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Abstract

The paper considers a single server that provides consumers with both regular and optional services.

The system’s inter-arrival time is determined by a Markovian Arrival Process (MAP), the service time

is determined by a phase type distribution, and the remaining random variables are distributed expo-

nentially. This system was represented as a QBD process, with the block elements of the generated

matrix having finite dimensions, to investigate steady state. Additionally, we addressed the busy period

and waiting time distribution for our concept. The system’s performance parameters are calculated and

graphically shown.
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1. Introduction

Contribution of Nuets (1979) is immeasurable in the field of stochastic process. He pioneered
the Markovian Point Process, which led to the development of the Markovian Arrival Process
and the Batch Markovian Arrival Process. In his concept of communication and computer ap-
plication, Lucantoni (1990) established these two arrival processes. One of the most important
characteristics of MAP is that it can be used to solve stochastic models using matrix analytic solu-
tions. Chakravarty (2010) in the Encyclopedia of Operations Research and Management Science
streamlined this useful tool to make it easier to understand. The discrete and continuous cases
of MAP are defined. The parameters utilised in MAP are D0 and D1 of dimension m in continu-
ous time, where D0 is a non-singular stable matrix that rules the transition corresponding to no
arrival and D1 governs the transition relating to arrival. The generator matrix Q = D0 + D1.The
stationary distribution vector π satisfies the system π(D0 + D1) = 0 and πe = 1.The constant
λ = πD1 is called the fundamental rate of a MAP defined by Latuche at al (1999).

The concept of vacation in the queuing system was introduced by Levy and Yechiali (1975).
Vacation is a time where the server is unavailable for service, for a short period of time due to
many reasons like filing up the bills or document, verifying with other data etc or even a break.
In this real world, there are many occasions where the server is busy or continues to work with
low speed during his vacation. Servi (2002) and Finn classify this type of vacation as a working
vacation. Doshi (1986), Takagi (1991) and Tian and Zhang (2006) has contributed an excellent
survey on the vacation model. Ket et al (2010) and Tian et al (2009) have also recently contem-
plated on vacation and working vacation. This working vacation concept was introduced and
further studied in a retail queue by Do (2010).
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A detailed study has been performed by Doshi (1986) for the queueing model with vaca-
tions, breakdown and repair in his survey with demonstration. Ayyappan and Thamizhselvi
(2018) have reviewed a priority retail model with vacation and also studied the time dependent
PGF. Further, second optional service under mixed priority service was studied by K.Jeganathan
(2015) in linear retail inventory system. Breakdown and repair process are unavoidable concepts
in production unit, service stations etc. When the server gets breakdown then the server gets
terminated and goes to the repair process. Depending on the model, the server begins serving
the customer whose service was interrupted or begins serving a new customer after the repair
process is completed. This concepts was studied in various queueing models by Gaver (1959) ,
Levy and Yechilai (1976) and many more are interested in this concept.

In reality, the service of the server can terminate for a short period of time. This phenomena
is named as interruption which is one of the unavoidable aspects faced by both the server and the
customer in the system due to many reasons like emergency call or work, the server/machine
may get breakdown, external influence, get some suggestions/ ideas from the fellow workers
etc. This interruption was studied in priority queue by Jaiswak(1961). Geramsimov(1973) came
up with an idea for investigating an interrupted customer with an algorithm where another
queue for interrupted customers were formed and served. This concept was developed in Com-
puter and Communication System by Gelenbe and Derochette(1978). Takine and Sengupta (1997)
developed this concept in a MAP process. Rakesh Kumar(2014) investigated discouraged ar-
rivals and customer retention in a single server Markovian queueing system. Rakesh Kumar
and Bhavneet Singh Soodam(2019) investigated linked imputes and reneging for a single server
queueing model. El-Taha(2003) introduced two server in series where the customer gets inter-
rupted by the set of proposed time threshold while getting service from the server one. Server
two offer service only to the interrupted customer or else the customer leaves the system. Kr-
ishnamoorthy et al.(2009) developed the model in a single server queue in a level-dependent-
quasi-birth and death (LDQBD) process. He further generalized this model in (2011) where a
super clock is defined for his predetermined threshold time. Kilmenok and Dudin(2012) and
Krishnamurthy et al.(2010) have also investigated further where interrupted customer service
has been rejected. Varghese et al.(2010) introduced customer induced service interruption where
the customer gets self interrupted while being served by the server. Further extension in this
concept has been made by them in the year 2012.

2. Model Description

In this classical queuing model, a single server is considered with the infinite capacity queue
where the customer arrives according to Markovian Arrival Process with the parameter matrix
D0 and D1 are of dimension m. The customer in the service station can be self interrupted and
moves onto the buffer 1 which is of maximum capacity K with an exponential distribution δ.
After the completion of interruption, the customer moves onto the buffer 2 with an exponential
distribution θ which is also of maximum capacity K where the customer gets served by the
server. Optional service will be provided by the server whenever the customer needs it. The
service time of the server offering service for the customer from the queue, buffer 2 and optional
service follows phase type distribution PH(α1, t1), PH(α2, t2), PH(α3, t3) respectively of order n.
The vector T0

1 , T0
2 , T0

3 is given by T0
1 = −T1e, T0

2 = −T2e, T0
3 = −T3e respectively.

The interrupted customer will only enter buffer 1 if space is available; else, the customer will
be lost indefinitely. The server follows non-preemptive priority for the customer in the buffer
2 over the customer in the queue. Thus a preference will be given to the customer in buffer
2 whenever the free server offers service. The customer in buffer 2 will be served by first in
first service order. When the system is empty, the server avails vacation following exponential
distribution with the parameter η. While the server is busy, breakdown of the server may occur.
It follows exponential distribution with the parameter γ. Consequently, the repair process starts
immediately with the phase type distribution PH(β, R) of order r. The vector R0 is given by
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R0 = −Re. After receiving the regular service, the customer can opt for optional service. During
the optional service availed by the customer, if the server gets breakdown then the interrupted
customer is considered to be lost forever from the system. The server is idle when there are no
customers in the queue and buffer 2.

Figure 1: Schematic Representation of Our Model

To find a matrix-geometric type solution, this model is investigated as a QBD process. For a
thorough examination of Matrix Analytic Methods, see Neuts (1981), Latouche and Ramaswami
(1999). The state space under the considered QBD model is defined and the structure of the
infinitesimal generator is also investigated using the following notations.

Let

• N(t) be the number of customers in the system at time t

• S(t) be the server status at time t

where

S(t) =











































0, if server is idle

1, if server is offering service to the customer in the main queue

2, if server is offering service to the customer in the buffer 2

3, if server is offering optional service

4, if main server is availing vacation

5, if the server is under repair

• N1(t) be the number of customers in the buffer 1 at time t

• N2(t) be the number of customers in the buffer 2 at time t

• R(t) be the Repair phase at time t

• C(t) be the service phase at time t

• M(t) be the phase of the Markovian Arrival Process at time t

• M1 = K(K+1)
2

• M2 = (K+1)(K+2)
2 , where K is the maximum capacity of buffer 1.

{N(t), S(t), N1(t), N2(t), C(t), R(t), M(t); t ≥ 0} is representation of this model by the Continu-
ous Time Markov Process with the state space
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Ω = l(0) ∪ l(i)

where

l(0) = {(0, 0, 0, i2) : 1 ≤ i2 ≤ K}
∪ {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(0, 4, 0, 0, l) : 0 ≤ l ≤ m}

for i ≥ 1,

l(i) = {(i, j, i1, i2, k, l) : j = 1, 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(i, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(i, 4, 0, 0, l) : 0 ≤ l ≤ m}

The infinitesimal matrix generation of the QBD process is given by

Q =















B00 B01 0 0 0 0 · · ·
B10 A1 A0 0 0 0 · · ·
0 A2 A1 A0 0 0 · · ·
0 0 A2 A1 A0 0 · · ·

· · · · · · · · ·
. . .

. . .
. . .















where

B00 =


















b
(00)
(11)

b
(00)
(12)

0 0 0

0 T2 ⊕ D0 − γIm ⊗ IM1
diag(aK, aK−1, ..., a1) eM1

⊗ qT0
2 ⊗ Im diag(eK, eK−1, ..., e1)

0 0 b
(00)
(33)

eM2
⊗ T0

3 ⊗ Im γIM2rm

γIm 0 0 D0 − γIm 0

b
(00)
(51)

diag(cK, cK−1, ..., c1) 0 0 (R⊕ D0)⊗ IM2



















b
(00)
(11)

=

[

D0 0
0 IK ⊗ (D0 − θ Im)

]

b
(00)
(12)

=

[

0
diag[θ Im 0]

]

b00
(33)

=

[

T3 ⊕ (D0 − γIm)⊗ IK+1 0
0 T3 ⊕ (D0 − (γ + θ)Im)⊗ IK+1

]

+

[

0
diag(bK, bK−1, ..., b1)

]

b
(00)
(51)

=













en ⊗ R0βIm 0 0 0 0
0 en ⊗ R0βIm 0 0 0
0 0 en ⊗ R0βIm 0 0
0 0 0 en ⊗ R0βIm 0
0 0 0 0 en ⊗ R0βIm













B01 =















b
(0,1)
(1,1)

0 0 0 0

0 InM1
⊗ D1 0 0 0

0 0 InM2
⊗ D1 0 0

0 0 0 D1 0
0 0 0 0 IrM2

⊗ D1














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b
(01)
(11)

=













D1 0 0 0 0
0 D1 0 0 0
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1













B10 =















b
(10)
(11)

diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ IM2

en ⊗ qT0
1 α1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















b
(10)
(11)

=













0 en ⊗ δImn 0 0 0
0 en ⊗ pT0

1 α1 en ⊗ δImn 0 0
0 0 en ⊗ pT0

1 α1 en ⊗ δImn 0
0 0 0 en ⊗ pT0

1 α1 0
0 0 0 0 en ⊗ pT0

1 α1













A2 =















a2
(1,1)

diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ ImM2

0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















a2
(11) =













pT0
1 α1 ⊗ Im δImn 0 0 0

0 pT0
1 α1 ⊗ Im δImn 0 0

0 0 pT0
1 α1 ⊗ Im δImn 0

0 0 0 pT0
1 α1 ⊗ Im 0

0 0 0 0 pT0
1 α1 ⊗ Im













A1 =















a1
(11) 0 0 0 γIrmM2

a1
(21)

a1
(22)

diag(aK, aK−1, ..., a1) 0 diag(eK, eK−1, ..., e1)

T0
3 α3 ⊗ IM2

0 a1
(3,3)

0 γIrmM2

η ImM2
0 0 D0 − η Im 0

R0β⊗ ImM2
0 0 0 (R + D0)⊗ IM2















a1
(11) =









T1 ⊕ D0 − (γ + δ)Im ⊗ IK 0 0 0
0 T1 ⊕ D0 − γIm 0 0
0 0 diag( fK, fK−1, ..., f1) 0
0 0 0 T1 ⊕ D0 − (γ + θ)Im ⊗ IK−1









+ diag(bK, bK−1, ..., b1)

a1
(21)

= diag
[

IK ⊗ qT0
2 α2 ⊗ In 0

]

a1
(22) =

[

T2 ⊕ D0 − γIm ⊗ IK 0
0 T2 ⊕ D0 − (γ + θ)Im ⊗ IM1

]

+

[

0
diag(gK−1, ..., g1)

]

+

diag

[

0
qT0

2 α2 ⊗ Imn(i−1)

]

a1
(33) =

[

T3 ⊕ (D0 − γ)Im ⊗ IK+1 0
0 diag(hK, hK1

, ..., h1)

]

+

[

0
diag(gK−1, ..., g1)

]
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A0 =













InM2
⊗ D1 0 0 0 0
0 InM1

⊗ D1 0 0 0
0 0 InM2

⊗ D1 0 0
0 0 0 D1 0
0 0 0 0 IrM2

⊗ D1













ai = pT0
2 α2 ⊗ Iim

bi = θ Iinm

ci =

[

0
R0β⊗ Iim

]

di =

[

0 0
pT0

1 α1 ⊗ Ii δImn(i−1)

]

ei =
[

0 γIirm

]

fi =

[

T1 ⊕ D0 − (γ + δ + θ)Im ⊗ Ii−1 0
0 T1 ⊕ D0 − (γ + θ)Im

]

gi =
[

0 θ Iinm

]

hi = T3 ⊕ D0 − (γ + θ)Im ⊗ IK, K ≤ i ≤ 1.

3. Analysis of the Stability Condition

The square matrix A = A0 + A1 + A2 is defined of order m[M2(2n + r) + (nM1 + 1)] as an
irreducible infinitesimal generator matrix. The invariant probability vector ℘ defined as ℘ =
(℘0,℘1,℘2,℘3,℘4) satisfies the condition ℘A = 0 and ℘e = 1. The vector ℘ can be computed by
solving the following equations.

℘0(InM2
⊗ D1 + a1

(1,1) + a2
(1,1)) + ℘1(a1

(2,1)) + ℘2(T
0
3 α3 ⊗ IM2

) + ℘3(η Im) + ℘4(R0β⊗ IM2
) = 0

℘0(diag(dK, dK−1, ..., d1)) + ℘1(InM1
⊗ D1 + a1

(2,2)) = 0

℘0(pT0
1 α1 ⊗ IM2

) + ℘1(pT0
2 α2 ⊗ IM1

) + ℘2(InM2
⊗ D1 + a1

(3,3)) = 0

℘3(D1 + D0 − η Im) = 0
℘0(diag(γIrmM2

) + ℘1(diag(eK, eK−1, ..., e1)) + ℘2(γIrmM2
) + ℘4(IrM2

⊗D1 + (R + D0)⊗ IM2
) = 0

For the system to attain stability, the necessary and sufficient condition is ℘A0e ≤ ℘A2e

(℘0 + ℘2)(enM2
⊗ D1em) + ℘1(enM1

⊗ D1em) + ℘3(D1em) + ℘4(erM2
⊗ D1em) < ℘0(a2

(1,1))+

℘1(diag(dK, dK−1, ..., d1)) + ℘2(pT0
1 α1 ⊗ eM2

)
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4. The Invariant Probability Vector

The unique solution to XQ = 0 and Xe = 1 is the transition probability vector of the infinitesimal
generator Q. This X can be partitioned into (X0, X1, X2....) where each Xi is the row vector corre-
sponding to the server status. The dimension of X0 is m[(K + 1) + nM1 + M2(n+ r) + 1], and the
remaining probability vectors X1, X2, X3, .... are of equal dimension m[M2(2n + r) + (nM1 + 1)].
The steady state probability vector has a matrix geometric structure satisfying the condition for
stability is as follows,

Xi = X1Ri−1, i = 2, 3, 4, ....,

where R, the rate matrix, is the minimal non-negative solution to the matrix quadratic equation

R2 A2 + RA1 + A0 = 0

and the boundary states X0 and X1 is the result of solving the equations

X0B00 + X1B10 = 0
X0B01 + X1(A1 + RA2) = 0

subject to normalizing condition

X0e + X1(I − R)−1e = 1

Lautouche and Ramaswamy(1999) have embellished the calculation of rate matrix R by develop-
ing Logarithmic Reduction Algorithm, which helps us to obtained R easily.

Step 1 : H ← (−A1)
−1 A0, L← (−A1)

−1 A2, G = Land T = H.

Step 2 : U = HL + LH;
M = H2;

H = (I −U)−1M;
M = L2;

L = (I −U)−1M;
G = G + TL;

T = TH;

continue Step 1 until ‖e− Ge‖∞ < ǫ.

Step 3 : R = −A0(A1 + A0G)−1.

5. Analysis of Busy Period

In a classical queueing model, the busy period is defined as the time between a customer ar-
riving at an empty queue and the first epoch after that when the queue becomes empty again.
Considering a QBD process, Latouche.G (1978) has coined the term fundamental period defined
as the first passage time from level i to level i − 1, i ≥ 2. For the boundary states i = 0, 1
has to be dealt separately. We can also observe that for all level i, where i ≥ 2 there are
m[M2(2n + r) + (nM1 + 1)] states.

Notations:
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• Gvv′(k, x): The conditional probability that the QBD process enters the level u− 1 at time
t = 0, by making merely k transition to the left and also by entering the state (u, v′)
conditioned that it only started in the state (u, v) at time t = 0.

• The transition matrix Ḡvv′(z, s) = ∑
∞
0 zk

∫ ∞

0 e−sxdGvv′(k, x) : |z| ≤ 1, Re(s) ≥ 0

• Ḡ(z, s) : The matrix (Gvv′(z, s)), satisfying Ḡ(z, s) = z [sI − A1]
−1 A2 + [sI − A1]

−1 A0Ḡ2(z, s)

• G = Gvv′ = Ḡ(0, 1) is the first passage time without the boundary states.

• Ḡ
(1,0)
(vv′)

(k, x) is the conditional probability that enters the level 0 from 1 at time t = 0.

• Ḡ
(0,0)
(vv′)

(k, x) is the first conditional probability returning to level 0.

• ℜ1v is the expected first passage time between the levels u and u − 1, the process in the
state (u, v),at time t = 0.

• ℜ̄1 is the column vector ℜ1v as its entries.

• ℜ2v is the average number of customer who received service in the first passage time
between the levels u and u− 1, begins in the state (u, v), at time t = 0.

• ℜ̄2 is the column vector ℜ2v as its entries.

• ℜ̄
(1,0)
1 is the average first passage times from the level 1 to 0.

• ℜ̄
(1,0)
2 is the average number of service completions during the first passage time from the

level 1 to 0.

• ℜ̄
(0,0)
1 is the average first return time to level 0.

• ℜ̄
(0,0)
2 is the average number of completed services in the initial return time to level 0.

G matrix can be computed with the help of the result G = −[A1 + RA2]
−1 A2 where the rate

matrix R is already evaluated using Logarithmic Reduction Algorithmic technique. For the
boundary states namely 1 and 0 we have the equations satisfied by Ḡ(1,0)(z, s) and Ḡ(0,0)(z, s)
respectively.

Ḡ(1,0)(z, s) = z [sI − A1]
−1 B10 + [sI − A1]

−1 A0Ḡ(z, s)Ḡ(1,0)(z, s)

Ḡ(0,0)(z, s) = z [sI − B00]
−1 B01Ḡ(1,0)(z, s).

Since G, Ḡ(1,0)(z, s), Ḡ(0,0)(z, s) are stochastic moments can be easily evaluate as follows.

ℜ1 = − ∂
∂s Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 e

ℜ2 = ∂
∂z Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 A2e

ℜ
(1,0)
1 = − ∂

∂s Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [A0ℜ1 + e]

ℜ
(1,0)
2 = ∂

∂z Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [B10e + A0ℜ2]

ℜ
(0,0)
1 = − ∂

∂s Ḡ(0,0)(z, s)|s=0,z=1 = −B−1
00

[

e + B01ℜ
(1,0)
1

]

ℜ
(0,0)
2 = ∂

∂z Ḡ(0,0)(z, s)|s=0,z=1 = −B−1
00 B01ℜ

(1,0)
2 .
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6. Analysis of Waiting Time Distribution

Analysis of distribution of waiting time period of the customer in the queue has been performed
in this section by using the first passage time analysis. Let W(t), where t ≥ 0, denote the
distribution function of the waiting time of the tagged incoming customer in the system. The
customer in the system has to wait in order to get service from the server if the server is busy
or availing vacation or under repair. Otherwise, the customer in the system can get immediate
service without any delay when the server is idle. The state space of absorbing time in a Markov
chain is given by

(∗) ∪ 0, 1, 2, 3, ....

where (∗) denotes the absorbing state, in which the tagged customer gets service from the server
without delay and it is defined as

(∗) = (0, 0, 0, i2) : 1 ≤ i2 ≤ K

The state space of level 0 in a Markov chain is given by

0 = {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(0, 4, 0, 0, l) : 0 ≤ l ≤ m}

The state space of level i ≥ 1 in a Markov chain is given by

i = {(i, j, i1, i2, k, l) : j = 1, 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(i, 4, 0, 0, l) : 0 ≤ l ≤ m}

The transition matrix Q̄ is given by

Q̄ =















0 0 0 0 0 · · ·
H0 F0 0 0 0 · · ·
H1 F10 F 0 0 · · ·
0 0 F2 F 0 · · ·

· · · · · ·
. . .

. . . · · ·















where the block matrix are as follows.

H0 =









0
0
γ

R0β⊗ en









F0 =















f 0
(1,1)

0 0 0

T2 ⊕ D0 − γIN ⊗ IM1
diag(aK, aK−1, ..., a1) eM1

⊗ qT0
2 f 0

(2,5)

0 f 0
(3,3)

eM2
⊗ T0

3 γIM2r

0 0 D0 − γIn 0
diag(cK, cK−1, ..., c1) 0 0 (R⊕ D0)⊗ IM2















where

f 0
(1,1)

=

[

0
diag[IK ⊗ θ 0]

]

f 0
(1,1)

=

[

D0 0
0 IK ⊗ (D0 − θ In)

]
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f 0
(2,5)

= diag
[

0 γIrM1

]

f 0
(3,3)

=

[

T3 ⊕ (D0 − γIm)⊗ IK+1 0
0 T3 ⊕ (D0 − (γ + θ))⊗ IK+1

]

+

[

0
diag(bK, bK−1, ..., b1)

]

H1 =















h1
(1,1)

0
0
0
0















h1
(1,1)

=













0 δIn 0 0 0
0 pT0

1 α1 δIn 0 0
0 0 pT0

1 α1 δIn 0
0 0 0 pT0

1 α1 0
0 0 0 0 pT0

1 α1













F10 =













diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ IM2

qT0
1 α1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













F =















f(1,1) 0 0 0 γIrM2

f(2,1) f(2,2) diag(aK, aK−1, ..., a1) 0 diag(eK, eK−1, ..., e1)

T0
3 α3 ⊗ IM2

0 f(3,3) 0 γIrM2

η 0 0 D0 − η In 0
R0β⊗ IM2

0 0 0 (R + D0)⊗ IM2















f(1,1) =








T1 ⊕ D0 − (γ + δ)In ⊗ IK 0 0 0
0 T1 ⊕ (D0 − γIn) 0 0
0 0 diag( fK, fK−1, ..., f1) 0
0 0 0 T1 ⊕ D0 − (γ + θ)In ⊗ IK−1









+ diag(bK, bK−1, ..., b1)

f(2,1) = diag
[

qT0
2 α2 ⊗ In 0

]

f(2,2) =

[

T2 ⊕ (D0 − γ)⊗ IK 0
0 T2 ⊕ D0 − (γ + θ)In ⊗ IM1

]

+

[

0
diag(gK−1, ..., g1)

]

+

diag

[

0
qT0

2 α2 ⊗ In(K−1)

]

f(3,3) =

[

T3 ⊕ (D0 − γ)⊗ IK+1 0
0 diag(hK, hK1

, ..., h1)

]

+

[

0
diag(bK−1, ..., b1)

]

F2 =















f 2
(1,1) diag(dK, dK−1, ..., d1) pT0

1 α1 ⊗ IM2
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0














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f 2
(1,1) =













pT0
1 α1 ⊗ In δIn 0 0 0

0 pT0
1 α1 ⊗ In δIn 0 0

0 0 pT0
1 α1 ⊗ In δIn 0

0 0 0 pT0
1 α1 ⊗ In 0

0 0 0 0 pT0
1 α1 ⊗ In













ai = pT0
2 α2 ⊗ Ii

bi = θ Iin

ci =

[

0
R0β⊗ Ii

]

di =

[

0 0
pT0

1 α1 ⊗ Ii δIn(i−1)

]

ei =
[

0 γIir

]

fi =

[

T1 ⊕ D0 − (γ + I + θ)In ⊗ Ii−1 0
0 T1 ⊕ D0 − (γ + θ)In

]

gi =
[

0 θ Iin

]

hi = T3 ⊕ D0 − (γ + θ)In ⊗ IK, K ≤ i ≤ 1.

Let z(0) = (z0(0), z1(0), z2(0), z3(0), ...) be defined as a conditional probability distribution of
the system at the arrival time of the tagged customer is given by

z0(0) = x0

[

D1e(K+1)

λ

]

zi(0) = xi

[

I[M2(2n+r)+(nM1+1)]
D1e(K+1)

λ

]

, for i ≥ 1

where λ is the fundamental arrival rate of the Markov Arrival Process. Now, on defining z(t) =
(z∗(t), z0(t), z1(t), z2(t), ...), where

z0(t) : a 1× 1 vector
zi(t) : a row vector of order 1× (M2(2n + r) + (nM1 + 1))

The chance that the continuous time Markov chain with the generator matrix Q̄ is in the corre-
sponding state of level i at instant t is given by their entries. Since z ∗ (t) denotes the likelihood
that the tagged customer is in the absorbing state at time t, we have W(t) = z∗(t), where t ≥ 0.

The differential equation z′(t) = z(t)Q̄ for t ≥ 0 becomes

z
′

∗(t) = z0(t)H0 + z1(t)H1;
z
′

0(t) = z0(t)F0 + z1(t)F10;

z
′

i(t) = zi(t)F + zi+1(t)F2; i ≥ 1

where ′ denotes the derivative with respect to t. Let us calculate the Laplace-Stieltjes Transform
for W(t) using the Neuts et al. (1990) technique, where the initial probability row vector w(s)
denotes the first passage time to level 1 as follows

w(s) =
∞

∑
i=1

zi(0)[(sI − F)−1F2]
i−1 (1)

Let ϕ(i, s) be the LST of the time it takes to get absorbed into the state (∗), with the constraint
that the process starts at level i = 0, 1. We have
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ϕ(0, s) = [sI − F0]
−1H0 (2)

ϕ(1, s) = [sI − F]−1F10 ϕ(0, s) + [sI − F]−1H1. (3)

Thus, it can easily seen that the Laplace-Stieltjes Transform for the distribution of sojourn
time is as

W̄(s) = z0(0)ϕ(0, s) + w(s)ϕ(1, s). (4)

The Expected waiting time is

E(W) = −(̄W ′)(0) = −z0(0)ϕ(0, 0)− w′(0)e(M2(2n+r)+(nM1+1)) − w(0)ϕ′(1, 0) (5)

The first term in the preceding equation denotes the average time to enter the absorption
state (*) assuming the system is in the level state i=0. On differentiating both the equation (2)
and (3) , and setting s=0 , we have,

ϕ′(0, 0) = (−1)[−F0]
−2H0 (6)

ϕ′(1, 0) = (−1)[−F0]
−2F10 ϕ(0, 0) + [−F1]

−1F10 ϕ′(0, 0)− [−F1]
−2H1 (7)

By using equation (6) and (7) along with the primary conditions z(t) = (z0(0), z1(0), z2(0), ...),
it can be easily evaluated the initial terms of (5). From (1) we have

w(s) =
∞

∑
i=1

zi(0)U
i−1 (8)

where the stochastic matrix U = [−F]−1F2. We have

w(0)e(M2(2n+r)+(nM1+1)) = 1− z0(0). (9)

Along with the primary conditions z(t) = (z0(0), z1(0), z2(0), ...), using (7) and (8), the last
term of equation (5) can be evaluated. Differentiating (1) and substituting s = 0, we get,

w′(0) = (−1)
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

U j[−F]−1Ui−j (10)

by the condition U is stochastic , we have

(−1)w′(0)e(M2(2n+r)+(nM1+1)) =
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

U j[−F]−1e(M2(2n+r)+(nM1+1)) (11)

Defining an irreducible matrix U2 satisfying two conditions such that 1−U +U2 is non singu-
lar and the generalized inverse is of the form (I−K1). Then the matrix U2 = u0e(M2(2n+r)+(nM1+1))

where u0 represents the stationary probability vector of U such that u0U = u0 and u0e(M2(2n+r)+(nM1+1)) =
1. Moreover U2 satisfies the property UU2 = U2U = U2. Then we have,

i−1

∑
j=0

U j(I −U + U2) = 1−Ui + iU2, f or i ≥ 1 (12)

substituting (12) in (11) and simplifying we get the following

(−1)w′(0)e(M2(2n+r)+(nM1+1)) = {x1(I − R)−1

{

I(M2(2n+r)+(nM1+1)) ⊗
D1en

λ

}

− w(0) + x1R(I − R)−2

{

I(M2(2n+r)+(nM1+1)) ⊗
D1en

λ

}

}

× [I −U + U2]
−1[−F]−1e(M2(2n+r)+(nM1+1)). (13)

As a result, we have obtained all of the terms in (5), which aids in determining the expected
waiting time.
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7. Performance Measures

To investigate the behaviour of our model under a steady state condition, a few performance
measure of the system are computed.

• Probability that the server is idle
Pi = ∑

K
k=0 x00k

• Probability that the server is busy with the main customer
PBM = ∑

∞
i=1 ∑

K
k=0 xi1k

• Probability that the server is busy with the customer in buffer 2
PBB2 = ∑

∞
i=0 ∑

K
k=0 xi2k

• Probability that the server is busy with optional service
PBO = ∑

∞
i=0 ∑

K
k=0 xi3k

• Probability that the server is on vacation
PV = ∑

∞
i=0 xi40

• Probability that the server is under repair
PR = ∑

∞
i=0 ∑

K
k=0 xi5k

• Expected system size

Esystem = ∑
∞
p=1 ∑

j
i=1 ∑

K
k=0 pxpik = x1(1− R)−2e

8. Numerical Results

The qualitative behaviour of this model will be understood in this section with the help of a few
illustrations, both numerically and graphically, by changing various model parameters such as
the arrival process and service time distribution. For both the arrival process and the service
time distribution, three sets of values from the literature are used as input.

Erlang of order 2 (ERL-A)

D0 =

[

−2 2
0 −2

]

; D1 =

[

0 0
2 0

]

Exponential (Exp-A)

D0 =
[

−1
]

; D1 =
[

1
]

Hyperexponential (HYP-EXP-A)

D0 =

[

−1.90 0
0 −0.19

]

; D1 =

[

1.710 0.190
0.171 0.019

]

Considering three phase type distributions for the service process which was suggested by
Chakravarthy() Erlang of order 2 (ERL-S)

α1 = α2 = α3 = β = (1, 0); T1 = T2 = T3 = R =

[

−2 2
0 −2

]

Exponential (Exp-A)

α1 = (1); T1 =
[

−44
]

α2 = (1); T2 =
[

−46
]

α3 = (1); T3 =
[

−34
]
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β = (1); R =
[

−12
]

Hyperexponential (HYP-EXP-A)

α1 = (0.3, 0.7); T1 =

[

−9 3
2 −8

]

α2 = (0.4, 0.6); T2 =

[

−12 6
5 −10

]

α3 = (0.4, 0.6); T3 =

[

−6 4
3 −4

]

β = (0.5, 0.5); R =

[

−12 3
3 −12

]

Illustration 1

With the aid of 2D graphs, figure 2 to 10 represents the vacation rate versus probability of the
server is idle for all possible ordering of arrival and service time by fixing η = 5, γ = 7, θ = 5,
δ = 2, P = 0.3, q = 0.7, K = 4. An increase in vacation rate implies that the server will pay more
attention to serve the customer which has a direct proportion on probability of the server is idle.

Illustration 2

The effect of the customer entering buffer 2 from buffer 1 after completion of interruption
with rate θ and breakdown rate verses the expected system size has been investigated by fixing
η = 5, γ = 7, θ = 5, δ = 2, P = 0.3, q = 0.7, K = 4. In figure 38 to 46, an increase in both the
breakdown rate and self interrupted customer moving onto buffer 2 at the rate θ along with the
expected system size with distinct group of arrival and service time has been observed briefly.

While there is an increase in self interrupted customer moving onto buffer 2 at the rate θ
implies that arrival of customer to buffer 2 increases rapidly and an increase in breakdown rate
implies an increase in the waiting time of the customer both in the main queue as well as buffer
2. In both the scenario it is obvious that the expected system size increases due to the minimal
availability of the server.

Illustration 3

Table 1 to 3 represents the vacation rate versus expected system size by fixing η = 5, γ = 7,
θ = 5, δ = 2, p = 0.3, q = 0.7, K = 4. As long as the vacation rate increases it is evident that
the expected system size reduces gradually. The effect of increasing the vacation rate leads to
more availability of the server in the system which in turn reduces the expected system size in
the table. It is obviously that the expected system size decreases rapidly for hyper exponential
service compared to a Erlang service which is pretty gradual.

G.Ayyappan, S.Sankeetha
MAP/PH/1 QUEUE WITH VACATION...

RT&A, No 2 (68)
 Volume 17, June 2022

380



5 6 7 8 9 10 11 12
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

Vacation rate (η)

P
ro

ba
bi

lit
y 

of
 s

er
ve

r 
is

 id
le

Figure 2: Vacation rate (η) vs Probability of server
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Figure 3: Vacation rate (η) vs Probability of server

is Idle - M/Ek/1

5 6 7 8 9 10 11 12
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Vacation rate (η)

P
ro

ba
bi

lit
y 

of
 s

er
ve

r 
is

 id
le

Figure 4: Vacation rate (η) vs Probability of server

is Idle - M/Hk/1
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Figure 5: Vacation rate (η) vs Probability of server

is Idle - Ek/M/1
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Figure 6: Vacation rate (η) vs Probability of server is Idle

- Ek/Ek/1
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Figure 7: Vacation rate (η) vs Probability of server

is Idle - Ek/Hk/1
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Figure 8: Vacation rate (η) vs Probability of server

is Idle - Hk/M/1
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Figure 9: Vacation rate (η) vs Probability of server

is Idle - Hk/Ek/1
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Figure 10: Vacation rate (η) vs Probability of server

is Idle - Hk/Hk/1
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Figure 11: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 12: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 13: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - M/Hk/1
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Figure 14: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Ek/M/1
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Figure 15: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Ek/Ek/1
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Figure 16: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 17: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 18: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 19: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Hk/Hk/1
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Table 1 Vacation rate (η) vs expected system size - Exponential-A

service

η Exponential Erlang Hyperexponential

5 0.120659907 0.335551494 0.798654237

5.5 0.117283553 0.331603054 0.790156984

6 0.114733332 0.328581189 0.785684522

6.5 0.112762892 0.326217823 0.778725485

7 0.111210648 0.324335072 0.776131839

7.5 0.109967234 0.322811193 0.773832593

8 0.108956588 0.321560623 0.77193052

8.5 0.108124546 0.320521817 0.770586385

9 0.10743173 0.319649605 0.768578623

9.5 0.106848976 0.318910231 0.767878243

10 0.106354332 0.318278064 0.766823475

10.5 0.105931023 0.317733363 0.765928795

11 0.105566063 0.317260725 0.765248458

11.5 0.105249277 0.316847992 0.764572653

12 0.104972601 0.316485461 0.764568136

Table 2 Vacation rate (η) vs Expected system size - Erlang-A

service

η Exponential Erlang Hyperexponential

5 0.057197966 0.070334672 0.09364885

5.5 0.054411688 0.064934106 0.091947737

6 0.052360653 0.060794972 0.090637074

6.5 0.05081441 0.057554181 0.109606071

7 0.049624632 0.054970138 0.108780591

7.5 0.048692757 0.052877138 0.108109511

8 0.04795146 0.051158507 0.107556655

8.5 0.04735363 0.049730205 0.107095843

9 0.046865592 0.048530471 0.106707752

9.5 0.046462815 0.047513107 0.106377871

10 0.046127126 0.046643004 0.106095132

10.5 0.045844857 0.045893101 0.105850975

11 0.045605584 0.045242268 0.105638696

11.5 0.045401257 0.044673818 0.105452986

12 0.045225591 0.04417443 0.105289594
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Table 3 Vacation rate (η) vs Expected system size - Hyperexponential-A

service

η Exponential Erlang Hyperexponential

5 0.675602876 0.695049695 0.983254166

5.5 0.67458552 0.695038233 0.974170849

6 0.67380935 0.695029517 0.972452185

6.5 0.673203901 0.695022735 0.968948456

7 0.67272264 0.695017355 0.966131839

7.5 0.672015304 0.695013015 0.963832593

8 0.672015304 0.695009464 0.96193052

8.5 0.671751078 0.695006521 0.960338541

9 0.671529505 0.695004055 0.958992295

9.5 0.671341885 0.695001969 0.957843366

10 0.671181629 0.695012002 0.956854752

10.5 0.671043669 0.684998654 0.955997773

11 0.670924057 0.684997326 0.955249916

11.5 0.670819681 0.684996166 0.954593302

12 0.670728061 0.684995149 0.954013588
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