
Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

RELEASE TIME ANALYSIS OF OPEN SOURCE
 SOFTWARE USING ENTROPY AND RELIABILITY

Vishal Pradhan, Gunjan Tripathi, Ajay Kumar AND Joydip Dhar

∙
Department of Applied Sciences, ABV-IIITM Gwalior,

Gwalior-474015, MP, India
vishal.iiitmg@gmail.com, gunjantripathi7@gmail.com, ajayfma@iiitm.ac.in, jdhar@iiitm.ac.in

Abstract

Any software system, however securely written or precise the code is, is always susceptible to failure.
These factors, such as the number of errors in the program or the mean-time for software failure, measure
the program’s reliability. In order to meet more customer needs, current OSS products must be reliable.
To measure these parameters, like the reliability of the software, we use different growth models called
Software Reliability Growth Models. These models help us in determining the different reliability
measures. Faults occur due to several reasons in software- sometimes, it is the environmental factors. It
can also be because of casual human behavior. Faults may also occur during the process of removal of
previous faults. Whenever the code is changed, randomness in the software increases. We can calculate
the optimal release time of a software product based on the calculated reliability measures, which have
entropy also been considered. Finally, the user’s satisfaction level can also be considered.

Keywords: Entropy, Debugging, Feature improvement, Feature addition, Optimal release time,
Software repositories

1. Introduction

The whole idea behind development in the open-source domain is that we initially developed
the software’s basic model. It can be done by a single individual or a group of developers. After
developing the basic software, the code is made publicly available so that people can make
changes to it to add new features or make improvements in the current features. People also help
in making the software famous amongst the developer community. Code changes can be done by
anyone residing remotely in any part of the world. The person can simply request the owner of
the software to suggest some new features or modify existing features of the software.

Source code is then again redistributed among the community of developers to cross-check
and verify the changes made in the code. Open source software (OSS) is released based on two
different methods which decide when the next release is to be scheduled:

1. Time-based strategy: In the time-based strategy, specific dates are predicted for the releases
and different versions of the software are released on those dates only.

2. Feature-based strategy: In the feature-based strategy, new versions are released after
implementing certain set of features. New features may be added to the software, or
previous features may be modified to increase the satisfaction of the user community.

OSS has a number of characteristics that distinguish it from typical closed source software
development.

RT&A, No 2 (68) 
Volume 17, June 2022 

307



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

1.1. Entropy in OSS

Changes are made to code to improve the functionality of the system, add new features, or
make modifications to features suggested by the users and developers. When these changes
are included, the uncertainty of the software increases. To calculate the increased randomness,
information theory can be used as suggested in [10]. This idea of entropy calculation given in the
information theory helps us in determining randomness increased in the software.

In this work, the effort is made to calculate the randomness in terms of the entropy in a system
by assuming that the randomness increases when the source code is changed for modifications
and improvements as discussed in [16]. There are various reasons for making changes to the
code. Sometimes the user is not satisfied with the performance due to performance bugs. In the
open-source community, since innovators are involved in the development of the software, it
is important to keep their interest alive in the product. For this reason, releases are done more
often in the open-source products so that contributors can relate to the product and keep making
changes to it. The product remains relevant in the market.

Any software goes through a process of evolution in which bugs are fixed, new features
are introduced and some features are modified according to the user’s satisfaction level. Using
this calculated randomness, we can also determine when the next version of the software can
come into the market. In this work, non-homogeneous Poisson process (NHPP) based models
are discussed. In the software testing process, it is commonly assumed that the cumulative
number of failures follows the NHPP and these models are believed to be a reliable model in
performance analysis for software [2, 5, 13]. Various NHPP based reliability models for OSS have
been developed in recent years [10, 12].

There are two types of environment discussed in the debugging domain [7]. No new bugs are
introduced in the perfect debugging model while eradicating the previous bugs. However, in the
imperfect debugging model, new errors may get introduced while removing previous ones. Any
software goes through a process of evolution in which bugs are fixed, new features are introduced
and some features are modified according to the user’s satisfaction level.

Whenever bugs are fixed, new features are introduced and modifications are made to the
software, it gets better and that is what the motive is. Any organization’s goal is to make its
software relevant and updated as new changes keep coming into the market. Evolution is a part
of any growth process. It is the same for the software industry also. An effort has been made to
develop a mathematical model through which we can predict the total number of bugs to be fixed
in the future and new features to be added and features to be modified. Since it is not possible to
fix all the bugs in a single release, this process continues over the product’s whole life cycle.

The objectives are to calculate the entropy of the software using code changes done in the
different files of the system and propose a model to determine the total issues based on the
calculated entropy and consider the user’s satisfaction level. Also, make the prediction of release
time of the next version based on entropy which the product manager can use to reduce the
overall cost of the product.

2. Literature review

For any software to remain relevant in the market, it needs to grow with the user’s expectations
and new technologies coming into the market. Changes are a necessity for the growth and
development of the product as in [19]. When new changes are made in the code, the randomness
in the software increases.

Previous research has been done in this direction in considering this entropy as a measure
in the calculation of release date of the software [6, 11, 15, 17, 18]. When the entropy increases,
the software becomes more complex with time. This research has been made to quantify these
changes and calculate the randomness that occurred because of those changes. After the entropy
is calculated through file changes, the total number of issues to be fixed, including the bugs,
newly introduced features, and feature improvements, are predicted. In the end, an effort is also
put to predict the next release time of the version based on the entropy calculation.

RT&A, No 2 (68) 
Volume 17, June 2022 

308



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

In the past, numerous efforts have been made in the direction of measuring the reliability of
the software and thus decreasing the overall software assessment budget of the product [10]. In
most of the earlier models, only two factors are mostly considered in the software design process-
reliability and the cost of the product. These are inversely proportional to each other. If we wish
to increase the reliability of the software, we need to gice more time to it which increases the cost
or if we try to decrease the cost, we compromise with the reliability of the software [3]. Many
of the models used for prediction in the closed source projects give too optimistic results in the
open source domain [8, 9].

In the models used for prediction in the open source domain, testing efforts are considered
and time taken to correct the faults are also measured [3]. Dai et al. [4] put an effort to find
out the randomness in the reliability modelling of a single component within a large software
and attributes are also assumed to be correlated. Authors have also taken into consideration, the
views of the subject expert and the historical change data of the software.

Kamavaram and Goseva-Popstojanova [8] performed the research based on including entropy
for the calculation of software reliability engineering by using it in the Markov model which is
used for software specifications. Randomness of the operational profile is calculated and the
model proposed is architecture based. effort is also made to introduce the concept of conditional
entropy. Kerzazi and Khomh [9] in this research considers one of the most important thing in
release engineering, the time for a software code to reach from the development environment to
the production environment considering the quality analysis at each stage. Only data from the
actual industrial organizations are taken over a long period of time (15 months) and around 250
releases are taken into consideration.

Li et al. [10] investigated one of the left out factors in open source software- reliability.
Two important parameters which are stressed upon are the fast release of software and the
reliability. Though these are contradicting in nature but they are most important factors to b
considered. Release planning model is presented through this research. Multi attribute theory
is also considered. Michlmayr et al.[11] focused on the time-based release model of OSS. In the
time-based model, new releases come in the market after a certain pre-decided interval of time.
They have taken interviews of members from seven open source organizations with volunteer
workers and have analyzed the benefits of time-based release models.

Ruhe [14] researched thoroughly on the tools and techniques through which products can
be made in a manner such that resources are utilized efficiently and users expectations can also
be met by the product. Methods to build successful product are discussed. Release planning
problem is also discussed.

3. Objectives

Any software goes through a process of evolution in which bugs are fixed, new features are
introduced and some features are modified according to the user’s satisfaction level.

Also, certain issues are left unnoticed, which the innovators in future development processes
remove. This can happen due to correction delay. When the life cycle process of the development
starts, the issues which were not fixed in previous releases are also taken into consideration and
are added to the issue content of the current work. The objectives are:

∙ Calculate the entropy of the software using code changes done in the different files of the
system.

∙ Propose a model to determine the total issues based on the calculated entropy and consider
the user’s satisfaction level.

∙ Prediction of release time of the next version is based on entropy which the product manager
can reduce the product’s overall cost.

RT&A, No 2 (68) 
Volume 17, June 2022 

309



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

4. Research Methodology

4.1. Dataset

The dataset collection process involved collecting issues from the issues directory of different
Apache products. Products have multiple releases and issues are fixed before each release.

Multiple open-source projects have the details of their issue available on multiple platforms
like Bugzilla. Apache projects are big projects and they involve a large number of contributors
involved in the development of the products. Different products of Apache open source are
considered, for example, Avro, jUDDI and Hive. All the fixed issues - either bugs, new features, or
improvised features are downloaded from the issue tracking repository available on the Bugzilla
website.

4.2. Methodology

After collecting data of issues from the issues directory, release dates are also noted from the
git-hub repository. Then the date of fixing issues is mapped with the release date of products.
Then, monthly entropy can be calculated according to the number of changes made in different
projects and modules of the product. After the calculation of entropy, this is mapped with the
release date noted from the git-hub repository. In the calculation of entropy, the code change
process is termed as an event and noted down. Here, an event is defined as the process during
which the code of a software is changed.

First, all the issues, including the bugs, new features introduced or suggested by the users of
the software and feature improvements, are downloaded from the issue tracking repository. All
product details with issues are available on the issues.apache.org website. Then for each product,
their bugs, feature additions and feature improvements are calculated on a month-to-month basis.
We also made a note of the date when these issues were fixed.

The release date of the products can be extracted from the git-hub using the git-hub tool.
Whenever changes are made in the source code and committed, they are being done to fix some
issues or add some new features. Git-hub tool is easily available on the git-hub site.

4.3. Implementation

Issues are defined as the bugs present in the software, new features to be added and the feature
modifications to be performed. There are two types of contributors, innovators and imitators.
Innovators fix the issues at rate ’p’ and imitators fix issues at rate ’q’. We assume that the total
number of issues identified as the target issues to be fixed in a particular release is constant and
represented by ’a’. Initially, since no issues are fixed, we can represent this condition with a
differential equation as follows:

d(X(t))
dt

= p(a − X(t)) + q
X(t)

a
(a − X(t)) (1)

where X(t) represents the value of fixed bugs cumulatively.
Assuming the initial conditions at t = 0 , no bugs are fixed, that is X(0) = 0, we have:

X(t) = a

[
1 − e−(p+q)t

1 + q
p e(−(p+q)t)

]
(2)

Here, q/p remains constant and p+q represent the rate at which issues are fixed per remaining
issue.

RT&A, No 2 (68) 
Volume 17, June 2022 

310



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

5. Entropy calculation

To calculate entropy, we must first find out the amount of information in the software code.
Information theory can be used to find that. For our model, we define data as the event in
which a file is changed for modification in the code. This can be used to calculate the amount of
randomness associated with the software system.

We have considered four files and the time interval during which changes were made in those
files is noted down. Where p gives the probability that the file will be changed during that period,
we calculated it by dividing the number of times this specific file is changed in that period by the
total number of changes made in all the files. This is shown in the figure.

There are multiple reasons for changing the code of the software. When users suggest bugs
and new user requirements come up, developers make changes in the code to modify modules or
add new modules. Sometimes there are logical errors present that also need to be rectified. Using
the Cobb-Douglas equation, we can include both time and entropy for the calculation of output
as follows, where time is represented by ’s’ and entropy is represented by ’u’.

t = sαu(1−α) (3)

where 0<= α <= 1
Using the Cobb-Douglas function, we can integrate time and entropy in the calculation of X(t)

to observe the effect of both time and entropy. The model to calculate issues fixed can thus be
represented as having both entropy and time-integrated. The model can thus be represented as:

X(s, u) = a

[
1 − e−b(sαu(1−α))

1 + βe−b(sαu(1−α))

]
(4)

In most of the OSSs, all issues are not fixed in the same release. Some are passed on to the next
release. These issues are then added to the content of issues for a particular version and then
fixed by the developer team.

5.1. Code History Metric

Code History Metric(CHM) is a method with which we calculate the complexity of code changes
in the software [1]. The whole concept of code changes is used for the calculation of CHM. We

RT&A, No 2 (68) 
Volume 17, June 2022 

311



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

also measure one more factor, which is Code History Period Factor(CHPF), for a file j during a
time period of i as:

CHPF(i, j) = CijHiwherej ∈ Fi (5)

Here, Hi is the entropy calculated for the changes done in the file during a period of time
interval i and Cij represents the contribution of entropy for the given file j. We are considering
several cases here:

Case 1 : If Cij = 1, we assume full complexity and all files having the same weight during this
interval.

Case 2 : If Cij = Pj, we assume contribution is equal to the probability of file j being changed
in the time interval.

5.2. Releasing Versions of Software

Steps for calculating the matrix are as follows:

1. First a note of the release date is taken for every version of the software.

2. Date on which each file was changed is also noted.

3. Classification of bugs fixed in the files as a new feature, feature improvement and feature
modification.

4. Calculate the total number of bugs fixed.

5. Record the issues in each released version of the software.

6. Arrange the changes according to the month in which they were made and the matrix is
calculated.

7. For every release, the time at which the software was released is found.

Though making new changes to the software is a requirement for every organization, it brings
new faults into the system. The code becomes more complex over time and it becomes challenging
to keep it relevant and reliable at the same time. Predicting the modules that have more number
of bugs than the others is beneficial in the sense that then the product manager can decide how
to allocate resources among the parts of the software such that an efficient version is released
with more reliability and user satisfaction level.

Predicting bugs also helps in reducing the testing time of the team and thus, the overall
expenditure can be reduced.

Based on the change of code of the software, bugs and release time are predicted. As a part of
the previous work, a few previous models are considered and their results are compared with the
proposed model in the next section.

6. Experiments and results

6.0.1 Experiments

Assuming that initially no issues are there and issues will occur in further releases only after
suggestions from the users come, at t = 0, X(t) = 0. This gives the following equation :

X(t) = a

[
1 − e−bt

1 + βe−bt

]
(6)

RT&A, No 2 (68) 
Volume 17, June 2022 

312



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

Here, value of q/p does not change with time and p+q is the rate at which issues are fixed
per remaining issues.

Rate at which cumulative number of issues are fixed is given by:

dX(t)
dt

=
f (t)

1 − F(t)
(a − X(t)) (7)

Here, F(t) is the distribution function representing the iussues to be fixed anf f(t) is the density
function, relation between them is f(t) = d F(t)/dt.

At any given time t, (a - X(t)) represents the number of issues yet to be fixed in the code. As
time increases, more issues are fixed and (a - X(t)), i.e, remaining issues in the software decreases
with time. This in turn increases the reliability of the software[4].

For a particular software product, ‘Ai’ is the real number of issues to be fixed, including the
bugs, new features to be added and the modifications to be performed in the software. Where
‘ai’ is the potential issues that need to be fixed. ‘ai-Ai’ represents the issues left in the previous
release and are now in the issue content of the current release. Fixing efficiency is denoted by ‘bi’.

Comparing the results of our model with the JM and S-shaped mode, we get the results as
shown in the table 1.

Table 1: Comparison Table

Release Number Model a b Ai ai-Ai
1 JM Model 360 0.121 28
1 S-shaped Model 621 0.173 289
1 Proposed Model 364 0.527 332 32
2 JM Model 197 0.13 14
2 S-shaped Model 221 0.268 38
2 Proposed Model 507 0.076 183 324
3 JM Model 264 0.078 55
3 S-shaped Model 300 0.174 91
3 Proposed Model 233 0.3 209 24
4 JM Model 219 0.063 77
4 S-shaped Model 181 0.211 38
4 Proposed Model 210 0.173 142 9
5 JM Model 85 0.116 10
5 S-shaped Model 104 0.233 9
5 Proposed Model 75 0.743 75 0

The release time of the software is calculated using linear regression in multiple stages.
Assuming that the time, p0 is a dependent variable and the Code History Matrix (x0) and the
number of bugs (x1) are independent variables, time can be calculated as:

po = a0 + a1x0 + a2x1 (8)

Here, a0 and a1 are regression coefficients whose value can be found out by linear regression
method.

Calculated values of time to release from the Code History Matrix are also shown in the table
2.

RT&A, No 2 (68) 
Volume 17, June 2022 

313



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

Table 2: CHM Table

Total Changes CHM(1) CHM(2) Time
673 7.288 2.228 2.248
286 2.335 0.499 2.723

1626 8.931 3.405 2.726
774 10.07 3.056 3.934
738 4.034 0.901 2.467
911 6.545 1.698 3.303

1524 8.361 2.311 2.812
302 3.296 0.804 3.421

2414 10.19 2.522 5.074
2331 3.535 0.783 3.058
943 5.795 1.374 3.317
576 6.463 1.593 2.562
413 3.456 0.886 1.143
382 5.178 1.32 3.335

1883 5.302 1.422 1.895
234 1.757 0.309 0.663
500 2.324 1.273 1.086
898 5.361 1.256 4.918

1254 5.252 1.978 3.337
827 7.04 0.256 2.443
342 1.629 1.304 0.661
734 5.377 1.543 2.803
891 5.464 1.064 3.007

1353 4.795 1.476 1.412
850 6.447 0.143 2.461

1135 1.578 0.214 1.128
334 1.645 0.583 1.143

7. Results and discussion

The whole idea behind OSS development is that we initially developed the software’s basic
model. It can be done by a single individual or a group of developers. After developing the basic
software, the code is made publicly available so that people can make changes to it to add new
features or make improvements in the current features.

The aptitude of the testing team also determines the number of faults introduced into a
software. Environmental factors such as different operating system specifications can also
contribute to introducing bugs into the software. Whenever developers try to remove a bug from
the code, they make changes to the software. These changes can be quantified in terms of entropy.
The time of the next release is helpful both to the product manager and the user of the software.

7.1. Ease of Testing

One of the main stages of the software development process is the testing phase. This model
helps to ease the process in the testing phase by providing a direction to the testers so that they
can focus their energy and resources in one direction and get better and more efficient results.
Once the cost of the testing process is minimized, the whole development process cost is reduced.

RT&A, No 2 (68) 
Volume 17, June 2022 

314



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

7.2. Managerial implications

Product managers can use this approach to find out the best time to release the software in
the market. Rapid release strategy and reliability are conflicting parameters and it is crucial to
balance between them. Product managers can look at the future trend of bugs and plan their
releases accordingly.

8. Conclusion

There is always scope for improvement. Although the proposed model helps determine the
important parameters of modelling, the manager’s decision is still subjective. There are still many
more different factors in different projects that matter when product release is considered. So our
model can be used to make a general idea about the situation, but the final decision needs to be
taken considering many other factors also.

Other factors that need to be considered are past data of the product and historical experiences
of the team. Only then a more trusted decision can be taken. Efforts should also be made to study
more closed source projects and compare them to the calculation of different parameters.

One more limitation is that calculation of entropy based on the files changed is done manually.
This process can also be made more precise and accurate by using other methods of entropy
calculation if available. More research can be done in this direction.

References

[1] Anand, A., Bharmoria, S. and Ram, M., 2019, Characterizing the Complexity of Code Changes
in Open Source Software, In Recent Advancements in Software Reliability Assurance, Taylor &
Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC
Press, pp. 1–14.

[2] Anand, A., Kaur, J., Singh, O. and Ram, M., 2021, Optimal Resource Allocation for Software
Development under Agile Framework, Reliability: Theory & Applications, (SI 2 (64)), pp. 48–58.

[3] Cathedral, R.: 2001, the bazaar raymond es the cathedral and the bazaar: Musings on linux
and open source by an accidental revolutionary.

[4] Dai, Y.-S., Xie, M., Long, Q. and Ng, S.-H.: 2007, Uncertainty analysis in software reliability
modeling by bayesian analysis with maximum-entropy principle, IEEE Transactions on
Software Engineering 33(11), 781–795.

[5] Dhaka, R., Pachauri, B. and Jain, A., 2021, Two-Dimensional SRGM with Delay in Debug-
ging by Considering the Uncertainty Factor and Predictive Analysis, Reliability: Theory &
Applications, (SI 2 (64)), pp .82–94.

[6] Gacek, C. and Arief, B.: 2004, The many meanings of open source, IEEE software 21(1), 34–40.
[7] Hassan, A. E.: 2009, Predicting faults using the complexity of code changes, 2009 IEEE 31st

international conference on software engineering, IEEE, pp. 78–88.
[8] Kamavaram, S. and Goseva-Popstojanova, K.: 2002, Entropy as a measure of uncertainty in

software reliability, 13th Int’l Symp. Software Reliability Engineering, pp. 209–210.
[9] Kerzazi, N. and Khomh, F.: 2014, Factors impacting software release engineering: A longitu-

dinal study, Proc. 2nd Workshop Release Eng, pp. 1–5.
[10] Li, X., Li, Y. F., Xie, M. and Ng, S. H.: 2011, Reliability analysis and optimal version-updating

for open source software, Information and Software Technology 53(9), 929–936.
[11] Michlmayr, M., Fitzgerald, B. and Stol, K.-J.: 2015, Why and how should open source projects

adopt time-based releases?, IEEE Software 32(2), 55–63.
[12] Pradhan, V., Kumar, A. and Dhar, J., 2022, Modeling Multi-Release Open Source Software

Reliability Growth Process with Generalized Modified Weibull Distribution, Evolving Software
Processes: Trends and Future Directions, pp. 123–133.

[13] Pradhan, V., Kumar, A. and Dhar, J. 2022, Modelling software reliability growth through
generalized inflection S-shaped fault reduction factor and optimal release time, Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(1), pp. 18–36.

RT&A, No 2 (68) 
Volume 17, June 2022 

315



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

[14] Ruhe, G.: 2010, Product release planning: methods, tools and applications, Auerbach Publications.
[15] Saxena, P., Kumar, V. and Ram, M., 2021, Ranking of Software Reliability Growth Models: A

Entropy-ELECTRE Hybrid Approach, Reliability: Theory & Applications, (SI 2 (64)), pp. 95–113.
[16] Singh, V., Sharma, M. and Pham, H.: 2017, Entropy based software reliability analysis of

multi-version open source software, IEEE Transactions on Software Engineering 44(12), 1207–
1223.

[17] Spinellis, D.: 2015, The strategic importance of release engineering, IEEE software 32(2), 3–5.
[18] Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B. and Shafique, M. U.: 2010, A

systematic review on strategic release planning models, Information and software technology
52(3), 237–248.

[19] Wright, H. K. and Perry, D. E.: 2012, Release engineering practices and pitfalls, Proceedings of
the 34th International Conference on Software Engineering, IEEE Press, pp. 1281–1284.

RT&A, No 2 (68) 
Volume 17, June 2022 

316




