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Abstract

The joint experiment J (4 py of two binary trials AU A® and BU B in a probability space can be produced
not only by the ordered pair (A, B) but by a set consisting, in general, of 24 ordered pairs of events
(named Yule’s pairs). The probabilities &1, Co,C3,C4 of the four results ofﬁ(A,B) are linear functions in
three variables « = Pr(A), B = Pr(B), 8 = Pr(A N B), and constitute a probability distribution. The
symmetric group Sy of degree four has an exact representation in the affine group Aff(3,R), which is
constructed by using the types of the form [a, B, 0] of those 24 Yule's pairs. The corresponding action of
Sy permutes the components of the probability distribution (&1, &, &3, C4), and, in particular, its entropy
function is Sy-invariant. The function of degree of dependence of two events, defined in the first part of
this paper via modifying the entropy function, turns out to be a relative invariant of the dihedral group of
order 8.

Keywords: probability space; experiment in a sample space; probability distribution; entropy;
degree of dependence; relative invariant.

1. INTRODUCTION

The initial idea of this work was to describe all symmetries of the sequence of Yule’s pairs from
which produce one and the same experiment [3} 4.1,(1)]. If we consider the equivalence classes
of the form [(«, B,0)] that contain the members of (I), then the naturally constructed in terms of
coordinate functions a, 8,6 affine automorphisms of the linear space IR® form a group which is
isomorphic to the symmetric group Sy4, see Section 2, Theorem [1| The components (1, &2, C3, G4 Of
the probability distribution [3, 4.1,(2)] are linear functions in «, 8, 8. The group S, naturally acts
via above isomorphism and permutes ¢;’s. As a consequence we obtain Theorem [ which asserts
that the entropy function E, g(6) = E(a, B,8) of the probability distribution (¢1,&2,&3,¢4) (see [3)
5.1]) is an absolute S4-invariant.

In Section 3, Theorem we show that the degree of dependence function ea,ﬁ(G), defined in [3}
5.2] via "normalization" of the entropy function E,4(0), is a relative invariant of the dihedral
group Dsg, see [2, Ch.1,1.]. The proof uses the embedding of Dg as one of the three Sylow
2-subgroups of Sy.

We use definitions and notation from [3] 2].

2. METHODS
In this paper we are using fundamentals of:

¢ Affine geometry and Real algebraic geometry
¢ Invariant Theory.
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3. TaE GROUP OF SYMMETRY OF AN EXPERIMENT

3.1. Yule’s Pairs and Experiments

Let A,B € A. We define AOB = (AAB)¢, where AAB = (A°N B) U (AN B°) is the symmetric
difference of A and B.

Any ordered pair (A, B) € A2 produces the experiment J = J(A,B) from [3, 4.1,(1)], which
is naturally identified with the partition {A N B, AN B¢, AN B, A°N B} of O (cf. [4, 1L§5]). The
proof of the next Lemma is straightforward.

Lemma 1. Yule’s pairs from the sequence with members

(A, B) of type (a,8,0),
(A,B°) of type (a«,1—B,a —0),
(A, B) of type (1 —«,B,—0),
(A, B°) of type (1 —a,1 —B,1—a—p+90),
(B, A) of type (B, «,0),
(B, A°) of type (B,1—a, B —0),
(B, A) of type (1 — B, &, — 0),

(B, A%) of type (1 —B,1—a,1—a—p+90),
(A, AQB) of type (x,1 —a — +26,0),
(AOB, A) of type (1 —a —p+26,a,0),
(B, AOB) of type (B,1—a — B+26,0),
(AOB, B) of type (1 —a — B +26,5,0), )

A, AQB) of type (1—a,1—a—B+20,1—a—B+6),

AQB,A%) of type (1—a—pB+20,1—a,1—a—p+0),

B, AQB) of type (1—B,1—a—B+20,1—a—B+0)

AQB,B°) of type (1 —a—p+20,1-B,1—a—p+0),

(A, AAB) of type (&, &+ — 26,0 — 0),
(AAB, A) of type (a + B —26,a,a — 6),
)
)

7

(
(
(
(

(
(B, AAB) of type (B,a+p—20,—0
(AAB,B) of type (x +p—260,B,—0

A, AAB) of type (1 —a,a + B — 26,8 —90),
ANAB,A°) of type (a + B —20,1 —a, B —6),
B, AAB) of type (1 —B,a+ B — 26,0 —0)
AAB,B°) of type (a +p—20,1—B,a —0)

7

o~~~ —~

are exactly the pairs that produce the experiment J(4 p).

Remark 1. (i) According to [T} 2.1, 2.7.1, 2.8.4], the set of points (&, 8,0) in R3 where the types
from Lemma [I] are pair-wise different is semi-algebraic, open, and three-dimensional. Its trace U3
on the interior T5 of the classification tetrahedron T from [3, 4.1] is not empty because otherwise
T5 would be subset of a finite union of planes. Theorem 2.2.1 from [} 2.1] guaranties that the
open two dimensional projection Uy of Uz onto aB-plane is semi-algebraic. Note that "openness”
is with respect to the standard topology in IR>.

(ii) Under some "plentifulness" condition on Boolean algebra A (for example, if it is non-
atomic), there exist plenty of Yule’s pairs (A, B) of type («,f) € Up. In this case (we call it
"general") the sequence from Lemma |1|consists of 24 Yule’s pairs.
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3.2. The Group of Symmetry

Let & be the set of all experiments in the probability space ((, A, Pr), that is, the set of all finite
partitions of () with members from A. The rule (4, B) — J (A,B) defines a map J: A? — € and
Lemma (1| implies that the inverse image 3~ (J ( A,B)) coincides with the associated set of the
sequence (I). Let us denote by Z 4 p) the set of equivalence classes in A2 of the form [(a, 8,0)],
which contain the members of 3’1(3(14,3)). If « = Pr(A), p =Pr(B), 6 = Pr(ANB), then (A, B)
is a Yule’s pair of type («,B,0), (A, B°) is a Yule’s pair of type (a,1 — B,a —0), (A, B) is a Yule’s
pair of type (1 —a,B, 3 — 6), etc. Considering &, 8,0 as coordinate functions in IR?, the members
of Z(4,p) produce the set &4 consisting of 24 affine automorphisms of IR? from the following list:

¢a)(a B, 0) = (a,B,0),

Pa2)34) (@, B,0) = (0,1 —B,a—0),
P3)24)(a, B,0) = (1 —a, B, —0),
Paay23)(@,B0)=1—-a,1-B1—a—p+0),
P23) (%, B, 0) = (B, 0),

(0,8,6) = (B,1—a,p—10),

P (1243 (0, 8,0) = (1—B,a,a—0),
Pae(ap0)=1-p1l-al—-—a—-p+0),
Pay(a, B,0) = (2,1 —a— p+26,0),

P(3) (0, B,0) = (1 —a— p+20,a,0),

P20 (2, B,0) = (B,1—a — p+26,06),
Poay(a,B,0) = (1—a—p+26,B,0),
Paa)(0,p,0) =(1—-a,l—a—p+20,1—a—p+0),
Pas) (e, B,0)=(1—a—p+20,1—al—a—p+0),
Pz (@, B,0)=(1—-B1—a—p+20,1—a—p+0),
Pz (@B, 0) =(1—a—p+20,1—-B1—a—p+0),
P(12) (a,B,0) = (v, +p—260,a —0),

P23 (@, B,0) = (a +p—20,a,0 — ),
Paz)(a,B,0) = (Ba+p—20,—10),

Pz, B,0) = (x+p—20,B,p—0),

Pz (0, B, 0) = (1—a,a+p—20,—0),
P3a) (0, B, 0) = (a +p—20,1—a,p—0),
P(12a) (0, ,0) = (1= Ba+p—20,a —0),
Pa234)(@, B,0) = (x+p—20,1—p,a—0).

P (1342)
)

The above affine automorphisms of IR are indexed by the permutations ¢ from the symmetric
group S4 because of the theorem below.
The operator of symmetry

o: H— H,(81,82,83,84) = (Co101),81(2): G013 Co1(a))s

permutes the components of the probability distribution [3} 4.1,(2)] produced by the experiment
J(a,p) and we have

443



Valentin Vankov Iliev RT&A, No 2 (68)
ENTROPY AND DEPENDENCE OF TWO EVENTS Volume 17, June 2022

Theorem 1. (i) One has o ¢ ,-1=0 oL

(if) The map
Sy — Aff(3,R),0 — ¢, -1, 2)

is a group anti-monomorphism with image &;.
(iii) The group &; is the affine symmetry group of the classification tetrahedron Ts.

1

Proof. (i) It is enough to check the equality ¢,-1 =17 oo o for all ¢ € S4. For example, let

o = (1243),s0 0~ = (1342). We have
(‘TO [)(0‘/ /3/9) = (50*1(1)/ 60*1(2)' 60*1(3)' 6(7*1(4)) = (€3/ gl/ 64/ 62)/

(lil o0Uo l) (“, ,B/ 9) = 171(63/ 1, G4, ‘:2) - (13’1 - a’ﬁ - 9) =
90(1342)(0‘/ B.0) = py(a,B,0).

(ii) The map (2) is injective; moreover, it is a group anti-homomorphism because @) = o
(Dor=(1)and gr1,1 = @)1 = lo(ot)or =11 1
P10 Pr-1.

(iii) In accord with part (i), for any o € Sy we have ((¢s(T3)) = ¢ 1(((T3)) = ¢ 1(A3) = As,
hence ¢(T3) = 17'(A3) = T3. On the other hand, S; is the symmetry group of the regular
tetrahedron (see, for example, [5] 8.4]). Since both tetrahedrons are isomorphic as affine spans,
the proof is done.

ogoTOL =1 oUotoFloToL:

For any o € 5S4 we write down the affine automorphism ¢, in terms of coordinates in
R3: ¢, (a,B,0) = (a(7),B(?),0(7)) and obtain that ¢, maps the components of the partition
Ts = U prepo 1]2{04} x {B} x I(a, B) onto the corresponding components of the partition T3 =

Yl p)e 1}2{tx(‘7)} x {B)} x I(al?), B(0)). Moreover, ¢, maps the components of the partition
5= Yape

Utprep 189} x {B} x 1(al), pl)).
Let us set T3 = U(oc B)E(0 1)2{06} x {B} x I(a, B). In particular, we obtain the following

© 1)2{0c} x {B} x I(a, ) onto the corresponding components of the partition T3 =

Lemma 2. Let (&, 8) € (0,1)?, ¢ € S;. (i) The automorphism ¢, maps the set

{(a, B, £, B)), (2, B, 7(a, B))}

of endpoints of the segments {a} x {B} x I(«, B) onto the set

{(,x(rf), ﬁ(v), g(“(v), ﬁ(v))), (,X(tf), ﬁ(v), r(a(v), ﬁ(v)))}

of endpoints of their images {#(7)} x {B(?)} x I(a(?), g(?)).
(ii) One has gog(’f’g) = T;.

In accord with Theorem [1} (ii), the group S4 acts on the real functions F: R3 — R via the rule
U"F:FO(P0.71. Let

G: Ay = R,G(&1,8,8,84) = & Ing —&HInG — &GIng — & Indy,
E:Ts 5 R,E=Gou

The function G is continuously differentiable on the interior A3 and can be extended under the
name G as continuous on Az = 1(T3). The function E is continuously differentiable on the interior
T3 and can be extended under the name E as continuous on T3 (cf. [3, 5.1, Theorem 2, (iii)]).
Moreover, G = G o ¢ (that is, G is an absolute Sy-invariant) and E = G o 1. Lemma [2} (ii), allows
us to extend the action of the symmetric group Sy on T3 via the rule - £ = Eo ¢ 1.

Throughout the end of the paper, with an abuse of the language, we designate G via G and E
via E.
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Theorem 2. The function E: T3 — R is an (absolute) invariant of the symmetric group Sj.

Proof. Theorem [I} (i), yields E = Got = Gooor= Gotog@, 1 = Eog,1 = o-E for all
o€ Sy.
n

4. DEGREE OF DEPENDANCE: FURTHER PROPERTIES

4.1. The Groups of Symmetry

Let us suppose (&, 8) € (0,1)? and set

_ E@Bap)_E@BH ¢ p(n, B) < 0 < ap

E(wBaB)—E Pl =V =

6(0(,,5,9) = { 1(5"‘.5"‘.5) (a tx‘B (%ﬁ)) (3)
E(w,p,up)—E(apr(ap

where I(a,B) = [¢(a,B),7(a, B)]. Note that in [3} 5.2] the function ¢, (0) = e(a, B, 0) is said to be

the degree of dependence of events A and B with « = Pr(A), p = Pr(B), and 6 = Pr(A N B).

Let us consider the dihedral subgroup Dg = ((1342), (14)) of S4 and let x: Dg — R* be its
Abelian character with kernel K = ((14), (23)) and image {1, —1}.

Theorem 3. The function ¢ from (3)) is a relative invariant of weight x of the dihedral group Ds.

Proof. Given o € S5 we have

E(a(©@),8) a(@) g(0))_E(a(?) g(@) 9()) .
{ ~ Ea f A 5 —E a5 i gy i (@, ) <) < a7l
( (0),/3(0), (7)5(7))7 ( (U),ﬁ(ﬂ),e(ff)) .
E(lx(g)aﬁ(a)’lx([j);(g))7E(a(0)a‘5(0),g(a(g)/ﬁ(g))) if 0{(‘7)'3(‘7) < 9(‘7) < V(IX(‘T),‘B(‘T))/

where I(a(?), @) = [£(a(?), (), r(a(?),@))]. For any ¢ € Dg we have ¢, (a,B,ap) =
(), (), a(?) (@), On the other hand, given ¢ € K, the inequalities /(x, ) < 0 < ap are
equivalent to the inequalities ¢(a(?), (?)) < 9(7) < a(?) ,B( ) and the inequalities af < 6 < r(a, B)
are equivalent to the inequalities #(7) (7)) < g(¢ ) < r(al?), B(9). Given ¢ € Dg\K, the inequal-
ities £(a, B) < 0 < ap are equivalent to the inequalities a(?)g(?) < §(?) < r(a(®), (7)) and the
inequalities af < 6 < r(a, B) are equivalent to the inequalities E(zx(”), Bl )) < 6@ <al?pl@) The
corresponding equalities hold simultaneously because of Lemma |2} (i). Now, Theorem yields
that 0 - e = x(0)e for all permutations o € Dsg.

|

We obtain immediately the following

Corollary 1. For any (&, 8) € (0,1)? and for any 6 € I(a, ) one has
eup(0) =epa(0) =1 p1-p(l—a—p+0)=erp1o(1—a—p+0),
_ea,ﬁ(e) = 6“,1,/3(06 - 9) = elﬂx,ﬁ(ﬁ - 9) = €B1-a (,B - 9) = el*ﬁ,lx(“ - 9)‘
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