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Abstract

The aim of this paper is to analyze a single server batch service queue model with feedback and second
optional service under a transient and steady state environment. The server provides the first essential
service (FES) to all customers who arrive at the system and the second optional service (SOS) to those
who need it. After completion of FES, if the customer is not satisfied with the service, he may rejoin the
queue or may opt for SOS or exit the system with a particular probability. The service times of both FES
and SOS follow exponential distribution. We use the probability generating function and the Laplace
transform expression to obtain probabilities in the transient state after inverting Laplace transforms into
the time domain. Also, we apply the Tauberian property in the Laplace transform expression to get the
steady state probabilities. Finally, some performance measures and numerical results are provided.

Keywords: Batch service queue; Transient state; Feedback; First essential service; Second optional
service.

I. Introduction

In queue theory, the customers are served one by one or served in batches whose sizes are
fixed or variable in size. When the customers are served, they will depart, but when the customer
does not seem satisfied they will return to the queue again to be served; this situation is called
feedback. Queueing model with feedback have been studied by many researchers such as [1]
who is the first to introduce the concept of feedback mechanism in queues which includes the
probability of the customer to back the counter and take the service. Later, [2] investigated a single
server with feedback wherein the queue is formed in two categories, one is formed in a waiting
room and the other is formed in the service room and obtained the queue size, waiting time, and
total time spent in the system. [3] presented a single server model with limiting behavior of the
waiting time process and having a certain feedback property. Lemoine [3] classified the queue
into two types: the primary queue where customers receive a maximum of time units of service.
The secondary queue is formed from the customers who are not satisfied with the service in the
primary queue. Those customers are attended to only when all customers who enter the system
before them have departed and when the primary waiting room is empty.

[4] discussed M/G/1/∞ queueing system with instantaneous Bernoulli feedback. They
obtained the time-stationary distribution of the number of customers in the system at an arbitrary
epoch. The queueing system with delayed feedback has been studied by [5]. They considered two
servers; a lower server with a general service and an upper server with an exponential service.
The decision to feedback or not depends on the queue length at the two servers. Other existing
works on feedback are found in [7], [10], [9], [11], [12], [14], [15], [16], [17], etc.

In many real service systems, customers want both essential and optional services provided by
the server. More precisely, we may consider a system where a single server’s service is classified
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into two phases. The first phase is required for all customers and only some of them are routed
to the second phase service. [6] studied a single server batch arrival and arbitrary service time
distribution queue system with second multi-optional service and a finite number of immediate
Bernoulli feedback. They provided a steady state analysis of the model, including the asymptotic
behavior under a high rate of retrials.
[8] studied the priority retrial queue with immediate Bernoulli feedback and second multi-
optional service. In this case, the customers’ feedback after completing both phases of services.
They use the embedded Markov chain technique and probability generating function to obtain
the queue size and orbit size. [13] and [17] presented the queue system with batch arrival and
multi-optional service with feedback. They consider two kinds of independent customers’ arrival:
positive and negative arrival. Positive arrivals in batches with the Poisson process and negative
arrived singly with the Poisson process. The arrival of a negative customer removes the positive
customer in service from the system and makes down the server.
The batch service queues have potential applications in various areas, including manufacturing,
production, computer networks, cargo loading and unloading at a harbor, etc. In this situation,
the number of items is processed in batches with a limit on the number of items taken at a time
for processing. A number of researchers have made substantial contributions to batch service
models. [19] investigated a batch service retrial system with feedback in a steady state. They
considered two kinds of the arrival of the customers; the positive customer who is served in batch
and the negative customer who arrives in the system and removes the positive customer. Some
additional works on queuing with batch service are found in [20], [21], etc. One can study a
queue system in two states viz., : transient and steady state. However, most of the literature works
involved steady-state only. Steady state results are inappropriate in cases where the time horizon
of operation is finite. In this situation, we need time-dependent (transient state) to analyze the
system behavior by tracking down the system operation at any instant of time. The transient state
has been widely studied in [23], [22], and the references therein.
This paper extends the work of [18] by including the feedback policy. The inclusion of feedback,
batch service and SOS makes the model more adaptable. This motivates us to explore the Marko-
vian batch service queue with feedback and SOS under transient and steady state environments.
The rest of the paper is organized in the following way: Section 2 contains a discussion of the
model as well as the mathematical formulation of differential difference equations. We use the
Laplace transform and probability generating functions with Rouche’s theorem in Section 3 to
develop the system transient state equations. Section 4 presents the steady-state analysis, followed
by Section 5 with performance measures. Section 6 presents the numerical investigation and
conclusions are made in Section 7.

II. Mathematical Formulation and Description of the Model

Consider a feedback of single batch service M/M[b]/1 queue system with SOS, in which the
arrival of customers follows a Poison process with parameter λ. During FES and SOS the service
times are distributed exponentially with rate µ1 and µ2, respectively. The services are rendered in
batches that does not exceed the maximum capacity b. This means if the server finds the units
that are equal or fewer than b in the waiting line, then he serves them all in the batch. Otherwise,
if he sees in excess of b units in the waiting line, he takes a batch of b on a first-come, first-served,
and the other units remain waiting in the queue. All arriving units required FES, and after a batch
of units complete the FES, the batch (on the same server) may opt for SOS with the probability r0
or leave the system with probability r1. Further, if the batch is unsatisfied with the service in FES,
they rejoin the queue (feedback) with probability (r2 = 1− r0 − r1).

Model Formulation of Differential Difference Equations

The single batch service queue with SOS can be modeled by continuous time of two dimensional
Markov process {(K(t), W(t)); t ≥ 0}; where
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Figure 1: Transition State diagram for b=2

K(t) is number of units in a line at time t,
W(t) is server state at time t with

W(t) =
{

1, FES providing by server,
2, SOS providing by server.

The state-space of a Markov process is given as follows:

Ω = {(m, j); m ≥ 0; j = 1, 2} .

The probabilities in transient state are given by

Pm,j(t) = Pr {K(t) = m, W(t) = j} ; m ≥ 0, j = 1, 2

where the probability in transient state is Pm,j(t) when m units in the waiting line at time t and
the server is rendering FES (j = 1) or SOS (j = 2).
O(t) is the probability in transient state when the waiting line is empty at time t and the server is
idle. The differential difference equations for our model using Markov theory are as follows:

O′(t) = −λO(t) + r1µ1P0,1(t) + µ2P0,2(t), (1)

P′0,1(t) = −(λ + r0µ1 + r1µ1)P0,1(t) + λO(t) + r1µ1

b

∑
i=1

Pi,1(t) + µ2

b

∑
i=1

Pi,2(t), (2)

P′m,1(t) = −(λ + r0µ1 + r1µ1)Pm,1(t) + λPm−1,1(t) + r1µ1Pm+b,1(t) + µ2Pm+b,2(t),

m ≥ 1, (3)

P′0,2(t) = −(λ + µ2)P0,2(t) + r0µ1P0,1(t), (4)

P′m,2(t) = −(λ + µ2)Pm,2(t) + λPm−1,2(t) + r0µ1Pm,1(t), m ≥ 1. (5)

III. The Model’s Transient Solution

In this part, the Laplace transform (L.T) and probability generating function are employed to get
the transient probability of the number of units in the waiting line during server idle and busy.
We consider that time has been calculated from the moment that the server has taken a batch for
service, without leaving none in the queue. i.e, P0,1(0) = 1. Let us denote the Laplace transform
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for O(t), Pm,1(t) Pm,2(t) as O∗(s), P∗m,1(s) and P∗m,2(s), respectively. Taking L.T of equations (1),
(2), (3), (4), (5), we get

(s + λ)O∗(s) = r1µ1P∗0,1(s) + µ2P∗0,2(s), (6)

(s + λ + r0µ1 + r1µ1)P∗0,1(s) = 1 + λO∗(s) + r1µ1

b

∑
i=1

P∗i,1(s) + µ2

b

∑
i=1

P∗i,2(s), (7)

(s + λ + r0µ1 + r1µ1)P∗m,1(s) = λP∗m−1,1(s) + r1µ1P∗m+b,1(s) + µ2P∗m+b,2(s), m ≥ 1, (8)

(s + λ + µ2)P∗0,2(s) = r0µ1P∗0,1(s), (9)

(s + λ + µ2)P∗m,2(s) = λP∗m−1,2(s) + r0µ1P∗m,1(s), m ≥ 1. (10)

The probability generating functions are defined as:

P1(s, z) =
∞

∑
m=0

P∗m,1(s)z
m, P2(s, z) =

∞

∑
m=0

P∗m,2(s)z
m.

Multiplying equations (7) and (8) by zm then summing over m = 0 to m = ∞, adding to (6) and
re-arranging the terms, we have

P1(s, z) =

zb(sO∗(s)− 1) + (1− zb)
(

r1µ1 ∑b−1
m=0 P∗m,1(s)z

m + µ2 ∑b−1
m=0 P∗m,2(s)z

m
)

− µ2P2(s, z)
λzb+1 − (s + λ + µ1)zb + r1µ1

. (11)

Similarly, from equations (9) and (10), we get

P2(s, z) =
−r0µ1P1(s, z)

λz− (s + λ + µ2)
. (12)

Substituting equation (12) in equation (11), we have

P1(s, z) =

[
zb(sO∗(s)− 1) + (1− zb)

[
r1µ1 ∑b−1

m=0 P∗m,1(s)z
m + µ2 ∑b−1

m=0 P∗m,2(s)z
m
]]

(λz− (s + λ + µ2))

λ2zb+2 − λ(2s + 2λ + r0µ1 + r1µ2 + µ2)zb+1 + (s + λ ++r0µ1 + r1µ2)(s + λ + µ2)zb

+ λr1µ1z− (s + λ + µ2)r1µ1 − r0µ1µ2

.

(13)
The expression for P1(s, z) has the characteristic of converging within the unit circle. We can

see that the denominator of P1(s, z) has exactly b + 2 zeros. Applying the Rouche’s theorem for
denominator of P1(s, z) to find the number of zeros on and within the unit circle of the analytic
function, we observe that b of these roots lie inside or on the unit circle, one of zeros is z = 1
and others b− 1, lies inside the circle and must agree with zeros of the numerator of P1(s, z) to
be converged. As a result, one zero in the denominator of P1(s, z) is canceled by P1(s, z) of the
numerator, so that the two remaining zeros of the denominator are found outside the unit circle
and let us consider them as z0 and z1. Since two polynomial differ by at most a multiplicative
function (constant), let us call it A(s) and is independent of z. Therefore, equation (13) can be
written as

P1(s, z) =
(λz− (s + λ + µ2))(1− zb)A(s)

(z− 1)(z− z0)(z− z1)
. (14)

Applying the rule of L’Hospital and setting z = 1 in (14), we obtain

P1(s, 1) =
(s + µ2)bA(s)
(1− z0)(1− z1)

, (15)

Taking z = 1 in (12), we get

P2(s, 1) =
r0µ1P1(s, 1)
(s + µ2)

. (16)
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Applying the normalization condition

P1(s, 1) + P2(s, 1) + O∗(s) =
1
s

,

we get

P1(s, 1) =
(1− sO∗(s))(s + µ2)

s(s + r0µ1 + µ2)
. (17)

Using (15) and (17), we can determined the function A(s) as

A(s) =
(1− sO∗(s))(1− z0)(1− z1)

s(s + r0µ1 + µ2)b
. (18)

Substituting (18) into (14), we have

P1(s, z) =
(1− sO∗(s))(1− z0)(1− z1)(λz− (s + λ + µ2))(1− zb)

s(s + r0µ1 + µ2)b(z− 1)(z− z0)(z− z1)
. (19)

When z = 0, equation (19) becomes

P∗0,1(s) =
(1− sO∗(s))(q0 − 1)(q1 − 1)(s + λ + µ2)

s(s + r0µ1 + µ2)b
, (20)

where q0 = 1
z0

, q1 = 1
z1

. Note that P∗0,1(s) is the L.T of the probability of empty queue and server
providing FES.
From equation (12), when z = 0 and using (20), we have

P∗0,2(s) =
r0µ1(1− sO∗(s))(q0 − 1)(q1 − 1)

s(s + r0µ1 + µ2)b
. (21)

P∗0,2(s) is the L.T of the probability of empty queue and server providing SOS.
Using (6), (20) and equation (21), we can determine O∗(s) as below:

O∗(s) =
r1µ1(q0 − 1)(q1 − 1)(s + λ + µ2)r0µ1µ2(q0 − 1)(q1 − 1)

s [(s + λ)(s + r0µ1 + µ2)b + (r1µ1(s + λ + µ2) + r0µ1µ2)(q0 − 1)(q1 − 1)]
. (22)

Equation (22) indicates the Laplace transform of the state probability that the server is idle and
the queue is empty.

IV. Steady State Analysis

Using the Tauberian property, we get the closed form expressions of the stationary probability
for the number of items in the waiting line while the server is idle or active in FES and SOS. We
define the stationary probabilities.

O = lim
t→∞

O(t) = lim
s→0

sO∗(s), (23)

Pm,1 = lim
t→∞

Pm,1(t) = lim
s→0

sP∗m,1(s), (24)

Pm,2 = lim
t→∞

Pm,2(t) = lim
s→0

sP∗m,2(s). (25)

Assuming that the steady state probabilities exist, the equations (20), (21) and (22) are, respectively
given by

P0,1 =
(1−O)(q0 − 1)(q1 − 1)(λ + µ2)

(r0µ1 + µ2)b
,

P0,2 =
r0µ1(1−O)(q0 − 1)(q1 − 1)

(r0µ1 + µ2)b
,

O =
r1µ1(q0 − 1)(q1 − 1)(λ + µ2) + r0µ1µ2(q0 − 1)(q1 − 1)

λ(r0µ1 + µ2)b + (r1µ1(λ + µ2) + r0µ1µ2)(q0 − 1)(q1 − 1)
.

As a special case, if r2 = 0, the model reduces to M/Mb/1 queueing system with second
optional service [18].
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V. Performance Measures

The measures of performance are key aspects of queueing models as they demonstrate the models
efficient and effective index. In this section, we present the probability when the server is active
with FES or SOS and the anticipated number of units in the waiting line during the server busy
with FES or SOS.

I. The Measures of Performance in Transient State

The probability while the server is active with FES

P[FES](s) =
∞

∑
m=0

P∗m,1(s) =
(1− sO∗(s))(s + µ2)

s(s + r0µ1 + µ2)
. (26)

Similarly, the probability while the server is active with SOS

P[SOS](s) =
∞

∑
m=0

P∗m,2(s) =
r0µ1(1− sO∗(s))
s(s + r0µ1 + µ2)

. (27)

When the server is active with FES or SOS, the probability is

Pb(s) =
∞

∑
m=0

P∗m,1(s) +
∞

∑
m=0

P∗m,2(s). (28)

When the server is active with FES the anticipated number of items in the waiting line is

E[FES](s) =
∞

∑
m=0

mP∗m,1(s).

Taking derivative of (19) with respect to z, putting z = 1, then applying the rule of L’Hospital, the
expected number of units in the waiting line when the server is active with FES is obtained as

∞

∑
m=0

mP∗m,1(s) =

[[((s + µ2)b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [(s + µ2)b(4q0q1 − 2(q0 + q1))]]
(1− sO∗(s))

2b (s(s + r0µ1 + µ2)(q0 − 1)(q1 − 1))
.

(29)
Similarly, from equations (12) and (29), the anticipated number of units in the waiting line when the server
is active with SOS is given by

E[SOS](s) =
∞

∑
m=0

mP∗m,2(s)

=

[[(b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [b(4q0q1 − 2(q0 + q1))]]
r0µ1(1− sO∗(s))

2b (s(s + r0µ1 + µ2)(q0 − 1)(q1 − 1))

+
λr0µ1(1− sO∗(s))

s(s + µ2)(s + r0µ1 + µ2)
. (30)

The overall queue length is given by

Lq(s) =
∞

∑
m=1

mPm,1(s) +
∞

∑
m=1

mPm,2(s) = E[FES](s) + E[SOS](s). (31)

The overall amount of time a unit spends in the waiting line is determined by

Wq(s) =
∑∞

m=1 mPm,1(s) + ∑∞
m=1 mPm,2(s)

λ
=

E[FES](s) + E[SOS](s)
λ

. (32)
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II. The Measures of Performance in Steady State

Suppose the limit of (23), (24) and (25) exist, the steady state quantities from (26) to (32), respec-
tively are denoted by

P[FES] =
∞

∑
n=0

Pm,1 =
(1−O)µ2

r0µ1 + µ2
,

P[SOS] =
∞

∑
m=0

Pm,2 =
r0µ1(1−O)

r0µ1 + µ2
,

Pb =
∞

∑
m=0

Pm,1 +
∞

∑
m=0

Pm,2,

∞

∑
m=0

mPm,1 =

[[µ2b(b− 1)− 2λb](r0 − 1)(r1 − 1)− [µ2b(4r0r1 − 2(r0 + r1))]]
(1−O)

2b (r0µ1 + µ2)(r0 − 1)(r1 − 1))
,

∞

∑
m=0

mPm,2 =
[[b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [b(4q0q1 − 2(q0 + q1))]] r0µ1(1−O)

2b (µ2(r0µ1 + µ2)(q0 − 1)(q1 − 1))

+
λr0µ1(1−O)

µ2(r0µ1 + µ2)
,

Lq =
∞

∑
m=0

mPm,1 +
∞

∑
m=0

mPm,2 = E[FES] + E[SOS],

Wq =
∑∞

m=1 mPm,1 + ∑∞
m=1 mPm,2

λ
=

E[FES] + E[SOS]
λ

.

(33)

VI. Numerical Results and Discussion

In this part, the numerical examples are presented after inverting L.T of equations (20), (21), (22)
and (26) to (32) into time domain with the help of Mathematica software. Since an inverted L.T
expressions are too long, therefore, we compute the model numerically by using the arbitrary
model parameters as λ = 2, µ1 = 4.5, µ2 = 3.5, r0 = 0.36, b = 5, r1 = 0.4.
The effect of these parameters on probability and other performance measure with respect to
time are shown in terms of graphs and tables.

Table 1: The effect of r0 on r1, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r2 = 0.1, b = 5.

r0 r1 LqFES LqSOS Lq

0.1 0.8 1.61413 0.136298 1.75042
0.2 0.7 1.52905 0.258306 1.78736
0.3 0.6 1.44568 0.366441 1.81213
0.4 0.5 1.36723 0.462234 1.82947
0.5 0.4 1.29436 0.54716 1.84152
0.6 0.3 1.22737 0.622792 1.85016
0.7 0.2 1.16602 0.69048 1.8565
0.8 0.1 1.10997 0.751454 1.86143

Table 1 depicts the effect of the probability of opting for SOS (r0) on the expected queue length
(Lq). We observe that for fixed feedback probability (r2), an increase in r0 leads to a decrease in
the probability of the departure (r1), resulting in decrease of LqFES while LqSOS and overall Lq
increases. This is because as r0 increases, more customers attend for SOS, resulting in increasing
the Lq in SOS and overall queue size, as we expect.
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Table 2: Effect of feedback probability (r2) on r0, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r1 =
0.2, b = 5

r2 r0 LqFES LqSOS Lq

0.2 0.6 1.29082 0.663747 1.95457
0.3 0.5 1.44771 0.630166 2.07788
0.4 0.4 1.65249 0.586778 2.23927
0.5 0.3 1.93281 0.527648 2.46045
0.6 0.2 2.34909 0.441877 2.79096
0.7 0.1 3.05593 0.30109 3.35702

Table 2 shows the effect of feedback probability (r2) on the expected queue length. For the
fixed probability of the departure (r1), as r2 increases, the probability of opting for SOS (r0)
decreases, which leads to decrease LqSOS and opposite trend observed in LqFES and overall Lq.
This implies that as r2 increases more customers are not satisfied with service (FES). Therefore,
the customers feedback by joining the queue tends to increase LqFES and overall queue size.

Table 3: The effect of r1 on feedback probability r2, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r0 =
0.1, b = 5

r1 r2 LqFES LqSOS Lq

0.1 0.8 1.61413 0.136298 1.75042
0.2 0.7 1.52905 0.258306 1.78736
0.3 0.6 1.44568 0.366441 1.81213
0.4 0.5 1.36723 0.462234 1.82947
0.5 0.4 1.29436 0.54716 1.84152
0.6 0.3 1.22737 0.622792 1.85016
0.7 0.2 1.16602 0.69048 1.8565
0.8 0.1 1.10997 0.751454 1.86143

From Table 3, for the fixed probability of opting for SOS r0, as r1 increase, r2 decrease, resulting
in decreasing LqFES, LqSOS and overall Lq, which agrees with our intuition.

Table 4: The effect of µ1 on the expected queue length with different values of µ2 and r0 = 0.36, r1 = 0.4, λ = 3.8.

µ1 µ2 = 1.8 µ2 = 2 µ2 = 2.2

2.4 6.54206 6.09142 5.7638
2.8 5.71485 5.31505 5.02568
3.2 5.23358 4.85613 4.57894
3.6 4.92135 4.55096 4.27954
4.0 4.7030 8 4.33623 4.06484
4.4 4.54338 4.17542 3.90165

The impact of µ1 on the expected queue length (Lq) with different values of µ2 is shown in
Table 4. Here Lq deceases as µ1 increases, as we expect. Furthermore, for fixed µ1, as µ2 increases,
Lq decreases. The reason is that, by increasing µ1( µ2), customers are serviced faster and results
in reducing the length of the queue.
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Figure 2: The effect of departure probability r1 on the Lq

Figure 2 shows the effect of departure probability r1 after completing FES on the expected
queue ( Lq). We observe that Lq decreases with time until it reaches a steady state. Further, we
notice that as r1 increases , Lq decreases. The reason is that more customers depart from the
system after completion of FES, hence reducing Lq.

Figure 3: The effect of λ on the expected Lq as time progresses
.

Figure 3 display the effect of the rate of arrival (λ ) on the expected queue length (Lq). As time
progresses, Lq decreases until it attains steady state. Moreover, as λ increases, more customers
enter the queue, resulting in increase in Lq.
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Figure 4: The effect of arrival rate on Lq with different batch size
.

Figure 4 displays the effect of λ on the expected length of queue (Lq) with different batch
size. For fixed λ, we observe that as b increases, Lq decreases. This is because, more customers
are served in batch at a time, which results in reducing the queue length. Further, as b keeps
constant, Lq increases as λ increases, as intuitively expected.

Figure 5: The effect of r2 on Wq

.

The effect of the probability of feedback (r2) on the expected waiting time in the queue (Wq)
is presented in Figure 5 . We can observe from the graph that as r2 increases, WqFES, WqSOS,
and overall Wq increase. Because as r2 increases, more customers rejoin the queue (feedback),
resulting in increasing WqFES, WqSOS and overall Wq.
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VII. Conclusion

We investigate the transient and steady state behavior of a single server batch service queue with
SOS and feedback. We use the probability generating function, Laplace transforms, and Rouche’s
theorem to obtain the transient state probabilities after inverting Laplace transform into the time
domain. Also, the Tauberian theorem is applied in Laplace transform expression to obtain the
steady state probabilities. Finally, we present numerical results as tables and figures to show the
effects of various parameters on the model performance measures.
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