗}, Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

P = ( 
1

16−2−3
–

1

40
) (0.4)2 *{3330.87+0.39*0.39*8210.36 - 2*0.39*3230.60}+ ( 

1

13−2−2
–

1

40
) (0.33)2 

{2534.61+0.10*0.10*3761- 2*0.10*387.45}+ ( 
1

11−2−3
–

1

40
) (0.28)2 {2950.56 +0.48*0.48*6092.96-

2*0.48*2952.56} 

        = 0.0659 *0.16*2059.79+ 0.0861*0.1089*2494.73+0.1416*0.0784*1519.92 = 61.98 

Q = ( 
1

3
−

1

150−40+3
) 2,204.16  = 0.3245 *2,204.16 = 715.25 
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R = ( 1 −
1

16−2−3
 ) (0.4)2*3330.87+ ( 1–

1

13−2−2
) (0.33)2 *2534.61 +( 1–

1

11−2−3
) (0.28)2 *2950.56 

    = 0.9091 *0.16*3330.87+ 0.8889*0.1089*2534.61 +0.8334*0.0784*2950.56 = 922.63 

Calculation of mean and Variance V[tmean/𝐓] at 𝐝𝐣 = (dopt)j 
 

(€1)opt= (QR) / [PQ+PR+QR] = QM = 715.25*922.63/[61.98*715.25+61.98*922.63+715.25*922.63] 

       = 659911.1075/761426.9099= 0.8666 

(€2)opt= PQ/ [PQ+PR+QR] = PM = 61.98*715.25/[61.98*715.25+61.98*870.50+715.25*870.50] 

      = 44331.195/ 761426.9099 = 0.0582 

(tmean/T) = (€1)opt [ ∑ wj
𝑟
𝑗=1  𝑡̅𝑟𝑗] + (€2)opt  (𝑡̅ *) +  (1- (€1)opt – (€2)opt)  (𝑡̅ **) 

𝑡rj= [(𝑠�̅� ′)j + dj{(𝑠𝑥̅̅ ̅)j −
 
(𝑠𝑥̅̅ ̅′)j}], 

𝑡rj= [0.4*99.54+0.39*(223.94-191.81)]+[0.33*130.88+0.10*(242.45-229.66)] +[0.28*150.16+0.48*(240.09-

261.16)] = [0.4*99.54+12.64]+[0.33*130.88+2.11] +[0.28*163.33-45.50] = 52.45+44.47+31.93 = 128.85 

(tmean/T) = 0.8666*128.85+0.0582*87.5+0.0752*125.13 = 126.16 

V[tmean/T] = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2R] 

V[tmean/T] = [(0.8666)2 *61.98+ (0.0582)2*715.25 + 0.0056*922.63] = 46.54+2.42+5.17 = 54.13 

The 95% confidence intervals for t̅,    P [(tmean/T) ± 1.96√[ V (tmean/T)] = 0.95  

= 126.16 ± 1.96√54.13 = 126.16 ± 14.42 = (111.74, 140.58) 

 
Table 6: Estimated Sample Mean, Variance and Confidence Interval (CI) of Ten Random Samples 

 

 
Figure 9: Graphical representation of Confidence Interval range of Ten Random Samples 

 for Case-II of Table 6 (X-axis has sample number as shown in table 6) 

 
  

Case-II: At (€1)opt,  (€2)opt, (dopt)j = (es′x′)j / (ex′)j2where True mean = 122.51 

S.No. Estimated Sample Mean V[tmean/T] 95% Confidence Interval (CI) CI Length 

1 126.16 54.13 (111.74, 140.58) 28.84 

2 130.78 39.24 (118.50, 143.06) 24.56 

3 125.24 48.98 (111.52, 138.96) 27.44 

4 124.84 45 (111.70, 137.99) 26.29 

5 128.89 53.58 (114.54, 143.24) 28.7 

6 140.30 100.86 (120.62, 159.98) 39.36 

7 125.99 29.81 (115.29, 136.69) 21.4 

8 110.79 77.25 (93.56, 128.02) 34.46 

9 128.36 50.01 (114.50, 142.22) 27.72 

10 128.07 38.42 (115.92, 140.22) 24.3 

Average Length (28307/10) = 28.30 

229



 
Sarla Mor, Diwakar Shukla 
GENERALIZED APPROACH IN MULTIPROCESSORS USING 
REGRESSION ESTIMATOR AND COST ANALYSIS 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

Table 7: Comparison between Case-I and Case-II 

S. 

NO 

CASE-I 

dj = 0 (d1 =0, d2 =0, d3 =0) 

CASE-II 
(𝐝)𝐣 =

(𝐝𝐨𝐩𝐭)𝐣 

95% Confidence Interval Length 95% Confidence Interval Length 

1. (104.99, 139.04) 34.05 (111.74, 140.58) 28.84 

2. (118.79, 150.36) 31.57 (118.50, 143.06) 24.56 

3. (100.66, 134.46) 33.8 (111.52, 138.96) 27.44 

4. (100.25, 127.53) 27.28 (111.70, 137.99) 26.29 

5. (108.89, 145.11) 36.22 (114.54, 143.24) 28.7 

6. (105.92, 132.62) 26.7 (120.62, 159.98) 39.36 

7. (110.18, 136.60) 26.42 (115.29, 136.69) 21.4 

8 (93.78, 132.46) 38.68 (93.56, 128.02) 34.46 

9. (100.73, 129.28) 28.55 (114.50, 142.22) 27.72 

10. (104.91, 135.51) 30.6 (115.92, 140.22) 24.3 

Average Length (3138/10) 31.38 Average Length (2830/10) 28.30 

 

Table 8: Case-I: Cost aspect when C0 = 100 units, C1 = 10 units 

 C.I C I 𝛿1 𝛿2 Total cost Total cost 

S. 

NO 

Lower 

Limit 

Upper 

Limit 
𝛿1 𝛿2 (Tc)1A (Tc)1B (Tc)1C (Tc)2A (Tc)2B (Tc)2C 

1 
104.9

9 

139.0

4 

11,548.

90 

15,294.

40 
115589 

1174.

65 

1333771

012 

1530

44 

1336.7

053 

2339186

814 

2 
118.7

9 

150.3

6 

13,066.

90 

16,539.

60 
130769 

1243.

10 

1707438

856 

1654

96 

1386.0

63762 

2735583

782 

3 
100.6

6 

134.4

6 

11,072.

60 

14,790.

60 
110826 

1152.

26 

1226024

808 

1480

06 

1316.1

66107 

2187618

584 

4 
100.2

5 

127.5

3 

11,027.

50 

14,028.

30 
110375 

1150.

11 

1216057

663 

1403

83 

1284.4

11246 

1967932

109 

5 
108.8

9 

145.1

1 

11,977.

90 

15,962.

10 
119879 

1194.

43 

1434700

984 

1597

21 

1363.4

12047 

2547886

464 

6 
105.9

2 

132.6

2 

11,651.

20 

14,588.

20 
116612 

1179.

40 

1357504

714 

1459

82 

1307.8

16211 

2128155

892 

7 
110.1

8 
136.6 

12,119.

80 

15,026.

00 
121298 

1200.

89 

1468895

620 

1503

60 

1325.8

05857 

2257806

860 

8 93.78 
132.4

6 

10,315.

80 

14,570.

60 
103258 

1115.

66 

1064157

396 

1458

06 

1307.0

87404 

2123023

944 

9 
100.7

3 

129.2

8 

11,080.

30 

14,220.

80 
110903 

1152.

63 

1227730

581 

1423

08 

1292.5

09958 

2022311

626 

10 
104.9

1 

135.5

1 

11,540.

10 

14,906.

10 
115501 

1174.

24 

1331739

180 

1491

61 

1320.9

05402 

2221918

272 

Average 115501 
1173.

74 

1336802

081 

1500

26.7 

1324.0

88329 

2253142

435 
 

NOTE 8.1: Overall average cost by lower limit = (115501 +1173.743546+ 1336802081)/3  

                                                                                   = 445639585.25 units 

NOTE 8.2: Overall average cost by upper limit = (150026.7 + 1324.088329+ 2253142435)/3  

                                                                                   = 751097928.59 units 
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Table 9: Case- II: Cost aspect when C0 = 100 units, C1 = 10 units 

 C.I C I 𝛿1 𝛿2 Total cost Total cost 

S. 

NO 

Lower 

Limit 

Upper 

Limit 
𝛿1 𝛿2 (Tc)1A (Tc)1B (Tc)1C (Tc)2A (Tc)2B (Tc)2C 

1 111.74 140.58 
12,291

.40 

15,463

.80 
123014 

1208.66

5865 

15107

85240 

1547

38 

1343.5

35283 

23912

91204 

2 118.5 143.06 
13,035

.00 

15,736

.60 
130450 

1241.70

9245 

16991

12350 

1574

66 

1354.4

56057 

24764

05896 

3 111.52 138.96 
12,267

.20 

15,285

.60 
122772 

1207.57

3925 

15048

42058 

1529

56 

1336.3

49465 

23364

95774 

4 111.7 137.99 
12,287

.00 

15,178

.90 
122970 

1208.46

741 

15097

03790 

1518

89 

1332.0

26785 

23039

90152 

5 114.54 143.24 
12,599

.40 

15,756

.40 
126094 

1222.47

049 

15874

48904 

1576

64 

1355.2

44996 

24826

41510 

6 120.62 159.98 
13,268

.20 

17,597

.80 
132782 

1251.87

673 

17604

51412 

1760

78 

1426.5

66998 

30968

25748 

7 115.29 136.69 
12,681

.90 

15,035

.90 
126919 

1226.13

9423 

16083

05976 

1504

59 

1326.2

09607 

22607

82988 

8 93.56 128.02 
10,291

.60 

14,082

.20 
103016 

1114.47

5234 

10591

70406 

1409

22 

1286.6

84457 

19830

83668 

9 114.5 142.22 
12,595

.00 

15,644

.20 
126050 

1222.27

4476 

15863

40350 

1565

42 

1350.7

67764 

24474

10036 

10 115.92 140.22 
12,751

.20 

15,424

.20 
127612 

1229.21

2115 

16259

31114 

1543

42 

1341.9

42028 

23790

59556 

Average value 
124167.

9 

1213.28

6491 

15452

09160 

15530

5.6 

1345.3

78344 

24157

98653 
 

NOTE 9.1: Overall average cost by lower limit = (124167.9+1213.286491+ 1545209160)/3  

                                                                                   = 515111513.72 units 

NOTE 9.2: Overall average cost by upper limit = (155305.6+ 1345.378344+ 2415798653)/3  

                                                                                   = 805318434.65 units 

 

 
 

Figure 10: Pair of graph lines for Case-I and Case-II 
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VII. Discussion 
In Section VI the data description is in Table 1 and 2 where 150 processes are presented assuming 

all finished before T. Their total processing time and size process measures are noted. The 

proposed estimate tmean has unknown constants €1, €2 and d whose suitable values need to be 

obtained for obtaining a best estimate. Two cases are considered herein as 

Case I: €1 = (€1)opt, €2 = (€2)opt, and d1 = 0, d2 = 0, d3 = 0. 

 This case indicates for no use of size measure in the estimation strategy at the optimum 

choice of €1 and €2. The average confidence interval length, under Case-I is 31.38 as evident form 

table 3. The lowest predicted total remaining time is 11540.1 units while highest is 14991.9 units 

(table 10). Average cost consumption for lowest estimated time is 445639585.25 units and at highest 

time level it is 751097928.59 units (table 8). 

Case II: €1 = (€1)opt, €2 = (€2)opt, and d1 = (dopt)1, d2 = (dopt)2, d3 = (dopt)3 

  This case contains choice of all constants at the optimum level and size measure 

information x has also been used. The impact of using the support information seems positive 

since the average length reduced to 30.53 in this case with respect to Case-I while simulated over 

10 samples. Figure 9 also reveals for more condensed pair of graph lines for Case-II. Lowest 

predicted remaining time is 12406.9 units and highest is 15521 units (Table 10). Average cost likely 

to consume is 515111513.72 units as minimum whereas 805318434.65 units as highest (Table 9). 

 The percentage relative efficiency of Case-II with respect to Case-I is 9.82 % which 

supports the use of size measure in estimation (Table 2). The highest cost by Case-I and lowest by 

Case-II are the recommended cost required for infrastructure creation for backup management 

(Figure 10).  
 

Table 10: Ten Sample average Confidence Interval and estimated total Remaining time of processing  

for Recovery Management 

 Case-I 

(Without size measure) 

Case-II 

(With size measure) 

True 

Value 

Average Interval  

(Over 10 samples) 
(104.91 - 136.29) (112.79 - 141.10) 

 

122.51 

CI Length 31.38 28.30 

Lowest Predicted 

Remaining time  

(N-k)* 104.91 =  11540.1 

units 

(N-k)* 112.79 = 12406.9 

units 

 

------ 

Highest Predicted 

Remaining time 

(N-k)* 136.29= 14991.9 

units 

(N-k)* 141.10 = 15521 

units 

 

Percentage Relative Efficiency (PRE) = [ 
[ 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐜𝐚𝐬𝐞−𝐈 ]−[ 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐨𝐭𝐡𝐞𝐫 𝐜𝐚𝐬𝐞𝐬 ]

𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐜𝐚𝐬𝐞−𝐈
 ] X 100 

 
Table 11: Percentage Relative Efficiency (PRE) 

Case-II with respect to Case-I 

PRE = 9.82 % 

 

VIII. Conclusion 
 

In case when the sudden breakdown occurs in a multiprocessor computer system this paper 

represents an idea of calculating the ready queue remaining processing time. The paper assumes 

that (kj –  nj′ –  nj′′) processes are completely finished before breakdown, nj' are partially processed 

and nj'' are blocked by jth processor. Under this an estimation strategy is proposed for estimating 

the total remaining time of jobs to be processed in waiting ready queue. The proposed generalized 

strategy contains constants whose optimum values are derived and used. Two cases are compared 

where the first case is having no consideration of size measure of jobs in waiting queue whereas 
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the second case considers the additional features of size measure of processes. The confidence 

interval is used as a tool for predicting about the unknown with 95% accuracy. Three cost 

functions are suggested for predicting about the backup infrastructure cost needed for recovery 

management after system breakdown. The proposed methodology under Case-II performs better 

than Case-I by comparing the length of confidence intervals. The highest predicted remaining time 

under ten considered samples is 15521 units, under Case-II. Moreover, the Case-II is 9.82 % more 

efficient than Case-I. The average cost required for recovery after occurrence of failure is also lower 

in Case-II. Overall it is found that the suggested estimation strategy is effective for predicting the 

remaining total time with high efficiency. The suggested is a new methodological approach for 

predicting the unknown using sampling methodology in the multiprocessor environment. 

Proposed advocates for the use of size measure of processes, if available for predicting unknown 

parameters like remaining time of a ready queue. 
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