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Abstract

Modeling of datasets requires knowledge of their appropriate distributional assumptions. In this
research, we generalized the transmuted exponential-exponential distribution, and it was observed that
the addition of the shape parameter to the model proved to be helpful in improving the flexibility of the
model. Different characteristics, as well as structural properties of the model, were investigated and
presented in an explicit form. The probability density function of the order statistics and numerical
results for some descriptive statistics were obtained. A 95% confidence interval and interval widths,
together with biases and mean square errors (MSEs) of the mean estimates, were equally evaluated using
the Monte-Carlo simulation approach. To validate the flexibility of the model, we used real datasets and
the generalized transmuted exponential-exponential distribution (GTE-ED) outperformed the competing
distributions.

Keywords: Transmuted Exponential-Exponential distribution, descriptive statistics, Order statis-
tics, Confidence Interval

1. Introduction

The procedure of parameter(s) induction to a parent distribution has fascinated the attention of
numerous researchers in the recent years [1]. The addition of one or more shape parameter(s) to a
given baseline model strengthens the distribution, especially when studying its tail characteristics.
The parameter induction method has proved useful for boosting the fitness of a proposed model
[2].

In statistics, the modelling of datasets requires knowledge of appropriate distributional as-
sumptions about the datasets. In theory, the tractability of a probability distribution can be
helpful since it is easier to manipulate when modelling a dataset. The concept of generalizing
distributions was proposed by [3] which concern basically with raising the distribution function
of the baseline distribution say A(y) to the power of an arbitrary parameter c > 0 which give rise
to a new model or distribution of the form B(y) = (A(y))c f or c > 0. The parameter (c) plays an
important role in adding skewness to the function A(y). In the early 1990s, generalized models
were found to be useful in numerous areas of statistics and medical sciences due to their ability
to model different forms of data. These distributions were proposed by statisticians from various
fields. The concept of generating generalized distributions was used by [4] to developed a new
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Weibull distribution named the exponentiated Weibull distribution. Furthermore, [5] studied the
general characteristics of the exponentiated Weibull distribution. A new two-parameter model
called exponentiated exponential distribution which outperformed other competing distribution
in the study when applied to a real dataset was studied by [6]. Notable authors like [7], [8]
and [9] applied the same methodology and developed the exponentiated type distributions, and
exponentiated generalized inverse Gaussian distribution respectively. The properties of exponen-
tiated transmuted generalized Rayleigh distribution was proposed and studied by [10] and [11]
studied the exponentiated generalized class of distributions. Consequently, the properties and
MLEs of generalized odd generalized exponential- exponential distribution was presented in an
explicit form by [12]. The properties and applications of the transmuted exponential-exponential
distribution (TE-ED) which has two scale parameters and a transmuted parameter. In practice, to
find the distribution that captures the sensitive part of a given dataset, there are many possibilities
was studied by [13]. We can either estimate non-parametrically the density function as well as the
distribution function and compare them with the existing distributions to see which one is closest
to the empirical distribution. However, in some situations for which we are obliged to consider
some characteristics such as hazard rate, many of the existing distributions cannot adequately
model a dataset with non-monotone hazard rates, and as such, these distributions are limited in
applications.
The current kinds of literature in mathematical statistics as highlighted by [14] pay more attention
to proposing more flexible distributions but give less concern to the hazard function of the
distributions. It is critical to generate distributions with varying failure rates because the hazard
rate function guides model selection [11]. Furthermore, many of the existing exponential extended
distributions cannot adequately describe some of the existing datasets, particularly the ones with
monotone and non-monotone hazard rates. For example, exponentiated exponential, transmuted
exponential-exponential, and Weibull exponential distribution, among others. This has opened
the room for more research that can account for monotone and non-monotone hazard rate data.

In this research, we are motivated by the above-mentioned rationale to develop a new
exponential extended distribution called the generalized transmuted exponential-exponential
distribution (GTE-ED). As compared to the existing exponential extended distributions, the
GTE-ED is more flexible and can model both monotone and non-monotone hazard rate data.

Table 1: Hazard rates behaviour for GTE-E and the competing distributions

Distribution Constant Increasing Decreasing Unimodal
GTE-E Yes Yes Yes Yes
TE-E Yes Yes No No
EE Yes Yes Yes No
E Yes No No No

From table 1, we can deduce that GTE-ED has more advantages over the competing distribu-
tions in the study and, as such, it will be more robust in analysing data with different hazard
rates.

2. The Generalized Transmuted Exponential-Exponential Distribution

Consider the density function a(y; λ, θ, α) = λα (1− θ) e−αλy + 2λθαe−2αλy and distribution func-
tion A(y; λ, θ, α) =

(
1− e−λαy) (1 + θe−λαy) of the transmuted exponential-exponential distribu-

tion with scale parameter α, λ > 0, transmuted parameter −1 ≤ θ ≤ 1 and y ≥ 0 (Mohammed
and Ugwuowo 2021). The cumulative distribution function and density of generalized transmuted
exponential distribution (GTE-ED) are respectively derived from the following functions:

B(y) = (A(y))c f or c > 0 (1)
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and,
b(y) = ca(y) (A(y))c−1 (2)

The GTE-ED is then defined as;

B(y) =
[(

1− e−λαy
) (

1 + θe−λαy
)]c

(3)

and by taking the differential of B(y), we have;

b(y) = c
[
λα (1− θ) e−α λy + 2λθαe−2α λy

] [(
1− e−λ α y

) (
1 + θe−λ α y

)]c−1
(4)

where, y ≥ 0, α, λ, c > 0 and − 1 ≤ θ ≤ 1.

Equation (4) can be written in the following contracted form;

b(y) = me−λ α( f+g+1)y
(
(1− θ) + 2θ e−αλy

)
(5)

where, m = c λ α
∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

)
Figure 1 displays some possible shapes of density and distribution function of the GTE-ED

for chosen values of the parameters a = α, b = λ, d = θ and c. Moreover, the density changes in
shape when the parameters take different values.

Figure 1: density and distribution function of GTE-ED

3. Statistical Properties of the model

Here, some statistical properties of GTE-ED including survival and hazard functions, quantile
function, moments, moment generating function, limiting behaviour, and order statistics are
considered and presented in an explicit form.

3.1. Survival and Hazard function

If Y has GTE− E(α, λ, c, θ) model, then the survival and hazard function are respectively given as;
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The survival function is defined mathematically as;

S(x) = 1− B(y)

S(y) = 1−
((

1− e−λαy
) (

1 + θe−λαy
))c

(6)

The hazard function is defined mathematically as;

h(y) = b(y)
1−B(y)

h(y) =
c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1[

1−
((

1− e−λαy
) (

1 + θe−λαy
))c
] (7)

Figures 3 and 4 displays some possible shapes of hazard and survival function (hf) of the GTE-ED
for chosen values of the parameters a = α, b = λ, d = θ and c. The hf can take the shape of either
increasing, decreasing, and unimodal as the parameter keep changing.

Figure 2: Hazard function of GTE-ED

Figure 3: Survival function of GTE-ED
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Limiting behaviour of the distribution

In this section, the asymptotic behaviour of the model is investigated by taking the limit
as y→ 0 and y→ ∞ of the distribution function.

lim
y→0

B(y) = lim
y→0

((
1− e−λαy) (1 + θe−λαy))c

= 0

and,

lim
y→∞

B(y) = lim
y→∞

((
1− e−λαy) (1 + θe−λαy))c

= 1

The results show that the GTE-ED is a valid distribution since lim
y→0

B(y) = 0 and lim
y→∞

B(y) = 1.

3.2. The rth moments and moment generating function

If Y has GTEE(α, λ, c, θ) then, the rth moments is given as;

E (yr) =
c Γ(r + 1)
(λ α)r

∞

∑
f ,g=0

(−1) f
(

c−1
f

) (
c−1
g

){ (1− θ)

( f + g + 1)r+1 +
2 θ

( f + g + 2)r+1

}
(8)

By using (8) the first two moments about the origin are obtained which can pave way in
finding the variance and the coefficient of variation.

When r =1,

E (y) = c
(λ α)

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)2 +
2 θ

( f+g+2)2

}
When r =2,

E
(
y2) = 2 c

(λ α)2

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)3 +
2 θ

( f+g+2)3

}
Let, A1 =

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)2 +
2 θ

( f+g+2)2

}
A2 =

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)3 +
2 θ

( f+g+2)3

}
Therefore, E (y) = c

(λ α)
A1 and E

(
y2) = 2 c

(λ α)2 A2

If Y has GTE− E(α, λ, c, θ) then, the variance and the coefficient of variation of GTE-ED are
respectively given as;

Var(y) = 2 c
(λ α)2 A2 − c

(λ α)
A1 and C V =

√
2 c

(λ α)2
A2− c

(λ α)
A1

c
(λ α)

A1

Moment Generating Function

If Y has GTE− E(α, λ, c, θ) distribution then, the moment generating function (MGF) is given
as;

Ky(t) = c λ α
∞

∑
f ,g=0

(−1) f
(

c−1
f

) (
c−1
g

){ (1− θ)

λ α( f + g + 1)− t
+

2 θ

λ α( f + g + 2)− t

}
(9)

RT&A, No 2 (68) 
Volume 17, June 2022

496



Mohammed, A. S., Ugwuowo, F. I., Patrice, T. S., Muhammad, H.
GENERALIZED TRANSMUTED EXPONENTIAL-EXPONENTIAL

3.3. The rth moments about the mean

If Y has GTE− E(α, λ, c, θ) distribution then, the rth moments about the mean is given;

E(y− µ)r = c
∞
∑

f ,g=0

r
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (r
h
)

µh×{
(1−θ)Γ(r−h+1)

(( f+g+1))r−h+1(λ α)r−h +
2 θ Γ(r−h+1)

(( f+g+2))r−h+1(λ α)r−h

} (10)

If µ = 0 , the result will give us the moment about the origin.

E(yr) = c
∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)Γ(r+1)

(( f+g+1))r+1(λ α)r +
2 θ Γ(r+1)

(( f+g+2))r+1(λ α)r

}
In order to find the skewness and kurtosis, we have to find the expressions for r =1,2,3 and 4.

The expressions are given below;

If r =1,

E(y− µ) = c
∞
∑

f ,g=0

1
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(2−h)

(( f+g+1))2−h(λ α)1−h +
2 θ Γ(2−h)

(( f+g+2))2−h(λ α)1−h

}
If r =2,

E(y− µ)2 = c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

}
If r =3,

E(y− µ)3 = c
∞
∑

f ,g=0

3
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(4−h)

(( f+g+1))4−h(λ α)3−h +
2 θ Γ(4−h)

(( f+g+2))4−h(λ α)3−h

}
If r =4,

E(y− µ)4 = c
∞
∑

f ,g=0

4
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(5−h)

(( f+g+1))5−h(λ α)4−h +
2 θ Γ(5−h)

(( f+g+2))5−h(λ α)4−h

}
The coefficient of skewness are kurtosis of the GTE-ED are respectively given as;

C S = E(y−µ)3

(E(y−µ)2)
3
2

C S =
c

∞
∑

f ,g=0

3
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(4−h)

(( f+g+1))4−h(λ α)3−h +
2 θ Γ(4−h)

(( f+g+2))4−h(λ α)3−h

}
(

c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

}) 3
2

and

C K = E(y−µ)4

(E(y−µ)2)
2
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C K =
c

∞
∑

f ,g=0

4
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(5−h)

(( f+g+1))5−h(λ α)4−h +
2 θ Γ(5−h)

(( f+g+2))5−h(λ α)4−h

}
(

c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

})2

Table 2: Some selected measures of Y ∼ GTE− E for some chosen values of the c and α = 2, λ = 0.3, θ = 0.5. The
standard errors (SEs) in bracket, where τ1 and τ2 stands for the mean deviation about mean and the mean
deviation about the median

Parameter (c)
1 2 3 4 5

Mean
1.2704

(0.1022)
1.9317

(0.1168)
2.3875

(0.1239)
2.7374

(0.1284)
3.0223

(0.1315)

Variance
2.1170

(0.5922)
2.7815

(0.6601)
3.1413

(0.6927)
3.3761

(0.7127)
3.5445

(0.7265)

Skewness
2.4648

(0.7892)
2.0447

(0.6535)
1.8681

(0.5996)
1.7658

(0.5696)
1.6971

(0.5501)

Kurtosis
12.1973
(7.7423)

9.5389
(5.6921)

8.5507
(4.9328)

8.0148
(4.5232)

7.6712
(4.2619)

τ1
0.4023

(0.0408)
0.4793

(0.0425)
0.5168

(0.0433)
0.5401

(0.0438)
0.5564

(0.0441)

τ2
0.3666

(0.0349)
0.4490

(0.0376)
0.4888

(0.0388)
0.5134

(0.0395)
0.5306
(0.04)

Table 3: Some selected measures of Y ∼ GTE− E for some chosen values of the c and α = 2, λ = 0.3, θ = −0.5 The
standard errors (SEs) in bracket, where τ1 and τ2 stands for the mean deviation about mean and the mean
deviation about the median

Parameter (c)
1 2 3 4 5

Mean
2.1051

(0.1317)
3.0448

(0.1414)
3.6465

(0.1450)
4.0886

(0.1468)
4.4381

(0.1479)

Variance
3.5522

(0.7368)
4.1168

(0.7727)
4.3324

(0.7859)
4.4453

(0.7927)
4.5147

(0.7969)

Skewness
1.7785

(0.5441)
1.5157

(0.4921)
1.4258
(0.4758

1.3808
(0.4679)

1.3539
(0.4633)

Kurtosis
7.8311

(4.3142)
6.7415

(3.5522)
6.4140

(3.3160)
6.2586

(3.0221)
6.1681

(3.1351)

τ1
0.5588

(0.0451)
0.06278
(0.0454)

0.6278
(0.0456)

0.6370
(0.0457)

0.6425
(0.0458)

τ2
0.5286

(0.0409)
0.5860

(0.0418)
0.6060

(0.0422)
0.6162

(0.0424)
0.6223

(0.0425)
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From tables 2 and 3, it can be deduced that as the value of the parameter (c) increases, the
mean, variance, mean deviation about mean and the mean deviation about the median also
increases. While the skewness and kurtosis decrease.

3.4. The Quantile function of the model

The quantile function can be defined mathematically as; Q(u) = In f {y ∈ < : u ≤ F(y)} for
which 0 < u < 1. Since the function F(y) is continuous and monotonically increasing, then we
have Y = F−1(u).

Corollary 1. The quantile function of the GTE-ED is given as;

Q(u) = − 1
α λ

ln

 θ − 1 +
√
(1 + θ)2 − 4 θ u

1
c

2 θ

 , 0 < u < 1 (11)

Note that, when u=0.5 (11) gives the median.

The effect of the shape and Transmuted parameter were examined on the skewness and
kurtosis and it was evaluated by using the relationship of Bowley (BS) and Moors (MK). Figures
(a) and (b) shows the plot of Bowley (BS) and Moors (MK) for GTE-ED for fixed parameters (α and
λ) respectively. The plot for the skewness shows a steady decrease as the parameter (c)increases
while for parameter θ shows a steady increase to a minimum point before decreasing as its
value increases. Again, the Kurtosis shows a steady decrease to a certain point and decreases
as the parameter (c) increases while for parameter θ, shows a steady decrease as its value increases.

SkB =
Q( 3

4 )−2Q( 1
2 )+Q( 1

4 )
Q( 3

4 )−Q( 1
4 )

and KuM =
Q( 7

8 )−Q( 5
8 )+Q( 3

8 )−Q( 1
8 )

Q( 6
8 )−Q( 2

8 )

Figure 4: 3D diagram for Skewness and kurtosis
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3.5. Order Statistics of the GTE-ED

The general form of the density of the hth order statistics for a given random samples y1, y2, ..., yn

from the distribution function is obtained as; bn,h (y) = n!
(h−1)!(n−h)! b(y)B(y)h−1 (1− B(y))n−h.

Therefore, by substituting the resulting density as well as the distribution function of the GTE-ED
we have;

bn,h (y) = n!
(h−1)!(n−h)!

(
c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(((

1− e−λαy) (1 + θe−λαy))c
)h−1 (

1−
((

1− e−λαy) (1 + θe−λαy))c
)n−h (12)

The distribution of the minimum and maximum order statistics for the GTE-ED are respectively
given as;

bn,1 (y) = n
(

c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(

1−
((

1− e−λαy) (1 + θe−λαy))c
)n−1

and,

bn,n (y) = n
(

c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(((

1− e−λαy) (1 + θe−λαy))c
)n−1

4. Estimation of the Parameters of GTE-ED

If the parameters of the GTE-ED are unknown, then the maximum likelihood estimates of the
parameters are presented below, let y1, y2, ..., yn be the random sample of size (n) from the GTE-ED,
then the log-likelihood function of (4) is obtained as;

ll(Ψ) = n log α + n log λ + n log c− λα
n
∑

i=1
yi +

n
∑

i=1
log
(
1− θ + 2θe−α λ yi

)
+(c− 1)

n
∑

i=1
log
(
1 + θe−α λ yi − e−α λ yi − θe−2 α λ yi

) (13)

By differentiating the ll(Ψ) with respect to the parameters. The following results were ob-
tained;

δll(Ψ)
δα = n

α − λ
n
∑

i=1
yi − 2λθ

n
∑

i=1

yie−α λ yi

(1−θ+2θe−α λ yi )

+(c− 1)
n
∑

i=1

λ yi e−α λ yi−θ λ yi e−α λ yi+2 θ λ yi e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δλ = n

λ − α
n
∑

i=1
yi − 2α θ

n
∑

i=1

yie−α λ yi

(1−θ+2θe−α λ yi )

+(c− 1)
n
∑

i=1

α yi e−α λ yi−θ α yi e−α λ yi+2 θ α yi e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δθ =

n
∑

i=1

2e−α λ yi−1
(1−θ+2θe−α λ yi )

+ (c− 1)
n
∑

i=1

e−α λ yi− e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δc = n

c +
n
∑

i=1
log
(
1 + θe−α λ y − e−α λ y − θe−2α λ y)

The ML Estimator
_

Φ =
(
_
α,

_

λ, _c ,
_

θ
)T

of the parameter vector is gotten by finding the solution

of the set of nonlinear system of equations. The results will give the MLEs _
α,

_

λ, _c and
_

θ . We
applied an optimization technique to numerically maximize the log- likelihood (LL) function
given in (13).
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5. Simulation Study

5.1. The Design

Here, a simulation study is conducted to assess the performance of the maximum likelihood
estimation method as expressed above. So also, 10,000 random samples were generated for
different sizes, n= 20, 50, 100, 200, 300, and 500 from GTE-ED. Furthermore, the estimates, Biases,
MSEs, Confidence Interval (C. Is) at 95%, widths are evaluated. The steps are:

i Choose the initial values of the parameters and the sample size say (n).

ii Draw a random sample of size (n) from the GTE-ED using the quantile function given in
(11).

iii Evaluate the estimates of the parameters using the approach of maximum likelihood.

iv Repeat steps i and ii for N=10,000 times to evaluate the bias, mean square error, 95% C.I
and the interval width of the given estimates.

Table 4: Results for the MLEs, Biases and MSEs, 95% C. Is, and Widths of the GTE-ED for α = 3, λ = 2, c =
0.5, θ = 0.5

C I
Sample Parameter Esimate Bias MSE LC UC width

α 3.1657 0.1657 0.1334 2.9580 3.3734 0.4154
n=20 λ 2.2169 0.2169 0.2664 1.7868 2.6469 0.8601

c 0.5379 0.0379 0.0345 0.4732 0.6026 0.1294
θ 0.3583 -0.1417 0.3579 -0.3038 1.0203 1.13241

α 3.1072 0.1072 0.0794 2.9741 3.2403 0.2662
n=50 λ 2.1433 0.1433 0.1680 1.8543 2.4324 0.5782

c 0.5022 0.0022 0.0105 0.4817 0.5227 0.0410
θ 0.3480 -0.1520 0.2873 -0.1697 0.8658 1.0355

α 3.0888 0.0888 0.0640 2.9787 3.1989 0.2206
n=100 λ 2.1280 0.1280 0.1416 1.8827 2.3734 0.4907

c 0.4952 -0.0048 0.0050 0.4854 0.5051 0.0196
θ 0.3514 -0.1486 0.2227 -0.0419 0.7447 0.7866

α 3.0670 0.0670 0.0510 2.9757 3.1582 0.1825
n=200 λ 2.0978 0.0978 0.1165 1.8883 2.3073 0.4190

c 0.4943 -0.0057 0.0023 0.4898 0.4988 0.0090
θ 0.3841 -0.1159 0.1552 0.1063 0.6620 0.5557

α 3.0539 0.0539 0.0429 2.9754 3.1323 0.1568
n=300 λ 2.0787 0.0787 0.0962 1.9023 2.2551 0.3528

c 0.4942 -0.0058 0.0015 0.4913 0.4972 0.0058
θ 0.4035 -0.0965 0.1228 0.1811 0.6258 0.4448

α 3.0430 0.0430 0.0346 2.9788 3.1072 0.1284
n=500 λ 2.0580 0.0580 0.0770 1.9135 2.2024 0.2888

c 0.4.951 -0.0049 0.0008 0.4935 0.4967 0.0032
θ 0.4267 -0.0733 0.0920 0.2569 0.5964 0.3395

The bias and MSE are respectively calculated as;
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B
(
Ψj
)
= 1

N

N
∑

i=1

(_

Ψj −Ψj

)
and MSE

(
Ψj
)
= 1

N

N
∑

i=1

(_

Ψj −Ψj

)2
where,

_

Ψj stands for the esti-

mate of Ψj for j = 1, ..., 4.

Table 5: Results for the MLEs, Biases and MSEs, 95% C. Is, and Widths of the GTE-ED for α = 0.3, λ = 0.5, c =
1, θ = 0.7

C I
Sample Parameter Esimate Bias MSE LC UC width

α 0.3361 0.0361 0.0108 0.3175 0.3547 0.0372
n=20 λ 0.5095 0.0095 0.0126 0.4850 0.5340 0.0490

c 1.1427 0.1427 0.2028 0.7852 1.5002 0.7150
θ 0.6781 -0.0219 0.1180 0.4478 0.9084 0.9084

α 0.3225 0.0225 0.0057 0.0057 0.3327 0.0204
n=50 λ 0.5003 0.0003 0.0007 0.4867 0.5140 0.0273

c 1.0390 0.0390 0.0486 0.9467 1.1314 0.1847
θ 0.6606 -0.0394 0.1028 0.4622 0.8590 0.3968

α 0.3168 0.0168 0.0038 0.3098 0.3237 0.0139
n=100 λ 0.4993 -0.0007 0.0046 0.4903 0.5082 0.0180

c 1.0111 0.0111 0.0211 0.9701 1.0523 0.0822
θ 0.6523 -0.0477 0.0905 0.4795 0.8252 0.3458

α 0.3101 0.0101 0.0026 0.3051 0.3150 0.0099
n=200 λ 0.5007 0.0007 0.0028 0.4952 0.4952 0.0110

c 0.9992 -0.0008 0.0099 0.9798 1.0186 0.0389
θ 0.6608 -0.0392 0.0705 0.5257 0.7960 0.2703

α 0.3083 0.0083 0.0023 0.3040 0.3126 0.0086
n=300 λ 0.5016 0.0016 0.0022 0.4972 0.5060 0.0088

c 0.9948 -0.0052 0.0067 0.9817 1.0080 0.0263
θ 0.6599 -0.0401 0.0626 0.5403 0.7794 0.2390

α 0.3067 0.0067 0.0019 0.3031 0.3103 0.0071
n=500 λ 0.5015 0.0015 0.0018 0.4979 0.5051 0.0072

c 0.9935 -0.0065 0.0042 0.9854 1.0015 0.0162
θ 0.6649 -0.0351 0.0522 0.5651 0.7647 0.1997

Interpretation of the results for tables 3 and 4:

a . The difference between the true and the estimated values of the parameters are relatively
small.

b . As the sample size increases the estimates converge toward the true values of the
parameters.

c . The interval widths, biases and MSEs decrease with an increase in sample size.
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6. Applications

6.1. Datasets

The first data is on the remission times (in months) of a randomly selected (128) bladder cancer
patients, which can be found in [15]. The second data was used by [16] and it represents the
number of million revolutions before failure for each of the twenty-three ball bearings in the life
tests. These datasets are used in order to check the flexibility of the proposed distribution over
the competing distribution in the study.

Table 6: Summary Statistics for the first dataset

Min. Mean Variance Max. Skewness Kurtosis
0.080 9.366 110.425 79.050 3.2866 18.4831

Table 7: Summary Statistics for the second dataset

Min. Mean Variance Max. Skewness Kurtosis
17.88 72.23 1404.783 173.40 0.9419 3.4889

6.2. The Criteria

The generalized transmuted exponential-exponential (GTE-ED), transmuted exponential-exponential
distribution (TE-ED), exponentiated exponential distribution (EED) and exponential distribution
(ED) are compared using some goodness-of-fit statistics, including Akaike Information Crite-
rion (AIC), Cramer-von Mises Criterion (W), Anderson-Darling Criterion (AD) and Kolmogorov
Smirnov (KS). Furthermore, the model with the smallest values of these criteria indicates better
fit. The R software (AdequacyModel package) is employed to evaluate these statistics.

Table 8: Estimated parameters for the first data

Model _
α

_

λ
_

θ
_c

GTE-E 0.8313 0.1007 0.7914 1.3506
TE-E 0.6401 0.0922 0.8898 -
EE 0.1199 - - 1.2222
E 0.1066 - - -

Table 9: Goodness-of-fit statistics for the first dataset

Model -LL AIC AD W KS
GTE-E 410.8999 829.7998 0.3314 0.0523 0.0523
TE-E 413.5223 833.0447 0.4945 0.0824 0.0725
EE 413.0901 830.1802 0.6705 0.1116 0.0778
E 414.3419 830.6841 0.7156 0.1192 0.0844

Tables 8 and 10 give the estimates of the parameters for the GTE-ED and the competing models
in the study. The values of the computed goodness-of-fits statistics are given in tables 9 and
11. It was observed that GTE-ED has the lowest values of these statistics among the competing
distributions in this study. Hence, the GTE-ED provides a better fit to the datasets.

Figures 5 and 6 show that the GTE-ED fits both the datasets well compared to the competing
distributions.
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Table 10: Estimated parameters for the second data

Model _
α

_

λ
_

θ
_c

GTE-E 0.1516 0.2095 0.1407 5.8194
TE-E 0.1053 0.2037 -0.9996 -
EE 0.0150 - - 1.3535
E 0.0139 - - -

Table 11: Goodness-of-fit statistics for the second dataset

Model -LL AIC AD W KS
GTE-E 112.9714 233.9428 0.1868 0.0315 0.1037
TE-E 116.0201 238.0402 0.2064 0.0367 0.2172
EE 118.8677 241.7355 0.2110 0.0377 0.2226
E 121.4366 244.8731 0.2157 0.0386 0.3072

Figure 5: Shows the estimated densities and ecdf for first data

Figure 6: Shows the estimated densities and ecdf for second data
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7. Conclusion

This research proposed an extension of the transmuted exponential-exponential distribution
named the generalized transmuted exponential-exponential distribution. Expressions for some of
its statistical properties, including the moments, moment generating function, limiting behaviour,
and quantile function, were explicitly derived. A simulation study was conducted, and numerical
values for some of the descriptive statistics were obtained and presented. The method of the
maximum likelihood is adopted in estimating the unknown parameters of GTE-ED. A 95%
confidence interval and interval widths together with biases, mean square errors (MSEs) of the
mean estimates were equally presented on a table for different parameter values. An application
to real datasets proved that the GTE-ED outperformed the competing distributions with lower
values of the goodness-of-fit statistics used in this research.
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