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Abstract

The purpose of this paper is to fit the Marshall-Olkin generalized-G(MOG-G) family to censored
survival data with random effect in the Bayesian environment. Three special distrbution based on MOG-G
family are obtained, namely Marshall-Olkin generalized-exponential, Marshall-Olkin generalized-Weibull,
and Marshall-Olkin generalized-Lomax. The probabilistic programming language STAN is used for the
fitting of these three distrbution to the survival data. STAN offers full Bayesian inference and implements
via Hamiltonian Monte Carlo algorithm and No-U-Turn Sampler(NUTS) algorithm of MCMC. We
compared the models with the help of leave one out cross-validation information criteria and Watanabe
Akaike information criteria. Stan codes for the analysis are provided.

Keywords: Bayesian modeling, Marshall-Olkin generalized-G family, censored survival data,
random effect, Leave one out information criteria, STAN

1. Introduction

In the survival analysis, researchers are using the extended version of standard distribution to ana-
lyze the lifetime data and problems related to the modeling of the aging or failure process. In this
paper, we have used the Marshall-Olkin generalized-G (MOG-G) family to fit censored survival
data, including the random effect. [1] proposed the MOG-G family and studied its mathematical
properties along with application in the fitting of lifetime data.The Marshall Olkin distribution
has been extended by using the genesis of other distributions to create a wider family of distri-
bution. see for example, Marshall-Olkin-G family [2], Kumaraswamy marshal-Olkin family [3],
beta Marshall-Olkin family [4], Beta Generalized Marshall-Olkin-G family [5], Exponentiated
Marshall-Olkin family [6], The generalized Marshall-Olkin-Kumaraswamy-G family [7], The Beta
generalized Marshall-Olkin Kumaraswamy-G [8], The exponentiated generalized Marshall–Olkin
family [9], The Weibull Marshall–Olkin family [10].

We have considered the three models based on the MOG-G family and are fitted to the
survival data. The first model is Marshall-Olkin Generalized-Exponential(MOG-E), the second
is Marshall-Olkin Generalized-Weibull (MOG-W) model, and the third one is Marshall-Olkin
Generalized-Lomax (MOG-L) model. The data with random effect significantly affects the
distribution of the patients’ survival time and accounts heterogeneity among the patients. Fitting
a large number of random effects in a non-Bayesian setting requires a large amount of data. Often,
the data is too small to estimate random-effects parameters reliably. However, Bayesian modeling
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can be used if there is not enough data for inferential statistics. So, the above three models have
been fitted to the censored survival data under the Bayesian setup in R [11] using the probabilistic
programming language STAN [12], which offers full Bayesian inference. STAN uses Hamiltonian
Monte Carlo (HMC) sampling [13],[14] and its extension. No-U-Turn Sampler(NUTS) [15]
algorithm of MCMC for the simulation and computation of posterior estimate. HMC is a
more efficient and sophisticated MCMC algorithm, and it is the combination of MCMC and
deterministic simulation methods. To find the region of posterior distribution with high mass,
HMC uses the gradient of the log posterior density. After that, it jumps around the posterior
distribution [16]. Whether the priors are conjugate or not, the above algorithms converge at a fast
rate to high dimensional target distributions as compared to other algorithms of MCMC [15].

The purpose of this paper is to fit the three models, namely MOG-E, MOG-W, and MOG-L, to
the censored survival data containing random effects under the Bayesian environment using the
R and STAN and select the best model for the real survival data.

2. Marshal-Olkin Generalized-G family

Suppose that G(t, ψ) and g(t, ψ) be baseline cdf and pdf of a continuous random variable T with
parameter vector ψ. The cdf, pdf, survival function, and hazard function of the MOG-G family
are respectively given by

F(t, a, α, ψ) =
1− [1− G(t, ψ)]a

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (1)

f (t, a, α, ψ) =
αag(t, ψ)[1− G(t, ψ)]a−1

[1− (1− α)[1− G(t, ψ)]a]2
, t ∈ R (2)

S(t, a, α, ψ) =
α[1− G(t, ψ)]a

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (3)

h(t, a, α, ψ) =
ag(t, ψ)[G(t, ψ)]−1

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (4)

Hence forth a random variable T with pdf (2) is denoted by T∼MOG-G(α,a,ψ), where α and a are
two positive shape parameter.

2.1. Marshall-Olkin Generalized Exponential model

Consider T as a continous random variable follow an exponential distribution with scale parameter
λ > 0, whose pdf and cdf is given by g(t) = 1

λ e−
t
λ and G(t) = 1− e−

t
λ , t > 0. Then the pdf and

cdf of MOG-E model are respectively given by

f (t) =
αa 1

λ exp(−a t
λ )[

1− (1− α)exp(−a t
λ )
]2 (5)

F(t) =
1− exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(6)

The survival function corresponding to Equation (6) is given as

S(t) =
α exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(7)

Hazard function of the MOG-E model is written as

h(t) =
a 1

λ

1− (1− α)exp(−a t
λ )

(8)
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In survival analysis, random generation of time variable from a survival model is done by putting
u = S(t), where U is a random variable follow Uni f orm(0, 1). So, the generation of time variable
from MOG-E model is obtained by

t =
λ

a
log
( α

u
+ (1− α)

)
(9)

Following the [17], the joint likelihood function for right censored data is given as

L =
n

∏
i=0

Pr(ti, δi) =
n

∏
i=0
{h(ti)}δi S(ti) (10)

here δi is an indicator variable

δi =

{
0, censored
1, observed

The likelihood function for the MOG-E survival model is given by

L =
n

∏
i=0

{
a 1

λ

1− (1− α)exp(−a t
λ )

}δi

×
α exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(11)

2.2. Marshall-Olkin Generalized Weibull model

Let g(t) and G(t) be the pdf and cdf of Weibull distribution with shape parameter γ > 0 and
scale parameter λ > 0. Where, g(t) = γ

λγ tγ−1e−(
t
λ )

γ
and G(t) = 1− e−(

t
λ )

γ
, t > 0. Then the pdf

of MOG-W model is given by

f (t) =
αaγ 1

λ tγ−1exp(−a( t
λ )

γ)[
1− (1− α)exp(−a( t

λ )
γ)
]2 (12)

Therefore, random variable T is denoted by T∼MOG-W(α,a,γ,λ). The cdf of MOG-W model is
written as

F(t) =
1− exp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(13)

Survival function and hazard function of the MOG-W model are given respectively

S(t) =
αexp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(14)

h(t) =
aγ 1

λ tγ−1

1− (1− α)exp(−a( t
λ )

γ)
(15)

Random generation from the MOG-W model is done by the expression given below

t = λ

[
1
a

log
( α

u
+ (1− α)

)] 1
γ

(16)

Using the Equation (10), the joint likelihood function for the MOG-W model based on right
censored is written as

L =
n

∏
i=0

{
aγ 1

λ tγ−1

1− (1− α)exp(−a( t
λ )

γ)

}δi

×
αexp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(17)
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2.3. Marshall-Olkin Generalized Lomax model

Taking Lomax distribution with parameters γ > 0 and λ > 0 having pdf g(t) = γ
λ

(
1 + t

λ

)−(γ+1)

and cdf G(t) = 1−
(
1 + t

λ

)−γ, t > 0. Then the pdf and cdf of a random variable T∼MOG-
L(α,a,γ,λ) model are given respectively

f (t) =
αa γ

λ

(
1 + t

λ

)−1 (1 + t
λ

)−aγ[
1− (1− α)

(
1 + t

λ

)−aγ
]2 (18)

F(t) =
1−

(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (19)

Survival function of the MOG-L is given by

S(t) =
α
(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (20)

Hazard function of the MOG-L is written as

h(t) =
αa γ

λ

(
1 + t

λ

)−1

1− (1− α)
(
1 + t

λ

)−aγ (21)

Generation of survival time from the MOG-L model is given by

t = λ

[( α

u
+ (1− α)

) 1
aγ − 1

]
(22)

The joint likelihood function for the MOG-L model is written as

L =
n

∏
i=0

{
αa γ

λ

(
1 + t

λ

)−1

1− (1− α)
(
1 + t

λ

)−aγ

}δi

×
α
(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (23)

3. Kidney catheter data

This dataset, originally discussed in [18]. The study concerns with the recurrence times to
infection, at the point where the catheter is inserted, for kidney patients using portable dialysis
equipment. The data consist of times until the first and second recurrence of kidney infection
in 38 patients. Each patient has exactly two observations. Each survival time is the time until
infection since the insertion of the catheter. A Catheter may be removed for reasons other than
infection, in which case the observation is censored. There are about 24% censored observations
in the dataset. This data set has unmeasured or ’random’ effect that is an identification code of
patients, which accounts heterogeneity among the patients. This data set available in the package
survival [19] of R [11].

Discription of kidney catheter data variables are given below:
time: time to infection in days
status: event status, 1=infection occurs or 0=censored
age: age in years
sex: 1=male, 2=female
disease: disease type(0=GN, 1=AN, 2=PKD, 3=Other)
id: identification code of the patients
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3.1. Construction of data frame in R

Fitting of Bayesian models to the kidney catheter data with stan function requires data in a listed
form, which we have created as below;

require(survival)
data(cancer, package="survival")
head(kidney)
y=kidney$time
x1=kidney$age
x2=kidney$sex
kidney$disease1=as.numeric(kidney$disease)
x3=kidney$GN=as.numeric(kidney$disease1==2)
x4=kidney$AN=as.numeric(kidney$disease1==3)
x5=kidney$PKD=as.numeric(kidney$disease1==4)
x=cbind(1,x1,x2,x3,x4,x5)
N=nrow(x)
M=ncol(x)
J=38
event=kidney$status
Id=as.integer(kidney$id)##identity of subject
datk=list(y=y,x=x,N=N,M=M,event=event,J=J,Id=Id)

4. Bayesian Analysis of MOG-G family

4.1. Prior Specification

For the construction of the Bayesian regression model, we need to specify a prior distribution to
the parameters of the model. We have chosen half-Cauchy prior for shape and scale parameters
and regularizing prior for regression coefficient.

4.1.1 Half-Cauchy prior distribution

The probability density function of half-Cauchy distribution with scale γ is given by

f (x) =
2γ

π(x2 + γ2)
, x > 0, γ > 0

The mean and variance of half-cauchy distribution does not exist, but its mode is equal to zero.
The half-cauchy distribution with scale γ=25 is nearly flat prior but not completely, the prior
distribution that are not completely flat provides enough information for the numerical approx-
imation algorithm to continue to explore the target density, the posterior distribution [20],[21].
[22] support the use half cauchy prior for scale parameter because of its excellent frequentist risk
properties, and its sensible behaviour in the presence of sparsity compared to the usual conjugate
aternative. [20] have also discussed the points in support of half cauchy prior.

4.1.2 Gaussian prior distribution

The probability density function of Gaussian distribution with mean µ and variance σ2 is given
by

f (x) =
1√

2πσ2
exp(− (x− µ)2

2σ2 ), −∞ < x < ∞, σ > 0, µ > 0

In this paper, we have chosen Gaussian prior with mean 0, and standard deviation 5 for β
coefficient as a regularizing prior because this prior prevent a model from getting too excited by
the data that slows the rate of over excitement of model and reduce the overfitting of data to the
model [23].
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4.2. Model Specification

Following the [24] to build a regression model, we have introduced covariates including random
intercept through the log link function i.e.

log(λi) = β1 + w[subji ] + β2xi1 + β3xi2 + β4xi3 + β5xi4 + β6xi5

λi = exp(β1 + w[subji ] + β2xi1 + β3xi2 + β4xi3 + β5xi4 + β6xi5)

or,
λi = exp(w[subji ] + xiβ)

where, w[subji ] is the variability accounted by subject or patients called as the random intercept,
w ∼ N(0, σw), and β ∼ N(0, σ = 5)

4.2.1 Posterior density of MOG-E

By using bayes theorem, the joint posterior distribution is given as

P(a, α, β|X, t) ∝ L(t|a, α, β, X)× P(a)× P(α)× P(β) (24)

P(a, α, β|X, t) ∝
n

∏
i=0


a 1

exp(w[subji ]
+xi β)

1− (1− α)exp(−a t
exp(w[subji ]

+xi β)
)


δi

×
α exp(−a t

exp(w[subji ]
+xi β)

)

1− (1− α)exp(−a t
exp(w[subji ]

+xi β)
)

(25)

× 2× 25
π(a2 + 252)

× 2× 25
π(α2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.2.2 Posterior density of MOG-W

By using bayes theorem, the joint posterior distribution is given as

P(a, α, γ, β|X, t) ∝ L(t|a, α, γ, β, X)× P(a)× P(α)× P(γ)× P(β) (26)

P(a, α, γ, β|X, t) ∝
n

∏
i=0


aγ 1

exp(w[subji ]
+xi β)

tγ−1

1− (1− α)exp(−a( t
exp(w[subji ]

+xi β)
)γ)


δi

(27)

×
αexp(−a( t

exp(w[subji ]
+xi β)

)γ)

1− (1− α)exp(−a( t
exp(w[subji ]

+xi β)
)γ)
× 2× 25

π(a2 + 252)
× 2× 25

π(α2 + 252)

× 2× 25
π(γ2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.2.3 Posterior density of MOG-L

By using bayes theorem, the joint posterior distribution is given as

P(a, α, γ, β|X, t) ∝ L(t|a, α, γ, β, X)× P(a)× P(α)× P(γ)× P(β) (28)
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P(a, α, γ, β|X, t) ∝
n

∏
i=0


αa γ

exp(w[subji ]
+xi β)

(
1 + t

exp(w[subji ]
+xi β)

)−1

1− (1− α)

(
1 + t

exp(w[subji ]
+xi β)

)−aγ


δi

(29)

×
α

(
1 + t

exp(w[subji ]
+xi β)

)−aγ

1− (1− α)

(
1 + t

exp(w[subji ]
+xi β)

)−aγ ×
2× 25

π(a2 + 252)
× 2× 25

π(α2 + 252)

× 2× 25
π(γ2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.3. Implementation using Stan

Bayesian modeling of MOG-G family in STAN language includes the creation of blocks: functions
block, data block, transformed data block, parameters block, transformed parameters block,
model block, and generated quantities block. To run STAN code in R requires package rstan that
is an interface of R and STAN.

4.3.1 Stan code for MOG-E model

modelMOGE="functions{
vector log_moegs(vector t, real a, real alpha, vector lambda){
vector[num_elements(t)]log_moegs;
for(i in 1:num_elements(t)){
log_moegs[i]=log(alpha)-a*t[i]/lambda[i]-log(1-(1-alpha)*exp(-a*t[i]/lambda[i]));
}
return log_moegs;
}
vector log_moegh(vector t, real a, real alpha, vector lambda){
vector[num_elements(t)]log_moegh;
for(i in 1:num_elements(t)){
log_moegh[i]=log(a)-log(lambda[i])-log(1-(1-alpha)*exp(-a*t[i]/lambda[i]));
}
return log_moegh;
}
real surv_MOEG_lpdf(vector t, vector d, real a, real alpha, vector lambda){
vector[num_elements(t)] llikmoeg;
real prob;
llikmoeg=d .* log_moegh(t,a,alpha,lambda)+log_moegs(t,a,alpha,lambda);
prob=sum(llikmoeg);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
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real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOEG_lpdf(y|event,a,alpha,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmoeg;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)-log(lambda[n])-log(1-(1-alpha)*exp(-a*y[n]/
lambda[n])))+log(alpha)-a*y[n]/lambda[n]-log(1-(1-alpha)*exp(-a*y[n]/lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmoeg[n]=(lambda[n]/a)*log(alpha/u+(1-alpha));
}
dev=dev+(-2)*surv_MOEG_lpdf(y|event,a,alpha,lambda);
}"

4.3.2 Stan code for MOG-W model

modelMOGW="functions{
vector log_mogws(vector t, real a, real alpha,real gamma, vector lambda){
vector[num_elements(t)]log_mogws;
for(i in 1:num_elements(t)){
log_mogws[i]=log(alpha)-a*(t[i]/lambda[i])^(gamma)-log(1-(1-alpha)
*exp(-a*(t[i]/lambda[i])^(gamma)));
}
return log_mogws;
}
vector log_mogwh(vector t, real a, real alpha, real gamma, vector lambda){
vector[num_elements(t)]log_mogwh;
for(i in 1:num_elements(t)){
log_mogwh[i]=log(a)+log(gamma)-gamma*log(lambda[i])+(gamma-1)*log(t[i])
-log(1-(1-alpha)*exp(-a*(t[i]/lambda[i])^(gamma)));
}
return log_mogwh;
}
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real surv_MOGW_lpdf(vector t, vector d, real a, real alpha,real gamma,vector lambda){
vector[num_elements(t)] llikmogw;
real prob;
llikmogw=d .* log_mogwh(t,a,alpha,gamma,lambda)+log_mogws(t,a,alpha,gamma,lambda);
prob=sum(llikmogw);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
real<lower=0> gamma;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(gamma|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOGW_lpdf(y|event,a,alpha,gamma,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmogw;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)+log(gamma)-gamma*log(lambda[n])+(gamma-1)*
log(y[n])-log(1-(1-alpha)*exp(-a*(y[n]/lambda[n])^(gamma))))+log(alpha)
-a*(y[n]/lambda[n])^(gamma)-log(1-(1-alpha)*exp(-a*(y[n]/lambda[n])^(gamma)));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmogw[n]=lambda[n]*((1/a)*log(alpha/u+(1-alpha)))^(1/gamma);
}
dev=dev+(-2)*surv_MOGW_lpdf(y|event,a,alpha,gamma,lambda);
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}"

4.3.3 Stan code for MOG-L model

modelMOGL="functions{
vector log_mogls(vector t, real a, real alpha,real gamma, vector lambda){
vector[num_elements(t)]log_mogls;
for(i in 1:num_elements(t)){
log_mogls[i]=log(alpha)-a*gamma*log(1+t[i]/lambda[i])-log(1-(1-alpha)
*(1+t[i]/lambda[i])^(-a*gamma));
}
return log_mogls;
}
vector log_moglh(vector t, real a, real alpha, real gamma, vector lambda){
vector[num_elements(t)]log_moglh;
for(i in 1:num_elements(t)){
log_moglh[i]=log(a)+log(gamma)-log(lambda[i])-log(1+t[i]/lambda[i])-
log(1-(1-alpha)*(1+t[i]/lambda[i])^(-a*gamma));
}
return log_moglh;
}
real surv_MOGL_lpdf(vector t, vector d, real a, real alpha,real gamma,vector lambda){
vector[num_elements(t)] llikmogl;
real prob;
llikmogl=d .* log_moglh(t,a,alpha,gamma,lambda)+log_mogls(t,a,alpha,gamma,lambda);
prob=sum(llikmogl);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
real<lower=0> gamma;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
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target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(gamma|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOGL_lpdf(y|event,a,alpha,gamma,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmogl;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)+log(gamma)-log(lambda[n])-log(1+y[n]/lambda[n])
-log(1-(1-alpha)*(1+y[n]/lambda[n])^(-a*gamma)))+log(alpha)-a*gamma*log(1+y[n]/lambda[n])
-log(1-(1-alpha)*(1+y[n]/lambda[n])^(-a*gamma));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmogl[n]=lambda[n]*((alpha/u+(1-alpha))^(1/(a*gamma))-1);
}
dev=dev+(-2)*surv_MOGL_lpdf(y|event,a,alpha,gamma,lambda);
}"

4.4. Fitting with Stan

To fit the survival models based on MOG-G family, the function stan is used, and list datk of
data pass into the function stan. STAN used C++ compiler to samples the posterior distrbution
of the model parameters, including random intercepts wj for each patient J. To get summary of
result, the function print is used.

4.4.1 Fitting of MOG-E model

MOGE=stan(model_code = modelMOGE,data=datk,iter=5000,chains = 2)
print(MOGE)

Summarizing Output: After fitting of MOG-E survival model to the kidney data set, we get the
results in tabular form are given in Table 1. It contains posterior estimates, standard deviation,
credible interval, n_eff(crude estimate of effective sample size), and Rhat called as potential scale
reduction factor [16], which estimate the convergence of Markov chain to the target distribution.
Besides R̂, Traceplot also shows the convergence of the Markov chain. According to [16] the
acceptable limit of n_eff is >100 and R̂ values lower than 1.1. Rhat for all parameters of the
MOG-E model is close to 1, which means Markov chains converge to the target distribution, the
Monte Carlo error is acceptable, and the effective sample size is reasonable. Here, we can see that
the posterior estimate of parameters β1 (Intercept) is 4.440, and β3 (Sex) is 1.678 are statistically
significant as 95% credible interval (CI) does not contains 0 respectively. The positive value of β3
inferred that the male patients have more chance to get infected at the place where a catheter is
inserted than the female patients. The posterior estimate of parameters β2 (Age) is -0.002, β4 (AN)
is -0.116, β5 (GN) is -0.544 and β6 (PKD) is 0.906 are not statistically significant as corresponding
CI includes 0.
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Table 1: Posterior summary of MOG-E model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.440 0.033 1.728 0.833 4.468 7.612 2699 1.001
beta[2] -0.002 0.000 0.013 -0.029 -0.002 0.025 2584 1.000
beta[3] 1.678 0.007 0.387 0.917 1.678 2.427 3309 1.000
beta[4] -0.116 0.009 0.483 -1.085 -0.112 0.836 2678 1.000
beta[5] -0.544 0.009 0.484 -1.533 -0.533 0.397 2777 1.000
beta[6] 0.906 0.014 0.717 -0.493 0.910 2.317 2456 1.000
a 129.344 78.878 2544.490 0.671 18.762 275.779 1041 1.002
alpha 2.825 0.059 2.186 0.534 2.225 8.820 1397 1.001
sigma_w 0.651 0.012 0.221 0.195 0.660 1.091 367 1.003

Graphical Analysis

(a) (b)

Figure 1: (a) Traceplot of MOG-E model parameters, two chains were run depicted in different color and mixing of
two chains is good means Markov chains converge to the target distribution, and (b) Caterpillar plot of the MOG-E
model parameters.
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(a) (b)

Figure 2: (a) Posterior density plot MOG-E model parameters, (b) Autocorrelation plot of MOG-E model parameters,
after 20 lag autocorrelation declining towards zero.

Figure 3: The posterior predictive density (PPD) plot of the MOG-E model is done by plotting the data
y and then overlaying the density of the predicted values yrep, which are generated from the posterior
predictive distribution of the given model. PPD plot of the MOG-E model shows that the posterior predictive
density fits the data well.

4.4.2 Fitting of MOG-W model

MOGW=stan(model_code = modelMOGW,data=datk,iter=5000,chains = 2)
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print(MOGW)

Summarizing Output: It is an evident from Table 2 that the Rhat of the MOG-W model parame-
ters are close to 1, which indicates Markov chain converges to the target distribution and effective
sample size is enough to get conversion.

Table 2: Posterior summary of MOG-W model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.289 0.053 2.252 -0.936 4.468 8.381 1807 1.000
beta[2] -0.001 0.000 0.014 -0.028 -0.001 0.027 1892 1.001
beta[3] 1.688 0.007 0.391 0.930 1.686 2.451 2978 1.000
beta[4] -0.164 0.010 0.479 -1.130 -0.155 0.744 2102 1.002
beta[5] -0.586 0.011 0.489 -1.582 -0.577 0.350 1935 1.001
beta[6] 0.841 0.020 0.742 -0.625 0.858 2.323 1383 1.002
a 38.413 2.699 169.093 0.786 15.061 185.706 3926 1.000
alpha 72.737 12.350 726.957 0.109 7.801 335.523 3465 1.001
gamma 0.800 0.010 0.357 0.289 0.744 1.562 1332 1.000
sigma_w 0.622 0.013 0.227 0.175 0.630 1.063 288 1.002

Graphical Analysis

(a) (b)

Figure 4: (a) Traceplot of MOG-W model parameters, two chains were run depicted in different color and (b)
caterpillar plot of the MOG-W model parameters.
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(a) (b)

Figure 5: (a) Posterior density plot MOG-W model parameters, (b) Autocorrelation plot of MOG-W model parameters,
after 20 lag autocorrelation declining towards zero.

Figure 6: PPD plot of the MOG-W model shows that the posterior predictive density fits the data well and
good compatibility of the model to the data.

4.4.3 Fitting of MOG-L model

MOGW=stan(model_code = modelMOGW,data=datk,iter=5000,chains = 2)
print(MOGW)
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Table 3: Posterior summary of MOG-L model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 5.180 0.115 3.164 -0.916 5.636 10.534 753 1.012
beta[2] -0.002 0.000 0.013 -0.027 -0.002 0.025 2500 1.000
beta[3] 1.693 0.007 0.377 0.944 1.700 2.433 3111 1.000
beta[4] -0.153 0.010 0.494 -1.146 -0.161 0.839 2577 1.000
beta[5] -0.562 0.009 0.470 -1.478 -0.567 0.394 2478 1.000
beta[6] 0.869 0.014 0.713 -0.530 0.867 2.274 2501 1.000
a 41.617 9.152 641.724 0.119 9.765 182.772 4916 1.000
alpha 11.755 1.010 41.049 0.639 3.193 82.591 1653 1.004
gamma 32.510 2.419 163.682 0.129 10.641 152.084 4580 1.000
sigma_w 0.611 0.014 0.226 0.201 0.612 1.058 253 1.013

Graphical Analysis

(a) (b)

Figure 7: (a) Traceplot of the MOG-L model parameters, two chains were run depicted in different color and (b)
caterpillar plot of the MOG-L model parameters.
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(a) (b)

Figure 8: (a) Posterior density plot the MOG-L model parameters, (b) Autocorrelation plot of the MOG-L model
parameters, after 20 lag autocorrelation declining towards zero.

Figure 9: PPD plot of the MOG-L model shows that the posterior predictive density fits the data well, and
the model is compatible with the given data.

4.5. Bayesian model Comparison

In order to compare the fitted models, we consider the model selection criteria like Watanabe
Akaike information criteria [25] and leave one out cross-validation information criteria (LOOIC).
However, the lower value of these selection methods indicates a better model fit. The WAIC and
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LOOIC are two fully Bayesian selection methods than the others information criteria. They are
methods for estimating pointwise out of sample prediction accuracy from a fitted Bayesian model
using the log-likelihood evaluated at the posterior simulations of the parameters [16]. Although
WAIC is asymptotically equal to LOOIC, it is preferable to use LOOIC because of its robustness
in finite cases with weak priors or influential observation.

Table 4: WAIC and LOOIC values for all models.

Model No of parameters WAIC LOOIC

MOG-E 3 667.9 673.3
MOG-W 4 671.1 675.8
MOG-L 4 670.5 674.0

From Table 4, it is evident that the value of WAIC and LOOIC of the MOG-E model is less
than the MOG-W and MOG-L, which means the MOG-E model is a better survival model as
compared to other models for Kidney catheter data.

5. Discussion and Conclusion

In this paper, the MOG-G family are fitted to the real survival data includes random effect in
Bayesian setup, which is implemented by STAN language using package rstan of R. For all models,
the Markov chains converges to the target distribution, and covariate Sex is significant. The
Posterior predictive check has been computed using the posterior predictive density plot for the
MOG-E, MOG-W, and MOG-L models. We have seen in the PPD plot, the data y and replicated
data set yrep are showing the same behavior and looks similar which means the replicated data
sets are coming from the same model as the given data set, and all are the adequate model for
predicting the future value. Upon comparison with the results obtained through LOOIC and
WAIC, it can be concluded that the MOG-E model fits the data better than MOG-W and MOG-L.

References

[1] Yousof, H. M., Afify, A. Z., Nadarajah, S., Hamedani, G., and Aryal, G. R. (2018). The
marshall-olkin generalized-g family of distributions with applications. Statistica, 78(3):273-
295.

[2] Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of
distributions with application to the exponential and weibull families. Biometrika, 84(3):641-
652.

[3] Alizadeh, M., Tahir, M., Cordeiro, G. M., Mansoor, M., Zubair, M., and Hamedani, G. (2015).
The kumaraswamy marshal-olkin family of distributions. Journal of the Egyptian Mathematical
Society, 23(3):546-557.

[4] Alizadeh, M., Cordeiro, G. M., Brito, E. d., and B Demeétrio, C. G. (2015). The beta marshall-
olkin family of distributions. Journal of Statistical Distributions and Applications, 2(1):1-18.

[5] Handique, L. and Chakraborty, S. (2016). The beta generalized marshall-olkin-g family of
distributions. arXiv preprint arXiv:1608.05985.

[6] B Dias, C. R., Cordeiro, G. M., Alizadeh, M., Diniz Marinho, P. R., and Campos Coelho, H. F.
(2016). Exponentiated marshall-olkin family of distributions. Journal of Statistical Distributions
and Applications, 3(1):1-21.

[7] Chakraborty, S. and Handique, L. (2017). The generalized marshall-olkin-kumaraswamy-g
family of distributions. Journal of data Science, 15(3):391-422.

[8] Handique, L. and Chakraborty, S. (2017). The beta generalized marshall-olkin kumaraswamy-
g family of distributions with applications. Int. J. Agricult. Stat. Sci, 13(2):721-733.

Shazia Farhin, Firdoos Yousuf, Athar Ali Khan
BAYESIAN SURVIVAL MODELING OF MARSHAL OLKIN 
GENERALIZED-G FAMILY WITH RANDOM EFFECTS USING R AND STAN

RT&A, No 2 (68)
 Volume 17, June 2022

439



[9] Handique, L., Chakraborty, S., and de Andrade, T. A. (2019). The exponentiated generalized
marshallolkin family of distribution: its properties and applications. Annals of Data Science,
6(3):391-411.

[10] Korkmaz, M. C., Cordeiro, G. M., Yousof, H. M., Pescim, R. R., Afify, A. Z., and Nadarajah,
S. (2019). The weibull marshallolkin family: Regression model and application to censored
data. Communications in Statistics-Theory and Methods, 48(16):4171-4194.

[11] R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

[12] Team, S. D. et al. (2017). Stan modeling language users guide and reference manual. Technical
report.

[13] Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo.
Physics letters B, 195(2):216-222.

[14] Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov chain
monte carlo, 2(11):2.

[15] Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593-1623.

[16] Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014).
Bayesian data analysis. Chapman and Hall/CRC.

[17] Collett, D. (2015). Modelling survival data in medical research. CRC press.
[18] McGilchrist, C. and Aisbett, C. (1991). Regression with frailty in survival analysis. Biometrics,

461-466.
[19] Therneau, T. M. and Lumley, T. (2014). Package ‘survival’. Survival analysis Published on

CRAN, 2:3.
[20] Khan, N. and Khan, A. A. (2018). Bayesian analysis of topp-leone generalized exponential

distribution. Austrian Journal of Statistics, 47(4):1-15.
[21] Akhtar, M. T. and Khan, A. A. (2014). Bayesian analysis of generalized log-burr family with

R. SpringerPlus, 3(1):185.
[22] Gelman, A. et al. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian analysis, 1(3):515-534.
[23] McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan.

Chapman and Hall/CRC.
[24] Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley and Sons.
[25] Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applica-

ble information criterion in singular learning theory. Journal of Machine Learning Research,
11(12):3571:3594.

Shazia Farhin, Firdoos Yousuf, Athar Ali Khan
BAYESIAN SURVIVAL MODELING OF MARSHAL OLKIN 
GENERALIZED-G FAMILY WITH RANDOM EFFECTS USING R AND STAN

RT&A, No 2 (68)
 Volume 17, June 2022

440




