On the Use of Entropy as a Measure of Dependence of Two Events. Part 2

Valentin Vankov Iliev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia, Bulgaria
viliev@math.bas.bg

Abstract

The joint experiment $\mathfrak{J}_{(A, B)}$ of two binary trials $A \cup A^{c}$ and $B \cup B^{c}$ in a probability space can be produced not only by the ordered pair (A, B) but by a set consisting, in general, of 24 ordered pairs of events (named Yule's pairs). The probabilities $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ of the four results of $\mathfrak{J}_{(A, B)}$ are linear functions in three variables $\alpha=\operatorname{Pr}(A), \beta=\operatorname{Pr}(B), \theta=\operatorname{Pr}(A \cap B)$, and constitute a probability distribution. The symmetric group S_{4} of degree four has an exact representation in the affine group $\operatorname{Aff}(3, \mathbb{R})$, which is constructed by using the types of the form $[\alpha, \beta, \theta]$ of those 24 Yule's pairs. The corresponding action of S_{4} permutes the components of the probability distribution $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$, and, in particular, its entropy function is S_{4}-invariant. The function of degree of dependence of two events, defined in the first part of this paper via modifying the entropy function, turns out to be a relative invariant of the dihedral group of order 8.

Keywords: probability space; experiment in a sample space; probability distribution; entropy; degree of dependence; relative invariant.

1. Introduction

The initial idea of this work was to describe all symmetries of the sequence of Yule's pairs from (1) which produce one and the same experiment [3, 4.1,(1)]. If we consider the equivalence classes of the form $[(\alpha, \beta, \theta)]$ that contain the members of (1), then the naturally constructed in terms of coordinate functions α, β, θ affine automorphisms of the linear space \mathbb{R}^{3} form a group which is isomorphic to the symmetric group S_{4}, see Section 2, Theorem 1 . The components $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ of the probability distribution [3, 4.1,(2)] are linear functions in α, β, θ. The group S_{4} naturally acts via above isomorphism and permutes ξ_{i} 's. As a consequence we obtain Theorem 2 which asserts that the entropy function $E_{\alpha, \beta}(\theta)=E(\alpha, \beta, \theta)$ of the probability distribution $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$ (see [3, 5.1]) is an absolute S_{4}-invariant.

In Section 3, Theorem 3. we show that the degree of dependence function $e_{\alpha, \beta}(\theta)$, defined in [3, 5.2] via "normalization" of the entropy function $E_{\alpha, \beta}(\theta)$, is a relative invariant of the dihedral group D_{8}, see [2, Ch.1,1.]. The proof uses the embedding of D_{8} as one of the three Sylow 2-subgroups of S_{4}.

We use definitions and notation from [3, 2].

2. Methods

In this paper we are using fundamentals of:

- Affine geometry and Real algebraic geometry
- Invariant Theory.

3. The Group of Symmetry of an Experiment

3.1. Yule's Pairs and Experiments

Let $A, B \in \mathcal{A}$. We define $A \diamond B=(A \triangle B)^{c}$, where $A \triangle B=\left(A^{c} \cap B\right) \cup\left(A \cap B^{c}\right)$ is the symmetric difference of A and B.

Any ordered pair $(A, B) \in \mathcal{A}^{2}$ produces the experiment $\mathfrak{J}=\mathfrak{J}_{(A, B)}$ from [3, 4.1,(1)], which is naturally identified with the partition $\left\{A \cap B, A \cap B^{c}, A^{c} \cap B, A^{c} \cap B^{c}\right\}$ of Ω (cf. [4], I, §5]). The proof of the next Lemma is straightforward.

Lemma 1. Yule's pairs from the sequence with members

$$
\begin{gather*}
(A, B) \text { of type }(\alpha, \beta, \theta), \\
\left(A, B^{c}\right) \text { of type }(\alpha, 1-\beta, \alpha-\theta), \\
\left(A^{c}, B\right) \text { of type }(1-\alpha, \beta, \beta-\theta), \\
\left(A^{c}, B^{c}\right) \text { of type }(1-\alpha, 1-\beta, 1-\alpha-\beta+\theta), \\
(B, A) \text { of type }(\beta, \alpha, \theta), \\
\left(B, A^{c}\right) \text { of type }(\beta, 1-\alpha, \beta-\theta), \\
\left(B^{c}, A\right) \text { of type }(1-\beta, \alpha, \alpha-\theta), \\
\left(B^{c}, A^{c}\right) \text { of type }(1-\beta, 1-\alpha, 1-\alpha-\beta+\theta), \\
(A, A \diamond B) \text { of type }(\alpha, 1-\alpha-\beta+2 \theta, \theta), \\
(A \diamond B, A) \text { of type }(1-\alpha-\beta+2 \theta, \alpha, \theta), \\
(B, A \diamond B) \text { of type }(\beta, 1-\alpha-\beta+2 \theta, \theta), \\
(A \diamond B, B) \text { of type }(1-\alpha-\beta+2 \theta, \beta, \theta), \tag{1}\\
\left(A \diamond B, A^{c}\right) \text { of type }(1-\alpha-\beta+2 \theta, 1-\alpha, 1-\alpha-\beta+\theta), \\
\left(B^{c}, A \diamond B\right) \text { of type }(1-\beta, 1-\alpha-\beta+2 \theta, 1-\alpha-\beta+\theta), \\
\left(A \diamond B, B^{c}\right) \text { of type }(1-\alpha-\beta+2 \theta, 1-\beta, 1-\alpha-\beta+\theta), \\
(A, A \triangle B) \text { of type }(\alpha, \alpha+\beta-2 \theta, \alpha-\theta), \\
(A \triangle B, A) \text { of type }(\alpha+\beta-2 \theta, \alpha, \alpha-\theta), \\
(B, A \triangle B) \text { of type }(\beta, \alpha+\beta-2 \theta, \beta-\theta), \\
(A \triangle B, B) \text { of type }(\alpha+\beta-2 \theta, \beta, \beta-\theta), \\
\left(A^{c}, A \triangle B\right) \text { of type }(1-\alpha, \alpha+\beta-2 \theta, \beta-\theta), \\
\left(A \triangle B, A^{c}\right) \text { of type }(\alpha+\beta-2 \theta, 1-\alpha, \beta-\theta), \\
\left(B^{c}, A \triangle B\right) \text { of type }(1-\beta, \alpha+\beta-2 \theta, \alpha-\theta), \\
\left(A \triangle B, B^{c}\right) \text { of type }(\alpha+\beta-2 \theta, 1-\beta, \alpha-\theta),
\end{gather*}
$$

are exactly the pairs that produce the experiment $\mathfrak{J}_{(A, B)}$.
Remark 1. (i) According to [1, 2.1, 2.7.1, 2.8.4], the set of points (α, β, θ) in \mathbb{R}^{3} where the types from Lemma 1 are pair-wise different is semi-algebraic, open, and three-dimensional. Its trace U_{3} on the interior $\stackrel{\circ}{3}_{3}$ of the classification tetrahedron T_{3} from [3, 4.1] is not empty because otherwise $\stackrel{\circ}{T}_{3}$ would be subset of a finite union of planes. Theorem 2.2.1 from [1, 2.1] guaranties that the open two dimensional projection U_{2} of U_{3} onto $\alpha \beta$-plane is semi-algebraic. Note that "openness" is with respect to the standard topology in \mathbb{R}^{3}.
(ii) Under some "plentifulness" condition on Boolean algebra \mathcal{A} (for example, if it is nonatomic), there exist plenty of Yule's pairs (A, B) of type $(\alpha, \beta) \in U_{2}$. In this case (we call it "general") the sequence from Lemma 1 consists of 24 Yule's pairs.

3.2. The Group of Symmetry

Let \mathcal{E} be the set of all experiments in the probability space $(\Omega, \mathcal{A}, \operatorname{Pr})$, that is, the set of all finite partitions of Ω with members from \mathcal{A}. The rule $(A, B) \mapsto \mathfrak{J}_{(A, B)}$ defines a map $\mathfrak{J}: \mathcal{A}^{2} \rightarrow \mathcal{E}$ and Lemma 1 implies that the inverse image $\mathfrak{J}^{-1}\left(\mathfrak{J}_{(A, B)}\right)$ coincides with the associated set of the sequence (1). Let us denote by $\mathcal{I}_{(A, B)}$ the set of equivalence classes in \mathcal{A}^{2} of the form $[(\alpha, \beta, \theta)]$, which contain the members of $\mathfrak{J}^{-1}\left(\mathfrak{J}_{(A, B)}\right)$. If $\alpha=\operatorname{Pr}(A), \beta=\operatorname{Pr}(B), \theta=\operatorname{Pr}(A \cap B)$, then (A, B) is a Yule's pair of type $(\alpha, \beta, \theta),\left(A, B^{c}\right)$ is a Yule's pair of type $(\alpha, 1-\beta, \alpha-\theta),\left(A^{c}, B\right)$ is a Yule's pair of type $(1-\alpha, \beta, \beta-\theta)$, etc. Considering α, β, θ as coordinate functions in \mathbb{R}^{3}, the members of $\mathcal{I}_{(A, B)}$ produce the set \mathfrak{S}_{4} consisting of 24 affine automorphisms of \mathbb{R}^{3} from the following list:

$$
\begin{gathered}
\varphi_{(1)}(\alpha, \beta, \theta)=(\alpha, \beta, \theta), \\
\varphi_{(12)(34)}(\alpha, \beta, \theta)=(\alpha, 1-\beta, \alpha-\theta), \\
\varphi_{(13)(24)}(\alpha, \beta, \theta)=(1-\alpha, \beta, \beta-\theta), \\
\varphi_{(14)(23)}(\alpha, \beta, \theta)=(1-\alpha, 1-\beta, 1-\alpha-\beta+\theta), \\
\varphi_{(23)}(\alpha, \beta, \theta)=(\beta, \alpha, \theta), \\
\varphi_{(1342)}(\alpha, \beta, \theta)=(\beta, 1-\alpha, \beta-\theta), \\
\varphi_{(1243)}(\alpha, \beta, \theta)=(1-\beta, \alpha, \alpha-\theta), \\
\varphi_{(14)}(\alpha, \beta, \theta)=(1-\beta, 1-\alpha, 1-\alpha-\beta+\theta), \\
\varphi_{(34)}(\alpha, \beta, \theta)=(\alpha, 1-\alpha-\beta+2 \theta, \theta), \\
\varphi_{(243)}(\alpha, \beta, \theta)=(1-\alpha-\beta+2 \theta, \alpha, \theta), \\
\varphi_{(234)}(\alpha, \beta, \theta)=(\beta, 1-\alpha-\beta+2 \theta, \theta), \\
\varphi_{(24)}(\alpha, \beta, \theta)=(1-\alpha-\beta+2 \theta, \beta, \theta), \\
\varphi_{(142)}(\alpha, \beta, \theta)=(1-\alpha, 1-\alpha-\beta+2 \theta, 1-\alpha-\beta+\theta), \\
\varphi_{(1423)}(\alpha, \beta, \theta)=(1-\alpha-\beta+2 \theta, 1-\alpha, 1-\alpha-\beta+\theta), \\
\varphi_{(143)}(\alpha, \beta, \theta)=(1-\beta, 1-\alpha-\beta+2 \theta, 1-\alpha-\beta+\theta), \\
\varphi_{(1432)}(\alpha, \beta, \theta)=(1-\alpha-\beta+2 \theta, 1-\beta, 1-\alpha-\beta+\theta), \\
\varphi_{(12)}(\alpha, \beta, \theta)=(\alpha, \alpha+\beta-2 \theta, \alpha-\theta), \\
\varphi_{(123)}(\alpha, \beta, \theta)=(\alpha+\beta-2 \theta, \alpha, \alpha-\theta), \\
\varphi_{(132)}(\alpha, \beta, \theta)=(\beta, \alpha+\beta-2 \theta, \beta-\theta), \\
\varphi_{(13)}(\alpha, \beta, \theta)=(\alpha+\beta-2 \theta, \beta, \beta-\theta), \\
\varphi_{(1324)}(\alpha, \beta, \theta)=(1-\alpha, \alpha+\beta-2 \theta, \beta-\theta), \\
\varphi_{(134)}(\alpha, \beta, \theta)=(\alpha+\beta-2 \theta, 1-\alpha, \beta-\theta), \\
\varphi_{(124)}(\alpha, \beta, \theta)=(1-\beta, \alpha+\beta-2 \theta, \alpha-\theta), \\
\varphi_{(1234)}(\alpha, \beta, \theta)=(\alpha+\beta-2 \theta, 1-\beta, \alpha-\theta),
\end{gathered}
$$

The above affine automorphisms of \mathbb{R}^{3} are indexed by the permutations σ from the symmetric group S_{4} because of the theorem below.

The operator of symmetry

$$
\sigma: H \rightarrow H,\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \mapsto\left(\xi_{\sigma^{-1}(1)}, \xi_{\sigma^{-1}(2)}, \xi_{\sigma^{-1}(3)}, \xi_{\sigma^{-1}(4)}\right)
$$

permutes the components of the probability distribution [3, 4.1,(2)] produced by the experiment $\mathfrak{J}_{(A, B)}$ and we have

Theorem 1. (i) One has $\iota \circ \varphi_{\sigma^{-1}}=\sigma \circ \iota$.
(ii) The map

$$
\begin{equation*}
S_{4} \rightarrow \operatorname{Aff}(3, \mathbb{R}), \sigma \mapsto \varphi_{\sigma^{-1}} \tag{2}
\end{equation*}
$$

is a group anti-monomorphism with image \mathfrak{S}_{4}.
(iii) The group \mathfrak{S}_{4} is the affine symmetry group of the classification tetrahedron T_{3}.

Proof. (i) It is enough to check the equality $\varphi_{\sigma^{-1}}=\iota^{-1} \circ \sigma \circ \iota$ for all $\sigma \in S_{4}$. For example, let $\sigma=(1243)$, so $\sigma^{-1}=(1342)$. We have

$$
\begin{gathered}
(\sigma \circ \iota)(\alpha, \beta, \theta)=\left(\xi_{\sigma^{-1}(1)}, \xi_{\sigma^{-1}(2)}, \xi_{\sigma^{-1}(3)}, \xi_{\sigma^{-1}(4)}\right)=\left(\xi_{3}, \xi_{1}, \xi_{4}, \xi_{2}\right) \\
\left(\iota^{-1} \circ \sigma \circ \iota\right)(\alpha, \beta, \theta)=\iota^{-1}\left(\xi_{3}, \xi_{1}, \xi_{4}, \xi_{2}\right)=(\beta, 1-\alpha, \beta-\theta)= \\
\varphi_{(1342)}(\alpha, \beta, \theta)=\varphi_{\sigma^{-1}}(\alpha, \beta, \theta)
\end{gathered}
$$

(ii) The map (2) is injective; moreover, it is a group anti-homomorphism because $\varphi_{(1)}=\iota^{-1} \circ$ (1) $\circ \iota=(1)$ and $\varphi_{\tau^{-1} \sigma^{-1}}=\varphi_{(\sigma \tau)^{-1}}=\iota^{-1} \circ(\sigma \tau) \circ \iota=\iota^{-1} \circ \sigma \circ \tau \circ \iota=\iota^{-1} \circ \sigma \circ \iota \circ \iota^{-1} \circ \tau \circ \iota=$ $\varphi_{\sigma^{-1}} \circ \varphi_{\tau^{-1}}$.
(iii) In accord with part (i), for any $\sigma \in S_{4}$ we have $\iota\left(\varphi_{\sigma}\left(T_{3}\right)\right)=\sigma^{-1}\left(\iota\left(T_{3}\right)\right)=\sigma^{-1}\left(\Delta_{3}\right)=\Delta_{3}$, hence $\varphi_{\sigma}\left(T_{3}\right)=\iota^{-1}\left(\Delta_{3}\right)=T_{3}$. On the other hand, S_{4} is the symmetry group of the regular tetrahedron (see, for example, [5, 8.4]). Since both tetrahedrons are isomorphic as affine spans, the proof is done.

For any $\sigma \in S_{4}$ we write down the affine automorphism φ_{σ} in terms of coordinates in $\mathbb{R}^{3}: \varphi_{\sigma}(\alpha, \beta, \theta)=\left(\alpha^{(\sigma)}, \beta^{(\sigma)}, \theta^{(\sigma)}\right)$ and obtain that φ_{σ} maps the components of the partition $T_{3}=\cup_{(\alpha, \beta) \in[0,1]^{2}}\{\alpha\} \times\{\beta\} \times I(\alpha, \beta)$ onto the corresponding components of the partition $T_{3}=$ $\cup_{(\alpha, \beta) \in[0,1]^{2}}\left\{\alpha^{(\sigma)}\right\} \times\left\{\beta^{(\sigma)}\right\} \times I\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)$. Moreover, φ_{σ} maps the components of the partition $\stackrel{\circ}{T}_{3}=\cup_{(\alpha, \beta) \in(0,1)^{2}}\{\alpha\} \times\{\beta\} \times \stackrel{\circ}{I}(\alpha, \beta)$ onto the corresponding components of the partition $\stackrel{\circ}{T}_{3}=$ $\cup_{(\alpha, \beta) \in(0,1)^{2}}\left\{\alpha^{(\sigma)}\right\} \times\left\{\beta^{(\sigma)}\right\} \times \AA^{I}\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)$.

Let us set $\hat{T}_{3}=\cup_{(\alpha, \beta) \in(0,1)^{2}}\{\alpha\} \times\{\beta\} \times I(\alpha, \beta)$. In particular, we obtain the following
Lemma 2. Let $(\alpha, \beta) \in(0,1)^{2}, \sigma \in S_{4}$. (i) The automorphism φ_{σ} maps the set

$$
\{(\alpha, \beta, \ell(\alpha, \beta)),(\alpha, \beta, r(\alpha, \beta))\}
$$

of endpoints of the segments $\{\alpha\} \times\{\beta\} \times I(\alpha, \beta)$ onto the set

$$
\left\{\left(\alpha^{(\sigma)}, \beta^{(\sigma)}, \ell\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)\right),\left(\alpha^{(\sigma)}, \beta^{(\sigma)}, r\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)\right)\right\}
$$

of endpoints of their images $\left\{\alpha^{(\sigma)}\right\} \times\left\{\beta^{(\sigma)}\right\} \times I\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)$.
(ii) One has $\varphi_{\sigma}\left(\hat{T}_{3}\right)=\hat{T}_{3}$.

In accord with Theorem 1 , (ii), the group S_{4} acts on the real functions $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ via the rule $\sigma \cdot F=F \circ \varphi_{\sigma^{-1}}$. Let

$$
\begin{gathered}
G: \grave{\Delta}_{3} \rightarrow \mathbb{R}, G\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=-\xi_{1} \ln \xi_{1}-\xi_{2} \ln \xi_{2}-\xi_{3} \ln \xi_{3}-\xi_{4} \ln \xi_{4} \\
E: \stackrel{\circ}{T}_{3} \rightarrow \mathbb{R}, E=G \circ \iota .
\end{gathered}
$$

The function G is continuously differentiable on the interior \AA_{3} and can be extended under the name \hat{G} as continuous on $\hat{\Delta}_{3}=\iota\left(\hat{T}_{3}\right)$. The function E is continuously differentiable on the interior $\stackrel{\circ}{T}_{3}$ and can be extended under the name \hat{E} as continuous on \hat{T}_{3} (cf. [3, 5.1, Theorem 2, (iii)]). Moreover, $\hat{G}=\hat{G} \circ \sigma$ (that is, \hat{G} is an absolute S_{4}-invariant) and $\hat{E}=\hat{G} \circ \iota$. Lemma2, (ii), allows us to extend the action of the symmetric group S_{4} on \hat{T}_{3} via the rule $\sigma \cdot \hat{E}=\hat{E} \circ \varphi_{\sigma^{-1}}$.

Throughout the end of the paper, with an abuse of the language, we designate \hat{G} via G and \hat{E} via E.

Theorem 2. The function $E: \hat{T}_{3} \rightarrow \mathbb{R}$ is an (absolute) invariant of the symmetric group S_{4}.
Proof. Theorem 1, (i), yields $E=G \circ \iota=G \circ \sigma \circ \iota=G \circ \iota \circ \varphi_{\sigma^{-1}}=E \circ \varphi_{\sigma^{-1}}=\sigma \cdot E$ for all $\sigma \in S_{4}$.

4. Degree of Dependance: Further Properties

4.1. The Groups of Symmetry

Let us suppose $(\alpha, \beta) \in(0,1)^{2}$ and set

$$
e(\alpha, \beta, \theta)=\left\{\begin{array}{cl}
-\frac{E(\alpha, \beta, \alpha \beta)-E(\alpha, \beta, \theta)}{E(\alpha, \beta, \alpha \beta)-E(\alpha, \beta, \ell(\alpha, \beta))} & \text { if } \ell(\alpha, \beta) \leq \theta \leq \alpha \beta \tag{3}\\
\frac{E(\alpha, \beta, \alpha \beta)-E(\alpha, \beta, \theta)}{E(\alpha, \beta, \alpha \beta)-E(\alpha, \beta, r(\alpha, \beta))} & \text { if } \alpha \beta \leq \theta \leq r(\alpha, \beta),
\end{array}\right.
$$

where $I(\alpha, \beta)=[\ell(\alpha, \beta), r(\alpha, \beta)]$. Note that in [3, 5.2] the function $e_{\alpha, \beta}(\theta)=e(\alpha, \beta, \theta)$ is said to be the degree of dependence of events A and B with $\alpha=\operatorname{Pr}(A), \beta=\operatorname{Pr}(B)$, and $\theta=\operatorname{Pr}(A \cap B)$.

Let us consider the dihedral subgroup $D_{8}=\langle(1342),(14)\rangle$ of S_{4} and let $\chi: D_{8} \rightarrow \mathbb{R}^{*}$ be its Abelian character with kernel $K=\langle(14),(23)\rangle$ and image $\{1,-1\}$.

Theorem 3. The function e from (3) is a relative invariant of weight χ of the dihedral group D_{8}.
Proof. Given $\sigma \in S_{4}$ we have

$$
\begin{aligned}
& \left(\sigma^{-1} \cdot e\right)(\alpha, \beta, \theta)=e\left(\varphi_{\sigma}(\alpha, \beta, \theta)\right)=e\left(\alpha^{(\sigma)}, \beta^{(\sigma)}, \theta^{(\sigma)}\right)=
\end{aligned}
$$

where $I\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)=\left[\ell\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right), r\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)\right]$. For any $\sigma \in D_{8}$ we have $\varphi_{\sigma}(\alpha, \beta, \alpha \beta)=$ $\left(\alpha^{(\sigma)}, \beta^{(\sigma)}, \alpha^{(\sigma)} \beta^{(\sigma)}\right)$. On the other hand, given $\sigma \in K$, the inequalities $\ell(\alpha, \beta) \leq \theta \leq \alpha \beta$ are equivalent to the inequalities $\ell\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right) \leq \theta^{(\sigma)} \leq \alpha^{(\sigma)} \beta^{(\sigma)}$ and the inequalities $\alpha \beta \leq \theta \leq r(\alpha, \beta)$ are equivalent to the inequalities $\alpha^{(\sigma)} \beta^{(\sigma)} \leq \theta^{(\sigma)} \leq r\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)$. Given $\sigma \in D_{8} \backslash K$, the inequalities $\ell(\alpha, \beta) \leq \theta \leq \alpha \beta$ are equivalent to the inequalities $\alpha^{(\sigma)} \beta^{(\sigma)} \leq \theta^{(\sigma)} \leq r\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right)$ and the inequalities $\alpha \beta \leq \theta \leq r(\alpha, \beta)$ are equivalent to the inequalities $\ell\left(\alpha^{(\sigma)}, \beta^{(\sigma)}\right) \leq \theta^{(\sigma)} \leq \alpha^{(\sigma)} \beta^{(\sigma)}$. The corresponding equalities hold simultaneously because of Lemma 2, (i). Now, Theorem 2 yields that $\sigma \cdot e=\chi(\sigma) e$ for all permutations $\sigma \in D_{8}$.

We obtain immediately the following
Corollary 1. For any $(\alpha, \beta) \in(0,1)^{2}$ and for any $\theta \in I(\alpha, \beta)$ one has

$$
\begin{aligned}
e_{\alpha, \beta}(\theta) & =e_{\beta, \alpha}(\theta)=e_{1-\alpha, 1-\beta}(1-\alpha-\beta+\theta)=e_{1-\beta, 1-\alpha}(1-\alpha-\beta+\theta) \\
-e_{\alpha, \beta}(\theta) & =e_{\alpha, 1-\beta}(\alpha-\theta)=e_{1-\alpha, \beta}(\beta-\theta)=e_{\beta, 1-\alpha}(\beta-\theta)=e_{1-\beta, \alpha}(\alpha-\theta)
\end{aligned}
$$

Acknowledgements

I would like to thank the referees for their very useful remarks.
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Declaration of Conflicting Interests

The Author declares that there is no conflict of interest.

References

[1] Bochnak J., Coste M., Roy M-F. (1998). Real Algebraic Geometry, Springer.
[2] Dieudonne J. A., Carrell J. B. (1970). Invariant Theory, Old and New, Academic Press, Inc.
[3] Iliev V. V. (2021). On the Use of Entropy as a Measure of Dependence of Two Events. Reliability: Theory \& Applications, 16(2): 237-248.
[4] Kolmogorov A. N. (1956). Foundations of the Theory of Probability, Chelsea Publishing Company, New Yourk.
[5] Smith J. T. (2000). Methods of Geometry, John Wiley \& Sons.

