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Pradeep Chaudhary, Anika Sharma, Rakesh Gupta 

The paper deals with the stochastic analysis of two non-identical units (unit-1 and unit-2). Initially, one unit is 

operative and other is kept into warm standby. Each unit of the system has two possible modes-Normal (N) and 

Total Failure (F). A single repairman is always available with the system to repair a failed unit. The operative 

unit is non-repairable, hence upon failure it goes for replacement. The system failure occurs when both the 

units are in total failure mode. Failure and repair times of a unit are taken as independent random variables of 

discrete nature having geometric distributions with different parameters. 

Random Processes Imitation in Fatigue Studies ........................................................... 31

Irina Gadolina, Alexei Erpalov, Nelly Dinyaeva 

Modelling random processes traditionally supposes working with the spectral density. Although many 

engineering problems require the knowledge of spectral density, the specific character of fatigue damage 

accumulation dictates the different approach – namely, the consideration of the distribution of random values of 

the local extremes, which is responsible for fatigue damage accumulation. There is a need in developing the 

methods of random loading imitation in the experimental and numerical study of fatigue. According to the up-

to-date situation in science in fatigue, both opposing approaches should be considered - the time domain and the 

frequency domain. The proposed method, which consists of two stages, meets that requirement. The performed 

case study based on laboratory fatigue testing confirms its applicability. 

A NOVAL APPLICATION OF DUANE PROCESS FOR 

MODELING TWO GRADED MANPOWER SYSTEM WITH 

DIRECT RECRUITMENT IN BOTH THE GRADES ................................................... 38

Ch. Ganapathi Swamy, K. Srinivasa Rao 

Human Resource Management and other companies rely heavily on manpower models. Manpower planning 

was a prerequisite for effective organization administration. The construction and analysis of two graded 

manpower models with direct Duane recruiting processes in both graduates is the subject of this paper. 

Duane's recruitment procedure was capable of identifying time-dependent recruitments. Poisson and non-

homogeneous Poisson processes are used in the Duane recruitment process as precise instances for specified 

parameter values. It is assumed that the organization has two grades and that the recruitment procedure is 

based on the Duane Process. The processes of leaving and promotion are Poisson processes. The model's 

transient behavior was investigated by deriving unambiguous expressions for system characteristics such as the 

mean number of employees in each grade, the mean durational stay of an employee in each grade, and the 

variance of number of employees in each grade using differential equations. The model's sensitivity analysis of 

parameters shows that the Duane recruiting process has a substantial impact on system performance 

indicators. It was also noted that this model incorporates rates of recruitment that are increasing, decreasing, or 

stable. This model proved helpful in analyzing organizational manpower issues. 
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Neetu Dabas, Reetu Rathee 

In this paper a parallel system has been discussed with the idea of priority to preventive maintenance over 

replacement. The system has two identical units and facility of inspection is given to the failed unit before 

repair/replacement. There is a single server who play four-in-one role of inspection, replacement, repair and 

preventive maintenance and comes immediately when required. Units are failed with constant rate whereas 

failure time is random. The distribution of time for repair activities is arbitrary and there rates follow 

exponential distribution. The random variable associate with different rates are stochastically independent. 

Mathematical expression for several reliability terms like MTSF, availability, busy period analysis for server , 

expected number of visits by the server and cost benefit are obtained by using semi-markov process and 

regenerative point technique. Graphs are drawn to find the effect of various parameters on MTSF, Availability 

and profit. 

AN UNIQUE OPTIMAL SOLUTION FOR TYPE – III 

TRIANGULAR INTUITIONSTIC FUZZY 

TRANSPORTATION ISSUE............................................................................................. 67 

Indira Singuluri, N. Ravishankar, CH. Uma Swetha 

In real-life decisions, usually we happen to suffer through different states of uncertainties. In order to counter 

these uncertainties, in this paper, the author formulated a transportation problem in which availability, demand 

and costs are mixed terms of real, triangular intuitionistic fuzzy numbers. In this paper, a simple method for 

solving type-3 intuitionistic fuzzy transportation is applied. So, the proposed method gives the optimal solution 

directly. The solution procedure is illustrated with the help of numerical examples. 

ZECH DISTRIBUTION: DERIVATION, PROPERTIES AND 

APPLICATIONS TO REAL LIFE DATA ........................................................................ 74

Sunday Adeyeye, Ademola Adewara, Emmanuela Akarawak, Adeyinka Ogunsanya, 

Alabbasi Jamal 

The roles of heavy – tailed distribution in modelling real life events, especially in financial and actuarial 

sciences, cannot be over – emphasized. In this paper, a new heavy right – tailed, three – parameter continuous 

distribution with increasing hazard rate called Zech distribution is developed. The proposed model is very 

suitable for modelling heavy right- tailed data. Zech distribution is the reciprocal of the random variable which 

follows Gompertz- Inverse – Exponential (GoIE) distribution and it does not involve addition of extra 

parameter, thereby removing the cumbersomeness in the estimation process posed by other methods involving 

additional extra parameters, especially where more than three parameters are involved. The statistical 

properties of the new distribution such as survival function, hazard function, cumulative hazard function, 

reversed hazard function, quantile function, order statistics, moments, mean, median, variance, skewness, and 

kurtosis were derived. The Linear representation of the pdf of the newly developed distribution revealed that its 

probability density function is a weighted exponential distribution. Also, method of maximum likelihood was 

used in estimating the model’s parameters. The simulation results revealed that as the sample sizes increased, 

the root mean squared errors decreased which showed that the parameters of Zech distribution are stable. The 

proposed distribution was applied to two real life data sets. The results showed that Zech distribution performs 

better than Gompertz Inverse Exponential distribution, Weibull Exponential distribution and Gompertz 

Exponential distribution. 
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Problems ................................................................................................................................ 89

Kaushik A Joshi, Kirankumar L. Bondar, Pandit U. Chopade 

In this article, we will take a look at FTP, and then present a way to solve many such problems by using the 

affected method for FN level. Some of the numbers in FTP may be sharp or sharp numbers. In many decision-

making problems, numbers are represented in terms of FN. FN can be normal or oblique, triangular or 

trapezoidal or any other FN LR. So, some FNs do not compare immediately. First, we convert QF such as price, 

quantity, supply and demand, into accurate quantities by using our system, and then using sophisticated 

algorithms, we solve and solve the problem. The new system is a configuration, easy to install and can be used 

for all types of TP, or to increase or decrease the target function. In the end, this process is illustrated by digital 

examples. 

THE LENGTH BIASED NEW QUASI LINDLEY 

DISTRIBUTION: STATISTICAL PROPERTIES AND 

APPLICATION .................................................................................................................... 98

N. W. Andure (Yawale), R. B. Ade 

In this paper, a new distribution namely the length biased new quasi-Lindley distribution is proposed with the 

different weight function. The different mathematical and statistical properties of the proposed distribution are 

derived and discussed. The survival function, hazard rate function and mean residual life function for the 

length biased new quasi Lindley distribution is discussed. Also, concepts like stochastic ordering and entropy 

for proposed distribution are studied. The parameters of the proposed distribution are estimated by using the 

method of maximum likelihood estimation. The performance of the newly introduced distribution is studied 

using a real- life data set. 

POWER WEIGHTED AKASH DISTRIBUTION WITH 

PROPERTIES AND APPLICATIONS ............................................................................. 111

Rama Shanker, Kamlesh Kumar Shukla 

In In this paper power weighted Akash distribution (PWAD) which includes weighted Akash distribution 

(WAD), power Akash distribution (PAD) and Akash distribution as particular cases has been proposed and 

investigated. Its moments, hazard rate function and mean residual life function have been discussed. Method of 

maximum likelihood estimation has been discussed for estimating the parameters of the distribution. 

Applications of the proposed distribution to two real lifetime datasets have been presented and compared with 

other one parameter, two-parameter and three-parameter well-known lifetime distributions. 
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Dr. K. Srinivasa Rao, Dr. U. V. Adinarayana Rao 

Combined-numeral nonlinearity coding problem (CNNLCP) troubles concerning usual restrictions and 

empirical roles and constant then numeral variable quantity frequently appear in a production project, 

substance method business, and organization. Even though several optimize techniques need to be established 

for CNNLCP troubles, these techniques can hold signal relationships together with a particular variable 

quantity. Thus, this analysis intends a different approach used to explain a signal CNNLCP trouble and set 

free variable amount towards achieving an internationally optimum explanation. The signal CNNLCP trouble 

is initially converted into an individual with one certain variable quantity. However, the changed trouble is 

redeveloped as a curving combined-numeral system as the Convexness of the approaches and piecewise 

linearization systems. A comprehensive optimal signal CNNLCP trouble can ultimately be realized inside the 

acceptable inaccuracy. Algebraic models are also introduced to establish the effectiveness of the recommended 

approach. 

SELECTION OF SINGLE SAMPLING PLANS BY 

VARIABLES BASED ON GENERALIZED BETA 

DISTRIBUTION .................................................................................................................. 136

R. Vijayaraghavan, A. Pavithra

Statistical quality control (SQC) has wider applications in industries and production engineering. Product 

control, one of the two major categories of SQC, consists in procedures by which decisions are made on the 

disposition of one or more lots of finished items or materials produced by manufacturing industries. Sampling 

inspection by variables in product is the methodology that is employed for deciding about the disposition of a lot 

of individual units based on the observed measurements on a quality characteristic of randomly sampled units 

from the lot submitted for inspection. These procedures are defined under the assumption that the quality 

characteristic is measurable on a continuous scale and the functional form of the probability distribution must 

be known. Inspection procedures which have been developed based on the implicit assumption that the quality 

characteristic is distributed as normal with the related properties are found in the literature of sampling 

inspection procedures. The assumption of normality may not be realized often in practice and it becomes 

inevitable to investigate the properties of variable sampling plans based on non-normal distributions. In this 

paper a single sampling plan by variables is formulated and evaluated under the assumption that the quality 

characteristic is distributed according to a generalized beta distribution of first kind. Procedures are developed 

for determining the parameters of the proposed plan for specified requirements in terms of producer’s and 

consumer’s protection. 
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RELIABILITY ANALYSIS OF REVERSE OSMOSIS 

FILTRATION SYSTEM USING COPULA ..................................................................... 163 

Anas Sani Maihulla, Ibrahim Yusuf 

In this study, the reliability metrics used to assess the strength of a three-subsystem reverse osmosis filtering 

system. The subsystems include sand filter, carbonated filter, and precision filter. Each subsystem is composed 

of active components that can operate in series parallel. The system of partial differential equations was built 

using the mnemonic rule and analytically solved. Other reliability variables that were investigated for 

determining system strength included availability, reliability, mean time to failure (MTTF), profit analysis, 

and sensitivity analysis. The Maple software was used to obtain numerical solutions. In addition, a graphical 

representation of the numerical results was provided to demonstrate the behaviors of reliability characteristics 

with regard to time and failure rate. The study could assist water treatment firms and their repairers in 

overcoming some of the challenges faced by repairers of specialized manufacturing and industrial systems 

working in harsh settings or contaminated environments unfit for human consumption. 
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SENSITIVITY ANALYSIS OF A UREA FERTILIZER 

PLANT  ................................................................................................................................. 178

Deepika Garg, Arun Kumar, Vimal Kumar Joshi, Nahid Fatima 

Purpose – This paper presents a sensitivity analysis of a urea fertilizer manufacturing system comprising 

several sub-systems of differing nature. Design/methodology/approach–A mathematical model is developed for 

the consistent general repair and disappointment rates for every subsystem. The framework is analyzed by 

utilizing regenerative point graphical technique; as a result, some recommendations are made for the optimized 

output. A state transition diagram of the system is developed to find mean time to busy period server, system 

failure and system availability. Findings – The present study suggests an approach to improve the system 

performance. The analysis and results outlined in this paper are useful to system managers, training 

supervisor, engineers and reliability analysts in the manufacturing industry. Originality/ value – The 

manufacturing system of Urea fertilizer consists of a complex structure with the high risk of machine failure. 

Machine/ Production failure leads to high risks of economic & environmental loss and worker’s safety. To 

address this challenge effectively, sensitivity analysis of the urea fertilizer plant is discussed for minimizing the 

risk of machine failure. 

Fractional Multi-objective Capacitated Transportation 

Problem with Different Membership Functions ........................................................... 190

Sheema Sadia, Qazi Mazhar Ali, Zainab Asim, Ahteshamul Haq 

This Fractional Transportation Problem arises when an enterprise has to face the issue of maintaining a good 

ratio of some critical parameters. These parameters are directly concerned with product(s) transportation from 

sources to destination. This paper considers a multi-objective Capacitated Transportation Problem with 

Fractional Objectives. A fuzzy goal programming approach with different membership functions is applied to 

generate a different set of solutions. We also use Chebyshev’s Goal Programming for obtaining the solutions. 

Finally, a numerical illustration is provided to validate our proposed model. 

Reliability of Gas Insulated System under Electric Field 

Stress with Optimal Design of FGM Post Type Spacer ...............................................  199

Akanksha Mishra, G. V. Nagesh Kumar, D. Deepak Chowdary, B. Sravana Kumar 

Gas Insulated Substation (GIS) is essential for the transmission and control of power both in AC and DC 

electrical systems. Functionally Graded Material (FGM) technology is widely used for the design of the spacer 

material in the GIS to reduce the electric stress in the system. Optimal designing of the material of the spacer 

gradings with a particular attention to the number of gradings may prove to be very useful in reduction of the 

stress in the GIS at an effective cost. This paper deals with the design and development of an optimal dielectric 

material for the functionally graded material (FGM) spacer in a GIS. A novel optimization method has been 

proposed which is used for the optimization of the conductor material and the FGM epoxy spacer. The optimal 

value for each grading of functionally graded material spacer is determined by the proposed method. A dual-

objective function is chosen for the optimization problem. The objective of the problem is to minimize the 

maximum field stress in addition to the standard deviation in the electric field. A post type spacer has been 

considered for the study. Initially, the optimization of the dielectric material is done only for 4 gradings. 

Gradually, the number of gradings in the FGM-spacer is increased to determine the optimal number of 

gradings suitable for the design. 
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A GENERALIZED APPROACH IN MULTIPROCESSOR 

ENVIRONMENT USING REGRESSION TYPE 

ESTIMATOR AND COST ANALYSIS ........................................................................... 217

Sarla More, Diwakar Shukla 

Consider a multi-processors computer system consisting of a ready queue of different jobs to be 

executed/processed. Lottery scheduling is fair enough to schedule the resources for each and every job. The 

research idea assumes condition where one can observe some processes to be fully executed; some partially 

executed few blocked/suspended/ terminated, after sudden system breakdown. An estimation strategy has been 

designed for the estimation of the total time required to process all these types of processes (processed, partially 

processed and blocked processes). How much time is required to process the remaining in any hazardous 

situation? A regression type estimator of sampling theory is used to perform this task. This remaining time 

estimation technique deals with the backup cost and recovery management as well. Sampling techniques are 

used in proposed approach for the testing purpose and a simulation has been performed. Another tool adopted is 

the confidence intervals which are calculated and gives proper précised values in comparison to the true mean 

for the total remaining time. The linear, square root and square cost function model are adopted for the 

calculation of backup cost and recovery management. In addition some auxiliary information is also 

incorporated in the form of size measure of the processes which is an effective approach to calculate the complete 

remaining time of the processes in multiprocessor environment. The purpose of the proposed research has been 

served effectively as one can observe the results of disaster and recovery management of the computer system. 

IMPROVEMENT OF MANAGEMENT METHODS FOR 

THE OPERATIONAL RELIABILITY OF DISTRIBUTED 

ENERGY FACILITIES ........................................................................................................ 235

Farhadzadeh E.M., Muradaliyev A.Z., Abdullayeva S.A. 

Improving the management of the technical condition of equipment, devices and installations, the service life of 

which exceeds the standard value, is one of the most important problems of state security. Today, the relative 

number of such equipment already exceeds 60%. The results of the analysis of literature data on this problem 

presented, which confirm its relevance and significance. It is important to note that these findings apply to not 

only electrical power systems, but many other production systems as well. The main difficulties in solving the 

analyzed problem, first of all, the paucity of statistical data characterizing the reliability of work, their 

multidimensional and random nature. The authors propose to solve this problem by moving from average 

annual reliability indicators to average monthly indicators of operational reliability. A brief description of the 

solution of individual tasks of this problem for overhead power lines is given, which together represent a new 

methodology for managing the technical condition of distributed type objects. Science-intensive, cumbersome 

and labor-intensive calculation algorithms determine the expediency of the transition to intelligent systems. At 

the same time, the management of the electric power system and its individual production enterprises will 

monthly receive specialized forms indicating recommendations that optimize the increase in the reliability of 

overhead power transmission lines by restoring wear and tear. 
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R. Vijayaraghavan, A. Pavithra

Acceptance sampling plays an important role in ensuring the quality of the products manufactured by the 

industrial production processes. Sampling inspection plans by attributes are adopted for taking decisions about 

the lots submitted for inspection. Such procedures are employed for sentencing individual lots or batches or lots 

in continuous stream. Reliability sampling is s specific inspection procedure which is used to decide whether 

the submitted lot or batch is acceptable or non-acceptable based on life tests. In reliability sampling, the lifetime 

of the items randomly drawn from the lot is considered as a random variable which follows a continuous 

probability distribution. In this paper, designing of single sampling plans for life tests is considered under the 

assumption that the lifetime random variable follows a Lomax distribution. Reliability criteria for designing life 

test plans when lot quality is evaluated in terms of mean life, median life, hazard rate and reliability life are 

proposed. Conversion factors for adapting acceptable quality levels to life and reliability testing under the 

assumption of Lomax distribution are determined and suitable illustrations are provided. 
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Ranking fuzzy numbers is significant in optimization approaches such as assignment challenges, 

transportation problems, project schedules, artificial intelligence, data analysis, network flow analysis, an 

uncertain environment in organizational economics etc. This paper introduces a new fuzzy ranking in 

Heptagonal fuzzy numbers and arithmetic operations of Heptagonal fuzzy numbers defined. In the network, 

every activity duration is viewed by a Heptagonal fuzzy number. Every Heptagonal fuzzy number is 

transformed into a crisp number using the ranking function. By applying the traditional method, we calculate 

the fuzzy critical path. These procedures are illustrated with numerical examples and compared with existing 

ranking functions. 

Weibull Inverse Power Rayleigh Distribution with 

Applications Related to Distinct Fields of Science ....................................................... 272

Muzamil Jallal, Aijaz Ahmad, Rajnee Tripathi 

In this paper an extension of Weibull Power Rayleigh Distribution has been introduced, and named it is as 

Weibull Inverse Power Rayleigh Distribution. This distribution is obtained by adopting T-X family technique. 

Various Structural properties, Reliability measures and Characteristics have been calculated and discussed. The 

behaviour of Probability density function, Cumulative distribution function, Survival function, Hazard rate 

function and mean residual function are illustrated through different graphs. Various parameters are estimated 

through the technique of MLE. The versatility and flexibility of the new distribution is done by using real life 

data sets. To evaluate and compare the out effectiveness of estimators, a simulation analysis has also been 

carried out. 
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Estimation and Prediction for Exponentiated Exponential 

Distribution under Generalised Progressive Hybrid 

Censoring ..............................................................................................................................  291

Aakriti Pandey, A. Kaushik, S. K. Singh 

In this article, we propose the estimators for the parameters of exponentiated exponential distribution under 

generalized progressive hybrid censoring scheme obtained through different methods of estimations like 

maximum likelihood, Maximum product spacing, Bootstrap and Bayesian. Asymptotic confidence, Bootstrap 

and HPD intervals have also been computed. Moreover, Stress Strength reliability estimation is also discussed. 

The performance of the estimators have been studied in terms of their MSEs. Bayesian prediction of future 

observations has also been attempted. For illustrating the proposed methodology, a real data set is taken into 

account. 

RELEASE TIME ANALYSIS OF OPEN SOURCE 

SOFTWARE USING ENTROPY AND RELIABILITY ................................................. 307

Vishal Pradhan, Gunjan Tripathi, Ajay Kumar, Joydip Dhar 

Any software system, however securely written or precise the code is, is always susceptible to failure. These 

factors, such as the number of errors in the program or the mean-time for software failure, measure the program

’s reliability. In order to meet more customer needs, current OSS products must be reliable. To measure these 

parameters, like the reliability of the software, we use different growth models called Software Reliability 

Growth Models. These models help us in determining the different reliability measures. Faults occur due to 

several reasons in software- sometimes, it is the environmental factors. It can also be because of casual human 

behavior. Faults may also occur during the process of removal of previous faults. Whenever the code is changed, 

randomness in the software increases. We can calculate the optimal release time of a software product based on 

the calculated reliability measures, which have entropy also been considered. Finally, the user’s satisfaction 

level can also be considered. 

Performance Analysis of System where Service Type for 

Boiler Depends Upon Major or Minor Failures ............................................................ 317

Upasana Sharma, Rajveer Kaur 

In industries, the type of failure sensitively affects the system. So, it is essential to Categorize these failures into 

different categories to enhance the system performance. In this research, concentration made in differentiating 

the failure type into major/minor categories with repair/replacement facility for the service by single repairman. 

Currently, we studied the boiler system of the steam generation plant to perform the task of repair/replacement 

with a single repairman. A reliability model constructs to compute MTSF(mean time to system failure), 

availability, Busy period for repair/replacement, and profit evaluation. The above measures were estimated 

numerically and plotted graphically using semi-Markov processes and regenerative point technique. Various 

effectiveness measures show how system performance gets affected by major/minor failures & the type of service 

provided. 
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Estimation of Average Degree of Social Network Using 

Clique, Shortest Path and Cluster Sampling to monitor 

Network Reliability ............................................................................................................ 326

Vivek Kumar Gupta, Diwakar Shukla 

In recent past, Online Social Networks (OSN) has emerged as a platform for sharing information, thoughts, 

and activities. In the real-world network, method of considering the appropriate samples is most frequently used 

for network analysis. Graph sampling is a procedure used for computing unknown parameters. Many sampling 

algorithms exist in literature such as Random node, Random edge sampling, Rank degree, etc. can be used for 

estimation. This paper presents a comparison of clique based procedure (CBP) and shortest path based 

procedure (SPP) to estimate the average degree of a vertex in a social network using an overlapping cluster 

sampling. A comparative procedure is used to obtain the lower and upper limit of confidence intervals with the 

help of multiple samples. Ogive based simulation is also used for single value computation of limits of CI. The 

results, obtained from simulation, show that clique based sampling algorithm (CBP) is more efficient than the 

shortest path based sampling algorithm (SPP). The estimated confidence intervals can be used for monitoring 

the reliability of a social network in terms of control over average network degree. 

Inverse Weibull-Burr III Distribution with Properties 

and Application Related to Survival Rates in Animals ............................................... 340

Aijaz Ahmad, Mujamil Jallal, I. H. Dar, Rajnee Tripathi 

The objective of this study is to develop an extension of the Burr-III distribution which is achieved by adopting 

the inverse Weibull-G family of distribution and is referred as inverse Weibull-Burr III distribution (IWB-III) 

to evaluate complicated data. Different structural characteristics of the suggested distribution have been 

determined and analysed. Distinct plots depict the behaviour of the probability density function (pdf) and the 

cumulative distribution function (cdf). The maximum likelihood estimation method is applied to estimate the 

stated distribution parameters. To assess and investigate the efficacy of estimators in terms of bias, variance, 

and mean square error (MSE), a simulation study was conducted. Lastly, the effectiveness of the stated 

distribution is proven by an actual data set relevant to survival rates in animals. 

Reliability and Economic Analysis of Captive Power Plant 

With Reduced Capacity ...................................................................................................... 356

Upasana Sharma, Avtar Singh 

This paper reported the performance evaluation of Captive Power plant working in the fertilizer industry with 

possible production capacities. The idea of reduced capacity and load sharing to use the available system 

optimally is analyzed. The system works on two STG’s (steam turbine generators) and one gridline. Gridline 

can bear the load of one or both STG’s on failures. At the breakdown in gridline and STG, the system work at 

reduced capacity. Gridline repaired on a priority basis. The semi-Markov processses and regenerative point 

technique are used to evaluate the reliability and economic measures such as availability, busy period of 

repairman, and expected no. of repairs. The graphical study shows the relationships between these measures 

with the failure rates of STG and gridline. 
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MAP/PH/1 Queue with Vacation, Customer Induced Interruption, 

Optional Service, Breakdown and Repair Completion................................................ 367

G. Ayyappan, S. Sankeetha

The paper considers a single server that provides consumers with both regular and optional services. The 

system’s inter-arrival time is determined by a Markovian Arrival Process (MAP), the service time is 

determined by a phase type distribution, and the remaining random variables are distributed exponentially. 

This system was represented as a QBD process, with the block elements of the generated matrix having finite 

dimensions, to investigate steady state. Additionally, we addressed the busy period and waiting time 

distribution for our concept. The system’s performance parameters are calculated and graphically shown. 

On a Wide Plurimodal Class of Distributions Suitable for 

Asymmetric Data Sets ......................................................................................................... 387

C. Satheesh Kumar, G. V. Anila

Asymmetric normal distributions have received much attention in the literature during the last three decades. 

But, plurimodal asymmetric normal distributions are not much studied in the literature even though it has 

much relevance in practical situations. Here we propose a new class of plurimodal, asymmetric normal 

distribution and investigate its several statistical properties, including certain reliability aspects. A location-

scale extension of the proposed model is developed and studied their properties. The maximum likelihood 

estimation method is employed for estimating the parameters of the proposed extended class of distributions and 

conducted generalized likelihood ratio test procedure for testing the parameters of the distribution. Three real-

life data sets are considered for illustrating the usefulness of the model and a brief simulation study is carried 

out for examining the performance of maximum likelihood estimators of the proposed model. 

PERFORMANCE MODELING AND DSS FOR ASSEMBLY LINE 

SYSTEM OF LEAF SPRING MANUFACTURING PLANT ....................................... 403

Shanti Parkash, P.C. Tewari 

This work deals with the Performance Modelling and purposed the Decision Support System (DSS) for 

maintenance priorities of an assembly line system using a probabilistic approach. This system consists of four 

subsystems i.e. Shot Peening, Painting Machine, Assembly Platform and Riveting Machine. Performance 

modelling among various subsystems has been done by Markovian approach. Steady state probabilities are 

determined by drawing transition diagram and solving the differential equations. Decision matrices are formed 

with the help of different combinations of failure and repair rates of all the subsystems. The key finding of this 

work is that painting machine is the most critical subsystem. 
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CERTAIN CURVATURE CONDITIONS ON 

LORENTZIAN PARA-KENMOTSU MANIFOLDS .................................................... 413

S. Sunitha Devi, K. L. Sai Prasad, T. Satyanarayana

We classify Lorentzian para-Kenmotsu manifolds which satisfy the curvature conditions W2.C = 0, Z.C = 

LCQ(g, C), W2.Z − Z.W2 = 0 and W2.Z + Z.W2 = 0, where W2 is the Weyl- projective tensor, Z is the 

concircular tensor, and C is the Weyl conformal curvature tensor. We study and have shown that the manifold 

M is η-Einstein provided that the Weyl-projective curvature tensor W2 meets the condition W2.Z − Z.W2 = 

0, and it is an Einstein manifold if W2.Z + Z.W2 = 0. Finally, in this article, we derive the conditions in 

relation to conformally flatness of the manifold, whenever the LP-Kenmotsu manifold satisfies the condition 

Z.C = LCQ(g, C).

Bayesian Survival Modeling of Marshal Olkin Generalized-G 

Family With Random Effects Using R and STAN ...................................................... 422

Shazia Farhin, Firdoos Yousuf and Athar Ali Khan 

The purpose of this paper is to fit the Marshall-Olkin generalized-G(MOG-G) family to censored survival data 

with random effect in the Bayesian environment. Three special distrbution based on MOG-G family are 

obtained, namely Marshall-Olkin generalized-exponential, Marshall-Olkin generalized-Weibull, and Marshall-

Olkin generalized-Lomax. The probabilistic programming language STAN is used for the fitting of these three 

distrbution to the survival data. STAN offers full Bayesian inference and implements via Hamiltonian Monte 

Carlo algorithm and No-U-Turn Sampler(NUTS) algorithm of MCMC. We compared the models with the help 

of leave one out cross-validation information criteria and Watanabe Akaike information criteria. Stan codes for 

the analysis are provided. 

On the Use of Entropy as a Measure of Dependence of 

Two Events. Part 2 ............................................................................................................... 441

Valentin Vankov Iliev 

The joint experiment J(A,B) of two binary trials A [ Ac and B [ Bc in a probability space can be produced not 

only by the ordered pair (A, B) but by a set consisting, in general, of 24 ordered pairs of events (named Yule’s 

pairs). The probabilities x1, x2, x3, x4 of the four results of J(A,B) are linear functions in three variables a = 

Pr(A), b = Pr(B), q = Pr(A \ B), and constitute a probability distribution. The symmetric group S4 of degree 

four has an exact representation in the affine group Aff(3,R), which is constructed by using the types of the 

form [a, b, q] of those 24 Yule’s pairs. The corresponding action of S4 permutes the components of the 

probability distribution (x1, x2, x3, x4), and, in particular, its entropy function is S4-invariant. The function 

of degree of dependence of two events, defined in the first part of this paper via modifying the entropy function, 

turns out to be a relative invariant of the dihedral group of order 8. 
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Vacations, Optional Service, Close-down, Setup, 

Breakdown, Phase Type Repair and Impatient Customers ........................................ 447

G. Ayyappan, G. Archana Gurulakshmi, B. Somasundaram

The purpose of this paper is to analyse a single server queueing model with multiple vacations, optional service, 

close-down, setup, balking, breakdown and repair under the assumption that the customers arrive according to 

a Markovian Arrival Process (MAP). The service and repair times follow the phase-type distributions. At the 

completion of service, in case there are no customers in the system, the server closes down the system and goes 

for vacation. After completion of the vacation, the server has to start the setup process if a minimum of one 

customer is present in the system or else the server goes for another vacation. The server provides optional 

service to the customers those who are in need of additional services. By employing the matrix analytic method, 

the stationary probability vector has been evaluated. The stability condition, busy period analysis, distribution 

function for waiting time and some of the system performance measures concerning this model are derived. The 

outcome arising out of numerical values and graphical representations are also presented for this model. 

Reliability and Sensitivity Analysis of Two Non-Identical 

Unit Standby System Subject to Pre-operation Random 

Inspection of Standby Unit ................................................................................................ 469

Amit Manocha, Anil Kumar Taneja, Gulshan Lal Taneja 

This paper examines the stochastic behavior of standby redundant system having two non-identical units. The 

system comprised of main unit and non-identical cold standby unit. When the main unit collapses, standby 

unit is exposed to operable conditions. Due to long-time and non-use of standby unit, though with small 

chances, it is observed that standby unit gets corrupt and becomes inoperable even in standby mode. Further, it 

demands repair/maintenance to make it worth-operating. Henceforth, it is considered to perform random 

inspection of standby unit to ensure that whether it is in operable condition or not. Inspection as well as repair 

both the tasks are performed by single repair facility. semi-Markov and regenerative processes are applied to 

derive expressions for the system performance indices. Profit function and bounds (upper/lower) for various 

costs involved are evaluated. Numerical study has been performed to illustrate the behavior of model developed. 

Sensitivity and relative sensitivity analysis has also been done for MTSF and steady-state availability. 

THE NEGATIVE BINOMIAL-AKASH DISTRIBUTION 

AND ITS APPLICATIONS ............................................................................................... 482

Rajitha C.S., Ashly Regi 

A new two-parameter negative binomial mixture distribution named as negative binomial-Akash distribution 

is introduced in this paper. The proposed distribution is attained by compounding the negative binomial 

distribution with the Akash distribution. Some of its special characteristics are also derived, including factorial 

moments, mean, variance, index of dispersion etc. Furthermore, the behaviour of mean, variance and index of 

dispersion are discussed. The parameters of the proposed distribution are estimated using the maximum 

likelihood estimation method. This distribution can be used for modeling overdispersed count data. The 

usefulness and application of the proposed distribution are illustrated using two actual count data sets. 
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Generalized Transmuted Exponential-Exponential 

Distribution and its Applications .................................................................................... 492

A. S. Mohammed, F. I. Ugwuowo, T. S. Patrice, H. Muhammad 

Modeling of datasets requires knowledge of their appropriate distributional assumptions. In this research, we 

generalized the transmuted exponential-exponential distribution, and it was observed that the addition of the 

shape parameter to the model proved to be helpful in improving the flexibility of the model. Different 

characteristics, as well as structural properties of the model, were investigated and presented in an explicit 

form. The probability density function of the order statistics and numerical results for some descriptive 

statistics were obtained. A 95% confidence interval and interval widths, together with biases and mean square 

errors (MSEs) of the mean estimates, were equally evaluated using the Monte-Carlo simulation approach. To 

validate the flexibility of the model, we used real datasets and the generalized transmuted exponential-

exponential distribution (GTE-ED) outperformed the competing distributions. 

 WITH FEEDBACK AND SECOND OPTIONAL SERVICE ....................................... 507

P. Vijaya Laxmi, Hasan A.B.D. Qrewi, Andwilile A. George

The aim of this paper is to analyze a single server batch service queue model with feedback and second optional 

service under a transient and steady state environment. The server provides the first essential service (FES) to 

all customers who arrive at the system and the second optional service (SOS) to those who need it. After 

completion of FES, if the customer is not satisfied with the service, he may rejoin the queue or may opt for SOS 

or exit the system with a particular probability. The service times of both FES and SOS follow exponential 

distribution. We use the probability generating function and the Laplace transform expression to obtain 

probabilities in the transient state after inverting Laplace transforms into the time domain. Also, we apply the 

Tauberian property in the Laplace transform expression to get the steady state probabilities. Finally, some 

performance measures and numerical results are provided. 

20

 ANALYSIS OF MARKOVIAN BATCH SERVICE QUEUE



Pradeep Chaudhary, Anika Sharma, Rakesh Gupta 
A DISCRETE PARAMETRIOC MARKOV-CHAIN MODEL 

RT&A, No 2 (68) 
Volume 17, June 2022 

 

 

 

 
 

A Discrete Parametric Markov-Chain Model of a Two Non-

Identical Units Warm Standby Repairable System with 

Two Types of Failure 

Pradeep Chaudhary, Anika Sharma, Rakesh Gupta  

• 
Department of Statistics 

Ch. Charan Singh University, Meerut – 250004 (India) 

E-mail: pc25jan@gmail.com; ash27sharma@gmail.com; smprgccsu@gmail.com 

 

 

Abstract 

 

The paper deals with the stochastic analysis of two non-identical units (unit-1 and unit-2). 

Initially, one unit is operative and other is kept into warm standby. Each unit of the system has two 

possible modes-Normal (N) and Total Failure (F). A single repairman is always available with the 

system to repair a failed unit. The operative unit is non-repairable, hence upon failure it goes for 

replacement. The system failure occurs when both the units are in total failure mode. Failure and 

repair times of a unit are taken as independent random variables of discrete nature having 

geometric distributions with different parameters. 

 

Keywords: Transition probabilities, mean sojourn time, geometric distribution, 

regenerative point technique, reliability, MTSF, availability, expected busy period 

of repairman, net expected profit.  

 

 

1. Introduction 
 

The Two non-identical units warm standby system have been widely studied in the literature of 

reliability as they are frequently used in modern business and industries. It is obvious that the 

standby unit is switched to operate when the operating unit fails and the switching device which is 

used to put the standby unit into operation may be perfect at the time of need. Some authors 

including [5, 9, 10 and 13] analyzed two unit warm standby and two non-identical units warm 

standby redundant system models using different concepts. All the above system models have 

been analyzed by considering continuous distributions of all the random variables involved.  

In many realistic situations, some writers [4 and 7] analyzed a two identical unit and two non-

identical units cold standby system with two types of failure and later on [3] analyzed two non-

identical units parallel system subject to two types of failure and correlated life times. Some 

authors [11, 12] analyzed the deferent concepts of assumptions. So in case of discrete random 

variable, discrete distribution is considered to be appropriate for obtaining the effectiveness of 

different reliability measures. 

In the area of reliability using discrete distribution had given their ideas by analyzing two 

non-identical unit parallel system with geometric failure and repair time distribution. Since there is 
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always a possibility for failure of any system during in its operative conditions in different 

measures. So to detect the type of failure inspection is very much required which had been always 

ignored by the researchers, whether using continuous or discrete distributions. 

  This system model is based on discrete parametric Markov-chain. Moreover, [1, 2, 6 and 8] 

introduced the concept of discrete parametric Markov-chain in analyzing the system models in the 

field of reliability modeling. The following economic related measures of system effectiveness are 

obtained by using regenerative point technique-  

i. Transition probabilities and mean sojourn times in various states. 

ii. Reliability and mean time to system failure. 

iii. Point-wise and steady-state availability of the system during time (0, t-1). 

iv. Expected busy period of repairman during time (0, t-1). 

v. Net expected profit incurred by the system during a finite and steady-state are 

obtained. 

 

2. System Description and Assumptions 
 

1. The system comprises of two non-identical units. Initially, one unit is operative 

and other is kept into warm standby. 

2. Each unit of the system has two modes- Normal (N) and total failure (F). 

3. A single repairman is always available with the system to repair a failed unit.   

4. The operative unit is non-repairable, hence upon failure it goes for replacement. 

5. The system failure occurs when both the units are in total failure mode. 

6. The repaired unit works as good as new. 

7. Failure and repair times of the units follow independent geometric distributions 

with different parameters. 

 

3. Notations and States of the System 

 3.1 Notations :  
x

i ip q        :    p.m.f. of failure time of type-1 and type-2 respectively for i=1,2,3 and i ip q 1+ = . 
x

i ir s       :    p.m.f. of repair time by repairman of type-1 and type-2 respectively for i=1, 2 and 

i ir s 1+ = . 

' ' xp q  :      p.m.f. of  repair time of first unit; 
' 'p q 1+ = . 

,   :      probability that the replacement of a second unit respectively; 1+ =   

( ) ( )ij ijq ,Q  :      p.m.f. and C.d.f. of one step or direct transition time from state iS to
jS . 

ijp  :      steady state transition probability from state iS to
jS . 

                                           
( )ij ijp Q=   

( )iZ t  :       probability that the system sojourn in state iS up to epoch (t-1). 

i          :       Mean sojourn time in state iS . 

, h  :       symbol and dummy variable used in geometric transform e. g. 

                     

( ) ( ) ( )t

ij ij ij

t 0

GT q t q h h q t




=

  = =  
 

3.2 Symbols for the states of the system  
i

oN  :       unit-i is in normal mode(N) and operative; i=1,2 
i

wsN  :       unit-i is in normal mode(N) and warm standby.; i=1,2 
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2 2

R wRF / F  :     unit-2 is in total failure (F) mode and under replacement/waits for replacement. 

1 1

r 2rF / F  :      unit-1 is in total failure (F) mode and under repair. 

The transition diagram of the system model is shown in Figure. 1. 

 

 

TRANSITION DIAGRAM 
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With the help of above symbols the possible states of the system are: 

 ( )1 2

0 o wsS N , N ,               ( )1 2

1 r oS F , N ,       ( )1 2

2 2r oS F , N    

               ( )1 2

3 o RS N ,F ,               ( )1 2

4 r wRS F ,F ,       ( )1 2

5 2r wRS F ,F
 

The states 0 1 2 3S ,S ,S S  are up states; 4 5S ,S are failed states. 

 

4. Transition Probabilities and Sojourn Times 
 

Let ( )ijQ t be the probability that the system transits from state iS to 
jS  during time interval (0, t) 

i.e., if 
ijT is the transition time from state iS to 

jS  then 

( )ij ijQ t P T t =    

By using simple probabilistic arguments we have, 

( ) ( )
'

t 1
'1 2

01 1 2'

1 2

p q q
Q t 1 q q q

1 q q q

+ = −
  −

,  ( ) ( )
'

t 1
'2 1

02 1 2'

1 2

p q q
Q t 1 q q q

1 q q q

+ = −
  −

 ( ) ( )
'

t 1
'1 2

03 1 2'

1 2

p q q
Q t 1 q q q

1 q q q

+ = −
  −

,   ( ) ( )
'

t 1
'1 2

04 1 2'

1 2

p p q
Q t 1 q q q

1 q q q

+ = −
  −

 ( ) ( )
'

t 1
'2 1

05 1 2'

1 2

p p q
Q t 1 q q q

1 q q q

+ = −
  −

,   ( ) ( )
t 11 3

10 1 3

1 3

r q
Q t 1 s q

1 s q

+ = −
 −

 ( ) ( )
t 11 3

13 1 3

1 3

r p
Q t 1 s q

1 s q

+ = −
 −

,    ( ) ( )
t 11 3

14 1 3

1 3

s p
Q t 1 s q

1 s q

+ = −
 −
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 ( ) ( )
t 12 3

20 2 3

2 3

r q
Q t 1 s q

1 s q

+ = −
 −

,    ( ) ( )
t 12 3

23 2 3

2 3

r p
Q t 1 s q

1 s q

+ = −
 −

 ( ) ( )
t 12 3

25 2 3

2 3

s p
Q t 1 s q

1 s q

+ = −
 −

,                                                 ( ) ( )
t 1

30Q t 1
+ = − 

  
  

( ) ( )
t 1

43 1Q t 1 s
+ = −

 
,     ( ) ( )

t 1

53 2Q t 1 s
+ = −

 
               

(1-14) 

The steady state transition probabilities from state iS to 
jS can be obtained from (1-14) by taking t 

→ , as follows: 
'

1 2

01 '

1 2

p q q
p

1 q q q
=

−
,                    

'

2 1

02 '

1 2

p q q
p

1 q q q
=

−
,         

'

1 2

03 '

1 2

p q q
p

1 q q q
=

−
,             

'

1 2

04 '

1 2

p p q
p

1 q q q
=

−
 

2 1

05 '

1 2

p 'p q
p

1 q q q
=

−
,                    1 3

10

1 3

r q
p

1 s q
=

−
,                        1 3

13

1 3

r p
p

1 s q
=

−
,      1 3

14

1 3

s p
p

1 s q
=

−
 

2 3

20

2 3

r q
p

1 s q
=

−
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2 3

r p
p

1 s q
=

−
,                        2 3
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2 3

s p
p
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=
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We observe that the following relations hold- 

30 43 53p p p 1= = = ,      01 02 03 04 05p p p p p 1+ + + + =  

10 13 14p p p 1+ + = ,      20 23 25p p p 1+ + = ,                                                               (15-18) 

 

5. Mean Sojourn Time 
 

Let iT be the sojourn time in state iS (i=0-5) then i  mean sojourn time in state  iS  is given by 

 i i i

t 1

E(T ) P T t 1


=

 = =  −  

In particular, 
'

1 2

0 '

1 2

q q q

1 q q q
 =

−
,                        1 3

1

1 3

s q

1 s q
 =

−
,             2 3

2

2 3

s q

1 s q
 =

−
  

3


 =


,                                       1

4

1

s

r
 = ,                            2

5

2

s

r
 =                                   (19-24) 

 

6. Methodology for Developing Equations 
 

In order to obtain various interesting measures of system effectiveness we developed the 

recurrence relations for reliability, availability and busy period of repairman as follows- 

 

6.1 Reliability of the system 
 

Here we define iR (t) as the probability that the system does not fail up to epochs 0, 1, 2,.., (t-1) 

when it is initially started from up state iS . To determine it, we regard the failed states 4 5S ,S as 

absorbing state. Now, the expression for iR (t) ; i=0, 1, 2, 3; we have the following set of convolution 

equations. 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

t 1 t 1
' t t t

0 1 2 01 1 02 2

u 0 u 0

0 01 1 02 2 03 3

R t q q q q u R t 1 u q u R t 1 u

Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1

− −

= =

= + − − + − −

= + − © − + − © − + − © −

 
 

Similarly, 
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( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 13 3R t Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © −   

( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 23 3R t Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © −  

( ) ( ) ( ) ( )3 3 30 0R t Z t q t 1 R t 1= + − © −                                                                                         (25-28) 

Where,  

( ) t t
1 1 3Z t s q= ,                    ( ) t t

2 2 3Z t s q= ,           ( ) ' t
3Z t q=

 
 

6.2 Availability of the System 

 

Let ( )iA t be the probability that the system is up at epoch (t-1), when it initially started from state

iS . Then, by using simple probabilistic arguments, as in case of reliability the following recurrence 

relations can be easily developed for ( )iA t ; i=0 to 5. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t 1 t 1 t 1
' t t t

0 1 2 01 1 02 2 03 3

u 0 u 0 u 0

t 1 t 1

04 4 05 5

u 0 u 0

A t q q q q u A t 1 u q t 1 A t 1 q t 1 A t 1

q t 1 A t 1 q t 1 A t 1

− − −

= = =

− −

= =

= + © − − + − © − + − © −

+ − © − + − © −

  

 
                               

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 01 1 02 2 03 3

04 4 05 5

Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1

q t 1 A t 1 q t 1 A t 1

= + − © − + − © − + − © −

+ − © − + − © −
 

Similarly, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 13 3 14 4A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 23 3 25 5A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  

( ) ( ) ( ) ( )3 3 30 0A t Z t q t 1 A t 1= + − © −  

( ) ( ) ( )4 43 3A t q t 1 A t 1= − © −  

( ) ( ) ( )5 53 3A t q t 1 A t 1= − © −                                                                                                      (29-34) 

Where the values of ( )iZ t ; i=0 to 3 are same as given in section 6.1. 

 

6.3 Busy Period of Repairman  
 

Let ( )r

iB t and ( )R

iB t
 
be the probability that the repairman is busy in the repair and replacement of 

a failed unit at epoch t-1, when it initially started from state iS . Then, by using simple probabilistic 

arguments, as in case of reliability the following recurrence relations can be easily developed for 

( )r

iB t and ( )R

iB t ; i=0 to 5. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

r r r r r

0 01 02 03 04

r

05

B t q t 1 t 1 q t 1 t 1 q t 1 t 1 q t 1 t 1

q t 1 t 1

   



= − © − + − © − + − © − + − © −

+ − © −
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r

1 1 10 0 13 3 14 4B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −          
    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r

2 2 20 0 23 3 25 5B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= + − © − + − © − + − © −  

( ) ( ) ( )r r

3 30 0B t q t 1 B t 1= − © −  

( ) ( ) ( ) ( )r r

4 4 43 3B t Z t q t 1 B t 1= + − © −  

( ) ( ) ( ) ( )r r

5 5 53 3B t Z t q t 1 B t 1= + − © −                         (35-40) 

Where, 
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The values of ( )1Z t  and ( )2Z t  are same as given in section 6.1, ( ) t

4 1Z t s=  and ( ) t

5 2Z t s= . 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

R R R R R

0 01 02 03 04

R

05

B t q t 1 t 1 q t 1 t 1 q t 1 t 1 q t 1 t 1

q t 1 t 1

   



= − © − + − © − + − © − + − © −

+ − © −
 

( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R

1 10 0 13 3 14 4B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −
  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R

2 20 0 23 3 25 5B t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1= − © − + − © − + − © −  

( ) ( ) ( ) ( )R R

3 3 30 0B t Z t q t 1 B t 1= + − © −  

( ) ( ) ( )R R

4 43 3B t q t 1 B t 1= − © −  

( ) ( ) ( )R R

5 53 3B t q t 1 B t 1= − © −                                       (41-46) 

Where, 

The value of ( )3Z t  is same as given in section 6.1. 

 

7. Analysis of Reliability and MTSF 
 

Taking geometric transform of (25-28) and simplifying the resulting set of algebraic equations for 
*
0R (h) we get  

( )
( )

( )
1

0
1

N h
R h

D h

 =                                                                                                                                (47)  

Where, 

( ) * * * * * 2 * * 2 * * * *

1 0 01 1 02 2 01 13 02 23 03 3N h Z hq Z hq Z h q q h q q hq Z = + + + + +   

 
( ) 2 * * 2 * * 2 * * 3 * * * 3 * * *

1 01 10 02 20 03 30 01 13 30 02 23 30D h 1 h q q h q q h q q h q q q h q q q= − − − − −
 

 

Collecting the coefficient of th  from expression (47), we can get the reliability of the system ( )0R t . 

The MTSF is given by- 

( ) ( )
( )

( )
1t

h 1 1t 1

N 1
E T lim h R t 1

D 1



→
=

= = −                                                                                                    (48) 

Where, 

( )  1 0 01 1 02 2 01 13 02 23 03 3N 1 p p p p p p p=  +  +  + + +   

( )1 01 10 02 20 03 01 13 02 23D 1 1 p p p p p p p p p= − − − − −  

 

8. Availability Analysis 
 

On taking geometric transform of (29-34) and simplifying the resulting equations for we get, 

( )
( )

( )
2

0

2

N h
A h

D h

 =                                                                                                    (49) 

Where, 

   

( )

* * *
0 01 02 03 04 05

1 13 14

*
2 23 25

2

3

*
43

*
53

Z hq hq hq hq hq

Z 1 0 hq hq 0

Z 0 1 hq 0 hq
N h

Z 0 0 1 0 0

0 0 0 hq 1 0

0 0 0 hq 0 1

  

  

 



− − − − −

− −

− −
=

−

−

                                                                     

26



Pradeep Chaudhary, Anika Sharma, Rakesh Gupta 
A DISCRETE PARAMETRIOC MARKOV-CHAIN MODEL 

RT&A, No 2 (68) 
Volume 17, June 2022 

 

 

and 

       ( )

* * *
01 02 03 04 05

10 13 14

*
20 23 25

2

30

*
43

*
53

1 hq hq hq hq hq

hq 1 0 hq hq 0

hq 0 1 hq 0 hq
D h

hq 0 0 1 0 0

0 0 0 hq 1 0

0 0 0 hq 0 1

 

  

 



− − − − −

− − −

− − −
=

−

−

−

                                                       

The steady state availabilities of the system due to operation of unit – 

( ) ( )
( )

( )
2

0 0
t h 1

2

N h
A lim A t lim 1 h

D h→ →
= = −  

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get  

( )

( )
2

0

2

N 1
A

D 1
= −


                                                                                                                  (50) 

Where, 

( )  2 0 01 1 02 2 01 13 01 14 02 23 02 25 03 04 05 3N 1 p p p p p p p p p p p p p=  +  +  + + + + + + + 

 and 

( )2 0 01 1 02 2D 1 p p =  +  + 
      

 

Now the expected uptime of the system due to operative unit upto epoch (t-1) are given by 

( ) ( )
t 1

up 0

x 0

t A x
−

=

 =  

So that 

( )
( )

( )
0

up

A h
h

1 h



 =
−

                                                                                                                  (51) 

 

9. Busy Period Analysis 
 

On taking geometric transforms of (35-40) and (41-46), simplifying the resulting equations, we get 

( )
( )

( )
3r

0

2

N h
B h

D h

 =                               and                    ( )
( )

( )
4R

0

2

N h
B h

D h

 =                                    (52-53) 

Where,  

( ) * * * * * 2 * * * * * 2 * * * *
3 1 01 2 02 4 01 14 4 04 5 02 25 5 05N h Z hq Z hq Z h q q Z hq Z h q q Z hq= + + + + +  

and 

( ) * 2 * * 3 * * * 2 * * 3 * 2 * * 2 * *
4 3 01 13 01 14 43 02 23 02 25 53 03 04 43 05 53N h Z h q q h q q q h q q h q q q hq h q q h q q   = + + + + + + 

 
and ( )2D h is same as in availability analysis.  

In the long run the respective probabilities that the repairman is busy in the repair and 

replacement of a failed unit are given by- 

( ) ( )
( )

( )
3r r

0 o
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −          and               ( ) ( )

( )

( )
4R R

0 o
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −   

But ( )2D h  at h=1 is zero, therefore by applying L. Hospital rule, we get 

( )

( )
3r

0

2

N 1
B

D 1
= −


                          and                     

( )

( )
4R

0

2

N 1
B

D 1
= −


                                   (54-55) 

Where, 

( ) ( ) ( )3 01 1 02 2 01 14 04 4 02 25 05 5N 1 p p p p p p p p=  +  + +  + +   
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and 

( )  4 3 01 13 01 14 02 23 02 25 03 04 05N 1 p p p p p p p p p p p=  + + + + + +
 

and ( )2D 1  is same as in availability analysis. 

Now the expected busy period of the repairman in repair of a failed unit up to epoch (t-1) are 

respectively given by- 

( ) ( )
t 1

r r

b 0

x 0

t B x
−

=

 =        and                ( ) ( )
t 1

R R

b 0

x 0

t B x
−

=

 =                                   (56-57) 

 

10. Profit Function Analysis 
 

We are now in the position to obtain the net expected profit incurred up to epoch (t-1) by 

considering the characteristics obtained in earlier section. Let us consider, 

0K =  revenue per-unit time by the system due to operative unit. 

1K =  cost per-unit time when repairman is busy in the repair of failed unit. 

2K = cost per-unit time when repairman is busy in the replacement of a failed unit. 

Then, the net expected profit incurred up to epoch (t-1) is given by, 

( ) ( ) ( ) ( )r R

0 up 1 b 2 bP t K t K t K t=  −  −                                                                                     (58) 

The expected profit per unit time in steady state is given by-  

( )
( ) ( )

2

t h 1

P t
P lim lim 1 h P h

t



→ →
= = −  

   

( )
( )

( )
( )

( )

( )
( )

( )

( )

r R
2 2 20 0 0

0 1 2
h 1 h 1 h 1

A h B h B h
K lim 1 h K lim 1 h K lim 1 h

1 h 1 h 1 h

  

→ → →
= − − − − −

− − −
 

   r R

0 0 1 0 2 0K A K B K B= − −                                                                                                                 (59) 

 

11. Graphical Representation 
 

The curves for MTSF and profit function have been drown for different values of failure 

parameters. Fig.2 depicts the variation in MTSF with respect to failure rate ( )1p  for different values 

of repair rate ( )2p  of a unit and constant repair rate ( )'p when values of other parameters are kept 

fixed as 3p 0.001= , 1r 0.5= , 2r 0.7= and 0.01 = . From the curves we conclude that expected life of 

the system decrease with increase in 1p . Further, increases as the values of 2p  and 'p  increases. 

Similarly, Fig.3 reveals the variations in profit (P) with respect to 1p  for varying values of 2p  

and 'p , when other parameters are kept fixed as 3p 0.01= , 1r 0.92= , 2r 0.99= and 0.01 = , 

0K 100= , 1K 100= , 2K 400=  and 3K 300= . From the figure it is clearly observed from the smooth 

curves, that the system is profitable if the value of parameter 1p  is greater than 0.2, 0.33 and 0.5 

respectively for 2p 0.4= , 0.6 and 0.8 for fixed value of 'p 0.15= . From dotted curves, we conclude 

that system is profitable only if value of parameter 1p  is greater than 0.27, 0.39 and 0.6 respectively 

for 2p 0.4= , 0.6 and 0.8 for fixed value of 'p 0.3= .  
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Behavior of MTSF with respect to 1p , 2p  and 'p
 

 

      

Behavior of Profit (P) with respect to 1p , 2p  and 'p

 
 

12. Conclusions 

1. It is indicated in fig.2 that we can easily obtain the upper limit of “ 1p ” to achieve at least a 

particular value of MTSF. As an illustration to get at least MTSF 16.8 unit, the failure rate “ 1p ” 

must be less than 0.24, 0.56 and 0.79 respectively for repair rate 2p = 0.01, 0.03 and 0.05 when 
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activation rate is kept fixed as 'p = 0.93. Similarly, when 'p = 0.99 is kept fixed as “ 1p ” must be 

less than 0.43, 0.68 and 0.87 corresponding to 2p = 0.01, 0.03 and 0.05.  

2. In fig. 3 it is reveled from the smooth curves, that the system is profitable if the value of 

parameter 1p  is greater than 0.2, 0.33 and 0.5 respectively for 2p 0.4= , 0.6 and 0.8 for fixed 

value of 'p 0.15= . From dotted curves, we conclude that system is profitable only if value of 

parameter 1p  is greater than 0.27, 0.39 and 0.6 respectively for 2p 0.4= , 0.6 and 0.8 for fixed 

value of 'p 0.3= . 
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Abstract 

 

Modelling random processes traditionally supposes working with the spectral density. Although 

many engineering problems require the knowledge of spectral density, the specific character of fatigue 

damage accumulation dictates the different approach – namely, the consideration of the distribution 

of random values of the local extremes, which is responsible for fatigue damage accumulation. There 

is a need in developing the methods of random loading imitation in the experimental and numerical 

study of fatigue. According to the up-to-date situation in science in fatigue, both opposing approaches 

should be considered - the time domain and the frequency domain. The proposed method, which 

consists of two stages, meets that requirement. The performed case study based on laboratory fatigue 

testing confirms its applicability. 

 

Keywords: metal fatigue, random loading, imitation,  

 

1. Introduction 
 

The quality of machines and equipment depends on the advanced quality management. The 

repair plan is also important [1]. The reliability of the industrial production should be guaranteed 

by reliable testing and design methods for estimation durability. Objective hazards that threaten the 

performance and durability of machine parts are the processes of degradation of their elements. It is 

necessary to consider the fatigue process caused by natural factors, namely, alternating loading. 

Therefore, the engineers need a tool for loads assessing, taking into account their random nature.  

In fatigue studies under random loading, two main approaches are widely used [2]. They 

correspond to the time domain and the frequency domain. Both have their own areas of applications. 

Investigations in the frequency domain [3] are important while considering problems with studying 

the impacts of the particular frequencies (resonant effect), modal analysis. They are also important 

while treating the enormous data storage while using the method of Critical Plane Approach [4]. On 

the other hand, the well-proved fatigue accumulation problems mostly based on the information 

about cycles, their extremum values, their order of appearance. It is worth mentioning that the 

problem of the fatigue crack propagation almost ultimately based on information about extremums 

(not the frequencies) [5]. Applicable to automobile parts, the study [6belec] consider the random 

loading strictly in a time domain. A discussion goes on [7,8], which of the two methods is correct: 

the time-domain methods (mostly, Rainflow [9 endo]) or the frequency domain [3]. It goes out that 

choosing the particular domain for investigation dictates some additional requirements [10]. 

Registration of the random loading process is different [11]. It follows from the fact that treating in 

the time domain supposes the higher precision of peaks registration.  
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It is important to have a tool to estimate the spectral density of the processes, which are 

given only by a sequence of extrema. The example of such task is in paper [10]. The aim of this paper 

to provide such opportunity for the researchers.  

 

 2. Methods 
 

This problem partly was first studied in [12]. During testing and numerical modelling in fatigue 

studies, the investigators should introduce the randomness in one or another way because it exists 

in service. The conditions of exploitation vary. Some factors are hard to control, etc. The proposed 

method consists of two steps, namely: 

 

2.1. Random sequence of extremums generation 

 
As mentioned in the Introduction, the most direct path to fatigue estimation is the Rainflow [2, 9], 

which operates with the extremums' sequence, namely local maximums and minimums of the 

random process. It would not be justified to repeat this sequence without change in fatigue studies 

because it would not have reflected the randomness in service and takes a lot of time. The good 

decision was proposed earlier in [13]. It introduced the so-called Markov’s matrixes to create the 

variability. 

 Later, the method of target Markov’s matrixes was developed, intended to reflect the service 

conditions of a particular object of investigation. The main idea of filling up the matrix is 

schematically presented in Fig.1. One by one, the half-cycles (ranges) are entered   into the Markov’s 

matrix (Fig.1, b). All important information is being presented in this way, namely, the maximum 

amplitude in realization, distributions of the values of the half-cycles, the number of their repetition 

during the period of investigation. The information concerning the sequence of the events is being 

lost during this procedure. The investigation of the impact of the sequence effect on the crack-

propagation stage was reported in [14]. 

 

 
Figure 1: Filling up the target matrix 

 

 Next, the numerical modelling basing on the filled up earlier matrix is performed. The 

random number generator is used here. In this way, the engineers get the tool for the experimental 

or numerical study of fatigue by taking into account the random character of the loading, which is 

intrinsic to loading in service. As the result of this modelling, the investigators get the sequence of 

extremums. This sequence is sufficient for estimating the longevity of the objects using the time 

domain loading approach like Rainflow, [2,9].  
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2.2. Construction of the continuous function 
 

Unfortunately, it is impossible to estimate the spectral density only the sequence of extremums 

generated by described above method. The function does not possess the property of smoothness; 

its firsts derivate is not continuous. It is worth mentioning that there is a need to estimate spectral 

density [10] of the modelled processes, particularly for the application of spectral methods 

(frequency domain) for longevity estimation. Although those methods are at some extend doubtful, 

they are still widespread [3]. As we mentioned above, they also have their own field for application: 

like des [4]. 

 To overcome this problem, a method for introducing smoothness into the process was 

developed [12]. The adjacent peaks of the sequence are proposed to connect by half-cosines at the 

period (0,π). At the next step these half-cosines parts are concatenated.  

 The equations of half-cosines: 

x(t) =A cos (wt+φ)     (1) 

where х(t)– is the part of the continuous extrapolating function, which is defined on the domain 

t=0… π/w, because the period of the cosine function is T=2π/w, s.  

 For each half-wave (1) starting from the successive extremum MAX or MIN, the parameters 

A, w, and φ are unique. The stress amplitude A [MPa] is defined as half of the range (modulus) of 

successive extremes: 

A=mod (MAXi -MIN i+1)/2  ∨ A=mod (MAXi -MIN i )/2          (2) 

 The obtained in this way sequence of the random reading forms the continuous random 

process with continuous first derivate. The concordances and peculiarities of the modelled processes 

will be analyzed later in the Case study.  The main idea of this modelling – that is the values of the 

turning points, and their sequence remains unchanged. This point is paramount for fatigue 

estimation not only on the stage of crack initiation in fatigue but also during the crack propagation 

stage [5]. 

3. Case study 

 
Following an engineering problem, the task was initially formulated to investigate the fatigue 

resistance of the metal specimens under the impact of the random process with the particular 

spectral density, shown in Fig. 4 [15]: 

 

 
Figure 2: Target spectral density for testing 
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In Fig.3 the testing equipment is shown. Six Al specimens were tested simultaneously. 

 
 

Figure 3. Testing equipment for regular and random cantilever loading 

 

 Fatigue experiment [15] was performed on 4 levels of loading to build the so-called Gassner 

curve (see also [7]). The example of the loading history is shown in Fig.5.  

 

 

Figure 4. 1-second recording of the stress at the level of root mean square RMS=108 MPa. 
 

  The main characteristics of the imitated random processes were obtained numerically and are 

shown in Table 1. With the aim of the study, the modelling was based on the laboratory records. For 

the sake of representativity several modelled trials on the base of laboratory realization were 

executed. In Table 1 the mean stress of the block is shown, RMS (the root mean square of realization), 

I – is irregularity factor [2] (I=No/Ne, I<1; where No is the number of crossings of the middle level line 
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and Ne is the number of extremums. It is worth mentioning, that value I depends on the level 

number, in other words, on the registration precision. Spectra fullness V is defined as follows: 
 

𝑉 = √
1

𝑛
∑ℎ𝑖(

𝜎𝑎𝑖

𝜎𝑎𝑚𝑎𝑥
)^𝑚

𝑚
     (3) 

 

 The value of V < 1 and is dimensionless. In formula (3) m is the slope coefficient of the fatigue 

curve; n is the total number of cycles in the block; hi is the number of cycles at the i-th step; σai is the 

current value of the stress amplitude; σamax is the maximum amplitude in the block. As can be seen 

from the formula, the fullness ratio of the spectrum V depends not only on the spectra form, but also 

on fatigue exponent m.  

 
Table 1: The main characteristics of random realizations: initial and modelled ones 

 
 

 

 Mean 

value 

[MPa] 

RMS, 

[MPa]  

I V 

Experimental 

realization 

0.0244 108 0.67 0.56 

1-st 

modelled 

realization 

-0.0123 107 0.66 0.53 

2-nd -0.0056 99 0.68 0.55 

…     

10-th 0.0342 104 0.66 0.57 

 

Unlike the widespread practice of ignoring the time factor during the cycle counting, in this 

study, following the aim of the investigation, not only the peaks were selected, but also the half-

periods of quasi-cycles.  

According to the proposed method, each stress range: r [MPa] is associated with the following 

half period: hT [s]. The scatterplot of two random variables is shown in Fig. 6. The estimated 

correlation was cor=0.76. Also, the regression equation by the least square method was estimated:  

 

r = - 161+10.77 hT     (4) 

 

 

Figure 5. The Scatterplot of half-periods hT and ranges r (with a regression line). 
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The regression equation (3) was used for modelling the cosine curves in extrapolation. Unlike 

equation (1), in which the frequency is assumed to be the same for all half-cycles, a variable 

frequency value is used to form a more realistic process. To determine the frequency, the regression 

equation (3) was used. Equation (4) was used during modelling. 

 

4. Results and discussion 
 

After performing the tests with sufficient repetition of specimens at each loading level, the Gassner 

curve has been built [7,15]. This curve is analogous to the fatigue curve, but instead of the constant 

amplitudes, a maximum value in the block is shown. The realization of the random process, 

modelled on the base of spectral density (Fig. 4), was recorded, and the Rainflow cycle counting 

procedure [9] was performed.  

The main statistical characteristics of a few modelled realizations were shown in Table 1. The 

spectral density of the modelled realization #1 is slightly differ from target spectral density. Anyway, 

the first and second frequencies coincide.  

A much better coincidence is shown for Rainflow distributions. Several replicas were compared 

among each other as well with the distribution of initial realization. The good coincidence of 

parameters is also evident from Table 1.  

  

5. CONCLUSIONS 
 

Machine parts would be deteriorated due to fatigue produced by repeated loading, so the 

engineers should consider the fatigue impact.    

Those impacts are of random nature, so the special imitation method was developed. This 

method works in time, as well in the frequency domain.  

The method was approbated in the Case study based during the laboratory fatigue experiment 

under random loading. 

The better coincidence takes place in the time domain. To improve modelling in a way it works 

equally well in both domain, addition experiment and researches are needed. 
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Abstract 
Human Resource Management and other companies rely heavily on manpower models. Manpower 

planning was a prerequisite for effective organization administration. The construction and analysis of 

two graded manpower models with direct Duane recruiting processes in both graduates is the subject of 

this paper. Duane's recruitment procedure was capable of identifying time-dependent recruitments. 

Poisson and non-homogeneous Poisson processes are used in the Duane recruitment process as precise 

instances for specified parameter values. It is assumed that the organization has two grades and that 

the recruitment procedure is based on the Duane Process. The processes of leaving and promotion are 

Poisson processes. The model's transient behavior was investigated by deriving unambiguous 

expressions for system characteristics such as the mean number of employees in each grade, the mean 

durational stay of an employee in each grade, and the variance of number of employees in each grade 

using differential equations. The model's sensitivity analysis of parameters shows that the Duane 

recruiting process has a substantial impact on system performance indicators. It was also noted that 

this model incorporates rates of recruitment that are increasing, decreasing, or stable. This model 

proved helpful in analyzing organizational manpower issues. 

 

Keywords - Two graded Manpower model, Duane process, Time dependent 

recruitment rate, Sensitivity analysis. 

 

I. Introduction 
 

Planning the organization with the manpower structure in mind was a prerequisite for 

getting the most out of the resources. Due to their usefulness in creating strategies for Human 

Resource Development and resource allocation, much work has been reported on manpower models. 

Seal was a pioneer in the mathematical modelling of labour systems [1]. Silock looked at the 

observable fact of labour yield, which is related to the study of demography [2]. Bartholomew 

examined manpower models based on probability distributions of an employee's total service time in 

the organization [3] [4]. Ugwuowo and Mc Clean, as well as Wang, have examined manpower models 

and various approaches to their development [5] [6]. 

The parameters of the manpower model, such as the mean number of employees in each 

grade, the mean duration of stay an employee in each grade, and the variation of number of 

employees in each grade, were required for effective analysis and design of manpower systems 

Srinivasa Rao [7]. Kannan Nilakantan investigated the manpower models staffing rules and their 

extension to individual outsourcing [8]. Jeeva and Geetha looked at manpower models in a hazy 

environment [9]. Lalithadevi and Srinivasan used geometric process and shock models to investigate 
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a single graded manpower system [10]. Osagiede and Ekhosuehi used continuous-time Markov 

chains and sparse stochastic measures to investigate Manpower models [11]. 

The graded manpower models with poisson processes have been examined by Srinivasa Rao, 

K. et al., Kondababu et al., and Govinda Rao et al.  They implied that the hiring procedure was time-

sensitive [12] [13] 14] [15] [16]. Parameswari, K., and Srinivasan [17] used a geometric technique to 

investigate the reduction in manpower for a two-graded system. Amudha.T and Srinivasan.A, 

discussed the problem of time to recruitment for a two-graded system, taking into account the loss of 

personnel in the form of an I.I.D Exponential random variable sequence [18]. Saral, L. et al. 

established a two-tiered personnel structure and a recruiting policy based on two thresholds [19]. 

Srividhya, K. et al. investigated manpower loss in a multi-graded organization [20]. Jayanthi et al. 

(2018) looked at a single graded manpower system and looked at the time to recruitment with a 

break-even point [21]. Tamas Banyai et al. used Markov chains to study a model for analyzing human 

resource use [22]. Arokkia Saibe,P et al. investigated two stochastic models based on the assumption 

that manpower shortages and inter-policy decision delays constitute two distinct sequences of 

independent and identically distributed random variables with two distinct breakdown thresholds 

[23]. They assumed that the hiring procedure was time-sensitive. 

However, in many real-world circumstances in corporate offices and government agencies, 

the recruitment process was time-sensitive and did not necessarily follow the Poisson process. As a 

result, non stationary models must be considered for correct analysis. Srinivasa Rao et al. [24] recently 

developed two graded manpower models based on non-homogeneous Poisson recruitment. Srinivasa 

Rao,K et al. [25] have studied on two grade manpower model with Duane recruitment process. They 

realized that the recruitment rate was linearly proportional to time and that the duration between 

recruitment was distributed in an exponential manner. However, the recruiting rate in many 

organizations may increase/decrease/remain steady and time-dependent. The time-dependent non-

stationary recruitment process can be fully characterized by the Duane process, which follows a 

Weibull distribution of inter-recruitment time. Little is reported in the literature on two hierarchical 

workforce models that use the Duane recruitment process directly at both grades. Therefore, this 

paper uses the Duane recruitment process of both graduates to develop and analyze a two-step 

manpower model. Poisson and non-homogeneous processes are two examples of the Duane process. 

The concept can be applied to a variety of organizations thanks to the recruitment in both grades. The 

remainder of the paper was laid out as follows: 

 

II. Two graded manpower model with direct recruitment: 
 

Consider a personnel system with two grades, each of which has its own recruitment process. 

The grade I recruiting process was supposed to be a Duane process, with the mean recruitment rate 

being a power function of time t and the form λ1(t) = a1b1tb1-1. The grade II recruiting process was 

considered to be a Duane process with a mean recruitment rate of λ2(t) = a2b2tb2-1. A Poisson process 

with parameter is used to promote students from grade I to grade II. Poisson processes with 

parameters and are used in the grade I and grade II leaving processes, respectively. "Figure 1" 

depicted a schematic diagram depicting the two-grade manpower concept. 

The grade I recruiting process was supposed to be a Duane process, with the mean 

recruitment rate being a power function of time t and the form λ1(t) = a1b1tb1-1. The grade II recruiting 

process was considered to be a Duane process with a mean recruitment rate of λ2(t) = a2b2tb2-1. A 

Poisson process with parameter is used to promote students from grade I to grade II. Poisson 

processes with parameters and are used in the grade I and grade II leaving processes, respectively. 

"Figure 1" depicted a schematic diagram depicting the two-grade manpower concept. 
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Figure 1: Two grade manpower model with direct Duane recruitment process. 

 

 Let Pn,m(t) denote the probability that there are ‘n’ employees in grade-1 and ‘m’ employees in 

grade-2 at time ‘t’ in the organization. Then the difference-differential equations of the model are 

 

     

          (1) 

                   (2) 

 

                                                                                                            (3) 

                           (4) 

Let P(S1,S2; t) be the joint probability generating function then  

                                    (5) 

Multiplying the equations (1) to (4) with corresponding  and summing over all n=0, 1, 2,…;  

m= 0,1,2,…; we get 

   P 

 P                              (6) 

After simplification, we get 

P                             (7) 

Solving the equation (7) by Lagrangian’s method, the auxiliary equations are 

                              (8) 

With the initial conditions that there are N employees in grade-1 and M employees in grade-2 in the 

organization at time t=0.   i.e.,     for t > 0. 

To solve the equation (8) the functional forms of λ1(t)  and λ2(t) are required. 
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Since the recruitment processes follow Duane processes we have the mean recruitment rates 

of grade-1and grade-2 in the system are λ1(t) =a1b1t b1-1  and λ1(t) = a2b2tb2-1 respectively,  where λ>0, a1, 

b1, a2 and b2 are constants  

Solve the equations in (8) we get 

 

 

 

where ,       . 

 A,B and C are arbitrary constants.                             (9) 

The joint probability generating function of the number of employee in grade-1 and in grade-2 is 

                                 

                                 

                        (10) 

Substituting the value of ‘C’ from equation (9) in the equation (10), the joint probability generating 

function of the number of employees in the grade-1 and grade-2 are obtained as 

  

Where   , 

              ,             (11) 

III. Characteristics of the model: 
 

The characteristics of the model are obtained by using the equation (11).Expanding 

P and collecting the constant terms, we get the probability that there is no employee in the 

organization as 
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Where,                  (12) 

Taking   in equation (11), we get the probability generating function of the number of 

employees in grade-1 as 

 , 

                                                                                                                                   (13) 

Expanding  and collecting the constant terms, we get the probability that there is no employee 

in grade-1 as 

 

                    (14) 

The mean number of employees in grade-1 is 

            (15) 

The probability that there is at least one employee in grade-1 is 

 

                          (16) 

The average duration of stay of an employee in grade-1 is 

  

                      (17) 

The variance of the number of grade-1 is 

                                (18) 
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Coefficient of variation of the number of employees in grade-1 is  where, V1(t) and L1(t) 

are given in equations (18) and   (15) respectively                     (19) 

Similarly, taking    in equation (11), then we get the probability generating function of the 

number of employees in grade-2 as 

 

  

                                                                                                   where,           (20) 

Expanding  and collecting the constant terms, we get the probability that there is no employee 

in grade-2 as 

 

                             (21) 

The mean number of employees in grade-2 is 

  

      

         (22) 

The probability that there is at least one employee in grade-2 is 

 

             
(23) 

The average duration of stay of employees in grade-2 is 
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                                           (24) 

The variance of the number of employees in grade-2 is 
  

            

           

                   (25) 

Coefficient of variation of the number of employees in grade-2 is 

    where,V2(t) and L2(t) are given in equations (25) and  (22) respectively.                (26) 

The mean number of employees in the organization is L =L1+ L2 where, L1(t) and L2(t) are given in 

equations (15) and (22) respectively.                                                                                                              (27) 

 

IV. Numerical illustration and results 
 

A numerical illustration was used to explain the model's behaviour in this subdivision. For 

the recruiting, advancement, and leaving rates of the organization, several values of the parameters 

were explored. Because the manpower model's performance characteristics were particularly time-

sensitive, the transient behaviour of the model was investigated by computing performance measures 

with the following set of values for the model parameters: t= 1.5,2,2.5,3and 3.5; α=3,4,5,6 and 7; 

β=4,5,6,7 and 8; γ=5,6,7,8 and 9; a1=5,10,15,20 and 25; b1=3,4,5,6 and 7;  a2=5,10,15,20 and 25;  b2=3,4,5,6 

and 7; N=1000,1100,1200,1300 and 1400 ; M=600,700,800,900 and 1000. 

Performance measures such as the mean number of employees in grades I and II, the mean 

duration of stay of a grade I employee and in grade II, the variance of the number of employees in 

grades I and II, and the coefficient of variation of the number of employees in grades I and II were 

computed and presented in Tables 1 and 2. Figures 2a, 2b, 3a and 3b show the link between 

parameters and performance measures. 

Table 1 demonstrated that the performance indicators in grades I and II were extremely time 

sensitive. The mean number of employees in grade I and grade 2 in the organization increased from 

4.0180 to 24.1946 and 8.1050 to 45.6831, respectively, while time (t) varied from 1.5 to 3.5. When all 

other factors were held constant, the mean period of stay of an employee in grade I and grade II in 

the company increased from 0.5845 to 3.4564 and 1.7138 to 9.1367, respectively. 

 

44



Ch. Ganapathi Swamy, K. Srinivasa Rao  

A NOVAL APPLICATION OF DUANE PROCESS FOR MODELING TWO GRADED 

MANPOWER SYSTEM WITH DIRECT ECRUITMENT IN BOTH THE GRADES 

RT&A, No 2 (68) 

 Volume 17, June 2022 

 
When all other parameters were held constant, the mean number of employees in grade I was 

not influenced and in grade II it increased from 8.4203 to 8.6416.When all other parameters were held 

constant, the mean duration of stay of an employee in grade I was not influenced and in grade II it 

increased from 1.7533 to 1.7848. 

When all other parameters were held constant, the mean number of employees in grade I was 

not influenced and in grade II it increased from 8.4203 to 8.6416.When all others parameters were held 

constant, the mean duration of stay of an employee in grade I was not influenced and in grade II it 

increased from 1.7533 to 1.7848. 

 
Table 1: Values of L1, L2 , W1 and W2  for different values of parameters. 

t α β γ a1 b1 a2 b2 N M L1 L2 W1 W2 
1.5 3 4 5 5 3 5 3 1000 600 4.0180 8.1050 0.5845 1.7138 
2 3 4 5 5 3 5 3 1000 600 7.4352 13.5421 1.0628 2.7769 

2.5 3 4 5 5 3 5 3 1000 600 11.9497 22.0582 1.7071 4.4219 
3 3 4 5 5 3 5 3 1000 600 17.5364 32.7960 2.5052 6.5599 

3.5 3 4 5 5 3 5 3 1000 600 24.1946 45.6831 3.4564 9.1367 
1.5 3 4 5 5 3 5 3 1000 600 4.0180 8.1050 0.5845 1.7138 
1.5 4 4 5 5 3 5 3 1000 600 3.5804 8.4013 0.4604 1.7508 
1.5 5 4 5 5 3 5 3 1000 600 3.2370 8.6505 0.3744 1.7862 
1.5 6 4 5 5 3 5 3 1000 600 2.9553 8.8632 0.3118 1.8188 
1.5 7 4 5 5 3 5 3 1000 600 2.7189 9.0462 0.2646 1.8483 
1.5 7 5 5 5 3 5 3 1000 600 2.5174 8.7440 0.2282 1.8003 
1.5 7 6 5 5 3 5 3 1000 600 2.3435 8.4931 0.1994 1.7634 
1.5 7 7 5 5 3 5 3 1000 600 2.1921 8.2806 0.1763 1.7350 
1.5 7 8 5 5 3 5 3 1000 600 2.0589 8.0977 0.1573 1.7130 
1.5 7 8 6 5 3 5 3 1000 600 2.0589 6.5928 0.1573 1.2559 
1.5 7 8 7 5 3 5 3 1000 600 2.0589 5.7212 0.1573 0.9933 
1.5 7 8 8 5 3 5 3 1000 600 2.0589 5.0994 0.1573 0.8147 
1.5 7 8 9 5 3 5 3 1000 600 2.0589 4.6108 0.1573 0.6856 
1.5 7 8 9 10 3 5 3 1000 600 4.1178 5.9837 0.2791 0.7104 
1.5 7 8 9 15 3 5 3 1000 600 6.1767 7.3565 0.4126 0.8309 
1.5 7 8 9 20 3 5 3 1000 600 8.2356 8.7293 0.5492 0.9739 
1.5 7 8 9 25 3 5 3 1000 600 10.2944 10.1021 0.6863 1.1236 
1.5 7 8 9 25 4 5 3 1000 600 19.7548 15.5521 1.3170 1.7280 
1.5 7 8 9 25 5 5 3 1000 600 35.6026 24.0877 2.3735 2.6764 
1.5 7 8 9 25 6 5 3 1000 600 61.6965 37.3243 4.1131 4.1471 
1.5 7 8 9 25 7 5 3 1000 600 104.0989 57.6922 6.9399 6.4102 
1.5 7 8 9 25 7 10 3 1000 600 104.0989 60.9278 6.9399 6.7698 
1.5 7 8 9 25 7 15 3 1000 600 104.0989 64.1634 6.9399 7.1293 
1.5 7 8 9 25 7 20 3 1000 600 104.0989 67.3990 6.9399 7.4888 
1.5 7 8 9 25 7 25 3 1000 600 104.0989 70.6346 6.9399 7.8483 
1.5 7 8 9 25 7 25 4 1000 600 104.0989 84.7664 6.9399 9.4185 
1.5 7 8 9 25 7 25 5 1000 600 104.0989 107.9303 6.9399 11.9923 
1.5 7 8 9 25 7 25 6 1000 600 104.0989 145.3699 6.9399 16.1522 
1.5 7 8 9 25 7 25 7 1000 600 104.0989 205.2306 6.9399 22.8034 
1.5 3 4 5 5 3 10 3 1000 600 4.0180 8.1050 0.5845 1.7138 
1.5 3 4 5 5 3 10 3 1100 600 4.0208 8.1838 0.5849 1.7230 
1.5 3 4 5 5 3 10 3 1200 600 4.0235 8.2627 0.5853 1.7327 
1.5 3 4 5 5 3 10 3 1300 600 4.0263 8.3415 0.5856 1.7428 
1.5 3 4 5 5 3 10 3 1400 600 4.0290 8.4203 0.5860 1.7533 
1.5 3 4 5 5 3 10 3 1400 700 4.0290 8.4756 0.5860 1.7610 
1.5 3 4 5 5 3 10 3 1400 800 4.0290 8.5309 0.5860 1.7688 
1.5 3 4 5 5 3 10 3 1400 900 4.0290 8.5863 0.5860 1.7767 
1.5 3 4 5 5 3 10 3 1400 1000 4.0290 8.6416 0.5860 1.7848 
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The performance metrics in grade I and grade II employees in the organization were 

extremely sensitive to time, as shown in Table 2. When other parameters were held constant, it was 

discovered that time (t) varies from 1.5 to 3.5, the variance of the number of employees in grade I and 

grade II increased from 4.0180 to 24.1946 and 8.1042 to 45.6831, respectively, and the coefficient of 

variation of the number of employees in both grades decreased from 0.4989 to 0.2033 and 0.3512 to 

0.1480. 

When the promotion rate (α) from grade I to grade II increased from 3 to 7, the variance of the 

number of employees in grade I decreased from 4.0180 to 2.7189 and increased from 8.1042 to 9.0456, 

and the coefficient of variation of the number of employees in grade I increased from 0.4989 to 0.6065 

and decreased from 0.3512 to 0.3325, when all other parameters remained constant. 

 

 
Figure 2a: Relation between the parameters and performance measures 
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Figure 2b: Relation between the parameters and performance measures 

 

When the leaving rate (β) of an employee in grade I increases from 4 to 8, the variance of the 

number of employees in grade I and grade II decreases from 2.7189 to 2.0589 and 9.0456 to 8.0974, 

respectively, while the coefficient of variation of the number of employees in both grades I and II 

increases from 0.6065 to 0.6969 and 0.3325 to 0.3514, respectively, when other parameters remain 

constant. 

When the leaving rate (γ) of an employee in grade II increases from 5 to 9, the variance of the 

number of employees in grade I is unaffected, while in grade II it decreases from 8.0974 to 4.6108. 

When other parameters are held constant, the coefficient of variation of the number of employees in 

grade I is unaffected, while in grade II it increases from 0.3514 to 0.4657. When the recruitment rate 

parameter (a1) of employees in grade I was changed from 5 to 25, the variance of the number of 

employees in grade I and grade II increased from 2.0589 to 10.2944 and 4.6108 to 10.1021 respectively, 
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while the coefficient of variation of the number of employees in both grade I and grade II decreased 

from 0.6969 to 0.3117 and 0.4657 to 0.3146 when the other parameters remained constant. 
 

Table 2: Values of  V1,V2 , CV1 and CV2  for different values of parameters. 

T α β γ a1 b1 a2 b2 N M V1 V2 CV1 CV2 

1.5 3 4 5 5 3 5 3 1000 600 4.0180 8.1042 0.4989 0.3512 

2 3 4 5 5 3 5 3 1000 600 7.4352 13.5421 0.3667 0.2717 

2.5 3 4 5 5 3 5 3 1000 600 11.9497 22.0582 0.2893 0.2129 

3 3 4 5 5 3 5 3 1000 600 17.5364 32.7960 0.2388 0.1746 

3.5 3 4 5 5 3 5 3 1000 600 24.1946 45.6831 0.2033 0.1480 

1.5 3 4 5 5 3 5 3 1000 600 4.0180 8.1042 0.4989 0.3512 

1.5 4 4 5 5 3 5 3 1000 600 3.5804 8.4006 0.5285 0.3450 

1.5 5 4 5 5 3 5 3 1000 600 3.2370 8.6498 0.5558 0.3400 

1.5 6 4 5 5 3 5 3 1000 600 2.9553 8.8626 0.5817 0.3359 

1.5 7 4 5 5 3 5 3 1000 600 2.7189 9.0456 0.6065 0.3325 

1.5 7 5 5 5 3 5 3 1000 600 2.5174 8.7435 0.6303 0.3382 

1.5 7 6 5 5 3 5 3 1000 600 2.3435 8.4927 0.6532 0.3431 

1.5 7 7 5 5 3 5 3 1000 600 2.1921 8.2802 0.6754 0.3475 

1.5 7 8 5 5 3 5 3 1000 600 2.0589 8.0974 0.6969 0.3514 

1.5 7 8 6 5 3 5 3 1000 600 2.0589 6.5928 0.6969 0.3895 

1.5 7 8 7 5 3 5 3 1000 600 2.0589 5.7212 0.6969 0.4181 

1.5 7 8 8 5 3 5 3 1000 600 2.0589 5.0994 0.6969 0.4428 

1.5 7 8 9 5 3 5 3 1000 600 2.0589 4.6108 0.6969 0.4657 

1.5 7 8 9 10 3 5 3 1000 600 4.1178 5.9837 0.4928 0.4088 

1.5 7 8 9 15 3 5 3 1000 600 6.1767 7.3565 0.4024 0.3687 

1.5 7 8 9 20 3 5 3 1000 600 8.2356 8.7293 0.3485 0.3385 

1.5 7 8 9 25 3 5 3 1000 600 10.2944 10.1021 0.3117 0.3146 

1.5 7 8 9 25 4 5 3 1000 600 19.7548 15.5521 0.2250 0.2536 

1.5 7 8 9 25 5 5 3 1000 600 35.6026 24.0877 0.1676 0.2038 

1.5 7 8 9 25 6 5 3 1000 600 61.6965 37.3243 0.1273 0.1637 

1.5 7 8 9 25 7 5 3 1000 600 104.0989 57.6922 0.0980 0.1317 

1.5 7 8 9 25 7 10 3 1000 600 104.0989 60.9278 0.0980 0.1281 

1.5 7 8 9 25 7 15 3 1000 600 104.0989 64.1634 0.0980 0.1248 

1.5 7 8 9 25 7 20 3 1000 600 104.0989 67.3990 0.0980 0.1218 

1.5 7 8 9 25 7 25 3 1000 600 104.0989 70.6346 0.0980 0.1190 

1.5 7 8 9 25 7 25 4 1000 600 104.0989 84.7664 0.0980 0.1086 

1.5 7 8 9 25 7 25 5 1000 600 104.0989 107.9303 0.0980 0.0963 

1.5 7 8 9 25 7 25 6 1000 600 104.0989 145.3699 0.0980 0.0829 

1.5 7 8 9 25 7 25 7 1000 600 104.0989 205.2306 0.0980 0.0698 

1.5 3 4 5 5 3 10 3 1000 600 4.0180 8.1042 0.4989 0.3512 

1.5 3 4 5 5 3 10 3 1100 600 4.0208 8.1830 0.4987 0.3495 

1.5 3 4 5 5 3 10 3 1200 600 4.0235 8.2617 0.4985 0.3479 

1.5 3 4 5 5 3 10 3 1300 600 4.0263 8.3405 0.4984 0.3462 

1.5 3 4 5 5 3 10 3 1400 600 4.0290 8.4193 0.4982 0.3446 

1.5 3 4 5 5 3 10 3 1400 700 4.0290 8.4746 0.4982 0.3435 

1.5 3 4 5 5 3 10 3 1400 800 4.0290 8.5298 0.4982 0.3424 

1.5 3 4 5 5 3 10 3 1400 900 4.0290 8.5851 0.4982 0.3412 

1.5 3 4 5 5 3 10 3 1400 1000 4.0290 8.6404 0.4982 0.3402 

When the recruitment rate parameter (b1) in grade I is changed from 3 to 7, the variance of the 

number of employees in grade I and grade II increases from 10.2944 to 104.0989 and 10.1021 to 
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57.6922, respectively, while the coefficient of variation of the number of employees in both grades I 

and II decreases from 0.3117 to 0.0980 and 0.3146 to 0.1317, respectively, when the other parameters 

remain constant.  

When the recruitment rate parameter (a2) in grade II changes from 5 to 25, the variance of the 

number of employees in grade I does not change and in grade II it increases from 57.6922 to 70.6346, 

while the coefficient of variation of the number of employees in grade I does not change and in grade 

II it decreases from 0.1317 to 0.1190. 

 

 
Figure 3a: Relation between the parameters and performance measures. 
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Figure 3b: Relation between the parameters and performance measures. 

 

When the recruitment rate parameter (b2) of employees in grade II varies from 3 to 7, the 

variance of the number of employees in grade I is unaffected, and in grade II it increases from 70.6346 

to 205.2306, while the coefficient of variation of the number of employees in grade I is unaffected, and 

in grade II it decreases from 0.1190 to 0.0698. 

When other parameters were held constant, the initial number of employees in grade I (N) 

varied from 1000 to 1400, the variance of the number of employees in grade I and grade II increased 

from 4.0180 to 4.0290 and 8.1042 to 8.4193, respectively, and the coefficient of variation of the number 

of employees in grade I and grade II decreased from 0.4989 to 0.4982 and 0.3512 to 0.3446. 

When other parameters were fixed, the variance of the number of employees in grade I was 

not influenced and in grade II it was increasing from 8.4193 to 8.6404, coefficient of variation of the 
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number of employees in grade I was not influenced and in grade II it was decreasing from 0.3446 to 

0.3402, when the primary number of employees in grade II (M) varies from 100 to 500. 

V. Sensitivity analysis of the model 
 

The model was sensitivity tested with respect to the value of time (t), recruitment rates  λ1(t) 

and λ2(t), promotion rate parameter (α), and leaving parameters(β) and (γ) of both grade I and grade 

II, as well as all other parameters combined on the mean number of employees in grade I and grade 

II, mean duration of stay of an employee in grade I and grade II, and variance of the number of 

employees in grade I and grade II. 

For different value of t,α,β,γ,a1,b1,a2 and b2 the mean number of employees in grade I and  in 

grade II, mean duration of stay of an employee in grade I and in grade II, the variance of the number 

of employees in grade I and in grade II  were computed and presented in Table 3a and 3b with 

variation of -15%,-10%,-5%,0%,5%,10% and 15% of the model parameters. 

Time had a significant impact on the performance measurements (t). The mean number of 

employees, mean duration of stay of an employee, and variation of the number of employees in grade 

I and grade II increased when t increased from -15 % to 15%. 

The mean number of employees, mean duration of stay of an employee, and variation of the 

number of employees in grade I decreased and in grade II it was increasing as the promotion rate 

parameter (α) increased from -15 % to 15%. The mean number of employees, mean duration of stay of 

an employee, and variation of the number of employees in grade I and grade II decreased as the 

leaving  rate parameter ( β) in grad-1 increased from -15 % to 15%.When the leaving  rate parameter 

(γ) in grad-2 is increased from -15 % to 15%, the mean number of employees, mean duration of stay of  

 

Table 3a:The values of L1(t),L2(t),W1(t),W2(t),V1(t)  and V2(t) for different Values of t, α, β, γ, a1, b1, a2 and b2 

Para 

-meters 

Performance 

Measure 
-15% -10% -5% 0% +5% +10% +15% 

t=2 

L1 5.2497 5.9333 6.6624 7.4356 8.2524 9.1123 10.0152 

L2 16.7277 18.7380 20.9764 23.4109 26.0219 28.7973 31.7300 

W1 0.7539 0.8499 0.9530 1.0629 1.1792 1.3019 1.4308 

W2 3.5231 3.9175 4.3407 4.7972 5.2901 5.8205 6.3878 

VI 5.2497 5.9333 6.6624 7.4356 8.2524 9.1123 10.0152 

V2 16.7276 18.7379 20.9763 23.4109 26.0219 28.7973 31.7300 

α=3 

L1 7.8716 7.7206 7.5754 7.4356 7.3010 7.1711 7.0457 

L2 23.0525 23.1764 23.2957 23.4109 23.5220 23.6292 23.7329 

W1 1.2022 1.1528 1.1065 1.0629 1.0218 0.9831 0.9466 

W2 4.7743 4.7801 4.7879 4.7972 4.8075 4.8187 4.8305 

VI 7.8716 7.7206 7.5754 7.4356 7.3010 7.1711 7.0457 

V2 23.0525 23.1764 23.2957 23.4109 23.5220 23.6292 23.7329 

β=4 

L1 8.0287 7.8206 7.6232 7.4356 7.2571 7.0870 6.9247 

L2 23.7293 23.6162 23.5103 23.4109 23.3172 23.2286 23.1447 

W1 1.2549 1.1854 1.1216 1.0629 1.0086 0.9585 0.9120 

W2 4.8301 4.8173 4.8064 4.7972 4.7895 4.7833 4.7784 

VI 8.0287 7.8206 7.6232 7.4356 7.2571 7.0870 6.9247 

V2 23.7293 23.6161 23.5103 23.4109 23.3171 23.2286 23.1446 
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Table 3b:The values of L1(t),L2(t),W1(t),W2(t),V1(t)  and V2(t) for different Values of t, α, β, γ, a1, b1, a2 and b2 

Para 

-meters 

Performance 

Measure 

-15% -10% -5% 0% +5% +10% +15% 

γ=5 

L1 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

L2 26.8975 25.5983 24.4462 23.4109 22.4709 21.6107 20.8184 

W1 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 

W2 6.3982 5.7752 5.2484 4.7972 4.4064 4.0650 3.7647 

VI 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

V2 26.8974 25.5983 24.4461 23.4109 22.4709 21.6107 20.8184 

a1=5 

L1 6.3205 6.6922 7.0639 7.4356 7.8074 8.1791 8.5508 

L2 22.8696 23.0500 23.2305 23.4109 23.5913 23.7717 23.9521 

W1 0.9046 0.9572 1.0100 1.0629 1.1158 1.1688 1.2218 

W2 4.7704 4.7742 4.7834 4.7972 4.8146 4.8351 4.8582 

VI 6.3205 6.6922 7.0639 7.4356 7.8074 8.1791 8.5508 

V2 22.8696 23.0500 23.2305 23.4109 23.5913 23.7717 23.9521 

b1=3 

L1 4.7683 5.5453 6.4298 7.4356 8.5783 9.8752 11.3459 

L2 22.2169 22.5701 22.9665 23.4109 23.9089 24.4666 25.0909 

W1 0.6870 0.7953 0.9200 1.0629 1.2257 1.4108 1.6209 

W2 4.6951 4.7717 4.7796 4.7972 4.8525 4.9345 5.0407 

VI 4.7683 5.5453 6.4298 7.4356 8.5783 9.8752 11.3459 

V2 22.2169 22.5701 22.9664 23.4109 23.9089 24.4666 25.0909 

a2=10 

L1 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

L2 20.4589 21.4429 22.4269 23.4109 24.3948 25.3788 26.3628 

W1 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 

W2 4.1923 4.3939 4.5955 4.7972 4.9988 5.2004 5.4021 

VI 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

V2 20.4589 21.4429 22.4269 23.4109 24.3948 25.3788 26.3628 

b2=3 

L1 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

L2 16.4841 18.5091 20.8066 23.4109 26.3602 29.6977 33.4714 

W1 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 

W2 3.3778 3.7927 4.2635 4.7972 5.4015 6.0854 6.8587 

VI 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

V2 16.4841 18.5091 20.8066 23.4109 26.3602 29.6977 33.4714 

N=1500 

L1 4.0256 4.0276 4.0297 4.0318 4.0338 4.0359 4.0380 

L2 13.4547 13.5138 13.5729 13.6321 13.6912 13.7503 13.8094 

W1 0.5855 0.5858 0.5861 0.5864 0.5866 0.5869 0.5872 

W2 2.8212 2.8257 2.8307 2.8360 2.8418 2.8479 2.8543 

VI 4.0256 4.0276 4.0297 4.0318 4.0338 4.0359 4.0380 

V2 13.4537 13.5128 13.5719 13.6310 13.6901 13.7491 13.8082 

M=500 

L1 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

L2 23.4075 23.4086 23.4097 23.4109 23.4120 23.4131 23.4143 

W1 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 1.0629 

W2 4.7969 4.7970 4.7971 4.7972 4.7973 4.7974 4.7975 

VI 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 7.4356 

V2 23.4075 23.4086 23.4097 23.4109 23.4120 23.4131 23.4143 

 

The mean number of employees, mean duration of stay of an employee, and variation of the  

number of employees in grade I and grade II increased when the recruitment rate parameter (a1) in 

grade I increased from -15 % to 15%. The mean number of employees, mean duration of stay of an 
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employee, and variation of the number of employees in grade I and grade II increased when the 

recruitment rate parameter (b1) in grade I increased from -15 % to 15%. 

When the recruitment rate parameter (a2) of employees in grade II goes from -15 % to 15%, 

the mean number of employees, the mean duration of stay of an employee, and the variance of the 

number of employees in grade I are unaffected, while they increase in grade II. When the recruitment 

rate parameter (b2) of employees in grade II is increased from -15 % to 15%, the mean number of 

employees, mean duration of stay of an employee, and variance of the number of employees in grade 

I are unaffected, but they increase in grade II. 

 

V1.Comparative Studies of the models: 

In this part, a comparison of the generated model with a model with homogeneous Poisson 

recruitment was shown. Table 4 shows the performance measures of both models for various values 

of t=1.6, 1.7, 1.8, 1.9, and 2. 

Table 4: Comparative study of models with Homogeneous and Non-Homogeneous 

Recruitments. 

t 
Characteristics 

Measured 

Non-

Homogeneous  

recruitment 

Homogeneous  

recruitment 
Deference 

Percentage 

of Variation 

t=1.6 

L1 2.1021 0.7348 1.3673 65.0445 

L2 4.7680 2.3187 2.4493 51.3695 

W1 0.3421 0.2017 0.1404 41.0406 

W2 1.1085 0.6329 0.4756 42.9048 

VI 2.1021 0.7348 1.3673 65.0445 

V2 4.7680 2.3187 2.4493 51.3695 

t=1.7 

L1 2.2347 0.7245 1.5102 67.5795 

L2 4.7067 1.9718 2.7349 58.1065 

W1 0.3575 0.2008 0.1567 43.8322 

W2 1.1500 0.6342 0.5158 44.8522 

VI 2.2347 0.7245 1.5102 67.5795 

V2 4.7067 1.9718 2.7349 58.1065 

t=1.8 

L1 2.3724 0.7193 1.6531 69.6805 

L2 4.7803 1.7598 3.0205 63.1864 

W1 0.3738 0.2003 0.1735 46.4152 

W2 1.2040 0.6611 0.5429 45.0914 

VI 2.3724 0.7193 1.6531 69.6805 

V2 4.7803 1.7598 3.0205 63.1864 

t=1.9 

L1 2.5127 0.7168 1.7959 71.4729 

L2 4.9365 1.6303 3.3062 66.9746 

W1 0.3906 0.2001 0.1905 48.7711 

W2 1.2579 0.6972 0.5607 44.5743 

VI 2.5127 0.7168 1.7959 71.4729 

V2 4.9365 1.6303 3.3062 66.9746 

t=2.0 

L1 2.6543 0.7155 1.9388 73.0437 

L2 5.1432 1.5513 3.5919 69.8378 

W1 0.4079 0.2000 0.2079 50.9684 

W2 1.3082 0.7320 0.5762 44.0453 

VI 2.6543 0.7155 1.9388 73.0437 

V2 5.1432 1.5513 3.5919 69.8378 
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Table 4 shows that the percentage variation of the performance measures between the two 

models increased as time progressed. The assumption of the Duane recruitment process was found to 

have a considerable impact on all of the manpower model's performance measures. Time has a 

substantial impact on system performance, and the proposed model can more correctly forecast 

system performance. 

 

VII. Conclusion 

 
The purpose of this work is to build and analyze a two-graded manpower model with direct 

recruitment in both grades for non-stationary recruitment. The Duane recruitment procedure was 

capable of identifying recruitments that were time-dependent. The model's characteristics were 

obtained explicitly to assist HR Managers in adopting optimal operating policies, such as the mean 

number of employees in each grade, the mean duration of stay of an employee in each grade, the 

variance of the number of employees in each grade, and the coefficient of variation of an employee in 

each grade in the organization. The model's sensitivity study revealed that the Duane recruitment 

process has a considerable impact on system performance indicators. A comparison of the suggested 

model with Poisson recruitment reveals that the proposed model predicts system properties more 

accurately. When the recruiting was done in a time-dependent manner, the performance measures 

could be anticipated more correctly and realistically using the evolving model. This model can also be 

expanded by factoring in cost considerations while determining the best values for the parameters, 

which will be done elsewhere. 

References 
 

[1] Seal,H,. (1945), “The mathematics of a population composed of k stationary strata each 

recruited from the stratum below the supported at the lowest level by a uniform number”, 

Biometrika, Vol. 33, pp. 226 –230. 

 [2] Silcock, H (1954), “The Phenomenon of the labor turnover”, J.R. Statist. Soc. A.117, No. 9, pp. 

429 – 440. 

[3] Bartholomew, D. J. (1963)."A multistage renewal process. J.R". Statist. Soc. B. 25, 152-168. 

[4] Bartholomew,D. J (1971)."The statistical approach to manpower planning", Statistician, 20(1), 

3-26. 

[5] Ugwuowo, F.I. And Mc Clean, S.I. (2000), “Modeling heterogeneity in a manpower system”: a 

review Applied Stochastic Models and Data Analysis, Vol.16, No.2, pp. 99-110. 

[6] Wang, J. (2005), “A review of operations research applications in workforce planning and 

potential modeling of military training”, DSTO Systems Sciences Laboratory, Edinburgh South 

Australia 5111, pp.1-37.  

[7] Srinivasa Rao, K., Srinivasa Rao, V. And Vivekananda Murthy, M (2006), “On two graded 

manpower planning model”, OPSEARCH, Vol. 43, No. 3, pp. 117-130. 

[8] Kannan Nilakantan et al., (2014), “Evaluation of staffing policies in Markov manpower 

systems and their extension to organizations with outsource personnel”, Journal of the Operational 

Research Society, Vol. 66, pp. 1324–1340. 

[9] Jeeva, M and Geetha, N (2013), “Recruitment Model in Manpower Planning Under Fuzzy 

Environment”, British Journal of Applied Science & Technology, Vol. 3 ,issue 4,pp. 1380–1390. 

[10] Lalitha, A Devi And Srinivasan,A (2014), “A Stochastic Model On The Time To Recruitment 

For A Single Grade Manpower System With Attrition Generated By A Geometric Process of inter-

Decision Times Using Univariate Policy Of Recruitment”, Blue Ocean Research Journals, Vol. 3, No 7 

.pp.12-15. 

54



Ch. Ganapathi Swamy, K. Srinivasa Rao  

A NOVAL APPLICATION OF DUANE PROCESS FOR MODELING TWO GRADED 

MANPOWER SYSTEM WITH DIRECT ECRUITMENT IN BOTH THE GRADES 

RT&A, No 2 (68) 

 Volume 17, June 2022 

 
[11] A.Osagiede, A and Ekhosuehi,U.V (2015),“Finding a continuous-time Markov chain via 

sparse stochastic measuresesn manpower systems”, Journal of the Nigerian Mathematical Society, 

Vol. 34,No. 1, pp. 94-105. 

[12] Murthy.M.Vivekananda, Srinivasa Rao, V And Srinivasa Rao. K (2003), “Three graded 

manpower planning model”, Proceeding of APORS, pp. 410-418. 

[13] Konda Babu And Srinivasa Rao (2013), “Studies on two graded manpower model with bulk 

recruitment in both the grades”, International Journal of Human Resource Management Research Vol. 

1, No. 2, pp. 10-15. 

[14] Srinivasa Rao, And Konda Babu (2014), “Grade Manpower Model with Bulk Recruitment in 

First Grade”, International Journal of Human Resource Management Research and Development, 

1465-6612(print), Vol.4, No.1, pp.1-37.  

[15] Govinda rao and Srinivasa Rao (2013), “Bivariate manpower model for permanent and 

temporary grades under equilibrium”, Indian Journal of Applied Research Vol. 3, No.8, pp. 63 – 66. 

[16] Govinda Rao and Srinivasa Rao (2014), “Manpower model with three level recruitment in 

the initial grade”, International Research Journal of Management Science and Technology, Vol.5, 

No.9, pp. 79-102. 

[17] Parameswari, K And Srinivasan. (2016), "Estimation of variance of time to recruitment for a 

two-grade manpower system with two types of decisions when the wastages form a geometric 

process", International Journal of Mathematics Trends and Technology, Volume 33, Number 3, 

pp.161-165. 

[18] Amudha,T and Srinivasan,A.-(2016), "Estimation of Variance of Time to Recruitment for a 

Two Grade Manpower System with Single Source of Depletion Using a Different Probabilistic 

Analysis", International Journal of Scientific Engineering and Applied Science, Volume-2, wassue-

7,pp.135-140. 

[19] Saral Et Al, L. (2017) ,"Estimation of mean time to recruitment for a two graded manpower 

system with two thresholds, different epoch for exits and correlated inter-decisions under correlated 

wastage", International Educational Scientific Research Journal, Volume : 3 ,Issue : 3, pp.1-6. 

[20] Srividhya,K & Sendhamizhselvi,S (2017), "Mean time to recruitment for a multi grade 

manpower system with single threshold, single source of depletion when wastages form an order 

statistics",nternational Journal of Current Research and Modern Education, Special issue, pp.30-37. 

[21] Jayanthi, L, S & Uma K P, (2018)," Determination of manpower model for a single grade 

system with two sources of depletion and two components for threshold", EAI Endorsed Transactions 

on Energy Web and information Technologies, Volume 5, Issue 20,pp.1-10. 

[22] Tamás Bányai., Christian Landschützer., And Ágota Bányai., (2018)," Markov-Chain 

Simulation-Based Analysis of Human Resource Structure: How Staff Deployment and Staffing Affect 

Sustainable Human Resource Strategy", Sustainability, Volume 10, pp. 1-21. 

[23] Arokkia Saibe.,P (2019)," Variance of Time to Recruitment with A Record of N Decision", 

International Journal of Scientific Research and Reviews, 8(1), 1207-1212. 

[24] Srinivasa Rao, Mallikharjuna Rao (2015), “On two graded manpower model with non-

homogeneous Poisson recruitments”, International Journal of Advanced Computer and Mathematical 

Sciences. Vol 6, wassue3. Pp40-66. 

[25] Srinivasa rao,K and Ganapathi Swamy,ch(2019)” On Two Grade Manpower Model With 

Duane Recruitment Process”, Journal of Applied Science and Computations, Volume VI, Issue, pp 

220-235. 

 
 

55



Neetu Babas, Reetu Rathee             

PARALLEL SYSTEM ANALYSIS WITH PRIORITY  

AND INSPECTION USING SEMI-MARKOV APPROACH 

RT&A, No 2 (68) 

Volume 17, 2022 
 

   

Parallel System Analysis with Priority and Inspection 

Using Semi-Markov Approach 
 

Neetu Dabas 

• 
Department of Statistics, AIAS,  

Amity University, Noida, Uttar Pradesh-201 313 

Email: neetudabas2@gmail.com   

 

Reetu Rathee 

•  

Department of Statistics, AIAS, 

Amity University, Noida, Uttar Pradesh-201 313 

Email: rrathee@amity.edu 

 

 

Abstract 

 

In this paper a parallel system has been discussed with the idea of priority to preventive maintenance 

over replacement. The system has two identical units and facility of inspection is given to the failed 

unit before repair/replacement. There is a single server who play four-in-one role of inspection, 

replacement, repair and preventive maintenance and comes immediately when required. Units are 

failed with constant rate whereas failure time is random. The distribution of time for repair activities 

is arbitrary and there rates follow exponential distribution. The random variable associate with 

different rates are stochastically independent. Mathematical expression for several reliability terms 

like MTSF, availability, busy period analysis for server , expected number of visits by the server and 

cost benefit  are obtained by using semi-markov process and regenerative point technique. Graphs are 

drawn to find the effect of various parameters on MTSF, Availability and profit. 

 

Keywords: parallel system, priority, preventive maintenance, replacement, 

inspection 

 

 

I. Introduction 
 

The world is moving day by day towards the smart technology. Advance development of 

technology has significantly increased cost and complexity of industrial systems. Thus it has become 

an essential to operate industrial systems with minimum down time in order to achieve optimized 

production, increase profit and to avoid the losses. Hence, the need for reliability modeling and 

analysis of complex industrial systems is inevitable. Reliability analysis of parallel systems has been 

broadly studied by many researchers because parallel configuration is more reliable then series. 

Dhillon and Viswanath [6] analyzed a parallel system with the common-cause failure. Sridharan and 

Kalyani [7] gives common-cause failure analysis of a two non-identical unit parallel system using 

GERT technique.  
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A parallel (2n-2) system was investigated by E.Papageorgious and G. Kokolakis [9] where two units 

start operation simultaneously and any one of them was replaced by one of (n-2) warm standby 

units upon failure. Reliability of parallel systems was studied based on multiple competing 

dependent failure process by Sanling and David [10]. This problem was formulated for  

 

the conditioning on shock sets because not all shocks cause degradation. N. Sharma and J.P.Singh 

Joorel [8] investigate a two unit parallel system with inspection and preparation time for 

replacement.  To improve the reliability PM and Inspection are widely used in modern engineering 

systems. PM can help to extend the life time of an equipment, increase the productivity and hence 

decrease unexpected maintenance spending. Inspection aims to find the defect of the system and 

type of the defect. Goel and Gupta [13] considered a two identical unit parallel system with the 

concept of PM, inspection and two types of repair. They assumed that the time to failure, 

commencement to PM and inspection are constant while repair and maintenance times are 

arbitrarily distributed. M.K.Kakkar and J.Bhatti [12] purposed a two dissimilar parallel unit 

framework under the presumption that the unit may also fail during the preventive maintenance 

(PM). Wang and Lin [5] found a methodology to optimize the non-periodic maintenance for a series-

parallel system. Shruti [11] analyzed a stochastic model with two units subject to routine inspection, 

maintenance and replacement. In this research routine inspection is conducting over operative unit 

and after inspection either the unit is maintained or it failed. Repair and replacement of the unit is 

based upon guarantee period of the equipment. In many research priority concept is also used to 

make the system better in performance and hence more profitable. P. Kumar, A. Bharti, and A. Gupta 

[3] investigated and analyze a two unit parallel system in which priority was given to one unit over 

other. In this system priority unit was repairable and non-priority unit was non-repairable and 

preference to repair of priority unit was given over replacement of non-priority unit. R.Rathee and 

D.Pawar [4] introduced a reliability model of a parallel system in which priority to repair over 

replacement was given using maximum operation and repair times.A.Kumar and S.C.Malik [1] 

considered a computer system with two identical units and in each unit H/W and S/W components 

works together. Priority was given to PM of the unit over S/W replacement under certain 

assumptions. C.Aggarwal and N.Ahlawat [2] done the profit analysis of a standby system with 

priority to PM over repair by considering rest of the server between repairs.  

 

In the present study a parallel system is investigate under some assumptions. Priority is given to 

PM over replacement with inspection. Inspection is done to find the type of failure. Semi-Markovian 

approach and regenerative-point-technique are used to obtain numerical expressions for various 

reliability terms such as MTSF, Availability, busy period analysis for server, expected number of 

visits by the server and cost benefit. Graphical interpretation is done to visualize the effect of several 

parameters (related to repair activities) on obtained reliability measurable terms. 

 

For practical implication of system one of the example is a parallel compressor rack system. Jim 

Coats [14] gives the commercial and industrial applications of parallel compressor racks.  There are 

several advantages of this system like low installation cost, capacity control, redundancy and 

maximum efficiency etc. 
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Figure 1: Parallel compressor Rack 

 

 

 

II. Notations for System Model 

 
𝑆𝑖 ∶   𝑆𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑡𝑒𝑚 (𝑖 = 1,2, . . . . ,15)   
λ ∶   Constant failure rate 
𝑎/𝑏/∝0 :  repair/replacement/PM rate of  the system  
upm/UPM: Unit is under PM/continuosly under PM 
wpm/WPM: Unit is waiting for PM/continue waiting for PM 
FUi/FWi: Failed unit under inspection/waiting for inspection 
FUI/FWI: 𝐹ailed unit continuously under inspection/waiting for inspection 
FUr/FUrp ∶  𝐹ailed unit under repair/replacement  
FUR/FURP: 𝐹ailed unit continuously under repair/replacement       
𝜇𝑖:  𝑚𝑒𝑎𝑛 𝑠𝑜𝑗𝑜𝑢𝑟𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑆𝑖   
𝑚𝑖𝑗 : Contribution to mean sojourn time  in state Si when the system 

         transits directly to state Sj  

h(t)/f(t)/r(t)/g(t): pdf of the inspection/repair/replacement/PM time 

 

III. System Description and Assumptions 
 

A parallel system with two identical units is studied under some practical assumptions which are 

given below: 

• Initially both the units are in operative condition 

• Failure rate is constant 

• Only one server operator is taken to do all repair activities 

• Repair is perfect or units restore in initial condition after repair 

• Post failure inspection is done to find unit is repairable or replaced by new 

• Time taken for repair activities is arbitrary and there rates follow exponential        

   distribution 

• The random variable associate with different rates are stochastically independent 

 

Table 1: Description of the states 

States Description 

S0 Both the units are in normal mode 

S1 One unit is operative and other is failed under inspection  

S2 Resume for PM  
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S3 One is working and other is failed under replacement  

S4 One unit is continuously under inspection from previous state and other is waiting 

for inspection  

S5 One is working and other is failed under repair   

S6 One unit is continuously under inspection from previous state and other is waiting 

for PM  

S7 One unit is working and other under PM  

S8 One unit is continuously under replacement from previous state and other is waiting 

for inspection   

S9 One unit is under repair and other is continuously waiting for inspection from 

previous state 

S10 One unit is under replacement and other is continuously waiting for inspection from 

previous state 

S11 One unit is continuously under repair from previous state and other is waiting for  

 

inspection   

S12 One unit is continuously under repair from previous state and other is waiting for PM  

S13 One unit is under repair and other is continuously waiting for PM from previous state 

S14 One unit is under PM and other is continuously waiting for replacement from 

previous state 

S15 One unit is continuously under PM from previous state and other is waiting for 

inspection  

 

 
 

Figure 2: Transition State Diagram 
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IV. Formulation and Stochastic Analysis of the Model 

 
I. Transition Probabilities & Mean Sojourn Times (μi) 

 

Steady- state transition probabilities from regenerative state i to state j are given by the formula  

𝑝𝑖𝑗 = 𝑄𝑖𝑗(∞) = ∫ 𝑞𝑖𝑗
∞

0
(t)dt                                                                                                                                          (1) 

Here 𝑄𝑖𝑗(𝑡) / 𝑞𝑖𝑗(𝑡) are the c.d.f/p.d.f from state i to state j in (0,t) time. 

 𝑝01 =
2𝜆

2𝜆+𝛼0
 ,     𝑝02 =

𝛼0

2𝜆+∝0
  

 𝑝13 = 𝑏ℎ∗(λ +∝0), 𝑝14 =
𝜆

𝜆+∝0
(1 − ℎ∗(λ +∝0)), 𝑝15 = 𝑎ℎ∗(λ +∝0),   𝑝16 =

∝0

𝜆+∝0
(1 − ℎ∗(λ +∝0))  

 𝑝30 = 𝑟∗(λ +∝0),  𝑝38 = 𝑝31.8 =
𝜆

𝜆+∝0
(1 −  r∗(λ +∝0)), 𝑝3,14 =

∝0

𝜆+∝0
(1 − r∗ (λ +∝0)) 

 𝑝49 = 𝑝6,13 = a ,   𝑝4,10 = 𝑝6,14 =  b  

𝑝50 = 𝑓∗(λ +∝0)  , 𝑝5,11 = 𝑝51.11 =
𝜆

𝜆+∝0
(1 −  f ∗(λ +∝0)) ,  𝑝5,12 = 𝑝57.12 =

∝0

𝜆+∝0
(1 −  f ∗(λ +∝0)) 

𝑝70 = g∗(λ) , 𝑝7,15 = 𝑝71.15 = 1 − 𝑔∗(λ) ,  

𝑝11.49 =
𝜆𝑎

𝜆+∝0
(1 − h∗(λ +∝0)) ,𝑝11.4,10 =

𝜆𝑏

𝜆+∝0
(1 − h∗(λ +∝0)) , 

 𝑝1,14.6 =
∝0𝑏

𝜆+∝0
(1 − h∗(λ +∝0)) ,   𝑝17.6,13 =

∝0𝑎

𝜆+∝0
(1 −  h∗(λ +∝0))  , 

 𝑝27 = p81 =  𝑝91 =  𝑝10,1 = p11,1 =  𝑝12,7  = 𝑝13,7 = 𝑝14,3 = 𝑝15,1 = 1  

 

 

 

It can verified that 

 𝑝01 + 𝑝02 =  𝑝13 
+ 𝑝15 + 𝑝11.49 + 𝑝11.4,10 + 𝑝17.6,13 + 𝑝1,14.6=  

𝑝50 + 𝑝51.11 + 𝑝57.12  =  𝑝30 + 𝑝31.8 + 𝑝3,14  =  𝑝49 + 𝑝4,10  =  𝑝6,13 + 𝑝6,14  =  𝑝70 + 𝑝71.15  =𝑝27 =   𝑝81 =  

𝑝91 =  𝑝10,1 =  𝑝11,1 =  𝑝12,7 =  𝑝13,7 =  𝑝14,3 =  𝑝15,1= 1 

 

And  𝜇𝑖
′𝑠 are given by the formula 

  𝜇𝑖 = 𝐸(𝑡) = ∫ 𝑃(𝑇 > 𝑡) 𝑑𝑡
∞

0
= ∑ 𝑚𝑖𝑗𝑗                                                                                                                                    (2) 

and  

𝑚𝑖𝑗 =
𝑑[𝑄𝑖𝑗

∗∗(𝑠)] 

𝑑𝑠
|𝑠 = 0                                                                                                                                                     (3) 

μ0 =
1

2λ + α0

 , 𝜇1 =
1

𝜆 + α0

(1 − h∗(λ + α0)), 𝜇3 =
1

𝜆 + α0

(1 − r∗(λ + α0))  

 𝜇5 =
1

𝜆+α0
(1 − f ∗(λ + α0), 𝜇7 =

1

𝜆
(1 − g∗(λ)) 

𝜇1
′ =  [

1

𝜆 + α0

+
𝜆𝑏

𝛼(𝜆 + α0)
+

1 

𝛾
+

𝑎  

𝛼
](1 − ℎ∗(λ + α0)) 

𝜇3
′ =

(𝛽+𝜆)

𝛽(𝜆+α0)
(1 − f ∗(λ + α0)) , 𝜇5

′ =
1

∝
, 𝜇7

′ =
1

𝜃
      

 

II. Reliability & Mean Time to System Failure (MTSF) 

 

Let 𝛷𝑖(𝑡) be the cdf of first passing time from the state 𝑆𝑖 to the state in which failure occur and we 

take absorbing state as the failed state. So, the expressions for 𝛷𝑖(𝑡) from which MTSF of discussed 

system is obtained are given as 

 𝛷𝑖(𝑡)  =  ∑ 𝑄𝑖𝑗𝑖,𝑗 (𝑡) Ⓢ Φj(t)  + ∑ Qiki,k (t)                                                                                                     (4) 

Where j is the operating regenerative state to which the given regenerative state i can transit and k 

is the failed state to which state i can directly transit. 

If we take LST of above relation (4) and solved them for  𝛷0
∗∗(𝑠), we have  

                𝑅∗(𝑠) =
1− 𝛷∗∗(𝑠)

𝑠
                                                                                                                                 (5) 
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The system reliability is obtained by taking Inverse Laplace transform of (5) and MTSF is given by 

the formula   

MTSF = lim
                        𝑠→0

1− 𝛷∗∗(𝑠)

𝑠
=

N

D
                                                                                                                                               (6)                

Where, 

𝑁 = 𝜇0 + 𝜇1𝑝01 + 𝜇3𝑝01𝑝13 + 𝜇5𝑝01𝑝15  and 𝐷 = 1 − 𝑝01𝑝13𝑝30 − 𝑝01𝑝15𝑝50                                              (7) 

 
III.  Analysis of Availability 

 

Let 𝐴𝑖(𝑡) be the probability of system working at time ‘t’ w.r.t the condition that system goes to 

regenerative state 𝑆𝑖 at t = 0. We have the relations for 𝐴𝑖(𝑡) as                                                                                          

𝐴𝑖(𝑡)  =  𝑀𝑖(𝑡)  + ∑ 𝑞𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)©𝐴𝑗(𝑡)                                                                                                                    (8) 

Where j is any successive regenerative state to which the regenerative state i can transit through n 

transitions. 

Mi (t) is the probability that the system in up state Si up to the time t without visiting to any other 

regenerative state.  

𝑀0(𝑡) = 𝑒−(2𝜆+ ∝0)𝑡                                                                                                                                                        (9) 

𝑀1(𝑡) = 𝑒−(𝜆+∝0 )𝑡𝐻(𝑡)                                                                                                                                              (10) 

𝑀3(𝑡) = 𝑒−(𝜆+∝0 )𝑡𝑅(𝑡)                                                                                                                                            (11) 

𝑀5(𝑡) = 𝑒−(𝜆+∝0 )𝑡𝐹(𝑡)                                                                                                                                            (12) 

𝑀7(𝑡) = 𝑒−(𝜆𝑡)𝐺(𝑡)                                                                                                                                                     (13) 

 

Now, if we use LT of (8) and solved it for 𝐴0
∗ (𝑠).We get the result for steady state availability as 

𝐴0(∞) = lim
𝑠→0

𝑠𝐴0
∗ (𝑠) =

𝑁1

𝐷1
                                                                                                                                    (14) 

Where 

𝑁1 = 𝜇0𝐴 + (𝜇1 + 𝜇5𝑝15)𝐵 + 𝜇3𝐶 + 𝜇7𝐷                                                                                                                   (15) 

𝐷1 = (𝜇0 + 𝜇2𝑝02)𝐴 + (𝜇1
′ + 𝜇5

′ 𝑝15)𝐵 + 𝜇3
′ 𝐶 + 𝜇7

′ 𝐷 + 𝜇14𝐸                                                                                     (16) 

 

IV. Busy Period Analysis for Server 

 

Let 𝐵𝑖
𝐼(𝑡), 𝐵𝑖

𝑅(𝑡), 𝐵𝑖
𝑅𝑝

(𝑡), 𝐵𝑖
𝑃(𝑡)be the probability of busy period of server during inspection, repair, 

replacement and PM at instant‘t’ with the given condition that the system go to regenerative state Si 

at t=0. The recursive relations for 𝐵𝑖
𝐼(𝑡), 𝐵𝑖

𝑅(𝑡), 𝐵𝑖
𝑅𝑝

(𝑡), 𝐵𝑖
𝑃(𝑡) are as follows:  

𝐵𝑖
𝐼(𝑡)  =  𝑊𝑖(𝑡)  +  ∑ 𝑞𝑖𝑗

(𝑛)
𝑖,𝑗 (𝑡)©𝐵𝑗

𝐼(𝑡)                                                                                                                   (17) 

𝐵𝑖
𝑅(𝑡)  =  𝑊𝑖(𝑡)  + ∑ 𝑞𝑖𝑗

(𝑛)
𝑖,𝑗 (𝑡)©B𝑗

𝑅(𝑡)                                                                                                                      (18) 

𝐵𝑖
𝑅𝑝

(𝑡)  =  𝑊𝑖(𝑡)  +  ∑ 𝑞𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)©B𝑗
𝑅𝑝

(𝑡)                                                                                                           (19) 

𝐵𝑖
𝑃(𝑡)  =  𝑊𝑖(𝑡)  + ∑ 𝑞𝑖𝑗

(𝑛)
𝑖,𝑗 (𝑡)©B𝑗

𝑃(𝑡)                                                                                                                (20)                                                      

Where j is any successive regenerative state to which the regenerative state i can transit through n 

transitions. 

Wi(t) is the probability of server busyness at state Si due to repair activities at time t without making 

any transition to any other regenerative state or returning to the same via one or more non 

regenerative state.  

Here, 

𝑊1(𝑡) = 𝑒−(𝜆+∝0)𝑡𝐻(𝑡)̅̅ ̅̅ ̅̅ + (𝜆𝑒−(𝜆+∝0)𝑡©1)𝐻(𝑡)̅̅ ̅̅ ̅̅ + (𝛼0𝑒−(𝜆+∝0)𝑡©1)𝐻(𝑡)̅̅ ̅̅ ̅̅                                                               (21) 

𝑊5(𝑡) = 𝑒−(𝜆+∝0)𝑡𝐹(𝑡)̅̅ ̅̅ ̅̅ + (𝜆𝑒−(𝜆+∝0)𝑡©1)𝐹(𝑡)̅̅ ̅̅ ̅̅  +  (∝0 𝑒−(𝜆+∝0)𝑡©1)𝐹(𝑡)̅̅ ̅̅ ̅̅                                                  (22) 

𝑊3(𝑡) = 𝑒−(𝜆+∝0)𝑡𝑅(𝑡)̅̅ ̅̅ ̅̅ + (𝜆𝑒−(𝜆+∝0)𝑡©1)𝑅(𝑡)̅̅ ̅̅ ̅̅                                                                                               (23) 

𝑊2(𝑡) = 𝐺(𝑡)̅̅ ̅̅ ̅̅ = 𝑊14(𝑡), 𝑊7(𝑡) = 𝑒−(𝜆)𝑡𝐺(𝑡)̅̅ ̅̅ ̅̅ + (𝜆𝑒−(𝜆)𝑡©1)𝐺(𝑡)̅̅ ̅̅ ̅̅   
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Take LT of (17) to (20) and solving for 𝐵0
𝐼∗

(𝑠), 𝐵0
𝑅∗

(𝑠), 𝐵0
𝑅𝑝∗

(𝑠), 𝐵0
𝑃∗

(𝑠) .The busy time in inspection, 

repair, replacement and preventive maintenance for server is given by 

𝐵0
𝐼 (∞) = lim

𝑠→0
𝑠𝐵0

𝐼∗
(𝑠) =

𝑁2

𝐷1
                                                                                                                                      (24) 

 𝐵0
𝑅(∞) = lim

𝑠→0
𝑠𝐵0

𝑅∗
(𝑠) =

𝑁3

𝐷1
                                                                                                                                (25) 

𝐵0
𝑅𝑝

(∞) = lim
𝑠→0

𝑠𝐵0
𝑅𝑝∗

(𝑠) =
𝑁4

𝐷1
                                                                                                                                       (26) 

 𝐵0
𝑃(∞) = lim

𝑠→0
𝑠𝐵0

𝑃∗
(𝑠) =

𝑁5

𝐷1
                                                                                                                                  (27) 

Here,  

𝑁2 = 𝑊1
∗(0)𝐵, 𝑁3 = 𝑊5

∗(0)𝑝15𝐵, 𝑁4 = 𝑊3
∗(0)𝐶  

𝑁5 = 𝑊2
∗(0)𝑝02𝐴 + 𝑊7

∗(0)𝐷 + 𝑊14
∗ (0)𝐸  and D1 is mentioned above.                                                   (28) 

 

V. Expected Number of Visits by The Server 

 

Consider  𝐼0(𝑡), 𝑅0(𝑡), 𝑅𝑝0(𝑡) , 𝑃𝑚0(𝑡)  as the expected number of visits make by the server for 

inspection, repair, replacement and PM in (0, t] .We have the following recursive relations for 

𝐼0(𝑡), 𝑅0(𝑡), 𝑅𝑝0(𝑡) , 𝑃𝑚0(𝑡) are  

𝐼𝑖(𝑡)  =  ∑ 𝑄𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)Ⓢ (C + Ij (t))                                                                                                                          (29) 

𝑅𝑖(𝑡)  =  ∑ 𝑄𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)Ⓢ (C + Rj (t))                                                                                                                (30) 

𝑅𝑝𝑖(𝑡)  =  ∑ 𝑄𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)Ⓢ (C + Rpj (t))                                                                                                                     (31) 

𝑃𝑚𝑖(𝑡)  =  ∑ 𝑄𝑖𝑗
(𝑛)

𝑖,𝑗 (𝑡)Ⓢ (C + Pmj (t))                                                                                                              (32) 

Where j is any successive regenerative state to which the regenerative state i can transit through n 

transitions and and C = 1 if j is the state where the server does the job afresh, otherwise C = 0. 

 

Take LST of above equations solving for 𝐼0
∗∗(𝑠), 𝑅0

∗∗(𝑠), 𝑅𝑝0
∗∗(𝑠), 𝑃𝑚0

∗∗(𝑠) .The expected number of 

inspections, repairs, replacements, and preventive maintenance by the server is given by (per unit 

time) 

𝐼0(∞) = lim
𝑠→0

𝑠𝐼0
∗∗(𝑠) =

𝑁6

𝐷1
                                                                                                                                               (33) 

𝑅0(∞) = lim
𝑠→0

𝑠𝑅0
∗∗(𝑠) =

𝑁7

𝐷1
                                                                                                                                           (34) 

𝑅𝑝0(∞) = lim
𝑠→0

𝑠𝑅𝑝0
∗∗(𝑠) =

𝑁8

𝐷1
                                                                                                                                 (35) 

𝑃𝑚0(∞) = lim
𝑠→0

𝑠𝑃𝑚0
∗∗(𝑠) =

𝑁9

𝐷1
                                                                                                                             (36)                                                   

Where, 

𝑁6 = 𝐵, 𝑁7 = (𝑝11.49 + 𝑝15 + 𝑝17.6,13)𝐵, 𝑁8 = (𝑝11.4,10 + 𝑝1,14.6 + 𝑝13)𝐵, 

 𝑁7 = 𝑝02𝐴 + 𝐷 + 𝐸  and 𝐷1 is already mentioned.                                                                                                   (37) 

 

Here A, B, C, D & E are  

A = (1 − p3,14)(p15p50 + p70(p15p57.12 + p17.6,13)) + (p13 + p1,14.6)p30                                                                        (38) 

B = (1 − p3,14)(1 − p02p70)                                                                                                                             (39) 

C = (p13 + p1,14.6)(1 − p02p70)                                                                                                                                (40) 

D = (1 − p3,14)(p15 + p17.6,13 − p01p15p50 − p15p51.11) + p02p30(p13 + p1,14.6)                                            (41) 

E = (p13p3,14 + p1,14.6)(1 − p02p70)                                                                                                                                         (42) 

 

VI.  Profit Analysis 

 

In steady state the profit function of the system model can be obtained as  

P = k0A0 − k1B0
I − k2B0

R − k3B0
Rp

− k4B0
Pm − k5I0 − k6R0 − k7Rp0 − k8Pm0                                                    (43)   

Here, 

 P = Profit function of system model 
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𝑘0 = Revenue per unit up − time of the system 
𝑘1 , 𝑘2 , 𝑘3 , 𝑘4 =  Cost per unit time of the server when it is busy in  
                              inspection, repair, replacement, preventive maintenance  
𝑘5 , 𝑘6 , 𝑘7 , 𝑘8 = Cost per unit time for inspection, repair,  
                                 replacement, preventive maintenance 

  

V. Analytical Study of the Model 
 

In the present study concept of priority to PM over replacement with inspection is used. To see the 

applicability of this situation particular cases are taken for the included parameters like F(t) =∝

e−∝t, r(t) = βe−βt, h(t) = γe−γt , g(t) = θe−θt . Results are obtained in form of tables and graphs by 

taking random values for the given parameters. On the basis of these cases numerical and graphical 

results are obtained which shows the effect of these parameters on MTSF, Availability and Profit 

function of the system. From the obtained results we conclude that PM does not effect the MTSF and 

as the failure rate increases the availability and the profit of the system is decreases. When the repair 

activities rate is increases then availability and profit is also increases. From the results we obtained 

that the system is highly profitable if we increase the PM rate at the very first stage when failure rate 

is very low but as the failure rate increases the system get more profit by enhancing the inspection 

rate.  Tabular and graphical results are given below: 

 

Table 2: Values of MTSF w.r.t various parameters 

Failure 

rate 

α=2.1,β=2,a=0.6,b=0.4,

γ=1.3,α0=3 
α= 4.1 β=5 γ= 3 α0= 3.1 a= 0.4, b= 0.6 

0.1 0.33274 0.33275 0.33275 0.33279 0.32204 0.33274 

0.2 0.33113 0.33119 0.33119 0.33130 0.32056 0.33113 

0.3 0.32875 0.32887 0.32886 0.32908 0.31838 0.32875 

0.4 0.32577 0.32596 0.32594 0.32627 0.31563 0.32577 

0.5 0.32235 0.32260 0.32258 0.32302 0.31247 0.32234 

0.6 0.31859 0.31890 0.31887 0.31943 0.30899 0.31858 

0.7 0.31458 0.31495 0.31492 0.31558 0.30527 0.31457 

0.8 0.31040 0.31082 0.31079 0.31153 0.30138 0.31039 

0.9 0.30610 0.30657 0.30653 0.30736 0.29737 0.30609 

 

 
Figure 3: MTSF VS Failure Rate 
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Table 3: Values of Availability w.r.t various parameters 

Failure 

Rate 

α=2.1,β=2,a=0.

6,b=0.4,γ=1.3,

α0=3,θ=1.4 

α=4.1 β=5 a=0.4,b=0.6 γ=3 α0=3.1 θ=2 

0.1 0.53503 0.53911 0.54102 0.52635 0.55017 0.53213 0.56972 

0.2 0.45652 0.47175 0.46481 0.45459 0.48943 0.45348 0.48158 

0.3 0.42387 0.43952 0.43365 0.41815 0.46238 0.42072 0.45061 

0.4 0.39668 0.41256 0.40718 0.38870 0.43924 0.39350 0.42408 

0.5 0.37357 0.38955 0.38436 0.36427 0.41912 0.37041 0.40101 

0.6 0.35358 0.36960 0.36443 0.34357 0.40138 0.35048 0.38067 

0.7 0.33606 0.35206 0.34683 0.32572 0.38556 0.33303 0.36257 

0.8 0.32052 0.33647 0.33114 0.31012 0.37131 0.31758 0.34631 

0.9 0.30661 0.32248 0.31705 0.29630 0.35836 0.30376 0.33159 

 

 

 
Figure 4:  Availability VS Failure Rate 

 

 

Table 4: Values of Profit w.r.t various parameters 

 

0,25000

0,30000

0,35000

0,40000

0,45000

0,50000

0,55000

0,60000

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

A
V

a
il

a
b

il
it

y

Failure Rate

Availability Vs Failure Rate

α=2.1,β=2,a=0.6,b=0.4,γ=1.3,α0=3,θ=1.4
α=4.1
β=5
a=0.4,b=0.6
γ=3
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θ=2

Failure 

Rate 

α=2.1,β=2,a=0.

6,b=0.4,γ=1.3,

α0=3,θ=1.4 

α=4.1 β=5 a=0.4,b=0.6 γ=3 α0=3.1 θ=2 

0.1 7355.86 7416.93 7463.24 7208.33 7569.95 7312.12 7759.37 

0.2 6014.32 6239.56 6166.20 5957.81 6474.39 5970.56 6258.77 

0.3 5391.47 5618.42 5571.51 5271.16 5911.14 5347.74 5648.91 

0.4 4873.10 5098.06 5067.35 4713.77 5427.64 4830.27 5130.70 

0.5 4433.01 4653.80 4633.45 4249.77 5006.14 4391.57 4683.55 

0.6 4053.32 4268.64 4255.27 3855.69 4634.00 4013.52 4292.79 

0.7 3721.35 3930.44 3922.08 3515.48 4301.91 3683.31 3947.67 

0.8 3427.88 3630.28 3625.81 3217.79 4002.92 3391.63 3640.12 

0.9 3166.00 3361.48 3360.25 2954.37 3731.65 3131.53 3363.95 
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Figure 5: Profit VS Failure Rate 

 

VI. Discussion 

 
The performance of the system model for different values of failure and repair rates is shown by the 

table 2, table 3, and table 4 of MTSF, availability and profit analysis w.r.t. various parameters. Also, 

the behavior of the MTSF, availability and profit analysis depicted by figure 3, figure 4 and figure 5 

respectively.   

 

From the table 2 and figure 3 we conclude that the MTSF is decrease with the increase of the failure 

rate. If we fix all the parameters and change the value of repair rate α=4.1, replacement rate β=5 and 

inspection rate γ=3 one by one the MTSF is increase. And the MTSF is decrease if the preventive 

maintenance is increase by α0 = 3.1 and the other parameters are fixed.  

 

From the table 3 and figure 4 we analyze the availability of the system. By fixing all the parameters 

and changing in other parameter one by one we found that availability is increase in we change in 

α=4.1, replacement rate β=5, inspection rate γ=3 and preventive maintenance rate θ=2. The 

availability is decline with the increase of preventive maintenance by α0 = 3.1 and inter change the 

repair and replacement rate (a=0.4 and b=0.6).  

 

From the table 4 and figure 5 we conclude that profit of the function is decrease by increasing the 

preventive maintenance by α0 = 3.1 and inter change the repair and replacement rate (a=0.4 and b=0.6) 

one by one with the fixed of all other parameters. If we change in α=4.1, replacement rate β=5, 

inspection rate γ=3 and preventive maintenance rate θ=2 found that profit of the system model is 

enhance as compared to the fixed values of all parameters. 
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Abstract 

 

In real-life decisions, usually we happen to suffer through different states of uncertainties. In order 

to counter these uncertainties, in this paper, the author formulated a transportation problem in 

which availability, demand and costs are mixed terms of real, triangular intuitionistic fuzzy 

numbers. In this paper, a simple method for solving type-3 intuitionistic fuzzy transportation is 

applied. So, the proposed method gives the optimal solution directly. The solution procedure is 

illustrated with the help of numerical examples. 

 

Keywords: IFN, TIFN, IFTP of type - 3, Optimum Solution. 

 

 

1. Introduction 

 

The fuzzy set (FS) hypothesis was at first developed by [9] is useful from numerous points of view 

in various applications in different fields. The idea fuzzy numerical writing computer programs 

was created by Tanaka et al in 1947 outlining of fuzzy choice of [2]. Idea of Intuitionistic fuzzy sets 

(IFS's) recommended by [1] are chiefly valuable to manage numerous exemptions, disarray and 

ambiguities. The IFS's different the force of enrollment (MF) and the power of non-participation 

(NMF) of a component in the set. Uncertainties' assistance leader to concur the power of 

satisfaction, force of non-satisfaction and power of vulnerability for transfer and furthermore help 

to make determinant at stronghold degree of endorsement and non-endorsement for 

transportation cost (TC) in any transportation issue (TP). Also, without a doubt coming to dynamic 

issues IFS turned into an extreme technique which is for the most part closable. In like manner, its 

boss to use IFS diverged from FS to adapt to issues which our own dynamic or unworthiness. In 
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[6], investigate a general report on TP in fuzzy climate. Along these lines, IFS's are utilized by 

numerous creators for various ideal issues. [3] presented math activities of IFS's. Various analysts 

are likewise chipped away at and with IFS’s. PSK method for solving mixed and type-4 

intuitionistic fuzzy transportation issue (IFTP) was introduced by [8] which limit, requests and cost 

are availability, demand and costs are mixed terms of real, triangular intuitionistic fuzzy numbers 

and an algorithmic methodology for tackling IFTP was introduced [4]. By utilizing [8] paper in this 

article we address mathematical model. [7] Presented another positioning capacity utilizing 

centroid of centroids of IFN's.  

In this article, we will acquaint another transportation strategy with acquire an ideal arrangement 

in an IFTP. For the new transportation method mathematical model is tackled. Plinth of article is 

managed: Section 2 quintessence goal, Section 3 gives Ranking capacity, Section 4 arrangements 

goal of IFTP of type-3 and computational system, region 5 consists Numerical model, at long last 

conclusion given in region 6. 

 

2. Preliminaries 
 

In this part a couple of essential definitions and math tasks are examined. 

Intuitionistic Fuzzy Set (IFS): An IFS 𝐴
~𝐼𝐹𝑆

 in X an IFS is described as an object of following design 

𝐴
~𝐼𝐹𝑆

= { 〈𝑥, 𝜇
𝐴
~𝐼𝐹𝑆(𝑥), 𝜈

𝐴
~𝐼𝐹𝑆(𝑥)〉 : 𝑥 ∈ 𝑋 } 

where the functions𝜇
𝐴
~𝐼𝐹𝑆  :  𝑋 → [0,  1] and 𝜈

𝐴
~𝐼𝐹𝑆 :  𝑋 → [0,  1] defines degree of Enrollment work and 

non-participation element𝑥 ∈ 𝑋, respectively and   0 ≤ 𝜇
𝐴
~
𝐼𝐹𝑆(𝑥), 𝜈𝐴

~
𝐼𝐹𝑆(𝑥) ≤ 1, for every  𝑥 ∈ 𝑋. 

Intuitionistic Fuzzy Numbers (IFN’s): A subset of IFS, 𝐴
~𝐼𝐹𝑆

= { 〈𝑥, 𝜇
𝐴
~𝐼𝐹𝑆(𝑥), 𝜈

𝐴
~𝐼𝐹𝑆(𝑥)〉 : 𝑥 ∈ 𝑋 }, of real 

line ℜ is called an IFN if the following holds: 

 (i) ∃𝑚 ∈ ℜ, 𝜇
𝐴
~
𝐼𝐹𝑆(𝑚)  = 1 𝑎𝑛𝑑  𝜈

𝐴
~
𝐼𝐹𝑆(𝑚)  = 0 

(ii)𝜇
𝐴
~𝐼𝐹𝑆  :  ℜ → [0,  1]is continuous and for every  𝑥 ∈ ℜ, 0 ≤ 𝜇

𝐴
~
𝐼𝐹𝑆(𝑥), 𝜈𝐴

~
𝐼𝐹𝑆(𝑥) ≤ 1 holds.  

Enrollment work and non-participation capacity of 𝐴̃
𝐼𝐹𝑆

 is as follows, 

𝜇
𝐴
~𝐼𝐹𝑆(𝑥)   =

{
 

 
𝑓
1
(𝑥),   𝑥 ∈ [𝑚 − 𝛼1, 𝑚)

1,            𝑥 = 𝑚

ℎ1(𝑥),   𝑥 ∈ (𝑚,𝑚 + 𝛽
1
]

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      and  𝜈
𝐴
~𝐼𝐹𝑆(𝑥)   =

{
 

 
1,              𝑥 ∈ (−∞,𝑚 − 𝛼2)

𝑓
2
(𝑥),    𝑥 ∈ [𝑚 − 𝛼2, 𝑚)

0,             𝑥 = 𝑚, 𝑥 ∈ [𝑚 + 𝛽
2
, ∞)

ℎ2(𝑥),    𝑥 ∈ (𝑚,𝑚 + 𝛽
2
]

 

Where 𝑓
𝑖
(𝑥)and ℎ𝑖(𝑥);  𝑖 = 1,2 are strictly increasing and decreasing functions in [𝑚 − 𝛼𝑖 , 𝑚)  and 

(𝑚,𝑚 − 𝛽𝑖] respectively. i and i are left and right spreads of 𝜇
𝐴
~𝐼𝐹𝑆(𝑥)and 𝜈

𝐴
~𝐼𝐹𝑆(𝑥) respectively. 

Triangular Intuitionistic Fuzzy Number (TIFN): A TIFN 𝐴
~𝐼𝐹𝑁

is an IFS in with the following 

Enrollment function 𝜇
𝐴
~𝐼𝐹𝑁and non-participation capacity 𝜈

𝐴
~𝐼𝐹𝑁defined by 

                  𝜇
𝐴̃
𝐼𝐹𝑆 =

{
 
 

 
 

0,                 𝑥 < 𝑎1
𝑥−𝑎1

𝑎2−𝑎1
 , 𝑎1 ≤ 𝑥 ≤ 𝑎2

1,               𝑥 = 𝑎2
𝑎3−𝑥

𝑎3−𝑎2
 ,     𝑎2 ≤ 𝑥 ≤ 𝑎3

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and       𝜈
𝐴̃
𝐼𝐹𝑆 =

{
  
 

  
 

1,              𝑥 < 𝑎1
′

𝑎1
′ −𝑥

𝑎2−𝑎1
′  , 𝑎1

′ ≤ 𝑥 ≤ 𝑎2

0,               𝑥 = 𝑎2
𝑥− 𝑎2

𝑎3
′ −𝑎2

 ,     𝑎2 ≤ 𝑥 ≤ 𝑎3
′

1,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑎′1 ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎′3.This TIFN is denoted by 𝐴
~𝐼𝐹𝑁

= (𝑎1, 𝑎2 , 𝑎3; 𝑎
′
1, 𝑎2, 𝑎

′
3) in   Figure 1. 
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Figure 1: Participation and non-enrollment elements of TIFN 

 

Arithmetic operations of TIFN:  

For any two TIFN’s 𝐴
~𝐼𝐹𝑁

= (𝑎1, 𝑎2, 𝑎3; 𝑎
′
1, 𝑎2, 𝑎

′
3)and𝐵

~𝐼𝐹𝑁

= (𝑏1, 𝑏2, 𝑏3; 𝑏
′
1, 𝑏2, 𝑏

′
3), arithmetic 

operations are as follows, 

(i) Addition:𝐴
~𝐼𝐹𝑁

⊕𝐵
~𝐼𝐹𝑁

= (𝑎1 + 𝑏1, 𝑎2 + 𝑏2,, 𝑎3 + 𝑏3; 𝑎
′
1 + 𝑏

′
1, 𝑎2 + 𝑏2, 𝑎

′
3 + 𝑏

′
3) 

(ii) Subtraction: 𝐴
~𝐼𝐹𝑁

− 𝐵
~𝐼𝐹𝑁

= (𝑎1 − 𝑏3, 𝑎2 − 𝑏2,, 𝑎3 − 𝑏1; 𝑎
′
1 − 𝑏

′
3, 𝑎2 − 𝑏2, 𝑎

′
3 − 𝑏

′
1) 

(iii) Multiplication: 𝐴
~𝐼𝐹𝑁

⊗𝐵
~𝐼𝐹𝑁

= (𝑎1𝑏1, 𝑎2𝑏2,, 𝑎3𝑏3; 𝑎
′
1𝑏

′
1, 𝑎2𝑏2, 𝑎

′
3𝑏

′
3) 

(iv) Scalar multiplication: 𝑘 × 𝐴
~
𝐼𝐹𝑁 = {

(𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3; 𝑘𝑎
′
1, 𝑘𝑎2, 𝑘𝑎

′
3), 𝑘 ≥ 0

(𝑘𝑎3, 𝑘𝑎2, 𝑘𝑎1; 𝑘𝑎
′
3, 𝑘𝑎2, 𝑘𝑎

′
1), 𝑘 < 0

 

 

3. Ranking Function 

 
Ranking function is taken from [7], i.e., the ranking function is defined [7], for Trapezoidal and 

triangular Intuitionistic fuzzy number as 

𝑅(𝐴̃𝐼𝐹𝑁) = (
𝑎1 + 𝑏1 + 2(𝑎2 + 𝑏3) + 5(𝑎3 + 𝑏2) + (𝑎4 + 𝑏4)

18
) (
4𝑤1 + 5𝑤2

18
)

 
𝑅(𝐴̃𝐼𝐹𝑁) = (

(𝑎1 + 𝑏1) + 14𝑎2 + (𝑎4 + 𝑏4)

18
) (
4𝑤1 + 5𝑤2

18
) 

Consider 𝑤1 = 𝑤2 = 1, we get ranking function is   

𝑅(𝐴̃𝐼𝐹𝑁) = (
(𝑎1 + 𝑏1) + 14𝑎2 + (𝑎4 + 𝑏4)

36
) 

Comparison of TIFN’s: To differentiate TIFN's and each other, we need to rank them. A capacity 

like R: F(R) →R, which maps each TIFN’s into real line, is called positioning capacity. Here, 

𝐹(ℜ)means the arrangement of all TIFN’s. 

By using ranking function" "R , TIFN’s can be compared. Let  𝐴
~𝐼𝐹𝑁

= (𝑎1, 𝑎2, 𝑎3; 𝑎
′
1, 𝑎2, 𝑎

′
3) and 

𝐵
~𝐼𝐹𝑁

= (𝑏1, 𝑏2, 𝑏3; 𝑏
′
1, 𝑏2, 𝑏

′
3)are two TIFN’s thenR (𝐴

~
𝐼𝐹𝑁) =

𝑎1+14𝑎2+𝑎3+𝑎
′
1+𝑎

′
3

36
and 

R (𝐵
~
𝐼𝐹𝑁) =

𝑏1+14𝑏2+𝑏3+𝑏
′
1+𝑏

′
3

36
then the orders are defined as follows 

(i) 𝐴
~𝐼𝐹𝑁

> 𝐵
~𝐼𝐹𝑁

  if R (𝐴
~𝐼𝐹𝑁

) > 𝑅 (𝐵
~𝐼𝐹𝑁

) ,   

(ii) 𝐴
~𝐼𝐹𝑁

< 𝐵
~𝐼𝐹𝑁

  if R (𝐴
~𝐼𝐹𝑁

) < 𝑅 (𝐵
~𝐼𝐹𝑁

)   , and                               

(iii) 𝐴
~𝐼𝐹𝑁

= 𝐵
~𝐼𝐹𝑁

  if R (𝐴
~𝐼𝐹𝑁

) = R (𝐵
~𝐼𝐹𝑁

) 

Ranking function R also holds the following properties: 

(i)  R (𝐴
~𝐼𝐹𝑁

) + R (𝐵
~𝐼𝐹𝑁

) =  R (𝐴
~𝐼𝐹𝑁

+ 𝐵
~𝐼𝐹𝑁

), (ii)  R (k𝐴
~𝐼𝐹𝑁

) = k R (𝐴
~𝐼𝐹𝑁

) ∀k ∈ 𝑹 
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4. Mathematical Formulation of Triangular Intuitionistic Fuzzy transportation 

problem (TIFTP) of Type - III and proposed method 

4.1. TIFTP of type - III 

Consider Examine a TP with ‘m’ vendors and ‘n’ insistent. ijc is value of transiting one module of 

outcome from thi vendor to 
thj  insistent.  

1 2 3 1 2 3( , , ; , , )IFN i i i i i i

ia a a a a a a
 

= be IF extent at thi vendor. 

1 2 3 1 2 3( , , ; , , )IFN i i i i i i

jb b b b b b b
 

= be IF abundant at
thj insistent.  

1 2 3 1 2 3( , , ; , , )IFN ij ij ij i j ij i j

ijx x x x x x x
   

= be IF quantity transformed from  thi  vendor to 𝑗𝑡ℎ insistent  

Then balanced IFTP of type - III is given by 

1 1

1

1

. . , 1, 2,...,

, 1, 2,...,

0; 1,2,..., ; 1, 2,...,

m n
IFN IFN

ij ij

i j

n IFN IFN

ij ij

m IFN IFN

ij ji

IFN

ij

MinZ c x

s t x a i m

x b j n

x i m j n

= =

=

=

= 

= =

= =

 = =






 

The TP is termed as type – III TIFTP having availability, demand and costs are mixed terms real, 

fuzzy and TIFN’s. To find optimum solution TIFTP of type – III, we are using the following 

transportation strategy. 

 

4.2. Proposed Transportation strategy (Used in [5]) 
 

Stage 1: In the given transportation problem calculate the differences between maximum and 

minimum cost for each row and column. 

Stage 2: Find sum of row difference and column difference and denote row sum by R and column 

sum by C. Identify Maximum sum of row and column. Select maximum difference in row and 

column. 

Stage 3: Choose cell having most minimal expense in row and column identified in stage 2. 

Stage 4: Make a feasible assignment to cell picked in stage 5. Delete fulfilled row/column. 

Stage 5: Repeat technique until all the designations has been made. 

Stage 6: The Optimum solution and triangular intuitionistic optimum value is attained in step 5, is 

optimum solution {𝑥𝑖𝑗} and triangular intuitionistic fuzzy optimum value is∑ ∑ 𝑐𝑖𝑗⨂𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 . 

 

5. Numerical Example 
 

Example for TIFTP of type – III: In this province, subsist numerical example ([8]) is solved by using 

above transportation strategy. Consider the 3×3TIFTP of type – III 

Table 1: TIFTP of Type - III 
 

𝑫𝟏 𝑫𝟐 𝑫𝟑 
𝑺𝒖𝒑𝒑𝒍𝒚(

IFN

ia ) 

𝑶𝟏 (8,10,12; 
6,10,14) 

4 (10,15,20) (4,6,8; 3,6,9) 

𝑶𝟐 3 (6,12,18) (4,6,8; 
2,6,10) 

8 

𝑶𝟑 (4,8,12) (3,4,5; 
1,4,6) 

6 (2,5,8) 

𝑫𝒆𝒎𝒂𝒏𝒅
IFN

jb  
 

(3,4,5) (2,6,10; 
1,6,11) 

9  
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The above TIFTP of type – III table can be rewrite as 

 

Table 2: Modified TIFTP of Type - III 

Here, we have 

(4,6,8;3,6,9) (8,8,8;8,8,8) (2,5,8;2,5,8)

(3,4,5;3,4,5) (2,6,10,1,6,11) (9,9,9;9,9,9) (14,19,24;13,19,25).

  =

  =

Accordingly, problem is balanced. Beyond comparison, foregoing IFN’s encounter ranking 

functional values of
IFN

ia ’s, 
IFN

jb ’s and costs as under:  

1 2 3

1 2 3

11 12 13

21 12 13

31 32 13

( ) 3, ( ) 4, ( ) 2.5,

( ) 2, ( ) 3, ( ) 4.5,

(c ) 5, (c ) 2, (c ) 8,

(c ) 2, (c ) 6, (c ) 3,

(c ) 4, (c ) 2, (c ) 3.

IFN IFN IFN

IFN IFN IFN

IFN IFN IFN

IFN IFN IFN

IFN IFN IFN

R a R a R a

R b R b R b

R R R

R R R

R R R

= = =

= = =

= = =

= = =

= = =  
 

Table 3: Row and Column difference table 

The problem given in Table 3, transformed in Table 4 by using the Stage 2 and assign first 

allocation using stage 4 of proposed method. 

 

 

 

 

  

 
𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑺𝒖𝒑𝒑𝒍𝒚 

IFN

ia  

𝑶𝟏 (8,10,12; 
6,10,14 

(4,4,4; 
4,4,4) 

(10,15,20; 
10,15,20) 

(4,6,8; 
3,6,9) 

𝑶𝟐 (3,3,3; 

3,3,3) 

(6,12,18; 
6,12,18) 

(4,6,8; 
2,6,10) 

(8,8,8; 
8,8,8) 

𝑶𝟑 (4,8,12; 
4,8,12 

(3,4,5; 
1,4,6) 

(6,6,6; 
6,6,6) 

(2,5,8; 
2,5,8) 

𝑫𝒆𝒎𝒂𝒏𝒅 
IFN

jb  

(3,4,5; 
3,4,5) 

(2,6,10; 
1,6,11) 

(9,9,9; 
9,9,9) 

 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑺𝒖𝒑𝒑𝒍𝒚 

(
IFN

ia ) 

𝑹𝒐𝒘 
𝑫𝒊𝒇𝒇 

𝑶𝟏 (8,10,12; 
6,10,14) 

(4,4,4; 
4,4,4) 

(10,15,20; 
10,15,20) 

(4,6,8; 
3,6,9) 

6 

𝑶𝟐 (3,3,3; 
3,3,3) 

(6,12,18; 
6,12,18) 

(4,6,8; 
2,6,10) 

(8,8,8; 
8,8,8) 

4 

𝑶𝟑 (4,8,12; 
4,8,12) 

(3,4,5; 
1,4,6) 

(6,6,6; 
6,6,6) 

(2,5,8; 
2,5,8) 

2 

𝑫𝒆𝒎𝒂𝒏𝒅 

( )IFN

jb  

(3,4,5; 
  3,4,5) 

(2,6,10; 
1,6,11) 

(9,9,9; 
9,9,9) 

 
𝑅 = 12 

      

𝑪𝒐𝒍. 𝒅𝒊𝒇𝒇 3 4 5 𝐶 = 12  
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Table 4: First Allocation Table 

Using stage 4 of proposed method remove 
1S  from Table 4. New reduced shown in Table 5 again 

apply the proposed procedure. 

Table 5: New Reduced Table 

Table 6: Second Allocation table 

 

Again, applying Stage 5 of proposed strategy, all allocations are made as shown in Table 7.  

 

  

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑺𝒖𝒑𝒑𝒍𝒚 

( )IFN

ia  

𝑹𝒐𝒘 
𝒅𝒊𝒇𝒇 

𝑶𝟏 (8,10,12; 
6,10,14) 

(4,4,4; 
4,4,4) 

 

(10,15,20; 
10,15,20) 

(4,6,8; 
3,6,9) 

0 

𝟔 

 

𝑶𝟐 

 

(3,3,3; 
3,3,3) 

 

(6,12,18; 
6,12,18) 

 

(4,6,8; 
2,6,10) 

 

(8,8,8; 
8,8,8) 

 

4 

      

𝑶𝟑 (4,8,12; 
4,8,12) 

(3,4,5; 
1,4,6 

(6,6,6; 
6,6,6) 

(2,5,8; 
2,5,8) 

2 

𝑫𝒆𝒎𝒂𝒏𝒅 

( )IFN

jb  

(3,4,5; 
3,4,5) 

(2,6,10; 
1,6,11) 

(-6,0,6;       

-8,0,8) 

(9,9,9; 
9,9,9) 

 
 

𝑹 = 𝟏𝟐 

𝑪𝒐𝒍. 𝒅𝒊𝒇𝒇 3 4 5 𝐶 = 12  

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑺𝒖𝒑𝒑𝒍𝒚 

( )IFN

ia
 

𝑹𝒐𝒘 
𝑫𝒊𝒇𝒇 

𝑶𝟐 (3,3,3; 

3,3,3) 

(6,12,18; 
6,12,18) 

(4,6,8; 
2,6,10) 

(8,8,8; 
8,8,8) 

4 

𝑶𝟑 (4,8,12; 
4,8,12) 

(3,4,5; 
1,4,6) 

(6,6,6; 
6,6,6) 

(2,5,8; 
2,5,8) 

2 

𝑫𝒆𝒎𝒂𝒏𝒅 

( )IFN

jb
 

(3,4,5; 
3,4,5) 

(−6,0,6;  
−8,0,8) 

(9,9,9; 
9,9,9) 

 

 
𝑅 = 6 

𝑪𝒐𝒍. 𝒅𝒊𝒇𝒇 2 4 0 𝑪 = 𝟔  

 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑺𝒖𝒑𝒑𝒍𝒚 

( )IFN

ia
 

𝑹𝒐𝒘 
𝑫𝒊𝒇𝒇 

𝑶𝟐 (3,3,3; 
3,3,3) 

(6,12,18; 
6,12,18) 

(4,6,8; 
2,6,10) 

(8,8,8; 
8,8,8) 

4 

𝑶𝟑 (4,8,12; 
4,8,12) 

(3,4,5; 
1,4,6) 

 

 

(6,6,6; 
6,6,6) 

(2,5,8; 
2,5,8) 

(−4,5,14; 
−6,5,16) 

2 

 

 

𝑫𝒆𝒎𝒂𝒏𝒅 

( )IFN

jb
 

(3,4,5; 
3,4,5) 

(−6,0,6;  
−8,0,8) 

0 

(9,9,9; 
9,9,9) 

 
𝑅 = 6 

𝑪𝒐𝒍. 𝒅𝒊𝒇𝒇 2 4 0 𝑪 = 𝟔  

(−𝟔, 𝟎, 𝟔;−𝟖, 𝟎, 𝟖) 

(𝟒, 𝟔, 𝟖; 𝟑, 𝟔, 𝟗) 
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Table 7: Final allocation table 

IF optimum solution in terms of TIFN’s: 

12 21 23

32 33

(4,6,8;3,6,9), (3,4,5;3,4,5), (3,4,5;3,4,5),

( 6,0,6; 8,0,8), (4,5,6;4,5,6).

IFN IFN IFN

IFN IFN

x x x

x x

= = =

= − − =

 

Hence, total TIFTP of type – 3 optimum cost = (41,90,139;  21,90,159). 

 

6. Conclusion 

 
In this article, a new method has evolved which provides the opportunity to find the optimal 

objective value of the TIFTP of Type 3in terms of mixed intuitionistic fuzzy numbers. Based on 

current examination, it very well may be presumed that it is much simple to apply proposed 

strategy when contrasted with existing techniques [7], for tracking down the ideal optimum 

solution of TIFTP of type – III. Consequently, it is smarter to utilize the proposed technique rather 

than existing strategies for tackling TIFTP of type – III. 
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𝑶𝟏  (𝟒, 𝟔, 𝟖; 

𝟑, 𝟔, 𝟗) 
 (4,6,8; 

3,6,9) 

𝑶𝟐 (𝟑, 𝟒, 𝟓; 
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𝑫𝒆𝒎𝒂𝒏𝒅 
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3,4,5) 

(2,6,10; 
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9,9,9) 
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Abstract 

The roles of heavy – tailed distribution in modelling real life events, especially in financial and actuarial sciences, 

cannot be over – emphasized. In this paper, a new heavy right – tailed, three – parameter continuous distribution 

with increasing hazard rate called Zech distribution is developed. The proposed model is very suitable for 

modelling heavy right- tailed data.  Zech distribution is the reciprocal of the random variable which follows 

Gompertz- Inverse – Exponential (GoIE) distribution and it does not involve addition of extra parameter, thereby 

removing the cumbersomeness in the estimation process posed by other methods involving additional extra 

parameters, especially where more than three parameters are involved. The statistical properties of the new 

distribution such as survival function, hazard function, cumulative hazard function, reversed hazard function, 

quantile function, order statistics, moments, mean, median, variance, skewness, and kurtosis were derived. The 

Linear representation of the pdf of the newly developed distribution revealed that its probability density function 

is a weighted exponential distribution. Also, method of maximum likelihood was used in estimating the model’s 

parameters. The simulation results revealed that as the sample sizes increased, the root mean squared errors 

decreased which showed that the parameters of Zech distribution are stable. The proposed distribution was applied 

to two real life data sets. The results showed that Zech distribution performs better than Gompertz Inverse 

Exponential distribution, Weibull Exponential distribution and Gompertz Exponential distribution.  

Keywords: Zech distribution, Gompertz Inverse Exponential Distribution, maximum likelihood 

estimation, simulation studies, moments, linear representation. 

 

1. Introduction 
 

Probability distributions play a crucial role in modelling naturally occurring phenomena. In probability theory 

and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. To model real 

life events, there is need for the extension of the classical forms of distributions so as to have a better fit to the 

real data. Several methods of extending distributions have been proposed in the literature. Among these is 

‘Inverse Distribution’ which does not increase the number of parameter(s) of the parent distribution but 

provides a better fit. This is a strong motivation for studying inverse distribution as prescribed by the principle 

of parsimony. Eliwa [12] proposed Inverse Gompertz distribution which was found to out – perform other six 

competing distributions. The Gompertz Inverse Exponential distribution proposed by Pelumi [5] is good for 

74
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modelling right – tailed data. Said [13] introduced Extended Inverse Weibull distribution whose density 

function can be expressed as a linear combination of the Inverse Weibull densities with increasing and 

decreasing hazard rates. Ogunsanya [11] developed Weibull Inverse Rayleigh distribution which is an 

extension of a one – parameter Inverse Rayleigh distribution that incorporated a transformation of the Weibull 

distribution and Log – logistic distribution as quantile functions. El – Gohari A [2] proposed Generalized 

Gompertz distribution which is a new generalization of the Exponential, Gompertz and Generalized 

Exponential distributions. The main advantage of this new distribution is that it has increasing or constant or 

decreasing or bathtub curve failure rate depending upon the shape parameter. It is this property that makes it 

suitable for survival analysis. Adewara [3] introduced Gompertz Exponential distribution which is an 

extension of Exponential distribution by using the Gompertz Generalized family of distributions proposed by 

Morad [4]. To increase the flexibility of Gompertz Exponential distribution, an extra shape parameter was 

added to it leading to the introduction of Exponentiated Gompertz Exponential distribution by Adewara [8]. 

      The motivation for this study is to derive a distribution which will be more flexible for modelling heavy 

right – tailed data and to obtain interesting properties of the new model. Therefore, the inverse of ‘Gompertz 

Inverse Exponential distribution’, which will henceforth be called Zech distribution is proposed.  The adoption of 

the name ‘Zech distribution’ is to avoid the confusion which might arise from using the name: Inverse 

Gompertz Inverse Exponential Distribution. 

      Given the cumulative distribution function (cdf) of a random variable Y, the distribution function of a 

random variable 𝑋 =
1

𝑌
  is the reciprocal or inverse of the random variable Y. This implies that the cumulative 

distribution function 𝐺(𝑥) is the inverse function of 𝐹(𝑦). This is easier if Y is a continuous random variable 

and 𝐹(𝑦) is strictly on positive supports. The cumulative distribution function of inverse distribution is derived 

according to the method below: 

          𝐺𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)  

             = 𝑃 (
1

𝑌
 ≤ 𝑋)  

             = 𝑃 (𝑥 ≥
1

𝑌
)  

              = 1 − 𝑃 (𝑥 ≤
1

𝑌
)  

              = 1 − 𝐹 (
1

𝑌
)                                                                                                                                                                               (1)  

The cumulative distribution function (cdf) and probability density function (pdf) of Gompertz Inverse 

Exponential distribution are given in equations (2) and (3) respectively. 

𝐹(𝑦) = 1 − 𝑒

𝛼

𝛽
{1−[1−𝑒

−
𝜃
𝑦]

−𝛽

}

   ; 𝑦 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                                                         (2)  

𝑓(𝑦) = 𝛼
𝜃

𝑦2 𝑒
−

𝜃

𝑦 [1 − 𝑒
−

𝜃

𝑦]
−𝛽−1

𝑒

𝛼

𝛽
{1−[1−𝑒

−
𝜃
𝑦]

−𝛽

}

 ;  𝑦 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                      (3)  

 

II. Zech Distribution 
 

The Zech distribution is the reciprocal of Gompertz Inverse Exponential distribution. The cumulative 

distribution function of Zech distribution is stated in the following theorem. 

Theorem 1: If a non – negative random variable 𝑌 follows the Gompertz inverse Exponential distribution 

expressed as Y~GIE(𝑦; 𝛼, 𝜃, 𝛽). Assuming a new random variable 𝑋 =
1

𝑦
  is defined, then the random variable 𝑋 

follows Zech distribution, written as X~Zech(𝑥; 𝜃, 𝛼, 𝛽) with the cdf in equation (4). 

𝐺(𝑥) = 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
   ;   𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                                                              (4)  

Proof: 
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From equation (1), 𝐺(𝑥) = 1 − 𝐹 (
1

𝑦
) 

           𝐺(𝑥) = 1 − [1 − 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
]  

          𝐺(𝑥) = 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
        

 

The result of the first derivative, with respect to x, of equation (4) is the probability density function of Zech 

distribution given by (5).  

𝑔(𝑥) = 𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
;     𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                     (5) 

 

 
                Figure 1: CDF Plots of Zech distribution.                                              Figure 2: PDF Plots of Zech distribution. 

 
Figures 1 and 2 iillustrate some of possible shapes of the cumulative density function and probability density 

function respectively of Zech distribution. 

 

III. Estimation of Parameters 
 

The method of Maximum likelihood is used to estimate the parameters of Zech distribution. 

Assuming each of the random samples 𝑥1 , 𝑥2 , .  .  .  , 𝑥𝑛 follows the pdf of Zech distribution, the likelihood 

function is given by 

𝐿(𝑥1 , 𝑥2 , .  .  .  , 𝑥𝑛; 𝛼, 𝛽, 𝜃) = ∏ {𝛼𝜃𝑒−𝜃𝑥𝑖[1 − 𝑒−𝜃𝑥𝑖]
−𝛽−1

𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥𝑖]

−𝛽
}
}

𝑛

𝑖=1

                                                                    (6) 

Let 𝑙 denote the log-likelihood function, that is, let  

𝑙 = 𝑙𝑜𝑔 𝐿(𝑥1 , 𝑥2 , .  .  .  , 𝑥𝑛; 𝛼, 𝛽, 𝜃)                                                                                                                                                    (7) 

𝑙 = 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝜃 − 𝜃 ∑ 𝑥𝑖

𝑛

𝑖=1

− (𝛽 + 1) ∑ log(1 − 𝑒−𝜃𝑥)

𝑛

𝑖=1

+
𝛼

𝛽
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
}

𝑛

𝑖=1

                                               (8) 

The solutions of simultaneous equations obtained from
𝑑𝑙

𝑑𝛼
= 0 ,

𝑑𝑙

𝑑𝛽
= 0 𝑎𝑛𝑑

𝑑𝑙

𝑑𝜃
= 0 are the maximum likelihood 

estimates of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜃. Thus, 
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𝑑𝑙

𝑑𝛼
=

𝑛

𝛼
+

1

𝛽
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
}                                                                                                                                                (9)

𝑛

𝑖=1

 

𝑑𝑙

𝑑𝛽
=

𝛼

𝛽
∑ {[1 − 𝑒−𝜃𝑥𝑖]

−𝛽
ln(1 − 𝑒−𝜃𝑥𝑖)} −

𝛼

𝛽2
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
} − ∑ ln(1 − 𝑒−𝜃𝑥𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1   

− 
𝛼

𝛽2
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
}                                                                                                                                                        (10)𝑛

𝑖=1     

𝑑𝑙

𝑑𝜃
=

𝑛

𝜃
+ ∑ 𝑥𝑖

𝑛
𝑖=1 − (𝛽 + 1) ∑ (𝑥𝑖𝑒

−𝜃𝑥𝑖)(1 − 𝑒−𝜃𝑥𝑖)
−1

+ 𝛼 ∑ 𝑥𝑖𝑒
−𝜃𝑥𝑖(1 − 𝑒−𝜃𝑥𝑖)

−𝛽−1𝑛
𝑖=1

𝑛
𝑖=1                                          (11)  

Equating  
𝑑𝑙

𝑑𝛼
= 0 ,

𝑑𝑙

𝑑𝛽
= 0 𝑎𝑛𝑑

𝑑𝑙

𝑑𝜃
= 0, we have 

𝑛

𝛼
+

1

𝛽
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
}   = 0                                                                                                                                              (12)𝑛

𝑖=1   

 
𝛼

𝛽
∑ {[1 − 𝑒−𝜃𝑥𝑖]

−𝛽
ln(1 − 𝑒−𝜃𝑥𝑖)} −

𝛼

𝛽2
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
} − ∑ ln(1 − 𝑒−𝜃𝑥𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1                  

− 
𝛼

𝛽2
∑ {1 − [1 − 𝑒−𝜃𝑥𝑖]

−𝛽
}𝑛

𝑖=1 = 0                                                                                                                                                (13)  

 
𝑛

𝜃
+ ∑ 𝑥𝑖

𝑛
𝑖=1 − (𝛽 + 1) ∑ (𝑥𝑖𝑒−𝜃𝑥𝑖)(1 − 𝑒−𝜃𝑥𝑖)

−1
+ 𝛼 ∑ 𝑥𝑖𝑒−𝜃𝑥𝑖(1 − 𝑒−𝜃𝑥𝑖)

−𝛽−1𝑛
𝑖=1

𝑛
𝑖=1 = 0                                            (14)  

The Maximum likelihood estimate for parameter 𝛼 can be obtained from (12) in the form below for a given 𝛽 

and 𝜃 

𝛼̂ =
−𝑛𝛽

∑ {1−[1−𝑒−𝜃𝑥𝑖]
−𝛽

}𝑛
𝑖=1

                                                                                                                                                                       (15)  

To obtain the MLE of 𝛽 and 𝜃, equation (15) can be substituted into equations (13) and (14). The resulting 

system of non – linear equations can be solved numerically. 

 

IV. Linear Representation 
 

Theorem 2: The pdf of Zech distribution is a weighted function of an exponential distribution with rate 

parameter 𝜃(1 + 𝑖). 

 Proof. 

𝑔(𝑥) = 𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
                                                                              

Using the exponential expansion  

𝑒𝑥 = ∑
𝑥𝑘

𝑘!

∞
𝑘=0                                                                                                                                                                                         (16)    

𝑔(𝑥) = 𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

∑ {1 − [1 − 𝑒−𝜃𝑥]
−𝛽

}
𝑘

∞

𝑘=0

𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘

                                                                                             (17) 

From the mixture representation, 

(1 − 𝑧)𝑘 = ∑
Γ(k + j)

Γ(𝑘)𝑗!
𝑧𝑗(−1)𝑗

∞

𝑗=0

                                                                                                                                                     (18) 

{1 − [1 − 𝑒−𝜃𝑥]
−𝛽

}
𝑘

= ∑(−1)𝑗

∞

𝑗=0

Γ(k + 1)

Γ(𝑘)𝑗!
[1 − 𝑒−𝜃𝑥]

−𝛽𝑗
                                                                                                       (19) 

Inserting equation (18) into (16), we have 

𝑔(𝑥) = ∑ ∑
Γ(k + j)

Γ(𝑘)𝑗!
(−1)𝑗

𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘

𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽𝑗

[1 − 𝑒−𝜃𝑥]
−𝛽−1

∞

𝑗=0

∞

𝑘=0

                                                                       (20) 

Simplifying, [1 − 𝑒−𝜃𝑥]
−𝛽𝑗

[1 − 𝑒−𝜃𝑥]
−𝛽−1

= [1 − 𝑒−𝜃𝑥]
−[𝛽(𝑗+1)+1]

                                                                                   (21) 

Inserting equation (20) into equation (19), we have 
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𝑔(𝑥) = ∑ ∑
Γ(k + j)

Γ(𝑘)𝑗!
(−1)𝑗

𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘

𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−[𝛽(𝑗+1)+1]

∞

𝑗=0

∞

𝑘=0

                                                                                       (22) 

By using mixture representation, 

(1 − 𝑧)−𝑘 = ∑
Γ(k + i)

Γ(𝑘)𝑖!
𝑧𝑖

∞

𝑖=0

                                                                                                                                                             (23) 

[1 − 𝑒−𝜃𝑥]
−[𝛽(𝑗+1)+1]

= ∑
Γ[(𝛽(𝑗 + 1) + 1) + 𝑖] 

Γ[𝛽(𝑗 + 1) + 1]𝑖!
𝑒−𝜃𝑖𝑥

∞

𝑖=0

                                                                                                        (24) 

𝑔(𝑥) = ∑ ∑ ∑
Γ(k + j)

Γ(𝑘)𝑗!
(−1)𝑗

𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘 Γ[(𝛽(𝑗 + 1) + 1) + 𝑖] 

Γ[𝛽(𝑗 + 1) + 1]𝑖!
𝑒−𝜃𝑖𝑥𝑒−𝜃𝑥

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                   (25) 

𝑔(𝑥) = ∑ ∑ ∑
Γ(k + j)

Γ(𝑘)𝑗!
(−1)𝑗

𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘 Γ[(𝛽(𝑗 + 1) + 1) + 𝑖] 

Γ[𝛽(𝑗 + 1) + 1]𝑖!
𝑒−𝜃𝑥(1+𝑖)

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                      (26) 

Let(−1)𝑗 Γ(k+j)

Γ(𝑘)𝑗!

Γ[(𝛽(𝑗+1)+1)+𝑖] 

Γ[𝛽(𝑗+1)+1]𝑖!
= 𝑤𝑖,𝑗,𝑘                                                                                                                                             (27) 

𝑔(𝑥) =
𝛼𝜃

𝑘!
(

𝛼

𝛽
)

𝑘

∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘𝑒−𝜃(1+𝑖)𝑥

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                                                                                   (28) 

𝑔(𝑥) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘𝑒−𝜃(1+𝑖)𝑥

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                                                                                      (29) 

𝑔(𝑥) =
𝜃(1 + 𝑖)𝛼𝑘+1

𝛽𝑘𝑘! (1 + 𝑖)
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘𝑒−𝜃(1+𝑖)𝑥

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                                                                         (30) 

𝑔(𝑥) =
𝛼𝑘+1

𝛽𝑘𝑘! (1 + 𝑖)
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘[𝜃(1 + 𝑖)𝑒−𝜃(1+𝑖)𝑥]

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

                                                                                                        (31) 

 

V. Reliability Properties 
 

The reliability function can be obtained from  

𝑆(𝑥) = 1 − 𝐺(𝑥)                                                                                                                                                                                  (32) 

Therefore, the survival function of Zech distribution is given as 

𝑆(𝑥) = 1 − 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
   ;   𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                                                     (33) 

 

The hazard function of Zech distribution is obtained from  

ℎ(𝑥) =
𝑔(𝑥)

𝑆(𝑥)
                                                                                                                                                                                         (34) 

The hazard function of Zech distribution is given by 

ℎ(𝑥) =
𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]

−𝛽−1
𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}

1 − 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}

;   𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0                                                                    (35) 
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             Figure 3: Survival Plots of Zech distribution.                      Figure 4: Hazard plots of Zech distribution. 

 

Figures 3 and 4 iillustrate some of possible shapes of the Survival function and Hazard function respectively 

of Zech distribution. 
 

The cumulative hazard function, H(x) of a continuous random variable X from Zech distribution is derived 

from 

𝐻(𝑥) = − log(𝑆(𝑥))                                                                                                                                                                           (36) 

Substituting equation (33) into equation (36) 

𝐻(𝑥)𝑍𝑒𝑐ℎ = − log (1 − 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)                                                                                                                                    (37) 

 

The reversed hazard function of a random variable x of Zech distribution is obtained from 

𝑟(𝑥) =
𝑔(𝑥)

𝐺(𝑥)
                                                                                                                                                                                         (38) 

Therefore,  

𝑟(𝑥)𝑍𝑒𝑐ℎ = 𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

                                                                                                                                                (39) 

 

VI. Quantile Function and Median of Zech distribution. 
 

Quantile function is very important for generating random numbers which can be used for simulation studies. 

Aside that, it can also be used for finding quantiles i.e. quartiles, octiles, deciles and percentiles of a distribution 

which are necessary for deriving the measures of skewness and kurtosis. 

The quantile function is derived by inverting the cdf 

     𝑄(𝑢) = 𝐺−1(𝑢)                                                                                                                                                                               (40)  

     𝑄(𝑢) = −
1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 𝑢)

−
1

𝛽
]}                                                                                                                                      (41)    

Where 𝑢 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1). 

To generate random numbers from Zech distribution, it is sufficient that 

     𝑥 = −
1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 𝑢)

−
1

𝛽
]}                                                                                                                                             (42) 

 

The median of Zech distribution can be obtained by substituting 𝑢 = 0.5 in equation (41) as follows: 

     𝑀𝑒𝑑𝑖𝑎𝑛 = −
1

𝜃
{𝑙𝑛 [1 − (1 −

𝛽

𝛼
𝑙𝑛 0.5)

−
1

𝛽
]}                                                                                                                            (43)  
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Other quantiles can also be derived from (41) by substituting appropriate values of  ′′𝑢′′. 

 

VII. Quantile - based measures of skewness and kurtosis 
 

The measure of Skewness(S) and Kurtosis (K) of Zech distribution using quantile function, defined by Galton 

[6] and Moors [7] are given by equations (44) and (45) respectively. 

    𝑆 =
𝑄(

6

8
)−2𝑄(

4

8
)+𝑄(

2

8
)

𝑄(
6

8
)−𝑄(

2

8
)

                                                                                                                                                                         (44)  

    𝐾 =  
𝑄(

7

8
)−𝑄(

5

8
)+𝑄(

3

8
)−𝑄(

1

8
)

𝑄(
6

8
)−𝑄(

2

8
)

                                                                                                                                                                (45)  

𝑄 (
1

8
) , 𝑄 (

2

8
) , 𝑄 (

3

8
) , 𝑄 (

4

8
) , 𝑄 (

5

8
) , 𝑄 (

6

8
), and 𝑄 (

7

8
) can be obtained by substituting 

1

8
 ,

2

8
 ,

3

8
,

4

8
 ,

5

8
,

6

8
, 𝑎𝑛𝑑 

7

8
 for 𝑢 

respectively in equation (41). Therefore, 

𝑄 (
1

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

1

8
))

−
1

𝛽

]}                                                                                                                                   (46) 

𝑄 (
2

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

2

8
))

−
1

𝛽

]}                                                                                                                                   (47) 

𝑄 (
3

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

3

8
))

−
1

𝛽

]}                                                                                                                                   (48) 

𝑄 (
4

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

4

8
))

−
1

𝛽

]}                                                                                                                                  (49) 

𝑄 (
5

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

5

8
))

−
1

𝛽

]}                                                                                                                                   (50) 

𝑄 (
6

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

6

8
))

−
1

𝛽

]}                                                                                                                                   (51) 

𝑄 (
7

8
) = −

1

𝜃
{ln [1 − (1 −

𝛽

𝛼
𝑙𝑛 (

7

8
))

−
1

𝛽

]}                                                                                                                                   (52) 

The skewness of Zech distribution is derived by substituting the values of 𝑄 (
6

8
), 𝑄 (

4

8
) and 𝑄 (

2

8
) into equation 

(44). 

Therefore,  𝑆𝑍𝑒𝑐ℎ =

2

𝜃
{ln[1−(1−

𝛽

𝛼
𝑙𝑛(

4

8
))

−
1
𝛽

]}−
1

𝜃
{ln[1−(1−

𝛽

𝛼
𝑙𝑛(

6

8
))

−
1
𝛽

]}−
1

𝜃
{ln[1−(1−

𝛽

𝛼
𝑙𝑛(

2

8
))

−
1
𝛽

]}

1

𝜃
{ln[1−(1−

𝛽

𝛼
𝑙𝑛(

2

8
))

−
1
𝛽

]}−
1

𝜃
{ln[1−(1−

𝛽

𝛼
𝑙𝑛(

6

8
))

−
1
𝛽

]}

                                                      (53) 

Simplifying (53) by factoring out (
1

𝜃
), the result shows that symmetry or asymmetry of Zech distribution is 

independent of parameter 𝜃. 

    𝑆𝑍𝑒𝑐ℎ =

2 {ln[1−(1−
𝛽

𝛼
𝑙𝑛(

4

8
))

−
1
𝛽

]}− {ln[1−(1−
𝛽

𝛼
𝑙𝑛(

6

8
))

−
1
𝛽

]}− {ln[1−(1−
𝛽

𝛼
𝑙𝑛(

2

8
))

−
1
𝛽

]}

{ln[1−(1−
𝛽

𝛼
𝑙𝑛(

2

8
))

−
1
𝛽

]}− {ln[1−(1−
𝛽

𝛼
𝑙𝑛(

6

8
))

−
1
𝛽

]}

                                                                          (54)  

The kurtosis of Zech distribution is derived by substituting the values of 

𝑄 (
7

8
) , 𝑄 (

5

8
) , 𝑄 (

3

8
) , 𝑄 (

1

8
) , 𝑄 (

1

8
)  𝑎𝑛𝑑 𝑄 (

2

8
) into equation (45) 
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    𝐾𝑍𝑒𝑐ℎ =

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

5

8
))

−
1
𝛽]}−

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

7

8
))

−
1
𝛽]}−

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

3

8
))

−
1
𝛽]}−

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

1

8
))

−
1
𝛽]}

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

2

8
))

−
1
𝛽]}−

1

𝜃
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

6

8
))

−
1
𝛽]}

                                   (55)  

Simplifying equation (55) by factoring out (
1

𝜃
), the result shows that the peakedness or otherwise of Zech 

distribution is independent of parameter 𝜃. 

𝐾𝑍𝑒𝑐ℎ =
 {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

5

8
))

−
1
𝛽]}− {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

7

8
))

−
1
𝛽]}− {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

3

8
))

−
1
𝛽]}− {ln[1−(1−

𝛼

𝛽
𝑙𝑛(

1

8
))

−
1
𝛽]}

 {ln[1−(1−
𝛼

𝛽
𝑙𝑛(

2

8
))

−
1
𝛽]}−{ln[1−(1−

𝛼

𝛽
𝑙𝑛(

6

8
))

−
1
𝛽]}

                                              (56)  

 

VIII. Distribution of Order Statistics 
 

Let 𝑥1, 𝑥2 , … , 𝑥𝑛 be a random sample from a cdf and pdf of Zech distribution as defined in (4) 𝑎𝑛𝑑 (5) 

respectively. The pdf of 𝑗𝑡ℎ order statistics of any random variable X is given by: 

𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
𝑔(𝑥)𝐺(𝑥)𝑗−1[1 − 𝐺(𝑥)]𝑛−𝑗                                                                                                             (57) 

From (56), putting the pdf of the 𝑗𝑡ℎ order statistics of Zech distribution, 

𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗−1)!(𝑛−𝑗)!
𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]

−𝛽−1
𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
. {𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
}

𝑗−1

{1 −

(𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)}

𝑛−𝑗

                                                                                                                                                                      (58)   

  Simplifying equation (58), 

𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗−1)!(𝑛−𝑗)!
𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]

−𝛽−1
. {𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
}

𝑗

{1 − (𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)}

𝑛−𝑗

                                            

(59) 

Therefore, the distribution of minimum and maximum order statistics for the Zech distribution is given by 

𝑓1:𝑛(𝑥) 𝑖. 𝑒 𝑤ℎ𝑒𝑛 𝑗 = 1 and 𝑓𝑛:𝑛(𝑥) respectively in equations (60) and (61) respectively. 

𝑓1:𝑛(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 1)!
𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]

−𝛽−1
. 𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}

{1 − (𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)}

𝑛−1

 

After some simplifications, 

𝑓1:𝑛(𝑥) = 𝑛𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

. 𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}

{1 − (𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)}

𝑛−1

                                                            60) 

Also, 

𝑓𝑛:𝑛(𝑥) =
𝑛!

(𝑛 − 1)! (𝑛 − 𝑛)!
𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]

−𝛽−1
. {𝑒

𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
}

𝑛

{1 − (𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
)}

𝑛−𝑛

 

After some simplifications, 

𝑓𝑛:𝑛(𝑥) = 𝑛𝛼𝜃𝑒−𝜃𝑥[1 − 𝑒−𝜃𝑥]
−𝛽−1

. {𝑒
𝛼

𝛽
{1−[1−𝑒−𝜃𝑥]

−𝛽
}
}

𝑛

                                                                                                          (61) 

 

 

IX. Moments of Zech distribution 
 

The moment about the Origin of Zech distribution is derived as follows: recall from the linear expansion of the 

pdf of Zech distribution,  

   𝑔(𝑥) =
𝛼𝑘+1

𝛽𝑘𝑘!(1+𝑖)
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘[𝜃(1 + 𝑖)𝑒−𝜃(1+𝑖)𝑥]∞

𝑖=0
∞
𝑗=0

∞
𝑘=0                                                       

The rth moment about the origin of a random variable X is given by 
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𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥                                                                                                                                                                         (62) 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟

∞

0

𝛼𝑘+1

𝛽𝑘𝑘! (1 + 𝑖)
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘[𝜃(1 + 𝑖)𝑒−𝜃(1+𝑖)𝑥]

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑑𝑥                                                                                      (63) 

𝐸(𝑋𝑟) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

∫ 𝑥𝑟𝑒−𝜃(1+𝑖)𝑥

∞

0

𝑑𝑥                                                                                                                    (64) 

From gamma expansion, 

Γ𝑎

𝑏𝑎
= ∫ 𝑥𝑎−1𝑒−𝑏𝑥

∞

0

𝑑𝑥                                                                                                                                                                          (65) 

     𝑎 − 1 = 𝑟, 𝑎 = 𝑟 + 1 , 𝑏 =  𝜃(1 + 𝑖)  

∫ 𝑥𝑟𝑒−𝜃(1+𝑖)𝑥

∞

0

𝑑𝑥 =
Γ(𝑟 + 1)

[𝜃(1 + 𝑖)]𝑟+1
                                                                                                                                                 (66) 

𝐸(𝑋𝑟) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

Γ(𝑟 + 1)

[𝜃(1 + 𝑖)]𝑟+1
                                                                                                                           (67) 

The first moment about the origin represents the mean of Zech distribution. This can be done by setting 𝑟 = 1, 

𝐸(𝑋) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

Γ(2)

[𝜃(1 + 𝑖)]2
                                                                                                                                 (68) 

The second moment about the origin of Zech distribution is 

𝐸(𝑋2) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

Γ(3)

[𝜃(1 + 𝑖)]3
                                                                                                                              (69)  

The variance of Zech distribution is obtained from  

    𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2                                                                                                                                                         (70)  

𝑉𝑎𝑟(𝑋) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

Γ(3)

[𝜃(1 + 𝑖)]3
− [

𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

Γ(2)

[𝜃(1 + 𝑖)]2
]

2

                                                (71) 

 

 

The Moment about the Mean of Zech distribution is thus derived. 

The rth central moment of a random variable X having Zech distribution is given by  

𝐸((𝑥 − 𝜇)𝑟) = ∫(𝑥 − 𝜇)𝑟𝑓(𝑥)𝑑𝑥

∞

0

                                                                                                                                                  (72) 

𝐸((𝑥 − 𝜇)𝑟) = ∫(𝑥 − 𝜇)𝑟
𝛼𝑘+1

𝛽𝑘𝑘! (1 + 𝑖)
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘[𝜃(1 + 𝑖)𝑒−𝜃(1+𝑖)𝑥]

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑑𝑥

∞

0

                                                              (73)  

𝐸((𝑥 − 𝜇)𝑟) =
𝜃𝛼𝑘+1

𝛽𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

∫(𝑥 − 𝜇)𝑟

∞

0

[𝑒−𝜃(1+𝑖)𝑥] 𝑑𝑥                                                                                          (74) 

By setting 𝑦 = 𝑥 − 𝜇,   
𝑑𝑦

𝑑𝑥
= 1,        𝑑𝑥 = 𝑑𝑦,      𝑥 = 𝑦 + 𝜇 

𝐸((𝑥 − 𝜇)𝑟) =
𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

∫ 𝑦𝑟

∞

0

𝑒−𝜃(1+𝑖)(𝑦+𝜇)𝑑𝑦                                                                                                (75)  

𝐸(𝑋𝑟) =
𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

∫ 𝑦𝑟

∞

0

𝑒−𝜃(1+𝑖)𝑦 . 𝑒−𝜃(1+𝑖)𝜇𝑑𝑦                                                                                                (76)  
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𝐸((𝑥 − 𝜇)𝑟) =
𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑒−𝜃(1+𝑖)𝜇 ∫ 𝑦𝑟

∞

0

𝑒−𝜃(1+𝑖)𝑦𝑑𝑦                                                                                      (77)  

Using the Gamma function expansion, 

Γ𝑎

𝑏𝑎
= ∫ 𝑥𝑎−1𝑒−𝑏𝑥

∞

0

𝑑𝑥                                                                                                                                  

    𝑎 − 1 = 𝑟,   𝑎 = 𝑟 + 1,      𝑏 = 𝜃(1 + 𝑖)  

𝐸((𝑥 − 𝜇)𝑟) =
𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑒−𝜃(1+𝑖)𝜇
Γ(𝑟+1)

[𝜃(1 + 𝑖)](𝑟+1)
                                                                                          (78)  

 

X. Moment - based measures of Skewness and Kurtosis 
 

The skewness of Zech distribution based on central moment is given as 

    Skewness=
𝜇3

2

𝜇2
3                                                                                                                                                                    

(79) 

Where 𝜇3 = 𝑇ℎ𝑖𝑟𝑑 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛 

   𝜇2 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡  

𝜇3 =
6𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1 + 𝑖)]4
                                                                                                                                   (80)  

𝜇2 =
2𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞

𝑖=0

∞

𝑗=0

∞

𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1 + 𝑖)]3
                                                                                                                                   (81)  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
[

6𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1+𝑖)]4 ]
2

[
2𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1+𝑖)]3 ]
3                                                                                                               (82)  

 

     Kurtosis=
𝜇4

𝜇2
2                                                                                                                                                                                   (83)                                                                                                                                         

But 𝜇4 =  
24𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1+𝑖)]5                                                                                                                          (84)  

The Kurtosis, based on central moment of Zech distribution is given by 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

24𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1+𝑖)]5

[
2𝜃𝛼𝑘+1

𝐵𝑘𝑘!
∑ ∑ ∑ 𝑤𝑖,𝑗,𝑘

∞
𝑖=0

∞
𝑗=0

∞
𝑘=0

𝑒−𝜃(1+𝑖)𝜇

[𝜃(1+𝑖)]3 ]
2                                                                                                                  (85) 

 

 

XI. Results 

I. Simulation Studies 
 

The behavior of the parameters of Zech distribution was investigated through simulation studies using R 

statistical software. Data were replicated 1000 times. A random sample of sizes 50, 100, 150 and 200 were 

selected. The parameters were varied as follows: 𝛼 = 0.5, 𝜃 = 0.5, and 𝛽 = 0.5; and 𝛼 = 1, 𝜃 = 1, and 𝛽 = 1; 

and 𝛼 = 1.5, 𝜃 = 1.5, and 𝛽 = 1.5 respectively. The maximum likelihood estimates of the true parameters, the 

bias, standard error and Root Mean Square Error were obtained from the simulation. The results are shown in 

Tables 1, 2 and 3. 
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Results of Simulation Studies 
 

           Table 1: Simulation study at 𝛼 = 0.5 , 𝜃 = 0.5, and 𝛽 = 0.5  

N Parameters Means Bias Std.  Error RMSE 

50 𝛼 = 0.5 
𝜃 = 0.5 
𝛽 = 0.5 

0.0339 

0.6382 

0.3763 

0.4661 

- 0.1382 

0.1237 

0.0152 

0.1931 

0.2300 

0.0174 

0.0621 

0.0678 

100 𝛼 = 0.5 
𝜃 = 0.5 
𝛽 = 0.5 

0.0466 

0.5295 

0.5720 

0.4534 

- 0.0295 

-0.0720 

0.0170 

0.1348 

0.1457 

0.0130 

0.0367 

0.0382 

150 𝛼 = 0.5 
𝜃 = 0.5 
𝛽 = 0.5 

0.0667 

0.4228 

0.5170 

0.4333 

0.0772 

- 0.0170 

0.0185 

0.0849 

0.1100 

0.0111 

0.0238 

0.0271 

200 𝛼 = 0.5 
𝜃 = 0.5 
𝛽 = 0.5 

0.0818 

0.4815 

0.6211 

0.4182 

0.0185 

- 0.1211 

0.0221 

0.0927 

0.0987 

0.0105 

0.0215 

0.0222 

 

           Table 2: Simulation study at 𝛼 = 1.0 , 𝜃 = 1.0, and 𝛽 = 1.0  

N Parameters Means Bias Std.  Error RMSE 

50 𝛼 = 1.0 
𝜃 = 1.0 
𝛽 = 1.0 

0.0627 

0.2452 

0.1369 

0.9373 

0.7548 

0.8631 

0.0446 

0.4291 

0.4911 

0.0299 

0.0926 

0.0991 

100 𝛼 = 1.0 
𝜃 = 1.0 
𝛽 = 1.0 

0.0834 

0.8306 

0.9365 

0.9166 

0.1694 

0.0635 

0.0363 

0.1951 

0.2667 

0.0191 

0.0442 

0.0516 

150 𝛼 = 1.0 
𝜃 = 1.0 
𝛽 = 1.0 

0.1469 

1.0107 

0.9909 

0.8531 

- 0. 0107 

0.0091 

0.0536 

0.1898 

0.2452 

0.0189 

0.0356 

0.0404 

200 𝛼 = 1.0 
𝜃 = 1.0 
𝛽 = 1.0 

0.1609 

0.8606 

0.9995 

0.8391 

0.1394 

0.0005 

0.0515 

0.1484 

0.1901 

0.0160 

0.0272 

0.0308 

 

           Table 3: Simulation study at 𝛼 = 1.5 , 𝜃 = 1.5, and 𝛽 = 1.5  

N Parameters Means Bias Std.  Error RMSE 

50 𝛼 = 1.5 
𝜃 = 1.5 
𝛽 = 1.5 

0.0636 

1.5227 

1.9951 

1.4364 

    - 0.0227 

    - 0.4951 

0.5580 

0.5782 

0.5450 

0.0334 

0.1075 

0.1044 

100 𝛼 = 1.5 
𝜃 = 1.5 
𝛽 = 1.5 

0.0821 

1.2049 

1.9077 

1.4179 

0.2951 

-0.4074 

0.0517 

0.3506 

0.3208 

0.0227 

0.0592 

0.0566 

150 𝛼 = 1.5 
𝜃 = 1.5 
𝛽 = 1.5 

0.1249 

1.0912 

0.1713 

1.3751 

0.4088 

1.3287 

0.0621 

0.2543 

0.2802 

0.02035 

0.04120 

0.04320 

200 𝛼 = 1.5 
𝜃 = 1.5 
𝛽 = 1.5 

0.2188 

1.3248 

1.6958 

1.2812 

0.1752 

    - 0.1958 

0.0825 

0.2275 

0.2539 

0.02031 

0.03370 

0.03560 
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The tables 1, 2 and 3, for each of the selected true parameter values show that as the sample sizes 

increase, the root mean square errors decrease. This implies that the parameters of Zech distribution 

are stable. 

II. Applications to Real Life Data Sets 
 

The performance of Zech distribution, as well as goodness of fit tests when fitted to the real life data sets is 

hereby compared with other three – parameter distributions such as Gompertz Inverse Exponential (GIE) 

distribution, Weibull Exponential (WE) distribution and Gompertz Exponential (GE) distribution are provided 

in tables 6 and 7 respectively. 

To select the best among the competing distributions, the following statistical criteria are used: Negative Log- 

likelihood, Akaike Information criterion (AIC) and Bayesian Information criterion (BIC). The distribution 

having the least value of the criteria above is adjudged to be the best. Also, the goodness of fit tests like 

Kolmogorov-Smirnov Statistic (KS) and Anderson-Darling Statistic (ADS) are also computed to select the best 

fit. The best distribution has the least value of the statistics above. 

 

Data 1: The first data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle 

bacilli observed and reported by Bjerkedal [9] and used by Adewara [1]. 

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100,100,102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115,116, 120, 121, 

122, 122, 124, 130, 134, 136, 139, 144, 146,153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196,197, 202, 213, 

215, 216, 222, 230, 231, 240, 245, 251, 253,254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555 

 

Table 4: Descriptive Statistics for data 1. 

Min 1st 

Quartile 

Median Mean 3rd 

Quartile 

Max. Standard 

Deviation 

Skewness Kurtosis 

10.0 108.0 149.5 176.8 224.0 555.0 103.4549 1.341869 4.991056 

 

Table 5: Performance rating for the fitted models using data 1.      

Distributions Estimates -LL AIC BIC KS ADS 

 

Zech 

𝛼̂ = 5.1884384 

𝛽̂ = −0.6383047 
𝜃̂ = 0.0128380 

 

424.8790 

 

855.7579 

 

862.5879 

 

0.0835 

 

0.4925 

 

GIE 

𝛼̂ = 0.02683774 

𝛽̂ = 1.88823061 
𝜃̂ = 22.03993914 

 

427.6661 

 

861.3322 

 

868.1622 

 

0.1095 

 

1.0777 

 

WE 

𝛼̂ = 1.157801294 

𝛽̂ = 1.340608545 
𝜃̂ = 0.002981762 

 

431.3887 

 

868.7774 

 

875.6074 

 

0.1195 

 

1.9894 

GE 𝛼̂ = 0.004089507 

𝛽̂ = 1.08290306 
𝜃̂ = 0.002751085 

 

434.3901 

 

874.7802 

 

881.6102 

 

0.1759 

 

2.6168 

          

 The distributions tested showed the performances of each. The results revealed that the distribution with the 

lowest value of –LL, AIC, BIC, KS and ADS is considered to be the best. From Table 5, Zech distribution had 

the least value of 424.8790 for –LL, AIC= 855.7579, BIC = 862.5879, KS = 0.0835 and ADS = 0.4925 hence, it was 

considered the best fitted distribution among other distributions. 
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     Figure 5: Histogram and theoretical densities for data 1                                     Figure 6: P – P plot for data 1    

 

Figures 5 and 6 respectively depict the performance of the new distribution with survival times (in 

days) of 72 guinea pigs infected with virulent tubercle bacilli observed, this is compared to other 

distributions mentioned in the research. 

           Data 2: The second dataset represents the gauge of length of 10mm observed by Mohammed [10] 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 

2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 

2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 

3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 

              3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 

 

        Table 6: Descriptive Statistics for data 2. 

Min 1st 

Quartile 

Median Mean 3rd 

Quartile 

Max. Standard 

Deviation 

Skewness Kurtosis 

1.901 2.554 2.996 3.059 3.422 5.020 0.6209216 0.6178407 3.286345 

 

         Table 7: Performance rating for the fitted models using data 2. 

Distributions Estimates -LL AIC BIC KS ADS 

 

Zech 

𝛼̂ = 238.223663 

𝛽̂ = −5.177056 
𝜃̂ = 1.971310 

 
56.5097 

 
119.0194 

 

125.4488 

 

0.0885 

 

0.3571 

 

GIE 

𝛼̂ = 330.740054 

𝛽̂ = −41.32409 
𝜃̂ = 18.50223 

 
57.28159 

 
120.5632 

 
126.9926 

 

0.0903 

 

0.3846 

 

WE 

𝛼̂ = 1.8379671 

𝛽̂ = 3.7232674  
𝜃̂ = 0.1842052 

 
63.6584 

 
133.3168 

 
139.7462 

 

0.0986 

 

1.1866 

GE 𝛼̂ = 0.944957015 

𝛽̂ = 1.480487938 
𝜃̂ = 0.008481201 

 
69.1480 

 
144.2960 

 

150.7254 

 

0.1389 

 

1.9840 

     

 The distributions tested showed the performances of each. The results revealed that Zech distribution had the 

lowest value of –LL, AIC, BIC, KS and ADS and is considered to be the best. From Table 7, Zech distribution 

had the least value of = 56.5097  for –LL, AIC=119.0194, BIC =125.4488, KS = 0.0885 and ADS= 0.3571 hence, it 

was considered the best fitted distribution among other distributions. 
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         Figure 7: Histogram and theoretical densities for data 2                                 Figure 8: P – P plot for data 2   

 

Figures 7 and 8 respectively depict the performance of the new distribution with gauge of length of 

10mm data, and compared to other distributions mentioned in the research 

 

   XII. Discussion 
 

         The histogram and theoretical densities plot shows that Zech distribution fits data 1 and 2 best. Also, the 

probability plot i.e. (the PP plot) which compares the empirical cdf of data sample with specified theoretical 

cumulative distribution, reveals that Zech distribution is closer to the line than the remaining three fitted 

models. Tables 1, 2 and 3, for each of the selected true parameter values show that as the sample sizes increase, 

the Root Mean Square errors decrease which shows that the parameters of Zech distribution are stable. 

 

Tables 4 and 6 show that the data is skewed to the right. Interestingly, the shape of the pdf graph of Zech 

distribution is also positively skewed. Also, the Kurtosis values of 4.991056 and 3.2866345 suggest that the data 

is leptokurtic. Data 1 and 2 have a kurtosis of 1.991056 and 0.2866345 respectively above that of normal 

distribution which is 3.0 

 

Tables 5 and 7, show that Zech distribution has the lowest value of –LL, AIC, BIC, KS and ADS and is 

considered to be the best when compared with the competing distributions such as Gompertz Inverse 

Exponential distribution, Weibull Exponential distribution and Gompertz Exponential distribution.  

 

XIII. Conclusion 

 

In this paper, a new three – parameter continuous distribution named Zech distribution was proposed from 

Gompertz Inverse Exponential distribution. Its probability density function was plotted and the result 

revealed a heavy positively skewed distribution which is suitable for modelling heavily right-tailed data. 

Several statistical and mathematical properties of the new distribution were derived. The results of the 

simulation studies revealed that the parameters of the new distribution are stabled and as the sample sizes 

increased, the Root Mean Square (RMS) errors decreased. The applications to two real life data sets showed 

that Zech distribution has the lowest -LL, AIC, BIC, KS and ADS when compared with other competing 

distributions such as Gompertz Inverse Exponential distribution, Weibull Exponential distribution and 

Gompertz Exponential distribution used in this research paper.  
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Abstract 
 

In this article, we will take a look at FTP, and then present a way to solve many such problems by 

using the affected method for FN level. Some of the numbers in FTP may be sharp or sharp numbers. 

In many decision-making problems, numbers are represented in terms of FN. FN can be normal or 

oblique, triangular or trapezoidal or any other FN LR. So, some FNs do not compare immediately. 

First, we convert QF such as price, quantity, supply and demand, into accurate quantities by using 

our system, and then using sophisticated algorithms, we solve and solve the problem. The new system 

is a configuration, easy to install and can be used for all types of TP, or to increase or decrease the 

target function. In the end, this process is illustrated by digital examples. 

 

Keywords: Fuzzy Transportation Problem, Fuzzy Numbers, Optimization, Ranking of 

Fuzzy Numbers  
 

Abbreviations 
 

Optimal Solution   : OS 

Linear Programming Problem  : LPP 

Fuzzy Number   : FN 

Transportation Problem  : TP 

Fuzzy Transportation Problem : FTP 

Shipping Cost    : SC 

Transportation Model   : TM 

Fuzzy Quantities   : FQ 

Fuzzy Solution    : FS 
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Feasible Solution   : FeS 

Transportation Cost   : TC 

Right Hand Side  :  RHS 

Transportation Tableau   :  TT 

I. Introduction 
 

TP is a unique LPP that manifests itself in many useful applications. In this issue, we determine the 

best shipping method between source or source and destination. Many terms unrelated to 

transportation have this system. Suppose n from the start will give me a place to use some products. 

Let 
k
b be the number of products in the beginning k, and lc be the number of products required in 

place l. Also, we assume that the cost of shipping a unit of product from the beginning k to the 

destination l is
kl
d , then we leave 

kl
y  to represent the cost from the beginning k to point l. In the case 

of SC, it is thought that the corresponding number of upgrades from each start to anywhere to reduce 

the total SC would be LPP. The TMs have fast and easy delivery and supply chain to reduce costs. 

When the price range and the number of supply and demand are well known, several algorithms 

are developed to optimize TP. But, in the real world, there are many cases where the cost factors and 

the amount of supply and demand are FQ. FTP is the TP of TC, the supply and the required number 

are FQs. Most of the current systems only provide a clear solution for FTP. [1-3] have devised a 

system to fix FTP. [4] obtained FS for two steps reducing the FTP value of the donor and the required 

trapezoidal FNs. [5] has developed a system, i.e. a zero-path path, to find an operating system for 

FTP where all parameters are trapezoidal FNs.  

In many decision-making problems, data is represented in the FN system. In FTP, all parameters is 

FN. FN can be normal or irregular, triangular or trapezoidal. So, some FNs do not compare 

immediately. Comparisons between two or more NFs in terms of the numbers are one of the key 

topics, and how to describe the level of NF is one of the key topics. Introducing several methods for 

processing FN. Here, we want to use the introductory method for the design of FN, by [6]. Now we 

want to apply this method to all FTP, where all parameters can be trapezoidal FN, triangular FN, 

FN LR arbitrary, normal FN or negative FN. This process is very easy to understand and apply. 

Finally, the operating system of the problem can be accessed as FN or net number. 

II. Mathematical Formulation of a FTP 
 

In mathematics, useful work can be said as follows: 

Minimize  

1 1

n n
w d y

kl kl
k l

=  

= =

 
 

(2.1) 

                                                                                                                                    

Subject to 

1, 2, 3...,

1

1, 2, 3...,

1

0 1, 2, 3..., 1, 2, 3...,

kl k

kl l

kl

n
y b k n

k

n
y c l n

k

y k n l n

= =

=

= =

=

 = =

 

 

 

 

(2.2) 
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where kld  is the TP of a unit from kth source to lth point, and the kly  value must be a positive or 

negative number, which is transmitted from kth source to lth point. What is clear is that the absolute 

conditions for the LPP given in (2.1) to find a solution are as follows 

1 1

m m
b c
k l

k l

= 

= =

 
 

(2.3) 

that is, assume that the available sum is equal to the required sum. If this is not true, the source or 

destination may be added. It should be noted that this problem has FeS if the (2.2) condition is 

satisfactory. Now the problem is to determine kly , so that the total TC total. 

In mathematics, FTP can be defined as: 

*

1 1

n n
w d y

kl kl
k l

=  

= =

 
  

(2.4) 

Subject to 

*

*

1, 2,3...,

1

1, 2,3...,

1

0 1, 2,3..., 1, 2,3...,

kl k

kl l

kl

n
y b k n

k

n
y c l n

k

y k n l n

= =

=

= =

=

 = =

 

 

 

 

(2.5) 

of the number of TCs 
*

kld , supply 
*

kb  and demand 
*

lc  is FQ. An important and absolute condition 

for non-essential LPP given in (2.4) and (2.5) to find a solution is that 

* *

1 1

m m

k l

k l

b c
= =

   
 

(2.6) 

A large number of systems are provided for FTP. Some of them are based on FN level. Some of the 

NF-level systems, for example, have limitations, are difficult to compute, or lack understanding, 

making them ineffective and useful applications, especially in the decision-making process. 

However, in some of these methods, such as those compared to FN as their centroid point [7-11], the 

decision maker does not work it each with comparisons between FN. However, there are some ways 

to compare FNs individually [12-14]. It is not always the case that there is no point in the nature of 

uncertainty and incorrect title information, but these situations often occur in practice when 

expressing language words. For this reason, when comparing two FNs, it is natural that the results 

of the comparison are inaccurate or, at least, parametric, due to its own nature and specifications. 

This can also be seen in the variability of practitioners in the fuzzy set theory. We clearly see that 

non-parametric decision makers and non-parametric practitioners perform better than non-

parametric practitioners with respect to experimental data [15, 16]. Two factors play an important 

role in the decision-making process: Contributor's decision-making and decision-making process, 

ease of total. This essay attempts to provide a system of degrees and compares NF to account as 

much as possible of the factors mentioned above. The expected mechanism was also discussed in 

the centroid system [17, 18]. 

III. Definition of an Arbitrary FN 
 

FN has been described in various forms. We use the next FN definition very accurately. We present 

the FN wB strongly by the two prescribed paths (B (s), B * (s)), where 0 ≤ s ≤ w and w are the 

fluctuations between zero and one (0 ≤ w ≤ 1), with a parametric shape that meets the requirements: 

• B (s) is a continuous function that does not go down the top left [0, w]. 
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• B * (s) is a continuous incremental function left at the top [0, w]. 

• B (s) ≤ B * (s), 0 ≤ s ≤ w. 

The net number "i" represents only B (s) = B * (s) = i, 0 ≤ s ≤ w. By proper definition, the holes FNs {B 

(s), B * (s)}, becoming convex cone F1 are isomorphic and isometric embedded in the Banach hole. If 

B is FN then cut β of B is [B *] β = [B (β), B * (β)],  0 ≤ β ≤ w. If w = 1, the coefficient described above 

is called the normal FN. 

IV. An Approach for Making Ranking FN 
 

As mentioned earlier, it seems that the parametric method of FN comparison, mainly in the theory 

of non-parametric determination, is better than non-parametric methods. For example, in a centroid 

system from a study [19], FN was compared to their Euclidean origin from the beginning. Negative 

FN is not included in the Cheng centroid core system. Sometime later, however, [20] tried to solve 

this problem by using the area between the centroid point at the beginning. But their study was also 

flawless. [21] found that the regional systems of a study lead to some time in unintelligible planning. 

That study showed a marked eye pattern. But their method is not parametric and is only available 

in normal FN. It is well known that non-parametric methods compared to FN have some setbacks 

in practice. 

According to the above definition of FN, as =  
*( ( ), ( )),(0 )B B s B s s w

w
 
n
u FN, then the value   

( )N B
w

, assigned to B
w

 for decision. Levels greater than "β" calculated as follows: 

1* *
( ) { ( ) ( )}

2

w
N B B s B s ds

w


= +      where      0 1   

This number will be used as a basis for comparing FN with a resolution level higher than β. 

V. Trapezoidal and Triangular FNs 
 

The two major classes of FN, commonly used for practical and easy-to-use purposes, are the 

"trapezoidal and triangular FN", some ways of bringing the FN and the trapezoidal FN closer and 

closer, see also [22-24] and therefore there is no concern in this. 

 

I. Triangular FNs 

FN, B is a triangular FN called (σ, n, α) where σ, n and α is a real number and its functions are given 

by ( )u y
B

below, 

( ) 0u y
B

=                              for y   

( )
y

u y
B n





−
=

−
                             for y n    

( ) 1u y
B

=                               for y n=  

( )
y

u y
B n





−
=

−
                              for n y    

( ) 0u y
B

=                                for y   
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According to the description above of the triangular FN, let B = (B (s), B * (s)), (0 ≤ s ≤ 1) one FN, then 

the value N(B), to assign with B calculated as follows: 

 
1

*

0

1 1
( ) { ( ) ( )} 2

2 4
N Tra B B s B s ds n  − = + = + +  

that is very useful for calculations. 

 

II.  Trapezoidal FNs 

A FN, B is a trapezoidal FN identified by the symbol (σ, n, m, α), where σ, m, n, α are real numbers 

and the membership function ( )u y
B

 is given below. 

( ) 0u y
B

=                              for y   

( )
y

u y
B n





−
=

−
                             for y n    

( ) 1u y
B

=                                     for n y m   

( )
m y

u y
B m

−
=

−
                              for n y    

( ) 0u y
B

=                                for y   

According to the above definition of the FN trapezoid, let B = (B (s), B * (s)), (0 ≤ s ≤ 1) FN, then the 

value of N (B), set B, as the following is calculated. : 

 − = + = + + +  
1

*

0

1 1
( ) { ( ) ( )}

2 4
N Tra B B s B s ds n m  

that is very useful for calculations. 

VI. A Newly Developed Approach for Solving FTP 
 

We are now introducing a new approach to FTP solutions where key contributors, resources and 

requests are FNs. FNs in each problem can be triangular, trapezoidal, or any FN or mixture. The FTP 

operating system can be downloaded explicitly or implicitly. 

First Step: Calculate the values of N (.) For each fuzzy data, TC 
kl
d , supply 

k
b , and 

l
c demand 

values, which are FQ.  

Second Step: By replacing N (
kl
d ), N (

k
b ) and N (

l
c ) which are fragile values with

kl
d ,

k
b , and 

l
c

values which are FQ, you select a new fragile TP. 

Third Step: Fix a new TP net, through the old system, and get the problematic network. Note that 

each answer in the laboratory will have a specific (n-m-1) point FS. We know that OS 
kl
y  must be an 

integer or an integer, but OS 
kl
y  for net TP may be an integer or not an integer, because the RHS of 

the problem is an FN which is an integer. If you accept a soft solution, stop. The OS is in your hands. 

If you want the kind of nonsense solution, go to the next step. 

Forth Step: Determine where the FS are not missing in the TT. The background is a rooted tree, that 

is, there must be at least one cell in each row and in each column of the TT. In addition, the 

foundation must be wood, that is, cells (n-m-1) cells will not have a circle. Therefore, there are rows 
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and columns with only one main cell. Starting with these cells, calculate the nonlinear core solution, 

and continue until you obtain a (n-m-1) foundation solution. 

VII. Examples 
 

The following example may be useful to clarify the proposed procedure: 

Example: Consider the following FTP which is in [25]. All data for this problem are trapezoidal FNs. 

We want to use our method to solve it, then we will compare the results.  

Table 1: FNs, Demand and Supply 

 1 2 3 4 Supply 

1 4,5,6,7 4,6,7,9 12,14,15,17 8,10,11,14 4,9,10,13 

2 3,4,5,7 2,3,4,5 8,9,10,11 3,4,5,6 3,4,5,6 

3 6,8,9,11 8,11,12,15 15,18,19,22 10,12,13,15 8,13,15,20 

Demand 8,10,11,13 4,8,9,13 4,6,7,9 4,5,6,7  
 

According to the description above of the trapezoidal FN or A = (A (s), A * (s)), (0 ≤ s ≤ 1) FN, then 

the value N (A), is assigned and Calculated as part: 

 − = + = + + +  
1

*

0

1 1
( ) { ( ) ( )}

2 4
N Tra A A s A s ds n m  

Thus, we obtain the values of N (
kl
B ), N (

k
b ) and N (

l
c ) according to the recommended formula: 

Table 2: Trapezoidal FNs  

FNs Trapezoidal FNs 

B11=4,5,6,7 N-Tra(B11)=1/4(4+5+6+7)=5.5 

B12=4,6,7,9 N-Tra(B12)=1/4(4+6+7+9)=6.5 

B13=12,14,15,17 N-Tra(B13)=1/4(12+14+15+17)=14.5 

B14=8,10,11,14 N-Tra(B14)=1/4(8+10+11+14)=10.75 

B21=3,4,5,7 N-Tra(B21)=1/4(3+4+5+7)=4.75 

B22=2,3,4,5 N-Tra(B22)=1/4(2+3+4+5)=3.5 

B23=8,9,10,11 N-Tra(B23)=1/4(8+9+10+11)=9.5 

B24=3,4,5,6 N-Tra(B24)=1/4(3+4+5+6)=4.5 

B31=6,8,9,11 N-Tra(B31)=1/4(6+8+9+11)=8.5 

B32=8,11,12,15 N-Tra(B32)=1/4(8+11+12+15)=11.5 

B33=15,18,19,22 N-Tra(B33)=1/4(15+18+19+22)=18.5 

B34=10,12,13,15 N-Tra(B34)=1/4(10+12+13+15)=12.5 
 

and fuzzy supplies are given as: 

Table 3: Trapezoidal Fuzzy Supplies  

Supply Trapezoidal Fuzzy Supply 

b1=4,9,10,15 N-Tra(b1)=1/4(4+9+10+15)=9.5 

b2=3,4,5,6 N-Tra(b2)=1/4(3+4+5+6)=4.5 

b3=8,13,15,20 N-Tra(b3)=1/4(8+13+15+20)=14 

and fuzzy demands are given as:  
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Table 4: Trapezoidal Fuzzy Demands 

Demand Trapezoidal Fuzzy Demand 

c1=8,10,11,13 N-Tra(c1)=1/4(8+10+11+13)=10.5 

c2=4,8,9,13 N-Tra(c2)=1/4(4+8+9+13)=8.5 

c3=4,6,7,9 N-Tra(c3)=1/4(4+6+7+9)=6.5 

c4=4,5,6,7 N-Tra(c4)=1/4(4+5+6+7)=5.5 
 

total fuzzy supply is given as: T = (9, 20, 24, 35) as well as total fuzzy demand is given as: F = (11, 20, 

24, 33), hence: 

Table 5: Trapezoidal Total Fuzzy Demands and Supply  

Demand / Supply  Trapezoidal Fuzzy Demand 

T=9,20,24,35 N-Tra(T)=1/4(9+20+24+35)=22 

F=11,20,24,33 N-Tra(F)=1/4(11+20+24+33)=22 
 

Since N-Tra (T) = N-Tra (F), the given problem is a valid problem. Now using our system, we convert 

FTP to pure TP. So, we have these reduced FTP: 

Table 6: Reduced FTP  

 1 2 3 4 Supply 

1 6.4 7.4 15.4 11.65 10.4 

2 5.65 4.4 10.4 5.4 5.4 

3 9.4 12.4 19.4 13.4 15 

Demand 11.4 9.4 7.4 6.4  
 

As shown in Table 6, the defuzzification results of FN obtain values of non-numerical values. 

Therefore, the existence of a negative value in TP is next to the fact that the solution of net TP is not 

important. Note that the solution and the useful function are quantitative, because its matrix is uni-

modular (26). If we solve the new problem, we will get the following answers: 

= = = = = =
12 13 23 31 33 34

  9.4 ,    5 ,    5.4 ,    11.4 ,    5 ,    6.4y y y y y y , 

and the total value of the problem is =
0

  160y . 

Table 7: Reduced Solution  

 1 2 3 4 Supply 

1  9.4 5  14.4 

2   5.4  5.4 

3 11.4  5 6.4 22.8 

Demand 11.4 9.4 15.4 6.4  
 

Now we can go back to the original problem and get the FS of FTP based on the data in table-7. 

Table 8: Reduced FNs, Demand and Supply  

 1 2 3 4 Supply 

1  4,8,9,13 -6,3,5,14  4,9,10,15 

2   3,4,5,6  3,4,5,6 

3 8,10,11,13  -6,2,6,14 4,5,6,7 8,13,15,20 

Demand 8,10,11,13 4,8,9,13 4,6,7,9 4,5,6,7  
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where the default OS for FTP provided is: 

 

( )=
*

12
  4, 8, 9,13y ; ( )= −

*

13
  6, 3, 5,14y ; ( )=

*

23
  3, 4, 5, 6y ; ( )=

*

31
  8,10,11,13y ; ( )= −

*

33
  6, 2, 6,14y ;

( )=
*

34
  4, 5, 6, 7y  

 

The results are the same as to the previous studies (4, 8). Note that the benefits of the changes are 

the same, but the benefits of objective work are different. The best CT net value for the problem 

provided by the Pandian system is 132.17 where it is obtained from our system is 160. That seems 

clear is that there is no single system to compare FN, and that different approaches can meet different 

desirable requirements. 

VIII. Conclusion  

In this article, a simple but effective parametric method has been introduced to configure FTP using 

the FN interface. This method can be used for all types of FTP, either triangular or trapezoidal FN 

with normal or negative data. The new system is a configuration, easy to install and can be used for 

all types of TP, or to increase or decrease the target function. 
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Abstract 

 

In this paper, a new distribution namely the length biased new quasi-Lindley distribution is proposed 

with the different weight function. The different mathematical and statistical properties of the 

proposed distribution are derived and discussed. The survival function, hazard rate function and 

mean residual life function for the length biased new quasi Lindley distribution is discussed. Also, 

concepts like stochastic ordering and entropy for proposed distribution are studied. The parameters 

of the proposed distribution are estimated by using the method of maximum likelihood estimation.  

The performance of the newly introduced distribution is studied using a real- life data set. 

 

Keywords: Length Biased Distribution, New Quasi Lindley Distribution, 

Reliability Analysis, Stochastic ordering, Maximum Likelihood Estimation. 

 

I. Introduction 
 

 The concept of weighted distributions was first introduced by [8] to model ascertainment 

bias, weighted distributions were later formalized in a unifying theory by [16]. Weighted 

distribution is used in a variety of research fields related to reliability, environment, engineering and 

biomedicine. The weighted distribution reduces to length-biased distribution when the weight 

function considers only the length of the units.  The concept of length-biased sampling was first 

introduced by [5] and [24]. [14] studied size-biased sampling and related form-invariant weighted 

distributions. Refer [15] for a general statistical discussion of weighted distributions. [12] proposed 

a useful result by giving a relationship between the original random variable X and its length-biased 

form Y when X is either Inverse Gaussian or Gamma distribution. Several researchers have studied 

length biased versions of different distributions see, [10], [6], [7], [17], [13] and [19].  

Initially Quasi Lindley distribution was proposed by [22]. Later New Quasi Lindley (NQL) 

distribution was studied by [21] for modelling various data sets with probability density function 

(p.d.f) as follows 

     𝑓(𝑥; 𝜃, 𝛼) =
𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥   ;𝑥 > 0, 𝜃 > 0, 𝜃2 + 𝛼 > 0                           (1) 
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The NQL distribution in (1) is a mixture of exponential and gamma distribution [exponential (θ) and 

gamma (2, θ)]. 

In the present work, length biased new Quasi Lindley distribution is proposed and discussed in next 

section. 

  

II. Length Biased New Quasi Lindley Distribution 
 

Suppose X be a non-negative random variable with pdf 𝑓(𝑥).  Let 𝑤(𝑥) be the non-negative 

weight function, and then the pdf of the weighted random variable X𝑤  is given by: 

𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥))
   ,   𝑥 > 0 

where 𝑤(𝑥) be a non - negative weight function and 

𝐸(𝑤(𝑥)) = ∫𝑤(𝑥)𝑓(𝑥)𝑑𝑥 < ∞ 

When 𝑤(𝑥) = 𝑥𝑐 ,the resulting distribution is termed as weighted distribution. When 𝑤(𝑥) = 𝑥  the 

resultant is known as size or length biased distribution. In this paper, the length biased version of 

new quasi-Lindley distribution is proposed. The weight function used is as follows 

 𝑤(𝑥) =  
𝑛𝑥

𝜃
                                                                      (2)  

According to [1], let X is a non-negative random variable with pdf  𝑓(𝑥). Let 𝑤(𝑥)  be the non-

negative weight function then the pdf 𝑓𝑙(𝑥) for a length biased distribution of X is given by: 

                                          𝑓𝑙(𝑥) =
𝑤∗(𝑥)𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤∗(𝑥)𝑤(𝑥))
   ,   𝑥 > 0                      (3) 

Assuming the  𝐸(𝑤(𝑥)𝑤∗(𝑥)) = ∫𝑤(𝑥)𝑤∗(𝑥)𝑓(𝑥)𝑑𝑥 < ∞ 

Provided that 𝑤∗(𝑥) = 𝑥  

Using equation (1) and (2) in (3), the pdf of length biased new quasi-Lindley (LBNQL) distribution 

is  

𝑓𝑙(𝑥; 𝜃, 𝛼) =

𝑛𝑥
𝜃

𝑥𝜃2

𝜃2 + 𝛼
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥

𝐸(𝑤(𝑥)𝑤∗(𝑥))
 

where 

𝐸(𝑤(𝑥)𝑤∗(𝑥)) = ∫
𝑛𝑥

𝜃

𝑥𝜃2

𝜃2 + 𝛼
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥𝑑𝑥

∞

0

=
2𝑛(𝜃2 + 3𝛼)

𝜃3(𝜃2 + 𝛼)
 

 

                           𝑓𝑙(𝑥; 𝜃, 𝛼) =
𝜃4

2(𝜃2+3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥    ;𝑥 > 0, 𝜃 > 0, 𝛼 > 0             (4)         

  

and the cumulative distribution function (CDF) of LBNQL distribution is obtained as 

𝐹(𝑥) = 1 − 𝑃𝑟(𝑋 > 𝑥) = 1 − ∫ 𝑓𝑙(𝑡; 𝜃, 𝛼)𝑑𝑡
∞

𝑥

 

𝐹(𝑥) = 1 −
𝜃4

2(𝜃2 + 3𝛼)
∫ 𝑡2(𝜃 + 𝛼𝑡)𝑒−𝜃𝑡𝑑𝑡

∞

𝑥

 

                                       𝐹(𝑥) = 1 −
𝜃4

2(𝜃2+3𝛼)
(𝜃 ∫ 𝑡2∞

𝑥
𝑒−𝜃𝑡𝑑𝑡 + 𝛼 ∫ 𝑡3∞

𝑥
𝑒−𝜃𝑡𝑑𝑡) 

after the simplification, the CDF of the LBNQL distribution is 

               𝐹(𝑥) = 1 − (1 +
𝛼𝜃3𝑥3+𝑥(6𝛼𝜃+2𝜃3)+(3𝛼𝜃2+𝜃4)𝑥2

2(𝜃2+3𝛼)
) 𝑒−𝜃𝑥                         (5) 
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Figure 1: PDF of LBNQL distribution for different values of θ and α. 

 

 
Figure 2: CDF of LBNQL distribution for different values of θ and α. 

 

III. Reliability Analysis 
 

In this section, the reliability function or survival function, hazard rate function and mean residual 

life for the LBNQL distribution is discussed. 

 

I. Survival Function of LBNQL Distribution 

 

The survival function or the reliability function of Length biased new quasi-Lindley distribution 

(LBNQLD) is defined as 

                                 𝑆(𝑥) = 1 − 𝐹(𝑥)       (6) 

Substituting from equation (5) in (6), 

  𝑆(𝑥) = (1 +
𝛼𝜃3𝑥3+𝑥(6𝛼𝜃+2𝜃3)+(3𝛼𝜃2+𝜃4)𝑥2

2(𝜃2+3𝛼)
) 𝑒−𝜃𝑥                                (7) 

100



 
N.W. Andure (Yawale) and R.B. Ade 
THE LENGTH BIASED NEW QUASI LINDLEY 
DISTRIBUTION: STATISTICAL PROPERTIES AND APPLICATION 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

 

 
Figure 3: survival function of LBNQL distribution for different values of θ and α. 

 

II. Hazard Rate Function of LBNQL Distribution 
 

The basic tool for studying the aging and reliability characteristics of the system is the hazard rate 

(HR). The hazard function is also known as the hazard rate. Thus, the hazard rate function of the 

LBNQL distribution is given by 

                                                           ℎ(𝑥) =
𝑓𝑙(𝑥;𝜃,𝛼)

𝑆(𝑥)
                               (8) 

Substitute the value of (4) and (7) in (8), 

ℎ(𝑥) =
𝑥2𝜃4(𝜃 + 𝛼𝑥)

2(𝜃2 + 3𝛼) + 𝛼𝜃3𝑥3 + (6𝛼𝜃 + 2𝜃3)𝑥 + (3𝛼𝜃2 + 𝜃4)𝑥2
 

 

 

 
Figure.4: Hazard rate function of LBNQL distribution for different values of θ and α. 

 

Figure (4) shows the behavior of hazard function. For different choices of 𝛼 and 𝜃 it shows increasing 

failure rate. 
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III. Mean Residual Life Function of LBNQL Distribution 

 

The mean residual life function is defined as 

𝑚(𝑥) = 𝐸[𝑋 > 𝑥] =
1

1 − 𝐹(𝑥)
∫ [1 − 𝐹(𝑡)]

∞

𝑥

𝑑𝑡 

=
1

(1 +
𝛼𝜃3𝑥3 + 𝑥(6𝛼𝜃 + 2𝜃3) + (3𝛼𝜃2 + 𝜃4)𝑥2

2(𝜃2 + 3𝛼)
) 𝑒−𝜃𝑥

 

 

× ∫ (1 +
𝛼𝜃3𝑡3 + 𝑡(6𝛼𝜃 + 2𝜃3) + (3𝛼𝜃2 + 𝜃4)𝑡2

2(𝜃2 + 3𝛼)
) 𝑒−𝜃𝑡𝑑𝑡

∞

𝑥

 

 
After simplifying, we get 

𝑚(𝑥) =
24𝛼 + 6𝜃2 + 𝛼𝜃3𝑥3 + 𝑥(18𝛼𝜃 + 4𝜃3) + (6𝛼𝜃2 + 𝜃4)𝑥2

𝜃(6𝛼 + 2𝜃2 + 𝛼𝜃3𝑥3 + (3𝛼𝜃2 + 𝜃4)𝑥2 + 𝑥(6𝛼𝜃 + 2𝜃3))
 

 

It can be easily verified that     𝑚(0) =
3(𝜃2+4𝛼)

𝜃(𝜃2+3𝛼)
= 𝜇1

′
 

 

IV. Moments and Associated Measures 
 

Let X denotes the random variable of LBNQL distribution with parameters α and 𝜃 then the 𝑟𝑡ℎ 

order moment of LBNQL distribution can be defined as 

𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓𝑙(𝑥; 𝜃, 𝛼)

∞

0

𝑑𝑥 

    = ∫ 𝑥𝑟+2∞

0

𝜃4

2(𝜃2+3𝛼)
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥𝑑𝑥 

 =
𝜃4

2(𝜃2+3𝛼)
∫ 𝑥𝑟+2∞

0
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥𝑑𝑥 

                               =
𝜃4

2(𝜃2+3𝛼)
(𝜃 ∫ 𝑥𝑟+3−1∞

0
𝑒−𝜃𝑥𝑑𝑥 + 𝛼 ∫ 𝑥𝑟+4−1∞

0
𝑒−𝜃𝑥𝑑𝑥) 

                                    𝜇𝑟
′ =

𝜃4

2(𝜃2+3𝛼)
(

𝛤(𝑟+3)

𝜃𝑟+2 +
𝛼𝛤(𝑟+4)

𝜃𝑟+4 )                                                     (9)                                            

Putting 𝑟 = 1 in (9), the mean of LBNQL distribution is given by 

𝜇1
′ = 𝐸(𝑋) =

3(𝜃2 + 4𝛼)

𝜃(𝜃2 + 3𝛼)
 

and putting  𝑟 = 2,3,4  in (9), the second, third and fourth raw moments are  

         𝜇2
′ = 𝐸(𝑋2) =

12(𝜃2+5𝛼)

𝜃2(𝜃2+3𝛼)
  ,        𝜇3

′ = 𝐸(𝑋3) =
60(𝜃2+6𝛼)

𝜃3(𝜃2+3𝛼)
 ,     𝜇4

′ = 𝐸(𝑋4) =
360(𝜃2+7𝛼)

𝜃4(𝜃2+3𝛼)
 

Therefore, 

                                                 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
3(12𝛼2+8𝛼𝜃2+𝜃4)

𝜃2(𝜃2+3𝛼)2
                                             

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 =
√3(12𝛼2 + 8𝛼𝜃2 + 𝜃4)

𝜃(𝜃2 + 3𝛼)
 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑐. 𝑣) =
𝜎

𝜇
=

√3(12𝛼2 + 8𝛼𝜃2 + 𝜃4)

3(𝜃2 + 4𝛼)
 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝛾) =
𝜎2

𝜇
=

(12𝛼2 + 8𝛼𝜃2 + 𝜃4)

𝜃(𝜃2 + 3𝛼)(𝜃2 + 4𝛼)
 

 
 

  

102



 
N.W. Andure (Yawale) and R.B. Ade 
THE LENGTH BIASED NEW QUASI LINDLEY 
DISTRIBUTION: STATISTICAL PROPERTIES AND APPLICATION 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

 

I. Moment Generating Function and Characteristic Function 

 

Let the random variable X follows the LBNQL distribution. By definition of moment generating 

function of X and using equation (4), we get 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥
∞

0

 𝑓𝑙(𝑥; 𝜃, 𝛼)𝑑𝑥 

                                                                           = ∫ (1 + (𝑡𝑥) +
(𝑡𝑥)

2!

2
+

(𝑡𝑥)3

3!
+ ⋯)𝑓𝑙(𝑥; 𝜃, 𝛼)𝑑𝑥

∞

0
 

                                                                           = ∫ ∑
(𝑡𝑥)𝑟

𝑟!

∞
𝑟=0

∞

0
𝑓𝑙(𝑥; 𝜃, 𝛼)𝑑𝑥 

 

                                                                           = ∑
(𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟∞

0
𝑓𝑙(𝑥; 𝜃, 𝛼)𝑑𝑥 

 

                                    = ∑
(𝑡)𝑟

𝑟!

∞
𝑟=0 𝐸(𝑋𝑟)                                                                                (10) 

 

Substituting from equation (9) in (10),    

𝑀𝑋(𝑡) = ∑
(𝑡)𝑟

𝑟!

∞

𝑟=0

{
𝜃4

2(𝜃2 + 3𝛼)
(
𝛤(𝑟 + 3)

𝜃𝑟+2
+

𝛼𝛤(𝑟 + 4)

𝜃𝑟+4
)}   

Similarly, the characteristic function of LBNQL distribution is obtained as 

𝜙𝑋(𝑡) = 𝑀𝑋(𝑖𝑡) 

 ⟹ 𝜙𝑥(𝑡) =  𝑀𝑋(𝑖𝑡) = ∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑟=0

{
𝜃4

2(𝜃2 + 3𝛼)
(
𝛤(𝑟 + 3)

𝜃𝑟+2
+

𝛼𝛤(𝑟 + 4)

𝜃𝑟+4
)} 

 

V. Entropy  

 

The concept of entropy is important in a variety of topics such as probability and mathematics, 

physics, communication theory and economics.  The entropy of random variable X is a measure of 

the variability of uncertainty. 

 

I. R´enyi Entropy 
  

R´enyi entropy [18] is important in nature and mathematics as an indicator of diversity. R´enyi 

entropy is also important in quantum data, where it can be used as a catch measure. R´enyi entropy 

is provided by 

𝑅𝑒(𝛿) =
1

1 − 𝛿
𝑙𝑜𝑔 (∫ 𝑓𝑙

𝛿(𝑥; 𝜃, 𝛼)
∞

0

𝑑𝑥)  

where  𝛿 > 0 and  𝛿 ≠ 1 

𝑅𝑒(𝛿) =
1

1 − 𝛿
𝑙𝑜𝑔 (∫ (

𝜃4

2(𝜃2 + 3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥)

𝛿

𝑑𝑥
∞

0

) 

𝑅𝑒(𝛿) =
1

1 − 𝛿
𝑙𝑜𝑔 ((

𝜃5

2(𝜃2 + 3𝛼)
)

𝛿

∫ 𝑥2𝛿
∞

0

(1 +
𝛼

𝜃
𝑥)

𝛿

𝑒−𝜃𝛿𝑥𝑑𝑥) 

putting  (1 +
𝛼

𝜃
𝑥)

𝛿

= ∑ (𝛿
𝑗
)∞

𝑗=0 (
𝛼

𝜃
𝑥)

𝑗

 

𝑅𝑒(𝛿) =
1

1−𝛿
𝑙𝑜𝑔 {(

𝜃5

2(𝜃2+3𝛼)
)

𝛿

∑ (𝛿
𝑗
)∞

𝑗=0 (
𝛼

𝜃
)

𝑗

∫ (𝑥)2𝛿+𝑗+1−1∞

0
𝑒−𝜃𝛿𝑥𝑑𝑥}  
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𝑅𝑒(𝛿) =
1

1 − 𝛿
𝑙𝑜𝑔 {(

𝜃5

2(𝜃2 + 3𝛼)
)

𝛿

∑(
𝛿

𝑗
)

∞

𝑗=0

(
𝛼

𝜃
)

𝑗 𝛤(2𝛿 + 𝑗 + 1)

(𝜃𝛿)2𝛿+𝑗+1
} 

 

II. Tsallis Entropy  

 

A generalization of Boltzmann-Gibbs (B.G) statistical properties initiated by Tsallis has received 

great attention. This generalization of BG statistic was proposed firstly by introducing the 

mathematical expression of Tsallis entropy by  [23] for a continuous random variable and is defined 

as follows 

𝑆𝜆 =
1

1 − 𝜆
(1 − ∫ 𝑓𝑙

𝜆
∞

0

(𝑥; 𝜃, 𝛼)𝑑𝑥) 

𝑆𝜆 =
1

1 − 𝜆
(1 − ∫ (

𝜃4

2(𝜃2 + 3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥)

𝜆∞

0

𝑑𝑥) 

 𝑆𝜆 =
1

1 − 𝜆
(1 − (

𝜃5

2(𝜃2 + 3𝛼)
)

𝜆

∫ 𝑥2𝜆
∞

0

(1 +
𝛼

𝜃
𝑥)

𝜆

𝑒−𝜆𝜃𝑥𝑑𝑥) 

putting  (1 +
𝛼

𝜃
𝑥)

𝜆

= ∑ (𝜆
𝑗
)∞

𝑗=0 (
𝛼

𝜃
𝑥)

𝑗

 

𝑆𝜆 =
1

1 − 𝜆
{1 − (

𝜃5

2(𝜃2 + 3𝛼)
)

𝜆

∑(
𝜆

𝑗
)

∞

𝑗=0

(
𝛼

𝜃
)

𝑗

∫ (𝑥)2𝜆+𝑗
∞

0

 𝑒−𝜃𝜆𝑥𝑑𝑥} 

𝑆𝜆 =
1

1 − 𝜆
{1 − (

𝜃5

2(𝜃2 + 3𝛼)
)

𝛿

∑(
𝜆

𝑗
)

∞

𝑗=0

(
𝛼

𝜃
)

𝑗 𝛤(2𝜆 + 𝑗 + 1)

(𝜃𝜆)2𝜆+𝑗+1
} 

 

VI. Order Statistic of LBNQL Distribution 
 

Order statistic have a central role in statistical theory. Suppose 𝑋(1), 𝑋(2), … …… … , 𝑋(𝑛) be the 

continuous ascending order statistic. The probability density function of the 𝑗𝑡ℎ order statistic 𝑋(𝑗) 

for  1 ≤ 𝑗 ≤ 𝑛 is  

                     𝑓𝑋(𝑗)
(𝑥) =

𝑛!

(𝑗−1)!(𝑛−𝑗)!
[𝐹(𝑥)]𝑗−1 [1 − 𝐹(𝑥)]𝑛−𝑗𝑓1(𝑥)                               (11) 

 

Substitute the value of pdf and cdf of LBNQL distribution in (11), we get 

𝑓𝑋(𝑗)
(𝑥) =

𝑛!

(𝑗−1)!(𝑛−𝑗)!
[1 − (1 +

𝛼𝜃3𝑥3+𝑥(6𝛼𝜃+2𝜃3)+(3𝛼𝜃2+𝜃4)𝑥2

2(𝜃2+3𝛼)
) 𝑒−𝜃𝑥 ]

𝑗−1

  

    × [(1 +
𝛼𝜃3𝑥3+𝑥(6𝛼𝜃+2𝜃3)+(3𝛼𝜃2+𝜃4)𝑥2

2(𝜃2+3𝛼)
) 𝑒−𝜃𝑥 ]

𝑛−𝑗

×
𝜃4

2(𝜃2+3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥            (12) 

 

Put   𝑗 = 1 in equation (12), the probability density function of first order statistics of LBNQL 

distribution. 

 

𝑓𝑋(1)
(𝑥) = 𝑛 [(1 +

𝛼𝜃3𝑥3+𝑥(6𝛼𝜃+2𝜃3)+(3𝛼𝜃2+𝜃4)𝑥2

2(𝜃2+3𝛼)
) 𝑒−𝜃𝑥]

𝑛−1

×
𝜃4

2(𝜃2+3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥   

 

Put  𝑗 = 𝑛 in equation (12), the probability density function of  𝑛𝑡ℎ order statistics of LBNQLD. 

 

𝑓𝑋(𝑛)
(𝑥) = 𝑛 [1 − (1 +

𝛼𝜃3𝑥3 + 𝑥(6𝛼𝜃 + 2𝜃3) + (3𝛼𝜃2 + 𝜃4)𝑥2

2(𝜃2 + 3𝛼)
) 𝑒−𝜃𝑥  ]

𝑛−1
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×
𝜃4

2(𝜃2 + 3𝛼)
𝑥2(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥  

 

VII. Stochastic ordering 

 
Stochastic ordering of positive continuous random variables is an important tool for judging their 

comparative behavior. A random variable X is said to be smaller than a random variable Y in the  

1) Stochastic order   (𝑋 ≤𝑠𝑡 𝑌)  if  𝐹𝑋(𝑥)  ≥  𝐹𝑌(𝑥)  for all 𝑥  

2) Hazard rate order (𝑋 ≤ℎ𝑟 𝑌)  if  ℎ𝑋(𝑥) ≥  ℎ𝑌(𝑥)  for all 𝑥  

3) Mean residual life order  (𝑋 ≤𝑚𝑟𝑙 𝑌)  if  if  𝑚𝑋(𝑥)  ≤  𝑚𝑌(𝑥)  for all 𝑥 

4) Likelihood ratio order  (𝑋 ≤𝑙𝑟 𝑌)  if  
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 decreases in 𝑥 

The following important interrelations due to [20] are well-known for establishing stochastic 

ordering of distributions 

𝑋 ≤𝑙𝑟 𝑌 ⇒ 𝑋 ≤ℎ𝑟 𝑌 ⇒ 𝑋 ≤𝑚𝑟𝑙 𝑌 

⇓ 
𝑋 ≤𝑠𝑡 𝑌 

The LBNQL distribution is ordered with respect to the strongest ‘likelihood ratio ordering’ as shown 

in the following theorem:  

Theorem 7.1: Let 𝑋~𝐿𝐵𝑁𝑄𝐿(𝜃1, 𝛼1) and 𝑌~𝐿𝐵𝑁𝑄𝐿(𝜃2, 𝛼2).If 𝜃1 = 𝜃2 and  𝛼1 ≤ 𝛼2 or ( 𝛼1 = 𝛼2  and   

𝜃1 ≥ 𝜃2) then 𝑋 ≤𝑙𝑟 𝑌 and hence 𝑋 ≤ℎ𝑟 𝑌,  𝑋 ≤𝑚𝑟𝑙 𝑌 and    𝑋 ≤𝑠𝑡 𝑌. 
 

Proof: From the pdf of LBNQL distribution (4), we have 

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
=

𝜃1
4(𝜃2

2+3𝛼2)

𝜃2
4(𝜃1

2+3𝛼1)
(

𝜃1+𝛼1𝑥

𝜃2+𝛼2𝑥
) 𝑒−(𝜃1−𝜃2)𝑥      ;𝑥 > 0 

Now 

       log
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 = log [

𝜃1
4(𝜃2

2+3𝛼2)

𝜃2
4(𝜃1

2+3𝛼1)
]  + log(𝜃1 + 𝛼1𝑥) − log(𝜃2 + 𝛼2𝑥) − (𝜃1 − 𝜃2)𝑥     

This gives 

𝑑

𝑑𝑥
(log  

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 ) =

𝛼1

(𝜃1 + 𝛼1𝑥)
−

𝛼2

(𝜃2 + 𝛼2𝑥)
− (𝜃1 − 𝜃2) 

=
𝛼1𝜃2 − 𝛼2𝜃1

(𝜃1 + 𝛼1𝑥)(𝜃2 + 𝛼2𝑥)
− (𝜃1 − 𝜃2) 

Case I:  If  𝜃1 = 𝜃2  and 𝛼1 ≤ 𝛼2 , then 
𝑑

𝑑𝑥
(log

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
) < 0 . This means that 𝑋 ≤𝑙𝑟 𝑌 and hence 𝑋 ≤ℎ𝑟 𝑌,  

𝑋 ≤𝑚𝑟𝑙 𝑌 and    𝑋 ≤𝑠𝑡 𝑌. 

Case II: If  𝛼1 = 𝛼2  and 𝜃1 ≥ 𝜃2 , then 
𝑑

𝑑𝑥
(log

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
) < 0 . This means that 𝑋 ≤𝑙𝑟 𝑌 and hence    𝑋 ≤ℎ𝑟 𝑌,   

𝑋 ≤𝑚𝑟𝑙 𝑌 and    𝑋 ≤𝑠𝑡 𝑌. 

Thus, LBNQL distribution follows the strongest likelihood ratio ordering. 

 

VIII. Bonferroni and Lorenz curve 
 

The most important inequality curves are called Bonferroni and Lorenz curve, which have some 

application in applied science such as economics, reliability, demography and medicine.  Bonferroni 

and Lorenz curves are proposed by [3]. The Bonferroni and Lorentz curves for the LBNQL 

distribution is obtained as 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥

𝑞

0

𝑓𝑙(𝑥, 𝜃, 𝛼)𝑑𝑥 

and 
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𝐿(𝑝) = 𝑝𝐵(𝑝) =
1

𝜇
∫ 𝑥

𝑞

0

𝑓𝑙(𝑥; 𝜃, 𝛼)𝑑𝑥 

where                                         𝐸(𝑥) = 𝜇 =
3(𝜃2+4𝛼)

𝜃(𝜃2+3𝛼)
    and 𝑞 = 𝐹−1(𝑝) 

 

∴  𝐵(𝑝) =
𝜃(𝜃2 + 3𝛼)

𝑝3(𝜃2 + 4𝛼)
∫ 𝑥3

𝑞

0

𝜃4

2(𝜃2 + 3𝛼)
(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥𝑑𝑥 

 

𝐵(𝑝) =
𝜃5

𝑝6(𝜃2 + 4𝛼)
∫ 𝑥3

𝑞

0

(𝜃 + 𝛼𝑥)𝑒−𝜃𝑥𝑑𝑥 

after simplification, 

𝐵(𝑝) =
𝜃2𝛾(4, 𝜃𝑞) + 𝛼𝛾(5, 𝜃𝑞)

𝑝6(𝜃2 + 4𝛼)
 

and  

𝐿(𝑝) = 𝑝𝐵(𝑝) =
1

6(𝜃2 + 4𝛼)
(𝜃2𝛾(4, 𝜃𝑞) + 𝛼𝛾(5, 𝜃𝑞)) 

 

 

IX. Maximum Likelihood Estimation 
 

The method of maximum likelihood is the most frequently used method of parameter estimation 

given in [4]. The maximum likelihood method of estimation has been adopted to estimate the 

unknown parameter α and θ   of the LBNQL distribution. Consider the random sample of size n 

from the LBNQL distribution, the likelihood function is given by 

𝐿(𝑥; 𝛼, 𝜃) = (
𝜃4

2(𝜃2 + 3𝛼)
)

𝑛

∏ 𝑥𝑖
2

𝑛

𝑖=1

(𝜃 + 𝛼𝑥𝑖)𝑒
−𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1  

The log likelihood function is given by 

log 𝑙 = 4𝑛 log 𝜃 –𝑛 log(2(𝜃2 + 3𝛼)) + 2∑ log 𝑥𝑖
𝑛
𝑖=1 + ∑ log(𝜃 + 𝛼𝑥𝑖)

𝑛
𝑖=1 − 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1                     (13)                 

Now maximize the above log-likelihood function given in equation (13) to get maximum likelihood 

estimate of unknown parameters of length biased new quasi-Lindley distribution. For this purpose, 

take the first derivative of the above log-likelihood equation with respect to parameters 𝛼  and  𝜃   

and equate to zero respectively. 

                   ⇒
4𝑛

𝜃
−

2𝑛𝜃

(𝜃2+3𝛼)
+ ∑

1

𝜃+𝛼𝑥𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 = 0                               (14) 

                ⇒
−3𝑛

(𝜃2+3𝛼)
+ ∑

𝑥𝑖

𝜃+𝛼𝑥𝑖

𝑛
𝑖=1 = 0               (15) 

Equations (14) and (15) are nonlinear equation. The exact solution of above equation is not possible 

numerically. Above nonlinear equations are solved with the help of R Software.  

Using the large sample property of MLE,  𝜆̂ can be treated as being approximately normal with mean 

𝜆 and variance covariance matrix equal to the inverse of the expected information matrix, i.e., 

√𝑛(𝜆̂ −  𝜆) → 𝑁(0, 𝐼−1 (𝜆)) 

 𝐼( 𝜆) is the information matrix then its inverse matrix is  𝐼−1 (𝜆). The 𝐼( 𝜆̂) variance-covariance 

matrix is essentially equal to the inverse of the expected information matrix  𝐼−1 (𝜆̂), the observed 

information matrix is given by  
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𝐼(𝜆) = −
1

𝑛

[
 
 
 
 𝐸 (

𝜕2 log 𝑙  

𝜕𝜃2
)      𝐸 (

𝜕2 log 𝑙  

𝜕𝜃𝜕𝛼
)   

𝐸 (
𝜕2 log 𝑙  

𝜕𝛼𝜕𝜃
)     𝐸 (

𝜕2 log 𝑙  

𝜕𝛼  2
)   

]
 
 
 
 

 

 

where  𝐼(𝜆) is Fisher’s Information Matrix. 

𝜕2 log 𝑙 

𝜕𝜃2
=

−4𝑛

𝜃2
+

2𝑛(𝜃2 − 3𝛼)

(𝜃2 + 3𝛼)2
− ∑

1

(𝜃 + 𝛼𝑥𝑖)
2

𝑛

𝑖=1

 

𝜕2 log 𝑙  

𝜕𝛼2
=

9𝑛

(𝜃2 + 3𝛼)2
− ∑ (

𝑥𝑖
2

(𝜃 + 𝛼𝑥𝑖)
2
)

𝑛

𝑖=1

 

𝜕2log 𝑙  

𝜕𝜃𝜕𝛼
=

𝜕2 log 𝑙  

𝜕𝛼𝜕𝜃
=

6𝑛𝜃

(𝜃2 + 3𝛼)2
− ∑(

𝑥𝑖

(𝜃 + 𝛼𝑥𝑖)
2
)

𝑛

𝑖=1

 

Since 𝜆 being unknown, 𝐼−1(𝜆) is estimated by using  𝐼−1(𝜆̂) and we obtain the asymptotic 

confidence intervals for 𝛼 and  𝜃. Hence the approximate 100(1 −  𝜓)% confidence interval for 𝛼 

and  𝜃 are respectively given by 

𝛼̂ ± 𝑧𝜓

2

√𝐼𝛼𝛼
−1(𝜆̂),       𝜃̂ ± 𝑧𝜓

2

√𝐼𝜃𝜃
−1(𝜆̂) 

 

Where 𝑧𝜓

2

  is the  𝜓𝑡ℎ
 percentile of the standard distribution. 

 

X.  Application 
 

In this section, one real life data set is analyzed for the purpose of illustration to show the usefulness 

and flexibility of the LBNQL distribution. The LBNQL model is compared with other distributions, 

such as, New Quasi Lindley (NQL) distribution, [21], length biased weighted New Quasi Lindley 

(LBWNQL) distribution [9]. The ML Estimates of the unknown parameters are determined for the 

LBNQL distribution and two other models along with goodness of fit test.   

 

Data set I: Following data depicts the fatigue life of some aluminum’s coupons cut in specific manner 

(see,[2]). The dataset (after subtracting 65) is given below: 

 

5, 25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43, 43, 44, 44, 47, 47, 48, 49, 49, 49 ,51, 54, 55, 55 ,56 ,56, 56, 58, 

59, 59, 59, 59, 59, 63, 63, 64 ,64, 55, 65, 65, 65, 66, 66, 66, 66, 67, 67, 67, 68, 69, 69, 69 ,69, 71, 71, 72, 73, 

73, 73, 74, 74, 76, 76, 77, 77, 77, 77, 77 ,77, 79, 79, 80, 81, 83, 83, 84, 86, 86, 87, 90, 91, 92, 92, 92 ,92, 93, 

93, 94, 97, 98, 98, 99, 101, 101, 103, 105, 109, 139, 147 

 

The data set is modeled by LBNQL distribution and compared with the New Quasi Lindley, length 

biased weighted New Quasi Lindley distribution.  Table 1 describes estimated unknown parameters, 

-log likelihood (-LL), the values of the AIC (Akaike Information Criterion), BIC (Bayesian 

Information Criterion) and K-S Statistics calculated for above data using LBNQL, LBWNQL, and 

NQL distributions. 
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Table 1.  Estimate and goodness of fit measures under considered distribution based on data set. 

Model Estimated Parameter  -2LL AIC BIC K-S P-Value 

𝛼̂ 𝜃̂ 

LBNQLD 74.01668 0.05801 945.7779 949.7779   955.0082 0.14788 0.2403 

LBWNQLD 425.13398 0.04350 962.6170 966.6170   971.8473 0.18094 0.1436 

NQL 168.18633 0.02900 992.7213 996.7213 1001.9516 0.23557 0.05719 

 

From table 1 it can be seen that the value of the statistics -2LL, AIC, BIC values of LBNQL distribution 

are comparatively smaller than the other distributions on a data set. Therefore, the result shows that 

LBNQL distribution provides a significantly better fit than the other models.  

 

 
Figure 5: Empirical CDF and fitted CDF plot of data set. 

 

 
Figure 6: fitted PDF plot of data set. 
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XI. Conclusion 

 
In the present study, a Length biased NQL distribution is proposed. Some statistical properties along 

with Reneyi entropy, and Tsallis entropy, Bonferroni and Lorenz curves have been discussed. 

Various reliability properties such as hazard rate function, mean residual life function, stochastic 

orderings have been obtained. It is proved that LBNQL distribution follows the strongest likelihood 

ratio ordering. For different choices of the parameters α and θ increasing failure rate is observed. 

The parameters of the proposed distribution are obtained by using the maximum likelihood 

estimation technique. Finally, the new proposed distribution is tested by applying to a real-life data 

set and compared with new quasi Lindley distribution and length biased weighted new quasi 

Lindley distribution. It is observed from the table 1 that LBNQL distribution gives better fit over 

both distributions on a data set. 
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Abstract 

 

In In this paper power weighted Akash distribution (PWAD) which includes weighted Akash 

distribution (WAD), power Akash distribution (PAD) and Akash distribution as particular cases has 

been proposed and investigated. Its moments, hazard rate function and mean residual life function 

have been discussed. Method of maximum likelihood estimation has been discussed for estimating the 

parameters of the distribution. Applications of the proposed distribution to two real lifetime datasets 

have been presented and compared with other one parameter, two-parameter and three-parameter 

well-known lifetime distributions.  

 

Keywords: Akash distribution, Weighted Akash distribution, Power Akash 

distribution, Hazard rate function, stochastic ordering, Maximum Likelihood 

estimation, Applications. 

 

 

 

I. Introduction 
 

Shanker and Shukla [1] proposed a two-parameter weighted Akash distribution (WAD) having 

parameters 𝜃 and 𝛼 and defined by its probability density function (pdf) and cumulative 

distribution function (cdf) 

 
𝑓1(𝑦; 𝜃, 𝛼) =

𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)

𝑦𝛼−1

Γ(𝛼)
(1 + 𝑦2)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0 

(1.1) 

 

          

 
𝐹1(𝑦; 𝜃, 𝛼) = 1 −

[𝜃2 + 𝛼(𝛼 + 1)]Γ(𝛼, 𝜃𝑦) + (𝜃𝑦)𝛼(𝜃𝑦 + 𝛼 + 1)𝑒−𝜃𝑦

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
 (1.2) 

 

where Γ(𝛼) and Γ(𝛼, 𝑧) are the complete gamma function and the upper incomplete gamma 

function defined as 

 
Γ(𝛼) = ∫ 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

; 𝛼 > 0           (1.3) 
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Γ(𝛼, 𝑧) = ∫ 𝑒−𝑦𝑡𝛼−1𝑑𝑡; 𝛼 > 0, 𝑧 ≥ 0

∞

𝑧

 (1.4) 

 

Its structural properties including moments, hazard rate function, mean residual life function, 

estimation of parameters and applications for modeling survival time data has been discussed by 

Shanker and Shukla [1].  Shanker and Shukla [2] discussed various moments based properties 

including coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of 

dispersion of weighted Akash distribution and its applications to model lifetime data from 

biomedical sciences and engineering. 

 

Shanker and Shukla [2] proposed a power Akash distribution (PAD) having parameters 𝜃 and 𝛼 

and defined by its pdf and cdf 

 
𝑓2(𝑦; 𝜃, 𝛽) =

𝛽𝜃3

(𝜃2 + 2)
(1 + 𝑦2𝛽)𝑦𝛽−1𝑒−𝜃𝑦

𝛽
; 𝑦

> 0, 𝜃 > 0, 𝛽 > 0 

(1.5) 

                   

 
𝐹2(𝑦; 𝜃, 𝛽) = 1 − [1 +

𝜃𝑦𝛽(𝜃𝑦𝛽 + 2)

𝜃2 + 2
] 𝑒−𝜃𝑦

𝛽
; 𝑦

> 0, 𝜃 > 0, 𝛽 > 0 

(1.6) 

  

Note that the PAD is a convex combination of Weibull (𝛼, 𝜃) and a generalized gamma 

(2, 𝛼, 𝜃)distribution with mixing proportion
𝜃2

𝜃2+2
. Shanker and Shukla [1] has discussed the 

properties of PAD including the shapes of the density, hazard rate functions, moments, skewness 

and kurtosis measures, estimation of parameters using maximum likelihood estimation and 

application to model a real lifetime data from engineering. Recall that WAD and PAD reduces to 

Akash distribution at 𝛼 = 1, and 𝛽 = 1 respectively. The Akash distribution proposed by Shanker 

[3] is defined by its pdf and cdf      

     

 𝑓3(𝑦; 𝜃) =
𝜃3

𝜃2 + 2
(1 + 𝑦2)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0 (1.7) 

                 

 𝐹3(𝑦; 𝜃) = 1 − [1 +
𝜃𝑦(𝜃𝑦 + 2)

𝜃2 + 2
] 𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0 (1.8) 

                                                                                   

Shanker [3] has discussed its various statistical and mathematical properties including shapes of 

the density. Moments and moments based measures, hazard rate function, mean residual life 

function, stochastic ordering, mean deviations, order statistics, Bonferroni and Lorenz curves, 

Renyi entropy measure, stress-strength reliability, estimation of parameter using both the method 

of moment and the maximum likelihood estimation and application to model lifetime data from 

engineering and biomedical sciences. 

 

In the present paper, a three - parameter power weighted Akash distribution which includes 

Akash distribution, WAD, and PAD as particular cases, has been proposed and discussed. Its raw 

moments have been given. The survival function and the hazard rate function of the distribution 

have been derived and their shapes have been discussed for varying values of the parameters. The 

estimation of its parameters has been discussed using maximum likelihood method. Finally, the 

goodness of fit and the applications of the distribution have been explained through two real 

lifetime datasets and the fit has been compared with other one parameter, two-parameter and 

three-parameter lifetime distributions. 
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II. Power weighted Akash distribution  

 

Assuming the power transformation 𝑋 = 𝑌
1

𝛽 in (1.1), the pdf of the random variable 𝑋can be 

obtained as 

            

 
𝑓4(𝑥; 𝜃, 𝛼, 𝛽) =

𝛽𝜃𝛼+2

𝜃2 + 𝛼2 + 𝛼

𝑥𝛽𝛼−1

Γ(𝛼)
(1 + 𝑥2𝛽)𝑒−𝜃𝑥

𝛽
; 𝑥

> 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

(2.1) 

 

We would call the distribution in (2.1) as the power weighted Akash distribution (PWAD). It can 

be easily verified that the WAD(𝜃, 𝛼) in (1.1),  PAD(𝜃, 𝛽) in (1.5) and Akash(𝜃)in (1.7) are the 

special cases of PWAD for (𝛽 = 1),(𝛼 = 1)and (𝛼 = 𝛽 = 1), respectively. 

 

It can be easily verified that PWAD is a convex combination of generalized gamma distribution 

(GGD) having parameters (𝜃, 𝛼, 𝛽)proposed by Stacy (1962) and GGD having parameters (𝜃, 𝛼 +

2, 𝛽).  

 

We have  

 

𝑓4(𝑥; 𝜃, 𝛼, 𝛽) = 𝑝𝑔1(𝑥; 𝜃, 𝛼, 𝛽) + (1 − 𝑝)𝑔2(𝑥; 𝜃, 𝛼 + 2, 𝛽), 

 

where  

                                   𝑝 =
𝜃2

𝜃2+𝛼2+𝛼
 

                          𝑔1(𝑥; 𝜃, 𝛼, 𝛽) =
𝛽𝜃𝛼

Γ(𝛼)
𝑥𝛽𝛼−1𝑒−𝜃𝑥

𝛽
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

                           𝑔2(𝑥; 𝜃, 𝛼, 𝛽) =
𝛽𝜃𝛼+2

Γ(𝛼+2)
𝑥𝛽(𝛼+2)−1𝑒−𝜃𝑥

𝛽
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0. 

  

Graphs of density function of PWAD for varying values of parameters 𝜃, 𝛼and𝛽 have been drawn 

and presented in figure 1. It is clear that the natures of PWAD are decreasing, positively skewed, 

negatively skewed, platykurtic, mesokurtic and leptokurtic for varying values of parameters and 

hence it can be applied to model lifetime datasets of various natures. It is observed that pdf is 

increasing for increased value of 𝜃 and its pdf is increasing vastly as increased value of 

𝜃, 𝛼and𝛽respectively. However, role of 𝛼  on the shape of the graph more as compared to other 

parameters.  
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Figure. 2: Graphs of the probability density function of PWAD for varying values of parameters𝜃, 𝛼and𝛽 
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III. Reliability Measures 

 

Survival function and Cumulative distribution Function 
 

The survival function 𝑆(𝑥; 𝜃, 𝛼, 𝛽)of PWAD can be obtained as 

     𝑆(𝑥; 𝜃, 𝛼, 𝛽) = 𝑃(𝑋 > 𝑥) = ∫ 𝑓4(𝑡; 𝜃, 𝛼, 𝛽)
∞

𝑥
𝑑𝑡 

                                  =
𝛽𝜃𝛼+2

(𝜃2+𝛼2+𝛼)Γ(𝛼)
∫ 𝑡𝛽𝛼−1
∞

𝑥
(1 + 𝑡2𝛽)𝑒−𝜃𝑡

𝛽
𝑑𝑡 

                                  =
𝛽𝜃𝛼+2

(𝜃2+𝛼2+𝛼)Γ(𝛼)
[∫ 𝑒−𝜃𝑡

𝛽
𝑡𝛽𝛼−1

∞

𝑥
𝑑𝑡 + ∫ 𝑒−𝜃𝑡

𝛽
𝑡𝛽𝛼+2𝛽−1

∞

𝑥
𝑑𝑡] 

 

Assuming 𝑢 = 𝑡𝛽, which gives 𝑡 = (𝑢)
1

𝛽and 𝑑𝑡 =
1

𝛽
(𝑢)

1−𝛽

𝛽 𝑑𝑢, we get 

𝑆(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[∫ 𝑒−𝜃𝑢𝑢𝛼−1

∞

𝑥𝛽
𝑑𝑢 +∫ 𝑒−𝜃𝑢𝑢𝛼+1

∞

𝑥𝛽
𝑑𝑢] 

 =
𝜃𝛼+2

(𝜃2+𝛼2+𝛼)Γ(𝛼)
[
Γ(𝛼,𝜃𝑥𝛽)

𝜃𝛼
+

𝑒−𝜃𝑥
𝛽
(𝜃𝑥𝛽+𝛼+1)(𝜃𝑥𝛽)

𝛼
+𝛼(𝛼+1)Γ(𝛼,𝜃𝑥𝛽)

𝜃𝛼+2
] 

                               =
(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)

𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽

(𝜃2+𝛼2+𝛼)Γ(𝛼)
, 

where Γ(𝛼, 𝜃𝑥𝛽) is the upper incomplete gamma function defined as 

                         Γ(𝛼, 𝜃𝑥𝛽) = ∫ 𝑦𝛼−1𝑒−𝑦𝑑𝑦; 𝛼 > 0,
∞

𝜃𝑥𝛽
𝜃𝑥𝛽 > 0. 

 

It can be easily verified that at    (𝛽 = 1),(𝛼 = 1)and (𝛼 = 𝛽 = 1) the survival function of PWAD 

reduce to the survival function of WAD, PAD and Akash distribution.  

 

Thus the cdf of PWAD can be given by  

      𝐹4(𝑥; 𝜃, 𝛼, 𝛽) = 1 − 𝑆(𝑥; 𝜃, 𝛼, 𝛽) = 1 −
(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)

𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽

(𝜃2+𝛼2+𝛼)Γ(𝛼)
 

The natures of the cdf of PWAD for varying values of parameters 𝜃, 𝛼and𝛽 are shown in figure 2.  

From the figure 2, It is observed that distribution function is slightly increasing as increased value 

of 𝜃. 

 

Hazard Rate Function 

 

The hazard rate function, ℎ(𝑥; 𝜃, 𝛼, 𝛽), of PWAD can be given by 

                    ℎ(𝑥; 𝜃, 𝛼, 𝛽) =
𝑓4(𝑥;𝜃,𝛼,𝛽)

𝑆(𝑥;𝜃,𝛼,𝛽)
=

𝛽𝜃𝛼+2𝑥𝛽𝛼−1(1+𝑥2𝛽)𝑒−𝜃𝑥
𝛽

(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)
𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽. 

Graphs of ℎ(𝑥; 𝜃, 𝛼, 𝛽)for varying values of parameters 𝜃, 𝛼and𝛽 are shown in figure 3. The graphs 

of ℎ(𝑥; 𝜃, 𝛼, 𝛽)shows that it takes different shapes for varying values of parameters 𝜃, 𝛼and𝛽   and it 

is observed that hazard rate is increasing as increased value of  𝜃, 𝛼and𝛽respectively.  
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Figure 2: Graphs of the cdf of PWAD for varying values of parameters 𝜃, 𝛼and𝛽 
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Figure 3: Graphs of hazard rate function for varying values of parameters𝜃, 𝛼and𝛽. 
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Mean Residual Life Function 
 

The mean residual life function, 𝑚(𝑥) = 𝑚(𝑥; 𝜃, 𝛼, 𝛽), of PWAD can be obtained as 

 

      𝑚(𝑥) = 𝑚(𝑥; 𝜃, 𝛼, 𝛽) =
1

𝑆(𝑥;𝜃,𝛼,𝛽)
∫ 𝑡𝑓4(𝑡; 𝜃, 𝛼, 𝛽)
∞

𝑥
𝑑𝑡 − 𝑥 

 =
𝛽𝜃𝛼+2

(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)
𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽 ∫ 𝑡𝛽𝛼(1 + 𝑡2𝛽)𝑒−𝜃𝑡
𝛽∞

𝑥
𝑑𝑡 − 𝑥 

=
𝛽𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼, 𝜃𝑥𝛽) + (𝜃𝑥𝛽)𝛼(𝜃𝑥𝛽 + 𝛼 + 1)𝑒−𝜃𝑥
𝛽
[∫ 𝑒−𝜃𝑡

𝛽
𝑡𝛽𝛼

∞

𝑥

𝑑𝑡 + ∫ 𝑒−𝜃𝑡
𝛽
𝑡𝛽𝛼+2𝛽

∞

𝑥

𝑑𝑡] − 𝑥 

 

Assuming 𝑢 = 𝑡𝛽, which gives 𝑡 = (𝑢)
1

𝛽and 𝑑𝑡 =
1

𝛽
(𝑢)

1−𝛽

𝛽 𝑑𝑢, we get 

 

𝑚(𝑥) = 𝑚(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼, 𝜃𝑥𝛽) + (𝜃𝑥𝛽)𝛼(𝜃𝑥𝛽 + 𝛼 + 1)𝑒−𝜃𝑥
𝛽

 

× [∫ 𝑒−𝜃𝑢𝑢
𝛼+

1
𝛽
−1

∞

𝑥𝛽
𝑑𝑢 + ∫ 𝑒−𝜃𝑢𝑢

𝛼+2+
1
𝛽
−1

∞

𝑥𝛽
𝑑𝑢] − 𝑥 

  =
𝜃𝛼+2

(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)
𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽 

× [
Γ (𝛼 +

1
𝛽
, 𝜃𝑥𝛽)

𝜃
𝛼+

1
𝛽

+
Γ (𝛼 + 2 +

1
𝛽
, 𝜃𝑥𝛽)

𝜃
𝛼+2+

1
𝛽

] − 𝑥 

                =
𝜃2Γ(𝛼+

1

𝛽
,𝜃𝑥𝛽)+Γ(𝛼+2+

1

𝛽
,𝜃𝑥𝛽)

𝜃

1
𝛽[(𝜃2+𝛼2+𝛼)Γ(𝛼,𝜃𝑥𝛽)+(𝜃𝑥𝛽)

𝛼
(𝜃𝑥𝛽+𝛼+1)𝑒−𝜃𝑥

𝛽
]

− 𝑥. 

 

The behaviors of 𝑚(𝑥)of PWAD for varying values of its parameters 𝜃, 𝛼and𝛽are shown in figure 4. 

It is observed from the figure 4 that overall mean residual value is decreasing as increased value of 

𝜃 whereas other parameters are kept as constant; however mean residual is very much affected 

with value of𝛽. 
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Figure 4: Graphs of mean residual life function for varying values of parameters𝜃, 𝛼and𝛽. 
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IV. Moments 
 

The 𝑟th moment about origin,𝜇𝑟
′ of PWAD (2.1) can be obtained as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =

𝛽𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
∫ 𝑥𝛽𝛼+𝑟−1

∞

0

(1 + 𝑥2𝛽)𝑒−𝜃𝑥
𝛽
𝑑𝑥 

=
𝛽𝜃𝛼+2

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[∫ 𝑒−𝜃𝑥

𝛽
𝑥𝛽𝛼+𝑟−1

∞

0

𝑑𝑥 + ∫ 𝑒−𝜃𝑥
𝛽
𝑥𝛽𝛼+2𝛽+𝑟−1

∞

0

𝑑𝑥] 

Assuming 𝑢 = 𝜃𝑥𝛽, which gives 𝑥 = (
𝑢

𝜃
)

1

𝛽
and 𝑑𝑥 =

1

𝜃𝛽
(
𝑢

𝜃
)

1−𝛽

𝛽
𝑑𝑢, we get 

𝜇𝑟
′ =

𝜃𝛼+1

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[∫ 𝑒−𝑢 (

𝑢

𝜃
)

𝛽𝛼+𝑟
𝛽

−1∞

0

𝑑𝑢 + ∫ 𝑒−𝑢 (
𝑢

𝜃
)

𝛽𝛼+2𝛽+𝑟
𝛽

−1∞

0

𝑑𝑢] 

=
𝜃𝛼+1

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[

1

𝜃
𝛼+

𝑟
𝛽
−1

∫ 𝑒−𝑢𝑢
𝛼+

𝑟
𝛽
−1

∞

0

𝑑𝑢 +
1

𝜃
𝛼+2+

𝑟
𝛽
−1

∫ 𝑒−𝑢𝑢
𝛼+2+

𝑟
𝛽
−1

∞

0

𝑑𝑢] 

=
𝜃𝛼+1

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[
Γ (𝛼 +

𝑟
𝛽
)

𝜃
𝛼+

𝑟
𝛽
−1

+
Γ (𝛼 + 2 +

𝑟
𝛽
)

𝜃
𝛼+2+

𝑟
𝛽
−1

] 

=
𝜃𝛼+1

(𝜃2 + 𝛼2 + 𝛼)Γ(𝛼)
[
𝜃2Γ (𝛼 +

𝑟
𝛽
) + Γ (𝛼 + 2 +

𝑟
𝛽
)

𝜃
𝛼+1+

𝑟
𝛽

] 

                           =
𝜃2Γ(𝛼+

𝑟

𝛽
)+Γ(𝛼+2+

𝑟

𝛽
)

𝜃

𝑟
𝛽(𝜃2+𝛼2+𝛼)Γ(𝛼)

; 𝑟 = 1,2,3, . ..                          (4.1) 

 

Thus the first four moments about origin of PWAD can be given by 

                                      𝜇1
′ =

𝜃2Γ(𝛼+
1

𝛽
)+Γ(𝛼+2+

1

𝛽
)

𝜃

1
𝛽(𝜃2+𝛼2+𝛼)Γ(𝛼)

 

                                     𝜇2
′ =

𝜃2Γ(𝛼+
2

𝛽
)+Γ(𝛼+2+

2

𝛽
)

𝜃

2
𝛽(𝜃2+𝛼2+𝛼)Γ(𝛼)

 

                                  𝜇3
′ =

𝜃2Γ(𝛼+
3

𝛽
)+Γ(𝛼+2+

3

𝛽
)

𝜃

3
𝛽(𝜃2+𝛼2+𝛼)Γ(𝛼)

 

                                    𝜇4
′ =

𝜃2Γ(𝛼+
4

𝛽
)+Γ(𝛼+2+

4

𝛽
)

𝜃

4
𝛽(𝜃2+𝛼2+𝛼)Γ(𝛼)

. 

 

Using the relationship between moments about origin and central moments, central moments can 

be obtained. Since the expressions for central moments are complicated, central moments are not 

being given. 

 

V. Maximum Likelihood Estimation 
 

Suppose (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) be a random sample of size 𝑛 from PWAD (2.1). The natural log 

likelihood function is thus obtained as 

𝑙𝑛 𝐿 = ∑ 𝑙𝑛 𝑓4 (𝑥𝑖 ; 𝜃, 𝛼, 𝛽)
𝑛
𝑖=1       = 𝑛[𝑙𝑛 𝛽 + (𝛼 + 2) 𝑙𝑛 𝜃 − 𝑙𝑛(𝜃2 + 𝛼2 + 𝛼) − 𝑙𝑛 Γ (𝛼)] + (𝛽𝛼 −

1)∑ 𝑙𝑛(𝑥𝑖)
𝑛
𝑖=1 + ∑ 𝑙𝑛(1 + 𝑥𝑖

2𝛽)𝑛
𝑖=1 − 𝜃∑ 𝑥𝑖

𝛽𝑛
𝑖=1 The maximum likelihood estimates (MLEs) of 

parameters (𝜃, 𝛼, 𝛽) of PWAD are the solution of the following nonlinear log likelihood equations 

      
∂ 𝑙𝑛 𝐿

∂𝜃
=

𝑛(𝛼+2)

𝜃
−

2𝑛𝜃

𝜃2+𝛼2+𝛼
− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 = 0 

      
∂ 𝑙𝑛 𝐿

∂𝛼
= 𝑛 𝑙𝑛 𝜃 −

𝑛(2𝛼+1)

𝜃2+𝛼2+𝛼
− 𝑛𝜓(𝛼) + 𝛽∑ 𝑙𝑛(𝑥𝑖)

𝑛
𝑖=1 = 0 

   
∂ 𝑙𝑛 𝐿

∂𝛽
=

𝑛

𝛽
+ 𝛼∑ 𝑙𝑛 𝑥𝑖 + ∑

2𝑥𝑖
2𝛽 𝑙𝑛(𝑥𝑖)

1+𝑥𝑖
2𝛽

𝑛
𝑖=1

𝑛
𝑖=1 − 𝜃∑ 𝑥𝑖

𝛽 𝑙𝑛(𝑥𝑖)
𝑛
𝑖=1 = 0 
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where 𝑥̄ is the sample mean and 𝜓(𝛼) =
𝑑

𝑑𝛼
𝑙𝑛 Γ (𝛼) is the digamma function. These three natural 

log- likelihood equations do not seem to be solved directly because they cannot be expressed in 

closed forms. However, the MLE’s of parameters (𝜃, 𝛼, 𝛽) can be obtained directly by solving the 

log likelihood equation using Newton-Raphson iteration method available in R –Software till 

sufficiently close estimates of parameters are obtained. 

                              

VI. Applications 

 
In this section, the applications and goodness of fit of the PWAD have been discussed for two real 

lifetime datasets. The fit is compared with one parameter lifetime distributions including 

exponential distribution, Lindley distribution proposed by Lindley [4] and studied by Ghitany et al 

[5], Akash distribution; two-parameter lifetime distributions including  Weibull distribution 

introduced by Weibull [6], Gamma distribution, Generalized exponential distribution (GED) 

introduced by Gupta and Kundu [7], Power Lindley distribution (PLD) proposed by Ghitany et al 

[8], Shukla distribution (SD) proposed by Shukla and Shanker [9],Weighted Lindley distribution 

(WLD) introduced by Ghitany et al [10] and PAD and WAD and three-parameter lifetime 

distributions including generalized gamma distribution (GGD) introduced by Stacy[11] and  

generalized Lindley distribution (GLD)  suggested by Zakerzadeh and Dolati [12]. Note that 

Shanker et al [13] and Shanker[14] have detail discussion on WLD and GLD regarding some 

important properties and applications for various lifetime data from engineering and biomedical 

sciences. The first dataset is the data reported by Efron[15] represents the survival times of a group 

of patients suffering from Head and Neck cancer disease and treated using a combination of 

radiotherapy and chemotherapy (RT+CT). The second dataset is the data which represents the 

tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 

20mm and are available in Bader and Priest [16]. 

 

Table1 The data set 1 reported by Efron [15] represent the survival times of a group of patients suffering from Head 

and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT). 

 

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 

63.47 68.46 78.26 74.47 81.43 84 92 94 110 112 

119 127 130 133 140 146 155 159 173 179 

194 195 209 249 281 319 339 432 469 519 

633 725 817 1776       

 

Table2 The following data set 2 represent the tensile strength, measured in GPa, of 69 carbon fibers tested under 

tension at gauge lengths of 20mm, Bader and Priest [16] 

 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 

1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 

2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 

2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 

2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585  
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In order to compare the goodness of fit of these distributions for the two datasets,  values of 

−2 𝑙𝑛 𝐿, AIC (Akaike information criterion),  K-S Statistic ( Kolmogorov-Smirnov Statistic) and p-

value for two datasets have been computed  The formulae for AIC and K-S Statistics are as follows:  

𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑘, and 𝐾 − 𝑆 = Sup
𝑥
|𝐹𝑛(𝑥) − 𝐹0(𝑥)|, where 𝑘 being the number of parameters 

involved in the respective distributions, 𝑛 is the sample size and 𝐹𝑛(𝑥)is the empirical distribution 

function. The best distribution corresponds to the lower values of−2 𝑙𝑛 𝐿, AIC and K-S statistic.  

 

Note that the estimates of parameters of the considered distributions are based on maximum 

likelihood estimates. In this paper, the initial values of the parameters for ML estimates of PWAD 

have been selected as𝜃 = 1.5,𝛼 = 0.5 and𝛽 = 1.5for both dataset. In general, it has been observed 

that the initial values of the parameters can be taken as any positive real numbers, preferably from 

0.5 to 5, for any dataset.  

 

The pdf of the fitted distributions are presented in table 3. The ML estimates of parameters of the 

considered distributions for datasets 1 and 2 are presented in tables 4 and 5. The goodness of fit by 

K-S statistics for datasets 1 and 2 with considered distributions are presented in tables 6 and 7. The 

variance-covariance matrix of the parameters (𝜃, 𝛼, 𝛽) of PWAD for datasets 1 and 2 are presented 

in tables 8 and 9. It is obvious from the goodness of fit of the proposed distribution that in tables 4 

and 5 it gives better fit than all considered distributions and competes well with GGD. Therefore, 

PWAD can be considered an important three-parameter lifetime distribution alternative to GGD 

and other lifetime distributions.  

 

Table 3: pdf of the fitted distributions 

 

Distributions Pdf 

Weibull 𝑓(𝑥; 𝜃, 𝛼) = 𝜃𝛼𝑥𝛼−1𝑒−𝜃𝑥
𝛼
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 

Gamma 
𝑓(𝑥; 𝜃, 𝛼) =

𝜃𝛼

Γ(𝛼)
𝑒−𝜃𝑥𝑥𝛼−1; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 

PLD 
𝑓(𝑥; 𝜃, 𝛼) =

𝛼𝜃2

(𝜃 + 1)
𝑥𝛼−1(1 + 𝑥𝛼)𝑒−𝜃𝑥

𝛼
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 

WLD 
𝑓(𝑥; 𝜃, 𝛼) =

𝜃𝛼+1

𝜃 + 𝛼

𝑥𝛼−1

Γ(𝛼)
(1 + 𝑥)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 

GED 𝑓(𝑥; 𝜃, 𝛼) = 𝜃𝛼(1 − 𝑒−𝜃𝑥)
𝛼−1

𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0 

SD 
𝑓(𝑥; 𝜃, 𝛼) =

𝜃𝛼+1

𝜃𝛼 + Γ(𝛼 + 1)
(1 + 𝑥𝛼)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0 

GGD 
𝑓(𝑥; 𝜃, 𝛼, 𝛽) =

𝛽𝜃𝛼

Γ(𝛼)
𝑥𝛽𝛼−1𝑒−𝜃𝑥

𝛽
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

GLD 
𝑓(𝑥; 𝜃, 𝛼, 𝛽) =

𝜃𝛼+1

𝜃 + 𝛽

𝑥𝛼−1

Γ(𝛼 + 1)
(𝛼 + 𝛽𝑥)𝑒−𝜃𝑥 

Lindley 
𝑓(𝑥; 𝜃) =

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0 
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Table 4: Summary of the ML estimates of parameters for dataset 1 

 

Model ML Estimates 

𝜃̂ 𝛼̂ 𝛽̂ 

PWAD 11.8734 27.3026 0.1804 

GLD 0.00473 0.05243 5.07505 

GGD 11.25540 27.72340 0.18220 

SD 0.00458 0.02380  

WAD 0.0090 0.0165 …….. 

PAD 0.16751 0.55764 …….. 

WLD 0.00531 0.21191 …… 

PLD 0.05301 0.68893 ……. 

GED 0.00482 1.09367 …… 

Gamma 0.00489 1.08501 …… 

Weibull 0.00710 0.92327 ……. 

Akash 0.01344 ……. …….. 

Lindley 0.00892 ……. …….. 

Exponential 0.00447 …… ……. 

 

Table 5: Summary of the ML estimates of parameters of dataset 2 

 

Model                                    ML Estimates 

𝜃̂ 𝛼̂ 𝛽̂ 

PWAD 0.2918 1.7049 2.7229 

GLD 9.39076 22.71981 4.77105 

GGD 0.30440 3.58610 2.64830 

SD 5.9922 17.1611  

WAD 9.7584 22.2327 …. 

PAD 0.16964 3.06033 ….. 

WLD 9.62655 22.89383 ….. 

PLD 0.0500 3.8680 …… 

GED 2.03307 87.28471 …… 

Gamma 9.53843 23.38184 ….. 

Weibull 0.00558 5.33523 …… 

Akash  0.96472 …… ……. 

Lindley 0.65450 ……. ……. 

Exponential 0.40794 ……. ……. 
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Table 6: Summary of Goodness of fit by K-S Statistic for dataset 1 

Model −2 𝑙𝑛 𝐿 AIC K-S  p-value 

PWAD 555.67 561.67 0.081 0.921 

GLD 564.09 570.09 0.150 0.248 

GGD 555.64 561.64 0.079 0.921 

SD 564.00 568.00 0.147 0.267 

WAD 580.32 584.32 0.219 0.023 

PAD 559.10 563.10 0.108 0.635 

WLD 565.91 569.91 0.161 0.181 

PLD 560.78 564.78 0.118 0.529 

GED 563.93 567.93 0.145 0.280 

Gamma 564.10 568.10 0.149 0.249 

Weibull 563.71 567.71 0.298 0.005 

Akash  609.92 611.92 0.279 0.001 

Lindley 579.16 581.16 0.219 0.025 

Exponential 564.01 566.01 0.145 0.282 

 

Table 6 represents the goodness of fit by K-S Statistic for data set-1, It is observed that AIC and P-

value from K-S test were found almost minimum and maximum in comparison to all other 

included distributions respectively. Therefore, it may be concluded that PWAD is better fits than 

other included distributions except GGD (Generalized Gamma distribution).  Hence, PWAD can 

be considered an important lifetime distribution for modeling lifetime data. 

   

Table 7: Summary of Goodness of fit by K-S Statistic for dataset 2 

Model −2 𝑙𝑛 𝐿 AIC K-S  p-value 

PWAD 97.93 103.93 0.037 0.999 

GLD 101.96 107.96 0.056 0.979 

GGD 100.58 106.58 0.044 0.999 

SD 184.35 188.35 0.290 0.000 

WAD 99.95 103.95 0.057 0.976 

PAD 98.02 102.02 0.038 0.999 

WLD 100.04 104.04 0.058 0.974 

PLD 98.12 102.12 0.044 0.998 

GED 109.24 113.24 0.095 0.558 

Gamma 100.07 104.07 0.058 0.973 

Weibull 99.31 103.31 0.060 0.964 

Akash  224.27 226.27 0.362 0.000 

Lindley 238.38 240.38 0.401 0.000 

Exponential 261.73 263.73 0.448 0.000 

 

Table 7 represents the goodness of fit by K-S Statistic for data set-2, It is observed that AIC and P-

value from K-S test were found almost minimum and maximum in comparison to almost all other 

included distributions respectively expect PAD and PLD. Therefore, it may be concluded that 

PWAD is a better fit than other included distributions except PAD (Power Akash distribution) and 
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PLD (Power Lindley distribution). Further, PWAD competing well with the considered 

distributions and hence can be an important distribution for lifetime data. 

 

Table 8: Variance-covariance matrix of the parameters 𝜃, 𝛼and 𝛽 of PWAD for dataset 1                                                                                                                

       𝜃̂𝛼̂𝛽̂                                                                   

𝜃̂
𝛼̂
𝛽̂

[
3044.5355 4357.7480 −4.9546
4357.7480 6246.2648 −7.0633
−4.9546 −7.0633 0.0081

]           

 

Table 9: Variance-covariance matrix of the parameters 𝜃, 𝛼and 𝛽 of PWAD for dataset 2                                                                                                                 

  𝜃̂𝛼̂𝛽̂                                                                       
𝜃̂
𝛼̂
𝛽̂

[
−12.5447 −27.6412 1.7898
−27.6412 −60.2546 3.9955
1.7898 3.9955 −0.2499

] 

 

VII. Conclusions 

 
In the present paper a three-parameter power weighted Akash distribution (PWAD) ,of which 

two-parameter weighted Akash distribution (WAD), two-parameter power Akash distribution 

(PAD) and one parameter Akash distribution are particular cases, has been introduced and 

studied. Its moments, hazard rate function, mean residual life function and stochastic ordering 

have been discussed. Maximum likelihood estimation has been discussed for estimating the 

parameters of the distribution. The applications of the proposed distribution have been discussed 

through two real lifetime datasets. The goodness of fit test of the proposed distribution is a better 

model for lifetime data than the other well-known one parameter, two-parameter and three-

parameter lifetime distributions.  
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Abstract 

 
Combined-numeral nonlinearity coding problem (CNNLCP) troubles concerning usual 

restrictions and empirical roles and constant then numeral variable quantity frequently appear in 

a production project, substance method business, and organization. Even though several optimize 

techniques need to be established for CNNLCP troubles, these techniques can hold signal 

relationships together with a particular variable quantity. Thus, this analysis intends a different 

approach used to explain a signal CNNLCP trouble and set free variable amount towards achieving 

an internationally optimum explanation. The signal CNNLCP trouble is initially converted into 

an individual with one certain variable quantity. However, the changed trouble is redeveloped as a 

curving combined-numeral system as the Convexness of the approaches and piecewise linearization 

systems. A comprehensive optimal signal CNNLCP trouble can ultimately be realized inside the 

acceptable inaccuracy. Algebraic models are also introduced to establish the effectiveness of the 

recommended approach. 

 

Keywords: Comprehensive Optimize, Combined-numeral nonlinearity coding, 

Set free variable quantity, Convexness. 

 

 

                                                                  I. Introduction 

 
Combined-numeral nonlinearity coding (CNNLCP) troubles concerning together constant and 

distinct variable quantity rise in several claims of a production project, substance method [12,14,26], 

for instance, combination and project of partings [1–4], no intricate isothermal apparatus webs [20], 

stage symmetry [28] and frame-conversation webs [29]. Biegler and Grossmann [7] demonstrate 

optimized procedures that have been affected in development techniques planning. They revealed 

that pattern and creation troubles had been controlled by nonlinearity coding and CNNLCP types. 

Floudas et al.. [13] indicated the investigation activity into comprehensive Optimize for 1998–2003, 

together with the determinist universal optimize improvements into CNNLCPs and connected 

products. Along with the expanding dependence on demonstrating optimized troubles in functional 

troubles, several hypothetical and algorithmic influences of CNNLCP have been planned. Though 

these troubles regularly consist of noncurved roles, the standard local optimize techniques cannot 
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be dealt with to ensure comprehensive optimality. Used to discuss the nonconvexities in CNNLCP 

troubles, the established procedures can be separated into binary attitudes. 

 

 The stochasticity processes consist of arbitrary factors in their pursuit and are dependent on an 

arithmetical dispute to demonstrate their merging. For example, Salcedo et al. [32] proposed an 

increased arbitrary examination process for explaining nonlinearity optimize troubles. Hussain and 

Al-Sultan [19] planned a fusion system for noncurved function minimization by applying the natural 

method to create examine instructions. Yiu et al. [39] established a Combined slope attitude shown 

on a virtual hardening process and slope-established system to explain multidimensional noncurved 

uninterrupted optimize troubles. The experimental method is a variation of stochasticity techniques, 

for example, the restriction analyses system [16]. The collection of all aspirant explanations that can 

be produced in each repetition must vary on the present repetition position and be changed by 

eliminating a subgroup of contestant explanations known as tabu. The meaning of which contestant 

results are tabu goes upon the changes that have got be there created among current repetition 

positions. While the tabu analyses are more efficient than virtual galvanizing, these stochasticity 

systems stated above cannot ensure discovering the universal optimum. Hence, the worth of the 

explanation is not confirmed. Likewise, the likelihood of finding the universal description reduces 

when the difficulty volume strengthens. 

 

Determinist procedures in a typical analysis of optimizing methods [7,17,18], several determinist 

approaches for curved CNNLCP troubles have been evaluated. The processes contain area and 

constrained (CAC) [9,22,33], widespread binges decay(WBD) [15], outward estimate (OE) [10,11,31], 

continued reducing plane technique (CRPT)) [37],and simplified disjunctive coding (SDC) [21]. The 

CAC system can only get the universal explanation when each subproblem can be explained 

worldwide optimality. The WBD system, the OE system, and the CRPT system cannot explain 

CNNLCP troubles with noncurved restrictions since the troubles cannot develop a distinctive 

optimum in the resolution method. Lee and Grossmann [21] planned a resolution system for the 

SDC simulations that parallel distinct/permanent optimization troubles involving disconnections 

and nonlinearity inequities and reasoning proposals. The empirical roles and the restrictions in the 

GDP trouble are expected to be curved and constrained. Maranas and Floudas [25] required a 

process to produce curved estimators for universal geometric coding challenges via the hollow 

words' index conversion and straight dryness. Adjiman et al. [1,2] projected two worldwide 

optimize techniques, SMIN-α BB and GMIN-α BB, for noncurved CNNLCP established on the model 

of separate off-and-constrained and trust on Optimize or period-created changing-required updates 

to improve productivity. Even though one likely method to avoid noncurved ties in CNNLCP shows 

is a reformulation, for example, applying the index revolution to deal with the simplified 

symmetrical coding troubles. 

 

In which a signal phrase 𝑥1
𝛼 𝑥2

𝛽
 is assigned into an index term 𝑒𝛼𝑙𝑛𝑥1+𝛽𝑙𝑛𝑥2   [12,14,26], the index 

alteration procedure can only be utilized to precisely certain variable quantity and is thus incapable 

of trading with noncurved CNNLCP difficulties with set free variable amount. Pörn et al. [30] 

announced separate Convexness approaches for converting noncurved CNNLCP troubles into 

curved issues and explaining them by a CNNLCP solver. They recommended an easy conversion, x 

+τ = 𝑒𝑥, to deal with a free distinct varying. Introducing the converted effect into the earliest 

indication conditions will bring different signal periods, growing computational complications. 

 

                                         II. Transformation of free variables 

 
The mathematical formulation of a signomial CNNLCP problem with free variables considered 

in this study is expressed as follows: 

                                         Minimize 𝑓(𝑥, 𝑦) 

      Subjects to 𝑔𝑖(𝑥, 𝑦) ≤ 0,    𝑖 = 1,2,3, … . . 𝐼                                                                                        (1) 
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                                 𝑥 = (𝑥1, 𝑥2, … … . 𝑥𝑝, 𝑥𝑝+1 … … , 𝑥𝑛), 𝑥𝑖  ≤ 𝑥𝑖 ≤ 𝑥𝑖                                                  (2) 

                                 𝑦 = (𝑦1, 𝑦2, … … . 𝑦, 𝑦𝑞+1 … … , 𝑦𝑚) , 𝑦𝑖  ≤ 𝑦𝑖 ≤ 𝑦𝑖                                                   (3) 

 

 where𝑥𝑖𝜖𝑅+  for 1 ≤ 𝑖 ≤ 𝑝, 𝑥𝑖  are constrained set free variable quantity for   1 + 𝑝 ≤ 𝑖 ≤ 𝑛, 𝑦𝑗 are 

+ve number /distinct variable quantity for   1 ≤ 𝑗 ≤ 𝑞, 𝑦𝑗 are constrained number /distinct variable 

quantity for  𝑞 + 1 ≤ 𝑗 ≤ 𝑚, 𝑓(𝑥, 𝑦)  and 𝑔𝑖(𝑥, 𝑦) are Combined-numeral signal roles, 𝑥𝑖, and 𝑥𝑖  .  

are more diminutive and more significant boundaries of the permanent variable quantity 𝑥𝑖, and 

𝑦𝑗 and 𝑦𝑗 are more minor and more significant boundaries of the distinct variable quantity 𝑦𝑗, 

respectively.  

 

Let                     𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

−, 𝑥𝑖
+𝑥𝑖

− ≥ 0, 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … 𝑛,                                                           (4) 

                           𝑦𝑗 = 𝑦𝑗
+ − 𝑦𝑗

−, 𝑦𝑗
+𝑦𝑗

− ≥ 0, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1, … … 𝑚,                                                         (5) 

And nonlinearity relationships 𝑥𝑖
𝛼𝑖  𝑎𝑛𝑑 𝑦

𝑗

𝛽𝑗   are expressed as  

 

                          𝑥𝑖
𝛼𝑖 =  (𝑥𝑖

+)𝛼𝑖 + (−1)𝛼𝑖(𝑥𝑖
−)𝛼𝑖 , 𝛼𝑖 ∈ 𝑍, 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … 𝑛,                                      (6) 

                          𝑦
𝑗

𝛼𝑗
=  (𝑦𝑗

+)
𝛽𝑗 + (−1)𝛽𝑗(𝑦𝑗

−)
𝛽𝑗 , 𝛽𝑗 ∈ 𝑍, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1, … … 𝑚,                                   (7) 

 

If 𝑥𝑖
+ > 0 and 𝑥𝑖

− = 0 , 𝑡ℎ𝑒𝑛 𝑥𝑖  𝑖𝑠 positive. Otherwise, if 𝑥𝑖
− > 0 𝑎𝑛𝑑 𝑥𝑖

+ = 0, 𝑡ℎ𝑒𝑛 𝑥𝑖  𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 .  

Remark 1  

         Let,          𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

−, 𝑥𝑖
+𝑥𝑖

− ≥ 0, 𝑎𝑛𝑑  𝑥𝑖
+ 𝑎𝑛𝑑 𝑥𝑖

− the resulting inequities.  
 𝑥𝑖

+ ≤ 𝑥𝑖
−𝜃𝑖 

𝑥𝑖
− ≤ 𝑥−𝑖(𝜃𝑖 − 1). 𝑤ℎ𝑒𝑟𝑒𝜃𝑖 ∈ [0,1].  

 

I. Preposition  

 

 Let                     𝑥𝑖
− ∈ 𝑅, 0 ≤ 𝑥𝑖

+ ≤ 𝑥𝑖
−, 𝜆𝑖 ∈ [0,1], 𝜖0 ≤ 𝑥̅𝑖

+ ≤ 𝑥𝑖
−, 𝜖0 > 0,  

         Then,         𝑥𝑖
+ = 𝑥̅𝑖

+, 𝜆𝑖 ⇒ {
(𝑖)0 ≤ 𝑥𝑖

+ ≤ 𝑥𝑖
−, 𝜆𝑖

(𝑖𝑖) 𝑥𝑖
−(𝜆𝑖 − 1) + 𝑥̅𝑖

+ ≤ 𝑥𝑖
+ ≤ 𝑥̅𝑖

+.
 

Proof : 

                If 𝑥𝑖
+ = 0, ⇒    (𝑖) is initiated, then 𝜆𝑖 = 0, hence 𝑥̅𝑖

+ 𝜆𝑖 = 0 then  𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖 

                If 𝑥𝑖
+ > 0 ⇒ (𝑖𝑖) is initiated, then 𝜆𝑖 = 1, hence 𝑥𝑖

+ = 𝑥̅𝑖
+ then 𝑥𝑖

+ = 𝑥̅𝑖
+  𝜆𝑖 

                If 𝑥̅𝑖
+ 𝜆𝑖 = 0 ⇒ 𝜆𝑖 = 0 𝑎𝑛𝑑  (𝑖) is initiated , hence𝑥𝑖

+ = 0 then 𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖 

                If𝑥̅𝑖
+ 𝜆𝑖 > 0, ⇒ 𝜆𝑖 = 1 𝑎𝑛𝑑  (𝑖𝑖) is initiated  hence 𝑥𝑖

+ = 𝑥̅𝑖
+ and 𝑥𝑖

+ = 𝑥̅𝑖
+  𝜆𝑖 

                𝑥𝑖
+ = 𝑥̅𝑖

+  𝜆𝑖is determined .  

 

   Now denote 𝑧+𝑎𝑛𝑑 𝑧̃+ as below :  

 

                𝑧+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥𝑝+1
+ )

𝛼𝑝+1
… … . . (𝑥𝑛

+)𝛼𝑛 and  

                𝑧̃+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥̃𝑝+1
+ )

𝛼𝑝+1
… … . . (𝑥̃𝑛)𝛼𝑛  , where 𝑥̃𝑖

+ are positive variables . 

     

   From Proposition  1,  

 

                          𝑧+ = 𝑥1
𝛼1 … … … . . 𝑥𝑝

𝛼𝑝(𝑥̃𝑝+1
+ 𝜆𝑝+1)

𝛼𝑝+1
… … . . (𝑥̃𝑛

+𝜆𝑛)𝛼𝑛 and it is clear that           

                          𝑧+ = 𝑧̃+𝜆𝑝+1 … … … . 𝜆𝑛 ,    𝜆𝑖 ∈ [0,1]                                                                                (8) 

 

Remark 2  

             Let,       λ , 𝜆𝑖 ∈ [0,1] 𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … … … … 𝑛. 𝑡ℎ𝑒𝑛 ∶  

                           λ = 𝜆𝑝+1𝜆𝑝+2 … … 𝜆𝑛  ⇒ {
(𝑖)𝜆 ≤ 𝜆𝑖𝑓𝑜𝑟 𝑖 = 𝑝 + 1, … 𝑛,

(𝑖𝑖)  𝜆 ≥ ∑ 𝜆𝑖
𝑛
𝑖=𝑝+1 − 𝑛 + 𝑝 + 1

  

 

      By discussing Remark 2, Eq (8) becomes 
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                                       𝑧+ = 𝑧̃+λ,       λ ∈ [0,1].                                                                                        (9) 

   

       From Proposition 1, Eqs is equivalent to the following two linear inequalities.  
                                       (𝑖)0 ≤ 𝑧+ ≤ 𝑧  ̅λ,  
                                       (𝑖𝑖)  𝑧̃+ + 𝑧̅(λ − 1) ≤ 𝑧+ ≤ 𝑧̃+. 

 

       λ ∈ {0,1}, 𝑧̅ is an upper bound of 𝑧+ 

 

 

          III. Classification of curved relationships and curved relaxation approaches 

 
Convexness policies used for signal periods are essential techniques for worldwide optimization 

efforts. Sun et al. [34] planned a Convexness technique used for international optimize efforts with 

unmodulated roles in various restricted situations. Wu et al.[38] established a more than typical 

Convexness, then coalification conversion was used to explain a standard worldwide optimize 

challenge and specific unmodulated estates.  CNNLCP problem can be redeveloped with several 

Convexness techniques interested in a new curved Combined-numeral program resolvable to 

achieve an almost universal optimum. Björk et al. [8]planned a worldwide optimized system created 

on  Convexness signal conditions. They examined that the correct selection of revolution for 

Convexness noncurved signal conditions strongly impacts the effectiveness of the optimized 

method. Tsai et al. [36] also recommended Convexness systems for the signal conditions with trio 

variable quantity. This analysis introduces general  Convexness systems and laws to convert a 

CNNLCP problem into a curved Combined-numeral system. 

 

I Proposition  

 

 Let ,         f(x) = c ∏ xi
αi , x = (x1, x2, … … … xn)n

i=1 , c, xi, αi ∈ R, for all i , is curved if c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥

                   0(for i = 1,2, … … … n )1 − ∑ αi ≥ 0n
i  

 

Proof : 

Let 𝐻𝑖(𝑥) be the most crucial trivial of a Hessian matrix 𝐻(𝑥)𝑜𝑓 𝑓(𝑥). The determinant   of                

𝐻𝑖(𝑥)    det 𝐻𝑖(𝑥) = (−1)𝑖 (∏ 𝑐𝛼𝑗
𝑖
𝑗∈𝐽𝑖

𝑥
𝑗

𝑖𝛼𝑗−2
) (∏ 𝑥𝐽

𝑖𝛼𝐽𝑛
𝑗𝜖𝐽𝑖,𝐽𝑖≠∅ ) (1 − ∑ 𝛼𝑗𝐽∈𝐽𝑖

). 

Since,        det 𝐻𝑖(𝑥) ≥ 0 when c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥ 0 for all i and 1 − ∑ αi ≥ 0, 𝐻𝑖(𝑥) 𝑖 = 1,2, … … . . 𝑛.n
i  

 

Corollary : 

                  1Letf(x) = c ∏ xi
αi , x = (x1, x2, … … … xn)n

i=1 , c, xi, αiR, for all i , is curved if c ≤ 0, xi ≥ 0, 𝛼𝑖  ≥

                    0(for i = 1,2, … … … n )  

 

II Preposition   

 

A nonlinearity relationship  

                      𝑠 = 𝑥1
𝛼1𝑥2

𝛼2 … … . . 𝑥𝑛
𝛼𝑛 , where x1, x2, … … … xn > 0, αi < 0(𝑓𝑜𝑟 𝑖 = 1,2,3 … … 𝑘 ), 𝑎𝑛𝑑αi ≥

                       0(𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛),   

 

                    (𝑖)   𝑠 =  ∏ 𝑥𝑖
𝛼𝑖𝑘

𝑖=1 ∏ 𝑧𝑖
−𝛼𝑖 ,𝑛

𝑖=𝑘+1  

                    (𝑖𝑖)    𝑧𝑖 + 𝐿(−𝑥𝑖
−1) ≤ 0 𝑓𝑜𝑟  𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛  

                    (𝑖𝑖)    𝑥𝑖
−1 − 𝑧𝑖 ≤ 0 + 𝐿(−𝑥𝑖

−1) ≤ 0 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . . 𝑛  

      

Proof : 

                         𝐿(−𝑥𝑖
−1) = −𝑥𝑖

−1, 𝑧𝑖 = 𝑥𝑖
−1 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … . 𝑛,  

after (ii) and (iii) since , 𝑧𝑖 > 0 𝑎𝑛𝑑 − 𝛼𝑖 ≤ 0 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … 𝑛, 𝑠  is then a curved period 

describing to corollary1.  

130



K. Srinavasa Rao, U.V. Adinarayana Rao 
COMPREHENSIVE OPTIMIZATION 

RT&A, No 2 (68) 
Volume 17, June 2022 

 

the piecewise straight function L( f (x)) for approaching the hollow role f (x) [27,35]. Splitting should 

be achieved to close the gap since a large enough reduction can be close to the earliest nonlinearity 

problem in any to define beforehand precision. Splitting programs for typical SOS Class 2 cases can 

be noticed, for example, in [5,6]. 

 

 |
𝑓(𝑥)−𝐿(𝑓(𝑥))

𝑓(𝑥)
| is utilized to assess the inaccuracy in the straight calculation. Assume f (x) is an 

empirical task and 𝑥∗ results from the converted system. In that case, the linearity makes non involve 

delicacy till |
𝑓(𝑥∗)−𝐿(𝑓𝑥∗)

𝑓(𝑥∗)
| ≤ 𝜀2, where 𝜀2 is the optimum acceptance. If g(x) < 0 is a restriction and 𝑥∗ 

is the result, then 𝑥∗ is achievable if |
𝑓(𝑥∗)−𝐿(𝑓𝑥∗)

𝑓(𝑥∗)
| ≤ 𝜀1 and 𝐿(𝑔(𝑥∗)) < 𝜀1 where  𝜀1 is the feasibility 

acceptance. 

 

III Proposition   
Let,             s =−𝑥1

𝛼1𝑥2
𝛼2 … … … 𝑥𝑛

𝛼𝑛 where 𝑥1, 𝑥2 … … … . . 𝑥𝑛 > 0, 0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘, ,   0 ≥ 𝑎𝑘+1 +

                     𝑎𝑘+2 ≥ ⋯ ≥ 𝑎𝑛 and∑ 𝛼𝑖
𝑟
𝑖=1 < 1 for some most extensive numeral  r , such that r ≤ k, 

                      𝑆 = − ∏ 𝑥𝑖
𝛼𝑖

𝑟

𝑖=1

∏ 𝑧𝑖
𝛽

𝑛

𝑖=𝑟+1

  , 𝛽 =
1 − ∑ 𝛼𝑖

𝑟
𝑖=1

𝑛 − 𝑟
  ,  

 

• 𝑧𝑖 + 𝐿 (−𝑥𝑖

𝛼𝑖
𝛽 ) ≤ 0  

• −𝑥𝑖

𝛼𝑖
𝛽 − 𝑧𝑖 ≤ 0        

 

       Where  𝐿 (−𝑥𝑖

𝛼𝑖
𝛽 ) is piecewise linearization function of a hollow period  −𝑥𝑖

𝛼𝑖
𝛽      

Proof :    

                           (−𝑥𝑖

𝛼𝑖
𝛽 ) = −𝑥𝑖

𝛼𝑖
𝛽   ,  𝑧𝑖 = 𝑥𝑖

𝛼𝑖
𝛽 𝑓𝑜𝑟 𝑖 = 𝑟 + 1, 𝑟 + 2, … … … 𝑛,   

Since                 𝛼𝑖 > 0  𝑓𝑜𝑟 𝑖 = 1,2, … … … 𝑟. 𝑧𝑖 > 0  𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … … … … . 𝑛, 𝛽 > 0  𝑎𝑛𝑑    
                         ∑ 𝛼𝑖

𝑟
𝑖=1 + (𝑛 − 𝑟)𝛽 = 1. 𝑠  

 

Remark 3  

Let  f (x) =  𝑥𝛼 for x > 0 is curved at what time α ≤ 0 or α ≥ 1. f (x) is hollow at what time 0 ≤ α ≤ 1. 

 

Remark 4   

Let                        𝑦 ∈ {𝑑1, 𝑑2 … … 𝑑𝑚}  𝑑𝑗+1  > 𝑑𝑗 > 0𝑓𝑜𝑟  𝑗 = 1,2,3, … . . 𝑚 − 1  

                              𝑦𝛼 =  ∑ 𝑑𝑗
𝛼𝑚

𝑗=1 𝑢𝑗   , 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑢𝑗 = 1 𝑢𝑗 ∈ {0,1}𝑚
𝑗=1  

Remark 5  

Let  s = u f (x) wherever f (x) is a straight serve is equal to the resulting straight variations: 

 

• 𝑓(𝑥)̅̅ ̅̅ ̅̅ (𝑢 − 1) + 𝑓(𝑥) ≤ 𝑠 ≤ 𝑓(𝑥)̅̅ ̅̅ ̅̅ (𝑢 − 1) + 𝑓(𝑥). 

• −𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑢 ≤ 𝑠 ≤ 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑢,    

 

Where  𝑢 ∈ {0,1}, 𝑠 is an unobstructed in symbol flexible, and 𝑓(𝑥)̅̅ ̅̅ ̅̅   is the greater  duty-bound of 

𝑓(𝑥),  

 

IV. Examples 
 
I. Example  

 

Minimize                𝑥1
2𝑥2

−2𝑥3 − 2𝑥2
0.7𝑥3

0.2 + 𝑥4𝑥5
−2 − 2𝑥1 − 4𝑥3 

Subject to               𝑥1 + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2,                                                                                             (10) 
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                                𝑥3
1.5𝑥4 + 0.5𝑥2 + 3𝑥1 ≤ −10                                                                                        (11) 

                      

                                −𝑥1 − 0.5𝑥4 + 𝑥5 ≤ 6,                                                                                                 (12) 
                                −7 ≤ 𝑥1 ≤ 5,   1 ≤ 𝑥2 ≤ 10,   1 ≤ 𝑥3 ≤ 5,   2 ≤ 𝑥4 ≤ 8, 2 ≤ 𝑥5 ≤ 9,   
                                𝑥1, 𝑥2,𝑥4, 𝑥5 ∈ 𝑅,   𝑥3 ∈ 𝑍.    

By Remark 1, 
                               𝑥1 = 𝑥1

+ − 𝑥1
−  , 𝑥1

+, 𝑥1
− ≥ 0,   

  Minimize           (𝑥1
+)2𝑥2

−2𝑥3+(𝑥1
−)2𝑥2

−2𝑥3 − 2𝑥2
0.7𝑥3

0.2 + 𝑥4𝑥5
−2 − 2𝑥1 − 4𝑥3 

                  Subject to         𝑥1 = 𝑥1
+ − 𝑥1

−,                                                                                              (13) 

                                             𝑥1
+ ≤ 5𝜃1,                                                                                                      (14) 

                                            𝑥1
−  ≤ 7(𝜃1 − 1) ,                                                                                           (15) 

                                            𝑥1
+ − 𝑥1

− + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2                                                                  (16) 

 

                                           𝑥3
1.5𝑥4 + 0.5𝑥2 + 3𝑥1

+ − 3𝑥1
− ≤ −10                                                           (17) 

 

                                          −𝑥1
+ + 𝑥1

− − 0.5𝑥4 + 𝑥5 ≤ 6,                                                                        (18) 
                                           0 ≤ 𝑥1

+ ≤ 5,   0 ≤ 𝑥1
−  ≤ 7, 1 ≤  𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 5, 2 ≤ 𝑥4 ≤ 8 

                                          , 2 ≤ 𝑥5 ≤ 9, 𝜃1 ∈ {0,1} , 𝑥2,𝑥4, 𝑥5 ∈ 𝑅, 𝑥3 ∈ 𝑍 

 

Now we familiarize two severely +ve  variables 𝑥̃1
+, 𝑥̃1

−  as follows:  

 

                                             0 ≤ 𝑥1
+ ≤ 5𝜆1,                                                                                               (19) 

                                             𝑥̃1
+ + 5(𝜆1 − 1)  ≤  𝑥̃1

+ ≤  𝑥̃1
+                                                                       (20) 

                                             0 ≤ 𝑥1
− ≤ 7𝜆2                                                                                               (21) 

                                             𝑥̃1
− + 7(𝜆2 − 1) ≤ 𝑥̃1

− ≤ 𝑥̃1
−                                                                         (22) 

  For computer implementation, 

 

                𝑥̃1
+, 𝑥̃1

− ≥ 𝜀0  where 𝜀0 = 10−7 is  a zero acceptance. The signomial times 𝑧1
+ =

(𝑥1
+)2𝑥2

−2𝑥3 𝑎𝑛𝑑𝑧1
− =  (𝑥1

−)2𝑥2
−2𝑥3  𝑧̃1

+ = (𝑥̃1
+)2𝑥2

−2𝑥3  and 𝑧̃1
− =  (𝑥̃1

−)2𝑥2
−2𝑥3 , respectively, where      0 ≤

𝑧1
+ ≤ 𝑧̅𝜆1,   𝑧̃1

+ + 𝑧̅(𝜆1 − 1) ≤ 𝑧1
+ ≤ 𝑧̃1

+, 0 ≤ 𝑧1
− ≤ 𝑧𝜆̅2,   𝑧̃1

− + 𝑧̅(𝜆2 − 1) ≤ 𝑧1
− ≤ 𝑧̃1

− 

 

. From Proposition 2, the nonlinearity term 

                                         - 2𝑥2
0.7. 𝑥3

0.2 is curved.  

 

The noncurved relationships 𝑥3
1.5𝑥4 𝑎𝑛𝑑𝑥4𝑥5

−2  can be changed into curved relations and 𝑧4
−1𝑥5

−2,  

respectively, anywhere 𝑧3 = 𝑥3
−1 and 𝑧4 = 𝑥4

−1  

According to Remark 4,  

                                           𝑧3 = 𝑥3
−1 can be linearized  as 𝑧3 = 𝑢1 +

1

2
𝑢2+

1

3
𝑢3 +

1

4
𝑢4 +

1

5
𝑢5  where 𝑥3 =

                                                 𝑢1 + 2𝑢2+3𝑢3 + 4𝑢4 + 5𝑢5.  

 

• The noncurved relationships (𝑥̃1
+)2𝑥2

−2𝑥3  and (𝑥̃1
−)2𝑥2

−2𝑥3  can be transferred into curved 

relationships 𝑒2𝑦1
+−2𝑦2+𝑦3   and  𝑒2𝑦1

−−2𝑦2+𝑦3  , respectively, where  𝑦1
+ = 𝑙𝑛𝑥̃1

− ,  𝑦1
− = 𝑙𝑛𝑥̃1

− ,  

𝑦2 = ln 𝑥2   and  𝑦3 = ln 𝑥3.   

 

              Minimize             𝑧1
+ + 𝑧1

− − 2𝑥2
0.7. 𝑥3

0.2 + 𝑧4
−1𝑥5

−2 − 2𝑥1 − 4𝑥3 

              subject to             𝑥1 = 𝑥1
+   −   𝑥1

−  
                                           (𝑥1

+   −    𝑥1
− + 6𝑥2 − 𝑥3 − 5𝑥4 ≤ 2) − (𝑥̃1

− + 7(𝜆2 − 1) ≤  𝑥1
−   ≤  𝑥̃1

−)  
                              𝑧3

−1.5𝑥4
−1 + 0.5𝑥2 + 3𝑥1

+ − 3𝑥1
− ≤ −10,   

                              𝑦1
+ = 𝐿(𝑙𝑛𝑥̃1

+),  𝑦1
− = 𝐿(𝑙𝑛𝑥̃1

−),   𝑦2 = 𝐿 ln 𝑥2, 

                                  𝑦3 == 𝑢1ln1+𝑢2ln2+𝑢3ln3+𝑢4ln4+𝑢2ln5,  

                              0 ≤ 𝑧1
+ ≤ 𝑧̅𝜆1, 𝑒2𝑦1

−−2𝑦2+𝑦3 + 𝑧̅(𝜆1 − 1) ≤ 𝑧1
+ ≤ 𝐿(𝑒2𝑦1

−−2𝑦2+𝑦3), 

                                             0 ≤ 𝑧1
+ ≤ 𝑧̅𝜆2, 𝑒2𝑦1

−−2𝑦2+𝑦3 + 𝑧̅(𝜆2 − 1) ≤ 𝑧1
− ≤ 𝐿(𝑒2𝑦1

−−2𝑦2+𝑦3), 

                                            𝑥3 = 𝑢1 + 2𝑢2+3𝑢3 + 4𝑢4 + 5𝑢5,    
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                                            𝑧3 = 𝑢1 +
1

2
𝑢2+

1

3
𝑢3 +

1

4
𝑢4 +

1

5
𝑢5 

                                            𝑢1 + 𝑢2+𝑢3 + 𝑢4 + 𝑢5 = 1 
                                           𝑥4

−1− 𝑧4 ≤ 0, 𝑧4 + 𝐿(−𝑥4
−1) ≤ 0,  

                                        𝜖0 ≤   𝑥̃1
+ ≤ 5 , 𝜖0 ≤   𝑥̃1

− ≤ 7, 1 ≤ 𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 5 ,2 ≤ 𝑥4 ≤ 8, 2 ≤ 𝑥5 ≤ 9,   

                                           𝜃1, 𝜆1, 𝜆2 ∈ {0,1} ,   𝑢1, 𝑢1, 𝑢1, 𝑢1, 𝑢1 ∈ {0,1}  , 𝑥̃1
+, 𝑥̃1

−, 𝑥2,𝑥4, 𝑥5 ∈ 𝑅, 𝑥3 ∈ 𝑍 

 

 The optimality acceptance and probability acceptance are within the prespecified error of 0.001. The 

universally optimal explanation found is (𝑥1,, 𝑥2,𝑥3, 𝑥4,𝑥5) =  (−5.353, 4.548, 1, 3.787, 2.541) along 

with the empirical cost is 2.803.  

 
Table 1: 

 

                            Number of variables in the reformulated model of each example 

 
Quantity of 

originals 

variable quantity 

Quantity of further 

constant variable 

quantity 

Quantity of further 

second variable 

quantity 

Quantity of originals 

variable quantity 

eradicated 

from construction 

Example 1 5 206 206 1 

Example 2 2 4 4 1 

Example 3 4 201 201 1 

    

 

II. Example  

 
        Minimize                          𝑥1

0.5𝑥2 + 3𝑙𝑛𝑥1, 

 

       Subject                                  −𝑥1 + 𝑥2 ≤ 5,  

                                                  𝑥1
0.5− 𝑥2 ≤ 6, 

                                                  𝑥1 ∈ {0.1, 0.5, 0.7, 1.2}, −6 ≤ 𝑥2 ≤ 4.  

 

 The nonlinearity relationships    𝑥1
0.5𝑥2, 3𝑙𝑛𝑥1,and 𝑥1

0.5 are noncurved  roles. By Remarks 4 and 5, 

 

Minimize          0.10.5𝑠1 + 0.50.5𝑠2 + 0.70.5𝑠3 + 1.20.5𝑠4 + 3(𝑢1𝑙𝑛0.1 + 𝑢2𝑙𝑛0.5 + 𝑢3𝑙𝑛0.7 + 𝑢4𝑙𝑛1.2)  

Subject            −0.1𝑢1−0.5𝑢2−0.7𝑢3−1.2𝑢4+𝑥2 ≤ 5,  

                           𝑢1 + 𝑢2+𝑢3 + 𝑢4 = 1,  

                          0.10.5𝑢1 + 0.50.5𝑢2 + 0.70.5𝑢3 + 1.20.5𝑢4 − 𝑥2 ≤ 6,  
                         −6𝑢𝑖 ≤ 𝑠𝑖 ≤ 6𝑢𝑖   , 6(𝑢𝑖 − 1) + 𝑥2 ≤ 𝑠𝑖 ≤ 6(1 − 𝑢𝑖) + 𝑥2, 𝑖 = 1,2,3,4, 𝑠1, 𝑠2, 𝑠3, 𝑠4  

are unrestricted in sign variables, 𝑢1, 𝑢2,𝑢3, 𝑢4 ∈ {0,1}, −6 ≤ 𝑥2 ≤ 4.  

 

   The converted sequencer can be resolved by LINGO [24] to find the universally optimum 

explanation (𝑥1,𝑥2) = (0.2, −5.753) and the empirical charge −8.705 contained by the optimality 

acceptance0.001 as the probability acceptance 0.001.  

 

III. Example  

 

Minimize                         𝑥1𝑥4
3 − 𝑥3 − 0.5𝑥1 

2  𝑥2 
4  

 Subject                         𝑥1𝑥4
1.5 − 𝑥2 − 𝑥2 

0.5 𝑥3 
0.4 ≤ 4, 

                                      −𝑥1−2𝑥2 + 𝑥3 ≤ −2, 
                                      0 ≤ 𝑥1 ≤ 6  ,  1 ≤ 𝑥2 ≤ 10, 1 ≤ 𝑥3 ≤ 6, 20 ≤ 𝑥4 ≤ 30, 𝑥1,𝑥2, 𝑥3, 𝑥4 ∈ 𝑅   

 

The nonlinearity relationships  𝑥1𝑥4
3,  𝑥1 

2  𝑥2 four and  𝑥1𝑥4
1.5   where  𝑥1 has zero-value smaller 

constrained Table 1 listing the quantity of variable quantity applied in the converted standard of 

Instance 3. Though the intended system needs the accumulation of variable another amount, 
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variable dual amount, and restrictions, it can prevent imprecision by requiring a little 𝜖 > 0 smaller 

bound for 𝑥1. Explaining this system by the planned technique with LINGO [24], the universally 

optimal explanation achieved is smaller, particularly for x1. Demonstrating this system by the 

intended design and LINGO [24], the universally optimum description achieved is(𝑥1, 𝑥2,𝑥3, 𝑥4,) =

 (0, 4, 6, 20)and the empirical rate is −6. Still, explaining this system by really requiring  𝑥1 ≥ 0.001, 

the universally optimal explanation achieved is(𝑥1, 𝑥2,𝑥3, 𝑥4,) =  (0.001, 10, 6, 20), and the empirical 

rate is 1.995.  

 

                                                                  V. Conclusions 

 
This analysis intends an optimized technique to discuss a signal CNNLCP difficulty and set the free 

variable quantity to achieve a comprehensive optimum. The free variable quantity practical trading 

techniques change over the variable amount and translate the analytical association among the 

variable quantity in a result period into a set of straight inequities, appropriately combined into the 

CNNLCP types. Several valuable instructions to essentially Convexness more than universal signal 

conditions in CNNLCP systems are also produced. Numerical illustrations are demonstrated to 

provide for the impacts of the recommended system. 
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Abstract 

Statistical quality control (SQC) has wider applications in industries and production engineering. Product 

control, one of the two major categories of SQC, consists in procedures by which decisions are made on the 

disposition of one or more lots of finished items or materials produced by manufacturing industries. 

Sampling inspection by variables in product is the methodology that is employed for deciding about the 

disposition of a lot of individual units based on the observed measurements on a quality characteristic of 

randomly sampled units from the lot submitted for inspection. These procedures are defined under the 

assumption that the quality characteristic is measurable on a continuous scale and the functional form of the 

probability distribution must be known. Inspection procedures which have been developed based on the 

implicit assumption that the quality characteristic is distributed as normal with the related properties are 

found in the literature of sampling inspection procedures. The assumption of normality may not be realized 

often in practice and it becomes inevitable to investigate the properties of variable sampling plans based on 

non-normal distributions. In this paper a single sampling plan by variables is formulated and evaluated 

under the assumption that the quality characteristic is distributed according to a generalized beta 

distribution of first kind. Procedures are developed for determining the parameters of the proposed plan for 

specified requirements in terms of producer’s and consumer’s protection.  

Key Words: Consumer’s Quality Level, Generalized Beta Distribution, Normal 

Distribution, Operating Characteristic Function, Single Sampling Plan, Producer’s 

Quality Level. 

 

1. Introduction 

Sampling inspection is an activity for taking decisions on one or more lots of finished products which 

have been submitted for inspection. The decision of either acceptance or rejection of the lots is usually 

taken by adopting suitable sampling inspection procedures, called sampling plans. Sampling plans 

are generally categorized into two types, namely, lot-by-lot sampling by attributes and lot-by-lot 

sampling by variables. In lot-by-lot inspection by attributes, one or more samples of items are drawn 

from a given lot of manufactured items; each item in the sample(s) is classified as conforming or 

nonconforming; and the decision of acceptance or rejection of the lot is made based on a specific rule. 

In lot-by-lot inspection by variables, one or more samples of items are drawn from a given lot; the 

measurement of a quality characteristic in each sampled item is recorded; and the decision of 

acceptance or rejection of the lot is made as a function of such measurements. The theory of 

inspection by variables is applicable when the quality characteristic of sampled items is measurable 
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on a continuous scale and the functional form of the probability distribution is assumed to be known. 

A variables sampling is advantageous in the sense that it generates more information from each item 

inspected, requires small sample and provides same protection when compared to attributes 

sampling. See, [1] and [2].  

On the basis of the implicit assumption that the quality characteristic is distributed according to 

normal with mean  and standard deviation  , the concept of variables sampling inspection has 

been studied by many researchers. Some of the early works on variables sampling inspection are seen 

in [3], [4], [5], [6] and [7]. Studies relating to sampling plans when the assumption of normality of the 

quality characteristic fails or the functional form of the underlying distribution deviates from normal 

or the form of the distribution is not known are also found in the literature of acceptance sampling. [8] 

– [23] are few references which deal with variables inspection using non-normal distributions.  

The problem of designing single sampling plans by variables, when the quality characteristic, X, 

follows a normal distribution with mean  and standard deviation , has been addressed in the past. 

See, [24].  In the industrial situations, quite often, the assumption of normality may not be valid or the 

quality characteristic may be distributed according to non-normal distributions. In such cases, the 

selection of variable sampling plans becomes complicated. However, the literature of acceptance 

sampling provides procedures for the designing of variables plans when the quality characteristic 

follows a probability distribution other than normal. A detailed survey on various works related to 

variable sampling plans with emphasis on non-normality is given in [11]. A computer-aided 

procedure has been developed in [25] for the identification of the appropriate distribution in 

designing sampling inspection plans by variables when the quality characteristics are defined by 

compositional proportions.     

A generalized probability density function, termed as double bounded probability density 

function has been derived in [26]. It is also called a generalized beta distribution of first kind, in which 

the random variable X is defined within the range (0, 1). Practical applications of variables sampling 

plans using a generalized beta distribution can be visualized for bulk product inspection where the 

quality characteristics are the compositional proportions, such as proportion of binary mixtures of 

pharmaceutical powder, percentage of protein in milk powder, fatty acid composition of serum lipid 

fractions, etc. Sampling inspection plans for compositional fractions based on the beta distribution 

and the procedure for designing the plans to control the proportion nonconforming levels are 

discussed in [27]. 

In this paper, a study on single sampling plans by variables is formulated under the assumption 

that the quality characteristic is assumed to have a generalized beta distribution which would be 

appropriate in situations where the quality characteristics are compositional fractions.  A procedure 

for determining the parameters of the proposed plan for specified requirements in terms of 

producer’s and consumer’s protection is also developed.  

 

2. Single Sampling Inspection Plans by Variables 

A single sampling inspection plan by variables is defined under the following assumptions: 

(a) The quality characteristic, denoted by ,X  is measurable on a continuous scale and has a 

known form of probability distribution, represented by ( ),;xFX , which is the distribution 

function of X with mean  and variance .2  

(b) Each individual unit in a submitted lot has a one-sided specification, say, lower specification, 

L or upper specification, .U  If, for a unit, UX  (or LX  ), the unit is classified as a non- 

conforming unit. 
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The operating procedure of a variable sampling plan is as follows: 

Step 1: Draw a random sample of nunits from a lot and observe the measurements, nxxx ,,, 21   of 

the quality characteristic, .X  

Step 2:  When   is known, accept the lot if Ukx +  (or Lkx −  ); otherwise, reject the lot, 

where x is the sample mean.  

 When   is unknown, accept the lot, if Uksx + (or Lksx − ); otherwise, reject the lot. 

Here,  −
−

=
n

i

i xx
n

s
1:

22 )(
1

1
is an unbiased estimate of .2   

Thus, a single sampling plan by variables is designated by two parameters, namely, the sample 

size, ,n  and the acceptability constant, .k When these parameters are known, the plan could be 

implemented. The explicit expressions for n and k can be derived by specifying two points on the 

operating characteristic curve of the plan, namely, )1,( 1 −p and ),( 2 p , where 1p  and 2p  are 

termed as producer’s quality level (PQL) and the consumer’s quality level (CQL), associated with the 

producer’s risk,  and the consumer’s risk, ,  respectively. A sampling plan by variables is termed 

as a known  or unknown  plan according as  is known or unknown.  

 

3. Operating Characteristic Function 

An important measure of performance of a variables sampling plan is its operating characteristic 

function, which is a function of the proportion, p, of non-conforming units, called incoming lot 

quality, and provides the probability, ),(pPa of acceptance of a lot. The plot of )( pPa against p results 

in a curve, called operating characteristic (OC) curve. For a given upper specification limit, U, when 

 is known, p and )( pPa are defined by  

)( UXPp =                               (1) 

and )()(  UkxPpPa += .                  (2) 

PQL and CQL, using (1), are defined by   

)( 11 UXPpPQL ==            (3) 

and      ),( 22 UXPpCQL ==                   (4) 

where 1 and 2  are the means of the underlying distribution which results in PQL and CQL, 

respectively. 

Assume that the random variable, X, is modeled by a two-parameter generalized beta 

distribution. The probability density function and the cumulative distribution function of the 

generalized beta distribution, according to [26], are respectively given by 

 10,)1(),;( 11 −= −+ xxabxbaxf baa
                                                              (5) 

and      ,)1(1)( baxxF −−=                    (6) 

where a > 0 and b > 0 are the shape parameters.   
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The moments about origin of the distribution are defined by 

( )
,4,3,2,1,

1

1

=









++









+

= r

a

r
b

b
a

r
b

mr ,        

from which the measures such as mean, variance, skewness and kurtosis can be derived as  

,1m= ,2
2  =

3

2

2

3

1



 =  and 

2

2

4
2




 = ,   where ,2122 mm −=  ,23 3

1

2

1233 mmmm +−=  

and .364 4

1

2

121343 mmmmmm −+−=  

From (1), (3) and (4), the lot quality levels, p, PQL and CL using standardized beta distribution are 

defined, respectively, by 

      
),( *

pKTPp =
 

 
)( *

1 1p
KTPpPQL ==            (7) 

and   )( *

2 2p
KTPpCQL == ,                  (8) 

where 










 1** |
,

|
,

1

pU
K

pU
K

X
T pp

−
=

−
=

−
=  and .

| 2*

2 

 pU
K p

−
=   

The producer’s risk, , and the consumer’s risk,  , corresponding to AQL and LQL  are, 

respectively, defined from (2) as  

)()|( 11  =+=== UkxPlottherejectingP                            (9) 

and )()|(1 22  =+===− UkxPlottherejectingP .                  (10)  

When   is unknown, the estimate s is used in the decision criterion, and hence in the evaluation 

of  and  . 

 

4. Designing Single Sampling Plans by Variables 

In the industrial practice, the unknown standard deviation variables plans are more realistic than the 

known standard deviation variables plans. If the distribution is non-normal, the designing of 

unknown   plans is rather complicated. Such problems introducing an expansion factor in terms of 

measures of skewness and kurtosis are addressed in [12], which also provides a methodology for 

determining the parameters of sampling plans by variables under the conditions of non-normal 

populations using the expansion factor. The procedures for the selection of unknown standard 

deviation sampling plans are provided in [23] giving protection to the producer and consumer under 

the assumption that the quality characteristics under study follow a Pareto distribution when the 

measures of skewness and /or kurtosis are specified.  

4.1. Case of Unknown Sigma 

The methodology proposed in [12] using the expansion factor will, now, be discussed for an 

unknown sigma plan by variables under the assumption of generalized beta distribution for the 

quality characteristic, X. 
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In the case of unknown sigma plan, the determination of n  and k  is usually based on the 

sampling distribution of ksx +  or ksx − . It is known that under the assumption of normal 

distribution, x and s are independent and distributed as normal. Therefore, ksx +  and ksx −  are 

normally distributed. Using these properties, formulae for finding the values of n and k  can be 

obtained. The asymptotic distributions of ksx +  and ksx −  are shown to be normal having the 

means  ky +=  and  ky −= , respectively, and the common variance given by   









−+= 12

22
2 )1(

4
1 


 k

k

n
Y

,                       (11) 

where 1 and 2 represent the measures of skewness and kurtosis of the underlying distribution. 

Having defined 


 pU
Z p

|* −
=  and acceptance probability function for the case of unknown 

standard deviation as ( )pUYPpUskxPpP rUra |]|[)( =+= , from [12], the expressions 

for Z , Z , 
*

PQLZ and
*

CQLZ corresponding to α, β, PQL and CQL, respectively, are as given below:  

U

U

U

n

e

kpU
Z






)|( 1 +−
=                                  (12) 

U

U

U

n

e

kpU
Z






)|( 2 +−
=−                                  (13) 

U

U
UPQL

n

e
KkZ +=*                                 (14) 

 

U

U
UCQL

n

e
KkZ −=* .                                                  (15) 

Here, 
12

2

)1(
4

1  k
k

eU +−+=  is the expansion factor, which can be used to obtain the known 

standard deviation plans.  When the requirements are specified in terms of the points 

)1,( −PQL and ),( CQL  on the OC curve such that ( ) −=1PQLPa and ( ) =CQLPa , the 

expressions for the plan parameters n and k , derived from (14) and (15), are as given below:    

2

**












−

+
=

LQLPQL

UU
ZZ

ZZ
en


                      (16) 

and     .

**





ZZ

ZZZZ
k

PQLCQL

U
+

+
=                       (17) 

In a similar way, when the lower specification limit, L, is specified, the expressions for n and k  

can be derived.  

4.2. Numerical Illustration  

Suppose that a set of measurements yields 0377.01 =
 
and 0147.22 =

 
It is desired to determine 

a variables sampling plan giving protection to the producer and the consumer in terms of 

)05.0,01.0( == PQL and )10.0,06.0( == CQL . For the given requirements, the values of a 
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and b are found as a = 0.65 and b = 0.80. Associated with these values are the mean and standard 

deviation given by M = 0.5581 and S = 0.2545, respectively. Corresponding to PQL and CQL, the 

values of *

PQLZ and 
*

CQLZ are determined from (7) and (8) as 1.6717 and 1.4619, respectively. The 

normal deviates Z  
and Z  are obtained as 1.645 and 1.282 by satisfying (9) and (10) for the specified 

sets of values of  and .  Substituting these values in (16) and (17), the parameters of the desired 

plan are determined as 195=n and .554.1=k  The value of 
U
e  is obtained as 1.67119. Thus, the 

parameters of a known standard deviation plan, are computed as 117' ==
U

U
U

e

n
n and 

.554.1== UU kk   

 

4.3. Case of Known Sigma 

The method of designing known sigma variables sampling plan under the assumption of Burr 

distribution utilizing the measures skewness and kurtosis is proposed in [15]. A similar procedure is 

developed here for the known sigma plan by variables when the underlying distribution is a two-

parameter generalized beta distribution. 

Let M and S be the mean and standard deviation of the two-parameter generalized beta 

distribution. Then, PQL and CQL are defined by 

0,0,)1(),;(1 −=−= baxSMxFPQL ba

PQLPQL                    (18) 

and  0,0,)1(),;(1 −=−= baxSMxFCQL ba

CQLCQL .                   (19) 

where                       (20)   

and                          (21) 

with 
*

PQLZ and 
*

CQLZ being the standardized values of x corresponding to PQL and CQL, respectively.  

Assuming that the distribution of x is normal,   and  are defined as area under normal curve 

and are expressed by  

                        (22) 

and  ,                        (23) 

where ,                       (24) 

                        (25) 

and    .                                     (26) 

From equations (22) to (26), the expressions for n and k are, respectively, obtained as  

                            (27) 

and       .                             (28) 

If the acceptance criterion is written as Ukx +  , according to [15], the expression for k is 

given by 
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.                                    (29) 

 

5. Determination of n  and k  of a Variables Sampling Plan 

The parameters of a sampling plan by variables can be derived from the generalized beta distribution 

when the third and fourth moments of the distribution of measurements are known or specified. It is 

known that the measures of skewness and kurtosis, specified by  and , of a generalized beta 

distribution are functions of the shape parameters a and b. Thus, for a specified values of  and , 

the values of a  and b can be determined. In order to determine the required sampling plan by 

variables, the following procedure is followed: 

Step 1: Specify  and . 

Step 2: Specify the desired protection in terms of  and . 

Step 3: Choose the value a and b from Table 2 corresponding to the specified values of  and . 

Step 4: For specified 1p and 2p , determine 
PQLx  and 

CQLx from , which is the cumulative 

distribution function of the generalized beta distribution, satisfying the equations (18)  and 

(19), and obtain  and from equations (20) and (21). 

Step 5: For specified and , determine the normal deviates and , satisfying the equations (22) 

and (23). 

Step 6: Determine the parameters n and k of the plan as Un  and Uk  using equation (27) and (29). 

Based on the procedure described, the parameters, n and k , of the sampling plans by variables 

for a wide range of values of  PQL and CQL are obtained and given in Table 3 for various combination 

of values of a and b. The parameters provided in the table yield the maximum producer’s risk of 5% 

and the maximum consumer’s risk of 10%. To facilitate the computation of and , the mean, 

M, and standard deviation, S, are obtained for sets of values of a and b and provided in Table 1. 

 

5.1. Numerical Illustration  

It is desired to have a single sampling plan by variables when the set of measurements drawn from a 

generalized beta distribution has the measure of skewness and kurtosis specified as 0654.01 =  and 

.1384.22 =  Suppose that the desired protection against an upper specification limit is specified in 

terms of )05.0,01.0( == PQL and ).10.0,06.0( == CQL   

Table 2 yields 4156.0,50.0,750.0 === Mba  and 2363.0=S  associated with 0654.01 =  

and .1384.22 =  The values of PQLx  and CQLx are determined from (18) and (19) as 0.924 and 

0.8458 for the specified 01.0=PQL and .04.0=CQL  The standardized deviates 
*

PQLZ and 
*

CQLZ  are 

obtained as 2.1512 and 1.8206, respectively, from (20) and (21). The values of Z and Z  are 

determined as 1.645 and 1.282. On substitution of these values in (27) and (29), the parameters of the 

desired plan are determined as ,78== Unn  and .9654.1=k  Table 3, when entered with the 

specified values of the quality levels, can be used to choose the parameters of the required plan 

corresponding to a = 0.75 and b = 0.50.   
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Table 1: Mean, M, and Standard Deviation, S of Generalized Beta Distribution 

a 
b  

0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 

0.500 
0.3694 0.4063 0.4382 0.4661 0.4909 0.5132 0.5333 0.5517 M 

0.1738 0.1868 0.1969 0.205 0.2116 0.2168 0.2211 0.2246 S 

0.550 
0.3387 0.3759 0.4082 0.4367 0.4622 0.4852 0.506 0.5251 M 

0.1727 0.1871 0.1985 0.2076 0.2151 0.2212 0.2262 0.2303 S 

0.600 
0.3111 0.3484 0.381 0.4099 0.4359 0.4594 0.4808 0.5004 M 

0.1707 0.1863 0.1989 0.2091 0.2175 0.2244 0.2301 0.2349 S 

0.650 
0.2862 0.3234 0.3561 0.3853 0.4116 0.4356 0.4574 0.4775 M 

0.168 0.1848 0.1985 0.2097 0.2189 0.2266 0.233 0.2384 S 

0.700 
0.2638 0.3007 0.3334 0.3627 0.3893 0.4135 0.4357 0.4562 M 

0.1648 0.1827 0.1973 0.2094 0.2195 0.2279 0.235 0.241 S 

0.750 
0.2435 0.28 0.3126 0.3419 0.3687 0.3931 0.4156 0.4364 M 

0.1612 0.1801 0.1957 0.2086 0.2195 0.2286 0.2363 0.2429 S 

0.800 
0.2251 0.2611 0.2934 0.3228 0.3495 0.3741 0.3968 0.4178 M 

0.1573 0.1771 0.1936 0.2073 0.2189 0.2287 0.2371 0.2442 S 

0.850 
0.2084 0.2438 0.2758 0.305 0.3318 0.3565 0.3793 0.4005 M 

0.1533 0.1739 0.1911 0.2056 0.2179 0.2284 0.2373 0.245 S 

0.900 
0.1932 0.2279 0.2596 0.2886 0.3153 0.34 0.363 0.3843 M 

0.1492 0.1705 0.1884 0.2036 0.2165 0.2276 0.2371 0.2453 S 

0.950 
0.1793 0.2134 0.2446 0.2734 0.3 0.3247 0.3477 0.3691 M 

0.145 0.1669 0.1855 0.2013 0.2149 0.2265 0.2366 0.2452 S 

1.000 
0.1667 0.2 0.2308 0.2593 0.2857 0.3103 0.3333 0.3548 M 

0.1409 0.1633 0.1824 0.1988 0.213 0.2251 0.2357 0.2449 S 

1.500 
0.0852 0.1108 0.136 0.1604 0.1841 0.2068 0.2286 0.2494 M 

0.1029 0.1276 0.15 0.1701 0.1881 0.2042 0.2185 0.2313 S 

2.000 
0.0476 0.0667 0.0865 0.1068 0.127 0.147 0.1667 0.1859 M 

0.0753 0.0992 0.1219 0.1432 0.1628 0.1808 0.1972 0.2122 S 

2.500 
0.0284 0.0426 0.0583 0.0749 0.092 0.1095 0.127 0.1444 M 

0.0562 0.0782 0.1001 0.1212 0.1412 0.16 0.1775 0.1936 S 

3.000 
0.0179 0.0286 0.041 0.0547 0.0693 0.0844 0.1 0.1157 M 

0.043 0.0628 0.0833 0.1037 0.1235 0.1425 0.1604 0.1772 S 
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Table 1 (Continued) 

a 
b  

0.600 0.650 0.700 0.750 0.800 0.850 0.900 

0.500 
0.5686 0.5841 0.5985 0.6119 0.6243 0.6359 0.6468 M 

0.2274 0.2296 0.2314 0.2328 0.2339 0.2347 0.2352 S 

0.550 
0.5426 0.5588 0.5738 0.5877 0.6007 0.6129 0.6243 M 

0.2337 0.2365 0.2387 0.2405 0.2419 0.243 0.2439 S 

0.600 
0.5185 0.5352 0.5507 0.5652 0.5787 0.5914 0.6032 M 

0.2388 0.2421 0.2448 0.247 0.2488 0.2502 0.2513 S 

0.650 
0.496 0.5132 0.5292 0.5441 0.5581 0.5712 0.5835 M 

0.2429 0.2466 0.2498 0.2524 0.2545 0.2563 0.2577 S 

0.700 
0.4751 0.4927 0.5091 0.5244 0.5388 0.5523 0.565 M 

0.246 0.2503 0.2539 0.2569 0.2594 0.2615 0.2633 S 

0.750 
0.4556 0.4736 0.4903 0.506 0.5207 0.5345 0.5475 M 

0.2485 0.2532 0.2572 0.2607 0.2635 0.266 0.268 S 

0.800 
0.4374 0.4556 0.4726 0.4886 0.5036 0.5177 0.531 M 

0.2503 0.2555 0.2599 0.2637 0.267 0.2697 0.2721 S 

0.850 
0.4203 0.4387 0.456 0.4723 0.4875 0.5019 0.5155 M 

0.2515 0.2572 0.2621 0.2663 0.2698 0.2729 0.2755 S 

0.900 
0.4043 0.4229 0.4404 0.4569 0.4723 0.487 0.5008 M 

0.2524 0.2584 0.2637 0.2683 0.2722 0.2756 0.2785 S 

0.950 
0.3892 0.408 0.4257 0.4423 0.458 0.4728 0.4869 M 

0.2528 0.2593 0.2649 0.2698 0.2741 0.2778 0.281 S 

1.000 
0.375 0.3939 0.4118 0.4286 0.4444 0.4595 0.4737 M 

0.2528 0.2598 0.2658 0.2711 0.2756 0.2796 0.2831 S 

1.500 
0.2693 0.2884 0.3066 0.3239 0.3405 0.3564 0.3716 M 

0.2428 0.253 0.2622 0.2704 0.2777 0.2842 0.2901 S 

2.000 
0.2045 0.2227 0.2402 0.2571 0.2735 0.2893 0.3045 M 

0.2258 0.2382 0.2494 0.2596 0.2689 0.2773 0.2849 S 

2.500 
0.1616 0.1785 0.1951 0.2113 0.227 0.2423 0.2572 M 

0.2086 0.2223 0.2349 0.2465 0.2572 0.2669 0.2759 S 

3.000 
0.1315 0.1472 0.1627 0.178 0.1931 0.2078 0.2222 M 

0.1928 0.2074 0.221 0.2336 0.2452 0.2559 0.2658 S 
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Table 2: Measures, β1 and β2, of Skewness and Kurtosis Generalized Beta Distribution 

a 
b  

0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 

0.500 
0.0676 0.0342 0.0133 0.0025 0.0001 0.0049 0.0157 0.0316 β1 

2.4664 2.3723 2.3018 2.2505 2.2149 2.192 2.18 2.1771 β2 

0.550 
0.1318 0.0804 0.0441 0.02 0.0059 0.0003 0.0017 0.0091 β1 

2.5366 2.4147 2.3212 2.2503 2.1977 2.1601 2.135 2.1204 β2 

0.600 
0.2138 0.1431 0.0904 0.0522 0.026 0.0096 0.0015 0.0003 β1 

2.6341 2.4822 2.3641 2.2727 2.2026 2.1499 2.1115 2.085 β2 

0.650 
0.3122 0.2205 0.1503 0.0974 0.0585 0.031 0.0131 0.0032 β1 

2.7563 2.572 2.4276 2.3145 2.2262 2.1579 2.1059 2.0675 β2 

0.700 
0.426 0.3114 0.2226 0.154 0.1018 0.0628 0.0348 0.016 β1 

2.9013 2.6818 2.5094 2.3734 2.266 2.1815 2.1156 2.0651 β2 

0.750 
0.5542 0.415 0.306 0.2209 0.1547 0.1037 0.0654 0.0374 β1 

3.0679 2.8101 2.6076 2.4473 2.3199 2.2186 2.1384 2.0755 β2 

0.800 
0.6965 0.5304 0.4 0.2972 0.2162 0.1528 0.1037 0.0664 β1 

3.255 2.9558 2.721 2.5349 2.3864 2.2677 2.1726 2.0969 β2 

0.850 
0.8523 0.6572 0.5036 0.3821 0.2857 0.2092 0.149 0.102 β1 

3.4621 3.1178 2.8484 2.6349 2.4643 2.3273 2.2169 2.1282 β2 

0.900 
1.0216 0.7949 0.6166 0.4751 0.3624 0.2723 0.2005 0.1436 β1 

3.6887 3.2956 2.9889 2.7464 2.5525 2.3964 2.2702 2.1679 β2 

0.950 
1.2042 0.9432 0.7384 0.5758 0.4458 0.3415 0.2577 0.1905 β1 

3.9347 3.4886 3.142 2.8686 2.6502 2.4741 2.3314 2.2154 β2 

1.000 
1.4 1.102 0.8687 0.6836 0.5355 0.4163 0.32 0.2422 β1 

4.2 3.6964 3.3072 3.0009 2.7566 2.5598 2.4 2.2696 β2 

1.500 
4.1297 3.2597 2.6111 2.1141 1.7247 1.4143 1.1633 0.9582 β1 

7.9786 6.5824 5.5687 4.8073 4.2201 3.7575 3.3868 3.0856 β2 

2.000 
8.531 6.5435 5.1512 4.1346 3.3675 2.7735 2.3038 1.9259 β1 

14.2288 11.0692 8.9317 7.412 6.2892 5.4341 4.7668 4.2355 β2 

2.500 
15.1716 11.1897 8.5727 6.7539 5.4343 4.4441 3.6804 3.0784 β1 

23.8586 17.5151 13.5161 10.8234 8.9175 7.515 6.4505 5.622 β2 

3.000 
24.8095 17.5104 13.0029 10.0171 7.9316 6.4136 5.2717 4.3895 β1 

38.094 26.3968 19.5076 15.1041 12.1123 9.9818 8.4073 7.2085 β2 
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                 Table 2 (Continued) 

a 
b  

0.600 0.650 0.700 0.750 0.800 0.850 0.900  

0.500 
0.052 0.0762 0.1037 0.1342 0.1672 0.2026 0.24 β1 

2.182 2.1934 2.2107 2.2329 2.2595 2.2899 2.3237 β2 

0.550 
0.0216 0.0386 0.0594 0.0835 0.1106 0.1403 0.1723 β1 

2.1145 2.1162 2.1244 2.1382 2.1569 2.1798 2.2065 β2 

0.600 
0.005 0.0148 0.029 0.0469 0.0682 0.0925 0.1193 β1 

2.0686 2.0606 2.06 2.0656 2.0766 2.0924 2.1124 β2 

0.650 
0 0.0026 0.0102 0.0221 0.0377 0.0566 0.0784 β1 

2.0404 2.0229 2.0135 2.0111 2.0147 2.0236 2.0371 β2 

0.700 
0.0048 0.0002 0.0013 0.0071 0.0171 0.0309 0.0478 β1 

2.0272 2.0001 1.982 1.9717 1.9681 1.9702 1.9775 β2 

0.750 
0.0182 0.0063 0.0007 0.0005 0.005 0.0136 0.0258 β1 

2.0267 1.9899 1.9632 1.945 1.9342 1.9298 1.9309 β2 

0.800 
0.0389 0.0196 0.0074 0.0012 0.0002 0.0037 0.0111 β1 

2.0371 1.9906 1.9552 1.9292 1.9113 1.9003 1.8954 β2 

0.850 
0.066 0.0393 0.0204 0.0081 0.0016 0.0001 0.0028 β1 

2.0571 2.0006 1.9564 1.9226 1.8976 1.8802 1.8694 β2 

0.900 
0.0989 0.0646 0.0389 0.0205 0.0085 0.0019 0 β1 

2.0853 2.0188 1.9657 1.924 1.892 1.8682 1.8515 β2 

0.950 
0.137 0.0948 0.0622 0.0377 0.0201 0.0085 0.002 β1 

2.1209 2.0441 1.9821 1.9325 1.8934 1.8632 1.8407 β2 

1.000 
0.1796 0.1295 0.0899 0.0592 0.036 0.0193 0.0082 β1 

2.163 2.0758 2.0048 1.9471 1.9008 1.8642 1.836 β2 

1.500 
0.7889 0.6482 0.5307 0.4322 0.3495 0.28 0.2217 β1 

2.8381 2.6328 2.4614 2.3174 2.1959 2.0932 2.0062 β2 

2.000 
1.6175 1.3629 1.1506 0.9721 0.8211 0.6927 0.5829 β1 

3.8057 3.4531 3.1605 2.9155 2.7086 2.5329 2.3827 β2 

2.500 
2.5949 2.2007 1.8751 1.6033 1.3743 1.1798 1.0136 β1 

4.9637 4.4316 3.9953 3.633 3.3292 3.0721 2.8529 β2 

3.000 
3.6928 3.1325 2.6749 2.2963 1.9795 1.7119 1.484 β1 

6.273 5.528 4.9247 4.4289 4.0164 3.6697 3.3756 β2 
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Table 3:  Sample Size, n, and Acceptability Constant, k, of Single Sampling Plans by Variables 

 Based on Generalized Beta Distribution Having a Maximum Producer’s Risk of 5 Percent  

 (α = 0.05) and a Maximum Consumer’s Risk of 10 Percent (β = 0.10) 

PQL CQL b 
a  

0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 

0.005 0.01 0.200 
244 209 180 155 135 118 104 91 n 

2.4205 2.5076 2.5939 2.6792 2.7637 2.8473 2.9298 3.0114 k 

0.005 0.01 0.250 
67 58 50 43 38 34 30 26 n 

2.2105 2.2836 2.3556 2.4264 2.4962 2.5648 2.6324 2.6988 k 

0.005 0.02 0.300 
89 77 67 59 51 45 40 36 n 

2.1311 2.2 2.2679 2.3346 2.4004 2.4651 2.5289 2.5916 k 

0.006 0.03 0.350 
70 60 53 47 41 36 33 29 n 

1.9813 2.041 2.0996 2.157 2.2134 2.2686 2.3228 2.376 k 

0.007 0.04 0.400 
63 55 49 43 38 34 30 27 n 

1.863 1.916 1.9678 2.0185 2.068 2.1165 2.1638 2.2102 k 

0.008 0.05 0.450 
61 54 48 42 38 34 30 27 n 

1.7649 1.8127 1.8593 1.9047 1.949 1.9922 2.0344 2.0756 k 

0.01 0.04 0.500 
142 125 111 98 88 78 70 64 n 

1.7406 1.7878 1.8338 1.8787 1.9226 1.9654 2.0073 2.0483 k 

0.01 0.07 0.550 
142 125 111 98 88 78 70 64 n 

1.7406 1.7878 1.8338 1.8787 1.9226 1.9654 2.0073 2.0483 k 

0.02 0.09 0.600 
75 67 60 54 48 44 40 36 n 

1.4919 1.5258 1.5584 1.5899 1.6203 1.6497 1.678 1.7054 k 

0.02 0.03 0.650 
2922 2585 2298 2052 1840 1656 1496 1356 n 

1.6059 1.6474 1.6878 1.7272 1.7657 1.8033 1.84 1.876 k 

0.03 0.04 0.700 
4520 4014 3582 3211 2889 2610 2366 2152 n 

1.5208 1.5578 1.5938 1.6288 1.6629 1.696 1.7283 1.7598 k 

0.03 0.05 0.750 
4520 4014 3582 3211 2889 2610 2366 2152 n 

1.5208 1.5578 1.5938 1.6288 1.6629 1.696 1.7283 1.7598 k 

0.04 0.06 0.800 
2002 1787 1603 1444 1305 1185 1079 986 n 

1.4037 1.4354 1.466 1.4957 1.5244 1.5523 1.5793 1.6056 k 

0.04 0.08 0.850 
634 567 510 460 417 379 346 317 n 

1.3458 1.3749 1.4029 1.4301 1.4563 1.4816 1.5061 1.5299 k 

0.05 0.10 0.900 
501 450 406 367 334 304 279 256 n 

1.2823 1.3085 1.3337 1.3579 1.3813 1.4038 1.4255 1.4464 k 
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      Table 3 (Continued) 

PQL CQL b 
a  

0.900 0.950 1.000 1.500 2.000 2.500 3.000 

0.005 0.01 0.200 
81 72 64 24 12 7 4 n 

3.092 3.1716 3.2501 3.9699 4.5555 4.993 5.2813 k 

0.005 0.01 0.250 
23 21 19 8 4 2 1 n 

2.7642 2.8284 2.8915 3.4603 3.9127 4.2494 4.4768 K 

0.005 0.02 0.300 
32 29 26 10 5 3 2 N 

2.6534 2.7141 2.7739 3.3179 3.765 4.1177 4.3816 K 

0.006 0.03 0.350 
26 24 21 9 5 3 2 n 

2.4281 2.4792 2.5294 2.9786 3.3394 3.62 3.8287 k 

0.007 0.04 0.400 
25 22 20 9 5 3 2 n 

2.2555 2.2999 2.3433 2.7277 3.0319 3.2667 3.4418 k 

0.008 0.05 0.450 
25 22 20 9 5 3 2 n 

2.1157 2.155 2.1933 2.5298 2.793 2.9954 3.1469 k 

0.01 0.04 0.500 
58 52 48 21 12 7 5 n 

2.0883 2.1275 2.1657 2.5055 2.7778 2.9938 3.162 k 

0.01 0.07 0.550 
58 52 48 21 12 7 5 n 

2.0883 2.1275 2.1657 2.5055 2.7778 2.9938 3.162 k 

0.02 0.09 0.600 
33 30 28 14 8 5 4 n 

1.7319 1.7575 1.7822 1.9885 2.1343 2.2343 2.2987 k 

0.02 0.03 0.650 
1232 1124 1028 477 261 160 106 n 

1.9111 1.9455 1.9791 2.2801 2.5277 2.7323 2.9013 k 

0.03 0.04 0.700 
1963 1796 1648 788 443 278 189 n 

1.7904 1.8203 1.8494 2.1056 2.3092 2.4715 2.6002 k 

0.03 0.05 0.750 
1963 1796 1648 788 443 278 189 n 

1.7904 1.8203 1.8494 2.1056 2.3092 2.4715 2.6002 k 

0.04 0.06 0.800 
903 830 765 379 220 142 98 n 

1.631 1.6558 1.6798 1.8871 2.0463 2.169 2.2627 k 

0.04 0.08 0.850 
291 268 247 125 74 48 34 n 

1.5529 1.5751 1.5967 1.7808 1.919 2.023 2.1004 k 

0.05 0.10 0.900 
235 217 201 104 62 41 30 n 

1.4666 1.4861 1.5049 1.6621 1.7752 1.856 1.9121 k 
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6. Conclusion 

The literature in statistical quality control provides various sampling inspection procedures which 

been developed based on the assumption that the quality characteristic under study follows a normal 

distribution. While such procedures are widely used in the industries, the departure from the 

assumption of normality or the violation of distributional assumptions are the major concern for the 

industrial practitioners as the decision that is made on the lot disposition in such situations would be 

inappropriate. Focusing on this vital aspect, in this paper, procedures for designing single sampling 

plans by variables are devised under the assumption that the quality characteristic is distributed 

according to a generalized beta distribution of first kind. The procedures and tables presented are 

appropriate for bulk inspection procedures where the quality characteristics are defined by 

compositional proportions. 
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Abstract 

 
In this study, the reliability metrics used to assess the strength of a three-subsystem reverse osmosis 

filtering system. The subsystems include sand filter, carbonated filter, and precision filter. Each 

subsystem is composed of active components that can operate in series parallel. The system of partial 

differential equations was built using the mnemonic rule and analytically solved. Other reliability 

variables that were investigated for determining system strength included availability, reliability, 

mean time to failure (MTTF), profit analysis, and sensitivity analysis. The Maple software was used 

to obtain numerical solutions. In addition, a graphical representation of the numerical results was 

provided to demonstrate the behaviors of reliability characteristics with regard to time and failure rate. 

The study could assist water treatment firms and their repairers in overcoming some of the challenges 

faced by repairers of specialized manufacturing and industrial systems working in harsh settings or 

contaminated environments unfit for human consumption. 

 

Keywords: mnemonic, profit, sensitivity, reliability, repair, system, copula 

 

 

I. Introduction 
 

The removal of pollutants from drinking water caused by humans is a modern-day technical 

challenge. You'll learn about the detectable contamination of drinking water caused by 

anthropogenic (human-made) contaminants that is still present after a quick review of the 

treatment steps that municipal water goes through before it reaches your tap. Prescription 

medications, herbicides, and hormones have all been discovered in the drinking water systems of 

our respective countries. The engineering design method could be used to find solutions to a real-

world problem (contaminated water) that could be dangerous to people's health. Water is perhaps 

the most important nutrient in our diets. In reality, a normal adult needs to drink around 2 liters (8 

glasses) of water per day to replace the water lost through the epidermis, respiratory system, and 

urine. The Reliability, Availability, Maintainability, and Dependability Analysis of a Complex 

Reverse Osmosis Machine System in Water Purification was studied by Maihulla A. S. et al. [1] Al-

Ghouti, M.A et al. [2] evaluated the recent developments and applications for municipal solid 

waste bottom and fly ashes. The Gumbel-Hougaard family copula was used to forecast the 
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reliability and performance of a small serial solar photovoltaic system for rural use was carried out 

by Maihulla A.S. and Yusuf I. [3]. Evaluation of Ozone Pretreatment on Reverse Osmosis Flux 

Parameters for Surface Water Treatment, Ozone by Shalana L. et al. [4]. The study pertaining the 

Availability and reliability analysis of integrated reverse osmosis was carried out by safder U. et al. 

[5]. Calixto, Eduardo. [6] Discussed about Reliability, Availability, and Maintainability (RAM 

Analysis). The RAM analysis and availability optimization of thermal power plant water 

circulation system using PSO was carried out by Hanumant P. et al. [7]. The study that tackled the 

Reliability Assessment for Hybrid Systems of Advanced Treatment Units of Industrial Wastewater 

Reuse Using Combined Event Tree and Fuzzy Fault Tree Analyses. Was conducted by Farzad P. et 

al. [8]. Hajeeh, M. [11] & Chaudhuri, D. [9] conducted a research titled reliability and availability 

assessment of reverse osmosis Desalination. The feasibility and reliability of the Life Cycle 

Assessment for desalination, is a study carried out by Zhou, J. et al. [10]. Revas P. et al. [12] study 

the Real-Time Implementation of an Expert Model Predictive Controller in a Pilot-Scale Reverse 

Osmosis Plant for Brackish and Seawater Desalination. Goyal et al. [13] defined the most vulnerable 

aspect of serial processes such as evaporation systems in the sugar industry and water treatment 

plants. Using STP, this research deconstructs the efficiency indices of the power generation system. 

Simple probability theory concepts and the Markovian birth-death process were used to investigate 

the power system. As a Markov process progresses from one stage to the next, it becomes more 

complex. 

 

M.F. Idrees [14] also works with the Performance Analysis and Treatment Technologies of a 

Reverse Osmosis Plan. C. Li, S. Besarati, and colleagues [15] A few years ago, I did research on 

reverse osmosis desalination using a low temperature supercritical organic Rankine cycle. In order 

to meet environmental and economic standards, any sophisticated reverse osmosis plant must have 

automation and reliability. S. Srivastava. [16]. S. Sadri [17] Created a computational model based on 

diffusion and convection transport mechanisms, as well as the concentration polarization concept, 

to predict RO membrane performance using a variety of feed water concentrations, feed flow rates, 

feed water pressures, membrane specifications, and feed water properties. Y. Li et al. [18] 

conducted a study of the concepts and categorization of membrane distillation, with an emphasis 

on the variables influencing it and ways to improving its efficacy. Experiments were conducted by 

E. O. Ezugbe et al. [19] Pure water and NaCl solutions ranging from 15 g/L to 300 g/L, as well as 

two distinct fiber types and architectures, were used. Vacuum membrane distillation (VMD) is a 

saltwater desalination technique. The pure water permeability and global heat transfer coefficient 

of the two systems were compared. The effects of hydrodynamics on global heat and mass 

transport coefficients are discussed. R. Tundis et al. [20] The chemical profile, antioxidant and anti-

obesity properties of concentrated fractions obtained from micro-filtered OMW treated by direct 

contact membrane distillation were studied (DCMD). Using ultrahigh performance liquid 

chromatography, several phenols chosen as phytochemical markers were measured (UHPLC). To 

treat the pollutants found in olive mill wastewater (total organic carbon (TOC), dissolved organic 

carbon (DOC), total phosphorus (TP), total nitrogen (TN), and total polyphenols), a sequential 

Direct Contact Membrane Distillation (DCMD) and a Reverse Osmosis (RO) hybrid membrane 

system were used. The study was conducted by D. Teresa [21]. The influence of permeate flow and 

pressure on pollutant parameter removals was also studied. One of the biggest challenges that 

humanity must address in the twenty-first century is the scarcity of freshwater. P. Biniaz et al. [22] 

explored how an ecologically acceptable, cost-effective, and energy-efficient membrane distillation 

process might be developed (MD) process can reduce pollution caused by industrial and domestic 

wastes. Garud R. M. et al. [23] conducted a Short Review on Process and Applications of Reverse 

Osmosis. The Gumbel–Hougaard family copula was used to model the reliability and performance 

of a solar photovoltaic system was analyzed by Maihulla A. S. et al. [24].  Y.G. Lee et al. [25] created 

a model with five input factors (feed temperature, feed total dissolved solids (TDS), trans-

membrane pressure (TMP), feed flow rate, and time) and two output parameters (permeate TDS 
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and flow rate) to estimate the performance of a saltwater reverse osmosis (SWRO) desalination 

plant It was then used to simulate feed water temperature. D. Wirth [26] compared two hollow 

fiber module designs (inside/out and outside/in). 

 

Our motivation for investigating the reverse osmosis filtration system derives from a severe 

problem that the water purification businesses are experiencing as a result of purification filter 

failure. And the slow progress in technological advancement in water purification as a result, as 

well as its relevance in the lives of people all over the world. Industry is working hard to keep up 

with the growing complexity of filtration systems. According to the paper's findings, Gumbel-

Haugaard Family Copula analysis was performed to examine the filtration system's strength, 

efficiency, and performance improvement. Users will be able to serve the expense of medical care 

owing to un-pure water if the strength, efficiency, and performance of the filtration system are 

assessed. Protect yourself from aquatic pollution. The research is broken into five sections, one of 

which being the present introduction. Filtration modeling is discussed. Later in the second portion 

Section 4 contains a discussion and explanation of the results from the third section, which involves 

an analytical analysis of the system. Section 5 is devoted to the conclusion and ramifications of the 

findings. 

 

II. Methods 

I. Filtration 
One of the most common methods for removing these materials is gravity filtration. Water 

containing solid impurities (e.g., precipitates after water softening) is passed through a porous 

material, usually sand and gravel layers, in this procedure. The force of gravity pushes the water 

through the medium. The gaps between the sand and gravel grains allow small water molecules to 

flow through. Precipitation-derived solids, on the other hand, become trapped in the pores and 

thus remain in the porous medium. The solid contaminants have been removed from the water that 

passes through the bottom of the filter. 

 

II. Description of the model 

A model with three series-parallel subsystems, A, B, and C, is shown in Figure 1. Two identical 

units work as 1-out-of-2 in subsystem A (sand filter), three identical units work as 1-out-of-3 in 

subsystem B (carbonated filter), and two parallel units work as 2-out-of-2 in subsystem C (precision 

filter). The two types of system failures are partial and complete failures. When a unit in a 

subsystem fails but the system continues to function, it is called partial failure, whereas total failure 

occurs when all of the subsystems fail. Copula is used to repair a system that has completely failed. 

In the system, there are eleven states: eight that are operational and three that are total failure states 

(see Figure2). The states are described briefly in Table 1. 

 

III. Results 

 

I.  Formulation and Solution of Mathematical Model 
The following set of difference-differential equations is related to the aforementioned mathematical 

model based on consideration likelihood and argument continuity. 

(
𝜕

𝜕𝑥
+ 𝛼1 + 𝛼2 + 2𝛼3) 𝑃0(𝑡) = ∫ 𝛽1𝑃1(𝑥, 𝑡)𝑑𝑥 + ∫ 𝛽2𝑃2(𝑦, 𝑡)𝑑𝑦 + ∫ 𝜓(𝑦)𝑃6(𝑦, 𝑡)𝑑𝑦 +

∞

0

∞

0

∞

0

 

                                                                ∫ 𝜑(𝑥)𝑃8(𝑥, 𝑡)𝑑𝑥
∞

0
 + ∫ 𝜑(𝑦)𝑃9(𝑦, 𝑡)𝑑𝑦

∞

0
 + 

∫ 𝜑(𝑧)𝑃10(𝑧, 𝑡)𝑑𝑧
∞

0
                                                        

                                                                                                                                                                           (1) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛼1 + 𝛼2 +  𝛽1) 𝑃1(𝑥, 𝑡) = 0                                                                                                              (2) 
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(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛼1 + 𝛼2 +  𝛽2) 𝑃2(𝑦, 𝑡) = 0                                                                                                              (3) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛼1 + 𝛼2 +  𝛽2) 𝑃3(𝑦, 𝑡) = 0                                                                                                              (4) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛼2 + 𝛽2) 𝑃4(𝑦, 𝑡) = 0                                                                                                                       (5) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝛼2 + 𝛽2) 𝑃5(𝑦, 𝑡) = 0                                                                                                                       (6) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛼1 + 𝛽1) 𝑃6(𝑥, 𝑡) = 0                                                                                                                       (7) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛼1 + 𝛽1) 𝑃7(𝑥, 𝑡) = 0                                                                                                                       (8) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜑(𝑥)) 𝑃8(𝑥, 𝑡) = 0                                                                                                                            (9) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜑(𝑦)) 𝑃9(𝑦, 𝑡) = 0                                                                                                                           (10) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
+ 𝜑(𝑧)) 𝑃10(𝑥, 𝑡) = 0                                                                                                                          (11) 

Boundary conditions 

𝑃1(0, 𝑡) = 𝛼1𝑃0(𝑡)                                                                                                                                            (12) 

𝑃2(0, 𝑡) = 𝛼2𝑃0(𝑡)                                                                                                                                          (13) 

𝑃3(0, 𝑡) = 𝛼2
2𝑃0(𝑡)                                                                                                                                          (14) 

𝑃4(0, 𝑡) = 𝛼1𝛼2𝑃0(𝑡)                                                                                                                                      (15)  

 𝑃5(0, 𝑡) = 𝛼1𝛼2
2𝑃0(𝑡)                                                                                                                                     (16)  

𝑃6(0, 𝑡) = 𝛼1𝛼2𝑃0(𝑡)                                                                                                                                      (17) 

𝑃7(0, 𝑡) = 𝛼1𝛼2
2𝑃0(𝑡)                                                                                                                                      (18) 

𝑃8(0, 𝑡) = 𝛼1
2(1 + 𝛼1 + 𝛼2

2)𝑃0(𝑡)                                                                                                                   (19) 

𝑃9(0, 𝑡) = 𝛼2
3(1 + 𝛼1)𝑃0(𝑡)                                                                                                                            (20) 

𝑃10(0, 𝑡) = 2𝛼3𝑃0(𝑡)                                                                                                                                       (21) 

Initial condition 𝑃0(𝑡) = 1 and other transition probability at t=0 are zero    

Laplace transformation of (1) – (21) 

(𝑠 + 𝛼1 + 𝛼2 + 2𝛼3)𝑃̅0(𝑠) = ∫ 𝛽1𝑃̅1(𝑥, 𝑠)𝑑𝑥 + ∫ 𝛽2𝑃̅2(𝑦, 𝑠)𝑑𝑦 + ∫ 𝜓(𝑦)𝑃̅6(𝑦, 𝑠)𝑑𝑦 +
∞

0

∞

0

∞

0

 

                                     ∫ 𝜑(𝑥)𝑃̅8(𝑥, 𝑠)𝑑𝑥
∞

0
 + ∫ 𝜑(𝑦)𝑃̅9(𝑦, 𝑠)𝑑𝑦

∞

0
+ ∫ 𝜑(𝑧)𝑃̅10(𝑧, 𝑠)𝑑𝑧

∞

0
                              (22) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝛼1 + 𝛼2 + 𝛽1) 𝑃̅1(𝑥, 𝑠) = 0                                                                                                             (23) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝛼1 + 𝛼2 +  𝛽2) 𝑃̅2(𝑦, 𝑠) = 0                                                                                                             (24) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝛼1 + 𝛼2 +  𝛽2) 𝑃̅3(𝑦, 𝑠) = 0                                                                                                             (25) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝛼2 + 𝛽2) 𝑃̅4(𝑦, 𝑠) = 0                                                                                                                      (26) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝛼2 + 𝛽2) 𝑃̅5(𝑦, 𝑠) = 0                                                                                                                      (27) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝛼1 +  𝛽1) 𝑃̅6(𝑥, 𝑠) = 0                                                                                                                      (28) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝛼1 +  𝛽1) 𝑃̅7(𝑥, 𝑠) = 0                                                                                                                      (29) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜑(𝑥)) 𝑃̅8(𝑥, 𝑠) = 0                                                                                                                           (30) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜑(𝑦)) 𝑃̅9(𝑦, 𝑠) = 0                                                                                                                           (31) 

(𝑠 +
𝜕

𝜕𝑧
+ 𝜑(𝑧)) 𝑃̅10(𝑧, 𝑠) = 0                                                                                                                          (32) 

Laplace of the Boundary conditions 

𝑃̅1(0, 𝑠) = 𝛼1𝑃̅0(𝑠)                                                                                                                                          (33) 

𝑃̅2(0, 𝑠) = 𝛼2𝑃̅0(𝑠)                                                                                                                                         (34) 

𝑃̅3(0, 𝑠) = 𝛼2
2𝑃̅0(𝑠)                                                                                                                                         (35) 

𝑃̅4(0, 𝑠) = 𝛼1𝛼2𝑃̅0(𝑠)                                                                                                                                     (36)  

𝑃̅5(0, 𝑠) = 𝛼1𝛼2
2𝑃̅0(𝑠)                                                                                                                                     (37)  

𝑃̅6(0, 𝑠) = 𝛼1𝛼2𝑃̅0(𝑠)                                                                                                                                     (38) 

𝑃̅7(0, 𝑠) = 𝛼1𝛼2
2𝑃0(𝑠)                                                                                                                                     (39) 

𝑃̅8(0, 𝑠) = 𝛼1
2(1 + 𝛼1 + 𝛼2

2)𝑃̅0(𝑠)                                                                                                                  (40) 
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𝑃̅9(0, 𝑠) = 𝛼2
3(1 + 𝛼1) 𝑃̅0(𝑠)                                                                                                                          (41) 

𝑃̅10(0, 𝑠) = 2𝛼3𝑃̅0(𝑠)                                                                                                                                      (42) 

Solving equation (22) to (32) with the help of boundary condition (33) to (42) and applying the 

below shifting properties of Laplace: 

∫ [𝑒−𝑠𝑥∞

0
. 𝑒− ∫ 𝑓(𝑥)𝑑𝑥

𝑥
0 ]𝑑𝑥 = 𝐿 {

1−𝑆̅𝑓(𝑥)

𝑆
} = 

1−𝑆̅𝑓(𝑥)

𝑆
                                                                                            (43) 

∫ [𝑒−𝑠𝑥∞

0
. 𝑓(𝑥) 𝑒− ∫ 𝑓(𝑥)𝑑𝑥

𝑥
0 ]𝑑𝑥 = 𝐿{𝑆𝑓̅(𝑥)} = 𝑆𝑓̅(𝑠)                                                                                        (44) 

And the identity; 𝑃̅1(𝑠) = ∫ 𝑃̅1(𝑥, 𝑠)𝑑𝑥
∞

0
                                            (45) 

𝑃̅1(𝑠) = 𝑃̅1(0, 𝑠) {
1−𝑆̅𝛽1

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼3
}                                              (46) 

𝑃̅2(𝑠) = 𝑃̅2(0, 𝑠) {
1−𝑆̅𝛽2

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼2
}                                              (47) 

𝑃̅3(𝑠) = 𝑃̅3(0, 𝑠) {
1−𝑆̅𝛽2

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼2
}                                              (48) 

𝑃̅4(𝑠) = 𝑃̅4(0, 𝑠) {
1−𝑆̅𝛽2

(𝑆+𝛼2)

𝑆+𝛼2
}                                              (49) 

𝑃̅5(𝑠) = 𝑃̅5(0, 𝑠) {
1−𝑆̅𝛽2

(𝑆+𝛼1)

𝑆+𝛼1
}                                              (50) 

𝑃̅6(𝑠) = 𝑃̅6(0, 𝑠) {
1−𝑆̅𝛽1

(𝑆+𝛼1)

𝑆+𝛼1
}                                              (51) 

𝑃̅7(𝑠) = 𝑃̅7(0, 𝑠) {
1−𝑆̅𝛽1

(𝑆+𝛼1)

𝑆+𝛼1
}                                              (52) 

𝑃̅8(𝑠) = 𝑃̅8(0, 𝑠) {
1−𝑆̅𝜑(𝑥)(𝑆)

𝑆
}                                              (53) 

𝑃̅9(𝑠) = 𝑃̅9(0, 𝑠) {
1−𝑆̅𝜑(𝑦)(𝑆)

𝑆
}                                              (54) 

𝑃̅10(𝑠) = 𝑃̅10(0, 𝑠) {
1−𝑆̅𝜑(𝑧)(𝑆)

𝑆
}                                              (55) 

Substituting the Laplace of the Boundary conditions i.e (33) to (42) into (43) to (55) 

𝑃̅1(𝑠) = 𝛼1 {
1−𝑆̅𝛽1

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼3
} 𝑃̅0(𝑠)                                                                                                                  (56) 

𝑃̅2(𝑠) = 𝛼2 {
1−𝑆̅𝛽2

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼2
} 𝑃̅0(𝑠)                                                                                                                 (57) 

𝑃̅3(𝑠) = 𝛼2
2 {

1−𝑆̅𝛽2
(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼2
} 𝑃̅0(𝑠)                                                                                                                 (58) 

𝑃̅4(𝑠) = 𝛼1𝛼2 {
1−𝑆̅𝛽2

(𝑆+𝛼2)

𝑆+𝛼2
} 𝑃̅0(𝑠)                                                                                                                   (59) 

𝑃̅5(𝑠) = 𝛼1𝛼2
2 {

1−𝑆̅𝛽2
(𝑆+𝛼1)

𝑆+𝛼1
} 𝑃̅0(𝑠)                                                                                                                   (60) 

𝑃̅6(𝑠) = 𝛼1𝛼2 {
1−𝑆̅𝛽1

(𝑆+𝛼1)

𝑆+𝛼1
} 𝑃̅0(𝑠)                                                                                                                   (61) 

𝑃̅7(𝑠) = 𝛼1𝛼2
2 {

1−𝑆̅𝛽1
(𝑆+𝛼1)

𝑆+𝛼1
} 𝑃̅0(𝑠)                                                                                                                   (62) 

𝑃̅8(𝑠) = 𝛼1
2(1 + 𝛼1 + 𝛼2

2) {
1−𝑆̅𝜑(𝑥)(𝑆)

𝑆
} 𝑃̅0(𝑠)                                                                                                  (63) 

𝑃̅9(𝑠) = 𝛼2
3(1 + 𝛼1) {

1−𝑆̅𝜑(𝑦)(𝑆)

𝑆
} 𝑃̅0(𝑠)                                                                                                            (64) 

𝑃̅10(𝑠) = 2𝛼3 {
1−𝑆̅𝜑(𝑧)(𝑆)

𝑆
} 𝑃̅0(𝑠)                                                                                                                       (65) 

 
(𝑠 + 𝛼1 + 𝛼2 + 2𝛼3)𝑃̅0(𝑠)      = 1 + 𝛽1𝑆𝛽̅1

(𝑆 + 𝛼1 + 𝛼2)𝑃̅0(𝑠) + 𝛽2𝑆𝛽̅2
(𝑆 + 𝛼1 + 𝛼2)𝑃̅0(𝑠) + [𝜑(𝑥)𝑆𝜑̅(𝑥)(𝑆) 

                              +𝜑(𝑦)𝑆𝜑̅(𝑦)(𝑆) +  𝜑(𝑧)𝑆𝜑̅(𝑧)(𝑆)] 𝑃̅0(𝑠)                                                                           (66)                                     

𝑠 + 𝛼1 + 𝛼2 + 2𝛼3 − [𝛽1𝑆𝛽̅1
(𝑆 + 𝛼1 + 𝛼2) + 𝛽2𝑆𝛽̅2

(𝑆 + 𝛼1 + 𝛼2) + [𝜑(𝑥)𝑆𝜑̅(𝑥)(𝑆) + 𝜑(𝑦)𝑆𝜑̅(𝑦)(𝑆) +

 𝜑(𝑧)𝑆𝜑̅(𝑧)(𝑆)]]𝑃̅0(𝑠) = 1                                                                                                                               (67) 

D(s) = 𝑠 + 𝛼1 + 𝛼2 + 2𝛼3 − [𝛽1𝑆𝛽̅1
(𝑆 + 𝛼1 + 𝛼2) + 𝛽2𝑆𝛽̅2

(𝑆 + 𝛼1 + 𝛼2) + [𝜑(𝑥)𝑆𝜑̅(𝑥)(𝑆) +

𝜑(𝑦)𝑆𝜑̅(𝑦)(𝑆) +  𝜑(𝑧)𝑆𝜑̅(𝑧)(𝑆)]]                                                                                                                     (68) 

 

Since     D(s)×  𝑃̅0(𝑠)= 1                                                                                                                                 (69) 

𝑃̅𝑢𝑝(𝑆) =  𝑃̅0(𝑆) + 𝑃̅1(𝑆) + 𝑃̅3(𝑆)  +  𝑃̅4(𝑆) +  𝑃̅5(𝑆) +  𝑃̅6(𝑆) + 𝑃̅7(𝑆)                                                     (70) 

𝑃̅𝑢𝑝(𝑆) = [1 + 𝛼1 {
1−𝑆̅𝛽1

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼3
} + 𝛼2

2 {
1−𝑆̅𝛽2

(𝑆+𝛼1+𝛼2)

𝑆+𝛼1+𝛼2
} +  𝛼1𝛼2 {

1−𝑆̅𝛽2
(𝑆+𝛼2)

𝑆+𝛼2
}+ 𝛼1𝛼2

2 {
1−𝑆̅𝛽2

(𝑆+𝛼1)

𝑆+𝛼1
} +

167



 
Anas Sani Maihulla and Ibrahim Yusuf 

RELIABILITY ANALYSIS OF REVERSE OSMOSIS FILTRATION 

SYSTEM USING COPULA 
RT&A, No 2 (68) 

Volume 17, June 2022  

 

             𝛼1𝛼2 {
1−𝑆̅𝛽1

(𝑆+𝛼1)

𝑆+𝛼1
} + 𝛼1𝛼2

2 {
1−𝑆̅𝛽1

(𝑆+𝛼1)

𝑆+𝛼1
}]𝑃̅0(𝑠)                                                                                  (71) 

 

II. Availability Analysis 

Setting all repairs to 1.   i.e.  φ(x) = φ(y) = φ(z) = 𝛽1 = 𝛽2 = 𝛽3 = 1                                                  (72) 

𝑆𝜙̅(𝑆) =  
2.7183

𝑆+2.7183
 ,   

1−𝑆̅𝜙(𝑆)

𝑆
=  

1

𝑆+𝜙
  

Taking the values of different parameters as  𝛼1 = 0.01, 𝛼1 = 0.02, 𝛼3 = 0.03, 𝛼4 = 0.04 in  

(48) Then taking the inverse Laplace transform, we can obtain, the expression for availability as: 

D(s) = S + 0.12- [
0.03

𝑆+1.04
+  

0.03

𝑆+1.03
+ 0.06 . (

2.7183

𝑆+2.7183
) ]                              (73) 

𝑃̅𝑢𝑝(𝑆) = [1 +
0.03

𝑆+1.04
+ 

0.03

𝑆+1.03
+

0.0018

𝑆+1.03
]                  (74) 

 

Taking 1/
0

1/

1/exp[ {log ( )} ]

exp[ {log ( )} ]
( ) ( )

exp[ {log ( )} ]x x

x x
S s S s

s x x
  

  

   



+

+
= =

+ +
,  𝑃̅𝜙(𝑠) =

𝜙

𝑠+𝜙
  𝑏𝑢𝑡 𝜙 =1 and  𝛼1 =

0.001,  𝛼2 = 0.002,  𝛼3 = 0.003 

And repair rates φ(x) = φ(y) = φ(z) = 𝛽1 = 𝛽2 = 𝛽3 = 1  in equation (69), and applying the inverse 

Laplace transform to (69), the expression for system availability is 

𝑃̅𝑢𝑝(𝑡) = { }                    (75) 

Taking t = 0, 10,…,100, availability of the system is obtained and presented in Table 1 below: 

 

Table 1: Availability variance with respect to time 

Time in days Availability 

0 1.000000 

10 0.997679 

20 0.997531 

30 0.997383 

40 0.997235 

50 0.997086 

60 0.996939 

70 0.996791 

80 0.996643 

90 0.996495 

100 0.996347 
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Figure 1: Variation of availability with time 

 

  

III. Reliability Analysis   
Letting all repair rates, φ(x) = φ(y) = φ(z) = 𝛽1 = 𝛽2 = 𝛽3 = 0   in equation (70), and taking the 

values of failure rates  and employing inverse Laplace transformation, the expression is reliability 

relation. 
R(t) =  { }             (76) 

Using t = 0, 10...100 as time units in equation (72), reliability is determined and shown in Table 2 

below. 

Table 2: Variation in Reliability as a Function of Time 

Time in Days Reliability 

0 1.000000 

10 0.941981 

20 0.887595 

30 0.836601 

40 0.788773 

50 0.743903 

60 0.701796 

70 0.662272 

80 0.625161 

90 0.590308 

100 0.557565 
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Figure 2. Variation of reliability with time 

 

IV.  Cost Analysis  
The expression for the expected profit incurred in [0, )t                                                                                                                    

1 2

0

( ) ( )
t

p up
E t K P t dt K t= −

    
   (77) 

Taking fixed values of parameters of equation (62), the subsequent equation (69) follows; 

𝐸𝑝(𝑡) = ( ) ( )

2.87072 1.20122

1.15618 0.00016

1 21.13000 1.12000

0.018340 0.008479

0.000094 598.072776

0.000183 0.000237

5985.0821

t t

t t

p t t

e e

e e
E t k k t

e e

− −

− −

− −

 − +
 
+ − 

= − 
+ + 
 + 

                                               (78) 

 

 
Table 3: Expected profit as a function of time 

Time in days 𝐸𝑝(𝑡) 

0 0 0 0 0 0 0 

10 3.97831 4.97831 5.97831 6.97831 7.97831 8.97831 

20 7.95435 9.95435 11.95435 13.95435 15.95435 17.95435 

30 11.92892 14.92892 17.92892 20.92892 23.92892 26.92892 

40 15.90200 19.90200 23.90200 27.90200 31.90200 35.90200 

50 19.87361 24.87361 29.87361 34.87361 39.87361 44.87361 

60 23.84373 29.84373 35.84373 41.84373 47.84373 53.84373 

70 27.81238 34.81238 41.81238 48.81238 55.81238 62.81238 

80 31.77954 39.77954 47.77954 55.77954 63.77954 71.77954 

90 35.74523 44.74523 53.74523 62.74523 71.74523 80.74523 

100 39.70944 49.70944 59.70944 69.70944 79.70944 89.70944 
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Figure 3: Variation of profit with time 

 

 

 

V. Formulation and Analysis Mean Time to Failure  
Setting repairs to zero in equation (70), the expression for MTTF is defined as follows:  

Fixing 𝛼1 = 0.001, 𝛼2 = 0.002, 𝛼3 = 0.003  varying, failure rate in equation (66), MTTF is computed 

with respect to failure rate as presented in Table 3 below. 

 

Table 4: Variation of MTTF with failure rates 𝛼𝑘 

Failure rate MTTF 

(a) (b) (c) 

0.001 222.8152 250.2918 401.6008 

0.002 200.5337 222.8153 286.5720 

0.003 182.3034 200.9009 222.8153 

0.004 167.1114 183.0318 182.2731 

0.005 154.2567 168.1965 154.2157 

0.006 143.2384 155.6951 133.6447 

0.007 133.6892 145.0273 117.9162 

0.008 125.3336 135.8265 105.5002 

0.009 117.9610 127.8176 95.44993 
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Figure 4: MTTF as function of Failure rate 

 

VI. Sensitivity analysis corresponding to MTTF 
The partial differentiation of MTTF with respect to the failure rate of the system can be used to 

investigate the system's sensitivity in MTTF. Using the set of parameters as 𝛼1 = 0.001, 𝛼2 = 0.002 

𝛼3 = 0.003, The MTTF sensitivity can be calculated in the partial differentiation of MTTF, as shown 

in the Table below and associated graphs in the Figure. 

 

                Table 5. MTTF sensitivity as function of failure rate 

Failure 

rate 

𝜕(𝑀𝑇𝑇𝐹)

𝛼1

 
𝜕(𝑀𝑇𝑇𝐹)

𝛼2

 
𝜕(𝑀𝑇𝑇𝐹)

𝛼3

 

0.001 -24757.25 -30952.89 -100000.61 

0.002 -20053.37 -24386.44 -82020.57 

0.003 -16573.03 -19689.49 -49563.88 

0.004 -13925.95 -16214.28 -33163.29 

0.005 -11865.90 -13571.10 -23737.80 

0.006 -10231.31 -11514.08 -17826.70 

0.007 -8912.61 -9881.903 -13877.30 

0.008 -7833.35 -8565.144 -11108.57 

0.009 -6938.88 -7487.473 -9092.820 

 

0

50

100

150

200

250

300

350

400

450

0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009

M
T

T
F

Failure rate

MTTF Against failure rate

Subsystem 1 Subsystem 2 Subsystem 3

172



 
Anas Sani Maihulla and Ibrahim Yusuf 

RELIABILITY ANALYSIS OF REVERSE OSMOSIS FILTRATION 

SYSTEM USING COPULA 
RT&A, No 2 (68) 

Volume 17, June 2022  

 

 
Figure 5: Sensitivity analysis corresponding to mean time to failure (MTTF) 

 

 

 
 

 
Figure 6: Filtration system’s transition diagram 
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Figure 7: Reliability block diagram of the filtration system 

 

VII.  Description of the system 
𝛼𝑛:  Failure rate for the subsystems. Where n=1,2,3. 

𝛽𝑞:     Repair rate for the subsystems with incomplete failure Where q =1,2,3. 

𝛗(k) :  Repair rate for the subsystems with complete failure. Where k= x, y, z. 

P0: Denote initial state where the system is working perfectly. 

P1: Denote state with an incomplete failure in subsystem 1 due to failure of first unit and copula 

repair is busy in repairing the failed unit. 

P2: Denote state with a complete failure in subsystem 2 due to failure of first unit and repair 

machine is busy in repairing the failed unit. 

P3: Denote state with a incomplete failure in subsystem 2  

P4: Denote state with an incomplete failure state due to failure of first unit in subsystem 1 and 

one unit from subsystem 2.  

P5: Denote state with an incomplete failure state due to failure of first unit in subsystem 1, first 

and second units from subsystem 2.  

P6: Denote state with an incomplete failure due to the failure of first and second units from 

subsystem 2, and one unit from subsystem 1. 

P7: Denote incomplete state of system due to failure of first unit from each of subsystems one 

and two 

P8: Denote complete failure state in subsystem 1.  

P9: Denote complete failure state in subsystem 2. 

P10: Denote complete failure state in subsystem 3. 
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IV. Discussion 

 

I. Interpretation of the Result and Conclusion   

Table1 and Figure 1 provide information how availability and time changes when failure rates are 

fixed at different values. When failure rates are fixed at lower values 𝛼1 = 0.001, 𝛼2= 0.002 and 𝛼3 = 

0.003. Table 1 shows the results, and Figure 1 shows the corresponding result, the system's 

availability decreases over time. And the decreases from the first point are greater than those from 

the second. This is due to the units in subsystem 1 having less redundancy. Figure 2 shows that the 

system is more reliable than it is available. However, this is due to a copula repair for a component 

that had completely failed. And the system will be assumed to be operational during the repair.  

The system's availability reduces with time and eventually stabilizes at zero over a sufficiently 

extended length of time. As a result, the graphical representation of the model shows that one may 

confidently describe the future behavior of a complex system at any time for any given set of 

parametric parameters. Figure 2 and table 2 indicates that incorporating copula considerably 

decreases system reliability with time. The graphical representation of the model shows that one 

may confidently forecast the future behavior of a complex system at any time for any given set of 

parametric variables. When the values of availability and reliability in Tables 1 and 2 are compared, 

it is clear that when repair is offered, the system performs far better than replacement. 

 

 Tables 4 and figure 4 yield the mean-time-to-failure (MTTF) of the system with respect to variation 

in the failure rates,𝛼1, 𝛼2, and 𝛼3 respectively when all other parameters are held constant Shown 

by color graphs (green, Pink, and ash) respectively. The system is also examined using the Gumbel-

Hougaard family copula. According to the findings, incorporating copula considerably enhances 

system reliability. 

 

Cost analysis of the system is done in the analytic part of the paper Figure 3 and table 3 shows the 

variation of cost-profit with variation in the values of parameters. Table 5 and figure 5 displayed 

the result of sensitivity analysis corresponding to mean time to failure (MTTF) with respect to the 

failure rates 𝛼𝑘 from the table, MTTF sensitivity decreases with increase in 𝛼𝑘 . 

 

For the analysis of profit the following are used: 

 

(a) Fixing 2 0.01K =  varying time t from 0 to 100 

(b) Fixing 2 0.02K =  varying time t from 0 to 100 

(c) Fixing 2 0.03K =  varying time t from 0 to 100 

(d) Fixing 2 0.04K =  varying time t from 0 to 100  

(e) Fixing 2 0.05K =  varying time t from 0 to 100  

 

Table 4 displayed the result of expected profit ( )pE t with respect to 2K . From the table, it is 

evident that expected profit increases as 2K decreases.  

 

II. Conclusion 

Due to a lack of data on the filtration system, the current paper developed a reliability modeling 

approach to investigate the filtration system's overall strength, efficiency, and performance. The 

reliability, availability, MTTF, and profit function of this paper can all be evaluated. We present a 

new filtration system model that includes three subsystems: a sand filter, an activated carbon filter, 
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and a precision filter in this study. 

 

The findings of the study suggest that reliability modeling can be used to investigate the strength, 

efficiency, and performance enhancement of a reverse osmosis (RO) filtering system. The system's 

strength, efficiency, and performance improvement are determined at this point. This study could 

be enhanced to incorporate a system with numerous subsystems and several repair machines to 

reduce repair facility congestion and handle problems using supplemental variable techniques. 

Among other things, the current effort will benefit water manufacturing and industrial uses that 

are hazardous to humans. 
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Abstract 

 

Purpose – This paper presents a sensitivity analysis of a urea fertilizer manufacturing system 

comprising several sub-systems of differing nature. Design/methodology/approach–A 

mathematical model is developed for the consistent general repair and disappointment rates for 

every subsystem. The framework is analyzed by utilizing regenerative point graphical technique; 

as a result, some recommendations are made for the optimized output. A state transition diagram 

of the system is developed to find mean time to busy period server, system failure and system 

availability. Findings – The present study suggests an approach to improve the system 

performance. The analysis and results outlined in this paper are useful to system managers, 

training supervisor, engineers and reliability analysts in the manufacturing industry. 

Originality/ value – The manufacturing system of Urea fertilizer consists of a complex structure 

with the high risk of machine failure. Machine/ Production failure leads to high risks of economic 

& environmental loss and worker’s safety. To address this challenge effectively, sensitivity 

analysis of the urea fertilizer plant is discussed for minimizing the risk of machine failure. 

 

Keywords: Reliability, Availability, Server of Busy Period, RPGT  

 

I. Introduction 
 

The plants of urea fertilizer consist of a large number of sub-systems which are inter-connected in 

series/parallel or both. It is needed for various sub-systems to be remaining perpetually in the up 

state for the efficient working, But, in reality, they are subject to random failures and replacement 

take place. The processing of the sub-system depends upon the operating conditions and the repair 

policies, as a result, its failure are difficult to predict. For the most preferable level of system 

availability, behavioural analysis is a best mechanism to economize operational parameters. 
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The analysis of accessibility parameters like reliability, availability, maintainability etc. of 

different mechanical system can help in improving the quality of synthesis and increase the 

production. To ensure the system performance, it is necessary to utilize various strategies 

throughout its service life. A number of researchers [Garg et al. [10], Ram and Manglik [17], kumar 

et al. [9], Lin [12], Liu and Xie [13], Ni et al. [15]] analyzed the accessibility parameters of different 

mechanical systems utilizing various strategies. Kumar et al. [11] considered a single-unit system 

to study the concept of preventive maintenance for all associated variables. Mishra et al. [14] used 

the Markov approach to discuss the optimal availability of break drum manufacturing system. 

Kumar and Singh [10] performed the reliability analysis of a complex system which consists of two 

repairable subsystems connected in series. Kumar et al. [8] discussed the behavior analysis of a 

bread making system considering five distinct sub-systems consist of mixer, oven, tunnels, divider 

and proofer useful to the management utilizing RPGT under steady-state. Hua et al. [5] developed 

a mathematical modeling using the state merging method to analyses a rearranged Markov model 

to assess the reliability of the phased-mission system (PMS). Gao et al. [3] considered planar slider 

crank mechanism for two clearance joints to study the reliability sensitivity analysis and 

optimization design using the Monte Carlo method. Tahir et al. [18] demonstrated a model by 

incorporating thermal storage, heat pump and demand responses and showed that warm capacity 

and demand response improve the part of variable manageable force sources. Jindal et al. [6] 

analyzed the reliability of the plant comprises of one programmed screw-press bio-coal briquetting 

machine. The behavioral analysis of a washing unit in paper industry for system parameters was 

discussed by Kumar et al. [7] using the RPGT. Rajbala et al. [16] applied Markov birth-death 

process for the analysis of the EGR Air Exhaust Pipe (EAEP) manufacturing plant. Agrawal et al. 

[1] studied the profit analysis of a Water Treatment RO Plant is agreed out by utilizing the RPGT. 

Dahiya et al. [2] studied the Optimization Using Heuristic Algorithm in Pharmaceutical industry. 

In this paper, keeping in view the purpose of analyzing real existing industrial system model, a 

urea fertilizer system is considered.  

In fact, Urea fertilizer manufacturing system is a complex type repairable engineering system 

involving high risk of machine/production failure. Machine/Production failure leads to high risks 

of economic & environmental loss and worker’s safety. That’s why sensitivity analysis of the same 

plant is discussed in the present research. The problem is solved using RPGT to analyze the system 

parameters. The results describing the system behavior is discussed qualitatively through graphs 

and tables.  

II. Problem Description and Assumptions 
 

I. System Description 
 

The urea fertilizer manufacturing system comprise of nine subsystems connected in series named 

as Ammonia Making Section (A), Medium Pressure Section (B), Low Pressure Section (C), Pre-

vacuum Section (D), Vacuum Section (E), Periling Section (F) and high pressure (P1), medium 

pressure (P2), low pressure units (P3) as shown in Figure 1.  

The performance of the system is best when all units are good but it fails to work when any of 

the nine sub-systems fail. 

 
Figure 1: Urea Fertilizer Making System Network 
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II. Notations  
 

pn(t) (0 ≤ n ≤ 29) : Probability that the systems is in state Sn.at time t. 

αi (1 ≤  i ≤  6) : Subsystem’s failure rates. 

α7, α8, α9 : Failure rate of pressure unit P1, P2 and P3 respectively. 

α0 : Constant failure rate of entire system from any of its operative 

state. 

βi (1 ≤ i ≤ 6) : Subsystem’s repair rates. 

H : Repair rate of system failed due to pressure unit P3 

C : Repair rate of system failed due to common cause failed. 

a, b, c, d, e, and f : Subsystem A, B, C, D, E, and F failed. 

S0 : Initial operative state of the system  

S21 : System’s failed state due to the failure of pressure unit P3. 

S2 : System’s failed state due to the common cause failure. 

 

 

III. Assumptions 
 

• The single repair facility is available.  

• Medium and low pressure can be obtained from high pressure unit by scientific 

logic. 

• When system fails then only the pressure units will be repair one. 

 

IV. State transition diagram  
 

 
 

Figure 2: Transition Diagram of System Design 
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V. Transition Probabilities and Mean Sojourn Times (SMT) 
 

Table 1 and Table 2 represents the Transition probabilities and MST for the states i, j respectively. 

                             Table 1: Transition Probabilities 

qi,j(t) pij = q*i,j(0) 

𝑞0,𝑖(𝑡) = 𝛼𝑖𝑒
−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼9+𝛼8+𝛼0)𝑡 

𝑞0,14(𝑡) = 𝛼8𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼8+𝛼9+𝛼0)𝑡 

𝑞0,21(𝑡) = 𝛼9𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼8+𝛼9+𝛼0)𝑡 

𝑞0,22(𝑡) = 𝛼0𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼8+𝛼9+𝛼0)𝑡 

Where i = 1 to 7  

𝑝0,𝑖= αi/(α1+α5+α0+α4+α7+α8+α2+α9+α3+α6) 

𝑝0,14= α8/(α3+α5+α0+α4+α6+α8+α7+α9+α2+α1) 

𝑝0,21= α9/(α1+α5+α0+α4+α2+α8+α7+α9+α6+α3) 

𝑝0,22= α0/(α1+α5+α0+α4+α2+α8+α7+α9+α6+α3) 

𝑞𝑖,0 (𝑡)= 𝛽i𝑒
−𝛽𝑖𝑡, 𝑞7+𝑖  (𝑡)= 𝛽7+i𝑒

−𝛽𝑖𝑡 

𝑞14+𝑖  (𝑡)= 𝛽14+i𝑒
−𝛽𝑖𝑡, 𝑞21+𝑖  (𝑡)= 𝛽21+i𝑒

−𝛽𝑖𝑡 

𝑝7+𝑖= 1, 𝑝14+𝑖= 1, 𝑝21+𝑖= 1 

𝑝𝑖,0= 1, where 1 ≤ i ≤ 6  

𝑞7,7+𝑖(𝑡) = 𝛼𝑖𝑒
−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼8+𝛼9)𝑡 

𝑞7,23(𝑡) = 𝛼8𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼8+𝛼9)𝑡 

𝑞7,21(𝑡) = 𝛼9𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼8+𝛼9)𝑡 

𝑞7,22(𝑡) = 𝛼0𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼8+𝛼9)𝑡 

𝑝7,7+𝑖= αi/(α0+α9+α3+α8+α6+α5+α2+α4+α1) 

𝑝7,23= α8/(α0+α9+α2+α4+α6+α5+α1+α8+α3) 

𝑝7,21= α9/(α0+α9+α4+α8+α6+α5+α1+α3+α2) 

𝑝7,22= α0/(α0+α9+α2+α1+α6+α5+α8+α4+α3) 

𝑞7+𝑖,7 (𝑡)= 𝛽1𝑒−𝛽1𝑡 𝑝7+𝑖,7= 1, where 1 ≤ i ≤ 6 

𝑞14,14+𝑖(𝑡) = 𝛼𝑖𝑒
−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼9+𝛼0)𝑡 

𝑞14,22(𝑡) = 𝛼0𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼9+𝛼0)𝑡 

𝑞14,23(𝑡) = 𝛼7𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼9+𝛼0)𝑡 

𝑞14,21(𝑡) = 𝛼9𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼9+𝛼0)𝑡 

𝑝14,14+𝑖= αi/(α6+α2+α5+α4+α9+α1+α7+α0+α3) 

𝑝14,22= α0/(α5+α2+α0+α4+α9+α3+α7+α6+α1) 

𝑝14,23= α7/(α6+α2+α0+α5+α9+α1+α7+α4+α3) 

𝑝14,21= α9/(α5+α2+α0+α4+α9+α1+α7+α6+α3) 

𝑞14+𝑖,14 (𝑡)= 𝛽1𝑒−𝛽1𝑡, 𝑞23+𝑖,23 (𝑡)= 𝛽𝑖𝑒
−𝛽𝑖𝑡 𝑝14+𝑖,14= 1, 𝑝23+𝑖,23= 1, where 1 ≤ i ≤ 6 

𝑞21,0 (𝑡)= h𝑒−ℎ𝑡, 𝑞22,0 (𝑡)= c𝑒−𝑐𝑡 𝑝21,0= 1, 𝑝22,0= 1 

𝑞23,22(𝑡) = 𝛼0𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼9)𝑡 

𝑞23,23+𝑖(𝑡) = 𝛼𝑖𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼9)𝑡 

𝑞23,21(𝑡) = 𝛼9𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼9)𝑡 

𝑝23,22= α0/(α6+α2+α9+α4+α1+α3+α0+α6) 

𝑝23,23+𝑖= αi/(α5+α2+α9+α1+α4+α6+α0+α3) 

𝑝23,21= α9/(α6+α2+α9+α4+α1+α6+α0+α3) 

 

Table 2: Mean Sojourn Times 

Ri(t) µi=Ri*(0) 

𝑅0(t)= 𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼7+𝛼8+𝛼9+𝛼0)𝑡 µ0 = 1/(α3+α2+α8+α1+α9+α6+α4+α7+α5+α0) 

𝑅k+i(𝑡)= 𝑒−βi𝑡 where 1 ≤ i ≤ 6, µi = 1/βi, where 1 ≤ i ≤ 6 

𝑅j(t)= 𝑒−(𝛼1+𝛼2+𝛼3+𝛼4+𝛼5+𝛼6+𝛼0+𝛼8+𝛼9)𝑡 

where j = 7, 14, 23 

µj = 1/(α3+α2+α1+α6+α5+α4+α8+α0+α9)  

where j = 7, 14, 23 

𝑅21(𝑡)= 𝑒−h𝑡, 𝑅22(𝑡)= 𝑒−c𝑡 µ21 = 1/h, µ22 = 1/c 

 

The following paragraphs outline meaning of parameters assessment, Availability of system, 

Expected fractional no. of inspection by repairman and busy period of server.  

 

III. Evaluation of Path Probabilities 
 

The change likelihood of all reachable states from base state ‘ξ’ = ‘0’ are: Probabilities from state ‘0’ 

to various vertices are given as 

V0,0 = 1,                                                                                                                                                             (1) 

V0,j = (0,j) = p0,j; where 1 ≤ j≤ 6,                                                                                                                      (2) 

V0,7 = (0,7)/{(1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)}                                                                                           (3) 

V0,j = (0,7,j)/{(1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)(1-Li)}; where 8 ≤ j ≤ 13; 7 ≤ i ≤ 12,                                 (4) 

V0,14 = (0,14)/{(1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)}                                                                                (5) 

V0,j = (0,14,j)/{(1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)(1-Li)}; where 15 ≤ j ≤ 20; 19 ≤ i ≤ 24,                    (6) 

V0,21 = (0,21)+{(0,14,21)/(1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)}+{(0,7,21) 
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/(1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)} )}+{(0,7,23,21)/(1-L1)(1-L2)(1-L3)(1-L4) 

(1-L5)(1-L6)(1-L25)(1-L26)(1-L27)(1-L28)(1-L29)(1-L30)}+{(0,14,23,21)/(1-L13) 

(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)(1-L25)(1-L26)(1-L27)(1-L28)(1-L29)(1-L30)}                                       (7) 

V0,22 = (0,22)+{(0,14,22)/(1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)}+{(0,7,22) 

/(1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)}+{(0,7,23,22)/(1-L1)(1-L2)(1-L3)(1-L4) 

(1-L5)(1-L6)(1-L25)(1-L26)(1-L27)(1-L28)(1-L29)(1-L30)}                                                                          (8) 

V0,23 = {(0,7,23)/ (1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)(1-L25)(1-L26)(1-L27)(1-L28) 

(1-L29)(1-L30)}+{(0,14,23)/(1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)(1-L25) 

(1-L26)(1-L27)(1-L28)(1-L29)(1-L30)}                                                                                                      (9) 

V0,j = {(0,14,23,j)/ (1-L13)(1-L14)(1-L15)(1-L16)(1-L17)(1-L18)(1-L25)(1-L26) 

(1-L27)(1-L28)(1-L29)(1-L30)(1-Li)}+{(0,7,23,24)//(1-L1)(1-L2)(1-L3)(1-L4)(1-L5)(1-L6)(1-L25)(1-L26)(1-

L27)(1-L28)(1-L29)(1-L30)(1-Li)}; where 24 ≤ j ≤ 29;  31≤ i ≤ 36,                                                                      (10) 

 

Where Li are cycles of level 1 and  

 

(1-Lj) = {1-(7,i,7)} = (1-p7,ipi,7), where 1 ≤ j ≤ 6; 8 ≤ i ≤ 13,                                                                            (11) 

(1-L7) = {1-(8,7,8)} = (1-p8,7p7,8)                                                                                                                       (12) 

(1-L8) = {1-(9,7,9)} = (1-p9,7p7,9)                                                                                                                       (13) 

(1-L9) = {1-(10,7,10)} = (1-p10,7p7,10)                                                                                                                 (14) 

(1-L10) = {1-(11,7,11)} = (1-p11,7p7,11)                                                                                                               (15) 

(1-L11) = {1-(12,7,12)} = (1-p12,7p7,12)                                                                                                               (16) 

(1-L12) = {1-(13,7,13)} = (1-p13,7p7,13)                                                                                                               (17) 

(1-Lj) = {1-(14,i,14)} = (1-p14,ipi,14); where 13 ≤ j ≤ 18; 15 ≤ i ≤ 20,                                                                (18) 

 (1-L19) = {1-(15,14,15)} = (1-p15,14p14,15)                                                                                                          (19) 

(1-L20) = {1-(16,14,16)} = (1-p16,14p14,16)                                                                                                           (20) 

(1-L21) = {1-(17,14,17)} = (1-p17,14p14,17)                                                                                                           (21) 

(1-L22) = {1-(18,14,18)} = (1-p18,14p14,18)                                                                                                           (22) 

(1-L23) = {1-(19,14,19)} = (1-p19,14p14,19)                                                                                                           (23) 

(1-L24) = {1-(20,14,20)} = (1-p20,14p14,20)                                                                                                           (24) 

(1-Lj) = {1-(23,i,23)} = (1-p23,ipi,23); where 25 ≤ j ≤ 30; 24 ≤ i ≤ 29,                                                                (25) 

 (1-L31) = {1-(24,23,24)} = (1-p24,23p23,24)                                                                                                          (26) 

(1-L32) = {1-(25,23,25)} = (1-p25,23p23,25)                                                                                                           (27) 

(1-L33) = {1-(26,23,26)} = (1-p26,23p23,26)                                                                                                           (28) 

(1-L34) = {1-(27,23,27)} = (1-p27,23p23,27)                                                                                                           (29) 

(1-L35) = {1-(28,23,28)} = (1-p28,23p23,28)                                                                                                          (30) 

(1-L36) = {1-(29,23,29)} = (1-p29,23p23,29)                                                                                                           (31) 

 

IV. Evaluation of System Parameters 
 

The MTSF and other parameters are evaluated under steady-state conditions by using S1 as the 

base state. 
• Mean time to system failure (T0): Regenerative un-failed states to which the 

framework can travel (starting state ‘0’), Preceding entering any bombed state are: 

‘j’ = 7, 0, 14, 23 taking ‘ξ’ = ‘0’. 

T0=(V0,0µ0+V0,7µ7+V0,14µ14+V0,23µ23)/(1-p0,7p7,21p21,0-p0,7p7,23p23,21p21,0-p0,7p7,23p23,22p22,0-

p0,14p14,21p21,0-p0,14p14,22p22,0-p0,14p14,23p23,21p21,0-p0,14p14,23p23,22p22,0)                              (32) 

• Availability of System (A0): The states at which the framework is accessible are ‘j’ = 

0, 14, 7, 23 taking ‘ξ’ = ‘0’ the all-out division of time for which framework is 

accessible is given by  

A0 = [∑ 𝑉𝜉,𝑗𝑗 , 𝑓𝑗, 𝜇𝑗] ÷ [∑ 𝑉𝜉,𝑖𝑖 , 𝑓𝑗 , 𝜇𝑖
1] = (V0,0µ0+V0,7µ7+V0,14µ14+V0,23µ23)/D                              (33) 

WhereD=(V0,4µ4+V0,2µ2+V0,10µ10+V0,8µ8+V0,0µ0+V0,3µ3+V0,6µ6+V0,9µ9+V0,5µ5+V0,7µ7+V0,1µ1+V0,13
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µ13+V0,12µ12+V0,11µ11+V0,14µ14+V0,17µ17+V0,16µ16+V0,15µ15+V0,18µ18+V0,21µ21+V0,20µ20+V0,19µ19

+V0,22µ22+V0,25µ25+V0,24µ24+V0,23µ23+V0,26µ26+V0,29µ29+V0,28µ28+V0,27µ27) 

• Busy Period of Server: States where server is busy are S i, S7+i, S14+i, S23+i, where 1 ≤ i ≤ 

6, S21, S22 taking ξ = ‘0’,  the time server remains busy is    

B0=(V0,9µ9+V0,4µ4+V0,3µ3+V0,11µ11+V0,10µ10+V0,1µ1+V0,8µ8+V0,6µ6+V0,5µ5+V0,13µ13+V0,12µ12+V0,2µ2+

V0,15µ15+V0,18µ18+V0,17µ17+V0,16µ16+V0,19µ19+V0,22µ22+V0,21µ21+V0,20µ20+V0,24µ24+V0,27µ27+V0,2

6µ26+V0,25µ25+V0,28µ28+V0,29µ29)/D                                                                                     (34) 

• Expected Fractional Number of server visits by repairman: States where repairman 

do visit’s a fresh are j =7, 14, 23 and Si, S7+i, S14+i, S23+i, where 1 ≤ i ≤ 6, S21, S23 taking 

‘ξ’ = ‘0’, 

V0 = (V0,7 +V0,14+V0,21)/ (V0,1µ2+V0,4µ4+V0,3µ3+V0,25µ25+V0,10µ10+V0,9µ9+V0,8µ8+V0,6µ6+V0,5µ5+ 

V0,21µ21+V0,24µ24+V0,27µ7+V0,15µ15+V0,18µ18+V0,17µ17+V0,16µ16+V0,29µ29+V0,22µ22+V0,12µ13+ 

V0,20µ20+V0,14µ14+V0,2µ2+V0,26µ26+V0,11µ11+V0,28µ28+V0,19µ19)                                            (35) 

 

V. Results 
 

Particular cases of Sensitivity Analysis: Furthermore, the following paragraphs describe two 

Sensitivity Analysis cases and corresponding results in tabular and graphical forms. 

Case 1:  Sensitivity Analysis w. r. t. change in repair rates. Taking αi = 0.1 (0 ≤ i ≤ α) and 

varying β1, β2, β3, β4, β5, β6 one by one respectively at 0.75, 0.80, 0.85, 0.90, 0.95, 1.00. 

 

Table 3: MTSF (T0)  

βi β1 β2 β3 β4 β5 β6 H C 

0.75 1.63964 1.63961 1.63963 1.63961 1.63960 1.63963 1.63964 1.63965 

0.80 1.63965 1.63962 1.63964 1.63962 1.63961 1.63964 1.63965 1.63965 

0.85 1.63966 1.63963 1.63965 1.63963 1.63962 1.63965 1.63966 1.63966 

0.90 1.63967 1.63964 1.63967 1.63964 1.63963 1.63966 1.63966 1.63966 

0.95 1.63968 1.63965 1.63968 1.63965 1.63964 1.63967 1.63967 1.63967 

1.00 1.63969 1.63966 1.63969 1.63966 1.63965 1.63968 1.63967 1.63968 

 

Table 4:  Availability of System (A0)  

βi β1 β2 β3 β4 β5 β6 H C 

0.75 0.52072 0.51837 0.51631 0.51449 0.51288 0.51143 0.50065 0.50099 

0.80 0.52309 0.52072 0.51865 0.51681 0.51516 0.51372 0.50284 0.50310 

0.85 0.52521 0.52282 0.52072 0.51887 0.51723 0.51576 0.50479 0.50497 

0.90 0.52710 0.52469 0.52258 0.52072 0.51907 0.51759 0.50654 0.50665 

0.95 0.52881 0.52638 0.52426 0.52239 0.52072 0.51923 0.50811 0.50816 

1 0.53035 0.52791 0.52578 0.52389 0.52222 0.52072 0.50953 0.50953 
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Table 5: Busy Period of Server Visits (B0) 

βi β1 β2 β3 β4 β5 β6 H C 

0.75 0.66957 0.67107 0.67237 0.67353 0.67455 0.67547 0.66773 0.66750 

0.80 0.66807 0.66957 0.67089 0.67206 0.67310 0.67402 0.66628 0.66610 

0.85 0.66673 0.66825 0.66957 0.67075 0.67179 0.67272 0.66498 0.66486 

0.90 0.66553 0.66705 0.66839 0.66957 0.67063 0.67156 0.66382 0.66374 

0.95 0.66444 0.66598 0.66733 0.66852 0.66957 0.67052 0.66278 0.66274 

1 0.66346 0.66501 0.66637 0.66756 0.66862 0.66957 0.66183 0.66183 

 

Table 6: Expected Fractional Number of server visits by Repairman (V0) 

βi β1 β2 β3 β4 β5 β6 H C 

0.75 0.49049 0.48823 0.48624 0.48449 0.48293 0.48154 0.48194 0.48327 

0.80 0.49278 0.49049 0.48849 0.48672 0.48515 0.48375 0.48405 0.48531 

0.85 0.49482 0.49252 0.49049 0.48719 0.48713 0.49572 0.48593 0.48712 

0.90 0.49665 0.49432 0.49228 0.49049 0.48890 0.48747 0.48761 0.48875 

0.95 0.49829 0.49595 0.49390 0.49210 0.49049 0.48906 0.48912 0.49021 

1 0.49978 0.49743 0.49536 0.49355 0.49193 0.49040 0.49049 0.49153 

 
 

 
Figure 3: Mean Time to System Failure 

 

 

 
 

Figure 4:  Availability of System 
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Figure 5: Busy Period of the Server Visits 

 

 
 

Figure 6: Expected Fractional Number of server visits by Repairman 

 

Case 2: Now we consider Sensitivity Analysis case 2 with respect to change in failure rates: 

Fixing βi = 0.80 (0 ≤ i ≤ 6) h = 1, c = 1, α1 = α6 =α5 = α4 = α3 = α2 = 0.01; Taking αi = 0.1, 0.2, 0.3, 0.4 for i 

= 0, 7, 8, 9, we have 

 

Table 7: MTSF (T0)  

αi α0 α6 α7 α8 α9 

0.1 2.88127 1.90761 3.26806 3.15184 17.21485 

0.2 1.39829 1.35175 2.88127 3.02860 8.28176 

0.3 1.32028 1.00665 2.59215 2.88127 4.64494 

0.4 0.86355 0.74855 2.36740 2.62535 2.61925 
                                                                                           

 

 

 Table 8: Availability of System (A0)  

αi α0 α6 α7 α8 α9 

0.1 0.63513 0.54051 0.77387 0.63730 0.80021 

0.2 0.59134 0.47740 0.63513 0.63650 0.73625 

0.3 0.56749 0.43190 0.62720 0.63513 0.64462 

0.4 0.53866 0.40780 0.61278 0.63408 0.63513 
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Table 9: Busy Period of Server Visits (B0) 

αi α0 α6 α7 α8 α9 

0.1 0.67607 0.63074 0.57091 0.60098 0.52002 

0.2 0.67782 0.67748 0.67607 0.65413 0.53951 

0.3 0.67862 0.77832 0.71482 0.67607 0.61785 

0.4 0.67980 0.89412 0.73151 0.70882 0.67607 

 
Table 10: Expected Fractional Number of Server visits by Repairman (V0)  

αi α0 α6 α7 α8 α9 

0.1 0.25385 0.13536 0.23051 0.15806 0.20995 

0.2 0.25412 0.21479 0.25385 0.17688 0.22616 

0.3 0.26083 0.21648 0.25593 0.25385 0.22749 

0.4 0.26222 0.21902 0.28552 0.25786 0.25385 

 
                                                                                          

 
 

Figure 7: MTSF 

 

 
 

Figure 8: Availability of System 

 

 
 

Figure 9: Busy Period of Server Visits 
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Figure 10: Expected Fractional Number of server visits by Repairman 

 

VI. Discussion 
 

Parameters related to sensitivity analysis for urea fertilizer plant are analyzed using RPGT. Effect 

of failure and repair rates on MTSF, availability of the system, busy period of the server, expected 

fractional number of server visit are discussed with the help of tables and graphs. Further from 

table 3 and figure 3, it observed that MTSF is independent of repair rates of various sub-units. 

From table 4 and figure 4, it is seen that availability increases with respect to repair rates. But there 

is no significance change in the value of availability of system while changing the value of repair 

rates. It is seen that for achieving the maximum value of A0 repair rate of server should be 

maximum. For an operational system one has to minimize the busy period of the server to attain 

optimal level of production. It is seen from table 5 and figure 5, maximum value of repair rate of 

subunits leads to optimum value of the busy period. Moreover effect of repair rate of unit ‘F’ on 

the busy period of the server is more significance than other units. From table 6 and figure 6, it is 

seen that there is no significant change in the value of expected fraction number of server visits by 

repairman with the increase in repair rates of the subunits. From the table 7 and figure 7, MTSF is 

maximized when failure rate of higher pressure unit is minimum. MTSF is minimized when 

common cause failure rate is maximized. For optimum value of MTSF, failure rate of high pressure 

unit and common cause failure should be minimum.  It is observed that availability is maximum 

when failure rates of high pressures unit and common cause failure rate is minimum. For an 

efficient system, availability should be highest, from above table 8 and Figure 8. From table 9 and 

figure 9, it is seen that busy period of the server increases by 62.36 % when failure rates of busy 

period increase from 0.1 to 0.4. From table 10 and figure 10, it is observed that the value of 

expected number of server’s visits by repairman increased by 20.13 % when failure rates of the 

same and varying from 0.1 to 0.4. 

 

VII. Conclusion 
 

For urea fertilizer plant, In order to accomplish the ideal value of system parameters, 

administration may control the values of repair and failure rates of sub units. For the plant under 

consideration, the following conclusions are made from above research.  

Case 1:  Sensitivity Analysis with respect to change in repair rates (keeping failure rates constant).  

• MTSF is independent of repair rates of all sub-units.  

• Increase in repair rates does not have significant increase in the value of availability of system. 

• In case of busy period of the server, effect of repair rate of unit ‘F’ is more significant as 

compared to other units. So repairman should be efficient in repairing the unit ‘F’ to minimize 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,1 0,2 0,3 0,4

Ex
p

e
ct

e
d

 n
o

. o
f 

re
p

ai
rm

an

Failure Rates

α0

α6

α7

α8

α9

187



 
Deepika Garg, Vimal Kumar Joshi, Nahid Fatima, Arun Kumar 
SENSITIVITY ANALYSIS OF A UREA FERTILIZER PLANT 

RT&A No. 2 (68) 
Volume 17, June 2022  

 

the value of busy period of the server. Value of busy period is minimum when repair rate of 

pressure unit and common cause failure is maximum. 

• No significant change in the value of expected fraction number of server visits by the 

repairman with change in value of repair rates of sub-units. 

 

Case 2:  Sensitivity Analysis with respect to change in failure rates (keeping repair rates constant). 

• In order to have optimum value of MTSF, failure rate of high-pressure unit and common cause 

should be minimum. 

• System availability is maximum when failure rate of high pressures unit and common cause 

failure rate are minimum. Availability is minimum when failure rate of sub- units are 

maximum. 

• The optimum value of busy period is 0.52002 when the failure rate of high-pressure unit is 

minimum. 

• The value of expected fraction number of server visits by the repairman with the increase in 

failure rates of the subunits. 

 

The results obtain from above research are valuable for management to optimized the 

availability of plant, productions, and safety of workers. Last but not least, mathematical modeling 

utilizing in this paper is applicable to another manufacturing industries as well with suitable 

assumptions, and limitations. 
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Abstract 

 

This Fractional Transportation Problem arises when an enterprise has to face the issue of 

maintaining a good ratio of some critical parameters. These parameters are directly concerned with 

product(s) transportation from sources to destination. This paper considers a multi-objective 

Capacitated Transportation Problem with Fractional Objectives. A fuzzy goal programming 

approach with different membership functions is applied to generate a different set of solutions. We 

also use Chebyshev’s Goal Programming for obtaining the solutions. Finally, a numerical 

illustration is provided to validate our proposed model. 

 

Keywords: Multi-objective programming, Quadratic membership function, 

Mixed constraints, Fuzzy normal membership function, Fuzzy Cauchy 

membership function, Fuzzy programming 

 

 

1. Introduction 
 

A transportation problem (TP) occurs when a product (or products) must be transported from 

multiple sources (also known as origin, supply, or capacity centres) to multiple sinks (also called 

destination, demand or requirement centres). The fundamental TP was devised by Alfred 

Hitchcock [9]. The TP with fractional objective function is known as a fractional transportation 

problem (FTP). Swarup [14] was the first to propose it. It is crucial in logistics, supply chain 

management, stock cutting problems, resource allocation problems, ship and plane routing 

problems, cargo loading problems, and inventory problems. The FTP arises when an enterprise 

faces the challenge of maintaining a good ratio between critical parameters. These parameters are 

directly concerned with transporting a product or products from their origin to their destination. 

Fractional programming can optimize actual/standard transportation costs or total return/total 

investment on machines delivered from factories to workshops. In linear fractional TPs with mixed 

constraints, Gupta et al. [5] presented a paradox. Gupta and Arora [6-7] and Liu [10] are two other 

authors written about FTPs. In general, real-world TPs are modelled with multiple, conflicting 

objectives. 

Furthermore, combining all objective functions into a single overall utility function is 

difficult for the decision-maker. So it is better to formulate a multi-objective TP. The capacitated TP 

are the TPs with bounds on general availabilities at assets and general vacation spot requirements. 

It may benefit telecommunication networks, production-distribution systems, rail and concrete 

street systems.  
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The capacitated TPs have also been discussed by authors like Arora and Gupta [2] and 

Gupta and Bari [8]. Zadeh [15] first delivered the idea of a fuzzy set concept. Then Zimmermann 

[16] carried out the fuzzy set concept with a few suitable membership functions to resolve linear 

programming problems with numerous goal functions. Bit et al. [3] implemented a fuzzy 

programming approach with a linear membership function to resolve the multi-objective TP. El-

Wahed [4] gave the idea of a fuzzy programming approach to determine the optimal compromise 

solution of a MOTP with a fuzzy membership function. Akkapeddi [1] discussed the quadratic 

membership for the multi-objective TP. Singh [13] worked on multiple objective fractional costs TP 

with bottleneck time and impurities. Sadia et al. [12] presented a fuzzy approach to obtain the 

solution of multi-objective capacitated FTP. Fuzzy normal and fuzzy Cauchy membership 

functions were used by Mon and Cheng [11]. Gupta et al. [17] discussed two stage transportation 

problem with the different types of fuzzy environments. Kamal et al. [18] described the parameters 

estimation and goodness of fit for the multi-objective transportation problem under type-2 

trapezoidal fuzzy numbers. The purpose of using FTP is to make the problem more realistic. It can 

prove more beneficial for the decision-maker to consider the proportion of transporting cost due to 

the covered path and favoured path because the transportation cost may vary due to the travelled 

and favoured path. Likewise, the proportion of exact and standard transportation time and 

transporting damage cost due to covered path and favoured path are also measured. 

In this paper, we have taken mixed constraints of MOCFTP with fractional type objectives. 

As it is a multi-objective problem and the objectives are conflicting in nature. So a compromise 

solution is obtained by using the fuzzy programming approach. We have tried to use three 

membership functions: quadratic, fuzzy normal, and fuzzy Cauchy. As far as our knowledge, these 

membership functions have never been used to deal with TPs. The rest of the paper is organized as 

follows: Assumptions, notations and formulation are discussed in Section 2. In Section 3, we have 

discussed the algorithm using a fuzzy optimization approach with different membership functions 

and Chebyshev’s Goal Programming. In section 4, an example of the proposed method is 

illustrated. The conclusion is presented in section 5. 

 

2. Assumptions, notations and formulation of the problem 

We consider mixed constraints MOCFTP under the following notations 

 

2.1 Notations 

 

𝑚 Number of origins 
𝑛 Number of destinations 
𝑎𝑖 Units of supply (𝑖 = 1,2, . . . , 𝑚) 
𝑏𝑗 Units of demands 𝑗 = 1,2, . . . , 𝑛 
𝑐𝑖𝑗  Unit transporting cost due to travelled route from the ith starting point to jth 

endpoint. 
𝑟𝑖𝑗  Unit transporting cost due to preferred route from the ith starting point to jth 

endpoint 
𝑡𝑖𝑗
𝑎  Actual transportation time from the ith starting point to jth endpoint 
𝑡𝑖𝑗
𝑠  Standard transportation time from the ith starting point to jth endpoint 
𝑑𝑖𝑗  Damage transporting cost due to travelled origin from the ith path to jth endpoint 
𝑥𝑖𝑗  Units transported from the ith starting point to jth endpoint 
𝑙𝑖𝑗  Minimum quantity transported from the ith starting point to jth endpoint 
𝑠𝑖𝑗  Maximum transported quantity from the ith starting point to jth endpoint 
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2.2 Problem’s statement 
 

Consider a TP of fractional type objective function with m numbers of starting points having 

𝑎𝑖(𝑖 = 1,2, . . . , 𝑚) units of supply to be transported among n numbers of endpoints with 𝑏𝑗(𝑗 =

1,2, . . . , 𝑛) units of demand. The problem is determining the best transportation schedule for 

transporting the available quantity of products to meet demand while minimizing total 

transportation costs, time, and damage charges. 

Let 𝑥𝑖𝑗  be the number of units transported from ith starting point to the jth endpoint. The 

mathematical model of the MOCFTP with mixed constraints can be expressed as: 

 

Minimize𝑓1 =
∑𝑖=1
𝑚 ∑𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗

∑𝑖=1
𝑚 ∑𝑗=1

𝑛 𝑟𝑖𝑗𝑥𝑖𝑗
 

Minimize𝑓2 = 𝑚𝑎𝑥 {
𝑡𝑖𝑗
𝑎 |𝑥𝑖𝑗 > 0

𝑡𝑖𝑗
𝑠 |𝑥𝑖𝑗 > 0

} 

Minimize𝑓3 =
∑𝑖=1
𝑚 ∑𝑗=1

𝑛 𝑑𝑖𝑗𝑥𝑖𝑗

∑𝑖=1
𝑚 ∑𝑗=1

𝑛 𝑟𝑖𝑗𝑥𝑖𝑗
 

subject to:∑𝑥𝑖𝑗 ≤ 𝑎𝑖

𝑚

𝑖=1

;∑𝑥𝑖𝑗 ≥ 𝑏𝑗

𝑛

𝑗=1

 

𝑙𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑗; 𝑥𝑖𝑗 ≥ 0 
 

2.3 Interpretation of objectives function 

1. The proportion of unit transporting cost 𝑐𝑖𝑗  and 𝑟𝑖𝑗  due to travelled path and a preferred route 

respectively. 

2. The proportion of the actual transportation time 𝑡𝑖𝑗
𝑎  and a standard transportation time 𝑡𝑖𝑗

𝑠 . 

3. The proportion of unit transporting damage cost 𝑑𝑖𝑗  (loss of quantity and quality transportation) 

and 𝑟𝑖𝑗  due to the travelled and a preferred path, respectively. 

 

3. Solution Approach for MOCFTP 

 

3.1 Fuzzy Optimization Approach-Algorithm: 
 

In order to solve the multiobjective fractional capacitated TP with mixed constraints, we use the 

following algorithm 

Step 1:- Firstly, we will formulate the payoff matrix as:- 

 Payoff Matrix = 𝑓1 𝑓2 𝑓3 

𝑥𝑖𝑗
(1)

𝑥𝑖𝑗
(2)

⋮

𝑥𝑖𝑗
(𝑘)
[
 
 
 
 𝑓1(𝑥𝑖𝑗

(1)
) 𝑓1(𝑥𝑖𝑗

(1)
) 𝑓1(𝑥𝑖𝑗

(1)
)

𝑓1(𝑥𝑖𝑗
(1)
) 𝑓1(𝑥𝑖𝑗

(1)
) 𝑓1(𝑥𝑖𝑗

(1)
)

⋮ ⋮ ⋮

𝑓1(𝑥𝑖𝑗
(1)
) 𝑓1(𝑥𝑖𝑗

(1)
) 𝑓1(𝑥𝑖𝑗

(1)
)]
 
 
 
 

 

where, 𝑥𝑖𝑗
(𝑘)
; 𝑘 = 1,2, . . . , 𝐾 are the kth individual optimal solutions that optimize the kth objective. 
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Step 2:- We will apply the fuzzy approach with the following membership functions defined 

below: 

A. Quadratic membership function: To derive the compromise solution of MOCFTP, we used 

fuzzy programming. The membership functions for the cost objective are: 𝑓𝑘𝑙 and 𝑓𝑘𝑢 be the 

achieved aspired level and the highest acceptance level of the kth objective function, respectively. 

The membership function of the kth objective function is represented as follows: 

 𝜇𝑘(𝑓𝑘) = 𝑞𝑘1𝑓𝑘
2 + 𝑞𝑘2𝑓𝑘 + 𝑞3 

The membership values of the kth objective function at the aspiration level and the highest 

acceptable level is 1 and 0, respectively. We used the equations as: 

 𝜇𝑘(𝑓𝑘𝑙) = 𝑞𝑘1𝑓𝑘𝑙
2 + 𝑞𝑘2𝑓𝑘𝑙 + 𝑞3 = 1 

𝜇𝑘(𝑓𝑘𝑢) = 𝑞𝑘1𝑓𝑘𝑢
2 + 𝑞𝑘2𝑓𝑘𝑢 + 𝑞3 = 0 

The above linear system of equations 𝑞𝑘2 and 𝑞𝑘3 are expressed in terms of 𝑞𝑘1. Thus, the quadratic 

membership function for the kth objective function is used in the following form: 

 𝜇𝑘
𝑄(𝐹𝑘) =

𝑓𝑘𝑢−𝑓𝑘

𝑓𝑘𝑢−𝑓𝑘𝑙
+ 𝑞𝑘1𝑓𝑘

2 − 𝑞𝑘1(𝑓𝑘𝑙 + 𝑓𝑘𝑢)𝑓𝑘 + 𝑞𝑘1𝑓𝑙𝑘𝑓𝑙𝑢 

B. Fuzzy Normal: The membership function for Fuzzy Normal will take the following form: 

 𝜇𝑘
𝐹𝑁{𝐹𝑘} =

{
 
 

 
 1𝑖 𝑓𝑓𝑘 ≤ 𝑓𝑘𝑙

𝑒𝑥𝑝 [−𝑘 (
𝑓𝑘−𝑓𝑘𝑙

𝑓𝑘𝑢−𝑓𝑘𝑙
)
2

] 𝑖𝑓𝑓𝑘𝑙 < 𝑓𝑘 < 𝑓𝑘𝑢

0𝑖 𝑓𝑓𝑘 ≥ 𝑓𝑘𝑢𝑎𝑛𝑑𝑘 ≥ 0

 

C. Fuzzy Cauchy: The membership function for Fuzzy Cauchy will take the following form: 

 𝜇𝑘
𝐹𝐶{𝐹𝑘} =

{
 
 

 
 1𝑖 𝑓𝑓𝑘 ≤ 𝑓𝑘𝑙

1

1+𝛼(
𝑓𝑘−𝑓𝑘𝑙
𝑓𝑘𝑢−𝑓𝑘𝑙

)
𝛽 𝑖𝑓𝑓𝑘𝑙 < 𝑓𝑘 < 𝑓𝑘𝑢

0𝑖 𝑓𝑓𝑘 ≥ 𝑓𝑘𝑢

 

𝛼 ≥ 0and𝛽ispositiveeven 

Step 3: The MOCFTP with mixed constraints can now be converted into equivalent non-linear 

models for the above-defined membership functions as follow: 

A. Quadratic Membership function: The proposed model for MOCFTP with mixed constraints on 

applying quadratic membership function will be of the following form: 

 Minimize𝜆 

Subjectto 
𝑓1𝑢 − 𝑓1
𝑓1𝑢 − 𝑓1𝑙

+ 𝑞11𝑓1
2 − 𝑞11(𝑓11 + 𝑓1𝑢)𝑓1 + 𝑞11𝑓1𝑢𝑓1𝑙 ≤ 𝜆 

𝑓2𝑢 − 𝑓2
𝑓2𝑢 − 𝑓2𝑙

+ 𝑞21𝑓2
2 − 𝑞21(𝑓2𝑙 + 𝑓2𝑢)𝑓2 + 𝑞21𝑓2𝑢𝑓2𝑙 ≤ 𝜆 

𝑓3𝑢 − 𝑓𝑘
𝑓3𝑢 − 𝑓3𝑙

+ 𝑞31𝑓3
2 − 𝑞31(𝑓3𝑙 + 𝑓3𝑢)𝑓3 + 𝑞31𝑓3𝑢𝑓3𝑙 ≤ 𝜆 

∑𝑥𝑖𝑗{≤/=/≥}𝑎𝑖;∑𝑥𝑖𝑗{≤/=/≥}𝑏𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑗 ; 𝑥𝑖𝑗 ≥ 0; 𝜆 ≥ 0 

193



 
Sheema Sadia, Qazi Mazhar Ali, Zainab Asim, Ahteshamul Haq 

FRACTIONAL MULTI-OBJECTIVE CAPACITATED TRANSPORTATION 
PROBLEM WITH DIFFERENT MEMBERSHIP FUNCTIONS 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

 

B. Fuzzy Normal Membership Function: The proposed model for MOCFTP with mixed 

constraints on applying fuzzy normal membership function will be of the form: 

 

 Minimize 𝜆 

subject to: 

𝑒𝑥𝑝 [−𝑘 (
𝑓1 − 𝑓1𝑙
𝑓1𝑢 − 𝑓1𝑙

)
2

] ≤ 𝜆, 𝑒𝑥𝑝 [−𝑘 (
𝑓2 − 𝑓2𝑙
𝑓2𝑢 − 𝑓2𝑙

)
2

] ≤ 𝜆 

𝑒𝑥𝑝 [−𝑘 (
𝑓3 − 𝑓3𝑙
𝑓3𝑢 − 𝑓3𝑙

)
2

] ≤ 𝜆 

∑𝑥𝑖𝑗 ≤ 𝑎𝑖;∑𝑥𝑖𝑗 ≥ 𝑏𝑗

𝑛

𝑗=1

𝑚

𝑖=1

; 0 ≤ 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑗 ; 𝑥𝑖𝑗 ≥ 0; 𝜆 ≥ 0 

We will solve it for k=1 

C. Fuzzy Cauchy Membership Function: The proposed model for MOCFTP with mixed 

constraints on applying fuzzy Cauchy membership function will be of the form: 

 

 Minimize𝜆 

Subjectto
1

1 + 𝛼 (
𝑓1 − 𝑓1𝑙
𝑓1𝑢 − 𝑓1𝑙

)
𝛽
≤ 𝜆 

1

1 + 𝛼 (
𝑓2 − 𝑓2𝑙
𝑓2𝑢 − 𝑓2𝑙

)
𝛽
≤ 𝜆 

1

1 + 𝛼 (
𝑓3 − 𝑓3𝑙
𝑓3𝑢 − 𝑓3𝑙

)
𝛽
≤ 𝜆 

∑ 𝑥𝑖𝑗 ≤ 𝑎𝑖; ∑ 𝑥𝑖𝑗 ≥ 𝑏𝑗
𝑛
𝑗=1

𝑚
𝑖=1 ; 0 ≤ 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑗 ; 𝑥𝑖𝑗 ≥ 0; 𝜆 ≥ 0

 

 

D. Chebyshev’s Goal Programming: Chebyshev’s Goal Programming is considered a particular 

case of the weighted Goal Programming technique. It seeks a solution that minimizes the worst 

deviation from each objective. The mixed constraints of the MOCFTP using Chebyshev’s Goal 

Programming will be represented as: 

 

 Maximize𝜆 

Subjectto𝑓1 + 𝜆 ≤ 𝑓1𝑢 

𝑓2 + 𝜆 ≤ 𝑓2𝑢 

𝑓3 + 𝜆 ≤ 𝑓3𝑢 

∑𝑥𝑖𝑗{≤/=/≥}𝑎𝑖;∑𝑥𝑖𝑗{≤/=/≥}𝑏𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑠𝑖𝑗; 𝑥𝑖𝑗 ≥ 0; 𝜆 ≥ 0 

where, the worst deviation level (𝜆) and aspiration levels for the upper bound is 𝑓𝑖𝑢(𝑖 = 1,2,3). 
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4. Numerical Illustration 
 

A case study is discussed to demonstrate and utility of the approaches. The numerical problem of 

simulated data (Sadia et al. [12]) is presented. The discussed models are defined to solve the 

problem. We consider three starting points and three endpoints. The fractional transportation cost, 

time and damage charges (both quantity and quality damage) are represented in Table [1-3]. 

 
Table 1: Cost charges matrix 

 b1 b2 b3 Supply 

a1 5/3 7/4 15/13 ≤ 12 

a2 8/12 17/14 12/7 = 15 

a3 19/15 10/6 13/8 ≥ 20 

Demand ≥ 9 = 13 ≤ 21  

Table 2: Time charges matrix 

 b1 b2 b3 Supply 

a1 

a2 

a3 

17/9  

1/2 

13/8 

5/2 

11/4 

16/12 

10/3 

6/5 

10/11 

≤ 12 

= 15 

≥ 20 

Demand ≥ 9 = 13 ≤ 21  

 
Table 3: Damage charges matrix 

 b1 b2 b3 Supply 

a1 

a2 

a3 

13/8 

11/15 

9/7 

15/9 

14/6 

15/6 

8/11 

19/7 

8/17 

≤ 12 

= 15 

≥ 20 

Demand ≥ 9 = 13 ≤ 21  

 

The mixed constraints of the MOCFTP will be as follows: 

 

 Min𝑓1 =
5𝑥11+7𝑥12+15𝑥13+8x21+17𝑥22+12𝑥23+19𝑥31+10𝑥32+13𝑥33

3𝑥11+4𝑥12+13𝑥13+12𝑥21+14𝑥22+7𝑥23+15𝑥31+6𝑥32+8𝑥33
 

Min𝑓2 =
13𝑥11 + 15𝑥12 + 8𝑥13 + 15x21 + 14𝑥22 + 19𝑥23 + 9𝑥31 + 15𝑥32 + 8𝑥33
8𝑥11 + 9𝑥12 + 11𝑥13 + 15x21 + 6𝑥22 + 7𝑥23 + 7𝑥31 + 6𝑥32 + 17𝑥33

 

Min𝑓3 =
17𝑥11 + 5𝑥12 + 10𝑥13 + 𝑥21 + 11𝑥22 + 6𝑥23 + 13𝑥31 + 16𝑥32 + 10𝑥33
9𝑥11 + 2𝑥12 + 3𝑥13 + 2x21 + 4𝑥22 + 5𝑥23 + 8𝑥31 + 12𝑥32 + 11𝑥33

 

Subjectto∑𝑥1𝑗 ≤ 12;∑𝑥2𝑗 ≤ 15

3

𝑗=1

;∑𝑥3𝑗 ≤ 20

3

𝑗=1

3

𝑗=1

 

∑𝑥𝑖1 ≤ 9;∑𝑥𝑖2 ≤ 13

3

𝑗=1

;∑𝑥𝑖3 ≤ 21

3

𝑗=1

3

𝑗=1

0 ≤𝑥 11 ≤ 6,0 ≤ 𝑥12 ≤ 7,0 ≤ 𝑥13 ≤ 13,0 ≤ 𝑥21 ≤ 6, 

0 ≤ 𝑥22 ≤ 2,0 ≤ 𝑥23 ≤ 13,0 ≤ 𝑥31 ≤ 4,0 ≤ 𝑥32 ≤ 7,0 ≤ 𝑥33 ≤ 14. 

 

A. Different membership functions for fuzzy programming approach 

The payoff matrix for [𝑙𝑖𝑗 = 0] is obtained after solving the problem as a single objective (ignoring 

the other objectives) using the LINGO optimization software will be as follows: 

 Payoff Matrix = 𝑓1 𝑓2 𝑓3 

𝑥𝑖𝑗
(1)

𝑥𝑖𝑗
(2)

𝑥𝑖𝑗
(3)

[
1.316832 1.16129 1.34472
1.37988 1.068410 1.79661
1.406433 1.170886 1.168285

] 
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 𝑓1𝑢 = 1.406433, 𝑓1𝑙 = 1.316832,𝑓2𝑢 = 1.170886, 
𝑓2𝑙
2 = 1.068410,𝑓3𝑢 = 1.79661and 𝑓3𝑙 = 1.168285 

 

Individual optimum solutions are obtained by solving the above problem separately for each 

objective using the optimizing software LINGO in Table 4. 

Table 4: Individual optimum solution 

Objectives 

Objective Values 

Cost  Damage Time 

1.316832 1.068410 1.168285 
A

ll
o

ca
ti

o
n

s 

𝑥11 0 0 0 

𝑥12 4 7 6 
𝑥13 5 0 0 
𝑥21 2 6 6 
𝑥22 6 2 0 
𝑥23 7 7 9 
𝑥31 4 3 3 
𝑥32 7 4 7 
𝑥33 9 14 12 

The compromise solution obtained for Quadratic Membership Function is as follows: 𝑥11
∗ =

0, 𝑥12
∗ = 7, 𝑥13

∗ = 2, 𝑥21
∗ = 6, 𝑥22

∗ = 2, 𝑥23
∗ = 7, 𝑥31

∗ = 4, 𝑥32
∗ = 4, 𝑥33

∗ = 12 

 

The optimal compromise solution obtained using the Fuzzy normal Membership Function will be 

as follows: 𝑥11
∗ = 0, 𝑥12

∗ = 4, 𝑥13
∗ = 1, 𝑥21

∗ = 5, 𝑥22
∗ = 2, 𝑥23

∗ = 8, 𝑥31
∗ = 4, 𝑥32

∗ = 7, 𝑥33
∗ = 9 

 

The crisp problem for fuzzy Cauchy has been obtained after setting 𝛼 = 0.5and𝛽 = 2. The 

compromise solution  obtained for Fuzzy Cauchy Membership Function is as follows: 𝑥11
∗ =

4, 𝑥12
∗ = 4, 𝑥13

∗ = 4, 𝑥21
∗ = 5, 𝑥22

∗ = 2, 𝑥23
∗ = 8, 𝑥31

∗ = 4, 𝑥32
∗ = 7, 𝑥33

∗ = 9 

 

The compromise solution obtained for Chebyshev’s Goal Programming is as follows: 𝑥11
∗ =

0, 𝑥12
∗ = 7, 𝑥13

∗ = 2, 𝑥21
∗ = 6, 𝑥22

∗ = 2, 𝑥23
∗ = 7, 𝑥31

∗ = 4, 𝑥32
∗ = 4, 𝑥33

∗ = 12 

 

5. Conclusion 
 

This article represents the optimal compromise solution with mixed constraints for a 

multiobjective fractional capacitated TP. Fuzzy programming with three different membership 

functions viz. quadratic, fuzzy normal and fuzzy Cauchy is used to obtain a compromise solution 

using a fuzzy programming approach, and Chebyshev’s Goal Programming is also discussed to 

solve the problem multiobjective fractional capacitated TP. Finally, a comparative study is done 

with the results obtained in the paper and the results from Sadia et al. [12]. The results are 

summarized in Table 5.  

 

This paper proposes fuzzy programming models by applying different membership functions to 

solve multiobjective fractional capacitated TP. Table 5 also compares the results obtained through 

different procedures to obtain and compare their efficiency. The methods used in the paper can 

also be applied for transportation, assignment and transhipment problems. 
  

196



 
Sheema Sadia, Qazi Mazhar Ali, Zainab Asim, Ahteshamul Haq 

FRACTIONAL MULTI-OBJECTIVE CAPACITATED TRANSPORTATION 
PROBLEM WITH DIFFERENT MEMBERSHIP FUNCTIONS 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

Table 5: Compromise optimum solution 

Approach Membership/ 

Methods 

Objective Values 

Cost Damage Charges Time 

S
ad

ia
 e

t 
al

. 
[1

2]
 

Fuzzy Programming 

Linear 1.359296 1.238494 1.389058 

Exponential 1.349030 1.229213 1.314935 

Hyperbolic 1.359296 1.238494 1.389058 

Goal Programming Lexicographic, 𝐷1distance 1.353103 1.129854 1.237344 

D
is

cu
ss

ed
 

m
et

h
o

d
 Fuzzy Programming 

Quadratic 1.349869 1.097561 1.257840 

Fuzzy Normal 1.371758 1.249359 1.264085 

Fuzzy Cauchy 1.359296 1.238494 1.389058 

Goal Programming Chebyshev’s 1.349869 1.097561 1.257840 
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Abstract 

 

Gas Insulated Substation (GIS) is essential for the transmission and control of power both in AC 

and DC electrical systems. Functionally Graded Material (FGM) technology is widely used for the 

design of the spacer material in the GIS to reduce the electric stress in the system. Optimal 

designing of the material of the spacer gradings with a particular attention to the number of 

gradings may prove to be very useful in reduction of the stress in the GIS at an effective cost. This 

paper deals with the design and development of an optimal dielectric material for the functionally 

graded material (FGM) spacer in a GIS. A novel optimization method has been proposed which is 

used for the optimization of the conductor material and the FGM epoxy spacer.  The optimal value 

for each grading of functionally graded material spacer is determined by the proposed method. A 

dual-objective function is chosen for the optimization problem. The objective of the problem is to 

minimize the maximum field stress in addition to the standard deviation in the electric field. A post 

type spacer has been considered for the study. Initially, the optimization of the dielectric material is 

done only for 4 gradings. Gradually, the number of gradings in the FGM-spacer is increased to 

determine the optimal number of gradings suitable for the design.   

 

Keywords: HVDC, Gas Insulated Substation, Functionally Graded Material, 

Optimization  

I. Introduction 
 

In the modern industrial world, electric power systems may easily be designated as the backbone 

of the world economy. A reliable power system is therefore a basic necessity in the present 

century. The ever-increasing load on the transmission system makes the goal rather difficult to be 

achieved. The privatization of power industry and rapid industrialization has increased the rapid 

changes in the power exchanges which may cause further instability in the transmission systems. 

The need for the electric power systems to become more compact and robust is at a constant rise. 
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The precedence of HVDC over HVAC transmission system for long distance has been established 

over time. Hence, the improvement of the performance and reliability of the HVDC systems is a 

focus of many recent researches. GIS has been associated with a considerable number of power 

system disturbances and failures. Hence improvement in the performance of the GIS plays an 

important role in increasing the reliability and stability of the power system. A lot of research is 

being conducted on the design aspects of HVDC power systems to improve its robustness and 

reliability. Wang et al [1] have proposed a method for charge dissipation from a GIS without 

opening the tank. Richard et al [2] have designed an efficient insulated bus pipe for shipboard 

applications. Sridhar et al [3] have estimated the power loss in a 420KV AC GIB by finite element 

method in 2-dimension. Riechert [4] has proposed the design of a compact gas Insulated System 

with reduced footprint on the environment. Volpov et al [5] has analyzed and formulated the SF6 

spacer design for both HVAC and DC under time-varying and impulse operating conditions. 

Kosse et al [6] performed the design and testing for compact DC-GIS at 550 KV. The platform size 

of the system is expected to reduce by 10% by opting for modular designing method. Electric field 

stress in the power systems is the crucial factor that determines the consistency and robustness of 

the GIS. It has been established that the most serious distortion of electric field in a GIS occurs at 

the triple junction [7].  

Sayed et al [8] have calculated electric field stress for different spacer types in the bus duct. 

An insulation compounding scheme has been proposed to reduce the flashover and stress in the 

AC and DC systems [9]. Zhang et al [10] have proposed the design of basin type insulators for an 

HVDC GIS to reduce the stress and flashover at the weak links. Researchers have studied and 

presented the advantage of an FGM spacer design on the electric field distribution in an GIS [11]. 

The effectiveness of the design has been evaluated for a multi-particle contamination [12]. 

Kurimoto et al [13] proposed a U-shaped distribution of ε-FGM spacer for efficient reduction in 

electric stress. Adari et al [14] proposed an FGM cone type spacer and studied its effectiveness 

under delaminated condition.  

Many researchers have proposed the use of FGM post type spacer as it is effective in 

reduction of electric filed stress and at the same time its simple design makes it easy to 

manufacture and cost effective. It is very effective in reducing the field stress at the triple junction 

even under a protrusion and depression condition [15,16]. Ten gradings of equal dimensions have 

been used in the spacer and the dielectric coefficient of the material has been designated in an 

increasing order. Naik et al. [17] have used a di-post FGM spacer which has been found very 

effective in reduction of the electric field stress. The advantageous position of the spacer due to its 

simple design has been cited. Metwally [18] has compared the design of disc-type, conical-shaped 

and the post type spacer. In this work it has been cited that while post type spacer is effective in 

reducing the electric field stress, inclusion of metal cavities in the design limits the flexibility of the 

design and limits the manufacturing cost of the spacer.  

In all the above methods, it has been proposed to vary the dielectric strength of the FGM-

spacer in a specific pattern for various spacer designs. However, the researchers have not 

concentrated on the optimization aspect of the design. The proposed designs although effective 

may not be the optimal solution for the problem. Recently, researchers have proposed the use of 

optimization methods for the optimization of the ε-FGM spacer design. Qasim etal. [19] has 

proposed the use of PSO for the optimization of the FGM-spacer. Talaat etal. [20] have optimized 

the dielectric material for a cone shaped spacer using COMSOL-live link. A U-shaped permittivity 

distribution has been preferred in the design. Although some research has been conducted on the 

optimization of the FGM-spacer. In the above works, the area of research has been limited to the 

optimization of the FGM-material only for a fixed number of gradings. Hence, there is a scope for 

further research in the design of FGM spacer, to be able to qualify the GIS as properly optimized. A 

detailed study to determine the number of gradings and the appropriate dimensions of the same is 
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necessary. The number and dimensions of the gradings may vary as per requirement based on the 

electric field strength in the zone. Also, the determination of the dielectric coefficient for each 

grading should be done very precisely to be able to provide an optimal solution to the problem.  

In this paper, an optimization algorithm has been proposed for the GIS. Dual objectives 

have been chosen for the optimization, namely, reduction of the maximum electric field and the 

standard deviation in the field stress with equal weightage. The FGM-spacer material has been 

optimized for 4 gradings initially. The detailed results are observed. Progressively, the number of 

gradings is increased in the high stress zones and the optimization process is repeated. The process 

is continued until an increase in the number of gradings improves the value of the objective 

function. Since, the gradings have been designed as per requirement; they may not be of equal 

dimensions. At the same time, since the number of gradings is as per optimization requirements, 

so the cost of extra gradings is avoided. The results to verify the proposed methodology have been 

presented and analyzed in detail. 

 

II. Mathematical Modelling of HVDC GIS 

 
 The distribution of electric field intensity, E can be determined from the Poisson’s Equation [21]. 

E V= −                                                                             (1)      

Where, V is the electric Potential applied in Volt (V) 

The electric flux density D in the distributed area is given by 
2

0 ( / )rD E C m =
                                                           (2) 

where, 𝜀0 = 8.854 × 10−12(𝐹/𝑚) and 𝜀𝑟 = relative dielectric strength of the medium 

We know, 

. vD  =
                                                                           (3) 

𝜌𝑣 = volume charge density in C/m3 

 

0.( ( ))
vr V  −  =

                                                                         (4)   

Assuming there are no free charges,  ρv = 0, we have 
2 0V =                                                                  (5) 

The finite element method can be used to analyze different constructions of the GIB. In FEM, the 

electrostatic energy in the given space can be minimized by the following analysis. 

21

2
v

W E dv= 
                                                               (6) 

In 3-D dimensions the electrostatic energy in terms of electrical potential is given by- 

2 2 21
( ) ( ) ( )

2
r z

v

V V V
W ds

r z
  



   
= + + 

   


                                             (7) 

Where, 𝜺𝒓, 𝜺∅ and 𝜺𝒛 are the r, ɸ, z- components of the dielectric constant. 

In this case, (
𝝏𝑽

𝝏∅
) = 𝟎. For a 2D simulation, 

2 21
( ) ( )

2
r z

v

V V
W ds

r z
 

  
= +   


                                               (8) 

Where, s is the bounded surface. 

 

After further simplification,   
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1

' '
0

n

W W

V V

   
−−−− =  

                          (9) 
𝛛𝐖′

𝛛𝐕
 should be calculated at every dielectric constant domain. 

 

III. Proposed Objective Function for the Design of the Spacer Material 
 

When the spacer is inserted in the system, the electric field distribution becomes non-uniform. It is 

maximum at the junctions. A multi-objective function is chosen for optimization of spacer material. 

 

I. Minimization of Electric Field 

 The electric stress distribution in the bus duct is non-uniform. It is highest at the junction of the 

spacer, SF6 gas and the outer coating. The objective is to reduce the maximum stress incurred by a 

GIS in order to reduce the occurrences of localized heating. 

( )( )1  (  )i i iF Max E = /  V m                    (10) 

Let, 

( )( )1 1   iObjective Min F =
  

where, Max(Ei) is the maximum electric field for the material εi for each polygon of the spacer. 

The objective of the optimization is to choose ε of the spacer material such that the peak value 

electric field in the system is minimized. 

Constraints: 

The material of the spacer can be varied within upper and lower bounds. 

    i min i i max   
                                                                                                     (11)                 

 

II. Uniform Electric Field distribution 

The non-uniformity in the distribution of electric stress leads to the creation of local hot spots. To 

make the field distribution uniform, the standard deviation of the electric field in the system is 

minimized. 

2 ( ) ( ( ))i iF Min  =
                                                   (12)     

2

1

( )

( ) /

n

j

i
i

E

V m
N



  =

−

=


                                          (13)                                               

E𝑗  is the electric field at the nodes. 

where, N = No. of samples 

No. of samples is chosen such that the distance between neighboring samples is less than dmax 

:   min maxN d d d 
 

The multi-objective function is given by- 

1 1 2 2min( ( )) ( ) ( )i i iF w F w F  =  + 
                                (14)                                                                 

1 2 1w w+ =
                    (15) 

w1 and w2 are chosen such that w1 × F1(ε𝑖) ≈ w2 × F2(𝜀𝑖). Thus, equal weightage is given to both 

the objectives. 
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IV. Optimization of Dielectric Material of FGM Spacer 
 

A reliable algorithm for optimization of the GIB is developed in this research paper. The flowchart 

for the proposed optimization algorithm is shown in Fig. 1. The flowchart explains the process of 

optimization of the dielectric material of each polygon of the post type spacer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart depicting the optimization process for GIB post type spacer 
 

The procedure for optimization of the spacer material is mentioned in the steps mentioned below- 

Step-1 Install the post-type spacer in the GIS and optimize the dielectric strength of the material for 

the given multi-objective function (Fig. 1). 

 

N 

Y 

N 

Y 

START 

Select the Polygon & number of samples to be generated (N) 

Mention the boundary range for the samples (µmin < µ < µmax). 

 Calculate the value of the multi-objective function 

N = 1 

j= j+1 

Is j ≤ N 

Determine Minimum of all (Emax) and standard deviation. 

Determine the corresponding value of µ 

 

Fix the value of µ for the selected polygon 

Select no. of polygons (P) for which dielectric material must be optimized 

Is count >= P  

STOP 
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Step-2 Provide 4 gradings in the spacer and follow the procedure mentioned in the previous step 

to optimize the material of each grading. 

Step-3 Increase the gradings to 6. Optimize the grading material and compare the value of the 

parameters and the objective function with the previous case.  

 

Step-4 If a considerable improvement is noticed repeat the step for 8 gradings else GOTO Step-7. 

Step-5 The location of the grading is chosen as per the electric field distribution in the various 

zones of the FGM-spacer. The zone under higher electric stress is graded into smaller zones 

for further optimization. 

Step-6 Compare and analyze the results to obtain the final design of the FGM-Spacer.  

Step-7 End Process. 

 

III. Results 
 

A HVDC GIS is considered for the study. The radius of the outer enclosure is 56 mm. The 

conductor radius is 20.4mm. The insulating medium is SF6 gas with dielectric constant of 1.06. A 

copper conductor is chosen for the study, with a dielectric constant of 1. The voltage applied to the 

conductor in this study is 1V. The values for the other voltages can be taken proportionately. The 

aim of the research is to develop an optimal Post-type FGM spacer for a HVDC GIS. A bi-objective 

function, consisting of minimization of the electric stress and the stress deviation is chosen for the 

optimization problem. COMSOL software has been used for the design while MATLAB software 

has been used for the optimization of the design. 

 

I. Design of 4G- FGM Spacer 
 

After the conductor radius has been optimized, the study focuses on the design of an optimal FGM 

post-type spacer model. Then, a post-type spacer is designed for the system. Initially, the FGM 

spacer has been graded into 4 equal layers, each of approximately 9mm as shown in Table 1. The 

material of each of the gradings of the spacer were optimized. Fig. 2 shows a sample of the 

optimization result for the 4th grading of the spacer material. It is observed that the objective 

function has the minimum value at ɛ = 4. Hence, the value has been chosen for the design. 

Similarly, the optimization has been performed for each of the gradings of the spacer.  The 

distribution of permittivity in the FGM spacer has been shown in Fig. 3. It is observed that the 

permittivity in the first grading is 4.4 while the other three gradings have a permittivity of 4 for 

optimal operation. The surface plots for voltage and the electric field stress distribution are shown 

in Fig. 4 and 5 respectively. Fig. 6 shows the line plot for the stress distribution in the FGM-spacer. 

 

Table 1:  Permittivity distribution in 4-G FGM Spacer 

Grading No. Distance from the Outer 

enclosure (mm) 

Permittivity of the FGM 

gradings 

1 0-9 4.4 

2 9-18 4 

3 18-27 4 

4 27-36 4 
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Figure 2: Distribution of Objective function, Maximum Stress, and Standard Deviation vs permittivity for the 4th 

Grading of 4G-FGM Spacer 

 

 
 

Figure 3: Distribution of Permittivity in a 4-G FGM Spacer 

 

 
Figure 4: Electric Potential Distribution for 4-G FGM Post Type Spacer 
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Figure 5: Electric Field Stress Distribution Surface Plot for 4-G FGM Post Type Spacer 

 

 
Figure 6: Electric Field Stress Distribution Line Plot for 4-G FGM Post Type Spacer 

 

II. Design of 6G FGM Spacer 
 

In a 4G FGM spacer, it is observed that the stress in grading 3 and 4 is much higher in comparison 

to grading 1 and 2. Hence, the layers 3 and 4 are subdivided into two more layers. The distribution 

of gradings with respect to distance is shown in Table 2. 

 

Table 2: Permittivity distribution in 6G FGM Spacer 

Grading No. Distance from the Outer 

enclosure (mm) 

Permittivity of the FGM 

gradings 

1 0-9 4.8 

2 9-18 3.8 

3 18-22.5 3.7 

4 22.5-27 4.1 

5 27-31.5 4.1 

6 31.5-36 3.6 
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The optimization of the permittivity for the 6G spacer material is performed for the chosen 

objective function. Fig. 7 shows the variation of objective function for various values of 

permittivity for the 6th grading in the 6G- FGM spacer.  

 

 
 

Figure 7: Distribution of Objective function, Maximum Stress, and Standard Deviation vs permittivity                                               

for the 6th Grading of 6G-FGM Spacer 

 

The optimal permittivity distribution for a 6G-FGM spacer is shown in Fig. 8.  

 

 
 

Figure 8: Distribution of Permittivity in a 6G-FGM Spacer 
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The surface plots for electric potential and electric stress for a 6G-FGM post type spacer are shown 

in Fig. 9 and 10 respectively. Fig. 11 shows the line plot for distribution of stress vs arc length. 

 
Figure 9:  Electric Potential Distribution for 6-G FGM Post Type Spacer 

 

 
Figure 10: Electric Field Stress Distribution Surface Plot for 6-G FGM Post Type Spacer 

 

 
Figure 11: Electric Field Stress Distribution Line Plot for 6G-FGM Post Type Spacer 

208



 
Akanksha Mishra, G. V. Nagesh Kumar, D.Deepak Chowdary, B.Sravana Kumar 
RELIABILITY OF GAS INSULATED SYSTEM UNDER ELECTRIC FIELD 
STRESS WITH OPTIMAL DESIGN OF FGM SPACER 

RT&A, No 2 (68) 
Volume 17, June 2022  

 

III. Design of 8-G FGM Spacer 
 

The remaining two slots in the 8G-FGM spacer are subdivided to make 8 gradings in the FGM 

spacer as shown in Table 3. The dielectric strength of the FGM spacer is optimized for the given 

objective function. A sample of the optimization process is shown in Fig. 12. The optimized 

distribution of dielectric strength in the spacer is shown in Fig. 13. 

 

Table 3: Permittivity distribution in 8G-FGM Spacer 

Grading No. Distance from the Outer 

enclosure (mm) 

Permittivity of the FGM 

gradings 

1 0-4.5 4.7 

2 4.5-9 3.7 

3 9-13.5 3.6 

4 13.5-18 4.1 

5 18-22.5 4.4 

6 22.5-27 4.5 

7 27-31.5 4.7 

8 31.5-36 4 

 

 
 

Figure 12: Distribution of Objective function, Maximum Stress, and Standard Deviation vs permittivity                                          

for the 8th Grading of 8G-FGM Spacer 

 

 
 

Figure 13: Distribution of Permittivity in 8G-FGM Spacer 
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The performance of the spacer is studied in terms of electric potential distribution and electric 

stress distribution as shown in the surface plots in Fig. 14 and Fig. 15 respectively. The line plot for 

electric stress vs arc length and arrow line showing the direction of the stress distribution is shown 

in Fig. 16 and Fig. 17 respectively. The zoomed contour plot in Fig. 18 focuses on the electric field 

in the stress zone. The 3D view of the electric stress distribution can be seen in Fig. 19. 

 

 
 

Figure 14: Electric Field Stress Distribution Surface Plot for 8G- FGM Post Type Spacer 

 

 

 
 

Figure 15: Electric Potential Distribution for 6-G FGM Post Type Spacer 
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Figure 16: Electric Field Stress Distribution Line Plot for 6-G FGM Post Type Spacer 

 

 
Figure 17: Arrow line showing direction of field stress 

 

 
Figure 18: Zoomed Contour Plot for Electric Stress Distribution 
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(a) XY View of electric stress distribution 

 
(b) YZ view of Electric Stress Distribution 

 
© XZ View of Electric Stress Distribution 

 

Figure 19: 3D View of Electric Stress Distribution 
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IV. Comparative Analysis of Results 
 

A comprehensive data of the electric field distribution can be observed in Table 4 shown below. 

Fig. 20 shows the variation of the dielectric strength of the material in different zones for 4G-FGM, 

6G-FGM and 8G-FGM respectively. 

 

Table 4: Distribution of dielectric strength in FGM Spacer 

Type 0 - 4.5 

mm 

4.5 - 9 

mm 

9 - 

13.5 

mm 

13.5 – 18 

mm 

18 – 22.5 

mm 

22.5 – 27 

mm 

27 – 31.5 

mm 

31.5 – 35.5 

mm 

8 - Grad 4.7 3.7 3.6 4.1 4.4 4.5 4.7 4 

6 - Grad 4.8 3.8 3.7 4.1 4.1 3.6 

4 - Grad 4.4 4 4 4 

0 - Grad 4.1 

 

  
Figure 20: Distribution of dielectric strength in the FGM-Spacer 

 

The comparison of the study for different gradings is presented in Table 4. Since, the average of the 

dielectric strength of the material in each case of FGM spacer is nearly equal to 4.1. The results 

obtained for different grading types are represented in Table 5. The minimum value for objective 

function is 18.29 which is obtained in case of 8G FGM spacer.  

 

Table 5: Comparison of Gradings 

S. No. Grading Case Maximum Electric Stress Standard Deviation Objective 

Function 

1 0G; Ɛ = 4 34.4184 4.2164 19.3174 

2 4G 32.3525 4.4569 18.4047 

3 6G 32.7852 4.6477 18.7165 

4 8G 32.2214 4.3777 18.2995 

 

Grading high (GH), grading low (GL) and grading U (GU) are the standard methods of 

distribution of dielectric strength in the spacer material. The performance of the proposed design 

has been compared with each of the existing methods in Table 6. The distribution of the dielectric 

material in each of the above methods is shown in Fig. 21.  
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The average value of the dielectric strength in each of the cases has been maintained nearly equal 

to maintain uniformity. 

 

Table 6: Comparison with Existing Methods 

S. No. Parameter Proposed 8G 

FGM 

GH-8G 

FGM 

GL-8G FGM GU-8G 

FGM 

1 Maximum Electric Stress 32.2214 38.6171 35.8664 33.417 

2 Standard Deviation 4.3777 4.2556 5.28 4.1066 

3 Objective Function 18.2995 21.4363 20.5737 18.76 

 

 
Figure 21: Distribution of gradings in the FGM spacer for different configurations. 

 

V. Conclusion 
   

An optimum design of GIS spacer can increase the reliability of the electric transmission system. In 

this paper, the FGM GIS spacer is designed and the results have been studied. It is observed that  

• The FGM method reduces the electric stress in the spacer. There is a marked reduction in the 

values of the objective in FGM cases.  

• The distribution of stress in the post-type spacer has been studied for each of category of FGM 

grading. 

• All the FGM gradings have shown a satisfactory performance in reduction of the maximum 

electric stress and objective function. However, the 8G- FGM has been most effective in the 

reduction of the electric stress and the objective function. 

• The comparison of the results with existing FGM methods shows that the proposed method 

helps to achieve a lower objective function value. Thus, the performance of the proposed FGM 

is better in comparison to the state of art methods.  
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Abstract 

 
Consider a multi-processors computer system consisting of a ready queue of different jobs to be 

executed/processed. Lottery scheduling is fair enough to schedule the resources for each and every 

job. The research idea assumes condition where one can observe some processes to be fully executed; 

some partially executed few blocked/suspended/ terminated, after sudden system breakdown. An 

estimation strategy has been designed for the estimation of the total time required to process all 

these types of processes (processed, partially processed and blocked processes). How much time is 

required to process the remaining in any hazardous situation? A regression type estimator of 

sampling theory is used to perform this task. This remaining time estimation technique deals with 

the backup cost and recovery management as well. Sampling techniques are used in proposed 

approach for the testing purpose and a simulation has been performed. Another tool adopted is the 

confidence intervals which are calculated and gives proper précised values in comparison to the true 

mean for the total remaining time. The linear, square root and square cost function model are 

adopted for the calculation of backup cost and recovery management. In addition some auxiliary 

information is also incorporated in the form of size measure of the processes which is an effective 

approach to calculate the complete remaining time of the processes in multiprocessor environment. 

The purpose of the proposed research has been served effectively as one can observe the results of 

disaster and recovery management of the computer system. 

 

Keywords: Ready Queue, Lottery scheduling, Multiprocessors, Simulation, Random 

Sampling, Estimation, Confidence Interval, Jobs(Processes), Size measure, Estimator 

 

I. Introduction 
 

In the scenario of cloud computing, ready queue is a setup among many servers and processors. 

For optimal resource allocation there exists several priority scheduling methodologies in the 

literature of scheduling schemes. In same way lottery scheduling scheme works on randomness of 

selection of process and distribution of resources providing fair chances. A random number is 

generated by processors in multiprocessor environment and some token numbers are assigned to 

each of the process. The execution of process depends upon the condition when the token number 

of a process is matches with the token number of the processor. The process which has the highest 

number of tokens has the chance to be allocated the resource for execution of the task. The jobs 

waiting in the queue always have the chance to be allocated the resource. lottery scheduling 

maintains the fairness between processes and gives equal chance to each and every process to be 

allocated the resource. Due to this reason Lottery scheduling is also known as starvation free 

scheme. In multiprocessor cloud based environment working of Lottery scheduling scheme is 
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similar to draw a random sample through the sampling technique. The remaining time parameter 

estimation of the ready queue can be executed using the sampling techniques. A job in the ready 

queue has its process ID, the CPU time(in terms of bytes)  as well as the process size (in terms of 

bytes). With the use of information of process size, it is expected to estimate better the unknown 

parameter. This paper exploit the approach of use of size measure information for efficient 

prediction. 

 Let (t1, x1), (t2, x2), (t3, x3)……......( ti, xi)........(tk, xk) be the time consumed by ith process in the 

waiting queue having size measure xi. Further let Q1, Q2, Q3, ........Qr be the r processors ( r < k) in a 

computer system who generate random numbers to select processes for resource allocation. Figure 

1 describes the general setup of multiprocessors and ready queue. The Figure 2 and 3 are showing 

the same but in the classified and categorized manner.  

 

 
 

Figure 1: Ready queue with waiting Processes and Multiprocessor, Figure 2: Small size processes and Multiprocessors 

 

This paper takes into account the approach of [4] but adds additional feature of partially 

processed, blocked processes and size measure of processes for time estimation. All these features 

are under assumption that the multiprocessor computer system fails at an instant due to 

unavoidable reasons and backup/recovery management is required. How much the backup cost is 

needed while sudden breakdown is a question of interest and can be predicted by using the 

suggested methodology of this paper. 

 
Figure 3: Big size processes and Multiprocessors 
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II. A Review 
 

The priority scheduling is used when any of the jobs is to prefer over others in the waiting queue. 

Lottery scheduling is one such similar [8] where the job having highest number of tickets has the 

high chance of being allocated the desired resource. In Linux kernel setup, the lottery scheduling is 

useful [18] and it could be utilized as a framework [5, 7] for applying the sampling techniques. The 

similar job group formation scheme for mean time estimation of a ready queue [6] came into 

picture using lottery scheduling. A review on ready queue mean estimation [3] has opened up 

avenues for developing new methods in this area. The lottery scheduling types and model based 

utilization [16, 17] exists in literature as hybrid multilevel structure using Markov chain model 

along with analysis and chance based prediction. A sample can be used as a suitable input source 

for mean value prediction [9, 11, 16]. Many various sampling methodologies exist [10, 13, 14] who 

are comparatively better over another. The best method of selection among them [15] is always 

possible for precise prediction of unknown parameter. For missing data, the imputation techniques 

are popular who to replace the non-responding units [19, 20, 21] by known values. Some of most 

popular imputation methods are mean imputation, deductive imputation, mean imputation within 

classes, deductive imputation within classes, hot deck imputation, cold deck imputation etc. ([22, 

23, 24, 25]). The content of this paper follows idea of [5] and [4] and uses them as input sources in 

order to resolve the issue of remaining time estimation in presence of sudden breakdown of the 

system. The contribution in [26] has opened up avenues to think for the use of size measure of 

processes. 
 

I. Remaining Time Estimation Problem 
 Let there are finite number of N processes in a ready queue and n (n < N) have been processed 

completely before the system breakdown, obviously (N-n) are still in waiting to get signal for 

resource allocation. One can assume that n processes are just like a random sample selected from 

ready queue of size N using lottery scheduling. If θ is mean time obtained through sample then 

remaining total time estimate is Δ = [(N-n) θ] which is an unknown quantity. For numbers ‘c’ and 

‘d’,  if Δ is predicted as Δ∈ (c, d) who is an interval containing Δ with very high probability, then Δ 

1 = [(N-n) c] is lowest, Δ 2 = [(N-n) d] is upper expected remaining time. If highest expected time is 

precisely estimated then it could be used for backup management during system failure. The 

efficient estimation of this expected range is a problem which is chosen in this paper for strategy 

formation in the multiprocessor setup with the consideration of multiple real life possibilities.  

 

II. Confidence Interval (CI) 
 A confidence interval is a kind of predictive range for catching of unknown parameter. The 

feature of a confidence interval is that it contains the true value with 95% precision. Let P[A] 

denotes the probability of happening of an event A. In statistical theory, contains for any two real 

numbers a', b', the 95% confidence interval is defined as P [a' < true unknown value < b'] = 0.95. It 

could be interpreted as chance of being true value within a', b' is 95 percent. The length of 

confidence interval is a tool for measure of betterment. It is a difference of lower limit and upper 

limit. Let there are m different confidence intervals of length (l1, l2, l3, l4 ... lm) who all catch the true 

value than an efficiency measure is: Best Confidence Interval = min [l1, l2, l3, l4 ... lm]  

 

III. Simulated Cost Aspect 
  Let C0 be the fixed cost and C1 be the cost per unit predicted time. If 𝛿1 is the minimum and 𝛿2 

is the maximum remaining time after the occurrence of breakdown than  

(a) Linear cost function is total cost (Tc)1A = C0 + C1 * 𝛿1  and (Tc)2A  = C0 + C1 * 𝛿2   

(b) Square root cost function (Tc)1B  = C0 + C1 √ 𝛿1  and (Tc)2B  = C0 + C1 √ 𝛿2 
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(c) Squared cost function is (Tc)1C  = C0 + C1 * 𝛿12  and (Tc)2C  = C0 + C1 * 𝛿22 

Overall average cost = [Linear cost + Square root cost + Squared cost] / 3 

The average cost is likely to incur in the recovery management of resources after the system 

breakdown. Averaging over linear, squared function and square-root function is taken to control 

the sampling fluctuations due to lottery scheduling sample. 

 

IV. Sample based Estimation Method 
     Let (Y1, X1), (Y2, X2), (Y3, X3)......... (YN, XN) be the data of totality of size N where Y is variable of 

main interest and X is the support correlated information. For example, the Y may be expenditure 

of army officers in a country while x is income data which is known from the salary register of 

organization/head quarter. The mean of population is 𝑌 = (1/N) ∑ Yi and 𝑋 = (1/N) ∑Xi 

 

 

 

Figure 4: Sample selection from Aggregate (n<N) 

 

A sample of size n (n<N) is drawn randomly from N by simple random sampling without 

replacement method. Sample values are (y1, x1), (y2, x2), (y3, x3) ... (yn, xn). 

Sample mean are 𝑦 = (1/n) ∑ yi and 𝑥 = (1/n) ∑xi 

The objective is to estimate unknown parameter 𝑌 using known 𝑋 along with sample means 

𝑦 and 𝑥. Some well known estimators are: 

• Sample mean estimator:  𝑦 

• Ratio-estimator:  𝑦𝑟 = 𝑦 (𝑋/𝑥) 

• Difference estimator:  yd = 𝑦 + d (𝑋 − 𝑥) 

 

III. Motivation 
 Earlier contributions (specially [4], [5]) were under assumption that processes who exist in a 

multiprocessors system are completed before sudden failure. But this is not a practical reality. 

Since some jobs may complete, some may partially processed and some may blocked by the 

processors [see figure 4]. The processed and unprocessed case was considered in [4] [see figure 

(6)]. This paper extends the approach of [4] and [26] by applying the tools of random imputation 

method against the blocked processes.        

 

 
Figure 5: Ready Queue Processing under Lottery Scheduling (due to [6]) 
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Figure 6: Setup of ready queue and multiprocessor environment (due to[23]) 

 

IV. Proposed Generalized Computational Setup 
 

Assume the existence a virtual sampled ready queue in a computer system having multiprocessors 

environment. Some jobs are randomly selected using lottery scheduling from the ready queue and 

placed in the sampled ready queue from top to bottom in the sequential manner of their selection. 

Processors are assigned processes in the ordered manner from top to bottom of the virtual sampled 

ready queue. Figure 5 shows basic setup of this approach but without the size measure while 

figure 5 shows the earlier approaches [4], [5], [6], [7]. Moreover, figure 6 reveals the special case 

when all sample units processed before the occurrence of breakdown. 

 

 
 

Figure 7: Sampled Ready Queue Processing Time Estimation setup without size measure                        
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V. Generalized Assumption and Model 
 

As per figure 7, let the selection of processes is according to lottery scheduling. The process who 

selects first is placed at the top of the virtual queue who is segment or group of processes likely to 

allocate to the multi-processors. 

1. Assume r processors and a ready queue of N processes in a system like denoted as [P1, P2, 

P3…......PN] waiting for allocation of resources. 

2. The selection of process for resource allocation is on priority basis using lottery scheduling. 

3. If all N are processed completely, time consumed are [t1, t2, t3 ….tN] who has known size 

measure [x1, x2, x3 ….xN]. 

4. Overall ready queue mean time 𝑡̅= 
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1 , mean size measure 𝑥̅ = 

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  mean squares 

St2 = 
1

𝑁−1
∑ (𝑡𝑖 − 𝑡̅)2𝑁

𝑖=1 , Sx
2 =   

1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1 .  

5. The Pi of known size Xi consumes time ti( i = 1,2,3,……N) when all assumed processed. 

6. Consider r multiprocessors Q1, Q2, Q3…..Qr, (r < N) and time consumed by the ith process in 

the jth processor is tij with corresponding size measures xij (j = 1,2,3,……r) 

7. The unknown total completion time of ready queue is 𝑁𝑡,̅ which is an unknown quantity. 

This paper is focused to estimate such using sampling methodology. Lottery scheduling is 

a tool for such estimation where process Pi has a bunch of token numbers and Qj generates 

a random number. A process who receives the random number gets the desired resource 

from Qj. This scheduling produces a random sample. 

8. A virtual ready queue of size k (k < N, k>3r) exists to store sequentially the records of 

randomly selected k processes from N. The jth segment of virtual sampled queue is kj( k 

=∑
 𝑘𝑗

𝑟
𝑗=1  ), who is allocated to the jth processor Qj in sequential manner.  

9. In sample, let sxjl denotes the file size measure and stjl denotes time consumed by ith process 

in Qj (l = 1,2,3,...kj) when all processed completely who are included in the sample of size k. 

▪ Sample mean of time 𝑠𝑡̅=  
1

𝑘
∑ ∑ 𝑠𝑡jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1  

▪ Sample mean square of time, (es)t2 = 
1

𝑘−1
∑ ∑ (𝑠𝑡jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1 − 𝑠𝑡̅ )2 

▪ Sample mean of size, ( 𝑠𝑥̅̅ ̅)=  
1

𝐾−1
∑ ∑ (𝑠𝑥jl

𝑘𝑗
 𝑙=1

𝑘𝑗
𝑗=1 ) 

▪ Sample mean square of size, (es)x2 = 
1

𝑘−1
∑ ∑ (𝑠𝑥jl

𝑘𝑗
 𝑙=1

𝑟 
𝑗=1 − 𝑠𝑥̅̅ ̅ )2 

i. The term 𝑠𝑡̅, 𝑠𝑥̅̅ ̅, (es)t2 , (es)x2 hold when system runs without failure. 

10. Assume system breakdown occurs at the time instant T and there are (kj – n′j – n′′j) 

processes completed in Qj, but n′j remain partially processed and n′′j remain unprocessed 

(blocked). This is an assumed generalized model shown in figure 7. Define g = ∑ n′j
r
𝑗=1  and 

u = ∑ n′′j
r
𝑗=1  

11. Let (st')jl is time consumed by the lth process in the processor Qj [l =1, 2, 3... (kj – n′j – 

n′′j)],who is among those processed completely before the occurrence of T. 

12. Some sample mean related measures are: 

▪ Sample mean of (kj – n′j – n′′j) process,  (𝑠𝑡̅′)
j
=

1

(kj – n′j – n′′j)
∑ (𝑠𝑡′jl

(kj – n′j – n′′j)

𝑙=1
) 

▪ Sample mean square, (es')
𝑗

 2 = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑡′jl − (𝑠𝑡̅′)j)

2(kj – n′j – n′′j)

𝑙=1
 

▪ Similar is for size measure also as (𝑠𝑥′jl) represents size of lth process who is in Qj 

before T. 

▪ Sample mean,(𝑠𝑥̅̅ ̅′) j=  
1

(kj – n′j – n′′j)
∑ (𝑠𝑥′

jl)
(kj – n′j – n′′j)

𝑙=1
 

▪ (𝑠𝑥̅̅ ̅)j= 
1

(kj – n′j – n′′j)
∑ (𝑠𝑥′

jl)
(kj – n′j – n′′j)

𝑙=1
is sample mean of all kj known values related to x 

in jth segment of ready queue. 

▪ Sample mean square, (ex')
𝑗

2 = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑥′

jl − (𝑠𝑥̅̅ ̅′)j)
2(kj – n′j – n′′j)

𝑙=1
 

▪ Sample Covariance, (es'x') j = 
1

(kj – n′
j – n′′

j−1)
∑ (𝑠𝑡′

𝑗𝑙 − (𝑠𝑡̅′)j)
(kj – n′

j – n′′
j)

𝑙=1
(𝑠𝑥′

𝑗𝑙 − (𝑠𝑥̅̅ ̅′)j) 
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13. Assume 𝑡𝑚
∗  is partially processed time of a process in Qj (j = m =1,2,3....r) whose sample 

mean under T is  

14. (𝑡 ̅*/T) =  
1

𝑟
∑ tm

∗r
m=1 , Variance (𝑡̅ * / T) = V(𝑡̅ * / T) = ( 

1

𝑔
−

1

𝑁−𝑘+𝑔
 ) ST2, where ST2 is the conditional 

ready queue mean square of the remaining un-sampled part [N- k + g] expressed as: 

ST2 = 
1

(𝑁−𝑘+𝑔−1)
∑ (𝑡i

𝑁−𝑘+𝑔
𝑖=𝑖 -t̅T  

)2 where   t̅
𝑇 =  

1

𝑁−𝑘+𝑔
∑ (𝑡𝑖)

𝑁−𝑘+𝑔 
𝑖=1  where g = ∑ n′j

r
𝑗=1  

15. Herein to mention that ST2 and t̅
𝑇contain time ti only from non-sampled processes (N-k) of 

the main ready queue with the addition of those g who partially processed. For such, the 

size converts from N into (N - k + g) and only those processes are the part of  t̅
T and ST2 

who are in (N – k + g). 

16. The u blocked processes are imputed by Random Imputation Method using random 

selection of a process among  (kj –  n′j –  n′′j) relating to Qj. Let from Qj all random imputed 

time are denoted as 𝑡m
**.   

▪ Sample mean of all random imputed time, 𝑡̅ ** = 
1

𝑢
∑ 𝑡𝑚

∗𝑢
𝑚=1

* 

▪ Variance of imputation under T,V(𝑡̅ **/T) =(
1

𝑢
−

1

𝑘
) (es)2,  u < k. 

17. Sample based estimate of (es)2 can be obtained by using all k values of time consumption 

in sample including the partially processed time  𝑡𝑚
* and imputed time value 𝑡m

**. It is 

denoted as (es*)2 and mathematically expressed as (es*)2  = 
1

𝑘−1
∑ ∑ (st

∗
jl −  𝑠𝑡̅̅ ̅ ∗

)2𝑘𝑗
 𝑙=1 

𝑟
𝑗=1  

where (st*jl) and  𝑠𝑡̅
∗
include completely processed time st*ij , partially processed 𝑡𝑚

* and 

imputed 𝑡m
**.  

18. The sample estimate of ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

19. Bias of estimation strategy is assumed negligible wherever appears and applicable in 

mathematical expressions 

 

I. Computational Set-up 
 Aim is to compute the remaining ready queue processing time after occurrence of sudden 

failure of system at time instant T. This is subject to condition that r processes are partially 

processed, r is unprocessed (blocked) and remaining fully completed. Blocked and partially 

processed are nj′ and nj′′ from every Qj and known size measures are the part of computation. 

Some frequently used symbols for process time t and process size measure X are as under: 

 

 t̅= 
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1  = 

1

𝑁
 ∑ ∑ tij  (1) 

𝑡̅ * =  
1

𝑔
∑ 𝑡𝑚

∗𝑔
𝑚=1                                                                                                                                          (2) 

𝑡̅ ** = 
1

𝑢
∑ 𝑡𝑚

∗𝑢
𝑚=1

*                                                                                                                                                                                                                        (3) 

(𝑠𝑡̅ ′)j= 
1

(kj – n′
j – n′′

j−1)
∑ (st′

jl
(kj – n′j – n′′j)
𝑗=1 )                                                                                                  (4) 

(𝑠𝑥̅̅ ̅′)j= 
1

(kj – n′
j – n′′

j−1)
∑ (sx′jl

(kj – n′j – n′′j)
𝑗=1 )                                                                                                  (5) 

(𝑠𝑥̅̅ ̅) j=  
1

(𝑘𝑗)
∑ (𝑠𝑥′

jl)
𝑘𝑗
𝑙=1

                                                                                                                            (6) 

(es')j2 = 1/(kj –  n′j –  n′′j − 1) ∑ (st′jl
(kj – n′j – n′′j)
𝑙=1 − (𝑠𝑡̅ ′)j)

2                                                                    (7) 

(ex')j2 = 1/(kj –  n′j –  n′′j − 1) ∑ (sx′jl
(kj – n′j – n′′j)
𝑙=1 − (𝑠𝑥̅̅ ̅′)j)

2                                                                  (8) 

(es'x') j=
1

(kj – n′j – n′′j−1)
∑ (𝑠𝑡′

𝑗𝑙 − (𝑠𝑡̅ ′)j)
(kj – n′j – n′′j)

𝑙=1
(𝑠𝑥′

𝑗𝑙 − (𝑠𝑥̅̅ ̅′))j                                                                                         (9) 

(es*)2  = 
1

𝑘−1
∑ ∑ (st

∗
jl −  𝑠𝑡̅̅ ̅ ∗

)2     𝑘𝑗
 𝑙=1 

𝑟
𝑗=1                                                                                                                                                         (10) 

𝑡̅
𝑟𝑗 = [(𝑠𝑡̅ ′)j + dj{(𝑠𝑥̅̅ ̅)j − (𝑠𝑥̅̅ ̅′)j}],  dj being constant, (0< dj < ∞)                                                     (11) 

 

Note: The 𝑡̅
𝑟𝑗

 is a Difference type estimator as stated in subsection IV of section II. 
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II. Estimation Strategy 
The sample based proposed estimation strategy for mean time is: 

       (tmean/T) = €1 [ ∑ wj
𝑟
𝑗=1  (𝑡̅𝑟𝑗/T) ] + €2  (𝑡̅ */ T) +  (1- €1 – €2) (𝑡̅ **/T)               (12) 

with condition that ∑ €p
3
𝑝=1 = 1 and €pdenotes constants to be determine suitability and wj= (kj/k) is known 

weight (∑wj =1). With the help of Cochran [16; see page 166, page 27, 29] for tmean, the expected value E[.] is 

expressed as: 

       E [tmean/T] =E[ €1 [ ∑ wj
𝑟
𝑗=1 (𝑡𝑟̅𝑗 /T)] + €2  (𝑡̅ */T) + (1- €1 – €2) (𝑡̅ **/T)]  

                   =€1 [ ∑ 𝑊𝑗𝐸𝑟
𝑗=1  (𝑡̅𝑟𝑗 /T)] + €2 E (𝑡̅ */T) + (1- €1 – €2)E (𝑡̅ **/T)]                                                     (13) 

                   ≠𝑡̅ which shows estimator (tmean/T) is biased. 

 

III. Mean Squared Error 
Let MSE (.), V (.) and B (.) denote mean squared error, variance and bias respectively. One can 

express  

MSE (tmean/T) = Variance (tmean/T) + [Bias (tmean/T)]2 which holds in general. Assume the bias is small, 

therefore negligible (as in assumption no. 16) 

MSE (tmean/T) = Variance (tmean/T) = €12[ ∑ wj
2𝑟

𝑗=1 V(𝑡̅𝑟𝑗/T)]+ €2
2V (𝑡̅ */T) + (1- €1 – €2)V (𝑡̅ **/T)] 

                       = €12 [∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2{(𝑒𝑠′)j2+𝑑j

2(𝑒𝑥′)j2 –2𝑑j(𝑒𝑠′𝑥′)𝑗}]+€22[(
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2]+(1- €1 

– €2)2         ∑ (1 −
1

(kj – n′j – n′′j)
) wj(es′)j

2
𝑟

𝑗=1
] (as per Cochran[12] page 24, page 29  

and page 164)                                                                                                                (14) 

The expressions P, Q, R are in the sample based estimate form of population parameters 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗},  

      Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

      R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

The above expression is re-written as: 

V[tmean/T] = [€12 P + €22 Q+ (1- €1 – €2)2𝑅 ] ignoring the covariance terms due to independency. For 

optimum variance, differentiate V[tmean/T] with respect to €1 and €2 and equate to zero, one gets  

(€1) opt  = (QR) / [PQ+PR+QR] = QM                                                                                                       (15) 

(€2) opt  = PQ/ [PQ+PR+QR] = PM where M = R/ [PQ+PR+QR]                                                          (16) 

One can differentiate the variance expression by  𝑑j  
also to get optimum value which is 

(dj)opt=[(𝑒𝑠′𝑥′)𝑗/(𝑒𝑥′)j2] Substituting optimum choices in expression, the optimum variance is: 

V[tmean/T]opt = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2𝑅] with (dj)opt                                                   (17) 

 

VI. Numerical Illustration 
Consider the 150 processes with processed CPU time whose details are in table 1 with assumption 

that all 150 processes have been completed.  
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Table 1: System Ready Queue Processes with time (N = 150) 

Process J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 

CPU 

Time 
30 20 42 45 59 35 25 48 50 60 32 55 62 47 69 

Process 

Size 
41 71 103 142 316 82 199 163 220 127 76 192 251 52 133 

Process J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 

CPU 

Time 
34 24 44 70 57 65 38 84 101 66 80 90 92 111 85 

Process 

Size 
318 202 106 181 242 148 46 252 136 222 261 97 109 271 116 

Process J31 J32 J33 J34 J35 J36 J37 J38 J39 J40 J41 J42 J43 J44 J45 

CPU 

Time 
61 52 72 75 89 67 51 78 80 91 63 86 93 77 99 

Process 

Size 
172 243 253 262 83 203 183 166 219 193 223 272 281 301 289 

Process J46 J47 J48 J49 J50 J51 J52 J53 J54 J55 J56 J57 J58 J59 J60 

CPU 

Time 
64 54 74 100 87 95 68 114 131 96 110 123 122 141 49 

Process 

Size 
205 244 223 254 146 263 53 218 273 139 282 302 173 309 290 

Process J61 J62 J63 J64 J65 J66 J67 J68 J69 J70 J71 J72 J73 J74 J75 

CPU 

Time 
118 81 102 105 119 97 88 108 110 121 240 113 122 107 129 

Process 

Size 
313 194 153 255 225 169 206 264 58 274 283 303 184 291 216 

Process J76 J77 J78 J79 J80 J81 J82 J83 J84 J85 J86 J87 J88 J89 J90 

CPU 

Time 
94 73 104 130 117 234 98 237 161 126 143 236 152 171 233 

Process 

Size 
207 246 228 360 256 275 217 265 226 195 284 292 304 300 280 

Process J91 J92 J93 J94 J95 J96 J97 J98 J99 J100 J101 J102 J103 J104 J105 

CPU 

Time 
120 112 132 135 149 125 115 138 140 150 122 232 152 137 159 

Process 

Size 
247 79 208 276 285 257 56 293 266 187 305 178 310 299 215 

Process J106 J107 J108 J109 J110 J111 J112 J113 J114 J115 J116 J117 J118 J119 J120 

CPU 

Time 
124 114 134 160 147 155 128 174 191 156 170 180 182 201 175 

Process 

Size 
277 286 211 248 227 294 157 258 229 267 196 298 188 306 270 

Process J121 J122 J123 J124 J125 J126 J127 J128 J129 J130 J131 J132 J133 J134 J135 

CPU 

Time 
235 142 162 165 179 151 145 168 171 238 152 175 189 167 241 

Process 

Size 
287 278 295 197 249 307 268 311 213 350 112 314 259 297 230 

Process J136 J137 J138 J139 J140 J141 J142 J143 J144 J145 J146 J147 J148 J149 J150 

CPU 

Time 
154 144 164 190 177 185 158 204 221 186 200 210 212 231 209 

Process 

Size 
214 250 260 279 288 296 308 269 312 245 317 198 319 315 239 
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Table 2: Descriptive Statistics of Table 1 

S. No. Parameters Name Calculated value 

1 Number of Processes N 150 

2 Mean time (𝑡̅) 122.56 

 

 

I. Case-I: where each sample size k=40, and dj = 0 (d1 = 0, d2 = 0, d3 = 0) 
 

Table 3: Calculation for Sample No. 1 

k1:16 k2:13 k3:11 

{(J01),(30),(41)},{(J31),(61),(172)}, 

{(J61),(118),(313)},{(J91),(120),(247)}, 

{(J121,(235),287)},{(J63),(102),(153)}, 

{(J32),(52),(243)},{(J62),(81),(194)}, 

{(J92),(112),(79)},{(J122),(142),(278)}, 

{(J3),(42),103)},{(J33),(72),(253)}, 

{(J141),(185),(296)},{(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

{(J49),(100),(254)},{(J 34),(75),(262)},  

{(J 64),(105),(255)},{(J94),(135),(276)}, 

{(J124),(165),(197)},{(J135),(241),(230)} 

{(J 35),(89),(83)},{(J65),(119),(225)}, 

{(J95),(149),(285)},{(J150),(209),(239)}, 

{(J99),(140),(266)},{(J143),(204),(269)}, 

{(J116),(170),(196)} 

 

{(J29),(111),(271)},{(J59),(141),(309)} 

{(J28),(92),(109)},{(J96),(125),(257)} 

{(J119)(201)(306)},{(J149)(231)(315)}, 

{(J142),(158),(308)},{(J97),(115),(56)}, 

{(J108),(134),(211)},{(J112)(128)(157)}, 

{(J120), (175), (270)} 

ni’ = 2, ni’’ = 3 ni’ = 2, ni’’ = 2 ni’ = 2, ni’’ = 3 

Partial Processed 

={(J33),(72)(253)}{(J141),(185),(296)} 

(Processed=50 unprocessed=22) 

(Processed=90 unprocessed=95) 

Partial Processed={(J150)(209)(239)} 

{(J99),(140),(266)} 

(Processed=120, unprocessed=89) 

(Processed=90, unprocessed=50), 

Partial Processed = 

{(J142)(158)(308)} {(J97)(115)(56)} 

   (Processed=110unprocessed=48), 

(Processed=65 unprocessed=55), 

Blocked = {(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)}

Blocked replaced  

α1' = {(J91),(120),(247)} 

α2' ={(J32),(52),(243)}  

α3' = {(J01),(30),(41)} 

Blocked={(J143),(204),(269)}, 

{(J116),(170),(196)} 

Blocked replaced  

β1' ={(J64),(105),(255)} 

β2' ={(J135),(241),(230)} 

Blocked={(J108),(134),(211)}, 

{(J112)(128)(157)},{(J120)(175)(270)} 

Blocked replaced  

γ1' = {(J119)(201)(306)} 

γ2' = {(J59),(141),(309)} 

γ3' ={(J29),(111),(271)} 

[𝑠𝑡̅1' = 99.54, from eq.(4.4),  

(𝑒𝑠′)12 = 3330.87, from eq.(4.7)], 

[sx̅1=3583/16 = 223.94, from 

eq.(4.5) 

sx̅1'=2110/11=191.81
from eq. (4.6)],  

[(𝑒𝑥′)12 =8210.36, from eq.(4.8)]  

[(es'x')1 = 3230.60, from eq.(4.9)] 

[𝑠𝑡̅2' = 130.88, from eq. (4.4),  

(𝑒𝑠′)22 = 2534.61 from eq.(4.7)]  

[sx̅2 =3149/13 =242.23, from 

eq.(4.5), 

sx̅2'=
2067

9
=

229.66, from eq. (4.6), 

(𝑒𝑥′)22 =3761,from eq.(4.8)] 

[(es'x')2 = 387.45, from eq.(4.9)] 

[𝑠𝑡̅3' = 150.16, from eq.(4.4), 

(𝑒𝑠′)32 = 2950.56 from eq.(4.7)]  

[sx̅3 =2641/11=240.09,from eq.(4.5) 

sx̅3'=
1567

6
= 261.16, from eq. (4.6) 

[(𝑒𝑥′)32 = 6092.96, from eq.(4.8)] 

[(es'x')3 = 2952.56, from eq.(4.9)] 

 

𝒕̅* = (50+90+120+90+110+65)/6 = 87.5 

𝒕̅** = (α' + β' + γ')/8 = (120+52+30+105+241+201+141+111) / 8 = 125.13 

Estimated [sT2 = 2,204.16] (using point 15) ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

[(50-87.5)2 +(90-87.5)2 +(190-87.5)2 +(110-87.5)2 +(140-87.5)2+(95-87.5)2]/5  

=[4,333.58+1,167.58+4,117.78+250.58+200.78+950.48]= 2,204.16 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗}, Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

P = ( 
1

16−2−3
–

1

40
) (0.4)2 *{3330.87}+ ( 

1

13−2−2
–

1

40
) (0.33)2 {2534.61}+ ( 

1

11−2−3
–

1

40
) (0.28)2 {2950.56} 

         = 0.0659 *0.16*3330.87+ 0.0861*0.1089*2534.61+0.1416*0.0784*2950.56= 91.64 
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Q = ( 
1

3
−

1

150−40+3
) 2,204.16  = 0.3245 *2,204.16 = 715.25 

R = ( 1 −
1

16−2−3
 ) (0.4)2*3330.87+ ( 1–

1

13−2−2
) (0.33)2 *2534.61 +( 1–

1

11−2−3
) (0.28)2 *2950.56 

    = 0.9091 *0.16*3330.87+ 0.8889*0.1089*2534.61 +0.8334*0.0784*2950.56 = 922.63 

Calculation of mean and Variance V[tmean/𝐓] at 𝐝𝐣 = 0 (for all j = 1,2,3) 

(€1)opt= (QR) / [PQ+PR+QR] = QM = 715.25*922.63/[91.64*715.25+91.64*922.63+715.25*922.63] 

       = 659911.1075/810006.4307 = 0.8147 

(€2)opt= PQ/ [PQ+PR+QR] = PM = 91.64*715.25/[91.64*715.25+91.64*870.50+715.25*870.50] 

      = 65545.51/ 810006.4307= 0.0809 

(tmean/T) = (€1)opt [ ∑ wj
𝑟
𝑗=1  𝑡̅𝑟𝑗] + (€2)opt  (𝑡̅ *) +  (1- (€1)opt – (€2)opt)  (𝑡̅ **) 

𝑡rj= [(𝑠𝑡̅ ′)j + dj{(𝑠𝑥̅̅ ̅)j −
 
(𝑠𝑥̅̅ ̅′)j}], 

𝑡rj= [0.4*99.54+0*(223.94-191.81)]+[0.33*130.88+0*(242.45-229.66)] +[0.28*150.16+0*(240.09-261.16)]  

    =  39.82+43.19+42.04 = 125.05 

(tmean/T) = 0.8147*125.05+0.0809*87.5+0.1044*125.13 = 122.02 

V[tmean/T] = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2R] 

V[tmean/T] = [(0.8147)2 *91.64+ (0.0809)2*715.25 + 0.0108*922.63] = 60.82+4.68+9.96 = 75.46 

The 95% confidence intervals for t̅,    P [(tmean/T) ± 1.96√[ V (tmean/T)] = 0.95  

= 122.02± 1.96√75.46 = 122.02 ± 17.02 = (104.99, 139.04) 

 
Table 4: Estimated Sample Mean, Variance and Confidence Interval (CI) of Ten Random Samples 

 

 

 

Figure 8: Graphical representation of Confidence Interval range of Ten Random Samples  

for Case-I of Table 4 ( X-axis has sample number as shown in table 4) 

Case-I: At (€1)opt,  (€2)opt, dj = 0 (d1 = 0, d2 = 0, d3 = 0) where True mean = 122.51 

S.No. 
Estimated Sample 

Mean 
V[tmean/T] 

95% Confidence Interval 

(CI) 
CI Length 

1 122.02 75.46 (104.99, 139.04) 34.05 

2 134.58 64.83 (118.79, 150.36) 31.57 

3 117.56 74.36 (100.66, 134.46) 33.80 

4 113.89 48.45 (100.25, 127.53) 27.28 

5 127.00 85.37 (108.89, 145.11) 36.22 

6 119.27 46.42 (105.92, 132.62) 26.70 

7 123.39 45.41 (110.18, 136.60) 26.42 

8 113.12 97.36 (93.78, 132.46) 38.68 

9 115.01 53.05 (100.73, 129.28) 28.55 

10 120.21 60.91 (104.91, 135.51) 30.60 

Average Length (3138/10) = 31.38 
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II. Case-II: where each sample size k=40, and (dopt)j = (es′x′)j / (ex′)j2 
 

Table 5: Calculation for Sample No. 1 

k1:16 k2:13 k3:11 

{(J01),(30),(41)},{(J31),(61),(172)}, 

{(J61),(118),(313)},{(J91),(120),(247)}, 

{(J121,(235),287)},{(J63),(102),(153)}, 

{(J32),(52),(243)},{(J62),(81),(194)}, 

{(J92),(112),(79)},{(J122),(142),(278)}, 

{(J3),(42),103)},{(J33),(72),(253)}, 

{(J141),(185),(296)},{(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

{(J49),(100),(254)},{(J 34),(75),(262)},  

{(J 64),(105),(255)},{(J94),(135),(276)}, 

{(J124),(165),(197)},{(J135),(241),(230)} 

{(J 35),(89),(83)},{(J65),(119),(225)}, 

{(J95),(149),(285)},{(J150),(209),(239)}, 

{(J99),(140),(266)},{(J143),(204),(269)}, 

{(J116),(170),(196)} 

 

{(J29),(111),(271)},{(J59),(141),(309)} 

{(J28),(92),(109)},{(J96),(125),(257)} 

{(J119)(201)(306)},{(J149)(231)(315)}, 

{(J142),(158),(308)},{(J97),(115),(56)}, 

{(J108),(134),(211)},{(J112)(128)(157)}, 

{(J120), (175), (270)} 

ni’ = 2, ni’’ = 3 ni’ = 2, ni’’ = 2 ni’ = 2, ni’’ = 3 

Partial Processed = {(J33),(72),(253)}, 

{(J141),(185),(296)} 

(Processed=50, unprocessed=22), 

(Processed=90, unprocessed=95), 

Partial 

Processed={(J150),(209),(239)}, 

{(J99),(140),(266)} 

(Processed=120, unprocessed=89) 

(Processed=90, unprocessed=50), 

Partial Processed = 

{(J142),(158),(308)},{(J97)(115)(56)} 

   (Processed=110, unprocessed=48), 

(Processed=65, unprocessed=55), 

Blocked = {(J21),(65),(148)}, 

{(J86),(143),(284)},{(J100),(150),(187)} 

Blocked replaced  

α1'={(J91),(120),(247)},α2'={(J32),(52),(243

)}  

α3' = {(J01),(30),(41)} 

Blocked={(J143),(204),(269)}, 

{(J116),(170),(196)} 

Blocked replaced  

β1' ={(J64),(105),(255)} 

β2' ={(J135),(241),(230)} 

Blocked={(J108),(134),(211)}, 

{(J112)(128)(157)},{(J120)(175)(270)} 

Blocked replaced 

γ1'={(J119)(201)(306)},γ2'={(J59),(141),(309

)} 

γ3' ={(J29),(111),(271)} 

[𝑠𝑡̅1' = 99.54, from eq.(4.4), (𝑒𝑠′)12 = 

3330.87, from eq.(4.7)],[sx̅1=3583/16 

= 223.94, from eq.(4.5), 

sx̅1'=2110/11=191.81from eq. (4.6)],  

[(𝑒𝑥′)12 =8210.36, from eq.(4.8)] 

,[(es'x')1 = 3230.60, from 

eq.(4.9)],(dopt)1 = (𝑒𝑠′𝑥′)1 / (𝑒𝑥′)12 = 

3230.60/8210.36 =0.3935 

[𝑠𝑡̅2' = 130.88, 

from eq. (4.4), (𝑒𝑠′)22 = 2534.61 

from eq.(4.7)],[sx̅2 =3149/13 

=242.23, from eq.(4.5),sx̅2'=
2067

9
=

229.66, from eq. (4.6), (𝑒𝑥′)22 

=3761,from eq.(4.8)],[(es'x')2 = 

387.45, from eq.(4.9)],(dopt)2= 

(𝑒𝑠′𝑥′)2 / (𝑒𝑥′)22 = 387.45/3761 = 

0.1030 

[𝑠𝑡̅3' = 150.16, from eq.(4.4),(𝑒𝑠′)32 = 

2950.56 from eq.(4.7)] ,[sx̅3 

=2641/11=240.09,from eq.(4.5),sx̅3'=
1567

6
= 261.16, from eq. (4.6),[(𝑒𝑥′)32 = 

6092.96, from eq.(4.8)],[(es'x')3 = 

2952.56, from eq.(4.9)],(dopt)3= 

(𝑒𝑠′𝑥′)3 / (𝑒𝑥′)32  

=2952.56/6092.96 = 0.48 

 

𝒕̅* = (50+90+120+90+110+65)/6 = 87.5 

𝒕̅** = (α' + β' + γ')/8 = (120+52+30+105+241+201+141+111) / 8 = 125.13 

Estimated [sT2 = 2,204.16] (using point 15) ST2 is (es′)2 = 
1

𝑔−1
[ ∑ (𝑡𝑚

∗𝑔

𝑚=1
-𝑡̅ * )2 ] 

[(50-87.5)2 +(90-87.5)2 +(190-87.5)2 +(110-87.5)2 +(140-87.5)2+(95-87.5)2]/5  

=[4,333.58+1,167.58+4,117.78+250.58+200.78+950.48]= 2,204.16 

Let P = ∑ (
1

(kj – n′j – n′′j)
–

1

𝑘
)

𝑟

𝑗=1
 wj2 {(𝑒𝑠′)j2+𝑑j

2 (𝑒𝑥′)j2 –2𝑑j (𝑒𝑠′𝑥′)𝑗}, Q = (
1

𝑔
−

1

𝑁−𝑘+𝑔
)sT2  

R = ∑ (1 −
1

(kj – n′j – n′′j)
) wj

2(es′)j
2

𝑟

𝑗=1
 

P = ( 
1

16−2−3
–

1

40
) (0.4)2 *{3330.87+0.39*0.39*8210.36 - 2*0.39*3230.60}+ ( 

1

13−2−2
–

1

40
) (0.33)2 

{2534.61+0.10*0.10*3761- 2*0.10*387.45}+ ( 
1

11−2−3
–

1

40
) (0.28)2 {2950.56 +0.48*0.48*6092.96-

2*0.48*2952.56} 

        = 0.0659 *0.16*2059.79+ 0.0861*0.1089*2494.73+0.1416*0.0784*1519.92 = 61.98 

Q = ( 
1

3
−

1

150−40+3
) 2,204.16  = 0.3245 *2,204.16 = 715.25 
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R = ( 1 −
1

16−2−3
 ) (0.4)2*3330.87+ ( 1–

1

13−2−2
) (0.33)2 *2534.61 +( 1–

1

11−2−3
) (0.28)2 *2950.56 

    = 0.9091 *0.16*3330.87+ 0.8889*0.1089*2534.61 +0.8334*0.0784*2950.56 = 922.63 

Calculation of mean and Variance V[tmean/𝐓] at 𝐝𝐣 = (dopt)j 
 

(€1)opt= (QR) / [PQ+PR+QR] = QM = 715.25*922.63/[61.98*715.25+61.98*922.63+715.25*922.63] 

       = 659911.1075/761426.9099= 0.8666 

(€2)opt= PQ/ [PQ+PR+QR] = PM = 61.98*715.25/[61.98*715.25+61.98*870.50+715.25*870.50] 

      = 44331.195/ 761426.9099 = 0.0582 

(tmean/T) = (€1)opt [ ∑ wj
𝑟
𝑗=1  𝑡̅𝑟𝑗] + (€2)opt  (𝑡̅ *) +  (1- (€1)opt – (€2)opt)  (𝑡̅ **) 

𝑡rj= [(𝑠𝑡̅ ′)j + dj{(𝑠𝑥̅̅ ̅)j −
 
(𝑠𝑥̅̅ ̅′)j}], 

𝑡rj= [0.4*99.54+0.39*(223.94-191.81)]+[0.33*130.88+0.10*(242.45-229.66)] +[0.28*150.16+0.48*(240.09-

261.16)] = [0.4*99.54+12.64]+[0.33*130.88+2.11] +[0.28*163.33-45.50] = 52.45+44.47+31.93 = 128.85 

(tmean/T) = 0.8666*128.85+0.0582*87.5+0.0752*125.13 = 126.16 

V[tmean/T] = (€1) 2opt P + (€2) 2opt Q + (1- (€1)opt– (€2)opt) 2R] 

V[tmean/T] = [(0.8666)2 *61.98+ (0.0582)2*715.25 + 0.0056*922.63] = 46.54+2.42+5.17 = 54.13 

The 95% confidence intervals for t̅,    P [(tmean/T) ± 1.96√[ V (tmean/T)] = 0.95  

= 126.16 ± 1.96√54.13 = 126.16 ± 14.42 = (111.74, 140.58) 

 
Table 6: Estimated Sample Mean, Variance and Confidence Interval (CI) of Ten Random Samples 

 

 
Figure 9: Graphical representation of Confidence Interval range of Ten Random Samples 

 for Case-II of Table 6 (X-axis has sample number as shown in table 6) 

 
  

Case-II: At (€1)opt,  (€2)opt, (dopt)j = (es′x′)j / (ex′)j2where True mean = 122.51 

S.No. Estimated Sample Mean V[tmean/T] 95% Confidence Interval (CI) CI Length 

1 126.16 54.13 (111.74, 140.58) 28.84 

2 130.78 39.24 (118.50, 143.06) 24.56 

3 125.24 48.98 (111.52, 138.96) 27.44 

4 124.84 45 (111.70, 137.99) 26.29 

5 128.89 53.58 (114.54, 143.24) 28.7 

6 140.30 100.86 (120.62, 159.98) 39.36 

7 125.99 29.81 (115.29, 136.69) 21.4 

8 110.79 77.25 (93.56, 128.02) 34.46 

9 128.36 50.01 (114.50, 142.22) 27.72 

10 128.07 38.42 (115.92, 140.22) 24.3 

Average Length (28307/10) = 28.30 
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Table 7: Comparison between Case-I and Case-II 

S. 

NO 

CASE-I 

dj = 0 (d1 =0, d2 =0, d3 =0) 

CASE-II 
(𝐝)𝐣 =

(𝐝𝐨𝐩𝐭)𝐣 

95% Confidence Interval Length 95% Confidence Interval Length 

1. (104.99, 139.04) 34.05 (111.74, 140.58) 28.84 

2. (118.79, 150.36) 31.57 (118.50, 143.06) 24.56 

3. (100.66, 134.46) 33.8 (111.52, 138.96) 27.44 

4. (100.25, 127.53) 27.28 (111.70, 137.99) 26.29 

5. (108.89, 145.11) 36.22 (114.54, 143.24) 28.7 

6. (105.92, 132.62) 26.7 (120.62, 159.98) 39.36 

7. (110.18, 136.60) 26.42 (115.29, 136.69) 21.4 

8 (93.78, 132.46) 38.68 (93.56, 128.02) 34.46 

9. (100.73, 129.28) 28.55 (114.50, 142.22) 27.72 

10. (104.91, 135.51) 30.6 (115.92, 140.22) 24.3 

Average Length (3138/10) 31.38 Average Length (2830/10) 28.30 

 

Table 8: Case-I: Cost aspect when C0 = 100 units, C1 = 10 units 

 C.I C I 𝛿1 𝛿2 Total cost Total cost 

S. 

NO 

Lower 

Limit 

Upper 

Limit 
𝛿1 𝛿2 (Tc)1A (Tc)1B (Tc)1C (Tc)2A (Tc)2B (Tc)2C 

1 
104.9

9 

139.0

4 

11,548.

90 

15,294.

40 
115589 

1174.

65 

1333771

012 

1530

44 

1336.7

053 

2339186

814 

2 
118.7

9 

150.3

6 

13,066.

90 

16,539.

60 
130769 

1243.

10 

1707438

856 

1654

96 

1386.0

63762 

2735583

782 

3 
100.6

6 

134.4

6 

11,072.

60 

14,790.

60 
110826 

1152.

26 

1226024

808 

1480

06 

1316.1

66107 

2187618

584 

4 
100.2

5 

127.5

3 

11,027.

50 

14,028.

30 
110375 

1150.

11 

1216057

663 

1403

83 

1284.4

11246 

1967932

109 

5 
108.8

9 

145.1

1 

11,977.

90 

15,962.

10 
119879 

1194.

43 

1434700

984 

1597

21 

1363.4

12047 

2547886

464 

6 
105.9

2 

132.6

2 

11,651.

20 

14,588.

20 
116612 

1179.

40 

1357504

714 

1459

82 

1307.8

16211 

2128155

892 

7 
110.1

8 
136.6 

12,119.

80 

15,026.

00 
121298 

1200.

89 

1468895

620 

1503

60 

1325.8

05857 

2257806

860 

8 93.78 
132.4

6 

10,315.

80 

14,570.

60 
103258 

1115.

66 

1064157

396 

1458

06 

1307.0

87404 

2123023

944 

9 
100.7

3 

129.2

8 

11,080.

30 

14,220.

80 
110903 

1152.

63 

1227730

581 

1423

08 

1292.5

09958 

2022311

626 

10 
104.9

1 

135.5

1 

11,540.

10 

14,906.

10 
115501 

1174.

24 

1331739

180 

1491

61 

1320.9

05402 

2221918

272 

Average 115501 
1173.

74 

1336802

081 

1500

26.7 

1324.0

88329 

2253142

435 
 

NOTE 8.1: Overall average cost by lower limit = (115501 +1173.743546+ 1336802081)/3  

                                                                                   = 445639585.25 units 

NOTE 8.2: Overall average cost by upper limit = (150026.7 + 1324.088329+ 2253142435)/3  

                                                                                   = 751097928.59 units 
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Table 9: Case- II: Cost aspect when C0 = 100 units, C1 = 10 units 

 C.I C I 𝛿1 𝛿2 Total cost Total cost 

S. 

NO 

Lower 

Limit 

Upper 

Limit 
𝛿1 𝛿2 (Tc)1A (Tc)1B (Tc)1C (Tc)2A (Tc)2B (Tc)2C 

1 111.74 140.58 
12,291

.40 

15,463

.80 
123014 

1208.66

5865 

15107

85240 

1547

38 

1343.5

35283 

23912

91204 

2 118.5 143.06 
13,035

.00 

15,736

.60 
130450 

1241.70

9245 

16991

12350 

1574

66 

1354.4

56057 

24764

05896 

3 111.52 138.96 
12,267

.20 

15,285

.60 
122772 

1207.57

3925 

15048

42058 

1529

56 

1336.3

49465 

23364

95774 

4 111.7 137.99 
12,287

.00 

15,178

.90 
122970 

1208.46

741 

15097

03790 

1518

89 

1332.0

26785 

23039

90152 

5 114.54 143.24 
12,599

.40 

15,756

.40 
126094 

1222.47

049 

15874

48904 

1576

64 

1355.2

44996 

24826

41510 

6 120.62 159.98 
13,268

.20 

17,597

.80 
132782 

1251.87

673 

17604

51412 

1760

78 

1426.5

66998 

30968

25748 

7 115.29 136.69 
12,681

.90 

15,035

.90 
126919 

1226.13

9423 

16083

05976 

1504

59 

1326.2

09607 

22607

82988 

8 93.56 128.02 
10,291

.60 

14,082

.20 
103016 

1114.47

5234 

10591

70406 

1409

22 

1286.6

84457 

19830

83668 

9 114.5 142.22 
12,595

.00 

15,644

.20 
126050 

1222.27

4476 

15863

40350 

1565

42 

1350.7

67764 

24474

10036 

10 115.92 140.22 
12,751

.20 

15,424

.20 
127612 

1229.21

2115 

16259

31114 

1543

42 

1341.9

42028 

23790

59556 

Average value 
124167.

9 

1213.28

6491 

15452

09160 

15530

5.6 

1345.3

78344 

24157

98653 
 

NOTE 9.1: Overall average cost by lower limit = (124167.9+1213.286491+ 1545209160)/3  

                                                                                   = 515111513.72 units 

NOTE 9.2: Overall average cost by upper limit = (155305.6+ 1345.378344+ 2415798653)/3  

                                                                                   = 805318434.65 units 

 

 
 

Figure 10: Pair of graph lines for Case-I and Case-II 
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VII. Discussion 
In Section VI the data description is in Table 1 and 2 where 150 processes are presented assuming 

all finished before T. Their total processing time and size process measures are noted. The 

proposed estimate tmean has unknown constants €1, €2 and d whose suitable values need to be 

obtained for obtaining a best estimate. Two cases are considered herein as 

Case I: €1 = (€1)opt, €2 = (€2)opt, and d1 = 0, d2 = 0, d3 = 0. 

 This case indicates for no use of size measure in the estimation strategy at the optimum 

choice of €1 and €2. The average confidence interval length, under Case-I is 31.38 as evident form 

table 3. The lowest predicted total remaining time is 11540.1 units while highest is 14991.9 units 

(table 10). Average cost consumption for lowest estimated time is 445639585.25 units and at highest 

time level it is 751097928.59 units (table 8). 

Case II: €1 = (€1)opt, €2 = (€2)opt, and d1 = (dopt)1, d2 = (dopt)2, d3 = (dopt)3 

  This case contains choice of all constants at the optimum level and size measure 

information x has also been used. The impact of using the support information seems positive 

since the average length reduced to 30.53 in this case with respect to Case-I while simulated over 

10 samples. Figure 9 also reveals for more condensed pair of graph lines for Case-II. Lowest 

predicted remaining time is 12406.9 units and highest is 15521 units (Table 10). Average cost likely 

to consume is 515111513.72 units as minimum whereas 805318434.65 units as highest (Table 9). 

 The percentage relative efficiency of Case-II with respect to Case-I is 9.82 % which 

supports the use of size measure in estimation (Table 2). The highest cost by Case-I and lowest by 

Case-II are the recommended cost required for infrastructure creation for backup management 

(Figure 10).  
 

Table 10: Ten Sample average Confidence Interval and estimated total Remaining time of processing  

for Recovery Management 

 Case-I 

(Without size measure) 

Case-II 

(With size measure) 

True 

Value 

Average Interval  

(Over 10 samples) 
(104.91 - 136.29) (112.79 - 141.10) 

 

122.51 

CI Length 31.38 28.30 

Lowest Predicted 

Remaining time  

(N-k)* 104.91 =  11540.1 

units 

(N-k)* 112.79 = 12406.9 

units 

 

------ 

Highest Predicted 

Remaining time 

(N-k)* 136.29= 14991.9 

units 

(N-k)* 141.10 = 15521 

units 

 

Percentage Relative Efficiency (PRE) = [ 
[ 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐜𝐚𝐬𝐞−𝐈 ]−[ 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐨𝐭𝐡𝐞𝐫 𝐜𝐚𝐬𝐞𝐬 ]

𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐂𝐈 𝐨𝐟 𝐜𝐚𝐬𝐞−𝐈
 ] X 100 

 
Table 11: Percentage Relative Efficiency (PRE) 

Case-II with respect to Case-I 

PRE = 9.82 % 

 

VIII. Conclusion 
 

In case when the sudden breakdown occurs in a multiprocessor computer system this paper 

represents an idea of calculating the ready queue remaining processing time. The paper assumes 

that (kj –  nj′ –  nj′′) processes are completely finished before breakdown, nj' are partially processed 

and nj'' are blocked by jth processor. Under this an estimation strategy is proposed for estimating 

the total remaining time of jobs to be processed in waiting ready queue. The proposed generalized 

strategy contains constants whose optimum values are derived and used. Two cases are compared 

where the first case is having no consideration of size measure of jobs in waiting queue whereas 
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the second case considers the additional features of size measure of processes. The confidence 

interval is used as a tool for predicting about the unknown with 95% accuracy. Three cost 

functions are suggested for predicting about the backup infrastructure cost needed for recovery 

management after system breakdown. The proposed methodology under Case-II performs better 

than Case-I by comparing the length of confidence intervals. The highest predicted remaining time 

under ten considered samples is 15521 units, under Case-II. Moreover, the Case-II is 9.82 % more 

efficient than Case-I. The average cost required for recovery after occurrence of failure is also lower 

in Case-II. Overall it is found that the suggested estimation strategy is effective for predicting the 

remaining total time with high efficiency. The suggested is a new methodological approach for 

predicting the unknown using sampling methodology in the multiprocessor environment. 

Proposed advocates for the use of size measure of processes, if available for predicting unknown 

parameters like remaining time of a ready queue. 
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Abstract 

 
Improving the management of the technical condition of equipment, devices and installations, the service 

life of which exceeds the standard value, is one of the most important problems of state security. Today, 

the relative number of such equipment already exceeds 60%. The results of the analysis of literature data 

on this problem presented, which confirm its relevance and significance. It is important to note that these 

findings apply to not only electrical power systems, but many other production systems as well. The main 

difficulties in solving the analyzed problem, first of all, the paucity of statistical data characterizing the 

reliability of work, their multidimensional and random nature. The authors propose to solve this problem 

by moving from average annual reliability indicators to average monthly indicators of operational 

reliability. A brief description of the solution of individual tasks of this problem for overhead power lines 

is given, which together represent a new methodology for managing the technical condition of distributed 

type objects. Science-intensive, cumbersome and labor-intensive calculation algorithms determine the 

expediency of the transition to intelligent systems. At the same time, the management of the electric 

power system and its individual production enterprises will monthly receive specialized forms indicating 

recommendations that optimize the increase in the reliability of overhead power transmission lines by 

restoring wear and tear. 

 

Keywords. Operational reliability, technical condition, automated control, risk-based 

approach, work efficiency, overhead power transmission lines. 

 

 

 

I. Introduction 

 

One of the main problems of electric power systems (hereinafter - EPS) is the improvement of 

the management of the technical condition of equipment, devices and installations (hereinafter - 

objects). The system of preventive maintenance (hereinafter - PM) traditionally used for 

management no longer meets the requirements, or rather, it becomes insufficient. This discrepancy 

arose, first of all, because the relative number of objects of the same type, the service life of which 

exceeds the standard value, is systematically increasing in the EPS. So back in 2012, in [1] noted 

that the EPS of Russia need a serious modernization of fixed assets and the replacement of almost 

50% of physically and morally obsolete equipment 

In [2], noted that the service life of about two-thirds of nuclear reactors exceeds the standard 

value, and aging management programs be introduced. The aging of objects is accompanied by an 

increase in the number and severity of accidents, the consequences of which not only lead to large 
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material costs, but also to environmental violations, injury and death of personnel, and violations 

of state security. 

At the same time, the mandatory replacement of the main facilities, the service life of which 

exceeds the standard value with a new one, not only creates great economic difficulties, but also 

inexpedient. And, first of all, because the technical condition (hereinafter - TC) of the main objects 

in most cases depends not only on the calendar service life, but also on the operating conditions 

and, above all, on the load. 

 

II. Features of Control Methods for TS of Hazardous Production Facilities 
 

Along with an increase in the relative number of facilities whose service life exceeds the 

standard value, an increase in the number of unacceptable accidents, the number of publications 

that form the main comments on the methods of managing the TC of production facilities based on 

a risk-based approach (hereinafter - RBA). Below are a number of opinions and recommendations 

on the results of applying these methods for the period from 2011 to 2020, which cannot be 

disagree. But, first of all, we will agree that by “method” we will understand a “tool” for solving 

the task, by “approach” - the choice of a certain method, and by methodology - an objective 

sequence of methods for solving the problem under study. This clarification of terms is formulated 

on the basis of familiarization with a number of scientific studies on their difference. The most 

important recommendations, in our opinion, include the following. 

In [3], the scientific foundations for ensuring the safety of production facilities considered. It is 

noted that: 

❖ absolute safety of hazardous production facilities (hereinafter - HPF) cannot be ensured in 

principle; 

❖ the risk of HPF TC assessment is a quantitative measure of the risk of unacceptable events 

occurring in case of HPF failures; 

❖ the main task of HPF managers is to maintain the normatively established permissible level of 

danger (risk); 

❖ despite the variety of recommendations on the topic “safety of HPFs”, they are of a declarative 

nature; 

❖ the main directions for improving the HPF safety system are: 

− creation of an approach to timely (operational) accounting of the impact of HPF TC on safety; 

− taking into account the multifactorial impact on the safety of HPFs. 

In [4], it is noted that in order to ensure the safety of HIFs of the oil and gas complex, the 

solution of problems related to the prevention of possible emergencies and the minimization of 

technological and environmental risks is becoming increasingly important. Currently existing 

methods for assessing industrial safety risks do not take into account the constantly changing in 

time non-stationary random nature of risks 

In [5], noted that risk analysis is a rapidly developing interdisciplinary scientific direction in 

which: 

❖ the conceptual apparatus of risk analysis has not yet been formulated and differs significantly 

by industry; 

❖ a very large proportion of the quantitative reliability indicators used and the imperfection of 

the methodology for their use (formation of integral reliability indicators); 

❖ imperfection of the existing methodological base. All calculations recommended to be carried 

out in point setting. 

In [6], noted that the disadvantages of existing methods for quantitative risk assessment are: 

❖ assessment of the probability of occurrence of an event is carried out on a limited amount of 

initial statistical data; 

❖ despite the cumbersome and science-intensive methods, the calculations are performed 

manually; 

❖ does not take into account the multidimensional nature of the risk. 

236



Farhadzadeh E.M., Muradaliyev A.Z., Abdullayeva S.A.        RT&A, No 2 (68) 

IMPROVEMENT OF MANAGEMENT METHODS FOR…..                                                Volume 17, June 2022 

In [7], noted that quantitative estimates of the frequency of occurrence of failures of the same 

type of objects differ from each other by two to four orders of magnitude. An analysis of the 

reasons for this discrepancy shows: 

❖ the volume of initial data is insufficient; 

❖ when performing calculations, a number of unacceptable assumptions are made; 

❖ the presence of significant errors in the calculations of reliability indicators due to insufficient 

qualifications of performers; 

❖ the more indicators that characterize the reliability of HPF, the greater the spread of 

calculation results.  

 

III. Peculiarities of Normative Methods  

of Control of TC HPF EPS 
 

The normative methods of managing the TC HPF EPS include, first of all, [8,9]. Unfortunately, 

the shortcomings of the HPF security methods noted above in [8,9] have not been eliminated. Yes, 

they not taken into account, despite the fact that the experience of the practical use of these 

methods discussed at scientific and practical conferences on the topic “Control of the technical 

condition of the equipment of electric power facilities”, held in 2018 and 2019. 

 

At the same time, noted in [12] that: 

 

❖ the probability of an event occurring in the future is determined based on the frequency of 

occurrence of this event in the past. This does not take into account the possibility of adjusting 

actions that transform the flow of events; 

❖ there is an insufficient volume and heterogeneity of the sample of statistical data on failures; 

❖ indicators such as the number, frequency and average severity of accidents are completely 

unfounded; 

❖ statistics of past years (for 3-5 years) in full accordance with the rules of probability theory and 

mathematical statistics is unsuitable, as it is non-random and heterogeneous. 

 

In [13] it is noted: 

 

❖ in the foreseeable future, energy companies will have to solve the problem of ensuring 

reliability in the face of high equipment wear and lack of resources; 

❖ along with the systems of preventive maintenance and repair according to the TC, it is 

advisable to introduce a repair system based on the RBA. 

❖ Existing methods for predicting TC HPF based on RBA do not cover power lines and devices 

with a voltage of 0.4-10 kV. But these transmission lines make up about 90% of the length of 

networks, belong to the distribution electrical network (hereinafter - DEN) and are sources of 80% 

of accidents; 

❖ methods [8] and [9] are actively used in the EPS of the Russian Federation; 

❖ discrete index of technical condition (hereinafter - ITC) serves as the basis for ranking EPS 

objects (it does not take into account the random nature of the initial data); 

❖ for the management of operational repair activities, the calculated ITC is unacceptable. 

❖ there are significant gaps in the regulation of RBA 
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IV. Recommended Approaches to Managing the Technical Condition of Overhead 

Power Transmission Lines 
 

EPS objects classified into objects of continuous (transformers) and discrete (switches) action, 

concentrated (power units) and distributed power transmission lines. This difference causes the 

difference in the number of indicators of their reliability and methods of evaluation. Considering 

that more than 80% of accidents in EPS are associated with DEN [13], we will consider the solution 

to this problem for overhead power transmission lines (hereinafter - OPTL). 

The foregoing allows us to conclude that the improvement of the management of the TC OPL 

EPS provides for the possibility of objectively solving a number of tasks, which, first of all, include: 

1. Ranking of distribution network enterprises (hereinafter - DNE) according to the degree of aging 

(hereinafter - DA) of the OPTL and recognition of DNE, the DA of the OPTL of which is the largest; 

2. Evaluation of objective indicators of reliability of high OPTL; 

2.1. Overcoming the subjectivity of selective survey; 

3. Accounting for the random nature of estimates of operational reliability indicators and 

differences in the degree of technical use of high-voltage transmission lines when: 

❖ comparison of estimates in the settlement and previous months; 

❖ ranking of the DNE; 

❖ recognition of "weak links" 

4. Accounting for the random and multidimensional nature of the operational reliability of the 

OPTL EPS when: 

❖ ranking of the DNE; 

❖ recognition of "weak links" 

5. Assessment of the objectivity of recommended methods and algorithms 

6. Minimization of the risk of an erroneous decision with the methodological support of the 

management of the EPS and DNE. 

First of all, let's clarify our attitude to the adopted system of designing power supply systems. 

And, in particular, to ensure the reliability of power supply, taking into account the category of 

consumers and the requirements of the Electrical Installation Rules. 

Many years of experience in the design and operation of power, supply system’s indicates that 

in the vast majority of cases, the commissioned power supply system’s meet the requirements. 

Therefore, there is no reason to doubt the infallibility of design methods. At the same time, the risk 

of occurrence of unacceptable events exists (recall that absolute safety is excluded [3], although it is 

insignificant. 

Consequently, the meaning of the control of the TC of the power supply system is not at all in assessing 

the changes in the consequences of a power supply failure. Possible consequences are known from the 

project documentation. Not a change in the size of the consequences causes a change in the reliability of 

objects of power supply systems, but vice versa. Changing the reliability indicators changes the size of the 

possible consequences. Thus, when analyzing the TC of power supply facilities, it is sufficient to 

assess the significance of changes in estimates of the reliability indicators of objects. But the 

significance of changes in the reliability indicators of specific objects, as a rule, cannot be 

determined, since there could be no failures, or there are so few of them that quantitative estimates 

are unreliable. If we also take into account that there are thousands and even tens of thousands of 

such objects in the EPS, then the cumbersome and laborious calculations also cause a high risk of 

an erroneous decision and the undoubted advantages of the intuitive approach of specialists.  

But you can approach the problem in a slightly different way. Let us summarize some of the 

results obtained by us and published in 2021, results of solving the problem for OPTL. 

In [14], quantitative estimates of DA OPTL are analyzed (see paragraph 1). Shown, that the 

estimate of the relative number of OPTL, the service life of which exceeds the standard value, used 

in practice, is unacceptable for comparing and ranking DA OPTL DNE EPS. A method and 

algorithm for solving this problem developed. 
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In [15] (see paragraphs 2.1 and 2.2) noted, that it is advisable to evaluate the TC OPTL by 

operational indicators of the reliability of work. The average monthly values of the probability of 

automatic emergency shutdowns of the OPTL calculated from the data of operational logs. The 

results of an objective classification make it possible to identify "weak links" and thereby recognize 

the OPTL that reduce the efficiency of the EPS to the greatest extent. Reducing the risk of an 

erroneous decision during the survey of the TC OPTL is achieved by the recommended method of 

forming a representative sample of the elements of these OPTL to be tested. 

In [16] (see paragraph 3), a new method and algorithm for the operational assessment and 

comparison of the reliability indicators of OPTL is recommended. A distinctive feature of the 

calculation method is taking into account the degree of technical use of OPTL. The algorithm for 

estimating operational reliability indicators developed for the specific number of emergency 

automatic shutdowns of OPTL, for stable failures, the probability of stable failure and the technical 

utilization factor. Comparison of estimates for two adjacent operational intervals is supposed to be 

carried out on the basis of the boundary values of fiducial intervals 

In [17] (see paragraph 4), a new algorithm for assessing the feasibility of classifying 

multidimensional data on failures and downtime of OPTL was developed. A method and 

algorithm for estimating the operational integral indicator of reliability, the physical essence of 

which is adequate to the wear of the TC, developed. A method and algorithm for comparing 

integral indicators of operational reliability developed, taking into account errors of the first and 

second kind. A method and algorithm for ranking indicators of operational reliability has been 

developed, which makes it possible to identify OPTL that require prompt survey. 

In [18] (see paragraph 5), on the example of statistical data on failures of the main 110 and 220 

kV OPTL, the results of assessing and comparing operational reliability of operation are given. The 

purpose of manual analysis is to recognize the varieties of signs for which the specific number of 

stable failures will exceed this indicator to the greatest extent for the set of OPTL. The identified 

significant varieties of signs completely coincided with the results of choosing the least reliable 

OPTL based on an intuitive approach, which confirms the correctness of the recommended method 

of quantitative analysis. 

In [19], a method and algorithm for automated comparative analysis (benchmarking) of the 

operational reliability of DEN objects is proposed. The transition from an intuitive approach to a 

quantitative approach to the operational recognition of “weak links” among thousands of objects 

of the same type made it possible to reduce the risk of an erroneous decision when organizing their 

maintenance and repair. 

For illustrative purposes, Fig. 1 shows an enlarged block diagram of the algorithm, which, 

based on the methods described in [14-19], allows you to automate the process of generating 

recommendations to improve the operational reliability of the OPTL EPS. 

The results of the monthly automated monitoring of the operational reliability of the operation 

of the OPTL and recommendations for improving the efficiency of work formalized in the form of 

special forms and provide information and methodological support for the technical management 

of the EPS and each ENE. For illustrative purposes, Fig. 2 shows one of the variants of these forms. 
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Fig. 1. An enlarged block diagram of the algorithm for improving  

the operational reliability of the OPTL EPS 

 
 

 

 

Formation of a database on the OPTL EPS. 

Ensuring error-free and secure 

Calculation of the operational average monthly assessment of the reliability  

of the operation of the set of OPTL EPS 

Recognition of the nature of the change in the operational reliability of the set of OPTL EPS in the 

billing month compared to the previous month 

Calculation of operational average monthly assessment 

reliability of operation of the OPTL ENE of the EPS 

Recognition of "special" ENE of EPS, the operational reliability of the OPTL of which is no 

coincidence worse than the operational reliability of the totality of the OPTL of EPS 

Calculation of the operational average monthly assessment of the reliability  

of the operation of a set of OPTL of "special" ENE 

Recognition of the least reliable ("special") OPTL in the aggregate of OPTL  

of "special" ENE 

Classification of "special" OPTL according to "special" ENE 

Formation of samples of OPTL of “special” ENE  

with the exclusion of “special” OPTL 

Preparation of recommendations to improve  

the operational reliability of the OPTL 
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Date of analysis                                                                                                                           EPS Chief Engineer 

05 may 2021 year                                                                                                                ______________________ 
 

Information  

on the operational reliability of OPTL 

in the month of April 2021 
 

1. Compared to the previous month, the operational reliability of the OPTL EPS has decreased; 

2. Table A shows the average monthly estimates of the operational reliability of the operation of the OPTL 

ENE EPS, arranged in descending order. 

Table A. Information about the operational reliability of the OPTL ENE EPS 

№ Name ENE Rating ENE № Name ENE Rating ENE 

1 ENE 5 Good 6 ENE 9 Satisfactory 

2 ENE 3 Good 7 ENE 6 unsatisfactory 

3 ENE 7 Good 8 ENE 2 unsatisfactory 

4 ENE 8 Good 9 ENE 4 unsatisfactory 

5 ENE 1 Satisfactory 10 ENE unsatisfactory 

 

3. Table B1 shows the passport data of the OPTL EPS, the operational reliability of which, as well as the 

rating of their ENE, is unsatisfactory. 

Table B1. 

№ Name Voltage class, 

kV. 

Service life, 

year 

Length, кm Execution 

ENE OPTL 

       

       

 

4. Table B2 shows the passport data of the OPTL EPS, the operational reliability rating of which is 

unsatisfactory, and the service life does not exceed the standard value. 

Table B2. 

№ Name Voltage class, 

kV. 

Service life, 

year 

Length, кm Execution 

ENE OPTL 

       

       

 

5. Recommendations for improving operational reliability: 

5.1. Carry out a selective survey of the OPTL indicated in Table. B1 

5.2. Establish and eliminate the causes of automatic shutdowns of OPTL, given in Table. B2. 

5.3. Arrange for the personnel of the ENE indicated in Table. B1, advanced training courses on the problem 

of maintenance of aging OPTL.  

 

 

Fiq. 2. The results of the analysis of the average monthly operational reliability of the OPTL EPS 
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Conclusion 

 

1. The relevance of improving the methods of operating reliability management confirmed not 

only for EPS, but also for many other production systems. 

2. The solution of this problem proposed to carry out by the transition to the analysis of integral 

indicators of operational reliability. 

3. Methods for calculating the integral indicators of operational reliability, taking into account the 

random nature of quantitative estimates, assessing the feasibility of classifying data according 

to varieties of comparison features and ranking the estimates form the methodology of the 

operational reliability management system in EPS. 

4. These methods based on a fiducial approach, simulation modeling of representative samples, 

taking into account errors of the first and second kind 

5. The science-intensive, cumbersome and labor-intensive manual calculation, the high risk of 

subjective errors and prerequisites necessitate the transition to intelligent control systems for 

objects whose service life exceeds the standard value. 

6. Automated management of operational reliability increases the importance of an intuitive 

approach in the implementation of methodological recommendations, which limits the risk of 

an erroneous decision. 
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Abstract 

Acceptance sampling plays an important role in ensuring the quality of the products manufactured by the 

industrial production processes. Sampling inspection plans by attributes are adopted for taking decisions 

about the lots submitted for inspection. Such procedures are employed for sentencing individual lots or 

batches or lots in continuous stream. Reliability sampling is s specific inspection procedure which is used to 

decide whether the submitted lot or batch is acceptable or non-acceptable based on life tests. In reliability 

sampling, the lifetime of the items randomly drawn from the lot is considered as a random variable which 

follows a continuous probability distribution. In this paper, designing of single sampling plans for life tests is 

considered under the assumption that the lifetime random variable follows a Lomax distribution. Reliability 

criteria for designing life test plans when lot quality is evaluated in terms of mean life, median life, hazard 

rate and reliability life are proposed. Conversion factors for adapting acceptable quality levels to life and 

reliability testing under the assumption of Lomax distribution are determined and suitable illustrations are 

provided. 

Keywords: Acceptable quality level, Consumer’s risk, Lomax distribution, Operating characteristic 

function, Producer’s risk, Reliability sampling, Single sampling plan. 

1. Introduction 

Sampling inspection is a product control strategy that decides whether a lot should be accepted or 

rejected based on the information obtained by the inspection of random sample(s) drawn from the 

submitted lot(s). Sampling inspection procedures are generally classified according to the nature of 

the quality characteristics, viz., measurable and non-measurable characteristics. When the quality 

characteristics are non-measurable, but are classified into go or no-go basis, such as good or bad, non-

conforming or conforming, etc., the sampling inspection procedures are termed as attribute sampling. 

When the quality characteristics are measurable on a continuous scale, the corresponding sampling 

inspection procedures are called variables sampling, which are devised under the implicit assumption 

that the quality characteristic is a continuous random variable following a specific probability 

distribution.  Reliability sampling plans, also termed as life test sampling plans, are operationally 

attributes sampling procedures, but involve lifetime of the components or items as a random variable 

which is distributed according to a specific continuous type probability distribution, such as the 

exponential, Weibull, lognormal, gamma distributions, etc. The lifetime of the components or items is 

observed by placing the sampled items under the test, called life test, which is defined as the process 

of evaluating the lifetime of the items through experiments. The literature in product control provides 

the importance of various continuous probability distributions like exponential, Weibull, lognormal 

and gamma distributions as well as several compound distributions for modeling lifetime data in the 

studies relating to the design and evaluation of reliability sampling plans.  

The earlier works, which laid the foundation for the expansion of several types of sampling plans, 

would include the theory of reliability sampling proposed and developed by various authors. One 
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may refer [1] – [8] for the basic notions and terminologies of sampling inspection for life tests. The 

literature in statistical product control provides significant studies relating to the construction of life 

test sampling plans employing exponential, Weibull, lognormal and gamma distributions as well as 

several compound distributions for modeling lifetime data. A detailed account of the properties, 

methods of construction and performance of such plans is provided in [9] – [25], and the recent 

advances in the theory of life test sampling plans are discussed in [26] – [30].  

Lomax distribution, introduced in [31], is a heavy-tailed probability distribution and is 

considered as Pareto Type II distribution. It has a wide range of applications in many fields which 

include business, economics, actuarial, medical and biological sciences. It has been proved to be much 

useful in reliability and life testing studies and in survival analysis. Properties of Lomax distribution 

and its extended form can be seen in [32] – [35]. In this paper, a specific life-test sampling plan is 

devised with reference to the life-time quality characteristic, which is modeled by Lomax distribution. 

A procedure for the selection of such plans indexed by acceptable and unacceptable mean life is 

evolved. Three different criteria for designing life-test plans when lot quality is evaluated in terms of 

mean life, hazard rate and reliability life are proposed. Factors for adapting acceptable quality level to 

life and reliability testing under the assumption of Lomax distribution are also illustrated. 

 

2. Life Test Sampling Inspection Plans Based on Lomax Distribution 

Sampling plans for life tests include a set of sampling procedures and rules for deciding whether to 

accept or reject a large number of items based on the sampled lifetime information about the items. 

Sampled items are tested for a set period of time under such plans. When all units are tested to 

failure, the standard plans can be used to compare the performance to the specified requirements, and 

the results can be used in an attribute sampling plan when the lifetimes are tested and the 

distributional assumption of the quality characteristics is fulfilled. Further, the number of failures 

which occur before a required time can be used with standard attributes plans in determining the 

disposition of the material. (See, [9]).  

A typical life test sampling plan can be formulated in the following manner: Suppose, n items are 

placed for a life test and the experiment is stopped at a predetermined time, T. The number of failures 

occurred until the time point T is observed, and let it be d. The lot is accepted if d is less than or equal 

to the acceptance number, say, c; otherwise, it is rejected. Thus, the life test sampling plan is 

represented by n, the number of units on test, and the maximum allowable number of failures, c, 

called the acceptance number. Life tests, terminated before all units have failed, may be classified into 

two types, namely, failure terminated and time terminated. In a failure terminated life test, a given 

sample of n items is tested until the specified number of failures occurs and then the test is 

terminated. In time terminated life test, a given sample of n items is tested until a pre-assigned 

termination time, t, is reached and then the test is terminated.  

Generally, these tests may be defined with reference to the specifications given in terms of one of 

the characteristics such as (i) the mean life, that is, the expected life of the product, (ii) the median life. 

(iii) the hazard rate, that is, the instantaneous failure rate at some specified time, t, and (iv) the reliable 

life, that is, the life beyond which some specified proportion of items in the lot will survive. One of 

the significant features of a life test plan is that it involves a random characteristic, called lifetime or 

time to failure, which can be more adequately described most often by skewed distributions. 

Application of continuous-type of distributions such as normal, exponential, Weibull, gamma and 

lognormal for lifetime variables in the studies concerned with the design and evaluation of life test 

sampling plans has been provided in the literature of sampling inspection, demonstrating the 

significant contributions of those distributions in the development of life test sampling plans. The 

Lomax distribution, one of the lifetime distributions, is now considered as the lifetime distribution for 

the design and evaluation of life-test sampling plan.  
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3. Lomax Distribution 

Let T be a random variable representing the lifetime of the components. Assume that T follows 

Lomax distribution. The probability density function and the cumulative distribution function of T 

are, respectively, defined by 

𝑓(𝑡; 𝜃, 𝜆) =
𝜆

𝜃
(1 +

𝑡

𝜃
)
−(𝜆+1)

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0                           (1) 

and 𝐹(𝑡; 𝜃, 𝜆) = 1 − (1 +
𝑡

𝜃
)
−𝜆

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0,                       (2) 

where   and   are the shape and scale parameters, respectively. 

The mean life, the median life, the reliability function and hazard function for specified time t 

under Lomax distribution are. Respectively, given by 

𝜇 =
𝜃

𝜆−1
,  𝑓𝑜𝑟 𝜆 > 1,                 (3) 

𝜇𝑑 = 𝜃(√2
𝜆

− 1),                                (4) 

𝑅(𝑡; 𝜃, 𝜆) = (1 +
𝑡

𝜃
)
−𝜆

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0                              (5) 

and 𝑍(𝑡; 𝜃, 𝜆) =
𝜆

𝜃
(1 +

𝑡

𝜃
)
−1

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0.                                  (6) 

The reliability life is the life beyond which some specified proportion of items in the lot will 

survive. The reliability life associated with Lomax Distribution is defined and denoted by 

𝜌(𝑡; 𝜃, 𝜆) = 𝜃(𝑅−1/𝜆 − 1),                (7) 

where R is the proportion of items surviving beyond life . The proportion, ,p  of product failing 

before time t, is defined by the cumulative probability distribution of T and is expressed by  

𝑝 = 𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡; 𝜃, 𝜆).                              (8) 

 

4. Application of Lomax Distribution in Reliability Sampling 

The techniques for determining life test sampling plans based on Weibull distribution with mean life, 

hazard rate, and reliability life serving as reliability criteria for the submitted lots are discussed in [36] 

– [38]. The dimensionless quantities, viz., ,100/ t 100)( ttZ  and 100/ t , referred to as 

conversion factors, for determining the life test sampling plans under the reliability criteria are 

introduced in [39]. Analogous approaches are discussed, here, to construct the life test sampling plans 

using Lomax Distribution as the lifetime distribution for the lifetime quality characteristic.  

The mean life criterion is determined by calculating the ratio ,/)(/ ttEt =  which is associated 

with the proportion, p, of products that fail before reaching the termination time t. Acceptable mean 

life and unacceptable mean life, which are associated with the producer's risk and the consumer's 

risk, are the two typically stipulated requirements when dealing with a life test sampling plan in 

practice for providing protection to the producer and the consumer, respectively. A desired sampling 

plan can be determined with the specification of these indices. The quality levels, corresponding to 

acceptable and unacceptable mean life, are defined by 1p  and 2p with associated risks, where 1p  is 

the acceptable proportion of the lot failing before the specified time, t, and 2p  is the unacceptable 

proportion of the lot failing before the specified time, t. Based on mean life, median life, hazard rate, 

and reliability life as the criteria for life test plans under the Lomax Distribution, conversion factors 

are obtained. These conversion factors are used for deriving the plans satisfying the requirements. 
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When the test termination time is defined, the conversion factors can also be used to calculate the 

mean life, median life, hazard rate, and reliability life, and vice versa. The appropriate conversion 

factors in terms of percentages are computed and are provided in Table 1 through to 6. Numerical 

illustrations for demonstrating the use of tables for determining the operating characteristics of a 

given plan and finding the parameters of the single sampling plan satisfying the requirements in 

terms of acceptable quality level (acceptable mean life) and limiting quality level (unacceptable mean 

life) are provided in the following subsections. 

4.1 Numerical Illustration  

Under life testing experiments for ascertaining the reliability of components, an industrial practitioner 

desires to use a single sampling plan by attributes satisfying the requirements 

)05.0,007.0( 1 == p  and ).10.0,05.0( 2 == p  The past experimental results on the 

components produced by the industry have shown that the life time of the components follows 

Lomax distribution specified by the shape parameter .5.1=  For the specified requirements, the 

parameters of an optimum sampling plan is determined as n = 105 and c = 2 using the searching 

algorithm given in [40]. It is assumed to employ a test termination time of 250 hours and to count the 

number of failures over the span of 250 hours. Under the given conditions, the operating 

characteristics in terms of mean life are obtained using the operating characteristic function of the 

single sampling plan by attributes and provided in Table 7 along with the values of 100/ = tk  

and 100/ = kt , where t = 250 hours.  

4.2 Numerical Illustration   

Suppose that a single sampling plan by attributes with parameters n and c is to be defined when the 

requirements are specified in terms of acceptable mean life of 200 hours and unacceptable mean life of 

70 hours with the associated producer’s and consumer’s risks of 5% and 10%, respectively. Assume 

that the individual items are to be tested for 3 hours and that the lifetime of the items is distributed as 

Lomax Distribution with the shape parameter fixed as .2=  Then, at the specified levels, the values 

of k are determined as follows: 

𝑘1 = 𝑡/𝜇 × 100 = (3/200) × 100 = 1.5 

𝑘2 = 𝑡/𝜇 × 100 = (3/70) × 100 = 4.286 

Entering Table 1 with these values, one obtains the proportions, 03.01 =p  and ,08.02 =p  of 

product failing before the specified time t corresponding to the acceptable mean life and unacceptable 

mean life, respectively. The operating ratio, which is the measure of discriminating good and bad lots 

of items, is defined by OR = 0.08/ 0.03 = 2.67, corresponding to which a single sampling plan can be 

chosen from [9] as (n = 159, c = 8) or from [41] as (n =157, c = 8).  

In a similar manner, while Tables 2 and 3 can be used to determine conversion factors so as to 

obtain the life test plans and the corresponding median life and hazard rate, Tables 4 through to 6 can 

be utilized for obtaining reliability life for the specified values of R, viz., 0.90, 0.95 and 0.99, 

respectively.   

4.3 Numerical Illustration  

The acceptable mean life under the life test sampling plans based on Lomax distribution can be 

determined using the ratio 100/ = tk  for any specified value of acceptable quality level, AQL, 

shown in [42]. When AQL is specified as 3 percent with 95 percent acceptance probability, the test 

termination time is given as t = 25 hours and the shape parameter is fixed as ,5.1=  the average or 
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expected mean life, , is determined as 6.2436100)026.1/25(100/ === kt hours, which 

can be considered as an acceptable mean life. Accordingly, if a lot consisting of items which have the 

acceptable mean life specified at 2436.6 hours, the probability of acceptance of the lot would be 95%. 

Corresponding to the fixed value of AQL = 3 percent with 95 percent acceptance probability, the 

conversion factors for median life, hazard rate and reliability life criteria for the case in which the 

shape parameter is specified as 5.1=  under Lomax Distribution are given in the following table: 

Criterion 
Conversion 

 Factor 

Value of the  

Factor 
AQL 

Percent Nonconforming  

as per MIL - STD -105E 
𝑝 × 100  3 0.03 

Mean Life 𝑘 = 𝑡/𝜇 × 100 1.026 2436.6 

Median Life 𝑘 = 𝑡/𝜇𝑑 × 100 3.492284 715.9 

Hazard Rate at 25 hours 𝑡𝑧(𝑡) × 100 3.015203 0.001206 

Reliable Life (R = 0.90) 𝑡/𝜌 × 100 28.19134 88.7 

Reliable Life (R = 0.95) 𝑡/𝜌 × 100 58.96959 42.4 

Reliable Life (R = 0.99) 𝑡/𝜌 × 100 305.1403 8.2 

It can be noted from the above table that when the proportion, p, of products that fail before 

reaching the termination time, i.e., t = 25 hours is specified as the acceptable level of 3 percent, the 

median life of the components is 715.9 hours, 90 percent of the components will survive beyond 88.7 

hours, 95 percent of the components will survive beyond 42.4 hours and 99 percent of the components 

will survive beyond 8.2 hours.    

Table 1. Values of 100/ t Based on Lomax Distribution for Specified Values of λ 

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 0.201817 0.336136 0.431968 0.503781 0.604234 0.671146 

2 0.407337 0.677979 0.870847 1.015254 1.217073 1.351392 

3 0.616667 1.025686 1.316821 1.534616 1.838731 2.040957 

4 0.829918 1.379418 1.770079 2.062073 2.469426 2.740067 

5 1.047205 1.739346 2.230818 2.597835 3.109387 3.448954 

6 1.268648 2.105644 2.699241 3.142125 3.758848 4.167861 

7 1.494373 2.478495 3.175561 3.695169 4.418056 4.897038 

8 1.72451 2.858088 3.659998 4.257207 5.087262 5.636744 

9 1.959193 3.244622 4.152782 4.828484 5.76673 6.38725 

10 2.198566 3.638299 4.654149 5.409256 6.456732 7.148834 

11 2.442774 4.039335 5.164347 5.999788 7.157552 7.921784 

12 2.691971 4.447953 5.683634 6.600358 7.869484 8.706402 

13 2.946319 4.864383 6.212277 7.211253 8.592833 9.502999 

14 3.205984 5.288869 6.750557 7.832773 9.327917 10.3119 

15 3.471141 5.721661 7.298763 8.465229 10.07507 11.13344 

16 3.741973 6.163023 7.857198 9.108945 10.83462 11.96797 

17 4.018672 6.613231 8.426179 9.76426 11.60695 12.81585 

18 4.301438 7.072571 9.006036 10.43153 12.39241 13.67746 

19 4.590479 7.541343 9.597112 11.11111 13.19139 14.5532 
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p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

20 4.886016 8.01986 10.19977 11.8034 14.00431 15.44347 

21 5.188277 8.508452 10.81438 12.50879 14.83158 16.3487 

22 5.497506 9.007462 11.44134 13.2277 15.67364 17.26935 

23 5.813954 9.51725 12.08106 13.96058 16.53095 18.20587 

24 6.137887 10.03819 12.73397 14.70787 17.404 19.15874 

25 6.469584 10.57069 13.40052 15.47005 18.29327 20.12848 

50 18.52753 29.37005 36.44957 41.42136 47.92619 51.98421 

60 27.03458 42.10079 51.60637 58.11389 66.40499 71.44177 

70 40.50026 61.57216 74.22759 82.57418 92.79668 98.76032 

80 65.59747 96.20089 113.1363 123.6068 135.5481 141.9952 

90 132.7393 182.0794 204.5695 216.2277 226.7829 230.8869 

 

Table 2. Values of 100/ dt  Based on Lomax Distribution for Specified Values of λ 

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 1.089282 1.144486 1.185111 1.216236 1.260759 1.291057 

2 2.19855 2.308402 2.389184 2.451041 2.539475 2.599621 

3 3.328382 3.492284 3.61272 3.704892 3.836589 3.92611 

4 4.479376 4.696683 4.856241 4.978283 5.152561 5.270959 

5 5.652156 5.922175 6.120285 6.271729 6.487866 6.634618 

6 6.847369 7.169357 7.405412 7.58576 7.842995 8.01755 

7 8.065691 8.438851 8.712204 8.920928 9.218458 9.42024 

8 9.307824 9.731301 10.04127 10.27781 10.61479 10.84319 

9 10.5745 11.04738 11.39323 11.65699 12.03252 12.28691 

10 11.86648 12.38779 12.76873 13.0591 13.47224 13.75193 

11 13.18456 13.75325 14.16847 14.48477 14.93453 15.23883 

12 14.52958 15.14452 15.59314 15.93467 16.42001 16.74817 

13 15.90238 16.56239 17.04349 17.40951 17.92931 18.28055 

14 17.30389 18.00769 18.52026 18.90999 19.46309 19.8366 

15 18.73505 19.48128 20.02428 20.43687 21.02205 21.41696 

16 20.19683 20.98404 21.55635 21.99094 22.60689 23.02231 

17 21.69028 22.51692 23.11736 23.57301 24.21838 24.65335 

18 23.21647 24.08089 24.70821 25.18393 25.85728 26.3108 

19 24.77653 25.67698 26.32984 26.82459 27.5244 27.99542 

20 26.37166 27.30625 27.98323 28.49593 29.22058 29.708 

21 28.00308 28.96982 29.66943 30.19889 30.94671 31.44936 

22 29.6721 30.66887 31.3895 31.9345 32.70371 33.22037 

23 31.38009 32.40461 33.14459 33.70382 34.49253 35.02192 

24 33.12847 34.17833 34.93586 35.50793 36.31417 36.85492 

25 34.91876 35.99138 36.76455 37.34802 38.16968 38.72038 

50 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 

60 145.9157 143.346 141.5829 140.2993 138.5568 137.4297 

70 218.595 209.6426 203.6446 199.3517 193.6242 189.9814 

80 354.054 327.5476 310.3914 298.4132 282.8268 273.1506 

90 716.4437 619.9492 561.2397 522.0199 473.1921 444.1481 
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Table 3. Values of 100)( ttz Based on Lomax Distribution for Specified Values of λ 

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 1.001004 1.001674 1.002153 1.002513 1.003016 1.003352 

2 2.004032 2.006727 2.008654 2.010101 2.01213 2.013483 

3 3.00911 3.015203 3.019566 3.022844 3.027441 3.03051 

4 4.016262 4.027152 4.034955 4.040821 4.049051 4.054551 

5 5.025514 5.04262 5.054887 5.064113 5.077068 5.085729 

6 6.036893 6.061658 6.079431 6.092805 6.111597 6.124167 

7 7.050427 7.084316 7.108656 7.126985 7.152751 7.169998 

8 8.066143 8.110646 8.142635 8.166739 8.200644 8.223352 

9 9.084069 9.140701 9.181444 9.21216 9.255394 9.284369 

10 10.10424 10.17454 10.22516 10.26334 10.31712 10.35319 

11 11.12667 11.21221 11.27385 11.32038 11.38595 11.42995 

12 12.15141 12.25377 12.3276 12.38337 12.46201 12.51481 

13 13.17847 13.29929 13.3865 13.45242 13.54543 13.60792 

14 14.20791 14.34883 14.45064 14.52763 14.63635 14.70944 

15 15.23973 15.40243 15.52008 15.60911 15.73491 15.81953 

16 16.27399 16.46018 16.59493 16.69697 16.84125 16.93836 

17 17.31072 17.52214 17.67528 17.79133 17.95552 18.06611 

18 18.34994 18.58836 18.76123 18.89230 19.07787 19.20295 

19 19.39171 19.65893 19.85286 20.00000 20.20847 20.34908 

20 20.43605 20.73392 20.95029 21.11456 21.34748 21.50467 

21 21.483 21.81339 22.0536 22.23611 22.49505 22.66994 

22 22.5326 22.89743 23.16293 23.36478 23.65138 23.84508 

23 23.58491 23.98612 24.27836 24.50071 24.81664 25.03031 

24 24.63995 25.07952 25.40002 25.64404 25.99101 26.22584 

25 25.69776 26.17773 26.52803 26.79492 27.17469 27.43191 

50 53.20635 55.50592 57.23373 58.57864 60.53543 61.88984 

60 64.94378 68.56747 71.33223 73.5089 76.71379 78.95812 

70 77.29026 82.77893 87.04709 90.45549 95.54978 99.17011 

80 90.50676 98.70072 105.2368 110.5573 118.6736 124.5589 

90 105.1888 117.6835 128.0528 136.7544 150.4732 160.7523 

 

251



Vijayaraghavan R., Pavithra A. 

RELIABILITY CRITERIA FOR LIFE TEST SAMPLING INSPECTION PLANS  

RT&A, No. 2 (68) 

Volume 17, June 2022 

 

Table 4. Values of 100/ t  when R = 0.90 Based on Lomax Distribution  

for Specified Values of λ  

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 9.179481 9.238821 9.281348 9.313323 9.358197 9.388186 

2 18.52739 18.6345 18.7112 18.76883 18.84968 18.90367 

3 28.04859 28.19134 28.29348 28.37019 28.47773 28.54951 

4 37.74813 37.91381 38.03227 38.12118 38.24575 38.32885 

5 47.63126 47.80655 47.93179 48.02573 48.15727 48.24497 

6 57.70344 57.87439 57.99643 58.08791 58.21594 58.30125 

7 67.97035 68.12234 68.23074 68.31197 68.42555 68.50119 

8 78.43793 78.5556 78.63946 78.70226 78.79002 78.84843 

9 89.11233 89.1796 89.2275 89.26335 89.31342 89.34673 

10 99.99997 99.99998 99.99998 99.99997 99.99998 99.99997 

11 111.1076 111.0226 110.9622 110.917 110.8541 110.8122 

12 122.4421 122.2536 122.1197 122.0197 121.8803 121.7877 

13 134.0109 133.6993 133.4782 133.3132 133.0833 132.9307 

14 145.8215 145.3665 145.0438 144.8031 144.468 144.2459 

15 157.882 157.2619 156.8227 156.4952 156.0397 155.7378 

16 170.2006 169.3929 168.8213 168.3955 167.8035 167.4114 

17 182.786 181.7671 181.0466 180.5102 179.765 179.2718 

18 195.6474 194.3922 193.5055 192.8458 191.93 191.3243 

19 208.7942 207.2766 206.2055 205.4092 204.3044 203.5744 

20 222.2365 220.4288 219.1543 218.2074 216.8947 216.0278 

21 235.9846 233.8579 232.3599 231.2478 229.7072 228.6904 

22 250.0496 247.5734 245.8309 244.5383 242.7488 241.5687 

23 264.443 261.5851 259.5761 258.0868 256.0266 254.669 

24 279.1768 275.9034 273.6046 271.9018 269.548 267.9981 

25 294.2638 290.5392 287.9263 285.9922 283.3208 281.5631 

50 842.7096 807.2465 783.1628 765.7495 742.2667 727.1703 

60 1229.646 1157.156 1108.825 1074.341 1028.461 999.3483 

70 1842.121 1692.333 1594.869 1526.535 1437.208 1381.488 

80 2983.647 2644.116 2430.87 2285.098 2099.329 1986.27 

90 6037.54 5004.519 4395.421 3997.365 3512.348 3229.714 
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Table 5. Values of 100/ t when R = 0.95 Based on Lomax Distribution  

for Specified Values of λ  

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 19.27196 19.32542 19.36365 19.39236 19.43257 19.4594 

2 38.89754 38.97895 39.03713 39.08078 39.1419 39.18266 

3 58.88693 58.96959 59.02862 59.07288 59.13483 59.17612 

4 79.25073 79.3067 79.34663 79.37656 79.4184 79.4463 

5 99.99998 99.99997 99.99998 99.99998 99.99998 99.99999 

6 121.1461 121.0595 120.9978 120.9516 120.8871 120.8442 

7 142.7011 142.4958 142.3496 142.2403 142.0876 141.9861 

8 164.6774 164.3197 164.0653 163.8751 163.6098 163.4334 

9 187.0879 186.5426 186.1551 185.8656 185.4619 185.1938 

10 209.946 209.1762 208.6297 208.2216 207.6529 207.2754 

11 233.266 232.233 231.5002 230.9533 230.1917 229.6865 

12 257.0625 255.7255 254.778 254.0714 253.0879 252.436 

13 281.3507 279.6673 278.4753 277.5869 276.3513 275.5327 

14 306.1467 304.0722 302.6046 301.5115 299.9921 298.9862 

15 331.4672 328.9547 327.1788 325.857 324.0209 322.8062 

16 357.3296 354.3299 352.2115 350.6359 348.4488 347.0027 

17 383.7522 380.2136 377.717 375.8613 373.2872 371.5865 

18 410.7541 406.6223 403.71 401.5468 398.5482 396.5683 

19 438.3553 433.5734 430.206 427.7065 424.2441 421.9597 

20 466.5768 461.0847 457.221 454.3551 450.3881 447.7725 

21 495.4405 489.1753 484.7719 481.5081 476.9936 474.0191 

22 524.9694 517.8648 512.8765 509.1816 504.0749 500.7125 

23 555.1877 547.174 541.5529 537.3925 531.6466 527.8662 

24 586.1208 577.1245 570.8206 566.1584 559.7242 555.4942 

25 617.7953 607.739 600.6999 595.4977 588.324 583.6111 

50 1769.236 1688.568 1633.911 1594.456 1541.338 1507.245 

60 2581.594 2420.495 2313.338 2237.011 2135.629 2071.404 

70 3867.462 3539.96 3327.371 3178.576 2984.404 2863.486 

80 6264.051 5530.865 5071.519 4758.068 4359.318 4117.05 

90 12675.58 10468.27 9170.156 8323.379 7293.492 6694.403 
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Table 6. Values of 100/ t when R = 0.99 Based on Lomax Distribution  

for Specified Values of λ  

p% 
Shape Parameter, λ 

1.25 1.50 1.75 2.00 2.50 3.00 

1 100.0001 100.0001 100.0001 100.0001 100.0001 100.0001 

2 201.8351 201.698 201.6002 201.5269 201.4244 201.3561 

3 305.5578 305.1403 304.8427 304.6198 304.3081 304.1006 

4 411.2234 410.3754 409.7714 409.3192 408.6875 408.2672 

5 518.8889 517.4535 516.4318 515.6675 514.6003 513.8907 

6 628.6139 626.4268 624.8713 623.7084 622.0856 621.0071 

7 740.4604 737.3495 735.1389 733.4872 731.1837 729.6538 

8 854.4928 850.2781 847.2856 845.051 841.9366 839.8694 

9 970.7784 965.2712 961.3644 958.4489 954.3879 951.6942 

10 1089.387 1082.390 1077.43 1073.731 1068.583 1065.169 

11 1210.392 1201.698 1195.541 1190.952 1184.568 1180.338 

12 1333.869 1323.261 1315.755 1310.164 1302.392 1297.245 

13 1459.898 1447.149 1438.135 1431.426 1422.105 1415.938 

14 1588.561 1573.433 1562.747 1554.797 1543.761 1536.463 

15 1719.947 1702.188 1689.656 1680.339 1667.413 1658.872 

16 1854.144 1833.493 1818.933 1808.116 1793.119 1783.215 

17 1991.248 1967.429 1950.651 1938.195 1920.938 1909.549 

18 2131.358 2104.082 2084.887 2070.647 2050.931 2037.928 

19 2274.578 2243.541 2221.721 2205.544 2183.162 2168.412 

20 2421.016 2385.900 2361.235 2342.962 2317.699 2301.062 

21 2570.786 2531.255 2503.517 2482.981 2454.611 2435.941 

22 2724.009 2679.710 2648.658 2625.685 2593.972 2573.116 

23 2880.808 2831.371 2796.752 2771.159 2735.856 2712.656 

24 3041.316 2986.351 2947.900 2919.496 2880.344 2854.634 

25 3205.672 3144.767 3102.206 3070.789 3027.518 2999.124 

50 9180.371 8737.558  8438.036 8222.095 7931.735 7745.597 

60 13395.61 12524.94   11946.82 11535.54 10989.96 10644.75 

70 20067.84 18317.65  17183.60 16390.89 15357.76 14715.19 

80 32503.47 28619.66  26190.94 24535.82 22433.07 21157.14 

90 65772.19 54168.42  47357.61 42920.97 37532.35 34401.93 
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Table 7. Operating Characteristics of the Life Test Sampling Plan  

Based on Mean Life Criterion  

(n =105, c = 2 and λ = 1.5) 

p  )( pPa  
5.1=  

100/ = tk  100/250 = k  

0.010 0.911201 0.336136 74374.66 

0.015 0.790632 0.506334 49374.48 

0.020 0.649366 0.677979 36874.30 

0.025 0.510198 0.851089 29374.12 

0.030 0.386710 1.025686 24373.94 

0.035 0.284587 1.201788 20802.33 

0.040 0.204328 1.379418 18123.58 

0.045 0.143657 1.558597 16040.07 

0.050 0.099187 1.739346 14373.22 

0.055 0.067404 1.921687 13009.40 

0.060 0.045163 2.105644 11872.85 

0.070 0.019543 2.478495 10086.77 

0.080 0.008106 2.858088     8747.105 

0.090 0.003242 3.244622     7705.059 

0.100 0.001256 3.638299     6871.342 

5. Conclusion 

A procedure for deriving single sampling plans for life tests is described under the condition that the 

lifetime quality characteristic is modeled by a Lomax distribution. The tables for the determining the 

sampling plans when lot quality is evaluated using four criteria, namely, mean life, median life, 

hazard rate and reliability life are constructed fixing a set of values of the shape parameter. 

Practitioners can generate the necessary sampling plans for other values of the shape parameter as 

per their requirements using the procedure described in this paper. Conversion factors are also 

included to assist in the calculation of the mean life, median life, and hazard rate at a certain test 

termination time and vice versa. The factors for adapting acceptable quality level as the index to mean 

life, median life, hazard rate and reliability life are also provided. 
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Abstract 

Ranking fuzzy numbers is significant in optimization approaches such as assignment challenges, 

transportation problems, project schedules, artificial intelligence, data analysis, network flow 

analysis, an uncertain environment in organizational economics etc. This paper introduces a new 

fuzzy ranking in Heptagonal fuzzy numbers and arithmetic operations of Heptagonal fuzzy 

numbers defined. In the network, every activity duration is viewed by a Heptagonal fuzzy 

number. Every Heptagonal fuzzy number is transformed into a crisp number using the ranking 

function. By applying the traditional method, we calculate the fuzzy critical path. These 

procedures are illustrated with numerical examples and compared with existing ranking 

functions. 

Keywords: Activity duration, centroid, fuzzy ranking, fuzzy critical path, heptagonal 

fuzzy number. 

I. Introduction

One of the most significant concepts in network analysis is the critical path approach. It is utilized 

to resolve project problems by preparing the networks and determining the earliest date an activity 

may begin and be completed. It is also an algorithm for scheduling a collection of project networks. 

It is also frequently used in connection with the Program Evaluation and Review Technique 

(PERT). 

Zadeh [10] introduced the 'fuzzy logic' concept considering inaccuracies and inconsistencies. 

Several academics have utilized various forms of fuzzy numbers to develop mathematical models 

over the last few decades. Examples for fuzzy numbers include Triangular fuzzy numbers, 

Trapezoidal fuzzy numbers, Pentagonal fuzzy numbers, etc. 

In many practical situations, the variables that define information uncertainty or vagueness 

are usually Triangular or Trapezoidal fuzzy numbers. Chandrasekaran et al. [1] developed a new 

arithmetic operation in Heptagonal fuzzy numbers and solved the transportation problem in 2013. 

Rathi et al. [8] defined a new non-normal fuzzy number called the Heptagonal fuzzy number and 
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arithmetic computations, suggested a parametric ranking strategy for ordering Heptagonal fuzzy 

numbers and employed the fuzzy assignment problem in 2014. The Heptagonal fuzzy number 

ranking is derived from the centroid of centroids and incentre of Heptagonal fuzzy numbers by 

Namarta et al. in 2017[7]. Developed a new ranking in Heptagonal fuzzy numbers and adapted it 

to transportation problems by Sahaya et al. [9]. Karthik et al. [4] in 2019 proposed linear and non-

linear Heptagonal fuzzy numbers under uncertain environments and derived the Haar ranking 

technique for the Heptagonal fuzzy number. Malini [6] suggested a new ranking in Heptagonal 

fuzzy numbers and applied transportation problems. Hamildon et al. [3] determine the fuzzy 

critical path with normalized Heptagonal fuzzy data. 

II. Preliminaries

In this section, we will look at a few key definitions. 

I. Fuzzy Set [10]

As stated in Zadeh's paper, the formalization of a fuzzy set is: 

Let X be a space of points (objects), with a generic element of X denoted by 𝑥. Thus,  𝑋 = {𝑥}. A 

fuzzy set (class) A in X is characterized by a membership (characteristic function) function 𝜇𝐴(𝑥), 

which associates with each point in X a real number in the interval [0,1], with the value of 𝜇𝐴(𝑥) at 

𝑥 representing the “grade of membership” of 𝑥 in A. When A set in the ordinary sense of the term, 

its membership function can take on only two values, 0 and 1, 𝜇𝐴(𝑥) = 1 𝑜𝑟 0 according to 𝑥 does 

or does not belong to A. 

II. Fuzzy Number [5]

It is a Fuzzy set of the following conditions: 

• Convex fuzzy set

• Normalized fuzzy set.

• Its membership function is piece-wise continuous.

• It is defined in the real number.

Fuzzy numbers should be normalized and convex. Here the condition of normalization implies 

that the maximum membership value is 1. 

III. Heptagonal fuzzy number (HFN) [3]

A fuzzy number 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) is a normal Heptagonal fuzzy number, and its 

membership function is expressed as; 

𝜇𝐴(𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

1

2

(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)
,   𝑓𝑜𝑟   𝑎1 ≤ 𝑥 ≤ 𝑎2

0.5,   𝑓𝑜𝑟  𝑎2 ≤ 𝑥 ≤ 𝑎3
1

2
+
1

2

(𝑥 − 𝑎3)

(𝑎4 − 𝑎3)
,  𝑓𝑜𝑟   𝑎3 ≤ 𝑥 ≤ 𝑎4

1

2
+
1

2

(𝑎5 − 𝑥)

(𝑎5 − 𝑎4)
,  𝑓𝑜𝑟 𝑎4 ≤ 𝑥 ≤ 𝑎5

0.5,     𝑓𝑜𝑟  𝑎5 ≤ 𝑥 ≤ 𝑎6
1

2

(𝑎7 − 𝑥)

(𝑎7 − 𝑎6)
,    𝑓𝑜𝑟  𝑎6 ≤ 𝑥 ≤ 𝑎7

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The graphical depiction of normalized Heptagonal fuzzy number is represented in Figure 1. 

Figure 1: Graphical representation of Heptagonal fuzzy number 

IV. Generalized Heptagonal fuzzy number (GHFN) [3]

A generalized Heptagonal fuzzy number is denoted by 𝐴̃𝐻̂ = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝜔) and its 

membership function is expressed as; 

𝜇𝐴𝐻̂(𝑥) =

{

𝜔

2

(𝑥 − 𝑎1)

(𝑎2 − 𝑎1)
,   𝑓𝑜𝑟   𝑎1 ≤ 𝑥 ≤ 𝑎2

𝜔

2
,   𝑓𝑜𝑟  𝑎2 ≤ 𝑥 ≤ 𝑎3

𝜔

2
+
𝜔

2

(𝑥 − 𝑎3)

(𝑎4 − 𝑎3)
,  𝑓𝑜𝑟   𝑎3 ≤ 𝑥 ≤ 𝑎4

𝜔

2
+
𝜔

2

(𝑎5 − 𝑥)

(𝑎5 − 𝑎4)
,  𝑓𝑜𝑟 𝑎4 ≤ 𝑥 ≤ 𝑎5

𝜔

2
,     𝑓𝑜𝑟  𝑎5 ≤ 𝑥 ≤ 𝑎6

𝜔

2

(𝑎7 − 𝑥)

(𝑎7 − 𝑎6)
,  𝑓𝑜𝑟  𝑎6 ≤ 𝑥 ≤ 𝑎7

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   0

The graphical depiction of generalized Heptagonal fuzzy number is represented in Figure 2. 

Figure 2: Graphical representation of Generalized Heptagonal fuzzy number 

V. Arithmetic Operations of Heptagonal fuzzy number

According to Dubois [2], defined the arithmetic operation of Heptagonal fuzzy number. 

Let 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7)  and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7) be two Heptagonal fuzzy numbers 

then; 
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𝑘𝐴̃ = 𝑘(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) = (𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3, 𝑘𝑎4, 𝑘𝑎5, 𝑘𝑎6, 𝑘𝑎7) 
𝐴̃ ⊕ 𝐵̃ = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4, 𝑎5 + 𝑏5, 𝑎6 + 𝑏6, 𝑎7 + 𝑏7)
𝐴̃ ⊝ 𝐵̃ = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3, 𝑎4 − 𝑏4, 𝑎5 − 𝑏5, 𝑎6 − 𝑏6, 𝑎7 − 𝑏7)
𝐴̃ ⊗ 𝐵̃ = (𝑎1 ∗ 𝑏1, 𝑎2 ∗ 𝑏2, 𝑎3 ∗ 𝑏3, 𝑎4 ∗ 𝑏4, 𝑎5 ∗ 𝑏5, 𝑎6 ∗ 𝑏6, 𝑎7 ∗ 𝑏7)

𝐴̃ ⊘ 𝐵̃ = (
𝑎1
𝑎2
,
𝑎2
𝑏2
,
𝑎3
𝑏3
,
𝑎4
𝑏4
,
𝑎5
𝑏5
,
𝑎6
𝑏6
,
𝑎7
𝑏7
) 

Example: 

Let 𝐴̃ = (3,6,9,12,15,18,21)  and 𝐵̃ = (2,4,6,8,10,12,14) then 

𝐴̃ ⊕ 𝐵̃ = (5,10,15,20,25,30,35) 
𝐴̃ ⊝ 𝐵̃ = (1,2,3,4,5,6,7) 
𝐴̃ ⊗ 𝐵̃ = (6,24,54,96,150,216,294) 
𝐴̃ ⊘ 𝐵̃ = (1.5, 1.5, 1.5,1.5,1.5,1.5,1.5) 
Remark: Some authors defined 𝐴̃ ⊝ 𝐵̃ = (𝑎1 − 𝑏7, 𝑎2 − 𝑏6, 𝑎3 − 𝑏5, 𝑎4 − 𝑏4, 𝑎5 − 𝑏3, 𝑎6 − 𝑏2, 𝑎7 − 𝑏1). 

How is it possible? 

Here I consider one example. 

Let 𝐴̃ = (2,4,6,8,10,12,14) & 𝐵̃ = (2,4,6,8,10,12,14) , Here both 𝐴̃ 𝑎𝑛𝑑 𝐵̃ are same HFNs. 

 Now 𝐴̃ ⊝ 𝐵̃ = (2 − 14, 4 − 12, 6 − 10, 8 − 8, 10 − 6, 12 − 4, 14 − 2) 

       = (−12,−8,−4,0,4,8,12). 

It is a completely wrong output since both 𝐴̃ 𝑎𝑛𝑑 𝐵̃ are the same HFNs. 

According to my definition; 

𝐴̃ ⊝ 𝐵̃ = (2 − 2, 4 − 4, 6 − 6, 8 − 8, 10 − 10, 12 − 12, 14 − 14) = (0,0,0,0,0,0,0)

III. Existing Rankings

In this section, we explained existing ranking functions. 

I. Existing Ranking1[7]

Namarta et al. suggested a ranking process for HFN prediction on the centroid of centroids and 

incentre of centroids. Their suggested order is as follows: 

𝐺(𝑥0, 𝑦0) = (
2𝑎1 + 7𝑎2 + 7𝑎3 + 22𝑎4 + 7𝑎5 + 7𝑎6 + 2𝑎7

54
,
11𝜔

54
) 

II. Existing Ranking 2 [3]

Hamildon et al. identify the critical path of a project network with normal HFNs. In his approach, 

ℜ(𝐴̃𝐻̂) =
𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

8

IV Proposal Ranking Function 

We suggest an effective tool for calculating the rank of HFN. The proposal ranking in a HFN 

diagram is represented in Figure 3. 

RT&A, No 2 (68) 
Volume 17, June 2022 

Adilakshmi Siripurapu, Ravi Shankar Nowpada 
HEPTAGONAL FUZZY NUMBER AND ITS APPLICATION 

262



Figure 3: Proposal ranking in GHFN 

In Figure 3, the heptagonal is divided into two trapezoidal and one rhombus. By applying the 

centroid formula of trapezoidal and rhombus, calculate the centroid of trapezoidal and rhombus, 

respectively. The circumcentre of the centroids of the HFN is taken into a balancing point of the 

Heptagon in Figure 7.3. The distance from the origin to the circumcentre of the centroids of this 

three-plane figure consider as a generalized HFN ranking function. Let the centroid of the three 

planar figures be  𝐺1,  𝐺2, 𝐺3. 

𝐺1 gives the centroid of the trapezoidal with vertices 

(𝑎1, 0), (𝑎2,
𝜔

2
) , (𝑎3,

𝜔

2
) (𝑎4, 0) 

G2 gives the centroid of the rhombus with vertices 

(𝑎4,0), (𝑎3,
𝜔

2
) , (𝑎4, 𝜔), ( 𝑎5,

𝜔

2
) 

G3 gives the centroid of the trapezoidal with vertices 

(𝑎4, 0), (𝑎5,
𝜔

2
) , (𝑎6,

𝜔

2
) , (𝑎7, 0) 

The centroid of these three planes is; 

𝐺1 = (
𝑎1+𝑎2+𝑎3+𝑎4

4
,
𝜔

4
),𝐺2 = (

𝑎3+𝑎4+𝑎5+𝑎4

4
,
𝜔

2
),𝐺3 = (

𝑎4+𝑎5+𝑎6+𝑎7

4
,
𝜔

4
) respectively. 

The circumcentre of 𝐺1, 𝐺2, and 𝐺3 is 

𝐺𝐴𝐻̂(𝑥0, 𝑦0) = (
𝑎1+𝑎2+2𝑎3+4𝑎4+2𝑎5+𝑎6+𝑎7

12
,
𝜔

3
). 

The generalized Heptagonal fuzzy number 𝐴̃𝐻̂ = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7,𝜔) new ranking function is; 

ℜ(𝐴̃𝐻̂) = √𝑥0
2 + 𝑦0

2 

I. Ordering of a Heptagonal fuzzy number

 Comparing fuzzy numbers using the ranking function ℜ: 𝐹(ℛ) ⟶ ℛ is a successful approach. The   

ordering of two HFNs is described as follows; 
• If ℜ(𝐴̃𝐻̂) > ℜ(𝐵̃𝐻̂) ⟹ 𝐴̃𝐻̂ > 𝐵̃𝐻̂
• If ℜ(𝐴̃𝐻̂) < ℜ(𝐵̃𝐻̂) ⟹ 𝐴̃𝐻̂ < 𝐵̃𝐻̂
• If ℜ(𝐴̃𝐻̂) = ℜ(𝐵̃𝐻̂) ⟹ 𝐴̃𝐻̂ = 𝐵̃𝐻̂

Here, we utilize three sets of Heptagonal fuzzy numbers. Analyze the ranking of 3 sets by proposal 

ranking function and existing ranking functions. The sets and the outcome obtained by the 

proposal and existing rankings are given in Table 1. Here I consider ω=1. 

Table 1: Analysis of ranking order by proposal ranking function 

HFN The rank of HFN Conclusion 
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Set-1 

𝑨̃ =(1,2,3,4,5,6,7) 4.0138 

ℛ(𝐶̃) > ℛ(𝐵̃) > ℛ(𝐷̃) > ℛ(𝐴̃) 

⟹ 𝐶̃ > 𝐵̃ > 𝐷̃ > 𝐴̃ 

𝑩̃ =(3,4,5,7,9,10,11) 7.0079 

𝑪̃ =(2,3,4,8,13,14,15) 8.3399 

𝑫̃ =(1,2,3,8,9,11,13) 6.9246 

Set-2 

𝑨̃ =(6,8,9,10,11,12,13) 9.9334 

ℛ(𝐶̃) > ℛ(𝐴̃) > ℛ(𝐷̃) > ℛ(𝐵̃) 

⟹ 𝐶̃ > 𝐴̃ > 𝐷̃ > 𝐵̃ 

𝑩̃ = (𝟑, 𝟒, 𝟓, 𝟔, 𝟕, 𝟖, 𝟗) 6.0277 

𝑪̃ = (𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟓) 11.0983 

𝑫̃ = (𝟓, 𝟕, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐) 8.9353 

Set-3 

𝑨̃ = (𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟐, 𝟐𝟑, 𝟐𝟒, 𝟐𝟓) 19.0087 

ℛ(𝐴̃) > ℛ(𝐵̃) > ℛ(𝐶̃) > ℛ(𝐷̃) 

⟹ 𝐴̃ > 𝐵̃ > 𝐶̃ > 𝐷̃ 

𝑩̃ = (𝟒, 𝟏𝟎, 𝟏𝟐, 𝟏𝟕, 𝟏𝟖, 𝟏𝟗, 𝟐𝟏) 15.1776 

𝑪̃ = (𝟑, 𝟏𝟎, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟔, 𝟏𝟕) 12.5133 

𝑫̃ = (𝟑, 𝟔, 𝟖, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑) 9.3511 

The order of a HFN with the proposal and existing rankings are presented in Table 2. 

Table 2: Order of a HFN with the proposal and existing rankings 

Ranking function Set-1 Set-2 Set-3 

Namarta (2017) 𝐶̃ > 𝐵̃ > 𝐷̃ > 𝐴̃ 𝐶̃ > 𝐴̃ > 𝐷̃ > 𝐵̃ 𝐴̃ > 𝐵̃ > 𝐶̃ > 𝐷̃ 

Hamildon (2021) 𝐶̃ > 𝐵̃ > 𝐷̃ > 𝐴̃ 𝐶̃ > 𝐴̃ > 𝐷̃ > 𝐵̃ 𝐴̃ > 𝐵̃ > 𝐶̃ > 𝐷̃ 

Proposal ranking 𝐶̃ > 𝐵̃ > 𝐷̃ > 𝐴̃ 𝐶̃ > 𝐴̃ > 𝐷̃ > 𝐵̃ 𝐴̃ > 𝐵̃ > 𝐶̃ > 𝐷̃ 

V Application 

This section performs an analytical example of the proposed fuzzy set CPM-based approach on an 

activity network. Think of a plant with 14 vertices and needs 21 primary activities, each activity 

connected by a direct link, like in the following graph (Figure 1.6). The fuzzy activity time is 

represented as a Heptagonal fuzzy number for every activity in Table 3 (All durations in days). 

Table 3: Project network with Heptagonal fuzzy number 

Activity Heptagonal Fuzzy Number 

1→2 (2,3,4,8,13,14,15) 
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1→3 (1,2,4,5,11,12,13) 

1→4 (0,1,3,4,9,10,11) 

1→5 (1,3,6,13,15,16,17) 

1→6 (1,2,5,10,12,14,17) 

2→7 (1,2,11,13,14,15,16) 

3→7 (2,3,4,8,14,15,16) 

3→10 (1,5,7,11,12,13,14) 

4→8 (0,1,2,3,5,6,8) 

4→9 (1,2,4,5,6,7,9) 

5→9 (3,7,9,13,15,16,18) 

5→13 (5,10,15,22,23,24,25) 

6→14 (1,3,4,5,7,8,10) 

7→11 (10,12,15,20,21,22,23) 

7→12 (3,5,6,7,8,9,10) 

8→12 (7,8,9,10,11,12,13) 

9→13 (6,6,6,6,7,7,7) 

10→14 (3,4,5,6,7,8,9) 

11→14 (4,6,7,9,10,11,12) 

12→14 (2,3,4,5,6,7,8) 

13→14 (5,7,8,9,10,11,12) 

Figure 4: Fuzzy project network 

I. Expected time of activities

Heptagonal fuzzy number transformed into an activity duration by proposal ranking function. 

This activity period is taken as the time within the nodes, and the fuzzy critical path is calculated 

by applying the conventional process. The activity period of the project network is represented in 
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Table 4, and Figure 5 represents the project network with defuzzified values of Heptagonal fuzzy 

numbers. 
Table 4: Activity duration with defuzzified value of HFN 

Activity HFN Activity period (𝒕̃𝒊𝒋) 

1→2 (2,3,4,8,13,14,15) 8.3399 

1→3 (1,2,4,5,11,12,13) 6.5085 

1→4 (0,1,3,4,9,10,11) 5.1774 

1→5 (1,3,6,13,15,16,17) 10.9217 

1→6 (1,2,5,10,12,14,17) 9.0061 

2→7 (1,2,11,13,14,15,16) 11.3382 

3→7 (2,3,4,8,14,15,16) 8.6730 

3→10 (1,5,7,11,12,13,14) 9.5891 

4→8 (0,1,2,3,5,6,8) 3.4328 

4→9 (1,2,4,5,6,7,9) 4.9279 

5→9 (3,7,9,13,15,16,18) 12.0046 

5→13 (5,10,15,22,23,24,25) 19.0029 

6→14 (1,3,4,5,7,8,10) 5.3437 

7→11 (10,12,15,20,21,22,23) 18.2530 

7→12 (3,5,6,7,8,9,10) 6.9246 

8→12 (7,8,9,10,11,12,13) 10.0055 

9→13 (6,6,6,6,7,7,7) 6.3420 

10→14 (3,4,5,6,7,8,9) 6.0092 

11→14 (4,6,7,9,10,11,12) 8.5898 

12→14 (2,3,4,5,6,7,8) 5.0110 

13→14 (5,7,8,9,10,11,12) 8.9228 

Figure 5: Project network with defuzzified values of HFN  
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II. Procedure for Fuzzy critical path method Based on Heptagonal fuzzy numbers

Step 1: Construct the network diagram of a given project. 

 Step 2: Represent every fuzzy activity time as a defuzzified value of the Heptagonal fuzzy number. 

Step 3: Let 𝐸̃1 = (0,0,0,0,0,0) and calculate 𝐸̃𝑖 , 𝑖 = 2,3, …… , 𝑛 by using; 

    𝐸̃𝑖 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 + 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛.  

Step 4: Calculate the earliest finish time of an activity 𝑖 → 𝑗. That is earliest finish time is;  𝐸𝐹̃𝑖𝑗 =

𝐸𝑆̃𝑖𝑗 + 𝐹𝑢𝑧𝑧𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑖𝑚𝑒, where 𝐸𝑆̃𝑖𝑗 = 𝐸̃𝑖. 

Step 5: Let 𝐸̃𝑛 = 𝐿̃𝑛  and calculate 𝐿̃𝑖, where 𝑖 = 𝑛 − 1, 𝑛 − 2,…… ,2,1. 

𝐿̃𝑖 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 −  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Step 6: Calculate the latest start time of an activity 𝑖 → 𝑗. That is latest start time is; 

        𝐿𝑆̃𝑖𝑗 = 𝐿𝐹̃𝑖𝑗 − 𝐹𝑢𝑧𝑧𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑖𝑚𝑒=, where 𝐿𝐹̃𝑖𝑗 = 𝐿̃𝑗    

 Step 7:  Calculate total float 𝑇𝐹̃𝑖𝑗 = 𝐿𝐹̃𝑖𝑗 − 𝐸𝐹̃𝑖𝑗   𝑜𝑟  𝐿𝑆̃𝑖𝑗 − 𝐸𝑆̃𝑖𝑗. 

 Step 8:  If 𝑇𝐹̃𝑖𝑗 = 0, consider those activities as critical activities of a given project network. 

III. Calculation of Earliest times

Node 1 is the starting node in the above network, and node 14 is the end node. Let 

𝐸̃1 = 0, and label node one as 0. 

Iteration 1: 

Node1 is the predecessor of node2. 

∴ 𝐸̃2 = 𝐸̃1 + 𝑡̃12 = 0 + 8.3399 = 8.3399 

Iteration 2: 

Node1 is the predecessor of node3. 

∴ 𝐸̃3 = 𝐸̃1 + 𝑡̃13 = 0 + 6.5085 = 6.5085 

Iteration 3: 

Node1 is the predecessor of node4. 

∴ 𝐸̃4 = 𝐸̃1 + 𝑡̃14 = 0 + 5.1774 = 5.1774 

Iteration 4: 

Node1 is the predecessor of node5. 

∴ 𝐸̃5 = 𝐸̃1 + 𝑡̃15 = 0 + 10.9217 = 10.9217 

Iteration 5: 

Node1 is the predecessor of node6. 

  ∴ 𝐸̃6 = 𝐸̃1 + 𝑡̃16 = 0 + 9.0061=9.0061 

Iteration 6:  

Node2 and node3 are predecessor of node 7. 

∴ 𝐸̃7 = 𝑚𝑎𝑥{𝐸̃2 + 𝑡̃27, 𝐸̃3 + 𝑡̃37} = 𝐸̃2 + 𝑡̃27 = 8.3399 + 11.3382 = 19.6781 

 Iteration 7: 

  Node4 is the predecessor of node8. 

   ∴ 𝐸̃8 = 𝐸̃4 + 𝑡̃48 = 5.1774 + 3.4328 = 8.6102 

Iteration 8: 

Node4 and node5 are the predecessors of node9. 

∴ 𝐸̃9 = 𝑚𝑎𝑥{𝐸̃4 + 𝑡̃49, 𝐸̃5 + 𝑡̃59} = 𝐸̃5 + 𝑡̃59 = 10.9217 + 12.0046 = 22.6343 

Iteration 9: 

Node3 is the predecessor of node10. 

∴ 𝐸̃10 = 𝐸̃3 + 𝑡̃310 = 6.5085 + 9.5891 = 16.0976 

Iteration 10: 

Node7 is the predecessor of node11. 

∴ 𝐸̃11 = 𝐸̃7 + 𝑡̃711 = 19.6781 + 18.2530 = 37.9311 

Iteration 11: 

RT&A, No 2 (68) 
Volume 17, June 2022 

Adilakshmi Siripurapu, Ravi Shankar Nowpada 
HEPTAGONAL FUZZY NUMBER AND ITS APPLICATION 

267



Node7 and node8 are the predecessors of node 12. 

𝐸̃12 = 𝑚𝑎𝑥{𝐸̃7 + 𝑡̃712, 𝐸̃8 + 𝑡̃812} = 𝐸̃7 + 𝑡̃712 = 19.6781 + 6.9246 = 26.6027 

Iteration 12: 

Node5 and node 9 are predecessor of node 13. 

∴ 𝐸̃13 = 𝑚𝑎𝑥{𝐸̃5 + 𝑡̃513, 𝐸̃9 + 𝑡̃913} = 𝐸̃9 + 𝑡̃913 = 22.6343 + 6.3420 = 28.9763 

Iteration 13: 

Node6, node10, node11, node12, node13 are the predecessor of node14. 

∴ 𝐸̃14 = 𝑚𝑎𝑥{𝐸̃6 + 𝑡̃614, 𝐸̃10 + 𝑡̃1014, 𝐸̃11 + 𝑡̃1114, 𝐸̃12 + 𝑡̃1214, 𝐸̃13 + 𝑡̃1314} 

  = 𝐸̃11 + 𝑡̃1114 = 37.9311 + 8.5898=46.5209 

IV. Calculation of Latest times

In the above network, the end node is node14. 

Let 𝐸̃14 = 𝐿̃14 and label node14 as 46.5209. 

Iteration1: 

The successor of node 13 is node14. 

∴ 𝐿̃13 = 𝐿̃14 − 𝑡̃1314 = 46.5209 − 8.9228 = 37.5981 

Iteration 2: 

The successor of 12 is node14. 

∴ 𝐿̃12 = 𝐿̃14 − 𝑡̃1214 = 46.5209 − 5.0110 = 41.5099 

Iteration 3: 

The successor of 11 is node 14. 

∴ 𝐿̃11 = 𝐿̃14 − 𝑡̃1114 = 46.5209 − 8.5898 = 37.9311 

Iteration 4: 

The successor of 10 is node14. 

∴ 𝐿̃10 = 𝐿̃14 − 𝑡̃1014 = 46.5209 − 6.0092 = 40.5117 

Iteration 5: 

The successor of 9 is node13. 

∴ 𝐿̃9 = 𝐿̃13 − 𝑡̃913 = 37.5981 − 6.3420 = 31.2561 

Iteration 6: 

The successor of node 8 is node 12. 

∴ 𝐿̃8 = 𝐿̃12 − 𝑡̃812 = 41.5099 − 10.0085 = 31.5014 

Iteration 7: 

The successor of node 7 is node11 and node 12. 

∴ 𝐿̃7 = 𝑚𝑖𝑛{𝐿̃11 − 𝑡̃711, 𝐿̃12 − 𝑡̃712} = 𝐿̃11 − 𝑡̃711 = 37.9311 − 18.2530 = 19.6781 

Iteration 8: 

The successor of node 6 is node 14. 

∴ 𝐿̃6 = 𝐿̃14 − 𝑡̃614 = 46.5209 − 5.3437 = 41.1772 

Iteration 9: 

The successor of node5 is node 9 and node 13. 

∴ 𝐿̃5 = 𝑚𝑖𝑛{𝐿̃9 − 𝑡̃59, 𝐿̃13 − 𝑡̃513} = 𝐿̃9 − 𝑡̃59 = 31.2561 − 12.0046 = 19.2515 

Iteration 10: 

The successor of node 4 is node8 and node9. 

∴ 𝐿̃4 = 𝑚𝑖𝑛{𝐿̃8 − 𝑡̃48, 𝐿̃9 − 𝑡̃49} = 𝐿̃9 − 𝑡̃49 = 31.2561 − 4.9277 = 26.3284 

Iteration 11: 

The successor of node 3 is node7 and node 10. 

∴ 𝐿̃3 = 𝑚𝑖𝑛{𝐿̃7 − 𝑡̃37, 𝐿̃10 − 𝑡̃310} = 𝐿̃7 − 𝑡̃37 = 19.6781 − 8.6730 = 11.0051 

Iteration 12: 

The successor of node 2 is node7. 

∴ 𝐿̃2 = 𝐿̃7 − 𝑡̃27 = 19.6781 − 11.3382 = 8.3399 

Iteration 13: 
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The successor of node1 is node2, node3, node4, node5 and node6. 

∴ 𝐿̃1 = 𝑚𝑖𝑛{𝐿̃2 − 𝑡̃12, 𝐿̃3 − 𝑡̃13, 𝐿̃4 − 𝑡̃14, 𝐿̃5 − 𝑡̃15, 𝐿̃6 − 𝑡̃16} = 𝐿̃2 − 𝑡̃12 = 8.3399 − 8.3399 = 0 

V. Calculation of Total float

Computed Earliest finish time, Latest start time and total float using formulas mentioned in 

procedure step 4, step 6, and step 7, respectively. 

The earliest start and finish times, the latest start and finish times, total float of fuzzy activities are 

depicted in Table 5. 
Table 5: The earliest, latest times and a total float of activities with defuzzified values 

Activity 𝑡̃𝑖𝑗 𝐸𝑆̃𝑖𝑗 𝐸𝐹̃𝑖𝑗 𝐿𝑆̃𝑖𝑗  𝐿𝐹̃𝑖𝑗 𝑇𝐹̃𝑖𝑗 

1→2 8.3399 0 8.3399 0 8.3399 0* 

1→3 6.5085 0 6.5085 4.4966 11.0051 4.4966 

1→4 5.1774 0 5.1774 21.151 26.3284 5.1774 

1→5 10.9217 0 10.9217 8.3298 19.2515 7.6742 

1→6 9.0061 0 9.0061 32.1711 41.1772 32.1711 

2→7 11.3382 8.3399 19.6781 8.3399 19.6781 0* 

3→7 8.6730 6.5085 15.1815 11.0051 19.6781 4.4966 

3→10 9.5891 6.5085 16.0976 30.9226 40.5117 24.4141 

4→8 3.4328 5.1774 8.6102 28.0686 31.5014 22.8912 

4→9 4.9279 5.1774 10.1053 26.3282 31.2561 21.1508 

5→9 12.0046 10.9217 22.9263 19.2515 31.2561 8.3298 

5→13 19.0029 10.9217 29.9246 18.5952 37.5981 7.6735 

6→14 5.3437 9.0061 14.3498 41.1772 46.5209 32.1711 

7→11 18.2530 19.6781 37.9311 19.6781 37.9311 0* 

7→12 6.9246 19.6781 26.6027 34.5853 41.5099 14.9072 

8→12 10.0085 8.6102 18.6187 31.5014 41.5099 22.8912 

9→13 6.342 22.6343 28.9763 31.2561 37.5981 8.6218 

10→14 6.0092 16.0976 22.1068 40.5307 46.5399 24.4331 

11→14 8.5898 37.9311 46.5209 37.9311 46.5209 0* 

12→14 5.0110 26.6027 31.6137 41.5099 46.5209 14.9072 

13→14 8.9228 28.9763 37.8991 37.5981 46.5209 8.6218 

From the above table, the critical activities are 1→2, 2→7, 7→11, 11→14. 

Therefore, the project critical path is 1→2→7→11→14. 

As a result, the project will be completed in 46.5209≅ 46.5 days. 
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VI Results 

Table 6 represents the fuzzy critical path and project completion time by proposal method and 

existing methods. The result graph is presented in Figure 6.  
Table 6: Proposal method correlated with existing methods 

Ranking Method Critical Path Project completion time 

Namarta (2017) 1→2→7→11 45.375 

Hamildon (2021) 1→2→7→11 46.7853 

Proposal method 1→2→7→11 46.5399 

Figure 6: Proposal ranking results correlated with existing ranking results 

VII Conclusion 

This paper introduced a new ranking function in Heptagonal fuzzy number. The proposed 

ranking function is derived from the centroid of HFN. In the network, every activity period is 

expressed by an HFN. The duration of every activity is transformed into the normal number or 

crisp number by a new ranking function. This normal number is considered as the expected time 

of activity. A conventional procedure identified the fuzzy critical path and project completion 

time. Numerous experiments have been conducted, and the results are correlated with some of 

the available ranking formulas. The attained results are similar to existing ranking results and the 

same critical path in all the methods. The proposal ranking can also be applied to more complex 

project networks in the real world. We can apply the ranking function of HFN to solve game 

problems and transportation problems.  
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Abstract 

In this paper an extension of Weibull Power Rayleigh Distribution has been introduced, 
and named it is as Weibull Inverse Power Rayleigh Distribution. This distribution is 
obtained by adopting T-X family technique. Various Structural properties, Reliability 
measures and Characteristics have been calculated and discussed. The behaviour of 
Probability density function, Cumulative distribution function, Survival function, 
Hazard rate function and mean residual function are illustrated through different graphs. 
Various parameters are estimated through the technique of MLE. The versatility and 
flexibility of the new distribution is done by using real life data sets. To evaluate and 
compare the out effectiveness of estimators, a simulation analysis has also been carried 
out. 

Keywords:- Weibull distribution, Inverse Rayleigh distribution, Renyi entropy, 
maximum likelihood estimation, Order statistics.    

I. INTRODUCTION

Weibull distribution, although being first identified by Frechet [8] and first applied by Rosin and 
Rammler [9] to describe particle size distribution, was named after Swedish Mathematician Waloddi 
Weibull, who in 1951 described the distribution in detail in his paper “A Statistical Distribution 
Function of Wide Applicability”. This distribution is now commonly used to assess product reliability, 
analyze life data and model failure times, see inverse Weibull-G by Amal S. Hassan et al [3]. This 
distribution has found its importance in the fields of biology, economics, engineering sciences and 
hydrology. 

The pdf of Weibull distribution is given by 

0,0,),;( 1   tettf t 


 (1) 

Where  , and t  are Location, Shape and Scale parameters respectively. 

Rayleigh being a one-parameter continuous and simplest velocity probability distribution has a 
diverse range of applications. Various researchers have developed several extensions and 
modifications of the distribution, resulting in some flexible and more effective distributions by adding 
some more parameters or by compounding and thus showing its importance in various fields like 
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Social, Medical and Engineering Sciences. For instance transmuted Rayleigh distribution by Faton 
Merovci [6], Weibull-Rayleigh distribution by Faton Merovci et al [7], odd generalized exponential 
Rayleigh distribution by Albert Luguterah [1], Topp-Leone Rayleigh distribution by Fatoki Olayode 
[5], odd Lindley-Rayleigh distribution by Terna Godfrey Ieren [10], new generalisation of Rayleigh 
distribution by A.A Bhat et al [4].  

The Inverse Rayleigh distribution finds its application in the field of reliability studies. Voda [11] 
worked out that the lifetime distributions of various types of experimental units can be approximated 
by Inverse Rayleigh distribution. In this article we use Weibull and Inverse Power Rayleigh 
Distributions to define a new model which generalizes the Inverse power Rayleigh distribution. 

The cdf of Power inverse Rayleigh Distribution is given by 

0,,0),,(
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And its associated pdf is given by 
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II. Materials and Methods

Transformed-transformer (T-X) family of distributions (Alzaatreh et al [2]) is given by 

 


)(

0

)(F(x)

xGW

dttf (5) 

Where f(t) is the probability density function of a random variable T and  )(xGW  be a function of
cumulative density function of random variable X . 

Suppose  ,G denotes the baseline cumulative distribution function, which depends on parameter
vector . Now using T-X approach, the cumulative distribution function of Weibull Inverse Power 
Rayleigh distribution can be derived by replacing f(t) in equation(5) by equation (1) and 
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The corresponding pdf of (6) becomes 
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Where 

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 is known as Power Inverse Rayleigh Distribution.  (8) 
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III. Linear Transformation

Apply Taylor series expansion to the pdf in equation (7) we have 
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On substituting equation (11) in (7), we get the following expression
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Using generalized binomial expansion, we have 
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Using (8) and (9) in (13) we get 
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IV. Weibull Inverse Power Rayleigh Distribution

Let X be a random variable following Weibull Inverse Power Rayleigh Distribution with its cdf given 
by 

0,,,,0,1),,,;(

1
22































xexF

xe

 (16) 

And its pdf is given by 
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V. Reliability measures

The Survival function, Hazard function, Cumulative Hazard function, Reverse Hazard function is 
given by: 
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Theorem 1: Show that the Quantile Function of Weibull Inverse Power Rayleigh Distribution is given 
by 
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Proof: Let x be a random variable following Weibull Inverse Power Rayleigh Distribution with 
parameters  ,, and  , then we derive its Quantile Function from the corresponding cdf as given 
below 

We know that cdf of WIPRD is given by 
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Median: 

The median for the new WIPRD can be derived from the quantile function in equation (18) by putting 
u=0.5 as below 
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On substituting r=1,2,3,4 we get first four moments about origin. 

Theorem 3. Show that the Moment generating function of Weibull Inverse Power Rayleigh 
Distribution is given by 
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Proof: We know that Moment generating function is given by 
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Theorem 4. Show that the Characteristic function of Weibull Inverse Power Rayleigh Distribution is 
given by 
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Proof: We know that Characteristic function is given by 
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VI. Incomplete Moments
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VII. Renyi Entropy

If X is a continuous random variable following WIPRD with pdf ),,,;( xf , then 
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Now put (10) and (8) in equation (19) we get
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VIII. Tsallis Entropy of WIPRD

We know that Tsallis Entropy is defined as 
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Now put (10) and (8) in equation (20) we get
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After solving the above equation we get 
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Substituting (22) in (21) we get

RT&A, No 2 (68) 
Volume 17, June 2022 

281



Muzamil Jallal, Aijaz Ahmad, Rajnee Tripathi        
WEIBULL INVERSE POWER RAYLEIGH DISTRIBUTION WITH 
APPLICATIONS RELATED TO DISTINCT FIELDS OF SCIENCE  







 







 
























 



































2
0

2

1

0

1
2

2

))1((
,

2

1
1(

2
212)(

2 ij
eD

i
ij

j

e

X. Mean Deviation from Median

We know that 
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Substituting (24) in (23) we get
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XI. Maximum Likelihood Estimation

Let nxxxx ,...,,, 321  be n random samples from Weibull Inverse Power Rayleigh Distribution, and then 
its likelihood function is given by 
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Its Log Likelihood function is given by 
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The above equations are non-linear equations which cannot be expressed in compact form and it is 
difficult to solve these equations explicitly for  ,, and  . By applying the iterative methods such as 
Newton–Raphson method, secant method, Regula-Falsi method etc. the MLE of the parameters 
denoted as   ˆ,ˆ,ˆ,ˆˆ of   ,,, can be obtained by using the above methods.

Since the MLE of ̂  follows asymptotically normal distribution as given as follows

     INn ,0ˆ 

Where  1I  is the limiting variance covariance matrix ̂ and  I is a 4x4 Fisher Information matrix
i.e
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Hence the approximate  1100 % confidence interval for  ,, and  are respectively given by
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Where 
2

Z is the th percentile of the standard distribution. 

XII. Order Statistics

Let )()3()2()1( ,...,,, nxxxx  denotes the order statistics of n random samples drawn from Weibull Inverse 

Power Rayleigh Distribution, then the pdf of )(kX is given by 
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XIII. Simulation Study

In this section, we study the performance of ML estimators for different sample sizes (n=, 50,150, 
250,500). We have employed the inverse CDF technique for data simulation for WIPRD distribution 
using R software. The process was repeated 1000 times for calculation of bias, variance and MSE.  

Table 1: The Mean values, Average bias and MSEs of 1,000 simulations of WIPRD for parameter values 

Sample 
Size n 

parameters 0.1  9.0 3.2 and 3.0  

Average Bias Variance MSE 

50   0.9493 -0.050 0.0001 0.0027
  0.7717 -0.128 0.0001 0.0166
 2.0815 -0.218 0.0246 0.0723
 2.0510 1.7510 0.0768 3.1429

150   0.9537 -0.046 8.41e-05 0.0022
  0.7760 -0.123 8.11e-05 0.0154
 2.0854 -0.214 7.07e-03 0.0531
 1.9675 1.6675 2.55e-02 2.8063

250   0.9545 -0.045 6.23e-05 0.0021
  0.7767 -0.123 5.81e-05 0.0152
 2.0866 -0.213 4.24e-05 0.0497
 1.9479 1.6479 1.56e-05 2.7313

500   0.9556 -0.044 3.43e-05 0.0020
  0.7778 -0.122 3.11e-05 0.0149
 2.0905 -0.209 2.15e-05 0.0460
 1.9261 1.6261 8.36e-05 2.6528

1.1  8.0 0.2 and 5.0
50   0.9465 -0.153 0.0001 0.0236

  0.7688 -0.031 0.0002 0.0011
 1.7951 -0.204 0.0216 0.0635
 1.1839 0.6839 0.0248 0.4926

150   0.9496 -0.150 6.99e-o5 0.0226
  0.7716 -0.028 7.04e-05 0.0008
 1.8038 -0.196 6.59e-03 0.0450
 1.1476 0.6476 8.11e-03 0.4275

250   0.9508 -0.149 5.19e-05 0.0223
  0.7728 -0.027 5.04e-05 0.0007
 1.8116 -0.188 4.33e-03 0.0398
 1.1355 0.6355 4.83e-03 0.4087

500   0.9513 -0.148 2.83e-05 0.0221
  0.7733 -0.026 2.69e-05 0.0007
 1.8128 -0.187 2.08e-03 0.0371
 1.1277 0.6277 2.59e-03 0.3967
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As is clear from table 1, decreasing trend is being observed in average bias, variance and MSE as we 
increase the sample size. Hence, the performance of ML estimators is quite well, consistent in case of 
Weibull Inverse Power Rayleigh Distribution. 

XIV. Application

 In this segment, the efficacy of the developed distribution has been assessed using two realistic sets of 
data. As the new distribution is compared to New Modified Weibull distribution (NMWD), Additive 
Weibull distribution (AWD), Power Gompertz distribution (PGD), Inverse power Rayleigh 
distribution (IPRD), Weibull distribution (WD), Lindley distribution (LD) and Hamza distribution 
(HD). It is revealed that the new developed distribution offers an appropriate fit.  

Various criterion including the AIC (Akaike information criterion), CAIC (Consistent Akaike 
information criterion), BIC (Bayesian information criterion), HQIC (Hannan-Quinn information 
criteria) and KS (Kolmogorov-Smirnov) are used to compare the fitted models. The p-value of each 
model is also recorded. A distribution having lesser AIC, CAIC, BIC, HQIC and KS values and with 
large p-value is considered better one. 

lkAIC ln22   l
kn

k
CAIC ln2

1

2





lnkBIC ln2ln  lnkHQIC ln2))ln(ln(2   

Data set 1:- The following represents the dataset of 63 0bservations of the tensile strength 
measurements on 1000 carbon fiber-impregnated tows at four different gauge lengths. The data 
reported by Bader and Priest (1982) as follows: 

1.901, 2.132, 2.203, 2.228, 2.257,2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 
2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886 ,3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

Data set 2: The second data represents COVID-19 mortality rates data belongs to Italy of 59 days that is 
recorded from 27 February to 27 April 2020. The data is as follows:  

4.571, 7.201, 3.606, 8.479, 11.410, 8.961, 10.919, 10.908, 6.503, 18.474, 11.010 ,17.337, 16.561, 13.226, 
15.137, 8.697, 15.787,13.333, 11.822, 14.242, 11.273, 14.330, 16.046, 11.950, 10.282, 11.775, 10.138, 9.037, 
12.396, 10.644, 8.646, 8.905, 8.906, 7.407, 7.445 ,7.214, 6.194, 4.640, 5.452, 5.073 ,4.416 ,4.859 ,4.408, 4.639, 
3.148, 4.040, 4.253, 4.011, 3.564, 3.827, 3.134, 2.780, 2.881, 3.341, 2.686, 2.814, 2.508, 2.450, 1.518. 

The fitted models are compared using empirical goodness of fit measures such as the AIC (Akaike 
information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian information 
criterion), HQIC (Hannan-Quinn information criteria), and KS (Kolmogorov- Smirnov). Each model's 
p-value is also displayed. A distribution with a lower AIC, CAIC, BIC, and HQIC together with a
higher p value is rated as the top distribution

Table 2 and 5 shows the descriptive statistics for data set 1 and data set 2 respectively. Table 3 and 6 
displays the parameter estimates for the data set 1 and data set 2 respectively. Table 4 and 7 displays 
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the log-likelihood, Akaike information criteria (AIC), BIC (Bayesian information criterion) etc. details 
and some other statistics for the data set 1 and data set 2. 

Table 2. Descriptive Statistics for data set 1 

Table 3. The ML Estimates and standard error of the unknown parameters 

Model WIPRD NMWD AWD PGD IPRD WD LD HD 
̂  11.4370 0.01469 0.00292 0.00438 --------- 0.003775 --------- --------- 
̂ 0.7586 0.00100 0.00100 2.72725 --------- 4.69909 --------- 0.00100 

̂ 60.8587 3.14576 4.68182 0.71363 15.1809 ----------- 0.53923 2.28724 

̂ 0.91032 0.43441 4.54990 --------- 0.91031 ----------- --------- --------- 

Stan-
dard 
Error 

̂  5.880 0.0063 0.00081 0.00165 --------- 0.00105 --------- --------- 
̂ 0.5707 0.00034 0.00058 0.51536 --------- 0.22866 --------- 0.62231 

̂ 53.0940 0.29681 0.21350 0.09294 2.34246 ----------- 0.04958 0.05084 

̂ 0.0810 0.26257 0.26577 --------- 0.08109 ----------- --------- --------- 

Table 4. Performance of distributions 

Model WIPRD NMWD AWD PGD IPRD WD LD HD 
-2logl 111.612 138.816 124.704 134.466 185.528 124.546 242.714 150.514 
AIC 119.612 146.816 132.705 140.466 189.528 128.546 244.715 154.515 
AICC 120.301 147.505 133.395 146.896 193.814 128.746 244.780 154.715 
HQIC 122.983 150.187 136.077 140.873 189.728 130.232 245.558 156.201 
BIC 128.184 155.388 141.278 142.995 191.214 132.832 246.858 158.802 
K-S Value 0.08215 0.1448 0.11151 0 .143 0.35439 0.11139 0.4308 0.21545 
P Value 0.7888 0.1424 0.4137 0.152 2.68e-07 0.4151 1.39e-10 0.00576 

 Table 5. Descriptive Statistics for data set 2 

Mean  Min. Max. Q1 Q3 Median  S.D Skew. Kurt. 
3.059 1.901 5.020 2.554 3.421 2.996 0.620 0.632 3.286 

Mean  Min. Max. Q1 Q3 Median  S.D Skew. Kurt. 
8.156 1.518 18.474 4.146 11.341 7.445 4.5267 0.4523 2.1281 
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Table 6. The ML Estimates and standard error of the unknown parameters 

Table 7. Performance of distributions 

Model WIPRD NMWD AWD PGD IPRD WD LD HD 
-2logl 267.932 336.232 336.232 334.882 289.302 335.404 346.598 362.508 
AIC 275.932 344.232 344.232 340.882 293.302 339.404 348.599 366.508 
AICC 276.673 344.973 344.973 341.319 293.516 339.618 348.669 366.722 
HQIC 279.176 347.476 347.476 343.315 294.924 341.026 349.410 368.129 
BIC 284.242 352.543 352.543 347.115 297.457 343.559 350.677 370.663 
K-S Value 0.10235 0.12345 0.21187 0.12154 0.22795 0.121 0.14516 0.21409 
P Value 0.5331 0.3041 0.00839 0.3216 0.00354 0.3268 0.1506 0.00748 

As it is obvious from table 4 and table 7 that the Weibull inverse power Rayleigh distribution has 
smaller values for AIC, AICC, BIC, HQIC and K-S statistics as compared with its sub models. 
Accordingly we arrive at the conclusion that Weibull inverse power Rayleigh distribution provides an 
adequate fit than the compared ones. 

Model WIPRD NMWD AWD PGD IPRD WD LD HD 
̂  0.2065 0.02612 0.02612 0.01746 --------- 0.014105 --------- --------- 
̂ 0.82124 0.00100 0.00100 0.00387 --------- 1.918049 --------- 21.5900 

̂ 11.26308 1.434910 1.43491 1.75839 22.8479 ----------- 0.222869 0.81384 

̂ 0.51936 0.293231 0.29323 --------- 0.51936 ----------- --------- --------- 

Stan-
dard 
Error 

̂  0.16217 0.01111 0.01111 0.01006 --------- 0.006603 --------- --------- 
̂ 0.12048 0.013344 0.01334 0.00864 --------- 0.18601 --------- 28.7503 

̂ 7.0582 0.15826 0.15826 0.31366 3.6430 ----------- 0.02068 0.05698 

̂ 0.04781 0.23093 0.230931 --------- 0.04781 ----------- --------- --------- 
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 Figure e, f, g and h represents the estimated densities and cdfs of the fitted distributions to data set 1st 
and 2nd. 

XV. Conclusion

This newly introduced distribution “Weibull inverse power Rayleigh distribution” which is obtained 
by T-X method. Several mathematical quantities for the newly developed distribution are derived 
including moments, moment generating function, incomplete moments, order statistics, different 
measure of entropies etc. To show the behavior of p.d.f, c.d.f and other related measures different plots 
have been drawn. The parameters are obtained by MLE technique. Lastly by carrying out through two 
real life data sets to show that the formulated distribution leads an improved fit than the compared 
ones. 
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Abstract

In this article, we propose the estimators for the parameters of exponentiated exponential distribution
under generalized progressive hybrid censoring scheme obtained through different methods of estimations
like maximum likelihood, Maximum product spacing, Bootstrap and Bayesian. Asymptotic confidence,
Bootstrap and HPD intervals have also been computed. Moreover, Stress Strength reliability estimation
is also discussed. The performance of the estimators have been studied in terms of their MSEs. Bayesian
prediction of future observations has also been attempted. For illustrating the proposed methodology, a
real data set is taken into account.

Keywords: Exponentiated Exponential distribution, generalized progressive hybrid censoring
scheme, Stress-Strength Reliability, Bayes estimates, Bayesian prediction.

1. Introduction

The progressive hybrid censoring schemes has gained considerable attention in past few years.
[1] and [2] have considered progressive hybrid type-I censoring scheme. In PHT-I, n units are
put on test with progressive censoring scheme (R1, R2, ···, Rm) and the time of termination of the
experiment is fixed as T∗ = min{Xm:m:n, T}(Xm:m:n denotes mth order failure time), T ∈ (0, ∞)
and 1 ≤ m ≤ n are prefixed constants. In PHT-I,test can never exceed T which facilitates reduction
in time and cost of the experimentation. The problem arises when the unknown average life time
is higher than the stopping time that results to a status with less than m failures to be observed.
It ultimately reduces the efficiency of the inference based on the censored data.

[2] further proposed progressive hybrid type-II censoring scheme. In PHT-II, the experiment
is terminated at time T∗ = max{Xm:m:n, T} which assures at least m number of failures (see [2]).
When Xm:m:n > T, the experiment is terminated at mth failure with withdrawals occurring at each
failure according to pre-specified progressive scheme (R1, R2, ···, Rm) that may lead to significant
increase in the time of termination. On the other hand, when Xm:m:n < T, we observe failure
upto time T. The termination time in this censoring scheme is unknown to the experimenter.
From the above discussion, we note that PHT-I censoring keeps the termination time of the
experiment below prefixed value by compromising the efficiency where as PHT-II censoring
ensures efficiency more than the prefixed level but compromises the termination time. Therefore,
need for a censoring scheme controlling termination time and efficiency simultaneously was felt.
Keeping this point in mind, [3] introduced a censoring scheme called generalized progressive
hybrid (GPH) censoring scheme.
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The paper envisages exponentiated exponential distribution(EED) as a lifetime distribution
which was introduced by [4]. Many author studied the EED, see [5], [6] and [7].

The probability density function of EED is given as

f (x|α, β) = αβe−βx(1 − e−βx)α−1; x ≥ 0, α, β > 0. (1)

where α and β are the shape and scale parameters and the cumulative distribution function is
given by

F(x|α, β) = (1 − e−βx)α. (2)

The requisition for the prediction of future sample on the basis of current information started
burgeoning demand since it has found application in a wide range of activities including science,
engineering, statistics, social sciences and other applied areas. Predictive inference facilitates to
infer about future lifetimes using observed data. This impetus is welcomed by many authors and
they made successful effort to draft the problem of Bayesian prediction of future observations
based on various types of censored data from different lifetime models. A lot of research paper is
available in literature on the prediction problem in case of censored as well as complete data (see
[8], [9],[10], [11],[12]).

The paper is organized as follows. Section 2 describes the censoring scheme in detail. Section
3 provides estimates through different methods of estimation i.e. Maximum Likelihood estimates,
estimates through Maximum product spacing method, Bootstrap estimates and Bayesian Estimates.
Section 4 is about Bayesian Prediction of future observations based on GPH censored data in
which both one sample prediction and two sample prediction has been attempted. It also contains
stress strength reliability estimates. In section 5, a real data set is considered to demonstrate
the applicability of the methodology. In section 6, a simulation study is conducted. Finally,
conclusions are summarized in section 7.

2. The Censoring Scheme

Let the experiment begins with n units. The lifetime of the sample units X1, X2, · · ·, Xn are
supposed to be independent and identically distributed random variables from a distribution
with cumulative density function (cdf) F(·) and probability density function (pdf) f (·). we
have prefixed integers k, m ∈ {1, 2, · · ·, n} such that k < m. Let Ri denotes the number of units
which are randomly removed from the experiment at ith failure obeying the condition that
∑m

i=1 Ri + m = n. The test is terminated at the stopping time T∗ = max{Xk:m:n, min{Xm:m:n, T}}.
It may be noted that this scheme guarantees a bare minimum number of k failures. Let D be the
number of observed failures up to time T. Then for observed observations, following three cases
arise under this scheme:

Case-I: X1:m:n, · · · , X2:m:n, · · · , Xk:m:n, if T < Xk:m:n,

Case-II: X1:m:n, · · · , Xk:m:n, · · · , XD:m:n, if Xk:m:n < T < Xm:m:n,

Case-III: X1:m:n, · · · , Xk:m:n, · · · , Xm:m:n, if Xk:m:n < Xm:m:n < T.

A schematic representation of this censoring scheme is given in figure 1. Note that for the
Case-I, Xk+1:m:n, · · ·, Xm:m:n are not observed; likewise for the Case-II, XD+1:m:n, · · ·, Xm:n:n are not
observed. Given a generalised progressive censored sample, the likelihood function for Case-I,
Case-II and Case-III denoted by LI(α, β), LI I(α, β)and LI I I(α, β) is given below:

Case-I: LI(α, β) = K1

k−1

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj f (xk:m:n)[1 − F(xk:m:n)]

R∗
k ,

Case-II: LI I(α, β) = K2

D

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj [1 − F(T)]R

∗
D+1 ,

Case-III: LI I I(α, β) = K3

m

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj ,

(3)
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Figure 1: Schematic representation of generalised progressive hybrid censoring Scheme

where K1 = [∏k
j=1 ∑m

k=j(Rk + 1)], K2 = [∏D
j=1 ∑m

k=j(Rk + 1)], K3 = [∏m
j=1 ∑m

k=j(Rk + 1)], R∗
k =

[n − k − ∑k−1
i=1 Ri] and R∗

D+1=[n − D − ∑D
i=1 Ri].

3. Estimation

3.1. Classical Estimation

3.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most felicitous method in classical paradigm to
obtain the estimates of the parameters of proposed distribution. In this section, we will find the
MLEs of α and β of the considered distribution. The MLEs α̂ and β̂ of α and β, respectively can be
obtained by maximising the likelihood function. Using the equations (1) and (2), the likelihood
can be written as :

L(α, β) ∝ (αβ)J
J

∏
j=1

(1 − e−βxj)α−1e−βxj [1 − (1 − e−βxj)α]Rj × W(α, β), (4)

where W(α, β) =

{
1, if J = k, m[
1 − (1 − e−βT)α

]R∗
D+1 , if J = D.

and hence log-likelihood equation will be

l(α, β) ∝J × ln(αβ) + (α − 1)
J

∑
j=1

ln(1 − e−βxj)

+
J

∑
j=1

Rj ln[1 − (1 − e−βxj)α]− β
J

∑
j=1

xj + ln W(α, β),

(5)

RT&A, No 2 (68) 
Volume 17, June 2022 

293



A. Pandey, A. Kaushik & S. K. Singh
ESTIMATION AND PREDICTION UNDER GPH CENSORING

Differentiating it with respect to the parameters α and β respectively, we get :

∂l(α, β)

∂α
=

J
α
+

J

∑
j=1

ln(1 − e−βxj )−
J

∑
j=1

Rj(1 − e−βxj )α ln(1 − e−βxj )

1 − (1 − e−βxj )α
+

∂ ln W(α, β)

∂α
(6)

∂l(α, β)

∂β
=

J
β
+ (α − 1)

J

∑
j=1

xje
−βxj

(1 − e−βxj )
−

J

∑
j=1

Rjα(1 − e−βxj )α−1xje
−βxj

1 − (1 − e−βxj )α
−

J

∑
j=1

xj +
∂ ln W(α, β)

∂β
(7)

where ∂ ln W(α,β)
∂α = −

R∗D+1(1−e−βT )α

1−(1−e−βT )α
× ln(1− e−βT) and ∂ ln W(α,β)

∂β = −
R∗D+1α(1−e−βT )α−1

1−(1−e−βT )α
×Te−βT, if J = D and zero otherwise.

The MLE of α and β can be obtained by solving likelihood equations (6) and (7) simultaneously.
But it may be noted that explicit solutions of the above equations are difficult to find. Therefore,
we propose the use of numerical method to obtain the solution for the above two non linear
equations.

3.1.2 Maximum Product Spacing Method

It has underscored that for small samples MPS often perform better than MLE. The asymptotic
behaviour of both MPS and MLE methods is same. In this section the method of product of
spacings is proposed for point estimation of parameters of EED under GPH censoring scheme.
The product spacing, denoted as G, is defined as product of the probabilities of an observation
lying in the intervals induced by the sample observations and MPS estimates are values of
the parameters that maximizes G . The expressions for G and corresponding equations whose
solutions provide the MPS estimates are given below:
For Case I and Case III:

G ∝
J+1

∏
i=1

[F(xi)− F(xi−1)]
J

∏
i=1

[1 − F(xi)]
Ri

∝
J+1

∏
i=1

[(1 − e−βxi )α − (1 − e−βxi−1)α]
J

∏
i=1

[1 − (1 − e−βxi )α]Ri

The logarithm of G is

logG ∝
J+1

∑
i=1

log[(1 − e−βxi )α − (1 − e−βxi−1)α] +
J

∑
i=1

Rilog[1 − (1 − e−βxi )α] (8)

The partial derivatives with respect to the parameters when equated to zero gives the following:

dlogG
dα

=
J+1

∑
i=1

(1 − e−βxi )αlog(1 − e−βxi )− (1 − e−βxi−1)αlog(1 − e−βxi−1)

[(1 − e−βxi )α − (1 − e−βxi−1)α]

−
J

∑
i=1

Ri
(1 − e−βxi )αlog(1 − e−βxi )

[1 − (1 − e−βxi )α]
= 0

(9)

dlogG
dβ

=
J+1

∑
i=1

α(1 − e−βxi )α−1e−βxi xi − α(1 − e−βxi−1)α−1e−βxi−1 xi−1

[(1 − e−βxi )α − (1 − e−βxi−1)α]

−
J

∑
i=1

Ri
α(1 − e−βxi )α−1e−βxi xi

[1 − (1 − e−βxi )α]
= 0

(10)

For Case II:

G ∝
D

∏
i=1

[F(xi)− F(xi−1)](F(T)− F(D))(1 − F(T))
D

∏
i=1

[1 − F(xi)]
Ri [1 − F(T)]R

∗
D+1

∝
D

∏
i=1

[(1 − e−βxi )α − (1 − e−βxi−1)α][(1 − e−βT)α − (1 − e−βD)α][1 − (1 − e−βT)α]

D

∏
i=1

[1 − (1 − e−βxi )α]Ri [1 − (1 − e−βT)α]R
∗
D+1
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and

logG ∝
D

∑
i=1

log[(1 − e−βxi )α − (1 − e−βxi−1)α] + log[(1 − e−βT)α − (1 − e−βD)α]

+ log[1 − (1 − e−βT)α] +
D

∑
i=1

Rilog[1 − (1 − e−βxi )α] + R∗
D+1log[1 − (1 − e−βT)α]

The resulting equations are

dlogG
dα

=
D

∑
i=1

(1 − e−βxi )αlog(1 − e−βxi )− (1 − e−βxi−1)αlog(1 − e−βxi−1)

[(1 − e−βxi )α − (1 − e−βxi−1)α]

+
(1 − e−βT)αlog(1 − e−βT)− (1 − e−βD)αlog(1 − e−βD)

[(1 − e−βT)α − (1 − e−βD)α]

− (1 − e−βT)αlog(1 − e−βT)

[1 − (1 − e−βT)α]
−

D

∑
i=1

Ri
(1 − e−βxi )αlog(1 − e−βxi )

[1 − (1 − e−βxi )α]

− R∗
D+1

(1 − e−βT)αlog(1 − e−βT)

[1 − (1 − e−βT)α]
= 0

(11)

dlogG
dβ

=
D

∑
i=1

α(1 − e−βxi )α−1e−βxi xi − α(1 − e−βxi−1)α−1e−βxi−1 xi−1

[(1 − e−βxi )α − (1 − e−βxi−1)α]

+
α(1 − e−βT)α−1e−βTT − α(1 − e−βD)α−1e−βDD

[(1 − e−βT)α − (1 − e−βD)α]

− α(1 − e−βT)α−1e−βTT
[1 − (1 − e−βT)α]

−
D

∑
i=1

Ri
α(1 − e−βxi )α−1e−βxi xi

[1 − (1 − e−βxi )α]

− R∗
D+1

α(1 − e−βT)α−1e−βTT
[1 − (1 − e−βT)α]

= 0

(12)

Similar to the likelihood equations, MPS equations are also non-linear equations, thus an
approach similar to that proposed for MLE is to used here also.

3.1.3 Bootstrap Estimates

The asymptotic confidence intervals are generally expected not to perform well when the effective
sample size is small. The key provision that seeks to address such problems is re-sampling
technique such as bootstrap. This tool provides a tactical way as it would give more accurate
approximate confidence interval. Basically a couple of methods are available in literature to find
bootstrap confidence intervals for the parameter of interest. One is percentile bootstrap (Boot-p)
confidence interval given by [13] and another one is student’s t bootstrap (Boot-t) confidence
interval suggested by [14]. The generation algorithm for GPH censored sample is discussed in
section 6. We propose to use the following algorithm to generate parametric bootstrap samples,
suggested by [15] as given below.
Algorithm:

Step 1. Compute α̂ and β̂ which is nothing but the ML estimate of the parameter α and β
respectively based on GPH censored sample x = (x1:J:n, x2:J:n, · · ·, xJ:J:n).

Step 2. Generate the bootstrap GPH censored samples x∗ = (x∗1:J:n, x∗2:J:n, · · ·, x∗J:J:n) from EED
with parameters α̂ and β̂ by using algorithm given in section 6. From these data, we compute
bootstrap estimates say, α̂∗ and β̂∗.

Step 3. Repeat step 2, B times to obtain a set of bootstrap GPH censored samples of α and β as
(α̂∗1 , α̂∗2 , · · ·, α̂∗B) and (β̂∗

1, β̂∗
2, · · ·, β̂∗

B).
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From the bootstrap samples generated from the above algorithm, the bootstrap confidence
intervals for the parameters α and β can be obtained by Boot-p method which is as follows: Let
G(x) = Prob(α̂∗ ≤ x) be the cdf of α̂∗. Define α̂Boot(x)=G−1(x) for given x. The 100(1 − ζ)%

bootstrap percentile interval for α is given by
(

α̂Boot

(
ζ
2

)
, α̂Boot

(
1 − ζ

2

))
, which is ζ

2 and (1 − ζ
2 )

quantiles of bootstrap sample α̂∗1 , α̂∗2 , · · ·, α̂∗B. In the similar fashion we can obtain bootstrap
percentile interval for β.

3.2. Bayesian Estimation

This section contains the method of obtaining Bayes estimates of the parameters α and β based
on GPH censored data with prefixed removals. In order to obtain Bayes estimators, we assume
that the parameters α and β are random variables which are independently distributed having
prior distribution as:

g1(α) =
λν1

1
Γν1

e(−λ1α)αν1−1; 0 < α < ∞, λ1 > 0, ν1 > 0 (13)

g2(β) =
λν2

2
Γν2

e(−λ2β)βν2−1; 0 < β < ∞, λ2 > 0, ν2 > 0 (14)

respectively. Combining the priors given by (13) and (14) with likelihood function in (4), we

obtain the joint posterior density function of α and β given as π(α, β|x, R) =
J1

J0
, where

J1 =
λν1

1
Γν1

λν2
2

Γν2
e−(λ1α+λ2 β)α(J+ν1−1)β(J+ν2−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj e−βxj (15)

and J0 =
∫ ∫

J1dαdβ. Bayes estimators α̂E and β̂E of α and β under SELF(squared error loss
function) can be obtained as

α̂B =
∫ ∞

0

∫ ∞

0
απ1(α|x, R)dαdβ, β̂B =

∫ ∞

0

∫ ∞

0
βπ2(β|x, R)dαdβ (16)

The integrals involved in equation (16) can not be simplified in any standard form. So we use
MCMC numerical technique to obtain the estimates. We have used Metropolis-Hastings within
Gibbs sampling. The full conditional posterior distribution of parameters α and β are

π1(α|x, R) =
λν1

1
Γν1

λν2
2

Γν2
e−(λ1α)α(J+ν1−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj W(α, β) (17)

π2(β|x, R) =
λν1

1
Γν1

λν2
2

Γν2
e−(λ2 β)β(J+ν2−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj e−βxj W(α, β) (18)

The algorithm consists of following steps:
1. Set i=1 and initial guesses of α and β say the are α0 and β0.

2. Using Metropolis algorithm, Generate (αi, βi) from π(α, β, x, R).

3. Repeat steps 2-4, N number of times and obtain (α1, β1),(α2, β2)· · · (αN , βN).

4. Obtain the Bayes estimates of α and β under SELF as [E(α|data)] =

[
1

N − N0
∑N

i=N0+1 αi

]
and

[E(β|data)] =
[

1
N − N0

∑N
i=N0+1 βi

]
. Where N0 is the burn in period.

5. The HPD credible intervals for α and β can be obtained by using algorithm given by [16]. Let
the ordered MCMC sample be (α[1], α[2], · · ·, α[N]) and (β[1], β[2], · · · , β[N]). Futher 100(1 − ζ)%
credible intervals of the parameters are constructed say (α⌊1⌋, α⌊N(1−ζ)⌋), · · · , (α⌊Nζ⌋, α⌊N⌋) and
(β⌊1⌋, β⌊N(1−ζ)⌋), · · · , (β⌊Nζ⌋, β⌊N⌋). Where⌊x⌋ denotes the greatest integer less than or equal to
x. The HPD credible interval of α and β is that interval which has shortest length.
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4. Bayesian Prediction

4.1. One Sample Prediction

The Bayes prediction of an unknown observation which belongs to the future sample based on
the current information available to us, would be a great tool to have an idea about lifetime
of unobserved data. The one sample facilitates us to predict the lifetime of future ordered
observation which may not be observed due to censoring. In the current section, we have derived
the predictive posteriors for the future observations from EED using the informative sample that
has been observed under GPH censoring scheme.

Let x(1), x(2), · · ·, x(i) be the ordered observed sample and y(1:r1)
, y(2:r2)

, · · ·, y(s:ri)
be future

ordered sample from same parent population where s = 1, 2, · · ·, ri and i = 1, 2, · · ·, J (J = k for
case-II, J = D for case-I, and J = m for case-III) . From [17], the conditional PDF of y(s:ri)

given
x(i) is obtained as

f (y(s:ri)
|x(i)) =


(n − i)!

(s − 1)!(n − i − s)!

[1 − F(y(s:ri )
)]n−i−s

[1 − F(x(i) )]
n−i [F(y(s:ri )

)− F(x(i) )]
s−1 f (y(s:ri )

);

for case-I and case-III

(n − i)!
(s − 1)!(n − i − s)!

[1 − F(y(s:ri )
)]n−i−s

[1 − F(T)]n−i [F(y(s:ri )
)− F(T)]s−1 f (y(s:ri )

);

for case-II.

(19)

After putting the pdf and cdf from equations (1) and (2), we get

f (y(s:ri)
|x(i)) =



(n − i)!
(s − 1)!(n − i − s)!

[1 − (1 − exp(−βy(s:ri)
))α]n−i−s

[1 − (1 − exp(−βx(i)))α]n−i

[(1 − exp(−βy(s:ri)
))α − (1 − exp(−βx(i)))

α]s−1

αβexp(−βy(s:ri)
)(1 − exp(−βy(s:ri)

))α−1; for case I and case-III

(n − i)!
(s − 1)!(n − i − s)!

[1 − (1 − exp(−βy(s:ri)
))α]n−i−s

[1 − (1 − exp(−βT))α]n−i

[(1 − exp(−βy(s:ri)
))α − (1 − exp(−βT))α]s−1

αβexp(−βy(s:ri)
)(1 − exp(−βy(s:ri)

))α−1; for case-II.

(20)

Then, the predictive posterior density of future observation under GPH censoring scheme can be
obtained as

f1(y(s:ri)
|x̃) =

∫ ∞

0

∫ ∞

0
f (y(s:ri)

|α, β, x̃)π(α, β|x̃)dαdβ. (21)

Since the integrals involved in the expression can not be simplified to closed form suggest to use
the numerical methods.

The MCMC sample {(αi, βi), i = 1, 2, · · ·, M} obtained from π(α, β|x̃) using Gibbs algorithm
can be utilized to obtain consistent estimate of f1(y(s:ri)

|x̃) as

f ∗1 (y(s:ri)
|x̃) = 1

M − M0

M−M0

∑
i=1

f (y(s:ri)
|αi, βi, x̃) (22)

Where M0 denotes the burn-in-period of Markov Chain. Furthermore, the Survival Function of
the future sample can be obtained as

Sy(s:ri)
(T) =1 −

∫ T

y(s:ri)
=x(J)

f1(y(s:ri)
|x̃)dy(s:ri)

=1 −
∫ T

y(s)=x(J)

∫ ∞

0

∫ ∞

0
f (y(s:ri)

|α, β, x̃)π(α, β|x̃)dαdβdy(s:ri)

(23)

Moreover, the two sided 100(1 − δ)% prediction intervals (Ls:ri , Us:ri ) for y(s:ri)
can be obtained by

solving the following two equations P(y(s:ri)
> Us:ri |x̃) = δ

2 and P(y(s:ri)
> Ls:ri |x̃) = 1 − δ

2 . The
confidence interval can be obtained by any iterative method as the above equations can not be
solved analytically.
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4.2. Two Sample Prediction

There may occur a situation, where the distribution of kth order statistics is independent of the
informative sample i.e. f (y(k)|α, β, x̃) is same as f (y(k)|α, β). This is the case of two sample
prediction problem. The experimenter is interested in kth failure time of a future sample of size N
following the same lifetime distribution. The PDF of kth order statistics is given by: (see [17])

p(y(k)|α, β) =
N!

(k − 1)!(N − k)!
[F(y(k))]

k−1[1 − F(y(k))]
N−k f (y(k)). (24)

after putting the pdf and cdf from equations (1) and (2), we get

p(y(k)|α, β) =
N!

(k − 1)!(N − k)!
(1 − exp(−βy(k)))

α(k−1)[1 − (1 − exp(−βy(k)))
α]N−k

αβexp(−βy(k))(1 − exp(−βy(k)))
α−1

(25)

The predictive posterior density of future observations under GPH censoring scheme is given by

p1(y(k)|x̃) =
∫ ∞

0

∫ ∞

0
p(y(k)|α, β, x̃)π(α, β|x̃)dαdβ. (26)

Since the above equation can not be solved analytically. Therefore we use MCMC method along
with Gibbs algorithm to obtain the consistent estimator of p1(y(k)|x̃) is given by

p∗1(y(k)|x̃) =
1

M − M0

M−M0

∑
i=1

p(y(k)|αi, βi), (27)

where M0 is the burn-in-period. The survival function of future sample can be defined as

Sy(k)(T) =1 −
∫ T

y(k)=0
p1(y(k)|x̃)dy(k)

=1 −
∫ T

y(k)=0

∫ ∞

0

∫ ∞

0
p(y(k)|α, β, x̃)π(α, β|x̃)dαdβdy(k).

(28)

The two sided 100(1 − δ)% prediction interval (Lk, Uk) for y(k) can be obtained by solving the
equations P(y(k) > Uk|x̃) = δ

2 and P(y(k) > Lk|x̃) = 1 − δ
2 . The confidence interval can be

obtained by any iterative method as the above equations can not be solved analytically.

4.3. Stress Strength Reliability

The problem of stress strength reliability estimation is not new rather it has a long history. The
term stress strength was first introduced by [18]. Since then, a lot of works have been done in this
direction including parametric and non-parametric in nature. One may navigate through some
recent works as [19] and [20]. This section discusses the inferential procedure of stress strength
reliability R = P(X < Y), when X and Y are independent and following EED with parameters
(α1, β1) and (α2, β2) respectively. In a reliability study, let X denotes the strength of the unit and
Y denotes the magnitude of stress applied to the unit by operating environment. A unit will
function well if its strength is greater than the stress imposed on it. The stress-strength reliability
R of the system is defined as

R =Pr[X < Y] =
∫ ∞

0

∫ ∞

y
fX(x) fY(y)dxdy

=
∫ ∞

0
fY(y)(1 − FX(y))dy

=
∫ ∞

0
α2β2e−β2y(1 − e−β2y)α2−1[1 − (1 − e−β1y)α1 ]dy

=1 − α2

∞

∑
i=0

(α1

i

)
(−1)iB

(
α2,

iβ1

β2
+ 1

)
(29)

RT&A, No 2 (68) 
Volume 17, June 2022 

298



A. Pandey, A. Kaushik & S. K. Singh
ESTIMATION AND PREDICTION UNDER GPH CENSORING

In a special case, when β1 = β2, this reduced to R =
α1

α1 + α2
. Further, one can compute the

estimate of R by using the method discussed in section 3.

5. Real Data Illustration

This section deals with real life applicability of proposed methodology. The data set comprises
survival times of two groups of patients suffering from head neck cancer disease which was
reported by [21]. First group of patients are treated with radiotherapy whereas second group of
patients are treated with both radiotherapy and chemotherapy. The data set is as follows:
Data-1(X): 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91, 108,
112, 129, 133,133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165,
173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.
Data-2(Y): 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47,
81, 43, 84, 92,94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319,
339, 432, 469, 519, 633, 725,817, 1776.
Before advancing further, we first check the validity of EED for the above data sets. The summary
of data fit is quoted here:

Data Set p-value KS-distance LogL AIC BIC α̂ML SE(α̂ML) β̂ML SE(β̂ML)
RT 0.0646 0.1720 -372.3767 748.7535 752.8743 1.0636 0.1851 0.0046 0.0007

RT+CT 0.2505 0.1498 -281.9551 567.9101 571.4785 1.0730 0.2178 0.0047 0.0009
So, it is clear that EED fits to the above two data sets. For illustrating the proposed methodology,
we have generated censored data for a prefixed m, k, T and number of removals. We have
considered different removal patterns by fixing values of R1, R2, · · · , Rm for a set of values of m,
k and T. The schemes those have been considered are as follows:

Sm:n
(1): All the removals are at the last failure, i.e. Rm = n − m.

Sm:n
(2): All the removals are at the first failure, i.e. R1 = n − m.

Sm:n
(3): The removals are at the first and last failure, i.e. R1 = Rm = (n − m)/2.

Sm:n
(4): The removals are at middle failure, i.e. Rm/2 = Rm/2+1 = (n − m)/2.
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Figure 2: Contour plot for parameters α(Left) and β(Right) based on generated censored dataset-2.4.

Thus, generated censored datasets are given in Table 1. As mentioned earlier, the likelihood,
product spacing equations and posterior integral do not have explicit solutions, therefore, numer-
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ical approach coupled with R software is maneuvered. Basically optim(·) function is used here to
find the ML and MPS estimates of the parameters. We have used contour plot which is shown in
figure 2 to provide initial guess to the optim(·) function. For more details reader may see [22].
Using the concept of large sample theory, the asymptotic confidence interval for α and β are also
computed and variance of the estimates evaluated by inverse of estimated Fisher Information
matrix. The point and asymptotic confidence interval estimates, thus obtained, are summarized
in table 2.

Table 1: The censored datasets generated from real datasets by considering different choices of k, m, T and removal
patterns

k m T Scheme Generated data-points Data Name
Data-1(RT)

25 40 600 S(4) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 53.62, 63,
64, 83, 84, 91, 108, 112, 129, 133, 140, 140, 146, 154, 160, 160, 160,
165, 218, 225, 241, 248, 273, 417, 523, 594)

1.1

25 40 600 S(3) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 41.55, 42, 45.28, 53.62, 63, 64, 84,
91, 108, 112, 129, 133, 133, 140, 146, 146, 149, 154, 154, 157, 157,
160, 160, 160, 160, 165, 165, 173, 176, 218, 225, 241, 248, 273)

1.2

25 40 600 S(2) (6.53, 10.42, 14.48, 16.1, 22.7, 41.55, 42, 45.28, 49.4, 63, 64, 84, 91,
112, 133, 139, 140, 146, 146, 149, 157, 157, 160, 160, 160, 165, 173,
218, 225, 241, 248, 273, 277, 297, 405, 420, 583, 594)

1.3

25 40 600 S(1) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 53.62, 63,
64, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 146, 149,
149, 154, 154, 157, 157, 160, 160, 160, 160, 165, 165, 173)

1.4

Data-2(RT+CT)
20 30 600 S(4) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 43, 47.38, 55.46, 58.36,

63.47, 68.46, 74.47, 78.26, 84, 92, 119, 127, 133, 140, 146, 173, 179,
194, 195, 209, 281, 339, 519)

2.1

20 30 600 S(3) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 43, 47.38, 55.46, 58.36, 63.47,
68.46, 74.47, 81, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 159,
179, 194, 195, 209, 249)

2.2

20 30 600 S(2) (12.2, 23.56, 23.74, 25.87, 37, 43, 63.47, 68.46, 74.47, 78.26, 81, 84,
92, 110, 112, 119, 127, 133, 146, 155, 159, 173, 179, 194, 209, 249,
319, 469, 519)

2.3

20 30 600 S(1) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 43, 47.38, 55.46, 58.36,
63.47, 68.46, 74.47, 78.26, 81, 84, 92, 94, 110, 112, 119, 127, 130, 133,
140, 146, 155, 159, 173)

2.4
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Figure 3: Iteration and density plot of MCMC sample for parameters α (Left) and β (Right) for dataset-2.4.

To compute Bayes estimates for considered dataset, we have used MCMC technique discussed
in Section 3.2. Following [23], we ran three MCMC chains with initial values selected as MLE,
MLE - (asymptotic standard deviation) and MLE + (asymptotic standard deviation), respectively.
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Table 2: ML, MPS, Bayes and Bootstrap estimates with their respective 95% CI of parameters (within bracket) for
generated censored datasets

Datasets α̂ML α̂MP α̂B α̂Boot
1.1 0.9116(0.5719,1.2443) 0.8971(0.5889,1.2346) 0.8955(0.5912,1.2341) 0.9003(0.5892,1.2800)
1.2 1.3696(0.8197,1.9074) 1.2563(0.8332,1.9063) 1.2674(0.8572,1.9057) 1.3119(0.8329,2.0743)
1.3 1.0873(0.6322,1.5072) 1.0305(0.6688,1.5061) 1.2249(0.6933,1.4851) 1.0344(0.6688,1.5021)
1.4 1.5528(0.8724,2.1812) 1.4249(0.9307,2.1751) 1.4378(0.9512,2.1749) 1.4689(0.9355,2.2880)
2.1 1.6421(0.8167,2.4140) 1.5305(0.8729,2.4106) 1.4925(0.8728,2.1817) 1.5491(0.7875,2.4105)
2.2 2.3914(1.1093,3.5832) 2.2012(1.2013,3.5812) 2.4258(1.2016,3.2355) 2.1641(1.1022,3.5816)
2.3 1.3544(0.6903,1.9820) 1.3471(0.7367,1.9713) 1.4143(0.7366,1.8731) 1.3384(0.6989,1.9716)
2.4 1.8013(0.8838,2.7044) 1.6441(0.9086,2.6934) 1.7765(0.9084,2.6250) 1.9375(0.9082,2.6942)

Datasets β̂ML β̂MP β̂B β̂Boot
1.1 0.0032(0.0001,0.0123) 0.0032(0.0010,0.0044) 0.0033(0.0013,0.0045) 0.0031(0.0001,0.0115)
1.2 0.0069(0.0034,0.0121) 0.0068(0.0040,0.0094) 0.0067(0.0036,0.0093) 0.0069(0.0033,0.0116)
1.3 0.0047(0.0017,0.0163) 0.0047(0.0017,0.0065) 0.0049(0.0021,0.0065) 0.0049(0.0018,0.0155)
1.4 0.0078(0.0042,0.0148) 0.0078(0.0048,0.0108) 0.0077(0.0041,0.0107) 0.0081(0.0038,0.0145)
2.1 0.0084(0.0047,0.0176) 0.0081(0.0046,0.0120) 0.0091(0.0051,0.0120) 0.0082(0.0045,0.0169)
2.2 0.0124(0.0072,0.0195) 0.0116(0.0064,0.0171) 0.0114(0.0067,0.0171) 0.0115(0.0056,0.0181)
2.3 0.0065(0.0031,0.0134) 0.0065(0.0031,0.0093) 0.0068(0.0032,0.0093) 0.0071(0.0021,0.0126)
2.4 0.0094(0.0040,0.0210) 0.0093(0.0048,0.0134) 0.0101(0.0043,0.0135) 0.0095(0.0042,0.0219)
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Figure 4: Density plot of one sample predicted order statistics with their respective 95% confidence interval.

Figure 3 shows the iterations and density plot of samples generated from the posterior distribution
using the MCMC technique. From this figure, we see that all the three chains have converged and
are well mixed. It is further noted that the posterior of α is approximately symmetric, but the
posterior of β is left skewed. Utilizing these MCMC samples, we computed the Bayes estimates,
following the method discussed in Section 3.2. The ML, MPS, Bayes and bootstrap estimates
of α are denoted by α̂ML, α̂MP, α̂B and α̂Boot respectively. Similarly, the ML, MPS, Bayes and
bootstrap estimates of β are denoted by β̂ML, β̂MP, β̂B and β̂Boot respectively. The point and HPD
interval estimates, thus obtained, are summarized in table 2. In the table 3, we have provided the
ML, MPS, Bayes and bootstrap estimates of stress-strength reliability for various combination of
censored real dataset.

One and two sample predictive densities along with prediction interval for the future ob-
servations are presented in figures 4 and 5, respectively. From figure 4, it is observed that the
proposed predictive interval for ordered observations contain the observed sample observations
and it verifies the applicability of the prediction techniques for real problems.
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Figure 5: Density plot of two sample predicted order statistics with their respective 95% confidence interval.

Table 3: ML, MPS, Bayes and Bootstrap estimates of reliability i.e. P[X < Y] and their respective 95% CI (within
bracket) for generated censored datasets

X-data Y-data MLE MPS Bayes Bootstrap
1.1 2.1 0.3878(0.1787,0.5288) 0.3654(0.1924,0.4988) 0.4060(0.1824,0.5277) 0.3813(0.1705,0.5355)

2.2 0.3526(0.1606,0.5766) 0.3301(0.1708,0.5361) 0.3328(0.1736,0.5652) 0.3377(0.1530,0.5715)
2.3 0.4149(0.2216,0.5831) 0.4046(0.2226,0.5489) 0.4084(0.2640,0.5470) 0.4071(0.2203,0.5587)
2.4 0.3765(0.2414,0.5330) 0.3479(0.2480,0.5074) 0.3707(0.2725,0.5292) 0.3613(0.2388,0.5508)

1.2 2.1 0.4814(0.2659,0.6414) 0.4356(0.2925,0.6119) 0.4864(0.2869,0.5833) 0.5050(0.2615,0.6333)
2.2 0.4389(0.2341,0.6136) 0.3978(0.2566,0.6091) 0.4169(0.2526,0.5616) 0.4512(0.2279,0.6179)
2.3 0.5116(0.3238,0.6443) 0.4713(0.3539,0.6079) 0.4821(0.3366,0.6337) 0.5153(0.3193,0.6693)
2.4 0.4683(0.3082,0.6499) 0.4289(0.3259,0.6055) 0.4426(0.3256,0.5865) 0.4846(0.3013,0.6371)

1.3 2.1 0.4359(0.2384,0.5971) 0.4134(0.2535,0.5661) 0.4201(0.2575,0.5614) 0.4424(0.2502,0.5871)
2.2 0.3963(0.1921,0.6534) 0.3776(0.2043,0.6376) 0.4115(0.2257,0.6047) 0.3915(0.1931,0.6517)
2.3 0.4646(0.2676,0.6356) 0.4570(0.2764,0.5951) 0.5066(0.3044,0.6284) 0.4526(0.2723,0.6223)
2.4 0.4234(0.2299,0.6457) 0.3895(0.2320,0.5831) 0.4316(0.2562,0.6262) 0.4115(0.2274,0.6610)

1.4 2.1 0.4913(0.2661,0.6446) 0.4572(0.2873,0.5917) 0.4515(0.2743,0.6207) 0.4774(0.2763,0.6586)
2.2 0.4477(0.2258,0.6491) 0.4205(0.2358,0.6083) 0.4763(0.2534,0.6061) 0.4638(0.2280,0.6809)
2.3 0.5221(0.3798,0.6829) 0.4964(0.3917,0.6572) 0.4962(0.4234,0.6533) 0.4970(0.3979,0.6771)
2.4 0.4778(0.2264,0.7030) 0.4654(0.2479,0.6595) 0.4398(0.2321,0.7011) 0.4642(0.2253,0.7258)

6. Simulation Study

A simulation study is conducted here to study the performance of the estimates of the parameters
α and β on the basis of MSEs under considered censoring scheme. It is to be mentioned here
that the exact expressions for the MSEs cannot be obtained because the estimators are not found
in explicit form. Therefore, the MSEs of the estimators are estimated on the basis of simulation
study of 5, 000 samples. It may be noted here that the MSEs of the estimators will depend on
values of n, k, m, T, α and β, and hence various choices have been made to study the effect thereof.
To generate a GPH censored sample from the considered distribution, see [24].

Here, we considered a number of values for sample size n. For an informative prior, the
hyper-parameters are chosen on the basis of information possessed by the experimenter. In most
cases, the experimenter can have a notion of what are the expected value of the parameter and
can always associate a degree of belief to this value. In other words, the experimenter can specify
the prior mean and prior variance for the parameters. The prior mean reflects the experimenter’s
belief about the parameter in the form of its expected value, and the prior variance reflects his
confidence in this expected value. Keeping this point in mind, we have chosen hyper-parameters
in such a way that the prior mean is equal to the true value of the parameter, and the belief in
the prior mean is either strong or weak, i.e. the prior variance is small or large, respectively;
for details see [25]. The average ML, MPS, Bayes and bootstrap estimates of parameter with
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corresponding MSEs are given in table 4 and table 5. The bias and MSEs of ML, MPS, Bayes and
bootstrap estimates of reliability function are given in table 6.

Table 4: Average estimate and MSE (within bracket) of different estimators of parameters for varying n and m

n m Scheme α̂ML α̂MP α̂B β̂ML β̂MP β̂B

90 80 S(1) 2.0683(0.1029) 2.0159(0.1025) 2.0686(0.0930) 2.0430(0.0583) 1.9429(0.0577) 2.0516(0.0522)
S(2) 2.0659(0.1029) 1.9642(0.1026) 2.0753(0.0928) 2.0514(0.0581) 1.9653(0.0575) 2.0457(0.0521)
S(3) 2.0615(0.1013) 2.0304(0.1008) 2.0572(0.0911) 2.0229(0.0562) 1.9410(0.0562) 2.0213(0.0506)
S(4) 2.0572(0.1147) 2.0421(0.1132) 2.0529(0.1027) 2.0499(0.0586) 1.9735(0.0582) 2.0524(0.0527)

90 60 S(1) 2.0716(0.1157) 2.0028(0.1146) 2.0665(0.1041) 2.0496(0.0599) 2.0306(0.0591) 2.0474(0.0536)
S(2) 2.0533(0.1136) 2.0070(0.1139) 2.0597(0.1025) 2.0423(0.0578) 1.9675(0.0580) 2.0427(0.0522)
S(3) 2.0493(0.1116) 1.9896(0.1120) 2.0566(0.1007) 2.0215(0.0579) 1.9366(0.0577) 2.0391(0.0520)
S(4) 2.0437(0.1205) 1.9697(0.1197) 2.0608(0.1081) 2.0347(0.0620) 1.9715(0.0616) 2.0378(0.0557)

90 30 S(1) 2.0427(0.1213) 2.0220(0.1212) 2.0542(0.1094) 2.0419(0.0633) 2.0297(0.0633) 2.0290(0.0571)
S(2) 2.0526(0.1190) 2.0442(0.1184) 2.0556(0.1066) 2.0381(0.0620) 1.9808(0.0615) 2.0414(0.0556)
S(3) 2.0597(0.1253) 1.9608(0.1238) 2.0517(0.1124) 2.0275(0.0592) 1.9911(0.0592) 2.0227(0.0534)
S(4) 2.0652(0.1288) 2.0557(0.1279) 2.0645(0.1159) 2.0332(0.0621) 1.9379(0.0619) 2.0346(0.0561)

70 60 S(1) 2.0788(0.1344) 2.0575(0.1334) 2.0653(0.1205) 2.0415(0.0862) 1.9671(0.0861) 2.0381(0.0779)
S(2) 2.0941(0.1319) 2.0183(0.1311) 2.0906(0.1187) 2.0525(0.0852) 1.9892(0.0846) 2.0499(0.0766)
S(3) 2.0459(0.1311) 1.9820(0.1299) 2.0457(0.1176) 2.0458(0.0855) 1.9620(0.0848) 2.0502(0.0768)
S(4) 2.0779(0.1334) 2.0621(0.1332) 2.0878(0.1202) 2.0640(0.0856) 1.9870(0.0852) 2.0706(0.0773)

70 36 S(1) 2.0863(0.1379) 2.0374(0.1373) 2.0739(0.1238) 2.0470(0.0885) 1.9673(0.0886) 2.0562(0.0798)
S(2) 2.0689(0.1368) 2.0609(0.1361) 2.0622(0.1233) 2.0355(0.0874) 1.9803(0.0870) 2.0365(0.0790)
S(3) 2.0585(0.1399) 1.9804(0.1399) 2.0544(0.1260) 2.0425(0.0868) 1.9478(0.0870) 2.0445(0.0783)
S(4) 2.0668(0.1344) 2.0540(0.1332) 2.0738(0.1205) 2.0424(0.0864) 2.0032(0.0863) 2.0434(0.0777)

70 26 S(1) 2.0771(0.1433) 1.9734(0.1414) 2.0694(0.1284) 2.0490(0.0895) 1.9615(0.0889) 2.0585(0.0806)
S(2) 2.0553(0.1459) 2.0013(0.1454) 2.0697(0.1308) 2.0335(0.0889) 1.9611(0.0885) 2.0396(0.0803)
S(3) 2.0675(0.1478) 2.0608(0.1462) 2.0672(0.1324) 2.0371(0.0880) 1.9804(0.0875) 2.0302(0.0792)
S(4) 2.0822(0.1544) 2.0206(0.1539) 2.0721(0.1391) 2.0393(0.0901) 1.9362(0.0892) 2.0475(0.0809)

60 50 S(1) 2.1001(0.1649) 2.0472(0.1631) 2.0961(0.1479) 2.0675(0.0938) 2.0571(0.0941) 2.0819(0.0846)
S(2) 2.0895(0.1657) 2.0075(0.1641) 2.0825(0.1488) 2.0349(0.0946) 1.9453(0.0941) 2.0524(0.0847)
S(3) 2.1037(0.1668) 2.0851(0.1670) 2.1047(0.1505) 2.0471(0.0941) 1.9920(0.0936) 2.0618(0.0845)
S(4) 2.1348(0.1621) 2.0864(0.1602) 2.1254(0.1452) 2.0286(0.0944) 1.9679(0.0939) 2.0310(0.0846)

60 30 S(1) 2.1312(0.1714) 2.1120(0.1699) 2.1313(0.1542) 2.0852(0.0970) 2.0561(0.0963) 2.0740(0.0868)
S(2) 2.1003(0.1721) 2.0910(0.1718) 2.0911(0.1550) 2.0643(0.1087) 1.9843(0.1084) 2.0733(0.0976)
S(3) 2.0848(0.1877) 1.9918(0.1862) 2.0852(0.1691) 2.0417(0.0969) 2.0095(0.0963) 2.0417(0.0869)
S(4) 2.0903(0.1707) 2.0684(0.1693) 2.0889(0.1531) 2.0698(0.0964) 2.0126(0.0965) 2.0588(0.0868)

60 20 S(1) 2.0772(0.1917) 1.9855(0.1908) 2.0894(0.1728) 2.0512(0.1004) 1.9888(0.1001) 2.0654(0.0907)
S(2) 2.0738(0.1928) 2.0258(0.1910) 2.0671(0.1735) 2.0656(0.1136) 2.0601(0.1128) 2.0578(0.1018)
S(3) 2.0822(0.1991) 2.0537(0.1981) 2.0764(0.1792) 2.0573(0.1026) 1.9807(0.1023) 2.0581(0.0927)
S(4) 2.0578(0.1989) 1.9652(0.1975) 2.0492(0.1783) 2.0851(0.1135) 2.0743(0.1128) 2.0853(0.1019)

In the table 4, we have computed average ML, MPS and Bayes estimates of the considered
parameters and their corresponding MSEs for different choices of n, m and censoring schemes
with fix values of parameters α = 0.5 and β = 0.5 and T = 10. Here, three choices of n i.e.
n=60(small), 70(moderate), 90(large) are considered. The value of k are set to be 50% of n
respectively. From this table, we can note that in general, the MSEs decrease as n or m increases
in all the considered cases. It can also be seen that the MSE of the MLE is more than that of
the corresponding MPS and Bayes estimate in all cases; but the difference between the MSEs
of the Bayes and ML estimates decreases for increases in the value of n. Further, MSE of the
Bayes estimate is least among all the considered estimators. For small number of removals i.e. for
large m, the MSEs of both the parameters is less for the removal pattern Sm:n

(2) in comparison to
Sm:n

(1) and MSEs under Sm:n
(3) is observed to be lesser than that for Sm:n

(4). For large number of
removals; the MSEs of both the parameters under removal pattern Sm:n

(1) are lesser than those
under Sm:n

(2) and MSEs under Sm:n
(4) are observed to be less than those for Sm:n

(3) i.e. the trend
shows a reversal from small number of removals.

Table 5 shows the performances of estimates(ML, MPS, Bayes and bootstrap) in terms of MSEs
for varying parameters α and β under GPH censoring scheme for various choices of n and fixed
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Table 5: Average estimate and MSE (within bracket) of different estimators of parameters for varying α and β.

CensoringScheme α β α̂ML α̂MP α̂B β̂ML β̂MP β̂B

n=30,k = 15, m = 22, T = 10, R = (0*10,4*2,0*10)

0.5 0.5 0.5403(0.0107) 0.5348(0.0103) 0.5377(0.0095) 0.5576(0.0278) 0.5511(0.0261) 0.5542(0.0256)
1 0.5421(0.0108) 0.5365(0.0098) 0.5370(0.0100) 1.1394(0.1274) 1.1275(0.1232) 1.1365(0.1209)
2 0.5391(0.0110) 0.5336(0.0103) 0.5363(0.0099) 2.2996(0.5353) 2.2757(0.5192) 2.3057(0.5080)

1 0.5 1.0861(0.0558) 1.0748(0.0532) 1.0935(0.0526) 0.5476(0.0180) 0.5416(0.0171) 0.5493(0.0171)
1 1.0786(0.0572) 1.0673(0.0547) 1.0867(0.0540) 1.0979(0.0736) 1.0859(0.0705) 1.1050(0.0691)
2 1.1054(0.0637) 1.0940(0.0618) 1.1054(0.0597) 2.1994(0.3117) 2.1769(0.3018) 2.1887(0.2957)

2 0.5 2.2099(0.2964) 2.1874(0.2868) 2.2053(0.2812) 0.5402(0.0125) 0.5339(0.0119) 0.5384(0.0116)
1 2.1867(0.3161) 2.1644(0.3061) 2.1925(0.2993) 1.0775(0.0509) 1.0666(0.0489) 1.0775(0.0474)
2 2.2146(0.3599) 2.1921(0.3485) 2.2202(0.3413) 2.1547(0.2041) 2.1330(0.1976) 2.1725(0.1934)

n=50, k = 25, m = 36,T = 10, R =(0*17,7*2,0*17)

0.5 0.5 0.5151(0.0058) 0.5092(0.0048) 0.5151(0.0049) 0.5404(0.0214) 0.5344(0.0203) 0.5416(0.0196)
1 0.5247(0.0067) 0.5189(0.0060) 0.5251(0.0061) 1.0995(0.0801) 1.0878(0.0774) 1.1063(0.0754)
2 0.5267(0.0068) 0.5213(0.0061) 0.5243(0.0055) 2.1800(0.3354) 2.1573(0.3245) 2.1724(0.3184)

1 0.5 1.0615(0.0358) 1.0504(0.0346) 1.0690(0.0337) 0.5350(0.0116) 0.5292(0.0110) 0.5326(0.0101)
1 1.0605(0.0362) 1.0493(0.0342) 1.0659(0.0337) 1.0738(0.0474) 1.0629(0.0455) 1.0715(0.0450)
2 1.0651(0.0379) 1.0539(0.0362) 1.0750(0.0357) 2.1568(0.1843) 2.1344(0.178) 2.1626(0.1743)

2 0.5 2.1991(0.1615) 2.1763(0.1560) 2.1869(0.1529) 0.5335(0.0082) 0.5280(0.0076) 0.5341(0.0068)
1 2.1376(0.1696) 2.1159(0.1641) 2.1168(0.1608) 1.0350(0.0269) 1.0240(0.0259) 1.0341(0.0251)
2 2.1527(0.1754) 2.1310(0.1697) 2.1387(0.1663) 2.1274(0.1095) 2.1058(0.1061) 2.1468(0.1033)

n=100, k = 50, m = 72, T = 10, R = (0*35,14*2,0*35)

0.5 0.5 0.5094(0.0027) 0.5040(0.0025) 0.5081(0.0020) 0.5183(0.0081) 0.5129(0.0077) 0.5176(0.0069)
1 0.5058(0.0028) 0.4998(0.0025) 0.508(0.0021) 1.0371(0.0337) 1.0263(0.0319) 1.0391(0.0320)
2 0.5134(0.0028) 0.5075(0.0026) 0.5107(0.0019) 2.0918(0.1205) 2.0706(0.1164) 2.0924(0.1139)

1 0.5 1.0293(0.0145) 1.0186(0.0137) 1.0383(0.0131) 0.5131(0.0045) 0.5075(0.0042) 0.5126(0.0038)
1 1.0324(0.0151) 1.0215(0.0141) 1.0365(0.0141) 1.0438(0.0203) 1.0332(0.0197) 1.0369(0.0191)
2 1.0242(0.0159) 1.0131(0.0153) 1.0159(0.0150) 2.0526(0.0775) 2.0316(0.0746) 2.0599(0.0735)

2 0.5 2.0463(0.0779) 2.0255(0.0750) 2.0663(0.0738) 0.5101(0.0032) 0.5041(0.0027) 0.5111(0.0023)
1 2.0972(0.0798) 2.0755(0.0771) 2.0777(0.0752) 1.0324(0.0143) 1.0221(0.0137) 1.0413(0.0136)
2 2.0750(0.0808) 2.0542(0.0778) 2.0663(0.0767) 2.0466(0.0525) 2.0256(0.0507) 2.0666(0.0499)

Table 6: Bias and MSE (within bracket) of different estimators of R = P[X < Y] when α = 0.5, β = 0.5, T = 10, k1
and k2 are half of sample size n1 and n2, and m1 and m2 are 80% of sample size n1 and n2 . All entries of
the table are multiplied by 103.

Scheme n1 n2 MLE MPS Bootstrap
Bayes

Large Variance Non-Informative Small Variance
S(2) 30 30 6.9337(4.8475) 6.2974(4.2886) 6.8986(4.7014) 5.8717(4.0551) 5.9223(4.1511) 5.6398(3.0416)

30 50 6.0457(4.2175) 5.4149(3.8425) 6.0143(4.3102) 5.2663(3.7421) 5.2601(3.7564) 5.0293(2.6965)
30 100 5.5791(4.0310) 4.9611(3.5106) 5.6192(3.9752) 4.9102(3.3407) 5.0089(3.3857) 4.6493(2.4892)
50 50 5.7328(4.1779) 5.1995(3.6288) 5.9919(4.1521) 5.0901(3.4534) 4.9623(3.6513) 4.7896(2.5583)
50 100 5.4295(3.6835) 4.8097(3.3036) 5.2663(3.6921) 4.6123(3.1861) 4.5537(3.2653) 4.4485(2.3702)
100 100 4.8737(3.3677) 4.3531(3.0344) 4.7554(3.4227) 4.1374(2.8558) 4.2813(2.8962) 4.0495(2.1783)

S(3) 30 30 6.9518(4.8499) 6.0947(4.2810) 6.7646(4.8703) 5.7705(4.1187) 5.9781(4.0731) 5.6565(2.9414)
30 50 6.2685(4.3231) 5.6613(3.9404) 6.1842(4.2264) 5.2618(3.5897) 5.2718(3.6786) 4.9798(2.6695)
30 100 5.6802(3.9142) 5.0137(3.6531) 5.5496(3.9760) 4.8688(3.2799) 4.8871(3.3660) 4.5926(2.5324)
50 50 5.7935(4.1735) 5.2874(3.7631) 5.7932(4.1630) 4.9381(3.5414) 5.1437(3.5796) 4.8483(2.6166)
50 100 5.4147(3.6682) 4.9194(3.3341) 5.3210(3.7371) 4.5276(3.2698) 4.6319(3.2168) 4.3927(2.3942)
100 100 4.9886(3.4919) 4.4981(3.0521) 4.9136(3.4366) 4.2458(2.8857) 4.2665(2.9377) 3.9843(2.1317)

S(1) 30 30 8.3766(5.8594) 7.3233(5.2685) 8.3944(5.8504) 6.9325(4.8481) 7.0932(5.0225) 6.5129(3.6627)
30 50 7.3513(5.2099) 6.7839(4.6143) 7.3860(5.0897) 6.2203(4.2930) 6.4552(4.3801) 5.9409(3.2971)
30 100 6.7621(4.8604) 6.0695(4.3071) 6.7758(4.8412) 5.7347(3.9563) 5.8965(4.0652) 5.4157(2.9415)
50 50 6.9321(5.0217) 6.4680(4.5044) 7.0883(4.9558) 6.0779(4.1896) 6.0609(4.2478) 5.6684(3.1288)
50 100 6.2776(4.5562) 5.9264(4.1362) 6.5143(4.5732) 5.4045(3.8858) 5.6245(3.8524) 5.1871(2.8698)
100 100 5.8052(4.1824) 5.1675(3.6788) 5.8722(4.0758) 4.9535(3.5410) 5.0076(3.5632) 4.6606(2.5188)

S(4) 30 30 7.6202(5.3718) 6.8561(4.8040) 7.3301(5.3458) 6.5334(4.4716) 6.5969(4.5147) 6.1735(3.3876)
30 50 6.8518(4.7686) 6.0057(4.2925) 6.8758(4.7493) 5.6725(4.0401) 5.8644(4.1988) 5.5385(2.9678)
30 100 6.1996(4.2686) 5.6710(3.8474) 6.2351(4.2745) 5.3898(3.7433) 5.4337(3.7927) 5.1184(2.7952)
50 50 6.3107(4.4244) 5.6776(4.0887) 6.4848(4.4322) 5.3416(3.8225) 5.6016(3.8429) 5.3026(2.8149)
50 100 6.0107(4.1180) 5.2660(3.6801) 5.8027(4.0877) 5.1367(3.5053) 5.1041(3.5395) 4.7381(2.5381)
100 100 5.3390(3.6663) 4.8599(3.3559) 5.4634(3.7267) 4.6548(3.1825) 4.5542(3.1891) 4.3599(2.4226)
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T = 10. The value of k and m are set to be 50% and 72% of n respectively. The removal pattern is
taken as Sm:n

(4) i.e. Rm/2 = Rm/2+1 = (n - m)/2. From this table, we can conclude that for fix α, as
β increases, MSE of β increases. Similarly, for fix β, as α increases, the MSE of α increases. For fix
α and β as n (for fixed proportions k, m and fixed T) increases, the MSEs of both the parameters
decrease.

In the table 6, we have presented the bias and MSE of different estimators(ML, MPS, Bayes
and bootstrap) of R = P[X < Y] when α = 0.5, β = 0.5, T = 10, k1 and k2 are half of sample size
n1 and n2, and m1 and m2 are set to be 80% of sample size n1 and n2 respectively. From this table,
it can be easily seen that as n1 or n2 increases the bias and MSE decrease for all the estimators
and for all the considered censoring schemes. Further, MSE of the Bayes estimate is least among
all the considered estimators.

7. Conclusion

The article considers the problem of estimation and prediction for exponentiated exponential
distribution from a generalised progressive hybrid censored sample. It is clear from above
discussions that the proposed estimation procedures under GPH censoring scheme can be easily
implemented with specific choice of T and m. The MPS procedure provides more precise
estimates than those obtained from maximum likelihood and bootstrap procedures. The Bayesian
procedure delivers more accurate and precise estimates of the parameters even if we consider
the vague prior. The HPD intervals for the parameters are also obtained and it is verified that
the width of the HPD interval is smaller than asymptotic and bootstrap confidence intervals.
Therefore, we may conclude that the use of HPD interval under considered situation can safely
be recommended. Moreover, Bayesian prediction of unknown future observation has far flung
applicability in different areas of applied statistics. The Bayesian approach using MCMC method
can be effectively used to solve prediction problems. Finally, we can conclude that the discussed
methodology can be extensively used in various disciplines of scientific areas where such life-tests
are needed.
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Abstract

Any software system, however securely written or precise the code is, is always susceptible to failure.
These factors, such as the number of errors in the program or the mean-time for software failure, measure
the program’s reliability. In order to meet more customer needs, current OSS products must be reliable.
To measure these parameters, like the reliability of the software, we use different growth models called
Software Reliability Growth Models. These models help us in determining the different reliability
measures. Faults occur due to several reasons in software- sometimes, it is the environmental factors. It
can also be because of casual human behavior. Faults may also occur during the process of removal of
previous faults. Whenever the code is changed, randomness in the software increases. We can calculate
the optimal release time of a software product based on the calculated reliability measures, which have
entropy also been considered. Finally, the user’s satisfaction level can also be considered.

Keywords: Entropy, Debugging, Feature improvement, Feature addition, Optimal release time,
Software repositories

1. Introduction

The whole idea behind development in the open-source domain is that we initially developed
the software’s basic model. It can be done by a single individual or a group of developers. After
developing the basic software, the code is made publicly available so that people can make
changes to it to add new features or make improvements in the current features. People also help
in making the software famous amongst the developer community. Code changes can be done by
anyone residing remotely in any part of the world. The person can simply request the owner of
the software to suggest some new features or modify existing features of the software.

Source code is then again redistributed among the community of developers to cross-check
and verify the changes made in the code. Open source software (OSS) is released based on two
different methods which decide when the next release is to be scheduled:

1. Time-based strategy: In the time-based strategy, specific dates are predicted for the releases
and different versions of the software are released on those dates only.

2. Feature-based strategy: In the feature-based strategy, new versions are released after
implementing certain set of features. New features may be added to the software, or
previous features may be modified to increase the satisfaction of the user community.

OSS has a number of characteristics that distinguish it from typical closed source software
development.
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1.1. Entropy in OSS

Changes are made to code to improve the functionality of the system, add new features, or
make modifications to features suggested by the users and developers. When these changes
are included, the uncertainty of the software increases. To calculate the increased randomness,
information theory can be used as suggested in [10]. This idea of entropy calculation given in the
information theory helps us in determining randomness increased in the software.

In this work, the effort is made to calculate the randomness in terms of the entropy in a system
by assuming that the randomness increases when the source code is changed for modifications
and improvements as discussed in [16]. There are various reasons for making changes to the
code. Sometimes the user is not satisfied with the performance due to performance bugs. In the
open-source community, since innovators are involved in the development of the software, it
is important to keep their interest alive in the product. For this reason, releases are done more
often in the open-source products so that contributors can relate to the product and keep making
changes to it. The product remains relevant in the market.

Any software goes through a process of evolution in which bugs are fixed, new features
are introduced and some features are modified according to the user’s satisfaction level. Using
this calculated randomness, we can also determine when the next version of the software can
come into the market. In this work, non-homogeneous Poisson process (NHPP) based models
are discussed. In the software testing process, it is commonly assumed that the cumulative
number of failures follows the NHPP and these models are believed to be a reliable model in
performance analysis for software [2, 5, 13]. Various NHPP based reliability models for OSS have
been developed in recent years [10, 12].

There are two types of environment discussed in the debugging domain [7]. No new bugs are
introduced in the perfect debugging model while eradicating the previous bugs. However, in the
imperfect debugging model, new errors may get introduced while removing previous ones. Any
software goes through a process of evolution in which bugs are fixed, new features are introduced
and some features are modified according to the user’s satisfaction level.

Whenever bugs are fixed, new features are introduced and modifications are made to the
software, it gets better and that is what the motive is. Any organization’s goal is to make its
software relevant and updated as new changes keep coming into the market. Evolution is a part
of any growth process. It is the same for the software industry also. An effort has been made to
develop a mathematical model through which we can predict the total number of bugs to be fixed
in the future and new features to be added and features to be modified. Since it is not possible to
fix all the bugs in a single release, this process continues over the product’s whole life cycle.

The objectives are to calculate the entropy of the software using code changes done in the
different files of the system and propose a model to determine the total issues based on the
calculated entropy and consider the user’s satisfaction level. Also, make the prediction of release
time of the next version based on entropy which the product manager can use to reduce the
overall cost of the product.

2. Literature review

For any software to remain relevant in the market, it needs to grow with the user’s expectations
and new technologies coming into the market. Changes are a necessity for the growth and
development of the product as in [19]. When new changes are made in the code, the randomness
in the software increases.

Previous research has been done in this direction in considering this entropy as a measure
in the calculation of release date of the software [6, 11, 15, 17, 18]. When the entropy increases,
the software becomes more complex with time. This research has been made to quantify these
changes and calculate the randomness that occurred because of those changes. After the entropy
is calculated through file changes, the total number of issues to be fixed, including the bugs,
newly introduced features, and feature improvements, are predicted. In the end, an effort is also
put to predict the next release time of the version based on the entropy calculation.
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In the past, numerous efforts have been made in the direction of measuring the reliability of
the software and thus decreasing the overall software assessment budget of the product [10]. In
most of the earlier models, only two factors are mostly considered in the software design process-
reliability and the cost of the product. These are inversely proportional to each other. If we wish
to increase the reliability of the software, we need to gice more time to it which increases the cost
or if we try to decrease the cost, we compromise with the reliability of the software [3]. Many
of the models used for prediction in the closed source projects give too optimistic results in the
open source domain [8, 9].

In the models used for prediction in the open source domain, testing efforts are considered
and time taken to correct the faults are also measured [3]. Dai et al. [4] put an effort to find
out the randomness in the reliability modelling of a single component within a large software
and attributes are also assumed to be correlated. Authors have also taken into consideration, the
views of the subject expert and the historical change data of the software.

Kamavaram and Goseva-Popstojanova [8] performed the research based on including entropy
for the calculation of software reliability engineering by using it in the Markov model which is
used for software specifications. Randomness of the operational profile is calculated and the
model proposed is architecture based. effort is also made to introduce the concept of conditional
entropy. Kerzazi and Khomh [9] in this research considers one of the most important thing in
release engineering, the time for a software code to reach from the development environment to
the production environment considering the quality analysis at each stage. Only data from the
actual industrial organizations are taken over a long period of time (15 months) and around 250
releases are taken into consideration.

Li et al. [10] investigated one of the left out factors in open source software- reliability.
Two important parameters which are stressed upon are the fast release of software and the
reliability. Though these are contradicting in nature but they are most important factors to b
considered. Release planning model is presented through this research. Multi attribute theory
is also considered. Michlmayr et al.[11] focused on the time-based release model of OSS. In the
time-based model, new releases come in the market after a certain pre-decided interval of time.
They have taken interviews of members from seven open source organizations with volunteer
workers and have analyzed the benefits of time-based release models.

Ruhe [14] researched thoroughly on the tools and techniques through which products can
be made in a manner such that resources are utilized efficiently and users expectations can also
be met by the product. Methods to build successful product are discussed. Release planning
problem is also discussed.

3. Objectives

Any software goes through a process of evolution in which bugs are fixed, new features are
introduced and some features are modified according to the user’s satisfaction level.

Also, certain issues are left unnoticed, which the innovators in future development processes
remove. This can happen due to correction delay. When the life cycle process of the development
starts, the issues which were not fixed in previous releases are also taken into consideration and
are added to the issue content of the current work. The objectives are:

∙ Calculate the entropy of the software using code changes done in the different files of the
system.

∙ Propose a model to determine the total issues based on the calculated entropy and consider
the user’s satisfaction level.

∙ Prediction of release time of the next version is based on entropy which the product manager
can reduce the product’s overall cost.
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4. Research Methodology

4.1. Dataset

The dataset collection process involved collecting issues from the issues directory of different
Apache products. Products have multiple releases and issues are fixed before each release.

Multiple open-source projects have the details of their issue available on multiple platforms
like Bugzilla. Apache projects are big projects and they involve a large number of contributors
involved in the development of the products. Different products of Apache open source are
considered, for example, Avro, jUDDI and Hive. All the fixed issues - either bugs, new features, or
improvised features are downloaded from the issue tracking repository available on the Bugzilla
website.

4.2. Methodology

After collecting data of issues from the issues directory, release dates are also noted from the
git-hub repository. Then the date of fixing issues is mapped with the release date of products.
Then, monthly entropy can be calculated according to the number of changes made in different
projects and modules of the product. After the calculation of entropy, this is mapped with the
release date noted from the git-hub repository. In the calculation of entropy, the code change
process is termed as an event and noted down. Here, an event is defined as the process during
which the code of a software is changed.

First, all the issues, including the bugs, new features introduced or suggested by the users of
the software and feature improvements, are downloaded from the issue tracking repository. All
product details with issues are available on the issues.apache.org website. Then for each product,
their bugs, feature additions and feature improvements are calculated on a month-to-month basis.
We also made a note of the date when these issues were fixed.

The release date of the products can be extracted from the git-hub using the git-hub tool.
Whenever changes are made in the source code and committed, they are being done to fix some
issues or add some new features. Git-hub tool is easily available on the git-hub site.

4.3. Implementation

Issues are defined as the bugs present in the software, new features to be added and the feature
modifications to be performed. There are two types of contributors, innovators and imitators.
Innovators fix the issues at rate ’p’ and imitators fix issues at rate ’q’. We assume that the total
number of issues identified as the target issues to be fixed in a particular release is constant and
represented by ’a’. Initially, since no issues are fixed, we can represent this condition with a
differential equation as follows:

d(X(t))
dt

= p(a − X(t)) + q
X(t)

a
(a − X(t)) (1)

where X(t) represents the value of fixed bugs cumulatively.
Assuming the initial conditions at t = 0 , no bugs are fixed, that is X(0) = 0, we have:

X(t) = a

[
1 − e−(p+q)t

1 + q
p e(−(p+q)t)

]
(2)

Here, q/p remains constant and p+q represent the rate at which issues are fixed per remaining
issue.
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5. Entropy calculation

To calculate entropy, we must first find out the amount of information in the software code.
Information theory can be used to find that. For our model, we define data as the event in
which a file is changed for modification in the code. This can be used to calculate the amount of
randomness associated with the software system.

We have considered four files and the time interval during which changes were made in those
files is noted down. Where p gives the probability that the file will be changed during that period,
we calculated it by dividing the number of times this specific file is changed in that period by the
total number of changes made in all the files. This is shown in the figure.

There are multiple reasons for changing the code of the software. When users suggest bugs
and new user requirements come up, developers make changes in the code to modify modules or
add new modules. Sometimes there are logical errors present that also need to be rectified. Using
the Cobb-Douglas equation, we can include both time and entropy for the calculation of output
as follows, where time is represented by ’s’ and entropy is represented by ’u’.

t = sαu(1−α) (3)

where 0<= α <= 1
Using the Cobb-Douglas function, we can integrate time and entropy in the calculation of X(t)

to observe the effect of both time and entropy. The model to calculate issues fixed can thus be
represented as having both entropy and time-integrated. The model can thus be represented as:

X(s, u) = a

[
1 − e−b(sαu(1−α))

1 + βe−b(sαu(1−α))

]
(4)

In most of the OSSs, all issues are not fixed in the same release. Some are passed on to the next
release. These issues are then added to the content of issues for a particular version and then
fixed by the developer team.

5.1. Code History Metric

Code History Metric(CHM) is a method with which we calculate the complexity of code changes
in the software [1]. The whole concept of code changes is used for the calculation of CHM. We
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also measure one more factor, which is Code History Period Factor(CHPF), for a file j during a
time period of i as:

CHPF(i, j) = CijHiwherej ∈ Fi (5)

Here, Hi is the entropy calculated for the changes done in the file during a period of time
interval i and Cij represents the contribution of entropy for the given file j. We are considering
several cases here:

Case 1 : If Cij = 1, we assume full complexity and all files having the same weight during this
interval.

Case 2 : If Cij = Pj, we assume contribution is equal to the probability of file j being changed
in the time interval.

5.2. Releasing Versions of Software

Steps for calculating the matrix are as follows:

1. First a note of the release date is taken for every version of the software.

2. Date on which each file was changed is also noted.

3. Classification of bugs fixed in the files as a new feature, feature improvement and feature
modification.

4. Calculate the total number of bugs fixed.

5. Record the issues in each released version of the software.

6. Arrange the changes according to the month in which they were made and the matrix is
calculated.

7. For every release, the time at which the software was released is found.

Though making new changes to the software is a requirement for every organization, it brings
new faults into the system. The code becomes more complex over time and it becomes challenging
to keep it relevant and reliable at the same time. Predicting the modules that have more number
of bugs than the others is beneficial in the sense that then the product manager can decide how
to allocate resources among the parts of the software such that an efficient version is released
with more reliability and user satisfaction level.

Predicting bugs also helps in reducing the testing time of the team and thus, the overall
expenditure can be reduced.

Based on the change of code of the software, bugs and release time are predicted. As a part of
the previous work, a few previous models are considered and their results are compared with the
proposed model in the next section.

6. Experiments and results

6.0.1 Experiments

Assuming that initially no issues are there and issues will occur in further releases only after
suggestions from the users come, at t = 0, X(t) = 0. This gives the following equation :

X(t) = a

[
1 − e−bt

1 + βe−bt

]
(6)
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Here, value of q/p does not change with time and p+q is the rate at which issues are fixed
per remaining issues.

Rate at which cumulative number of issues are fixed is given by:

dX(t)
dt

=
f (t)

1 − F(t)
(a − X(t)) (7)

Here, F(t) is the distribution function representing the iussues to be fixed anf f(t) is the density
function, relation between them is f(t) = d F(t)/dt.

At any given time t, (a - X(t)) represents the number of issues yet to be fixed in the code. As
time increases, more issues are fixed and (a - X(t)), i.e, remaining issues in the software decreases
with time. This in turn increases the reliability of the software[4].

For a particular software product, ‘Ai’ is the real number of issues to be fixed, including the
bugs, new features to be added and the modifications to be performed in the software. Where
‘ai’ is the potential issues that need to be fixed. ‘ai-Ai’ represents the issues left in the previous
release and are now in the issue content of the current release. Fixing efficiency is denoted by ‘bi’.

Comparing the results of our model with the JM and S-shaped mode, we get the results as
shown in the table 1.

Table 1: Comparison Table

Release Number Model a b Ai ai-Ai
1 JM Model 360 0.121 28
1 S-shaped Model 621 0.173 289
1 Proposed Model 364 0.527 332 32
2 JM Model 197 0.13 14
2 S-shaped Model 221 0.268 38
2 Proposed Model 507 0.076 183 324
3 JM Model 264 0.078 55
3 S-shaped Model 300 0.174 91
3 Proposed Model 233 0.3 209 24
4 JM Model 219 0.063 77
4 S-shaped Model 181 0.211 38
4 Proposed Model 210 0.173 142 9
5 JM Model 85 0.116 10
5 S-shaped Model 104 0.233 9
5 Proposed Model 75 0.743 75 0

The release time of the software is calculated using linear regression in multiple stages.
Assuming that the time, p0 is a dependent variable and the Code History Matrix (x0) and the
number of bugs (x1) are independent variables, time can be calculated as:

po = a0 + a1x0 + a2x1 (8)

Here, a0 and a1 are regression coefficients whose value can be found out by linear regression
method.

Calculated values of time to release from the Code History Matrix are also shown in the table
2.

RT&A, No 2 (68) 
Volume 17, June 2022 

313



Vishal Pradhan, Gunjan Tripathi, Ajay Kumar & Joydip Dhar
RELEASE TIME OF SOFTWARE USING ENTROPY AND RELIABILITY

Table 2: CHM Table

Total Changes CHM(1) CHM(2) Time
673 7.288 2.228 2.248
286 2.335 0.499 2.723

1626 8.931 3.405 2.726
774 10.07 3.056 3.934
738 4.034 0.901 2.467
911 6.545 1.698 3.303

1524 8.361 2.311 2.812
302 3.296 0.804 3.421

2414 10.19 2.522 5.074
2331 3.535 0.783 3.058
943 5.795 1.374 3.317
576 6.463 1.593 2.562
413 3.456 0.886 1.143
382 5.178 1.32 3.335

1883 5.302 1.422 1.895
234 1.757 0.309 0.663
500 2.324 1.273 1.086
898 5.361 1.256 4.918

1254 5.252 1.978 3.337
827 7.04 0.256 2.443
342 1.629 1.304 0.661
734 5.377 1.543 2.803
891 5.464 1.064 3.007

1353 4.795 1.476 1.412
850 6.447 0.143 2.461

1135 1.578 0.214 1.128
334 1.645 0.583 1.143

7. Results and discussion

The whole idea behind OSS development is that we initially developed the software’s basic
model. It can be done by a single individual or a group of developers. After developing the basic
software, the code is made publicly available so that people can make changes to it to add new
features or make improvements in the current features.

The aptitude of the testing team also determines the number of faults introduced into a
software. Environmental factors such as different operating system specifications can also
contribute to introducing bugs into the software. Whenever developers try to remove a bug from
the code, they make changes to the software. These changes can be quantified in terms of entropy.
The time of the next release is helpful both to the product manager and the user of the software.

7.1. Ease of Testing

One of the main stages of the software development process is the testing phase. This model
helps to ease the process in the testing phase by providing a direction to the testers so that they
can focus their energy and resources in one direction and get better and more efficient results.
Once the cost of the testing process is minimized, the whole development process cost is reduced.
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7.2. Managerial implications

Product managers can use this approach to find out the best time to release the software in
the market. Rapid release strategy and reliability are conflicting parameters and it is crucial to
balance between them. Product managers can look at the future trend of bugs and plan their
releases accordingly.

8. Conclusion

There is always scope for improvement. Although the proposed model helps determine the
important parameters of modelling, the manager’s decision is still subjective. There are still many
more different factors in different projects that matter when product release is considered. So our
model can be used to make a general idea about the situation, but the final decision needs to be
taken considering many other factors also.

Other factors that need to be considered are past data of the product and historical experiences
of the team. Only then a more trusted decision can be taken. Efforts should also be made to study
more closed source projects and compare them to the calculation of different parameters.

One more limitation is that calculation of entropy based on the files changed is done manually.
This process can also be made more precise and accurate by using other methods of entropy
calculation if available. More research can be done in this direction.
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Abstract

In industries, the type of failure sensitively affects the system. So, it is essential to Categorize these
failures into different categories to enhance the system performance. In this research, concentration
made in differentiating the failure type into major/minor categories with repair/replacement facility for
the service by single repairman. Currently, we studied the boiler system of the steam generation plant
to perform the task of repair/replacement with a single repairman. A reliability model constructs to
compute MTSF(mean time to system failure), availability, Busy period for repair/replacement, and profit
evaluation. The above measures were estimated numerically and plotted graphically using semi-Markov
processes and regenerative point technique. Various effectiveness measures show how system performance
gets affected by major/minor failures & the type of service provided.

Keywords: Regenerative point technique, major/minor failure, repair/replacement, Reliability
modeling, semi-Markov processes.

I. Introduction

Proper functioning of any system is a prerequisite of any industrial process, as an interruption in
the operation of a system causes not only deterioration in the quality of manufactured products
but damages to the plant itself. Thus the reliability of the system becomes much more essential.
Many contributors pay their efforts in the literature of reliability. [5], [8], [2] have worked on
cost-effectiveness and reliability analysis on different situations. Various situations on repair,
replacement, & inspection have been investigated by the authors [6], [4], [9], [3], [1]. However, the
distinction between major and minor faults has not been the topmost research topic in reliability.
[7] have discussed the concept of major/minor failures subjected to the ordinary and expert
repairman. [10] revealed the possibility of immediate repair on minor failure and waiting time for
repair on major failure at night hours. But the concept of repair/replacements depending upon
the minor/major faults has not been seen in the literature of reliability modeling. In addition
to the above idea, the boiler of the Steam Generation Plant studied, in which the type of service
provided for a boiler depends upon major and minor faults. Minor faults are repaired easily
while major faults are replaceable.

Initially, a three-unit system with a boiler and two FD fans has considered for the study. When
a boiler fails system stops working immediately, but if any one of the FD fans fails system goes
on reduced capacity. For continuous functioning, a boiler and 2 FD fans should function. On
boiler failure, two possibilities arise major and minor faults. Repair facility provided for a small
crack in the outer chamber of the boiler that occurs due to overheating & erosion, whereas the
repairman performed replacement for the major equipment failures for a boiler. Priority of repair
is given to the boiler over fans so that the system can operate for a long time. For the FD fans,
repair priority is on an FCFS basis.
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The following reliability measures were computed numerically using semi-Markov processes
and regenerative point techniques and also plotted graphically based on the information gathered
from the industry :

∙ Mean time to system failure (MTSF).
∙ Availability analysis at full capacity.
∙ Availability analysis at reduced capacity.
∙ Busy period for repair time only.
∙ Busy period for replacement time only.
∙ Expected no. of repairs.
∙ Expected no. of replacements.
∙ Cost-benefit analysis.

II. Model Description

I. State Transition Diagram

Figure 1, shows the state transitions diagram of the steam generation plant consisting of one
boiler and two FD fans.

Figure 1: State Transition Diagram

Table 1: State Discription

States Discription

S0 This is the operating state of the system
S0, S1, S2, S3, S4, S5, S6, S8, S9 The epoch of entry into these states are regenerative points thus,

these states are called regenerative states
S3, S4 These are reduced capacity states
S1, S2, S5, S6, S7, S8, S9, S10 These are failed states of the system.
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II. Assumptions

The stated model follows these assumptions.

∙ All the random variables are independent.
∙ Failure times distribution is exponential, whereas repair times have distributed arbitrarily.
∙ System works as well as new after every repair.
∙ when the failure occurs repairman will come immediately.

III. Nomenclature

Table 2: Notations & symbols for the states of system

Notations

Notations Discription

λ Constant failure rate of Boiler.
λ1 Constant failure rate of FD fan 1.
λ2 Constant failure rate of FD fan 2.
α Repair rate of Boiler.
α1 Repair rate of FD fan 1.
α2 Repair rate of FD fan 2.
γ Replacement rate of Boiler.
p probability of minor failure in Boiler.
q probability of major failure in Boiler.
G(t), g(t) c.d.f. & p.d.f of repair time of Boiler.
H(t), h(t) c.d.f. & p.d.f of replacement time of Boiler.
G1(t), g1(t) c.d.f. & p.d.f of repair time of FD fan 1.
G2(t), g2(t) c.d.f. & p.d.f of repair time of FD fan 2.

Symbols for the states of the system

Symbols Discription

Si states of the system, i = 1, 2, 3, ..., 10
Bo, FD1o, FD2o Boiler, FD fans 1 and 2 are in operating state respectively.
Br Boiler under repair.
Brep Boiler under replacement.
Bs, FD1s, FD2s Boiler, FD fans 1 and 2 in standby state.
FD1r, FD2r FD fans 1 and 2 under repair.
FD1wr, FD2wr FD fans 1 and 2 are waiting for repair.
FD1R, FD2R FD fans 1 and 2 are under repair from previous state.

IV. Transition Probabilities & Mean Sojourn Times

The pij represents non-zero elements which are given below

p01 =
λp

λ + λ1 + λ2
, p02 =

λq
λ + λ1 + λ2

,

p03 =
λ1

λ + λ1 + λ2
, p04 =

λ2

λ + λ1 + λ2
,

p10 = p20 = 1, p30 = g1
*(λ + λ2),

p35 =
λp

λ + λ2
[1 − g1

*(λ + λ2)], p36 =
λq

λ + λ2
[1 − g1

*(λ + λ2)],

Upasana Sharma, Rajveer Kaur
PERFORMANCE ANALYSIS OF SYSTEM FOR MAJOR & MINOR FAILURES

RT&A, No 2 (68) 
Volume 17, June 2022 

319



p37 =
λ2

λ + λ2
[1 − g1

*(λ + λ2)], p(7)34 =
λ2

λ + λ2
[1 − g1

*(λ + λ2)],

p40 = g2
*(λ + λ1), p48 =

λp
λ + λ1

[1 − g2
*(λ + λ1)],

p49 =
λq

λ + λ1
[1 − g2

*(λ + λ1)], p4,10 =
λ1

λ + λ1
[1 − g2

*(λ + λ1)],

p(10)
4,3 =

λ1

λ + λ1
[1 − g2

*(λ + λ1)], p53 = 1,

p63 = 1, p74 = 1,

p84 = 1, p94 = 1,

p10,3 = 1

It can be verified by these probabilities that

p01 + p02 + p03 + p04 = 1, p10 = 1, p20 = 1,

p30 + p35 + p36 + p37 = 1, p30 + p35 + p36 + p(7)34 = 1, p40 + p48 + p49 + p4,10 = 1,

p40 + p48 + p49 + p(10)
43 = 1, p53 = p63 = p74 = 1, p84 = p94 = p10,3 = 1

Also µi, the mean sojourn times in state Sj are

µ0 =
1

λ + λ1 + λ2
, µ1 = −g*′(0), µ2 = −h*′(0), µ3 =

1
λ + λ2

[1 − g1
*(λ + λ2)],

µ4 =
1

λ + λ1
[1 − g2

*(λ + λ1)], µ5 = −g*′(0), µ6 = −h*′(0), µ7 = −g1
*′(0),

µ8 = −g*′(0), µ9 = −h*′(0), µ10 = −g2
*′(0),

The unconditional mean time taken by the system to transit for any regenerative state ′ j ′ when it
(time) is counted from the epoch of entrance into state ′i ′ is mathematically represented as

mij =
∫ ∞

0
tdQij(t) = −qij

*′(0)

m01 + m02 + m03 + m04 = µ0, m10 = µ1,

m20 = µ2, m30 + m35 + m36 + m37 = µ3,

m30 + m35 + m36 + m(7)
34 = µ3 + K1, m40 + m48 + m49 + m4,10 = µ4,

m40 + m48 + m49 + m(10)
43 = µ4 + K2, m53 = µ5,

m63 = µ6, m74 = µ7,

m84 = µ8, m94 = µ9,

m10,3 = µ10

where

K1 =
λ2

λ

∫ ∞

0
tg1(t)dt, K2 =

λ1

λ

∫ ∞

0
tg2(t)dt, (1)

III. Reliability Measures for System Effectiveness

I. Mean Time to System Failure (MTSF)

When the system starts from the initial state S0, Mean time to system failure (MTSF) of the system
is determined by considering failed state as absorbing state as given below

MTSF = T0 = lim
s→0

1 − φ **
0 (s)
s

(2)
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Using L ′ Hospital Rule & putting the value of φ **
0 (s), we have

T0 =
N
D

(3)

where
N = µ0 + µ3 p03 + µ4 p04
D = 1 − p03 p30 − p04 p40

II. Availability Analysis at Full Capacity

Using the theory of regenerative processes, the availability AF0 of the system at full capacity is
given by

AF0 = lim
s→0

(s AF0
*(s)) =

N1

D1

where
N1 = µ0[(1 − p48 − p49)(1 − p35 − p36)− p(7)34 p(10)

43 ] (4)

& D1 = µ0[p40 − p30 p43 − p40 p35 p53 − p40 p63 p36] + (µ1 p01 + µ2 p02)[(1 − p48 p84 − p49 p94)

(1 − p36 p63 − p35 p53)− p43 p34] + [µ3 + K1][p03 + p04 p43 − p03 p48 p84 − p03 p49 p94]

+ [µ4 + K2][p04 + p03 p34 − p04 p35 p53 − p04 p36 p63]

+ (µ5 p35 + µ6 p36)[(1 − p01 p10 − p02 p20)(1 − p48 p84 − p49 p94)− p04 p40]

+ (µ8 p48 + µ9 p49)[(1 − p01 p10 − p02 p20)(1 − p35 p53 − p63 p36)− p03 p30] (5)

III. Availability Analysis at Reduced Capacity

Using the theory of regenrative processes, the availability AR0 of the system at reduced capacity
is given by

AR0 = lim
s→0

(s AR0
*(s)) =

N2

D1

where
N2 = µ3[p03(1 − p48 − p49) + p04 p(10)

43 ] + µ4[p04(1 − p35 − p36) + p03 p(7)34 ] (6)

and D1 is already specified in equation (5).

IV. Busy Period for Repair Time only

In steady state, busy period for repair time is defined as the time for which system is under repair
by repairman and is given by

BR0 = lim
s→0

(sBR0
*(s)) =

N3

D1
(7)

Where

N3 = µ1 p01[(1 − p48 − p49)(1 − p35 p36)− p43
(10)p34

(7)] + µ3[p03(1 − p48 − p49) + p04 p43
(10)]

+ µ4[p04(1 − p35 − p36) + p03 p34
(7)] + µ5 p35[p03 p40 + (p03 + p04)p43

(10)]

+ µ8 p48[p04(1 − p35 − p36) + p03 p34
(7)] (8)

& D1 is already specified in equation (5).
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V. Busy Period for Replacement Time only

In steady state, busy period for replacement time is defined as the time for which system is busy
under replacements and is given by

BRP0 = lim
s→0

(sBRP0
*(s)) =

N4

D1
(9)

where

N4 = µ2 p02[(1 − p48 − p49)(1 − p35 p36)− p43
(10)p34

(7)] + µ6 p36[p03(1 − p48 − p49) + p43
(10)]

+ µ9 p49[p04(1 − p35 − p36) + p34
(7)] (10)

& D1 is already specified in equation (5).

VI. Expected No. of Repairs

Expected number of repairs per unit time for the system is given by

VR0 = lim
s→0

[sVR0
**(s)] =

N5

D1
(11)

where

N5 = (1 − p02)(1 − p35 − p36)(1 − p48 − p49)− (1 − p02)p34
(7)p(10)

43 + p03 p48 p(7)34 + p04 p35 p(10)
43

+ p04 p48(1 − p35 − p36) + p03 p35(1 − p48 − p49) (12)

& D1 is already specified in equation (5).

VII. Expected No. of Replacements

Expected number of replacements per unit time for the system is given by

VRP0 = lim
s→0

[sVRP0
**(s)] =

N6

D1
(13)

where

N6 = p02((1 − p35 − p36)(1 − p48 − p49)− p34
(7)p(10)

43 ) + p03(p36(1 − p48 − p49) + p49 p(7)34 )

+ p04(p49(1 − p35 − p36) + p36 p(10)
43 ) (14)

& D1 is already specified in equation (5).

IV. Cost-Benefit Analysis

The expected total profit incurred to the system is

P0 = C0 AF0 + C1 AR0 − C2BR0 − C3BRP0 − C4VR0 − C5VRP0

where
C0 = revenue per unit up time at full capacity
C1 = revenue per unit time at reduced capacity
C2 = cost per unit time when repairman is busy in doing repair
C3 = cost per unit time when repairman is busy in doing replacement
C4 = cost per repair.
C5 = cost per replacement.
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V. Particular Cases

For the numerical evaluation and graphical plotting for various reliability measures, the following
particular cases are considered.
Let us assume that g(t) = αe−αt, h(t) = γe−γt, g1(t) = α1e−α1t, g2(t) = α2e−α2t, and the remaining
distributions are the same as in the general case. Therefore, we have

p01 =
λp

λ + λ1 + λ2
, p02 =

λq
λ + λ1 + λ2

, p03 =
λ1

λ + λ1 + λ2
,

p04 =
λ2

λ + λ1 + λ2
, p10 = 1, p20 = 1,

p30 =
α1

λ + α1 + λ2
, p35 =

λp
λ + α1 + λ2

, p36 =
λq

λ + α1 + λ2
,

p37 =
λ2

λ + α1 + λ2
= p34

(7), p40 =
α2

λ + λ1 + α2
, p48 =

λp
λ + α2 + λ1

,

p49 =
λq

λ + α2 + λ1
, p4,10 =

λ1

λ + α2 + λ1
= p43

(10), p53 = p63 = p74 = 1

p84 = p94 = p10,3 = 1, µ0 =
1

λ + λ1 + λ2
, µ1 =

1
α

,

µ2 =
1
γ

, µ3 =
1

λ + α1 + λ2
, µ4 =

1
λ + α2 + λ1

,

µ5 =
1
α

, µ6 =
1
γ

, µ7 =
1
α1

,

µ8 =
1
α

, µ9 =
1
γ

, µ10 =
1
α2

,

Table 3: Computation of various rates/costs on the basis of actual data collected from industry

Various rates/ cost associated corresponding values

Failure rate of Boiler (λ) 0.0001186/hr
Failure rate of FD fan 1 (λ1) 0.0001171/hr
Failure rate of FD fan 2 (λ2) 0.000101295/hr
Repair rate of Boiler (α) 0.00738/hr
Replacement rate of Boiler (γ) 0.0008733 /hr
Repair rate of FD fan 1 (α1) 0.024272/hr
Repair rate of FD fan 2 (α2) 0.048544/hr
Expected cost per repair (C4) Rs. 14282
Expected cost per replacement (C5) Rs. 1579627

Hypothetical values have been taken for remaining rates/costs. arious reliability measures for
system performance have been computed in table 4 by putting the values given in the table 3
based on particular cases.

Table 4: Computation of various measures of system effectiveness

Mean time to system failure 08376.82/hr
Availability of the system at full capacity 0.344986/hr
Availability of the system at reduced capacity 0.639788/hr
Busy period of repairman for repair time only 0.644142/hr
Busy period of repairman for replacement time only 0.010379/hr
Expected no. of repairs 0.000107/hr
Expected no. of replacements 0.000009/hr
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VI. Results and Discussion

Figure 2: MTSF vs Failure rate of Boiler

Figure 3: Profit vs Revenue up-time for the system

Table 5: Cut Point for profit w.r.t. Revenue Up-time of the system.

Failure rate of FD fan
one (/hr)

Revenue per unit up time (Rs.) Profit (Rs.)

λ1 = .0001171 C0 < or = or > 731316.24 negative or zero or positive
λ1 = .0001571 C0 < or = or > 826502.352 negative or zero or positive
λ1 = .0002171 C0 < or = or > 969279.171. negative or zero or positive

In figure 2, the effect of the failure rate of Boiler(λ) on MTSF has shown for the different
values of the failure rate of FD fan one (λ1). As the failure rate (λ) increases, the MTSF of the
system decreases. Also, as the failure rate (λ1) increases MTSF of the system decreases. In figure
3, the effect of cost per unit up time of the system (C0) w.r.t. profit has shown for the different
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values of failure rate of FD fan one (λ1). As the cost C0 increases, profit of the system increases.
Also, as the failure rate of FD fan one (λ1) increases profit decreases. Various cut point formed
from the graph of profit w.r.t. revenue Up-time of the system as shown in table 5.

VII. Conclusion

Reliability modeling established for steam generation plant that shows the effect of service type
& type of failures on system performance. The study reveals that the busy period of repairman
for repair time is more as compared to replacement time. Also, cut-off points formed from profit
helps the industrialist to maintain the economy of their system. In addition, any industry can
consider the stated model to enhance the performance of their system using the different rates for
repair/replacement.
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Abstract

In recent past, Online Social Networks (OSN) has emerged as a platform for sharing information,
thoughts, and activities. In the real-world network, method of considering the appropriate samples is
most frequently used for network analysis. Graph sampling is a procedure used for computing unknown
parameters. Many sampling algorithms exist in literature such as Random node, Random edge sampling,
Rank degree, etc. can be used for estimation. This paper presents a comparison of clique based procedure
(CBP) and shortest path based procedure (SPP) to estimate the average degree of a vertex in a social
network using an overlapping cluster sampling. A comparative procedure is used to obtain the lower and
upper limit of confidence intervals with the help of multiple samples. Ogive based simulation is also used
for single value computation of limits of CI. The results, obtained from simulation, show that clique based
sampling algorithm (CBP) is more efficient than the shortest path based sampling algorithm (SPP). The
estimated confidence intervals can be used for monitoring the reliability of a social network in terms of
control over average network degree.

Keywords: Graph, Sampling, Social network, Overlapping cluster, Confidence interval (CI), Short-
est path procedure (SPP), Clique based procedure (CBP), Reliability, Percentage relative gain(PRG)

1. Introduction

Online Social Networks (OSN) are used by large numbers of people around the world interacting
with each other by forming like minded groups, based on the commonness of characters. Many
real-world complex systems can be represented as a collection of vertices and edges — for example,
information networks, communication networks, biological networks, etc. Recently evolved a
surge of interest for exploring the characteristics of these networks, modeling their structure,
develop algorithms for them, and examining systems that govern networks [8]. However, many
of the real-world networks are too large to acquire, store or analyze, e.g. 3 billion emails per
day worldwide from multiple sources to multiple destinations. The scientific community focuses
on developing scalable analytic methods for different size datasets. In order to facilitate the
development and testing of systems for network domains, it is often necessary to take a sample
(smaller subgraphs) from a large network structure. A sampled subgraph can be used to drive
realistic simulations and experimentation. Just to have a precise assessment of the performance
of such systems, it is suggested by many scientists to use appropriate sampling methods that can
select a good representative of networks. Graph sampling [4] is used to study small subsets of
networks along with preserving the main features of the original network [6] [7].
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Physical distances are utilized to get interaction between the different system variables. For
example, the distance between two atoms or between two galaxies in the universe to evaluate the
intensity of force of attraction.
A good sampling [1] algorithm for estimating a parameter must have:

• Cost effectiveness.
• Sample size suitability for unbiased parameter estimation.
• Practical and effective ways of accessing the graph.
• Lesser amount of time and reduction of computational efforts.

In networks, distance is a kind of path linkage used in a different manner. Distance between
two web pages or between two unknown individual physical distances [9] [12] is not relevant. A
path is a link in the network and distance in network represents the number of links the path
contains.

In this paper, a method of cluster sampling for networks is presented using the concept of
the shortest path and cliques. The approach has focus to find the shortest path and cliques
between several pairs of vertices by selecting random pairs. The degree sequence of vertices in
these shortest paths is taken for construction of overlapping clusters [18, 2]. The sampled pair of
vertices of the social network contains only a fraction of all possible pairs of vertices.

The aim is to obtain an estimate of average degree which is a valid parameter of real network.
Paper is organized as Section 2 contains definitions, overlapping sampling, motivation, and
related work described in brief. Section 3 describes a sampling scheme with properties like bias
and variance estimate. The performance of the proposed procedures is examined through ogive
based simulation whose results are reported and comparision of efficiency are in Section 4-6.
Other sections 7 to 9 reveal reliability, discussion, efficiency comparison, and conclusion.

2. Definition and Related Work

A Social network(graph) G(V, E) is represented as a pair of a vertices set V(G) and an edge
set E(G), the number of vertices in G is N. Simple Graph(Network) G(V, E) contains undirected,
unweighted edges, neither loops nor multiple edges. The neighborhood of u is N(u) = {v: (u, v)
∈ E(G)}. It forms a set of edges connected to u. The degree is the number of connections that a
vertex has, degree (v) = |N(v)|.

Average degree of a vertex is the average number of edges per vertex in the graph. It is defined
as:

Total number of Edges
Total number of vertices = Average Degree

2.0.1 Clique

A clique is a subset of a network in which the vertices are more closely and intensely tied to
one another than they are to other vertices of the network. The term "Dyad" is the smallest clique
composed of two adjacent vertices. The chain of adjacent cliques is used as a tool for forming
the community. Community detection allows professionals like election planners, community
specialist physicians to understand the characteristics and role within the network and outside
the network [16]. Concerned literature of methodologies of community detection [11] [17] have
been developed a lot and several methods are in picture. Every algorithm has advantages, disad-
vantages, and working limitations over others. Many of them fail while dealing with overlapping
communities [20] [19]. For example, the community of soldiers and community of drinkers may
be overlapping where unique identification is a difficult procedure. One can find out new ways
and means to generate community detection in networks. Mathematically clique is a subset of
vertices all adjacent to each other. It can be used for community structure detection for large
scale networks. The community identification in these methods is defined as a chain of adjacent
cliques. Some methods can find the community structure for very large-scale networks. A method
proposed in [19] is also useful for such cases.
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Note 2.1 : If symbol eij is used as an edge from vertex vxi to vxj then shortest path from
one vertex to another is a path sequence of vertices (vx1, vx2, . . . , vxn) so that overall possible n
minimizes the ∑n−1

i=1 f (ei,i+1).

Note 2.2 : If any two vertices are selected in a graph there may exist a shortest path. Also,
there may multiple shortest paths of same length dij between vertices vxi and vxj. Note that
the shortest path does not consider any loop or any intersect itself. Further, in an undirected
graphical network, these lengths of shortest path dij = dji holds between any two vertices vxi and
vxj. But in a directed graph network, it may happen that dij 6= dji.

2.1. General Computational Algorithm

• Take a network G(V, E), where V = set of vertices (vx1, vx2, . . . , vxN), E = set of edges
{e1, e2, . . . , em}.

• Using random sampling, select K pair of vertices or set of vertices from G(V, E) as the case
may be.

• Apply an appropriate procedure of overlapping cluster formation.
• Create a degree sequence of vertices (clusters).
• Estimate average degree of network using overlapping cluster sampling mean estimation

method.

2.2. Computational Procedure for Creating Clusters

2.2.1 Shortest Path Procedure(SPP)

In this, non-adjacent pair of vertices are selected in a graphical network, and using Dijkstra’s
algorithm [10] one can find the shortest path whose degree sequence can be obtained.

2.2.2 Clique Based Procedure (CBP)

In this, the K vertices are selected as source vertices and one can find the clique, where a clique
is a complete subgraph whose degree sequence can be calculated.

2.3. Motivation

The Clique Based Procedure (CBP) was used by [16] for computing the average edge length
for community detection. This procedure provides the construction of overlapping clusters.
The shortest path procedure (SPP) also provides the construction of overlapping clusters. In
sampling theory, there exist methodologies to estimate average value of a parameter in the setup
of overlapping clusters. This paper presents a comparison of SPP and CBP using the mathematical
approach of cluster sampling techniques for network mean degree estimation. Newman and
Milgram [11, 14, 13] suggested with evidence of why using the concept of shortest path for
sampling social networks. Newman’s [11] experiment on scientific collaboration shows that on
average 64% scientists collaborator shortest path pass through one’s top-ranked collaborator
and 17% pass through the second-ranked one. Milgram’s [14] [13] experiment of small-world
phenomena concludes that delivering a message from one person to another by using shortest
path based on local information exist in large social networks and that by using only local
information. In general, in social networks, information [5] propagates along the shortest paths of
users as a direct and simple way to communicate. For example, smart advertisement of products
with minimum cost by maximum influence path. Above discussion motivates to take the cliques
and shortest paths [3] as the building blocks to sampled network. By using it one can estimate
different network parameters and at the same time can preserve the network functionalities. A
clique may be an alternative of shortest path and need to be examined.
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3. Estimation of Average Degree using Overlapping Cluster Sampling

Let there are total K clusters, many of them are having overlapping vertices of different degrees
formed by appropriate computational method. The ith cluster (i = 1, 2, 3, . . . , K) contains Ni units.
Suppose the term Yij denotes degree of jth vertex belonging to ith clusters and Fi be the frequency
of jth vertex occurring in K clusters. Total distinct vertices in the network graph are N.

Step 1: Let k out of K (k< K) clusters are selected randomly who are formed either by method
SPP or by CBP.

Step 2: From the ith cluster of size Ni, the ni(ni < Ni) vertices are selected by SRSWR.

Define Dij =
MYij
NFj

, i = 1,2, . . . , K and j = 1, 2, . . . ,Ni,
where, M denotes total vertices in all K cluster (including overlapping, M > N). The Dij indicates
that degree values Yij at K clusters are normalized and converted. Overall average unknown
network parameter is:

D̄ =
1
K

K

∑
i=1

1
Ni

Ni

∑
j=1

Dij (1)

Theorem 1. A biased estimator of average D̄ is given by [2]

d̄ =
1
k

k

∑
i=1

1
ni

ni

∑
j=1

dij (2)

where, dij represents Dij units who are present in sample ni.

Proof. Let us consider (see [2])
E2 = The conditional expectation over a given sample of cluster
E1 = The expectations for over all such sample,

E(d̄)=
(

1
k ∑k

i=1
1
ni

∑ni
j=1 dij

)
= E1E2

(
1
k ∑k

i=1
1
ni

∑ni
j=1 dij

)
= E1

(
1
k ∑k

i=1 E2(d̄i•)
)

where, d̄i• = sample within clusters
. = E1

(
1
k ∑k

i=1 E2(D̄i•)
)
= D̄ 6= Ȳ

Hence the theorem. �
Note 3.1 The d̄ is a biased estimator of Ȳ and its bias is given by Bias(d̄) = E(d̄)− Ȳ
This bias can be estimated by [2]

B̂ias(d̄) =
K− 1

KN̄(k− 1)

k

∑
i=1

(Ni − n̄)(d̄i• − d̄) (3)

3.0.1 Estimation of Variance:

Consider average square between cluster averages in the sample is

s2
b =

1
k− 1

k

∑
i=1

(
d̄i• − d̄

)2 (4)

It can be shown that

E(s2
b) = S2

b +
1
K

K

∑
i=1

(
1
ni
− 1

Ni

)
S2

i (5)
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Also, one can define

s2
i =

1
ni − 1

ni

∑
j=1

(
dij − d̄i•

)2 (6)

Further,

E(s2
i ) = S2

i =
1

Ni − 1

Ni

∑
j=1

(
dij − D̄i

)2 (7)

So,

E

[
1
k

k

∑
i=1

(
1
ni
− 1

Ni

)
s2

i

]
=

1
K

K

∑
i=1

(
1
ni
− 1

Ni

)
S2

i (8)

Thus, one can express

E(s2
b) = S2

b + E

[
1
k

k

∑
i=1

(
1
ni
− 1

Ni

)
s2

i

]
(9)

and an unbiased estimator of S2
b is

Ŝ2
b = s2

b −
1
k

k

∑
i=1

(
1
ni
− 1

Ni

)
s2

i (10)

Also, an estimator of the variance can be obtained by replacing S2
b and S2

i by their unbiased
estimators as:

V̂ar(d̄) =
(

1
k
− 1

K

)
Ŝ2

b +
1

kK

k

∑
i=1

(
1
ni
− 1

Ni

)
Ŝ2

i (11)

3.0.2 Confidence Interval (CI)

Let a and b are the two real numbers and P(A) denotes the probability of an event A. The 95%
confidence interval is defined as P[a < θ < b] = 0.95, where θ is an unknown parameter. As per
theory of normal distribution the best choice of a and b is

a = Estimated average -1.96
√

Estimated variance,
b = Estimated average + 1.96

√
Estimated variance.

4. Proposed Sampling Scheme And Dataset

To evaluate amd compare the two methods CBP and SPP sampling the well known Zachary’s
Karate Club [15] network datasets have taken into account. Zachary network are widely used to
study the efficiency of different graph sampling techniques.

Figure 1: Karate Club Network [15].
Figure 2: Overlapping cluster sampling scheme dia-

gram.
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Table 1: Dataset Description.

Description of Dataset(network)

Network vertex Edge Description

Karate 34 78 Zachary Karate Club Network [15]

4.1. Clique Based Procedure (CBP)

The computational procedure(CBP) prposed by authors is as under:
Step 1: Choose randomly K non-adjacent vertices vxs vertices.
Step 2: Find cliques using vxs as source vertex.
Step 3: Take degree of vertices of cliques in overlapping cluster.
Step 4: By SRSWR rule, choose k overlapping clusters from K clusters.
Step 5: By SRSWR rule, select sample of ni vertices from Ni vertices among k clusters.

Table 2: Clique of random vertices in Karate Club graph

Cliques of vertices in Karate Club graph

Serial No. Vertices Cliques Degree sequence

S1 vx1 [vx0, vx1, vx2, vx3, vx7] (16, 9, 10, 6, 4)
S2 vx3 [vx0, vx1, vx2, vx3, vx13] (16, 9, 10, 6, 5)
S3 vx15 [vx33, vx32, vx15] (17, 12, 2)
S4 vx28 [vx33, vx28, vx31] (17, 3, 6)
S5 vx22 [vx33, vx32, vx22] ( 17, 12, 2)
S6 vx9 [vx2, vx9] (10, 2)
S7 vx5 [vx5, vx16, vx6] (4, 2, 4)
S8 vx10 [vx0, vx4, vx10] (16, 3, 3)
S9 vx12 [vx0, vx12, vx3] (16, 2, 6)
S10 vx30 [vx33, vx32, vx8, vx30] (17, 12, 5, 4)
S11 vx14 [vx33, vx32, vx14] (3, 3, 6)
S12 vx23 [vx33, vx27, vx23] (17, 4, 5)
S13 vx26 [vx33, vx26, vx29] (17, 2, 4)
S14 vx20 [vx33, vx32, vx20] (17, 12, 2)
S15 vx11 [vx0, vx11] ( 16, 1)
S16 vx21 [vx0, vx1, vx21] (16, 9, 2)
S17 vx19 [vx0, vx1, vx19] (16, 9, 3)
S18 vx31 [vx24, vx25, vx31] (3, 3, 6)
S19 vx17 [vx0, vx1, vx17] (16, 9, 2)
S20 vx18 [vx33, vx32, vx18] (17, 12, 2)

4.2. Shortest Path Based Procedure (SPP)

Computaional procedure(SPP) existing in literature due to Dijkstra’s algorithm [10] is as under:

Step 1: Choose randomly K pairs of non-adjacent vertices vxs as source vertex and vxd as
destination vertex.

Step 2: Find shortest path between K pairs of vertices using shortest path algorithm through
Dijkstra’s algorithm [10].

Step 3: Degree sequence is formed to each vertex appearing in the computed shortest path.
Step 4: Take degree sequence as overlapping clusters which divide the graph vertices.
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Step 5: By SRSWR rule, choose k overlapping clusters from K clusters.
Step 6: By SRSWR rule, choose sample ni vertices from Ni among k clusters.

Table 3: Shortest path of random pair of vertices in Karate Club graph

Shortest path of random pair of vertices in Karate Club graph

Serial No. Pairs of vertices Shortest Path Degree sequence

S1 (vx16, vx26) [vx16, vx5, vx0, vx8, vx33, vx26] (2, 4, 16, 5, 17, 2)
S2 (vx16, vx26) [vx16, vx6, vx0, vx19, vx33, vx26] (2, 4, 16, 3, 17, 2)
S3 (vx29, vx12) [vx29, vx32, vx2, vx0, vx12] (4,12,10,16,2)
S4 (vx28, vx16) [vx28, vx2, vx0, vx5, vx16] (3, 10, 16, 4, 2)
S5 (vx10, vx15) [vx10, vx0, vx19, vx33, vx15] ( 3,16, 3, 17,2)
S6 (vx26, vx2) [vx26, vx29, vx32, vx2] (2, 4, 12, 10)
S7 (vx25, vx7) [vx25, vx31, vx0, vx7] (3, 6, 16, 4)
S8 (vx23, vx4) [vx23, vx25, vx31, vx0, vx4] (5, 3, 6, 16, 3)
S9 (vx9, vx24) [vx9, vx2, vx27, vx24] (2,10, 4, 3)
S10 (vx22, vx24) [vx22, vx32, vx31, vx24] (2, 12, 6, 3)
S11 (vx21, vx27) [vx21, vx0, vx2, vx27] (2, 16, 10, 4)
S12 (vx18, vx25) [vx18, vx32, vx23, vx25] (2, 12, 5, 3)
S13 (vx18, vx4) [vx18, vx32, vx2, vx0, vx4] (2, 12, 10, 16, 3)
S14 (vx17, vx5) [vx17, vx0, vx2, vx32, vx1, vx5] (2, 16, 10, 12, 9, 4)
S15 (vx30, vx25) [vx30, vx32, vx23, vx25] ( 4,12, 5, 3)
S16 (vx2, vx26) [vx2, vx8, vx33, vx26] (10, 5, 17, 2)
S17 (vx1, vx20) [vx1, vx2, vx32, vx20] (9, 10, 12, 2)
S18 (vx4, vx8) [vx4, vx0, vx2, vx32, vx1, vx8] (3, 16, 10, 12, 9, 5)
S19 (vx3, vx26) [vx3, vx13, vx33, vx26] (6, 5, 17, 2)
S20 (vx14, vx11) [vx14, vx32, vx31, vx0, vx11] ( 2,12, 6, 16, 1)

4.3. Frequency table of vertices in overlapping clusters

Table 4: Frequency of vertices occuring in K-clusters

Frequency of vertices in K-clusters, N = 34, Msp = 94, Mcl = 63.

vx Yij Fij F′ij Dij D′ij vx Yij Fij F′ij Dij D′ij
vx0 16 12 8 3.69 3.70 vx17 2 1 1 5.53 3.70
vx1 9 3 5 8.29 3.33 vx18 2 2 1 2.76 3.70
vx2 10 10 3 2.76 6.18 vx19 3 2 1 4.15 5.56
vx3 6 1 3 16.59 3.70 vx20 2 1 1 5.53 3.70
vx4 3 3 1 2.76 5.56 vx21 2 1 1 5.53 3.70
vx5 4 3 1 3.69 7.41 vx22 2 1 1 5.53 3.70
vx6 4 1 1 11.06 7.41 vx23 5 3 1 4.61 9.26
vx7 4 1 1 11.06 7.41 vx24 3 2 1 4.15 5.56
vx8 5 3 1 4.61 9.26 vx25 3 4 1 2.07 5.56
vx9 2 1 1 5.53 3.71 vx26 2 5 1 1.11 3.70
vx10 3 1 1 8.29 5.56 vx27 4 2 1 5.53 7.41
vx11 1 1 1 2.76 1.85 vx28 3 1 1 8.29 5.56
vx12 2 1 1 5.53 3.71 vx29 4 2 1 5.53 7.41
vx13 5 1 1 13.82 9.26 vx30 4 1 1 11.06 7.41
vx14 2 1 1 5.53 3.70 vx31 6 4 2 4.15 5.56
vx15 2 1 1 5.53 3.70 vx32 12 10 6 3.32 3.70
vx16 2 3 1 1.84 3.70 vx33 17 5 9 9.4 3.5
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In Table-2 and Table-3, overlapping clusters were collected using CBP and SPP. In which many
vertices lie in clusters repeatedly. To use overlapping cluster sampling, degree values of vertices
are normalized using its frequency by

Dij =
MYij
NFj

, i = 1, 2,..., K and j = 1, 2, ..., Ni

where,
N = Total number of distinct vertices in network.
M = Total number of vertices in overlapping clusters.
Msp = Total number of vertices in overlapping clusters obtained by SPP.
Mcl = Total number of vertices in overlapping clusters obtained by CBP.
Yij = Degree of vertices in network.
Fij = Frequency of vertices in clusters formed by SPP.
F′ij = Frequency of vertices in clusters formed by CBP.
Dij = Normalised degree of vertices in clusters created by SPP.
D′ij = Normalised degree of vertices in clusters created by CBP.

5. Experinmental Results

5.1. Ogive Based Simulation Procedure

Step 1: Draw sample of k clusters by SRSWR from K clusters(k < K).

Step 2: Draw sample of ni vertices of second stage units from Ni among k clusters.

Step 3: Calculate lower limit and upper limit of confidence interval(CI).

Step 4: Repeat step I, II and III for P times(P is positive integer).

Step 5: Draw two ogive curves separately for lower limit and upper limit of confidence intervals.

Step 6: Draw a perpendicular from point of intersections of two ogive curves to find lower and
upper limits of CI.

5.2. Numerical Illustration

Consider the Karate Club Network datasets (figure-1) which has N=34 identifiable distinct
units(vertices). In Table-2 and Table-3 using method CBP and SPP overlapping clusters based on
cliques and shortest path are obtained which contain each unit of the network. The objective is to
estimate average degree of network and relative efficiency of estimate using confidence interval
size. For numerical evaluation, one can take sample in two stages (figure-2). In the first stage
sample of size k = 15 clusters are taken from K = 20 clusters. In the second stage sample of
vertices from each clusters are taken randomly. Further, one can use ogive simulation for P times.

5.3. Shortest Path Based Procedure for Parameter Estimation [10]

A sample of cluster of size k = 15 of size K = 20 (Table-3) is taken by SRSWR and in each
overlapping sampled cluster, a percentage of sample vertices are chosen randomly to calculate
confidence intervals and average degree.

Vivek Kumar Gupta, Diwakar Shukla 
ESTIMATION OF AVERAGE DEGREE OF SOCIAL NETWORK USING CLIQUE . . .

RT&A, No 2 (68) 
Volume 17, June 2022

333



Table 5: Sample cluster units (by SPP)

Sampled vertices and degree sequence using SPP

Serial No. Sample pair of vertices Shortest Path Normalised Degree sequence

S1 (vx16, vx26) [vx5, vx0, vx8, vx26] (3.69, 3.69, 4.61, 1.11)
S2 (vx16, vx26) [vx16, vx6, vx19, vx33] (1.84, 11.06, 4.15, 9.4)
S3 (vx29, vx12) [vx29, vx2, vx0, vx12] (5.53, 2.76, 3.69, 5.53)
S4 (vx10, vx15) [vx10, vx19, vx33, vx15] ( 8.29, 4.15, 9.4, 5.53)
S5 (vx26, vx2) [vx29, vx32, vx2] (5.53, 3.32, 2.76)
S6 (vx25, vx7) [vx25, vx31, vx7] (2.07, 4.15, 11.06)
S7 (vx23, vx4) [vx23, vx25, vx0, vx4] (4.61, 2.07, 3.69, 2.76)
S8 (vx9, vx24) [vx9, vx27, vx24] (5.53, 5.53, 4.15)
S9 (vx22, vx24) [vx22, vx32, vx24] (5.53, 3.32, 4.15)
S10 (vx21, vx27) [vx21, vx2, vx27] (5.53, 2.76, 5.53)
S11 (vx18, vx25) [vx18, vx32, vx25] (2.76, 3.32, 2.07)
S12 (vx17, vx5) [vx17, vx0, vx2, vx5] (5.53, 3.69, 2.76, 3.69)
S13 (vx1, vx20) [vx2, vx32, vx20] (2.76, 3.32, 5.53)
S14 (vx4, vx8) [vx4, vx32, vx1, vx8] (2.76, 3.32, 8.29, 4.61)
S15 (vx14, vx11) [vx14, vx32, vx0, vx11] ( 5.53, 3.32, 3.69, 2.76)

Table 6: Sample based Computation (for SPP)

Sample based computation for confidence interval(using SPP)

S. No. Degree sequence d̄(sp)i• (d̄i• − d̄)2 s2
(sp)i 95% C.I. CI size

S1 (3.69, 3.69, 4.61, 1.11) 3.275 1.437 2.2713 [1.798, 4.752] 2.954

S2 (1.84, 11.06, 4.15, 9.4) 6.6125 4.575 18.797 [2.364, 10.861] 8.497

S3 (5.53, 2.76, 3.69, 5.53) 4.3775 0.009 1.915 [3.021, 5.734] 2.713

S4 ( 8.29, 4.15, 9.4, 5.53) 6.8425 5.612 5.87 [4.468, 9.217] 4.749

S5 (5.53, 3.32, 2.76) 3.87 0.364 2.145 [2.213, 5.527] 3.314

S6 (2.07, 4.15, 11.06) 5.76 1.654 22.15 [0.434, 11.086] 10.652

S7 (4.61, 2.07, 3.69, 2.76) 3.2825 1.419 1.224 [0.434, 11.086] 10.652

S8 (5.53, 5.53, 4.15) 5.07 0.356 0.6348 [4.168, 5.972] 1.804

S9 (5.53, 3.32, 4.15) 4.33 0.021 1.246 [3.067 ,5.593] 2.526

S10 (5.53, 2.76, 5.53) 4.607 0.018 2.557 [2.798, 6.416] 3.618

S11 (2.76, 3.32, 2.07) 2.717 3.086 0.392 [2.009, 3.425] 1.416

S12 (5.53, 3.69, 2.76, 3.69) 3.9175 0.309 1.348 [2.780, 5.055] 2.275

S13 (2.76, 3.32, 5.53) 3.87 0.364 2.145 [2.213, 5.527] 3.314

S14 (2.76, 3.32, 8.29, 4.61) 4.7475 0.075 6.185 [2.308, 7.182] 4.874

S15 ( 5.53, 3.32, 3.69, 2.76) 3.825 0.421 1.438 [2.650, 5.000] 2.35

Average Value d̄sp = 4.4736 s2
sp = 1.408 ŝ2

i = 4.688 [2.4483,6.8288] 4.3805

Vivek Kumar Gupta, Diwakar Shukla 
ESTIMATION OF AVERAGE DEGREE OF SOCIAL NETWORK USING CLIQUE . . .

RT&A, No 2 (68) 
Volume 17, June 2022

334



Figure 3: Ogive for lower limit of CI for SPP. Figure 4: Ogive for upper limit of CI for SPP.

V̂ar(d̄(sp)) =
(

1
k −

1
K

)
ˆS2
sp +

1
kK ∑k

i=1

(
1
ni
− 1

Ni

)
Ŝ2

i

Estimated average degree = d̄sp = 4.47
Estimated variance for average degree = V̂ar(d̄(sp)) = 1.06
Average CI size = 4.38
A 95% confidence interval estimate using SPP for average degree is [2.4483, 6.8288].
Through ogive based simulation(figure 3 & 4) for average degree the confidence interval is
[2.38, 5.42]

5.4. Clique Based Procedure (CBP) for Parameter Estimation

Consider sample of cluster clique having size k = 15 of size K = 20(Table-2) by SRSWR in each
overlapping sampled cluster. Herein a percentage is used to calculate confidence intervals and
average degree of network.

Table 7: Clique of random vertex in Karate Club Graph (by CBP)

Sampled vertices of clique using CBP

Serial No. Sample vertices Sample cliques Normalised degree sequence

S1 vx3 [vx0, vx1, vx3, vx13] (3.70, 3.33, 3.70, 9.26)
S2 vx15 [vx32, vx15] (3.70, 3.70)
S3 vx28 [vx33, vx28] (3.5, 5.56)
S4 vx9 [vx2, vx9] (6.18, 3.71)
S5 vx5 [vx5, vx16] (7.41, 3.70)
S6 vx10 [vx0, vx4] (3.70, 5.56)
S7 vx12 [vx12, vx3] ( 3.71, 3.70)
S8 vx30 [vx33, vx32, vx30] (3.5, 3.70, 7.41)
S9 vx23 [vx33, vx27] (3.5, 7.41)
S10 vx26 [vx33, vx26] (3.5, 3.70)
S11 vx20 [vx33, vx20] (3.5, 3.70)
S12 vx11 [vx0, vx11] ( 3.70, 1.85)
S13 vx21 [vx0, vx1] (3.70, 3.33)
S14 vx31 [vx24, vx31] (5.56, 5.56)
S15 vx18 [vx33, vx18] (3.5, 3.70)
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Table 8: Sample based Computation (for CBP)

Sample based computation for confidence interval(Using CBP)

S. No. Degree sequence d̄(cl)i• (d̄i• − d̄)2 s2
(cl)i 95% C.I. CI size

S1 (3.70, 3.33, 3.70, 9.26) 4.99 0.436 2.2713 [2.207, 7.788] 5.581

S2 (3.70, 3.70) 3.7 0.397 0 [3.700, 3.700] 0

S3 (3.5, 5.56) 4.53 0.04 2.122 [2.511, 6.549] 4.038

S4 (6.18, 3.71) 4.94 0.325 3.05 [2.525, 7.365] 4.84

S5 (7.41, 3.70) 5.55 1.488 6.882 [1.914, 9.186] 7.272

S6 (3.70, 5.56) 4.63 0.09 1.73 [2.808, 6.452] 3.644

S7 ( 3.71, 3.70) 3.70 0.397 0.0001 [3.695, 3.715] 0.02

S8 (3.5, 3.70, 7.41) 4.87 0.292 4.849 [2.378, 7.362] 4.984

S9 (3.5, 7.41) 5.45 1.254 7.644 [1.623, 9.287] 7.664

S10 (3.5, 3.70) 3.6 0.533 0.02 [3.404, 3.796] 0.392

S11 (3.5, 3.70) 3.6 0.533 0.02 [3.404, 3.796] 0.392

S12 ( 3.70, 1.85) 2.77 2.434 1.7113 [0.962, 4.588] 3.626

S13 ( 3.70, 3.33) 3.51 0.672 0.0685 [3.152, 3.878] 0.726

S14 ( 5.56, 5.56) 5.56 1.513 0 [5.560, 5.560] 0

S15 ( 3.5, 3.70) 3.6 0.533 0.02 [3.404, 3.796] 0.392

Average value d̄cl = 4.33 s2
cl = 0.781 ŝ2

i = 0.4876 [2.883, 5.787] 2.9047

Figure 5: Ogive for lower limit of CI by CBP. Figure 6: Ogive for upper limit of CI by CBP.

V̂ar(d̄) =
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1
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)
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)
Ŝ2

i

Estimated average degree = d̄cl = 4.33
Estimated variance for average degree = V̂ar(d̄cl) = 0.022813
Average confidence interval(CI) size = [5.787− 2.883] = 2.90
The 95% confidence interval estimate using CBP is [2.8831, 5.7878].
Through ogive based simulation(figure 5 & 6) the confidence interval(CI) is [2.63, 5.01].
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6. Comparision

The Percentage Relative Efficiency (PRE) of estimators d̄cl , d̄sp is defined as under:

PRE = V̂ar(d̄sp)−V̂ar(d̄cl)

V̂ar(d̄sp)
× 100 = 1.06−0.0228

1.06 × 100 = 97.84%

The Percentage Relative Gain(PRG) over the length of confidence intervals is defined as:

PRG = (length of CI)SPP−(length of CI)CBP
(length of CI)SPP

× 100 = 4.3805−2.9047
4.3805 × 100 = 33.69%

Using ogive based simulation, the Percentage Relative Gain is:

(PRG)ogive =
[(length of CI)SPP ]ogive−[(length of CI)CBP ]ogive

[(length of CI)SPP ]ogive
× 100 = 3.04−2.38

3.04 × 100 = 21.71%

7. Reliability of Social Networks as an Application

As considered, the average degree estimation of a social network leads to monitoring the
reliability of the network. People join the social network at any point of time and leave it at any
other instant. Addition and deletion in a social network is a common continuous process. A
network is said to be reliable if the average degree of social network remains controlled over the
time framework. The upper limit and lower limit of confidence intervals are useful measures to
make a benchmark for checking of growth or decay of social networks over the time domain.

Figure 7: Network reliabiity based on vertex degree estimate.

8. Discussion

The two methods SPP and CBP are compared in a common setup of a social network for the
objective of computation of average degree. A social network in general can be represented as
a graph of vertices and edges. Clusters of vertices are formed by using both methods SPP and
CBP. After comparison of percentage relative efficiency, the CPP found efficient by 97.8% over
SPP. The simulated confidence interval for clique procedure (CBP) is [2.8-5.7] which is catching
the true value of average degree 4.58 of vertices, which is also supported by figures 5 and 6. The
same calculation for simulated confidence interval using shortest path procedure(SPP) is [2.4-6.8]
which is longer than earlier (see figure 3 & 4). Ogive based simulation procedure also supports
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for better efficiency of [(2.38, 5.42) for SPP, ( 2.63, 5.01) for CBP] the proposed for network degree
evaluation and the proposed is useful for network reliability (figure-7).

9. Conclusion

This paper contains an overlapping cluster sampling based comparative approach using
the shortest path and cliques method over created clusters. A graphical structure has been
taken under consideration representing the social network. In order to estimate the unknown
parameter(like average degree), the proposed sampling method takes into account the cliques
and compares with shortest paths between several pairs of vertices in a setup of the overlapping
cluster of degree sequence. The proposed method is examined by conducting an experiment on a
well-known real network keeping in view that the average degree is an important property of
network. To evaluate the comparative statistical significance of proposed procedure CBP, the 95%
confidence intervals were computed for both methods. It has been found as an outcome of the
study that 95% confidence intervals contain the true value. The Ogive based simulation procedure
has been implemented which shows cluster based method using clique (CBP) provides a better
estimate of the parameter(average degree) than the cluster based method using shortest path
(SPP). The network reliability could be monitored over the long time domain by the bench-mark
values of confidence intervals. This contribution opens up new avenues and opportunities for
network degree parameter estimation. One can think of the inclusion of the additional network
measures for future studies that will help to bring up new insights to the development of graph
sampling cluster methods. In order to have more a comprehensive evaluation of the existing
social networking, the sampling methods could be considered by involving the other kinds of
parametric network measures and properties.
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Abstract

The objective of this study is to develop an extension of the Burr-III distribution which is achieved
by adopting the inverse Weibull-G family of distribution and is referred as inverse Weibull-Burr III
distribution (IWB-III) to evaluate complicated data. Different structural characteristics of the suggested
distribution have been determined and analysed. Distinct plots depict the behaviour of the probability
density function (pdf) and the cumulative distribution function (cdf). The maximum likelihood estimation
method is applied to estimate the stated distribution parameters. To assess and investigate the efficacy of
estimators in terms of bias, variance, and mean square error (MSE), a simulation study was conducted.
Lastly, the effectiveness of the stated distribution is proven by an actual data set relevant to survival rates
in animals.

Keywords: Inverse Weibull-G family; Burr-III distribution; moments, Renyi entropy; simulation;
maximum likelihood estimation.

1. Introduction

Over numerous decades, academics have been attempting to develop a number of novel distribu-
tions to satisfy certain realistic demands. The rationale is that conventional distributions have
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generally been shown to lack fit in actual applications, such as medicinal research, engineering,
hydrology, environmental science, and many more. In particular, the objective of creating novel
distributions or generalisations is to construct adaptable statistical models effective at dealing
with complicated real-world data. This adaptability may be obtained in a straightforward manner
by introducing new parameters to the standard distribution.

The Weibull distribution has been utilised in a variety of disciplines and applications. The
hazard function of the Weibull distribution can only be monotonic in nature. As a result, it can
not be employed to simulate lifespan data with a bathtub-shaped hazard function.

Let X be a random variable that follows the Weibull distribution with parameters α and β.
Then its probability density function (pdf) is defined as

ψ(x, α, β) = αββxβ−1e−αβxβ
; x > 0, α, β > 0

The transformation T = 1
X , yields the inverse of the Weibull distribution. As a result, the

probability density function (pdf) of the inverse Weibull distribution assumes the following
structure.

h(t, α, β) = αββt−(β+1)e−αβt−β
; t > 0, α, β > 0 (1)

In this work, we construct the inverse Weibull-Burr III distribution, which is an expansion of the
Burr-III distribution. Burr, I.W [4] advocated a family of twelve cumulative distribution functions
for simulating lifespan data. Burr-type III and Burr-type XII distributions were two prevalent
members of the family. The Burr-III distribution has been studied thoroughly and employed in a
range of aspects of research. Daniyal et al [9], Al-Dayian et al [10] and B.A. para et al [6] provide
further information on the characteristics of the Burr-III distribution. The probability density
function (pdf) of Burr-III distribution is stated as.

g(y, θ, λ) = θλy−θ−1
(

1 + y−θ
)−λ−1

; y > 0, θ, λ > 0 (2)

The associated cumulative distribution function (cdf) of equation (1.2) is given as

G(y, θ, λ) =
(

1 + y−θ
)−λ

; y > 0, θ, λ > 0 (3)

In recent decades, researchers have concentrated on discovering novel generators from continuous
conventional distributions. As an outcome, the resulting distribution enhances the efficacy and
adaptability of data analysis. The following are some generated families of distribution: the beta-
G family of distribution investigated by Eugene et al [11], the gamma-G family by Zagrofos and
Balakrishana [13], the kumaraswamy-G family by Cordeiro et al [8], the transformedtransformer(T-
X) by Alzaatrh et al [1], the Weibull-G by Bourguignon et al [3],Brito et al. [5] created the
Topp-Leone odd log-logistic family of distributions, Morad Alizadeh et al. [12] constructed the
Gompertz-G distribution family, and Amal S. Hassan et al. [2] established the inverse Weibull-G
distribution.
T-X family of distributions defined by Alzaatreh et al [1] is given by

F(y) =
∫ W[G(y)]

0
r(t)dt (4)

Where r(t) be the probability density function of a random variable Tand W[G(y)] be a function
of cumulative density function of random variable Y.
Suppose G(y, φ),denotes the baseline cumulative distribution function, which depends on parame-
ter vector φ. Now using T-X approach, the cumulative distribution function F(y) of inverse Weibull
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generator (IWG) can be derived by replacing r(t) in equation (1.4) with (1.1) and W[G(y)] = G(y,φ)
Ḡ(y,φ) ,

where Ḡ(y, φ) = 1− G(y, φ) which follows

F(y, φ) =
∫ G(y,φ)

Ḡ(y,φ)

0
αββt−(β+1)e−αβt−β

dy

=e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

; y > 0, α, β, φ > 0 (5)

where Ḡ(y, φ) = 1− G(y, φ)
The associated pdf of (1.5) is given as

f (y, α, φ) =αββg(y, φ)
(G(y, φ))−β−1

(Ḡ(y, φ))−β+1 e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

; y > 0, α, β, φ > 0 (6)

In addition, Reliability function denoted as F̄(y, φ), hazard rate function denoted as h(y, φ) and
cumulative hazard rate function denoted as H(y, φ) are respectively given as

F̄(y, φ) =1− e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

h(y, φ) =
αββg(y, φ) (G(y,φ))−β−1

(Ḡ(y,φ))−β+1 e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

1− e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

H(y, φ) =− ln[F̄(y, φ)] = −ln

{
1− e

−αβ
(

G(y,φ)
Ḡ(y,φ)

)−β
}

1.1. Usefull Expansions

Applying Taylor series expansion to the exponential function of the pdf in equation (1.6) we have

e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

=
∞

∑
s=0

(−1)s

s!
αsβ

(
G(y, φ)

Ḡ(y, φ)

)−βs
(7)

substituting equation (1.7) in equation (1.6), we have

f (y, φ) =
∞

∑
s=0

(−1)s

s!
αβ(s+1)

βg(y, φ)
(G(y, φ))−β(s+1)−1

(Ḡ(y, φ))
−β(s+1)+1

(8)

=
∞

∑
s=0

(−1)s

s!
αβ(s+1)

βg(y, φ) (G(y, φ))−β(s+1)−1 (1− G(y, φ))β(s+1)−1 (9)

using generalised binomial theorem, we have

(1− z)a−1 =
∞

∑
p=0

(−1)p
(

a− 1
p

)
zp

(Ḡ(y, φ))
−β(s+1)+1

=(1− G(y, φ))β(p+1)−1 =
∞

∑
p=0

(−1)p
(

β(p + 1)− 1
p

)
(G(y, φ))p

=
∞

∑
s=0

∞

∑
p=0

(−1)s+p

s!

(
β(s + 1)− 1

p

)
αβ(s+1)

βg(y, φ)(G(y, φ))p−β(s+1)−1

=
∞

∑
s=0

∞

∑
p=0

ζs,pg(y, φ)(G(y, φ))p−β(s+1)−1 (10)

where

ζs,p =
(−1)s+p

s!

(
β(s + 1)− 1

p

)
αβ(s+1)

β
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Now using equation (2) and (3) in equation (10), we obtain pdf of formulated distribution in
mixture form, as follows

f (y, α, β, θ, λ) =
∞

∑
s=0

∞

∑
p=0

ζs,pθλy−θ−1
(

1 + y−θ
)−λ−1 [

(1 + y−θ)−λ
]p−β(s+1)−1

; y > 0, α, β, θ, λ > 0 (11)

2. Inverse Weibull-Burr III Distribution

In this part, we’ll investigate the inverse Weibull-Burr III distribution and look at aspects of
its statistical characteristics. We derive the cumulative distribution function (cdf) of the given
distribution using equation (3) in equation (5) as follows.

F(y, α, β, θ, λ) = e−αβ((1+y−θ)λ−1)β
(12)

Figure 1: Expounds some of possible layouts of the cdf of IWB-III distribution for distinct choice
of parameters
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Figure 1: plots of cdf for IWB-III distribution

The associated pdf of (12) is given as

f (y, α, β, θ, λ) = αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β
(13)

; α > 0, β > 0, θ > 0, λ > 0

Figure 2: Expounds some of possible layouts of the pdf of IWB-III distribution for distinct choice
of parameters

3. Reliability Measures of (IWB-III) Distribution

This section is focused on researching and developing distinct ageing indicators for the formulated
distribution.
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Figure 2: plots of pdf for IWB-III distribution

3.1. Survival function

Suppose Y be a continuous random variable with cdf F(y).Then its Survival function which is
also called reliability function is defined as

S(y) = pr(Y > y) =
∫ ∞

y
f (y)dy = 1− F(y)

Therefore, the survival function for IWB-III distribution is given as

S(y, α, β, θ, λ) =1− F(y, α, β, θ, λ)

=1− e−αβ((1+y−θ)λ−1)β
(14)

3.2. Hazard rate function

The hazard rate function of a random variable y is denoted as

h(y, α, β, θ, λ) =
f (y, α, β, θλ)

F(y, α, β, θλ)
(15)

using equation (12) and (13) in equation (15), then the hazard rate function of IWB-III distribution
is given as

h(y, α, β, θλ) =
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

1− e−αβ((1+y−θ)λ−1)β
(16)

Figure 3: Expounds some of possible layouts of the hazard function of IWB-III distribution for
distinct choice of parameters

3.3. Cumulative hazard rate function

The cumulative hazard rate function of a random variable y is given as

H(y, α, β, θ, λ) =− ln[F̄(y, α, β, θ, λ)] (17)

using equation (12) in equation (17), then we obtain cumulative hazard rate function of IWB-III
distribution

H(y, α, β, θ, λ) =− ln
{

1− e−αβ((1+y−θ)λ−1)β
}

(18)
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Figure 3: plots of hazard function for IWB-III distribution

3.4. Mean residual function

The mean residual lifetime is the predicted residual life or the average completion period of the
constituent after it has exceeded a certain duration y. It is extremely significant in reliability
investigations.
Mean residual function of random y variable can be obtained as

m(y, α, β, θ, λ) =
1

S(y, α, β, θ, λ)

∫ ∞

y
t f (t, α, β, θ, λ)dt− y

=
1{

1− e−αβ((1+y−θ)λ−1)β
} ∞

∑
s=0

∞

∑
p=0

ζs,pθλ

×
∫ ∞

y
t−θ

(
1 + t−θ

)−λ−1 [
(1 + t−θ)−λ

]p−β(s+1)−1
dt− y

Making substitution (1 + t−θ)−λ = z, sothat (1 + y−θ)−λ ≤ z ≤ 1, we have

m(y, α, β, θ, λ) =
∫ 1

(1+y−θ)−λ
zp−β(s+1)+ 1

λθ−1(1− z
1
λ )−

1
θ dz

After solving the integral, we get

B
(

1− (1 + y−θ)−1, (p− β(s + 1))λ +
1
θ

, 1− 1
θ

)
Where B(x, a, b) =

∫ x
0 ua−1(1− u)b−1denotes incomplete beta function

4. Statistical Properties Of (IWB-III) Distribution

This section is devoted to derive and examine disttinct properties of IWB-III
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4.1. Moments

Let y denotes a random variable, then the rth moment of IWB-III is denoted as µ
′
r and is given by

µ
′
r =E(yr) =

∫ ∞

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ ∞

0
yr(1 + y−θ)−λ−1

[
(1 + y−θ)−λ

]p−β(s+1)−1
dy

Making substitution (1 + y−θ)−λ = z, so that 0 < z < 1, we have

µ
′
r =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ 1

0
zp−β(s+1)+ r

λθ−1
(

1− z
1
λ

)−r
θ dy

After solving the integral, we have

µ
′
r =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)
Where B(.) denotes incomplete beta function.

4.2. Moment generating function

suppose Y denotes a random variable follows IWB-III distribution. Then the moment generating
function of the distribution denoted by MY(t)is given

MY(t) = E(ety) =
∫ ∞

0
ety f (y, α, β, θ, λ)dy

=
∫ ∞

0

(
1 + ty +

(ty)2

2!
+

(ty)3

3!
+ ....

)
f (y, α, β, θ, λ)dy

=
∞

∑
r=0

tr

r!

∫ ∞

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
r=0

tr

r!
E(yr)

=
∞

∑
r=0

∞

∑
s=0

∞

∑
p=0

tr

r!
ζs,pλB

(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)
The characteristics function of the IWB-III distribution denoted as φY(t) can be yeild by replacing
t = it where i =

√
−1

φY(t) =
∞

∑
r=0

∞

∑
s=0

∞

∑
p=0

(it)r

r!
ζs,pλB

(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)

4.3. Incomplete moments

The general expression for incomplete moments is given as

m(y) =
∫ y

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ y

0
yr−θ−1

(
1 + y−θ

)−λ−1 [
(1 + y−θ)−λ

]p−β(s+1)−1
dy
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Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + y−θ

)−λ, we have

=
∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+y−θ)−λ

0
zj−β(s+1)+ r

θλ−1
(

1− z
1
λ

)− r
θ dy

After solving the integral, we get

m(y) =
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + y−θ)−1; (p− β(s + 1))λ +
r
θ

, 1− r
θ

)
where B(.) denotes the incomplete beta function.

4.4. Quantile function

The quantile function of a random variable Y, where Y ∼ IWB− I I I distribution can be obtained
by inverting equation (12), we have

yq =


[

1 +
(
− 1

αβ
log(q)

) 1
β

] 1
λ

− 1


− 1

θ

In particular, the median of the distribution can be obtained by setting q = 0.5, we have

y0.5 =


[

1 +
(
− 1

αβ
log(0.5)

) 1
β

] 1
λ

− 1


− 1

θ

4.5. Random number generation

Suppose y denotes a random variable with pdf given in equation (2.1) . The random number of
IWB-III distribution can be generated as

F(y) =u =⇒ y = F−1(u)

y =


[

1 +
(
− 1

αβ
log(u)

) 1
β

] 1
λ

− 1


− 1

θ

Where u is the uniform random variable defined in an open interval (0,1) .

4.6. Mean deviation about mean and median

The quantity of scattering in a population is evidently measured to some extent by the totality of
the deviations.
Let Y be a random variable from IWB-III distribution with mean µ. Then the mean deviation
from mean is defined as.

D(µ) =E (|Y− µ|)

=
∫ ∞

0
|Y− µ| f (y)dy

=
∫ µ

0
(µ− y) f (y)dy +

∫ ∞

µ
(y− µ) f (y)dy

=2µF(µ)− 2
∫ µ

0
y f (y)dy (19)
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Now ∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ µ

0
y−θ−1

(
1 + y−θ

)−λ−1
[(

1 + y−θ
)−λ−1

]p−β(s+1)−1
dy

Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + µ−θ

)−λ, we have

∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+µ−θ)−λ

0
zp−β(s+1)+ 1

θλ−1
(

1− z
1
λ

)− 1
θ dz

After solving the integral, we get∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + µ−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
(20)

Where B(.) denotes incomplete beta function.
Substitute equation (20) in equation (19), we have

D(µ) =µe−αβ((1+µ−θ)λ−1)β −
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + µ−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
Let Y be a random variable from IWB-III distribution with median M. Then the mean deviation
from median is defined as.

D(M) =E (|Y−M|)

=
∫ ∞

0
|Y−M| f (y)dy

=
∫ M

0
(M− y) f (y)dy +

∫ ∞

M
(y−M) f (y)dy

=µ− 2
∫ M

0
y f (y)dy (21)

NOW∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ M

0
y−θ−1

(
1 + y−θ

)−λ−1
[(

1 + y−θ
)−λ−1

]p−β(s+1)−1
dy

Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + M−θ

)−λ, we have

∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+M−θ)−λ

0
zp−β(s+1)+ 1

θλ−1
(

1− z
1
λ

)− 1
θ dz

After solving the integral, we get∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + M−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
(22)

Where B(.) denotes incomplete beta function.
Substitute equation (22) in equation (21), we have

D(M) =µ− 2
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + M−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
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5. Renyi Entropy

Let Y be a continuous random variable with probability density functionf f (y). Then Renyi
entropy is stated as

TR(ρ) =
1

1− ρ
log
[∫ ∞

0
f ρ(y)dy

]
Where ρ > 0 and ρ 6= 1

TR(ρ) =
1

1− ρ
log

[∫ ∞

0

(
αββg(y, φ)

(G(y, φ))−(β+1)

(Ḡ(y, φ))−(β−1)
e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β
)ρ

dy

]

=
1

1− ρ
log

[
αβρβρ

∫ ∞

0
(g(y, φ))ρ (G(y, φ))−ρ(β+1) (1− G(y, φ))ρ(β+1) e

−αβρ
(

G(y,φ)
Ḡ(y,φ)

)−β

dy

]
(23)

Using the expansion e−kx = ∑∞
s=0

(−1)s

s! (kx)s in equation (5.1), we have

=
1

1− ρ
log

[
αβρβρ

∫ ∞

0
(g(y, φ))ρ (G(y, φ))−ρ(β+1) (1− G(y, φ))ρ(β+1)

∞

∑
s=0

(−1)s

s!
(αβρ)s

(
G(y, φ)

Ḡ(y, φ)

)−βs
dy

]

=
1

1− ρ
log

[
∞

∑
s=0

(−1)s

s!
αβ(ρ+s)βρρs

∫ ∞

0
(g(y, φ))s(G(y, φ))−β(ρ+s)(1− G(y, φ))β(ρ−s)+ρdy

]
(24)

Using generalized bionomial expansion (1− z)a−1 = ∑∞
p=0(−1)p(a−1

p )zp in equation (5.2), we
have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

(−1)s+p

s!

(
β(ρ− s) + ρ

p

)
αβ(ρ+s)(βs)ρ

∫ ∞

0
(g(y, φ))ρ(G(y, φ))p−β(ρ+s)dy

]
(25)

Using equation (12) and (13) in (25), we have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ
∫ ∞

0
y−ρ(θ+1)(1 + y−θ)−ρ(λ+1)

(
(1 + y−θ)−λ

)p−β(ρ+s)
dy

]

Where

ζs,p =
(−1)s+p

s!

(
β(ρ− s) + ρ

p

)
αβ(ρ+s)(βs)ρ

Making substitution (1 + y−θ)−λ = z, 0 < z < 1, we have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ−1
∫ 1

0
zp−β(ρ+s)+ ρ(θλ−1)+1

θλ −1(1− z
1
λ )

ρ(θ+1)
θ −1dy

]

After solving the integral, we get

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ−1λB(mλ, n)

]

Where B(.) denotes beta function and m = p− β(ρ + s) + ρ(θλ−1)+1
θλ , n = ρ(θ+1)

θ
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6. Order Statistics of (IWB-III) Distribution

Let us suppose Y1, Y2, ..., Yn be random samples of size n from IWB-III distribution with pdf f (y)
and cdf F(y). Then the probability density function of th kth order statistics is given as

fY(k) =
n!

(k− 1)!(n− 1)!
f (y) [F(y)]k−1 [1− F(y)]n−1 (26)

Using equation (12) and (13) in equation (26), we have

fY(k) =
n!

(k− 1)!(n− 1)!
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

×
[
e−αβ((1+y−θ)λ−1)β

]k−1 [
1− e−αβ((1+y−θ)λ−1)β

]n−k

The pdf of the first order statistics Y1 of IWB-III distribution is given by

fY(1) =nαββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

×
[
1− e−αβ((1+y−θ)λ−1)β

]n−1

The pdf of the nth order statistics Yn of IWB-III distribution is given by

fY(1) = nαββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β[
e−αβ((1+y−θ)λ−1)β

]n−1

7. Maximum Likelihood Estimation of (IWB-III) Distribution

Let the random samples y1, y2, y3, ..., yn are drawn from IWB-III distribution. The likelihood
function of n observations is given as

L =
n

∏
i=1

(
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

)
The log-likelihood function is given as

l =nβlog(α) + nlog(β) + nlog(θ) + nlog(λ)− (θ + 1)
n

∑
i=1

logyi + (λ− 1)
n

∑
i=1

log(1 + y−θ
i )

+ (β− 1)
n

∑
i=1

log
(
(1 + y−θ

i )λ − 1
)
− αβ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(27)
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The partial derivatives of the log-likelihood function with respect to α, β, θ and λ are given as

∂l
∂α

=
nβ

α
− βαβ−1

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(28)

∂l
∂β

=nlog(α) +
n
β

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)
− αβ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

log
(
(1 + y−θ

i )λ − 1
)

− αβlog(α)
n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(29)

∂l
∂θ

=
n
θ
−

n

∑
i=1

log(yi)− (λ− 1)
n

∑
i=1

y−θ
i

(1 + y−θ
i )

log(yi)− (β− 1)λ
n

∑
i=1

(
1 + y−θ

i

)λ−1(
1 + y−θ

i

)
− 1

y−θ
i log(yi)

+ αββλ
n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β−1 (

1 + y−θ
i

)λ−1
y−θ

i log(yi) (30)

∂l
∂λ

=
n
λ
+

n

∑
i=1

log(1 + y−θ
i ) + (β + 1)

n

∑
i=1

(
1 + y−θ

i

)λ(
1 + y−θ

i

)
− 1

log(1 + y−θ
i )− αββ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

×
(

1 + y−θ
i

)λ
log(1 + y−θ

i ) (31)

Clearly the equations (28),(29),(30) and (31), are non-linear equations which cannot be expressed
in compact form and it is difficult to solve them explicitly for α, β, θ and λ .By applying the
iterative methods such as Newton–Raphson method, secant method, Regula-falsi method etc.
The MLE of the parameters denoted as ξ̂(α̂, β̂, θ̂, λ̂) of ξ(α, β, θ, λ) can be obtained by using the
above methods.
For interval estimation and hypothesis tests on the model parameters, an information matrix is
required. The 3 by 3 observed matrix is

I(ξ) =
−1
n


E
(

∂2logl
∂α2

)
E
(

∂2logl
∂α∂β

)
E
(

∂2logl
∂α∂θ

)
E
(

∂2logl
∂α∂λ

)
E
(

∂2logl
∂β∂α

)
E
(

∂2logl
∂β2

)
E
(

∂2logl
∂β∂θ

)
E
(

∂2logl
∂β∂λ

)
E
(

∂2logl
∂θ∂α

)
E
(

∂2logl
∂θ∂β

)
E
(

∂2logl
∂θ2

)
E
(

∂2logl
∂θ∂λ

)
E
(

∂2logl
∂λ∂α

)
E
(

∂2logl
∂λ∂β

)
E
(

∂2logl
∂λ∂θ

)
E
(

∂2logl
∂λ2

)


The elements of above information matrix can be obtain by differentiating equations (28),(29),(30)
and (31) again partially. Under standard regularity conditions when n→ ∞ the distribution of ξ̂
can be approximated by a multivariate normal N(0, I(ξ̂)−1) distribution to construct approximate
confidence interval for the parameters. Hence the approximate 100(1− ψ)% confidence interval
for α, β, θ and λ are respectively given by

α̂± Z ψ
2

√
I−1
αα (ξ̂), β̂± Z ψ

2

√
I−1
ββ (ξ̂), θ̂ ± Z ψ

2

√
I−1
θθ (ξ̂) and λ̂± Z ψ

2

√
I−1
λλ (ξ̂)

8. Simulation Analysis

The MLE’S, bias and mean quare error (MSE) were all addressed to simulation analysis. From
IWB-III with N=1000, samples of size n=50,150,250,350 and 500 were obtained. The following
expression has been used to produce random numbers.

y =


[

1 +
(
− 1

αβ
log(u)

) 1
β

] 1
λ

− 1


− 1

θ
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Where u is uniform random numbers with u ∈ (0, 1) . For various parameter combinations,
simulation results have been achieved. The MLE’s bias, and MSE values are calculated and
presented in table 1 and 2. As the sample size increases, this becomes apparent that these
estimates are relatively consistent and approximate the actual values of parameters. Interestingly,
with all parameter combinations, the bias and MSE reduce as the sample size increases.

Table 1: Average values of MLEs their corresponding MSEs and Bias for different parameter values α = 0.6, β =
1.8, θ = 1.7, λ = 0.9

Sample size Parameters MLEs Bias MSE

50 α 0.96617 0.36617 0.13433
β 0.78938 -1.01061 1.02160
θ 2.28698 0.58698 0.36917
λ 0.97504 0.07504 0.03660

150 α 0.96446 0.36446 0.13040
β 0.78690 -1.00309 1.00635
θ 2.28292 0.58292 0.34793
λ 0.90522 0.00522 0.01064

250 α 0.95675 0.35675 0.14210
β 0.79891 -1.00108 1.00229
θ 2.18506 0.48506 0.24773
λ 0.89007 -0.00992 0.00780

350 α 0.94957 0.34957 0.14120
β 0.70135 -1.09864 0.99739
θ 2.18423 0.47623 0.24659
λ 0.87259 -0.02740 0.00611

500 α 0.94070 0.34070 0.14103
β 0.70123 -1.99776 0.99560
θ 2.18660 0.46960 0.24483
λ 0.86856 -0.03143 0.00485

Table 2: Average values of MLEs their corresponding MSEs and Bias for different parameter values α = 0.9, β =
1.8, θ = 1.3, λ = 1.1

Sample size Parameters MLEs Bias MSE

50 α 0.96470 0.06470 0.00444
β 0.78783 -1.01216 1.02473
θ 1.55140 0.25140 0.08037
λ 0.85433 -0.24566 0.08322

150 α 0.96430 0.064308 0.00430
β 0.78731 -1.01268 1.00554
θ 1.50394 0.20394 0.08034
λ 0.77932 -0.32067 0.01114

250 α 0.96324 0.06324 0.00421
β 0.77744 -1.02255 1.00523
θ 1.40394 0.20294 0.08009
λ 0.77879 -0.32120 0.00351

350 α 0.95853 0.04853 0.00330
β 0.60026 -1.99973 0.99958
θ 1.31691 0.11691 0.00448
λ 0.76227 -0.33772 0.00345

500 α 0.94868 0.03868 0.00245
β 0.50124 -1.99975 0.99758
θ 1.22246 0.10246 0.00370
λ 0.75697 -0.34302 0.00341
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9. Data Aanalysis

This subsection evaluates a real-world data set to demonstrate the IWB-III distribution’s appli-
cability and effectiveness. The IWB-III distribution’s adaptability is determined by comparing
its efficacy to that of other analogous distributions such as new modified Weibull distribu-
tion (NMWD), modified Weibull distribution (MWD),Topp-Leone Burr distribution (TLBD),
inverse Weibull distribution (IWD) and Burr-III distribution (B-IIID),inverse Rayleigh distribution
(IRD),inverse Lindley distributon (ILD).
To compare the versatility of the explored distribution, we consider the criteria like AIC (Akaike
information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian information
criterion) and HQIC (Hannan-Quinn information criterion). Distribution having lesser AIC, CAIC,
BIC and HQIC values is considered better.

AIC = −2l + 2p, AICC = −2l + 2pm/(m− p− 1), BIC = −2l + p(log(m))

HQIC = −2l + 2plog(log(m)) K.S = max1≤j≤m

(
F(xj)−

j− 1
m

,
j

m
− F(xj)

)
Where ′l′ denotes the log-likelihood function,’p’is the number of parameters and’m’is the sample
size.
Data set: Bjerkedel studied the survival rates (in days) of 72 guinea pigs treated with pathogenic
turbercle bacteria [7]. The data are as follows
0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93,0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08,
1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46,1.53, 1.59, 1.6, 1.63,
1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53,
2.54, 2.78,2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77.
The ML estimates with corresponding standard errors in parenthesis of the unknown parameters
are presented in Table 4 and the comparison statistics, AIC, BIC, CAIC, HQIC and the goodness-
of-fit statistic for the data set are displayed in Table 5.

Table 3: Descriptive statistics for data set

Min. Max. Ist Qu. Med. Mean 3rd Qu. kurt. Skew.
0.100 5.550 1.077 1.450 1.754 2.240 4.9139 1.3282

Table 4: The ML Estimates (standard error in parenthesis) for data set

Model α̂ β̂ θ̂ λ̂ γ̂

IWB-IIID 189.54 0.1577 15.511 0.1618 ...
(172.96) (0.0159) (0.0977) (0.0584) ...

NMWD 0.0010 0.2922 1.7967 0.0010 1.7941
(0.0035) (0.0940) (5.0481) (0.0014) (0.1570)

AWD 0.0010 0.2924 1.7961 1.7962 ...
(0.0205) (0.0152) (0.1563) (0.1573) ...

TLBD 0.484 2.3688 1.8033 ... ...
(0.2556) (0.8929) (0.9392) ... ...

IWD 1.1753 1.0402 ... ... ...
(0.0849) (0.1110) ... ... ...

B-IIID ... ... 2.3189 1.8576 ...
... .... (0.2144) (0.2192) ....

IRD 0.9112 ... ... ... ...
(0.1073) ... ... ... ...

ILD 1.5540 ... ... ... ...
(0.1434) ... ... ... ...

It is observed from table 5 that IWB-IIID provides best fit than other competative models
based on the measures of statistics, AIC, BIC, AICC, HQIC and K-S statistic. Along with p-values
of each model.
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Table 5: Comparison criterion and goodness-of-fit statistics for data set

Model -l AIC AICC BIC HQIC K.S statistic p-value
IWB-IIID 93.007 194.01 194.61 203.12 197.64 0.0765 0.7933
NMWD 96.03 202.07 202.98 213.45 206.60 0.0983 0.4897

AWD 96.02 200.05 200.64 209.15 203.67 0.0982 0.4902
TLBD 97.60 201.21 201.56 208.04 203.93 0.3966 2.907e-10
IWD 117.32 238.65 238.82 243.20 240.46 0.1899 0.01109

B-IIID 97.608 199.21 199.38 203.76 201.02 0.1092 0.3565
IRD 161.85 325.71 325.77 327.99 326.61 0.4674 4.352e-14
ILD 118.93 239.86 239.92 242.14 240.77 0.3219 2.2e-16

 Estimated pdf's of the fitted models for data set
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Figure 4: fitted pdf’s and cdf’s for the data set

10. Conclusion

In this work, we developed a novel flexible distribution known as the inverse Weibull-Burr
III distribution. Numerous mathematical characteristics are determined for this distribution,
including moments, moment generating functions, incomplete moments, order statistics, Renyi
entropy, mean deviations, and reliability analysis. The maximum likelihood estimation approach
was used to estimate the distribution’s parameters. Ultimately, it has been demonstrated by
employing a real-world data set that the stated distribution leads to a better fit than the comparable
ones.
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Abstract

This paper reported the performance evaluation of Captive Power plant working in the fertilizer industry
with possible production capacities. The idea of reduced capacity and load sharing to use the available
system optimally is analyzed. The system works on two STG’s (steam turbine generators) and one
gridline. Gridline can bear the load of one or both STG’s on failures. At the breakdown in gridline
and STG, the system work at reduced capacity. Gridline repaired on a priority basis. The semi-Markov
processses and regenerative point technique are used to evaluate the reliability and economic measures
such as availability, busy period of repairman, and expected no. of repairs. The graphical study shows the
relationships between these measures with the failure rates of STG and gridline.

Keywords: Steam Turbine Generators, Regenerative point technique, semi-Markov process,
Reduced capacity, Reliability modeling.

I. Introduction

Nowadays, Captive power plants are a reliable and beneficial energy source for power-consuming
production industries. Optimizing the operations of the power-producing units in these captive
power plants can boost the industry’s profit. A good number of researchers have worked on
various reliability models with conditions of repair and maintenance. Gupta and Goel [3] studied
a two-unit cold standby system working under abnormal weather conditions. Chandrashekhar et
al. [1], Goyal et al. [2], Parashar et al. [4] have analyzed two and three-unit systems. Rizwan et al.
[5] worked with the reliability of the hot standby industrial system.

Singh and Taneja [7], [8] analyzed power generating systems with various types of inspections.
Rajesh et. al [10], [9] studied gas turbine power plants consisting of two and three units. These
attempts to the literature create a motivation for the present study, to work with the economic
benefits of the captive power plant. The captive power plants are auto producers of electricity,
which operates off-grid or in parallel with gridline to make consistent and quality electricity
supply for industries at reasonable costs. Availability of these power generating units in any
possible way (full or reduced) can make a reliable electricity supply at less cost. Keeping an eye
on the above fact economic analysis of Captive Power plant working in National Fertilizer limited,
Bathinda, India has done.

The present system comprises two STG’s (steam turbine generators) connected in parallel
with the Gridline of PSPCL (Punjab state power corporation limited). These two STGs can fulfill
the electrical load for the system. On failure of any one or both of STGs, the system operates with
the help of gridline. The system will work at reduced capacity when only one STG is working
(one STG and gridline failed). The failure of these three units leads to complete system failure.
Repair of gridline is done on a priority basis among all units, whereas the FCFS repair pattern is
applied on both STGs. The reliability measure MTSF (mean time to system failure) and economic
measures such as availability, a busy period of the repairman, and expected no. of repairs have
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been derived using the semi-Markov processes and regenerative point techniques numerically.
Also, graphical plotting was performed for these measures.

I. Assumptions for the model

• All failure time variables follow exponential distribution but repair times distributed
generally..

• Every repaired unit works as new one.
• In the given model system initially started working from state S0.

II. Nomenclature & Model Description

I. Notations & abbreviations

Notations Discription

λ1 : Constant failure rate of STG 1.
λ2 : Constant failure rate of STG 2.
λ3 : Constant failure rate of Gridline.
α1 : Repair rate of STG 1.
α2 : Repair rate of STG 2.
α3 : Repair rate of Gridline.
G1(t), g1(t) : c.d.f. & p.d.f of repair time of STG 1.
G2(t), g2(t) : c.d.f. & p.d.f of repair time of STG 2.
G3(t), g3(t) : c.d.f. & p.d.f of repair time of Gridline.
a : probability of transit from S7 & S8 to S3 respectively after repair .
b : probability of transit from S7 & S8 to S4 respectively after repair .
© : Laplace Convolution.
Ⓢ : Stieltjes Convolution.
∗/ ∗ ∗ : Laplace Transformation/ Laplace Stieltjes Transformation.
Mi(t) : Probability that system is working at state Si during the time interval (0 − t].
Wi(t) : Probability of repairman repairing at state Si during the time interval (0 − t].

II. Symbols for States

Symbols for the states of the system:-
Si : States of the system with number i, i = 1, 2, 3, ...8.
OI , OI I , OI I I : STG 1, STG 2, Gridline from PSPCL are in operating state.
CSI I I : Gridline (PSPCL) in cold standby state.
FrI , FrI I , FrI I I : STG 1, STG 2, Gridline under repair.
FRI , FRI I , FRI I I : STG 1, STG 2, Gridline under repair from previous state.
FwrI , FwrI I :Failed Units STG 1, STG 2 waiting for repair.

III. State Transition Diagram

Figure 1, shows the state transitions diagram of the Captive power plant consisting of two
STGs and one gridline from PSPCL. The states S0, S1, S2, S3, S4 are operating states. The states
S0, S1, S2, S3, S4, S5, S6, S8 are regenerative states. The states S5, S6 are reduced capacity states. The
states S7, S8 are failed states. Table 1 shows the description of every state of the system.

Upasana Sharma, Avtar Singh
ANALYSIS OF CAPTIVE POWER PLANT WITH REDUCED CAPACITY

RT&A, No 2 (68)
 Volume 17, June 2022

357



Figure 1: State Transition Diagram

Table 1: State Discription

State notation States Discription

S0 This is the initial full capacity working state where both STGs are
working. Gridline is in a standby state.

S1 System working at full capacity where STG 1 and gridline are
working. STG 2 is in a failed state under repair.

S2 System working full capacity where STG 2 and gridline are work-
ing. STG 1 is in failed state under repair.

S3, S4 System is operating at full capacity with gridline. Both STGs are
in a failed state.

S5 System operating at reduced capacity where only STG 2 is working.
STG 1 and gridline are in the failed state.

S6 System operating at reduced capacity where only STG 1 is working.
STG 2 and gridline are in failed states.

S7, S8 These are failed states where all units are in a failed state.

IV. Transition Probabilities & Mean Sojourn Times

pij represents non-zero elements which are given below The non zero elements pij’s are given as:

p01 =
λ1

λ1 + λ2
, p02 =

λ2

λ1 + λ2
, p10 =g∗1(λ3 + λ2),

p13 =
λ2

λ3 + λ2
[1 − g∗1(λ3 + λ2)], p15 =

λ3

λ3 + λ2
[1 − g∗1(λ3 + λ2)], p20 =g∗2(λ1 + λ3),

p24 =
λ1

λ1 + λ3
[1 − g∗2(λ1 + λ3)], p26 =

λ3

λ1 + λ3
[1 − g∗2(λ1 + λ3)], p32 =g∗1(λ3),

p38 =[1 − g∗1(λ3)], p41 =g∗2(λ3), p48 =[1 − g∗2(λ3)]

p51 =g∗3(λ2), p57 =[1 − g∗3(λ2)], p(7)53 =a[1 − g∗3(λ2)],

p(7)54 =b[1 − g∗3(λ2)], p62 =g∗3(λ1), p67 =[1 − g∗3(λ1)],

p(7)63 =a[1 − g∗3(λ1)], p(7)64 =b[1 − g∗3(λ1)], p83 =a,

p84 =b
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The mean sojourn time µi corresponding to regenerative state ′i′ is given as:

µ0 =
1

λ1 + λ2
, µ1 =

1
λ3 + λ2

[1 − g∗1(λ3 + λ2)], µ2 =
1

λ1 + λ3
[1 − g∗2(λ1 + λ3)],

µ3 =
1

λ3
[1 − g∗1(λ3)], µ4 =

1
λ3

[1 − g∗2(λ3)], µ5 =
1

λ2
[1 − g∗3(λ2)],

µ6 =
1

λ1
[1 − g∗3(λ1)], µ8 =− g∗

′
3 (0)

The unconditional mean time mij required by the system to transit from state ′i′ to any regenerative
state ′ j′ when time is counted from the epoch of entrance into the state ′i′ is mathematically stated
as:

mij =
∫ b

a
tdQij(t) = −q∗

′
ij (0) (1)

So we have

m01 + m02 =µ0, m10 + m13 + m15 =µ1, m20 + m24 + m28 =µ2, m32 + m38 =µ3,

m41 + m48 =µ4, m51 + m(7)
53 + m(7)

54 =k1, m62 + m(7)
63 + m(7)

64 =k1, m83 + m84 =µ8

III. Reliability and Economic Measures for System Effectiveness

I. Mean Time to System Failure (MTSF)

Assume ϕi(t) as a distribution function of variable time (t) lapses during the system transition
from a regenerative state Si to any working or failed state where failed state act as an absorbing
state. By probabilistic arguments, the following recursive relations are obtained:

ϕ0(t) = Q01(t)Ⓢϕ1(t) + Q02(t)Ⓢϕ2(t) (2)

ϕ1(t) = Q10(t)Ⓢϕ0(t) + Q13(t)Ⓢϕ3(t) + Q15(t)Ⓢϕ5(t) (3)

ϕ2(t) = Q20(t)Ⓢϕ0(t) + Q24(t)Ⓢϕ4(t) + Q26(t)Ⓢϕ6(t) (4)

ϕ3(t) = Q32(t)Ⓢϕ2(t) + Q38(t) (5)

ϕ4(t) = Q41(t)Ⓢϕ1(t) + Q48(t) (6)

ϕ5(t) = Q51(t)Ⓢϕ1(t) + Q57(t) (7)

ϕ6(t) = Q62(t)Ⓢϕ2(t) + Q67(t) (8)

Transforming the equations(2-8) using Laplace Stieltjes Transformations to get ϕ∗∗
i (t). Mean Time

to System Failure T0 at steady state So is given by

T0 = lim
s→0

1 − ϕ ∗∗
0 (s)
s

(9)

Using L’ Hospital’s rule here, we get
T0 = N/D (10)

where

N = µ0(1 − p15 p51 − p26 p62 − p15 p26 p62 p57 + p13 p24 p32 p48 + p15 p26 p62 − p24 p13 p32)

+ µ1(−p62 p26 p01 + p02 p24 p41 + p01) + µ2(−p51 p02 p15 + p13 p32 p01 + p02) + µ3(p13 p01

− p13 p01 p26 p62 + p24 p02 p13 p41) + µ4(p24 p02 − p24 p02 p15 p51 + p13 p01 p24 p32) + µ5(p15 p01

− p15 p01 p26 p62 + p24 p02 p15 p41) + µ6(p26 p02 − p15 p51 p26 p02 + p13 p01 p26 p32)

(11)

and

D = 1 + p51 p26 p15 p62 + p51 p02 p20 p15 − p15 p51 − p26 p62 + p62 p26 p01 p10 − p13 p32 p24 p41

− p13 p32 p01 p20 − p02 p10 p24 p41 − p02 p20 − p01 p10 (12)

Upasana Sharma, Avtar Singh
ANALYSIS OF CAPTIVE POWER PLANT WITH REDUCED CAPACITY

RT&A, No 2 (68)
 Volume 17, June 2022

359



II. Availability Analysis at Full & Reduced capacity

Let AF
i (t) notates the probability that system is available with full capacity to perform its intended

task at a regenerative state Si at time t = 0. The availability of system at successive regenerative
state Sj (j = 1, 2, ..6, 8) is independant from its previous transitions made. This phenomenon
follows the theory of regenerative process techniques [6]. Thus following recursive relations are
obtained:

AF
0 (t) = M0(t) + q01(t)©AF

1 (t) + q02(t)©AF
2 (t) (13)

AF
1 (t) = M1(t) + q10(t)©AF

0 (t) + q13(t)©AF
3 (t) + q15(t)©A5(t) (14)

AF
2 (t) = M2(t) + q20(t)©AF

0 (t) + q24(t)©AF
4 (t) + q26(t)©A6(t) (15)

AF
3 (t) = M3(t) + q32(t)©AF

2 (t) + q38(t)©AF
8 (t) (16)

AF
4 (t) = M4(t) + q41(t)©AF

1 (t) + q48(t)©AF
8 (t) (17)

AF
5 (t) = q51(t)©AF

1 (t) + q(7)53 (t)©AF
3 (t) + q(7)54 (t)©AF

4 (t) (18)

AF
6 (t) = q62(t)©AF

2 (t) + q(7)63 (t)©AF
3 (t) + q(7)64 (t)©AF

4 (t) (19)

AF
8 (t) = q83(t)©AF

3 (t) + q84(t)©AF
4 (t) (20)

Where

M0(t) = e−(λ1+λ2)t, M1(t) = e−(λ1+λ2)t ¯G1(t), M2(t) = e−(λ1+λ2)t ¯G2(t),

M3(t) = e−(λ3)t ¯G1(t), M4(t) = e−(λ3)t ¯G2(t)

Transforming the equations(13-20) using Laplace transformations to get AF∗
0 (s). we have

AF
0 (t) = lim

s→0
(sAF∗

0 (s)) (21)

The steady state availability AF
0 of the system having full capacity is given by:

AF
0 = lim

t→0
AF

0 (t) = N1/D1 (22)

where

N1 = µ0[(p15 p51 − 1)(p26 p32 p63 + (1 − p62 p26)(p38 p83 + p84 p48) + p26 p62(1 + p15 p(7)54 p41 p38)

− p83 p24 p32 p48 − 1) + (1 − p62 p26)((p83 p(7)54 p15 − p84 p(7)53 p15 − p84 p13)p41 p38)

− p84 p32 p15 p26 p51 p48(1 − p62(1 − p(7)63 ))− (1 − p26 p32)p15 p(7)54 p41 − p(7)64 p32 p26 p41(p13 + p15 p(7)54 )

− p24 p32P41(p13 + p15 p(7)53 )] + µ1[p01((1 − p84 p48 − p83 p38)(1 − p26 p62)− p(7)63 p32 p26(1 − p84 p48)

− p83 p48 p32(p24 + p(7)64 p26)) + p02((p(7)64 p41 p26 + p24 p41)(1 − p83 p38) + p84 p(7)63 p41 p26 p38)]

+ µ2[p02((1 − p83 p38)(1 − p15 p51 − p15 p(7)54 p41)− p84 p48(1 − p51 p15)− p84 p38 p13 p41)

+ p01 p32((p15 p(7)53 + p13)(1 − p84 p48) + p15 p(7)54 p83 p48)] + µ3[(1 − p62 p26)(p15 p(7)53 p01 + p01 p13

− p01 p84 p13 p48) + (p84 p(7)63 − p83 p(7)64 )(p15 p51 p02 p26 p48 − p02 p26 p48) + p83 p24 p02 p48(1 − p15 p51)

− p15 p26 p02 p41(p(7)54 p(7)53 − p(7)64 p(7)53 ) + p15 p01 p48(p83 p(7)54 − p84 p(7)53 ) + p32 p02 p26 − p15 p26 p(7)63 p51 p02

+ p(7)64 p02 p41 p13 p26 + p24 p15 p02 p41 p(7)53 + p24 p02 p41 p13] + µ4[(1 − p83 p38)(p24 p02 − p24 p15 p51 p02

− p15 p(7)64 p51 p02 p26 + p(7)64 p02 p26 + p15 p01 p(7)54 ) + (p13 p15 p(7)53 )(p01 p24 p32 + p01 p(7)64 p32 p26)

+ p15 p84 p(7)53 p38(p01 − p02 p41) + p84 p63 p02 p26 p38(1 − p15 p51) + p01 p(7)54 p15(p26(p62(p83 p38

− 1)− p(7)63 p32))] (23)
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and

D1 = µ0((1 − p83 p38)(p24 p41 p10 + p41 p(7)64 p26 p10 + p20 − p51 p20 p15) + p41 p15 p38 p20(p83 p(7)54 −

p84 p(7)53 )− p84 p20 p48(1 − p15 p51) + p41 p84 p26 p(7)63 p38 p10) + µ1(p41 p84 p38(1 − p26 p62) + p32 p01 p20

(1 − p84 p48) + p32 p24 p41 + p32 p41 p(7)64 p26 − p41 p84 p38 p02 p20+) + µ2(p32 p83 p48(1 − p01 p10)

+ p41 p02 p10(1 − p83 p38) + p32 p(7)53 p41 p15 + p32 p13 p41 − p32 p15 p48 p51 p83) + µ3((1 − p26 p62)

(p41 p84 p15 p(7)53 + p41 p84 p13 − p01 p10 p83 + p83 − p83 p51 p15)− p41 p83 p(7)54 p15(1 − p02 p02)

− p41 p84 p02 p20(p13 + p(7)53 p15)− p24 p41 p83 p02 p10 − p41 p(7)64 p83 p26 p02 p10 + p41 p83 p(7)54 p15 p26 p62

+ p83 p51 p15 p02 p20 + p41 p84 p26 p(7)63 p02 p10) + µ4(p32 p24 p83(1 − p15 p51 − p01 p10) + p84(1 − p01 p10

− p26 p62 − p15 p51) + p32 p84 p15 p26 p51 p(7)63 + p32 p83 p(7)54 p15 p01 p20 − p32 p(7)64 p26 p15 p51 p83

+ p84 p26 p62(p15 p51 + p01 p10)− p32 p84 p01 p20(p(7)53 p15 + p13)− p84 p02 p20(1 − p15 p51)

+ (1 − p01 p10)(p32 p(7)64 p83 p26 − p32 p84 p26 p(7)63 ) + k1(p41 p84 p15 p38(1 − p26 p62 − p02 p20)

+ p32 p24 p41 p15 + p32 p01 p20 p15 + p32 p41 p(7)64 p26 p15 − p32 p15 p84 p48 p01 p20) + k1(p32 p83 p26 p48(1

− p01 p10) + p41 p26 p02 p10(1 − p83 p38) + p32 p41 p(7)53 p26 p15 + p32 p41 p26 p13) + µ8((1 − p15 p51)

(p32 p24 p48 − p38 p02 p20) + p32 p64 p26 p48(1 − p01 p10)− p41 p(7)54 p15 p38(1 − p02 p20 − p26 p(7)63 )

+ p38(−p26 p62 − p01 p10 − p15 p51) + p26 p38 p62(p15 p51 + p01 p10)− p41 p38 p02 p10(p24 + p(7)64 p26)

− p32 p24 p48 p01 p10 − p32 p(7)64 p26 p15 p48 p51) (24)

Let AR
i (t) notates the probability that system is available with reduced capacity to work at a

regenerative state Si at time t = 0. The following recursive relations are obtained using the above
described argument of regenrative process techniques:

AR
0 (t) = q01(t)©AR

1 (t) + q02(t)©AR
2 (t) (25)

AR
1 (t) = q10(t)©AR

0 (t) + q13(t)©AR
3 (t) + q15(t)©AR

5 (t) (26)

AR
2 (t) = q20(t)©AR

0 (t) + q24(t)©AR
4 (t) + q26(t)©AR

6 (t) (27)

AR
3 (t) = q32(t)©AR

2 (t) + q38(t)©AR
8 (t) (28)

AR
4 (t) = q41(t)©AR

1 (t) + q48(t)©AR
8 (t) (29)

AR
5 (t) = M5(t) + q51(t)©AR

1 (t) + q(7)53 (t)©AR
3 (t) + q(7)54 (t)©AR

4 (t) (30)

AR
6 (t) = M6(t) + q62(t)©AR

2 (t) + q(7)63 (t)©AR
3 (t) + q(7)64 (t)©AR

4 (t) (31)

AR
8 (t) = q83(t)©AR

3 (t) + q84(t)©AR
4 (t) (32)

where
M5(t) = e−(λ2)t ¯G3(t), M6(t) = e−(λ1)t ¯G3(t)

Transforming the equations(25-32) using Laplace transformations to get AR∗
0 (s). we have

AR
0 (t) = lim

s→0
(sAR∗

0 (s)) (33)

The steady state availability AR
0 of the system having reduced capacity is given by:

AR
0 = lim

s→0
(sAR∗

0 (s)) = N2/D1 (34)
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where

N2 = µ5(p24 p02 p15 p41 − p15 p01 p26 p62 − p15 p01 p38 p83 − p84 p15 p01 p48 − p15 p01 p26 p32 p63

+ p(7)64 p15 p41 p26 p02 + p15 p01 − p(7)64 p15 p41 p26 p02 p38 p83 − p(7)64 p15 p01 p26 p32 p83 p48

+ p84 p15 p41 p26 p02 p38 p(7)63 + p84 p15 p02 p26 p32 p(7)63 p48 + p15 p01 p26 p62 p38 p83 − p24 p02 p15 p41 p38 p83

+ p84 p15 p01 p26 p62 p48 − p24 p32 p83 p15 p01 p48) + µ6(p26 p02 − p26 p02 p38 p83 + p26 p32 p13 p01

− p15 p51 p26 p02 − p84 p26 p02 p48 + p15 p51 p26 p02 p38 p83 + p15 p01 p26 p32 p(7)53 + p(7)54 p15 p41 p26 p02 p38 p83

+ p(7)54 p15 p01 p26 p32 p83 p48 + p84 p51 p15 p26 p02 p48 − p84 p15 p41 p26 p02 p38 p(7)53 − p84 p15 p01 p26 p32 p(7)53 p48

− p84 p26 p02 p38 p13 p41 − p84 p26 p32 p13 p01 p48 − p(7)54 p15 p41 p26 p02) (35)

and D1 is already specified in equation 24

III. Busy Period for Repairman

Let Bi(t) notates the probability that the repairman is busy on the job when the system is at a
regenerative state Si at time t = 0. Using the probabilistic arguments as described above, The
following recursive relations are obtained:

B0(t) = q01(t)©B1(t) + q02(t)©B2(t) (36)

B1(t) = W1(t) + q10(t)©B0(t) + q13(t)©B3(t) + q15(t)©B5(t) (37)

B2(t) = W2(t) + q20(t)©B0(t) + q24(t)©B4(t) + q26(t)©B6(t) (38)

B3(t) = q32(t)©B2(t) + q38(t)©B8(t) (39)

B4(t) = q41(t)©B1(t) + q48(t)©B8(t) (40)

B5(t) = W5(t) + q51(t)©B1(t) + q(7)53 (t)©B3(t) + q(7)54 (t)©B4(t) (41)

B6(t) = W5(t) + q62(t)©B2(t) + q(7)63 (t)©B3(t) + q(7)64 (t)©B4(t) (42)

B8(t) = W8(t) + q83(t)©B3(t) + q84(t)©B4(t) (43)

Where

W0(t) = e−(λ1+λ2)t, W1(t) = e−(λ1+λ2)t ¯G1(t), W2(t) = e−(λ1+λ2)t ¯G2(t),

W5(t) = e−(λ2)t ¯G3(t),

W6(t) = e−(λ1)t ¯G3(t), W8(t) = (a + b) ¯G3(t)

Taking Laplace transform of equations (36-43) we get B ∗
0 (s).

we have
B0(t) = lim

s→0
(sB∗

0 (s))

Expected busy period of a repairman is given by

B0 = lim
t→0

(B0(t)) = N3/D1 (44)

where

N3 = µ1[(p26 p(7)64 + p24)(p02 p41 − p41 p83 p38 p02 − p83 p32 p48 p01) + (p84 p48 + p83 p38)

(p62 p26 p01 − p01)− p(7)63 p32 p26 p01(1− p84 p48)− p01(p62 p26 − 1)]+µ2[(1− p84 p48)(p(7)53 p32 p15 p01
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+ p13 p32 p01 + p02 + p15 p51 p02)− p83 p38 p02(1 − p51 p15)− p41 p15 p38 p02(p(7)53 p84 + p83 p(7)54 )

+ p15 p(7)54 (p83 p32 p48 p01 − p41 p02)− p41 p13 p84 p38 p02] + µ5[(1 − p62 p26)(p15 p01 − p84 p15 p48 p01

− p83 p15 p01 p38) + (1 − p84 p48)(−p(7)63 p32 p15 p26 p01) + (p02 p41 p15 p26 p(7)64 + p02 p41 p15 p24)

(1 − p83 p38) + p15 p26(p41 p(7)63 p84 p38 p02 − p83 p32 p(7)64 p48 p01)] + µ6[(1 − p15 p51)(−p02 p84 p26 p48

− p83 p26 p38 p02 + p02 p26)(1 − p84 p48)(p(7)53 p32 p15 p26 p01 p13 p32 p26 p01) + p83 p32 p15 p(7)54 p26 p48 p01]

+ µ8[(1 − p62 p26)(p13 p01 p38 + p(7)53 p15 p01 p38) + (1 − p15 p51)(p02 p24 p48 + p02 p(7)64 p26 p48

+ p(7)63 p26 p38 p02) + (p24 + p26 p(7)64 )(p13 p32 p48 p01 + p(7)53 p32 p15 p48 p01)− p15 p26 p(7)54 p48 p01(p62

+ p(7)63 p32) + p41 p15 p26 p38 p02(p(7)53 p(7)64 − p(7)63 p(7)54 ) + p15 p(7)54 p48 p01 + p41 p13 p26 p38 p(7)64 p02] (45)

and D1 is already specified in equation 24.

IV. Expected No. of Repairs

Let Vi(t) notate no. of repairs performed by repairman in the time interval (0 to t] when the
system is at regenerative state Si at time t = 0. The general formula for Vi(t) is given by

Vi(t) = ∑
j

Q(n)
ij (t)Ⓢ[αj + Vi(t)] (46)

Where Qij(t) is the probability of system transition from the regenerative state i to regenerative
j and αj = 1 if the repairman starts new job at regenerative state j, otherwise αj = 0. Using
Equation 46 the following recursive relations are obtained:

V0(t) = Q01(t)Ⓢ[1 + V1(t)] + Q02(t)Ⓢ[1 + V2(t)] (47)

V1(t) = Q10(t)ⓈV0(t) + Q13(t)ⓈV3(t) + Q15(t)ⓈV5(t) (48)

V2(t) = Q20(t)ⓈV0(t) + Q24(t)ⓈV4(t) + Q26(t)ⓈV6(t) (49)

V3(t) = Q32(t)ⓈV2(t) + Q38(t)ⓈV8(t) (50)

V4(t) = Q41(t)ⓈV1(t) + Q48(t)ⓈV8(t) (51)

V5(t) = Q51(t)ⓈV1(t) + Q(7)
53 (t)ⓈV3(t) + Q(7)

54 (t)ⓈV4(t) (52)

V6(t) = Q62(t)ⓈV2(t) + Q(7)
63 (t)ⓈV3(t) + Q(7)

64 (t)ⓈV4(t) (53)

V8(t) = Q83(t)ⓈV3(t) + Q84(t)ⓈV4(t) (54)

Taking Laplace Stieltjes Transformations of the equations (47-54) to get V0
∗∗(s).

we have
V0(t) = lim

s→0
(sV∗∗

0 (s)) (55)

The expected no. of repairs by repairman are given by

V0 = lim
t→0

(V0(t)) = N4/D1

where

N4 = (1 − p15 p51)(p38 p83 p26 p62 − p24 p32 p83 p48 + p84 p48 p26 p62 − p(7)64 p26 p32 p83 p48 − p26 p62

− p83 p38 − p84 p48 + 1) + (1 − p26 p62)(−p84 p38 p13 p41 + p(7)54 p15 p41 p38 p83 − p84 p15 p41 p38 p(7)53

− p(7)54 p15 p41)+ p26 p32 p(7)63 (p(7)54 p15 p41 + p15 p51 + p84 p48 − p84 p48 p15 p51 − 1)− p(7)64 p15 p41 p26 p32 p(7)53

− p(7)64 p26 p32 p13 p41 − p24 p32 p(7)53 p15 p41 − p24 p32 p13 p41 (56)

and D1 is already specified in equation 24.
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IV. Profit Analysis

The expected total profit per unit time incurred to the system in steady state is given by

P0 = C0 AF
0 + C1 AR

0 − C2B0 − C3V0 (57)

Where
C0 = revenue per unit up time at full capacity.
C1 = revenue per unit up time at reduced capacity.
C2 = cost per unit time when repairman is busy.
C3 = cost per repair.

V. Particular Cases

For evaluation of above described various system performance measures and their graphical
representation, the following particular cases are considered, where distribution of repair times
has been taken as exponential. Let us assume that g1(t) = α1e−α1t, g2(t) = α2e−α2t, g3(t) = α3e−α3t

and remaining distributions same as in general case. Therefore we have

p01 =
λ1

λ1 + λ2
, p02 =

λ2

λ1 + λ2
, p10 =

α1

λ2 + λ3 + α1
, p13 =

λ2

λ2 + λ3 + α1
,

p15 =
λ3

λ2 + λ3 + α1
, p20 =

α2

λ1 + λ3 + α2
, p24 =

λ1

λ1 + λ3 + α2
, p26 =

λ3

λ1 + λ3 + α2
,

p32 =
α1

α1 + λ3
, p38 =

λ3

λ3 + α1
, p41 =

α2

α2 + λ3
, p48 =

λ3

λ3 + α2
,

p51 =
α3

α3 + λ2
, p57 =

λ2

λ2 + α3
, p(7)53 =a[

λ2

α3 + λ2
], p(7)54 =b[

λ2

α3 + λ2
],

p(7)63 =a[
λ1

α3 + λ1
], p(7)64 =b[

λ1

α3 + λ1
], p62 =

α3

α3 + λ1
, p67 =

λ1

λ1 + α3
,

p83 =a, p84 =b, µ0 =
1

λ1 + λ2
, µ1 =

1
λ2 + λ3 + α1

,

µ2 =
1

λ1 + λ3 + α1
, µ3 =

1
λ3 + α1

, µ4 =
1

λ3 + α2
, µ5 =

1
λ2 + α3

,

µ6 =
1

λ1 + α3
, µ8 =

1
α3

Estimation of Parameters

The various parameters regarding failure and repair rates involved in our studies are estimated
as follows in table 2

Table 2: Failure & repair rates

Various rates corresponding values

Failure rate of STG 1 (λ1) 0.00043/hr
Failure rate of STG 2 (λ2) 0.00043/hr
Failure rate of gridline (λ3) 0.0067/hr
Repair rate of STG 1 (α1) 0.0065/hr
Repair rate of STG 2 (α2) 0.0063/hr
Repair rate of gridline (α3) 0.34/hr

The various costs/revenue amounts involved in our studies are assumed hypothetically. The
computed values of Various reliability measures for system performance are given in table 3.
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Table 3: Evaluation of various system effectiveness measures

Mean time to system failure 39140 hrs.
Availability of the system at full capacity 0.50093/hr
Availability of the system at reduced capacity 0.001044/hr
Busy period of repairman for repair time only 0.12964/hr
Expected no. of repairs 0.000350/hr

VI. Results and Discussion

Figure 2: MTSF vs (λ1)Failure rate of STG

Figure 3: profit vs cost per unit up time of system
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The figure 2, indicates that MTSF decreases as the falure rate of STG 1 increases and also
gives lowering values for the greater values of failure rates of gridline. The graph in figure 3
interpreted that the profit increases with increasing the cost per unit up time of the system and
decreases when failure rate of the STG 1 increases.

Table 4: Cut Point for profit w.r.t. Revenue per unit up-time of the system.

Failure rate of STG(/hr) Revenue per unit up time(C0) (Rs.) Profit (Rs.)

λ1 = .00034 C0 < or = or > 161 negative or zero or positive
λ1 = .0034 C0 < or = or > 380 negative or zero or positive
λ1 = .034 C0 < or = or > 606. negative or zero or positive

VII. Conclusion

In this paper self electricity generating System is Studied. The graphical study reveals the negative
relationship between failure rates of units of captive power plant and profit gained by the plant.
Adding the working of system at reduced capacity results in increasing its availability and profit.
The derived results enable us to find acceptable values of revenue per unit up time of the system
(Table 4) corresponding to failure rates of units of system. By using this analysis and graphical
representations one can procure various system effectiveness measures for similar electricity
generation plant.
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Abstract

The paper considers a single server that provides consumers with both regular and optional services.

The system’s inter-arrival time is determined by a Markovian Arrival Process (MAP), the service time

is determined by a phase type distribution, and the remaining random variables are distributed expo-

nentially. This system was represented as a QBD process, with the block elements of the generated

matrix having finite dimensions, to investigate steady state. Additionally, we addressed the busy period

and waiting time distribution for our concept. The system’s performance parameters are calculated and

graphically shown.

Keywords: Markovian Arrival Process, PH distribution, Vacation, Optional service, Breakdown
and Repair.

1. Introduction

Contribution of Nuets (1979) is immeasurable in the field of stochastic process. He pioneered
the Markovian Point Process, which led to the development of the Markovian Arrival Process
and the Batch Markovian Arrival Process. In his concept of communication and computer ap-
plication, Lucantoni (1990) established these two arrival processes. One of the most important
characteristics of MAP is that it can be used to solve stochastic models using matrix analytic solu-
tions. Chakravarty (2010) in the Encyclopedia of Operations Research and Management Science
streamlined this useful tool to make it easier to understand. The discrete and continuous cases
of MAP are defined. The parameters utilised in MAP are D0 and D1 of dimension m in continu-
ous time, where D0 is a non-singular stable matrix that rules the transition corresponding to no
arrival and D1 governs the transition relating to arrival. The generator matrix Q = D0 + D1.The
stationary distribution vector π satisfies the system π(D0 + D1) = 0 and πe = 1.The constant
λ = πD1 is called the fundamental rate of a MAP defined by Latuche at al (1999).

The concept of vacation in the queuing system was introduced by Levy and Yechiali (1975).
Vacation is a time where the server is unavailable for service, for a short period of time due to
many reasons like filing up the bills or document, verifying with other data etc or even a break.
In this real world, there are many occasions where the server is busy or continues to work with
low speed during his vacation. Servi (2002) and Finn classify this type of vacation as a working
vacation. Doshi (1986), Takagi (1991) and Tian and Zhang (2006) has contributed an excellent
survey on the vacation model. Ket et al (2010) and Tian et al (2009) have also recently contem-
plated on vacation and working vacation. This working vacation concept was introduced and
further studied in a retail queue by Do (2010).
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A detailed study has been performed by Doshi (1986) for the queueing model with vaca-
tions, breakdown and repair in his survey with demonstration. Ayyappan and Thamizhselvi
(2018) have reviewed a priority retail model with vacation and also studied the time dependent
PGF. Further, second optional service under mixed priority service was studied by K.Jeganathan
(2015) in linear retail inventory system. Breakdown and repair process are unavoidable concepts
in production unit, service stations etc. When the server gets breakdown then the server gets
terminated and goes to the repair process. Depending on the model, the server begins serving
the customer whose service was interrupted or begins serving a new customer after the repair
process is completed. This concepts was studied in various queueing models by Gaver (1959) ,
Levy and Yechilai (1976) and many more are interested in this concept.

In reality, the service of the server can terminate for a short period of time. This phenomena
is named as interruption which is one of the unavoidable aspects faced by both the server and the
customer in the system due to many reasons like emergency call or work, the server/machine
may get breakdown, external influence, get some suggestions/ ideas from the fellow workers
etc. This interruption was studied in priority queue by Jaiswak(1961). Geramsimov(1973) came
up with an idea for investigating an interrupted customer with an algorithm where another
queue for interrupted customers were formed and served. This concept was developed in Com-
puter and Communication System by Gelenbe and Derochette(1978). Takine and Sengupta (1997)
developed this concept in a MAP process. Rakesh Kumar(2014) investigated discouraged ar-
rivals and customer retention in a single server Markovian queueing system. Rakesh Kumar
and Bhavneet Singh Soodam(2019) investigated linked imputes and reneging for a single server
queueing model. El-Taha(2003) introduced two server in series where the customer gets inter-
rupted by the set of proposed time threshold while getting service from the server one. Server
two offer service only to the interrupted customer or else the customer leaves the system. Kr-
ishnamoorthy et al.(2009) developed the model in a single server queue in a level-dependent-
quasi-birth and death (LDQBD) process. He further generalized this model in (2011) where a
super clock is defined for his predetermined threshold time. Kilmenok and Dudin(2012) and
Krishnamurthy et al.(2010) have also investigated further where interrupted customer service
has been rejected. Varghese et al.(2010) introduced customer induced service interruption where
the customer gets self interrupted while being served by the server. Further extension in this
concept has been made by them in the year 2012.

2. Model Description

In this classical queuing model, a single server is considered with the infinite capacity queue
where the customer arrives according to Markovian Arrival Process with the parameter matrix
D0 and D1 are of dimension m. The customer in the service station can be self interrupted and
moves onto the buffer 1 which is of maximum capacity K with an exponential distribution δ.
After the completion of interruption, the customer moves onto the buffer 2 with an exponential
distribution θ which is also of maximum capacity K where the customer gets served by the
server. Optional service will be provided by the server whenever the customer needs it. The
service time of the server offering service for the customer from the queue, buffer 2 and optional
service follows phase type distribution PH(α1, t1), PH(α2, t2), PH(α3, t3) respectively of order n.
The vector T0

1 , T0
2 , T0

3 is given by T0
1 = −T1e, T0

2 = −T2e, T0
3 = −T3e respectively.

The interrupted customer will only enter buffer 1 if space is available; else, the customer will
be lost indefinitely. The server follows non-preemptive priority for the customer in the buffer
2 over the customer in the queue. Thus a preference will be given to the customer in buffer
2 whenever the free server offers service. The customer in buffer 2 will be served by first in
first service order. When the system is empty, the server avails vacation following exponential
distribution with the parameter η. While the server is busy, breakdown of the server may occur.
It follows exponential distribution with the parameter γ. Consequently, the repair process starts
immediately with the phase type distribution PH(β, R) of order r. The vector R0 is given by
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R0 = −Re. After receiving the regular service, the customer can opt for optional service. During
the optional service availed by the customer, if the server gets breakdown then the interrupted
customer is considered to be lost forever from the system. The server is idle when there are no
customers in the queue and buffer 2.

Figure 1: Schematic Representation of Our Model

To find a matrix-geometric type solution, this model is investigated as a QBD process. For a
thorough examination of Matrix Analytic Methods, see Neuts (1981), Latouche and Ramaswami
(1999). The state space under the considered QBD model is defined and the structure of the
infinitesimal generator is also investigated using the following notations.

Let

• N(t) be the number of customers in the system at time t

• S(t) be the server status at time t

where

S(t) =











































0, if server is idle

1, if server is offering service to the customer in the main queue

2, if server is offering service to the customer in the buffer 2

3, if server is offering optional service

4, if main server is availing vacation

5, if the server is under repair

• N1(t) be the number of customers in the buffer 1 at time t

• N2(t) be the number of customers in the buffer 2 at time t

• R(t) be the Repair phase at time t

• C(t) be the service phase at time t

• M(t) be the phase of the Markovian Arrival Process at time t

• M1 = K(K+1)
2

• M2 = (K+1)(K+2)
2 , where K is the maximum capacity of buffer 1.

{N(t), S(t), N1(t), N2(t), C(t), R(t), M(t); t ≥ 0} is representation of this model by the Continu-
ous Time Markov Process with the state space
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Ω = l(0) ∪ l(i)

where

l(0) = {(0, 0, 0, i2) : 1 ≤ i2 ≤ K}
∪ {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(0, 4, 0, 0, l) : 0 ≤ l ≤ m}

for i ≥ 1,

l(i) = {(i, j, i1, i2, k, l) : j = 1, 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(i, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(i, 4, 0, 0, l) : 0 ≤ l ≤ m}

The infinitesimal matrix generation of the QBD process is given by

Q =















B00 B01 0 0 0 0 · · ·
B10 A1 A0 0 0 0 · · ·
0 A2 A1 A0 0 0 · · ·
0 0 A2 A1 A0 0 · · ·

· · · · · · · · ·
. . .

. . .
. . .















where

B00 =


















b
(00)
(11)

b
(00)
(12)

0 0 0

0 T2 ⊕ D0 − γIm ⊗ IM1
diag(aK, aK−1, ..., a1) eM1

⊗ qT0
2 ⊗ Im diag(eK, eK−1, ..., e1)

0 0 b
(00)
(33)

eM2
⊗ T0

3 ⊗ Im γIM2rm

γIm 0 0 D0 − γIm 0

b
(00)
(51)

diag(cK, cK−1, ..., c1) 0 0 (R⊕ D0)⊗ IM2



















b
(00)
(11)

=

[

D0 0
0 IK ⊗ (D0 − θ Im)

]

b
(00)
(12)

=

[

0
diag[θ Im 0]

]

b00
(33)

=

[

T3 ⊕ (D0 − γIm)⊗ IK+1 0
0 T3 ⊕ (D0 − (γ + θ)Im)⊗ IK+1

]

+

[

0
diag(bK, bK−1, ..., b1)

]

b
(00)
(51)

=













en ⊗ R0βIm 0 0 0 0
0 en ⊗ R0βIm 0 0 0
0 0 en ⊗ R0βIm 0 0
0 0 0 en ⊗ R0βIm 0
0 0 0 0 en ⊗ R0βIm













B01 =















b
(0,1)
(1,1)

0 0 0 0

0 InM1
⊗ D1 0 0 0

0 0 InM2
⊗ D1 0 0

0 0 0 D1 0
0 0 0 0 IrM2

⊗ D1














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b
(01)
(11)

=













D1 0 0 0 0
0 D1 0 0 0
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1













B10 =















b
(10)
(11)

diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ IM2

en ⊗ qT0
1 α1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















b
(10)
(11)

=













0 en ⊗ δImn 0 0 0
0 en ⊗ pT0

1 α1 en ⊗ δImn 0 0
0 0 en ⊗ pT0

1 α1 en ⊗ δImn 0
0 0 0 en ⊗ pT0

1 α1 0
0 0 0 0 en ⊗ pT0

1 α1













A2 =















a2
(1,1)

diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ ImM2

0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















a2
(11) =













pT0
1 α1 ⊗ Im δImn 0 0 0

0 pT0
1 α1 ⊗ Im δImn 0 0

0 0 pT0
1 α1 ⊗ Im δImn 0

0 0 0 pT0
1 α1 ⊗ Im 0

0 0 0 0 pT0
1 α1 ⊗ Im













A1 =















a1
(11) 0 0 0 γIrmM2

a1
(21)

a1
(22)

diag(aK, aK−1, ..., a1) 0 diag(eK, eK−1, ..., e1)

T0
3 α3 ⊗ IM2

0 a1
(3,3)

0 γIrmM2

η ImM2
0 0 D0 − η Im 0

R0β⊗ ImM2
0 0 0 (R + D0)⊗ IM2















a1
(11) =









T1 ⊕ D0 − (γ + δ)Im ⊗ IK 0 0 0
0 T1 ⊕ D0 − γIm 0 0
0 0 diag( fK, fK−1, ..., f1) 0
0 0 0 T1 ⊕ D0 − (γ + θ)Im ⊗ IK−1









+ diag(bK, bK−1, ..., b1)

a1
(21)

= diag
[

IK ⊗ qT0
2 α2 ⊗ In 0

]

a1
(22) =

[

T2 ⊕ D0 − γIm ⊗ IK 0
0 T2 ⊕ D0 − (γ + θ)Im ⊗ IM1

]

+

[

0
diag(gK−1, ..., g1)

]

+

diag

[

0
qT0

2 α2 ⊗ Imn(i−1)

]

a1
(33) =

[

T3 ⊕ (D0 − γ)Im ⊗ IK+1 0
0 diag(hK, hK1

, ..., h1)

]

+

[

0
diag(gK−1, ..., g1)

]
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A0 =













InM2
⊗ D1 0 0 0 0
0 InM1

⊗ D1 0 0 0
0 0 InM2

⊗ D1 0 0
0 0 0 D1 0
0 0 0 0 IrM2

⊗ D1













ai = pT0
2 α2 ⊗ Iim

bi = θ Iinm

ci =

[

0
R0β⊗ Iim

]

di =

[

0 0
pT0

1 α1 ⊗ Ii δImn(i−1)

]

ei =
[

0 γIirm

]

fi =

[

T1 ⊕ D0 − (γ + δ + θ)Im ⊗ Ii−1 0
0 T1 ⊕ D0 − (γ + θ)Im

]

gi =
[

0 θ Iinm

]

hi = T3 ⊕ D0 − (γ + θ)Im ⊗ IK, K ≤ i ≤ 1.

3. Analysis of the Stability Condition

The square matrix A = A0 + A1 + A2 is defined of order m[M2(2n + r) + (nM1 + 1)] as an
irreducible infinitesimal generator matrix. The invariant probability vector ℘ defined as ℘ =
(℘0,℘1,℘2,℘3,℘4) satisfies the condition ℘A = 0 and ℘e = 1. The vector ℘ can be computed by
solving the following equations.

℘0(InM2
⊗ D1 + a1

(1,1) + a2
(1,1)) + ℘1(a1

(2,1)) + ℘2(T
0
3 α3 ⊗ IM2

) + ℘3(η Im) + ℘4(R0β⊗ IM2
) = 0

℘0(diag(dK, dK−1, ..., d1)) + ℘1(InM1
⊗ D1 + a1

(2,2)) = 0

℘0(pT0
1 α1 ⊗ IM2

) + ℘1(pT0
2 α2 ⊗ IM1

) + ℘2(InM2
⊗ D1 + a1

(3,3)) = 0

℘3(D1 + D0 − η Im) = 0
℘0(diag(γIrmM2

) + ℘1(diag(eK, eK−1, ..., e1)) + ℘2(γIrmM2
) + ℘4(IrM2

⊗D1 + (R + D0)⊗ IM2
) = 0

For the system to attain stability, the necessary and sufficient condition is ℘A0e ≤ ℘A2e

(℘0 + ℘2)(enM2
⊗ D1em) + ℘1(enM1

⊗ D1em) + ℘3(D1em) + ℘4(erM2
⊗ D1em) < ℘0(a2

(1,1))+

℘1(diag(dK, dK−1, ..., d1)) + ℘2(pT0
1 α1 ⊗ eM2

)
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4. The Invariant Probability Vector

The unique solution to XQ = 0 and Xe = 1 is the transition probability vector of the infinitesimal
generator Q. This X can be partitioned into (X0, X1, X2....) where each Xi is the row vector corre-
sponding to the server status. The dimension of X0 is m[(K + 1) + nM1 + M2(n+ r) + 1], and the
remaining probability vectors X1, X2, X3, .... are of equal dimension m[M2(2n + r) + (nM1 + 1)].
The steady state probability vector has a matrix geometric structure satisfying the condition for
stability is as follows,

Xi = X1Ri−1, i = 2, 3, 4, ....,

where R, the rate matrix, is the minimal non-negative solution to the matrix quadratic equation

R2 A2 + RA1 + A0 = 0

and the boundary states X0 and X1 is the result of solving the equations

X0B00 + X1B10 = 0
X0B01 + X1(A1 + RA2) = 0

subject to normalizing condition

X0e + X1(I − R)−1e = 1

Lautouche and Ramaswamy(1999) have embellished the calculation of rate matrix R by develop-
ing Logarithmic Reduction Algorithm, which helps us to obtained R easily.

Step 1 : H ← (−A1)
−1 A0, L← (−A1)

−1 A2, G = Land T = H.

Step 2 : U = HL + LH;
M = H2;

H = (I −U)−1M;
M = L2;

L = (I −U)−1M;
G = G + TL;

T = TH;

continue Step 1 until ‖e− Ge‖∞ < ǫ.

Step 3 : R = −A0(A1 + A0G)−1.

5. Analysis of Busy Period

In a classical queueing model, the busy period is defined as the time between a customer ar-
riving at an empty queue and the first epoch after that when the queue becomes empty again.
Considering a QBD process, Latouche.G (1978) has coined the term fundamental period defined
as the first passage time from level i to level i − 1, i ≥ 2. For the boundary states i = 0, 1
has to be dealt separately. We can also observe that for all level i, where i ≥ 2 there are
m[M2(2n + r) + (nM1 + 1)] states.

Notations:
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• Gvv′(k, x): The conditional probability that the QBD process enters the level u− 1 at time
t = 0, by making merely k transition to the left and also by entering the state (u, v′)
conditioned that it only started in the state (u, v) at time t = 0.

• The transition matrix Ḡvv′(z, s) = ∑
∞
0 zk

∫ ∞

0 e−sxdGvv′(k, x) : |z| ≤ 1, Re(s) ≥ 0

• Ḡ(z, s) : The matrix (Gvv′(z, s)), satisfying Ḡ(z, s) = z [sI − A1]
−1 A2 + [sI − A1]

−1 A0Ḡ2(z, s)

• G = Gvv′ = Ḡ(0, 1) is the first passage time without the boundary states.

• Ḡ
(1,0)
(vv′)

(k, x) is the conditional probability that enters the level 0 from 1 at time t = 0.

• Ḡ
(0,0)
(vv′)

(k, x) is the first conditional probability returning to level 0.

• ℜ1v is the expected first passage time between the levels u and u − 1, the process in the
state (u, v),at time t = 0.

• ℜ̄1 is the column vector ℜ1v as its entries.

• ℜ2v is the average number of customer who received service in the first passage time
between the levels u and u− 1, begins in the state (u, v), at time t = 0.

• ℜ̄2 is the column vector ℜ2v as its entries.

• ℜ̄
(1,0)
1 is the average first passage times from the level 1 to 0.

• ℜ̄
(1,0)
2 is the average number of service completions during the first passage time from the

level 1 to 0.

• ℜ̄
(0,0)
1 is the average first return time to level 0.

• ℜ̄
(0,0)
2 is the average number of completed services in the initial return time to level 0.

G matrix can be computed with the help of the result G = −[A1 + RA2]
−1 A2 where the rate

matrix R is already evaluated using Logarithmic Reduction Algorithmic technique. For the
boundary states namely 1 and 0 we have the equations satisfied by Ḡ(1,0)(z, s) and Ḡ(0,0)(z, s)
respectively.

Ḡ(1,0)(z, s) = z [sI − A1]
−1 B10 + [sI − A1]

−1 A0Ḡ(z, s)Ḡ(1,0)(z, s)

Ḡ(0,0)(z, s) = z [sI − B00]
−1 B01Ḡ(1,0)(z, s).

Since G, Ḡ(1,0)(z, s), Ḡ(0,0)(z, s) are stochastic moments can be easily evaluate as follows.

ℜ1 = − ∂
∂s Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 e

ℜ2 = ∂
∂z Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 A2e

ℜ
(1,0)
1 = − ∂

∂s Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [A0ℜ1 + e]

ℜ
(1,0)
2 = ∂

∂z Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [B10e + A0ℜ2]

ℜ
(0,0)
1 = − ∂

∂s Ḡ(0,0)(z, s)|s=0,z=1 = −B−1
00

[

e + B01ℜ
(1,0)
1

]

ℜ
(0,0)
2 = ∂

∂z Ḡ(0,0)(z, s)|s=0,z=1 = −B−1
00 B01ℜ

(1,0)
2 .
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6. Analysis of Waiting Time Distribution

Analysis of distribution of waiting time period of the customer in the queue has been performed
in this section by using the first passage time analysis. Let W(t), where t ≥ 0, denote the
distribution function of the waiting time of the tagged incoming customer in the system. The
customer in the system has to wait in order to get service from the server if the server is busy
or availing vacation or under repair. Otherwise, the customer in the system can get immediate
service without any delay when the server is idle. The state space of absorbing time in a Markov
chain is given by

(∗) ∪ 0, 1, 2, 3, ....

where (∗) denotes the absorbing state, in which the tagged customer gets service from the server
without delay and it is defined as

(∗) = (0, 0, 0, i2) : 1 ≤ i2 ≤ K

The state space of level 0 in a Markov chain is given by

0 = {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(0, 4, 0, 0, l) : 0 ≤ l ≤ m}

The state space of level i ≥ 1 in a Markov chain is given by

i = {(i, j, i1, i2, k, l) : j = 1, 3, 5; 0 ≤ i1, i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}
∪ {(0, j, i1, i2, k, l) : j = 2; 0 ≤ i1 ≤ K; 1 ≤ i2 ≤ K; i1 + i2 ≤ K; 0 ≤ k ≤ n; 0 ≤ l ≤ m}

∪ {(i, 4, 0, 0, l) : 0 ≤ l ≤ m}

The transition matrix Q̄ is given by

Q̄ =















0 0 0 0 0 · · ·
H0 F0 0 0 0 · · ·
H1 F10 F 0 0 · · ·
0 0 F2 F 0 · · ·

· · · · · ·
. . .

. . . · · ·















where the block matrix are as follows.

H0 =









0
0
γ

R0β⊗ en









F0 =















f 0
(1,1)

0 0 0

T2 ⊕ D0 − γIN ⊗ IM1
diag(aK, aK−1, ..., a1) eM1

⊗ qT0
2 f 0

(2,5)

0 f 0
(3,3)

eM2
⊗ T0

3 γIM2r

0 0 D0 − γIn 0
diag(cK, cK−1, ..., c1) 0 0 (R⊕ D0)⊗ IM2















where

f 0
(1,1)

=

[

0
diag[IK ⊗ θ 0]

]

f 0
(1,1)

=

[

D0 0
0 IK ⊗ (D0 − θ In)

]
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f 0
(2,5)

= diag
[

0 γIrM1

]

f 0
(3,3)

=

[

T3 ⊕ (D0 − γIm)⊗ IK+1 0
0 T3 ⊕ (D0 − (γ + θ))⊗ IK+1

]

+

[

0
diag(bK, bK−1, ..., b1)

]

H1 =















h1
(1,1)

0
0
0
0















h1
(1,1)

=













0 δIn 0 0 0
0 pT0

1 α1 δIn 0 0
0 0 pT0

1 α1 δIn 0
0 0 0 pT0

1 α1 0
0 0 0 0 pT0

1 α1













F10 =













diag(dK, dK−1, ..., d1) pT0
1 α1 ⊗ IM2

qT0
1 α1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













F =















f(1,1) 0 0 0 γIrM2

f(2,1) f(2,2) diag(aK, aK−1, ..., a1) 0 diag(eK, eK−1, ..., e1)

T0
3 α3 ⊗ IM2

0 f(3,3) 0 γIrM2

η 0 0 D0 − η In 0
R0β⊗ IM2

0 0 0 (R + D0)⊗ IM2















f(1,1) =








T1 ⊕ D0 − (γ + δ)In ⊗ IK 0 0 0
0 T1 ⊕ (D0 − γIn) 0 0
0 0 diag( fK, fK−1, ..., f1) 0
0 0 0 T1 ⊕ D0 − (γ + θ)In ⊗ IK−1









+ diag(bK, bK−1, ..., b1)

f(2,1) = diag
[

qT0
2 α2 ⊗ In 0

]

f(2,2) =

[

T2 ⊕ (D0 − γ)⊗ IK 0
0 T2 ⊕ D0 − (γ + θ)In ⊗ IM1

]

+

[

0
diag(gK−1, ..., g1)

]

+

diag

[

0
qT0

2 α2 ⊗ In(K−1)

]

f(3,3) =

[

T3 ⊕ (D0 − γ)⊗ IK+1 0
0 diag(hK, hK1

, ..., h1)

]

+

[

0
diag(bK−1, ..., b1)

]

F2 =















f 2
(1,1) diag(dK, dK−1, ..., d1) pT0

1 α1 ⊗ IM2
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0














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f 2
(1,1) =













pT0
1 α1 ⊗ In δIn 0 0 0

0 pT0
1 α1 ⊗ In δIn 0 0

0 0 pT0
1 α1 ⊗ In δIn 0

0 0 0 pT0
1 α1 ⊗ In 0

0 0 0 0 pT0
1 α1 ⊗ In













ai = pT0
2 α2 ⊗ Ii

bi = θ Iin

ci =

[

0
R0β⊗ Ii

]

di =

[

0 0
pT0

1 α1 ⊗ Ii δIn(i−1)

]

ei =
[

0 γIir

]

fi =

[

T1 ⊕ D0 − (γ + I + θ)In ⊗ Ii−1 0
0 T1 ⊕ D0 − (γ + θ)In

]

gi =
[

0 θ Iin

]

hi = T3 ⊕ D0 − (γ + θ)In ⊗ IK, K ≤ i ≤ 1.

Let z(0) = (z0(0), z1(0), z2(0), z3(0), ...) be defined as a conditional probability distribution of
the system at the arrival time of the tagged customer is given by

z0(0) = x0

[

D1e(K+1)

λ

]

zi(0) = xi

[

I[M2(2n+r)+(nM1+1)]
D1e(K+1)

λ

]

, for i ≥ 1

where λ is the fundamental arrival rate of the Markov Arrival Process. Now, on defining z(t) =
(z∗(t), z0(t), z1(t), z2(t), ...), where

z0(t) : a 1× 1 vector
zi(t) : a row vector of order 1× (M2(2n + r) + (nM1 + 1))

The chance that the continuous time Markov chain with the generator matrix Q̄ is in the corre-
sponding state of level i at instant t is given by their entries. Since z ∗ (t) denotes the likelihood
that the tagged customer is in the absorbing state at time t, we have W(t) = z∗(t), where t ≥ 0.

The differential equation z′(t) = z(t)Q̄ for t ≥ 0 becomes

z
′

∗(t) = z0(t)H0 + z1(t)H1;
z
′

0(t) = z0(t)F0 + z1(t)F10;

z
′

i(t) = zi(t)F + zi+1(t)F2; i ≥ 1

where ′ denotes the derivative with respect to t. Let us calculate the Laplace-Stieltjes Transform
for W(t) using the Neuts et al. (1990) technique, where the initial probability row vector w(s)
denotes the first passage time to level 1 as follows

w(s) =
∞

∑
i=1

zi(0)[(sI − F)−1F2]
i−1 (1)

Let ϕ(i, s) be the LST of the time it takes to get absorbed into the state (∗), with the constraint
that the process starts at level i = 0, 1. We have
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ϕ(0, s) = [sI − F0]
−1H0 (2)

ϕ(1, s) = [sI − F]−1F10 ϕ(0, s) + [sI − F]−1H1. (3)

Thus, it can easily seen that the Laplace-Stieltjes Transform for the distribution of sojourn
time is as

W̄(s) = z0(0)ϕ(0, s) + w(s)ϕ(1, s). (4)

The Expected waiting time is

E(W) = −(̄W ′)(0) = −z0(0)ϕ(0, 0)− w′(0)e(M2(2n+r)+(nM1+1)) − w(0)ϕ′(1, 0) (5)

The first term in the preceding equation denotes the average time to enter the absorption
state (*) assuming the system is in the level state i=0. On differentiating both the equation (2)
and (3) , and setting s=0 , we have,

ϕ′(0, 0) = (−1)[−F0]
−2H0 (6)

ϕ′(1, 0) = (−1)[−F0]
−2F10 ϕ(0, 0) + [−F1]

−1F10 ϕ′(0, 0)− [−F1]
−2H1 (7)

By using equation (6) and (7) along with the primary conditions z(t) = (z0(0), z1(0), z2(0), ...),
it can be easily evaluated the initial terms of (5). From (1) we have

w(s) =
∞

∑
i=1

zi(0)U
i−1 (8)

where the stochastic matrix U = [−F]−1F2. We have

w(0)e(M2(2n+r)+(nM1+1)) = 1− z0(0). (9)

Along with the primary conditions z(t) = (z0(0), z1(0), z2(0), ...), using (7) and (8), the last
term of equation (5) can be evaluated. Differentiating (1) and substituting s = 0, we get,

w′(0) = (−1)
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

U j[−F]−1Ui−j (10)

by the condition U is stochastic , we have

(−1)w′(0)e(M2(2n+r)+(nM1+1)) =
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

U j[−F]−1e(M2(2n+r)+(nM1+1)) (11)

Defining an irreducible matrix U2 satisfying two conditions such that 1−U +U2 is non singu-
lar and the generalized inverse is of the form (I−K1). Then the matrix U2 = u0e(M2(2n+r)+(nM1+1))

where u0 represents the stationary probability vector of U such that u0U = u0 and u0e(M2(2n+r)+(nM1+1)) =
1. Moreover U2 satisfies the property UU2 = U2U = U2. Then we have,

i−1

∑
j=0

U j(I −U + U2) = 1−Ui + iU2, f or i ≥ 1 (12)

substituting (12) in (11) and simplifying we get the following

(−1)w′(0)e(M2(2n+r)+(nM1+1)) = {x1(I − R)−1

{

I(M2(2n+r)+(nM1+1)) ⊗
D1en

λ

}

− w(0) + x1R(I − R)−2

{

I(M2(2n+r)+(nM1+1)) ⊗
D1en

λ

}

}

× [I −U + U2]
−1[−F]−1e(M2(2n+r)+(nM1+1)). (13)

As a result, we have obtained all of the terms in (5), which aids in determining the expected
waiting time.
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7. Performance Measures

To investigate the behaviour of our model under a steady state condition, a few performance
measure of the system are computed.

• Probability that the server is idle
Pi = ∑

K
k=0 x00k

• Probability that the server is busy with the main customer
PBM = ∑

∞
i=1 ∑

K
k=0 xi1k

• Probability that the server is busy with the customer in buffer 2
PBB2 = ∑

∞
i=0 ∑

K
k=0 xi2k

• Probability that the server is busy with optional service
PBO = ∑

∞
i=0 ∑

K
k=0 xi3k

• Probability that the server is on vacation
PV = ∑

∞
i=0 xi40

• Probability that the server is under repair
PR = ∑

∞
i=0 ∑

K
k=0 xi5k

• Expected system size

Esystem = ∑
∞
p=1 ∑

j
i=1 ∑

K
k=0 pxpik = x1(1− R)−2e

8. Numerical Results

The qualitative behaviour of this model will be understood in this section with the help of a few
illustrations, both numerically and graphically, by changing various model parameters such as
the arrival process and service time distribution. For both the arrival process and the service
time distribution, three sets of values from the literature are used as input.

Erlang of order 2 (ERL-A)

D0 =

[

−2 2
0 −2

]

; D1 =

[

0 0
2 0

]

Exponential (Exp-A)

D0 =
[

−1
]

; D1 =
[

1
]

Hyperexponential (HYP-EXP-A)

D0 =

[

−1.90 0
0 −0.19

]

; D1 =

[

1.710 0.190
0.171 0.019

]

Considering three phase type distributions for the service process which was suggested by
Chakravarthy() Erlang of order 2 (ERL-S)

α1 = α2 = α3 = β = (1, 0); T1 = T2 = T3 = R =

[

−2 2
0 −2

]

Exponential (Exp-A)

α1 = (1); T1 =
[

−44
]

α2 = (1); T2 =
[

−46
]

α3 = (1); T3 =
[

−34
]
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β = (1); R =
[

−12
]

Hyperexponential (HYP-EXP-A)

α1 = (0.3, 0.7); T1 =

[

−9 3
2 −8

]

α2 = (0.4, 0.6); T2 =

[

−12 6
5 −10

]

α3 = (0.4, 0.6); T3 =

[

−6 4
3 −4

]

β = (0.5, 0.5); R =

[

−12 3
3 −12

]

Illustration 1

With the aid of 2D graphs, figure 2 to 10 represents the vacation rate versus probability of the
server is idle for all possible ordering of arrival and service time by fixing η = 5, γ = 7, θ = 5,
δ = 2, P = 0.3, q = 0.7, K = 4. An increase in vacation rate implies that the server will pay more
attention to serve the customer which has a direct proportion on probability of the server is idle.

Illustration 2

The effect of the customer entering buffer 2 from buffer 1 after completion of interruption
with rate θ and breakdown rate verses the expected system size has been investigated by fixing
η = 5, γ = 7, θ = 5, δ = 2, P = 0.3, q = 0.7, K = 4. In figure 38 to 46, an increase in both the
breakdown rate and self interrupted customer moving onto buffer 2 at the rate θ along with the
expected system size with distinct group of arrival and service time has been observed briefly.

While there is an increase in self interrupted customer moving onto buffer 2 at the rate θ
implies that arrival of customer to buffer 2 increases rapidly and an increase in breakdown rate
implies an increase in the waiting time of the customer both in the main queue as well as buffer
2. In both the scenario it is obvious that the expected system size increases due to the minimal
availability of the server.

Illustration 3

Table 1 to 3 represents the vacation rate versus expected system size by fixing η = 5, γ = 7,
θ = 5, δ = 2, p = 0.3, q = 0.7, K = 4. As long as the vacation rate increases it is evident that
the expected system size reduces gradually. The effect of increasing the vacation rate leads to
more availability of the server in the system which in turn reduces the expected system size in
the table. It is obviously that the expected system size decreases rapidly for hyper exponential
service compared to a Erlang service which is pretty gradual.
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Figure 2: Vacation rate (η) vs Probability of server
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Figure 3: Vacation rate (η) vs Probability of server

is Idle - M/Ek/1
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Figure 4: Vacation rate (η) vs Probability of server

is Idle - M/Hk/1

5 6 7 8 9 10 11 12
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

Vacation rate (η)

P
ro

ba
bi

lit
y 

of
 s

er
ve

r 
is

 Id
le

Figure 5: Vacation rate (η) vs Probability of server

is Idle - Ek/M/1
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Figure 6: Vacation rate (η) vs Probability of server is Idle

- Ek/Ek/1
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Figure 7: Vacation rate (η) vs Probability of server

is Idle - Ek/Hk/1
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Figure 8: Vacation rate (η) vs Probability of server

is Idle - Hk/M/1
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Figure 9: Vacation rate (η) vs Probability of server

is Idle - Hk/Ek/1

5 6 7 8 9 10 11 12
0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

Vacation rate (η)

P
ro

ba
bi

lit
y 

of
 s

er
ve

r 
is

 Id
le

Figure 10: Vacation rate (η) vs Probability of server

is Idle - Hk/Hk/1
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Figure 11: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 12: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 13: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - M/Hk/1
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Figure 14: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Ek/M/1
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Figure 15: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 16: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Ek/Hk/1
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Figure 17: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Hk/M/1
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Figure 18: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected
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Figure 19: The customer moving from buffer 1 to

buffer 2 after interruption with the rate

θ and Breakdown rate (γ) vs Expected

Size of the System - Hk/Hk/1
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Table 1 Vacation rate (η) vs expected system size - Exponential-A

service

η Exponential Erlang Hyperexponential

5 0.120659907 0.335551494 0.798654237

5.5 0.117283553 0.331603054 0.790156984

6 0.114733332 0.328581189 0.785684522

6.5 0.112762892 0.326217823 0.778725485

7 0.111210648 0.324335072 0.776131839

7.5 0.109967234 0.322811193 0.773832593

8 0.108956588 0.321560623 0.77193052

8.5 0.108124546 0.320521817 0.770586385

9 0.10743173 0.319649605 0.768578623

9.5 0.106848976 0.318910231 0.767878243

10 0.106354332 0.318278064 0.766823475

10.5 0.105931023 0.317733363 0.765928795

11 0.105566063 0.317260725 0.765248458

11.5 0.105249277 0.316847992 0.764572653

12 0.104972601 0.316485461 0.764568136

Table 2 Vacation rate (η) vs Expected system size - Erlang-A

service

η Exponential Erlang Hyperexponential

5 0.057197966 0.070334672 0.09364885

5.5 0.054411688 0.064934106 0.091947737

6 0.052360653 0.060794972 0.090637074

6.5 0.05081441 0.057554181 0.109606071

7 0.049624632 0.054970138 0.108780591

7.5 0.048692757 0.052877138 0.108109511

8 0.04795146 0.051158507 0.107556655

8.5 0.04735363 0.049730205 0.107095843

9 0.046865592 0.048530471 0.106707752

9.5 0.046462815 0.047513107 0.106377871

10 0.046127126 0.046643004 0.106095132

10.5 0.045844857 0.045893101 0.105850975

11 0.045605584 0.045242268 0.105638696

11.5 0.045401257 0.044673818 0.105452986

12 0.045225591 0.04417443 0.105289594
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Table 3 Vacation rate (η) vs Expected system size - Hyperexponential-A

service

η Exponential Erlang Hyperexponential

5 0.675602876 0.695049695 0.983254166

5.5 0.67458552 0.695038233 0.974170849

6 0.67380935 0.695029517 0.972452185

6.5 0.673203901 0.695022735 0.968948456

7 0.67272264 0.695017355 0.966131839

7.5 0.672015304 0.695013015 0.963832593

8 0.672015304 0.695009464 0.96193052

8.5 0.671751078 0.695006521 0.960338541

9 0.671529505 0.695004055 0.958992295

9.5 0.671341885 0.695001969 0.957843366

10 0.671181629 0.695012002 0.956854752

10.5 0.671043669 0.684998654 0.955997773

11 0.670924057 0.684997326 0.955249916

11.5 0.670819681 0.684996166 0.954593302

12 0.670728061 0.684995149 0.954013588
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Abstract

Asymmetric normal distributions have received much attention in the literature during the last three
decades. But, plurimodal asymmetric normal distributions are not much studied in the literature even
though it has much relevance in practical situations. Here we propose a new class of plurimodal,
asymmetric normal distribution and investigate its several statistical properties, including certain
reliability aspects. A location-scale extension of the proposed model is developed and studied their
properties. The maximum likelihood estimation method is employed for estimating the parameters of
the proposed extended class of distributions and conducted generalized likelihood ratio test procedure
for testing the parameters of the distribution. Three real-life data sets are considered for illustrating the
usefulness of the model and a brief simulation study is carried out for examining the performance of
maximum likelihood estimators of the proposed model.

Keywords: Asymmetric distributions, Maximum likelihood estimation, Model selection, Pluri-
modality, Simulation

1. Introduction

The normal distribution is the most important and most widely used distribution in statistics. It
is an inevitable tool for the analysis and interpretation of data. But in many practical applications
it has been observed that real life data sets are not symmetric. So normal distribution is not
an acceptable model for modeling such data sets. In order to overcome this drawback, [2]
considered an asymmetric form of normal distribution by introducing a skewness parameter into
its probability density function (p.d.f) and named it as “the skew normal distribution”. The skew
normal distribution defined by [2] as follows:

Let φ(.) and Φ(.) be the p.d.f and cumulative distribution function (c.d.f) of a standard normal
variate. Then a random variable X is said to follow the skew normal distribution with parameter
λ ∈ R = (−∞, ∞) if its p.d.f g (x; λ), for x ∈ R, is given by

g (x; λ) = 2φ (x)Φ (λx) . (1)

A distribution with p.d.f. (1) we denoted as SND(λ) through out the manuscript. The SND(λ)
has been further studied by several authors such as [3],[4], [5], [6], [7], [8] and [10].

A generalized form of skew normal distribution is developed by [1] through the following
p.d.f.

g1(x; λ1, λ2) = 2φ(x)Φ

(
λ1x√

1 + λ2x2

)
, (2)

in which x ∈ R, λ1 ∈ R, λ2 ≥ 0. A distribution with pdf (2) we denoted as SGND(λ1, λ2).
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The SGND(λ1, λ2) of [1] is log-concave and hence it is not suitable for plurimodal data. To
overcome this drawback, [11] considered an extended version of SGND(λ1, λ2) through the name
“extended skew generalized normal distribution (ESGND(λ1, λ2, α))”which has the following
p.d.f.

g2(x; λ1, λ2, α) =
2

α + 2
φ(x)

[
1 + αΦ

(
λ1x√

1 + λ2x2

)]
, (3)

where x ∈ R, λ1 ∈ R, λ2 ≥ 0 and α ≥ −1. Through the present work our intention is to
propose a wide class of plurimodal asymmetric normal distributions as a modified version
of the ESGND(λ1, λ2, α) and named it as the “modified skew generalized normal distribu-
tion(MSGND)”. In section 2 we present the definition and properties of MSGND. In section 4
we present the characteristic function and moments of MSGND. In section 5 certain reliability
measures such as reliability function, mean residual life function etc are derived along with some
conditions for unimodal and plurimodal situations are obtained. In section 6 a location scale
extension of the MSGND is defined and obtained its properties such as characteristic function,
reliability measures etc. In section 7 maximum likelihood estimation of the parameters of the
distribution is discussed and in section 8 we constructed a generalized likelihood ratio test (GLRT)
procedure. Real life data applications are given for illustrating the usefulness in section 9, a brief
simulation study is attempted in section 10. While modelling certain real life data sets ESGND
will not give better fit, the MSGND gives better fits. For example see the illustrations given in
section 9, where the MSGND is found to be suitable for modelling data sets arising from athletic
as well as agricultural data sets.

2. Modified skew generalized normal distribution

Here we define a new class of skew normal distribution namely the “modified skew generalized
normal distribution (MSGND)”and derive its distributional important properties.

Definition 2.1. A random variable X is said to follow modified skew generalized normal distri-
bution if its p.d.f is of the following, in which x ∈ R, λ1 ∈ R, λ2 ≥ 0, β ∈ R and α ≥ −1.

f (x; λ1, λ2, α, β) =
φ(x)
α + 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ(x)

)]
, (4)

where λ(x) = λ1x√
1+λ2x2

, φ(.) and Φ(.) are the p.d.f and c.d.f of a standard normal variate. A

distribution with p.d.f (4) we denoted as MSGND(λ1, λ2, α, β). Note that

1. When α = 0 or λ1 = 0, MSGND(λ1, λ2, α, β) reduces to the standard normal distribution
N(0, 1).

2. When β = 0, MSGND(λ1, λ2, α, β) reduces to the ESGND(λ1, λ2, α).

3. When α = −1 and β = 0, MSGND(λ1, λ2, α, β) reduces to the SGND(λ1, λ2).

For some particular choices of α, λ1, λ2 and β, the p.d.f. f (x; λ1, λ2, α, β) given in (4) of
MSGND(λ1, λ2, α, β) is plotted as given in Figure 1.
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Figure 1: Probability plots of MSGND(λ1, λ2, α, β) for fixed values of λ1, λ2, α and various values of β

.

3. Results

Result 3.1. If X has MSGND(λ1, λ2, α, β), then Y1 = −X has MSGND(−λ1, λ2, α, β).

Proof. The p.d.f f1(y) of Y1 = −X is the following, for y ∈ R, λ1 ∈ R, λ2 ≥ 0, β ∈ R and
α ≥ −1.

f1(y) = f (−y;−λ1, λ2, α, β)|dx
dy
|

=
φ(−y)
α + 2

φ(−y)
[

2 + α[Φ(β)]−1Φ
(

β
√

1 + λ2
1 + λ(−y)

)]
= f (y;−λ1, λ2, α, β)

�

Result 3.2. If X has MSGND(λ1, λ2, α, β) then Y2 = |X| has the p.d.f (5), in which ∆(y) =

Φ
(

β
√

1 + λ2
1 + λ(y)

)
+ Φ

(
β
√

1 + λ2
1 + λ(−y)

)
.

Proof. The p.d.f. f2(y) o f Y2 = |X| is the following, for y > 0.

f2(y) = f (y; λ1, λ2, α, β)|dx
dy
|+ f (−y; λ1, λ2, α, β)|dx

dy
|
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in the light of Result 3.1 we have,

f2(y) = f (y; λ1, λ2, α, β) + f (y;−λ1, λ2, α, β)

=
φ(y)
α + 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ(y)

)]
+

φ(y)
α + 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ(−y)

)]
=

φ(y)
α + 2

[
4 + α[Φ(β)]−1

{
Φ
(

β
√

1 + λ2
1 + λ(y)

)
+Φ

(
β
√

1 + λ2
1 + λ(−y)

)}]
=

φ(y)
α + 2

[
4 + α[Φ(β)]−1∆(y)

]
. (5)

�

Result 3.3. If X has MSGND(λ1, λ2, α, β) then Y3 = X2 has pdf (6), in which ∆(y) is as defined in
Result 3.2.

Proof. For y > 0, the p.d.f of f3(y) of Y3 = X2 is

f3(y) = f (
√

y; λ1, λ2, α, β)|dx
dy
|+ f (−√y; λ1, λ2, α, β)|dx

dy
|

=
φ(
√

y)
α + 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ

(√
(y)
))]

1
2
√

y
+

φ(−√y
α + 2

[
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2 + λ(−
√
(y))

)]
1

2
√

y

=
φ(
√

y)
(α + 2)2

√
y

[
4 + α[Φ(β)]−1∆(

√
y)
]

. (6)

�

Result 3.4. The c.d.f of MSGND(λ1, λ2, α, β) with p.d.f (4) is the following, for x ∈ R.

F (x) =
Φ(x)
α + 2

[
2 + α

[Φ(β)]−1

2

]
− α[Φ(β)]−1

α + 2
ξβ (x; λ(v)) , (7)

where

ξβ(x, λ(v)) =
∫ ∞

x

∫ β
√

1+λ2+λ(v)

0
φ (v)φ (u) dvdu, (8)

with λ(v) = λ1v√
1+λ2v2

. For particular values of λ1, λ2, β and x, we can evaluate (8) by using the

mathematical softwares such as MATHCAD, MATHEMATICA, etc.

Proof.

F(x) =
∫ x

−∞
f (v; λ1, λ2, α, β)dv

=
2

α + 2
Φ(x) +

α[Φ(β)]−1

α + 2

∫ x

−∞
φ(v)Φ

(
β
√

1 + λ2
1 + λ(v)

)
dv

=
2Φ(x)
α + 2

+
α[Φ(β)]−1

α + 2

[
1
2

Φ(x)− ξβ (x, λ(v))
]

=
Φ(x)
α + 2

[
2 +

α[Φ(β)]−1

2

]
− α[Φ(β)]−1

α + 2
ξβ (x, λ(v)) .

�
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4. Characteristic function and Moments

In this section we obtain the characteristic function and moments of MSGND.

Result 4.1. The characteristic function ψX(t) of MSGND(λ1, λ2, α, β) with p.d.f (4) is the following,
for any t ∈ R and i =

√
−1.

ψX(t) =
e
−t2

2

α + 2

{
2 + α[Φ(β)]−1E

[
Φ
(

β
√

1 + λ2
1 + λ(u + it)

)]}
(9)

where λ(u + it) = λ1(u+it)√
1+λ2(u+it)2

.

Proof. Let X follows MSGND(λ1, λ2, α, β) with p.d.f (4). Then by the definition of characteristic
function, we have the following for any t ∈ R and i =

√
−1.

ψX(t) = E(eitX)

=
2

α + 2

∫ ∞

−∞
eitxφ(x)dx +

α[Φ(β)]−1

α + 2

∫ ∞

−∞
eitxφ(x)Φ

(
β
√

1 + λ2 + λ(x)
)

dx

=
e
−t2

2

α + 2

{
2 + α[Φ(β)]−1

∫ ∞

−∞

1√
2π

e
−(x−it)2

2 Φ(β
√

1 + λ2 + λ(x))dx
}

(10)

On substituting x− it = u in (10), we obtain

ψX(t) =
e
−t2

2

α + 2

{
2 + α[Φ(β)]−1E

[
Φ
(

β
√

1 + λ2
1 + λ(u + it)

)]}
, (11)

which implies (9). �
The expression for even moments and odd moments of MSGND(λ1, λ2, α, β) are obtained through
the following results.

Result 4.2. If X follows MSGND(λ1, λ2, α, β), then for k=1,2,...,

E(X2k) =
2k+ 1

2

(α + 2)
√

2π
Γ(k +

1
2
) +

α[Φ(β)]−1

2(α + 2)
Ak(β, λ1, λ2), (12)

in which

Ak(λ1, λ2, β) =
∫ ∞

0
uk− 1

2 φ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(

√
u)
)

du,

where λ(
√

u) = λ1
√

u√
1+λ2u , λ1 ∈ R, λ2 ≥ 0, β ∈ R which can be easily evaluated by using the

softwares MATHCAD and MATHEMATICA.

Proof. By the definition of raw moments, for any k ≥ 0, integer,

E(X2k) =
∫ ∞

−∞
x2k f (x; λ1, λ2, α, β)dx. (13)

On substituting x2 = u in (13) we obtain the following in the light of (4) we have,

E(X2k) =
1

α + 2

∫ ∞

0
ukφ(
√

u)
1√
u

du +
α[Φ(β)]−1

2(α + 2)∫ ∞

0
ukφ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(

√
u)
)

1√
u

du

=
1

(α + 2)

[∫ ∞

0
uk− 1

2 φ(
√

u)du +
α[Φ(β)]−1

2

uk− 1
2 φ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(

√
u)
)]

du,

which leads to (12). �
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Result 4.3. If X follows MSGND(λ1, λ2, α, β), then for k=0,1,2,...,

E(X2k+1) =
2k+1

(α + 2)
√

2π
Γ(k + 1) +

α[Φ(β)]−1

2(α + 2)
Ak+ 1

2
(λ1, λ2, β), (14)

in which

Ak+ 1
2
(λ1, λ2, β) =

∫ ∞

0
ukφ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(?

√
u)
)

du,

for λ1 ∈ R, λ2 ≥ 0, β ∈ R which can be easily evaluated using the softwares MATHCAD and
MATHEMATICA.

Proof. By definition of raw moments,

E(X2k+1) =
∫ ∞

−∞
x2k+1 f (x; λ1, λ2, α, β)dx. (15)

On substituting x2 = u in (15) in the light of (4), we get

E(X2k+1) =
1

α + 2

∫ ∞

0
uk+ 1

2 φ(
√

u)
1√
u

du +
α[Φ(β)]−1

2(α + 2)∫ ∞

0
uk+ 1

2 φ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(

√
u)
)

1√
u

du

=
1

(α + 2)

[∫ ∞

0
ukφ(
√

u)du +
α[Φ(β)]−1

2∫ ∞

0
ukφ(
√

u)Φ
(

β
√

1 + λ2
1 + λ(

√
u)
)]

du,

which leads to (14). �

5. Reliability measures and mode

Here we obtain some properties of MSGND(λ1, λ2, α, β) with p.d.f. (4) useful in reliability studies.
Let X follows MSGND(λ1, λ2, α, β) with p.d.f (4). Now, from the definition of reliability function
R(t), failure rate r(t) and mean residual life function µ(t) of X, we obtain the following results.

Result 5.1. The reliability function R(t) of X is the following, in which ξβ(t, λ(x)) is as defined
in Result 3.4.

R (t) =
[1−Φ(t)]

α + 2

{
2 +

α[Φ(β)]−1

2

}
+

α[Φ(β)]−1

α + 2
ξβ (t, λ(x))

Result 5.2. The failure rate r(t) of X is given by

r (t) =
φ(t)[2 + α[Φ(β)]−1Φ(β

√
1 + λ2 + λ(x))]

(1−Φ(t))[2 + α[Φ(β)]−1

2 ] + α[Φ(β)]−1ξβ(t, λ(x))
.

Result 5.3. The mean residual life function of MSGND(λ1, λ2, α, β) is

M (t) =
2φ(t)

(α + 2)R(t)
+

α[Φ(β)]−1

(α + 2)R(t)

[
Φ
(

β
√

1 + λ2
1 + λ(x)

)
φ(t)

+Λβ(t; λ1, λ2)
]
− t (16)

where

Λβ(t; λ1, λ2) =
∫ ∞

t
φ(x)

[
d

dx

(∫ β
√

1+λ2
1+λ(x)

0
φ(u)du

)]
dx.
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Proof. By definition, the mean residual life function (MRLF) of X is given by

M(t) = E(X− t|X > t) (17)

= E(X|X > t)− t,

where

E(X|X > t) =
2

R(t)(α + 2)

∫ ∞

t
xφ(x)dx (18)

+
α[Φ(β)]−1

R(t)

∫ ∞

t
xφ(x)Φ

(
β
√

1 + λ2
1 + λ(x)

)
dx.

Since φ(.) is the p.d.f of standard normal variate φ
′
(x) = −xφ(x). Therefore (18) becomes,

E(X|X > t) =
2

(α + 2)R(t)

∫ ∞

t
−φ

′
(x)dx (19)

+
α[Φ(β)]−1

(α + 2)R(t)

∫ ∞

t
−φ

′
(x)Φ

(
β
√

1 + λ2
1 + λ(x)

)
dx.

On integrating (19), we obtain the following

E(X|X > t) =
2

(α + 2)R(t)
φ(t) +

α[Φ(β)]−1

(α + 2)R(t)

(
−Φ(λ(x) + β

√
1 + λ2)φ(x)

)∞

t

− α[Φ(β)]−1

R(t)(α + 2)

∞∫
t

−φ(x)

[
d

dx

(∫ β
√

1+λ2
1+λ(x)

−∞
φ(u)du

)]
dx.

(20)

On solving (20) and substituting in (17), we get (16).
The functions R(t), r(t) and µ(t) are equivalent in the sense that if one of them is given, the

other two can be uniquely determined. �
Next, through the following result we derive certain conditions under which the MSGND(λ1, λ2, α, β)
is log-concave.

Result 5.4. The p.d.f of MSGND(λ1, λ2, α, β) is log-concave under the following two cases.
Case 1: For x > 0,

(i) when λ1 < 0 provided for all α > 0 and β > 0 and

(ii) when λ1 > 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| < | 3λ1λ2x

(1+λ2x2)
3
2
|

Case 2: For x < 0, the p.d.f of MSGND(λ1, λ2, α, β) is log concave

(i) when λ1 > 0 provided for all α > 0 and β > 0 and

(i) when λ1 < 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| < | 3λ1λ2x

(1+λ2x2)
3
2
|.

Proof. To prove log[ f (x; λ1, λ2, α, β)] is a concave function of x, it is enough to show that its
second derivative is negative for all x. Thus

d
dx

log[ f (x; λ1, λ2, α, β)] = −x +
α[F(β)]−1 f (η)η

′

2 + α[F(β)]−1F(η)

and
d2

dx2 log[ f (x; λ1, λ2, α, β)] = −1− ∆1 − ∆2 + ∆3

in which,
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∆1 =
α[F(β)]−1η

′2
f (η)η

2 + α[F(β)]−1F(η)
(21)

∆2 =
α2[F(β)]−2( f (η))2η

′2

[2 + α[F(β)]−1F(η)]2
(22)

and

∆3 =
α[F(β)]−1 f (η)η

′′

2 + α[F(β)]−1F(η)
, (23)

where

η = λ(x) + β
√

1 + λ2
1

η
′

=
λ1√

1 + λ2x2
− λ1λ2x2

(1 + λ2x2)
3
2

η
′′

=
3λ1λ2

2x3

(1 + λ2x2)
5
2
− 3λ1λ2x

(1 + λ2x2) 3
2

.

Note that ∆1 > 0, for α > 0 and η > 0. Here η > 0 for all values of λ1 > 0 and β > 0.
Consequently ∆2 > 0 for all values of α > 0, β > 0 and λ1 > 0. Also, ∆3 < 0 for either when
α < 0 and η

′′
> 0 or when α > 0 and η

′′
< 0. Hence (4) is log-concave in these situations. �

As a consequence of the above result, we have the following result.

Result 5.5. MSGND(λ1, λ2, α, β) density is strongly unimodal under the following two cases.
Case 1: For x > 0,

(i) if λ1 < 0 provided for all α > 0 and β > 0 and

(ii) if λ1 > 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| < | 3λ1λ2x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ1 > 0 provided for all α > 0 and β > 0 and

(i) if λ1 < 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| < | 3λ1λ2x

(1+λ2x2)
3
2
|.

Result 5.6. MSGND(λ1, λ2, α, β) density is plurimodal under the following two cases. Case 1: For
x > 0,

(i) if λ1 < 0 provided for all α < 0 and β > 0 and

(ii) if λ1 > 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| > | 3λ1λ2x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ1 > 0 provided for all α < 0 and β > 0 and

(i) if λ1 < 0 provided | 3λ1λ2
2x3

(1+λ2x2)
5
2
| > | 3λ1λ2x

(1+λ2x2)
3
2
|.
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6. Extended form of MSGND

In this section we discuss an extended form of MSGND(λ1, λ2, α, β) by introducing the location
parameter µ and scale parameter σ.

Definition 6.1. Let X ∼ MSGND(λ1, λ2, α, β) with p.d.f given in (4). Then Y = µ + σX is said to
have an extended MSGND with the following p.d.f.

f ∗(y, µ, σ; λ1, λ2, α, β) =
1

σ(α + 2)
φ(

y− µ

σ
)
[
2 + α[Φ(β)]−1 (24)

Φ(β
√

1 + λ2
1 + λ∗(y))

]
,

in which λ∗(y) = λ1(y−µ)√
σ2+λ2(y−µ)2

, y ∈ R, µ ∈ R, λ1 ∈ R, β ∈ R, σ > 0, λ2 ≥ 0 and α ≥ −1. A

distribution with p.d.f (24) is denoted as EMSGND(µ, σ; λ1, λ2, α, β). Clearly when

(i) When β=0, the EMSGND (µ, σ; λ1, λ2, α, β) reduces to ESGND (µ,σ;λ1, λ2, α) of [11].

(ii) β=0 and λ1 = 0, the EMSGND(µ, σ; λ1, λ2, α, β) reduces to the p.d.f of normal distribution.

(iii) When β = 0 and λ2 = 0, the EMSGND(µ, σ; λ1, λ2, α, β) reduces to EGMNSN ( µ, σ; α, λ) of
[9].

Now, we obtain the following results of EMSGND(µ, σ; λ1, λ2, α, β), in a similar way as we
defined in section 2 and 4.

Result 6.1. The cumulative distribution function (c.d.f) F∗(y) of EMSGND(µ, σ; λ1, λ2, α, β) with
p.d.f (24) is the following, for y ∈ R.

F∗(y) =
[

2 +
αΦ[(β)]−1

2

]
Φ( y−µ

σ )

σ(α + 2)
− α[Φ(β)]−1

σ(α + 2)
ξβ (y, λ∗(y))

where ξβ (y, λ∗(y)), is as defined in Result 3.4.

Result 6.2. The characteristic function of EMSGND(µ, σ; λ1, λ2, α, β) is given by

ψ∗Y(t) =
eitµ− t2σ2

2

α + 2

{
2 + α[Φ(β)]−1E

[
Φ
(

β
√

1 + λ2
1 + λ∗(z + σ2it)

)]}
,

where λ∗(z + σ2it) = λ1(z+σ2it)√
σ2+λ2(z+σ2it)2

.

Result 6.3. The reliability function R∗(t) of Y is the following, in which ξβ(t, λ∗(y)) is as defined

in Result 3.4, with λ∗(y) = λ1(y−µ)√
σ2+λ2(y−µ)2

R∗(t) =
1

σ(α + 2)

[
1− F(

t− µ

σ
)

] {
2 +

α

2
[F(β)]−1

}
+

α[F(β)]−1

σ(α + 2)
ξβ (t, λ∗(y)) .

Result 6.4. The failure rate r∗(t) of Y is given by

r∗(t) =
f ( t−µ

σ )
[
2 + α[F(β)]−1F

(
β
√

1 + λ2
1 + λ∗(t)

)]
1

σ(α+2)

[
1− F( t−µ

σ )
] {

2 + α
2 [F(β)]−1

}
+ α[F(β)]−1

σ(α+2) ξβ (t, λ∗(t))
,

where λ∗(t) = λ1(t−µ)√
σ2+λ2(t−µ)2

.
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7. Maximum likelihood estimation

The log-likelihood function, ln L of the random sample of size n from a population following
EMSGND(µ, σ; λ1, λ2, α, β) is the following.

ln L = n ln
(

1√
2π

)
− n ln σ− n ln(α + 2)− 1

2

n

∑
i=1

(yi − µ)2

σ2

+
n

∑
i=1

ln
(

2 + α [Φ(β)]−1Φ
(

β
√

1 + λ2
1 + λ∗(y)

))
.

(25)

On differentiating (25) with respect to parameters µ, σ, λ1, λ2, α and β and then equating to zero,
we obtain the following normal equations.

n

∑
i=1

(yi − µ)

σ2 −
n

∑
i=1

α[Φ(β)]−1φ
(

β
√

1 + λ2
1 + λ∗(y)

)(
λ1√

σ2+λ2(yi−µ)2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) (26)

+
n

∑
i=1

α[Φ(β)]−1φ
(

β
√

1 + λ2
1 + λ∗(y)

)(
λ1λ2(yi−µ)2

[σ2+λ2(yi−µ)2]
3
2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) = 0,

n
σ
=

n

∑
i=1

(yi − µ)2

σ3 +
n

∑
i=1

αλ1Φ[(β)]−1φ
(

β
√

1 + λ2
1 + λ∗(y)

)(
(yi−µ)σ

[σ2+λ2(yi−µ)2]
3
2

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) , (27)

n

∑
i=1

α[Φ(β)]−1φ
(

β
√

1 + λ2
1 + λ∗(y)

) [
λ∗(y)

λ1
+ βλ1√

1+λ2
1

]
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) = 0, (28)

n

∑
i=1

α[Φ(β)]−1φ
(

β
√

1 + λ2
1 + λ∗(y)

) [
λ1(yi−µ)3

[σ2+λ2(yi−µ)2]
3
2

]
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) = 0, (29)

n

∑
i=1

[Φ(β)]−1Φ
(

β
√

1 + λ2
1 + λ∗(y)

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) = 0 (30)

and

n

∑
i=1

α[Φ(β)]−1φ(β
√

1 + λ2
1 + λ∗(y))

√
1 + λ2

1

2 + α[Φ(β)]−1Φ
(

β
√

1 + λ2
1 + λ∗(y)

) − (31)

n

∑
i=1

α[Φ(β)]−2φ(β)Φ
(

β
√

1 + λ2
1 + λ∗(y)

)
2 + α[Φ(β)]−1Φ

(
β
√

1 + λ2
1 + λ∗(y)

) = 0.

On solving the equations (26) to (31), we get the maximum likelihood estimate of the parame-
ters of EMSGND(µ, σ; λ1, λ2, α, β).
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8. Generalized likelihood ratio test

In this section we discuss a test procedure for testing the parameter β of EMSGND. For testing
the null hypothesis H0 : β = 0 against the alternative hypothesis H1 : β 6= 0 by using the
generalized likelihood ratio test, the test statistic is

−2lnλ(x) = 2[lnL(Θ̂; x)− lnL(Θ̂∗; x)],

where Θ̂ is the maximum likelihood estimator of Θ = (µ, σ, λ1, λ2, α, β) with no restriction, and
Θ̂∗ is the maximum likelihood estimator of Θ when β = 0. The test statistic given is asymptotically
distributed as χ2 with 1 degrees of freedom. For further details see [12].

9. Applications

In this section we consider three real life data applications of the EMSGND. The first data
is taken from [9]. The data gives the Otis IQ scores for 52 non-white males hired by a large
insurance company in 1971. The observed data is given below:
Data set 1:
91, 102, 100, 117, 122, 115, 97, 109, 108, 104, 108, 118, 103, 123, 123, 103, 106, 102, 118, 100, 103, 107,
108, 107, 97, 95, 119, 102, 108, 103, 102, 112, 99, 116, 114, 102, 111, 104, 122, 103, 111, 101, 91, 99,
121, 97, 109, 106, 102, 104, 107, 95.
The second data is taken from [8]. This data is related to the milk production of 28 cows in which
the variable under study is the daily milk production in kilogram and the variable recorded for
three times milking cows. Data set 2:
34.6, 27.7, 29.2, 25.3, 27.6, 37.9, 32.6, 32, 30.7, 29.6, 38.3, 32.9, 30.8, 32.2, 32.9, 28.1, 33.9, 28.6,
28.1, 35.9, 34.8, 40.3, 30.9, 34.4, 19.8, 25.8, 37.3, 32.4.
The third data is taken from [8]. The data includes 100 females and 102 males with 13 variables
such as height, weight, body mass index (BMI) etc. We choose for the variable under study is the
BMI values for the second 50 females. The data is given below: Data set 3:
24.47, 23.99, 26.24, 20.04, 25.72, 25.64, 19.87, 23.35, 22.42, 20.42, 22.13, 25.17, 23.72, 21.28,
20.87, 19.00, 22.04, 20.12, 21.35, 28.57, 26.95, 28.13, 26.85, 25.27, 31.93, 16.75, 19.54, 20.42,
22.76, 20.12, 22.35, 19.16, 20.77, 19.37, 22.37, 17.54, 19.06, 20.30, 20.15, 25.36, 22.12, 21.25,
20.53, 17.06, 18.29, 18.37, 18.93, 17.79, 17.05, 20.31.
We obtained the maximum likelihood estimate (MLE) of the parameters by using the data sets
with the help of the MATHCAD software. The numerical results obtained are presented in Table
1, which includes the estimated values of the parameters and the corresponding Kolmogorov-
Smirnov Statistics (KSS) values of models: ESGND(µ, σ; λ1, λ2, α) and EMSGND(µ, σ; λ1, λ2, α, β).
Also, its Akaike’s Information Criterion(AIC), Bayesian Information Criterion(BIC) and corrected
Akaike’s Information Criterion(AICc) values are obtained.
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Table 1: Estimated values of the parameters for the model: ESGND(µ, σ; λ1, λ2, α) and EMSGND(µ, σ; λ1, λ2, α, β)
with respective values of KSS, P-value, log-likelihood, AIC, BIC and AICc in case of Data Set 1, 2 and 3.

Data set Estimates of ESGND(µ, σ; λ1, λ2, α) EMSGND
the parameters (µ, σ; λ1, λ2, α, β)

1 µ̂ 102.18167 106.654
σ̂ 4.94535 8
α̂ 1.89352 2
β̂ - 8

λ̂1 6.23351 0.809
λ̂2 0.38068 0.349

KSS 0.5 0.129961
P-Value 3.91952 ×10 −12 0.315666

Log-likelihood -193.257 -183.43
AIC 396.515 378.859
BIC 406.271 390.567

AICc 397.819 380.726
2 µ̂ 31.43211 31.5934

σ̂ 2.0174 4.464
α̂ 0.96229 0.5
β̂ - 20.006

λ̂1 0.64746 6.002
λ̂2 15.91043 8

KSS 0.451625 0.0783872
P-Value 9.83689 ×10 −6 0.98998

Log-likelihood -100.348 -81.1221
AIC 210.697 174.244
BIC 217.358 182.237

AICc 213.424 178.244
3 µ̂ 20.1321 21.865

σ̂ 1.07639 3.33
α̂ 1.17325 0.6
β̂ - 8

λ̂1 7.85813 7
λ̂2 10.13911 5

KSS 0.5 0.121453
P-Value 1.07824×10 −11 0.418815

Log-likelihood -324.56 -130.59
AIC 659.119 273.18
BIC 668.68 284.652

AICc 660.483 275.134

It is clear from Table 1, that the EMSGND(µ, σ; λ1, λ2, α, β) is a more appropriate model to all
the three data sets compared to the existing model ESGND(µ, σ; λ1, λ2, α). We have plotted the
histogram of the respective data sets along with the corresponding fitted values of the ESGND
and EMSGND in Figures 2, 3 and 4 respectively. It shows that EMSGND yields a better fit than
ESGND in all the cases. Thus, the model discussed in this paper provides more flexibility in
modeling in case of all the three datasets due to the presence of the extra parameter.
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Figure 2: Histogram of Data set 1 and fitted distributions
.
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Figure 3: Histogram of Data set 2 and fitted distributions
.
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Figure 4: Histogram of Data set 3 and fitted distributions
.

Also, we conduct a generalized likelihood ratio test for illustrating the usefulness of the model,
which is described as follows.
Let us consider the problem of testing a hypothesis H0 : β = 0 against H1 : β 6= 0 in the case of
Data set 1. The MLEs and values of the likelihood for ESGND and EMSGND are

µ̂ = 102.18167, σ̂ = 4.94535, λ̂1 = 6.23351, λ̂2 = 0.38068, α̂ = 1.89352,

L(Θ̂∗; x) = 1.17315× 10−84 and

µ̂ = 106.654, σ̂ = 8, λ̂1 = 0.809, λ̂2 = 0.349, α̂ = 2, β̂ = 8,

L(Θ̂; x) = 2.17542× 10−80, respectively. The value of likelihood ratio (LR) test statistic is 19.6557.
Since the critical value for the test with significance level 0.05 at one degrees of freedom is 3.84,
the null hypothesis is rejected.

Similarly we consider the problem of testing H0 : β = 0 against H1 : β 6= 0 using the Data set
2. The MLEs and values of the likelihood for ESGND and EMSGND are

µ̂ = 31.43211, σ̂ = 2.0174, λ̂1 = 0.64746, λ̂2 = 15.91043, α̂ = 0.96229,

L(Θ̂∗; x) = 2.62584× 10−44 and

µ̂ = 31.5934, σ̂ = 4.464, λ̂1 = 6.002, λ̂2 = 8, α̂ = 0.5, β̂ = 20.006,

L(Θ̂; x) = 5.87655× 10−36, respectively. The value of likelihood ratio (LR) test statistic is 38.4525.
Since the critical value for the test with significance level 0.05 at one degrees of freedom is 3.84,
the null hypothesis is rejected.

Similarly we consider the problem of testing H0 : β = 0 against H1 : β 6= 0 using the Data set
3. The MLEs and values of the likelihood for ESGND and EMSGND are

µ̂ = 20.1321, σ̂ = 1.07639, λ̂1 = 7.85813, λ̂2 = 10.13911, α̂ = 1.17325,

L(Θ̂∗; x) = 1.11045× 10−141 and

µ̂ = 21.865, σ̂ = 3.33, λ̂1 = 7, λ̂2 = 5, α̂ = 0.6, β̂ = 8,

L(Θ̂; x) = 1.92965× 10−57, respectively. The value of likelihood ratio (LR) test statistic is 387.939.
Since the critical value for the test with significance level 0.05 at one degrees of freedom is 3.84,
the null hypothesis is rejected.
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10. Simulation Study

In order to assess the performance of the maximum likelihood estimators of the parameters
of the EMSGND(µ, σ; λ1, λ2, α, β), we have conducted a brief simulation study as follows. We
have simulated data sets of sizes 30, 50 and 100 from the EMSGND for the parameter values
µ = 2, σ = 0.5, λ1 = 0.8, λ2 = 0.3, α = 1 and β = 8. We obtain likelihood estimates of these
parameters and computed bias and mean square errors (MSE). The results obtained are presented
in Table 2.

Table 2: Estimate of the parameters and corresponding bias and mean square error(MSE).

Sample size Parameters Estimate Bias MSE
30 µ̂ 1.988331 0.1883313 0.03546867

σ̂ 0.4833721 -0.0166279 0.0002764871
λ̂1 0.83 0.54 0.2916
λ̂2 0.29 -1.71 2.9241
β̂ 7.98 1.98 3.9204
α̂ 1.37 1.07 1.1449

50 µ̂ 1.99147 -0.008530334 7.27666×10−05

σ̂ 0.4910136 -0.00898637 8.075485×10−05

λ̂1 0.78 -0.02 4×10−04

λ̂2 0.285 -0.015 0.000225
β̂ 7.87 -0.13 0.0169
α̂ 1.36 0.36 0.1296

100 µ̂ 1.994749 -0.005251242 2.757554×10−05

σ̂ 0.5006707 0.0006706597 4.497845×10−07

λ̂1 0.795 -0.005 2.5×10−05

λ̂2 0.29 -0.01 1×10−04

β̂ 7.9 -0.1 0.01
α̂ 1 -3.248735×10−12 1.055428×10−23

From Table 2, it can be observed that both the bias and MSE are in decreasing order as sample
size increases.

11. Summary and Conclusion

Through this paper we proposed a wide class of distributions which are suitable for asymmetric
as well as plurimodal situations. Certain structural properties of the distribution are derived and
discussed its reliability properties as well as unimodal and plurimodal properties. A location scale
extension of this class of distribution is also considered and obtained its analogous properties.
Further we discussed the maximum likelihood estimation of the parameters of the model and
thereby illustrated the procedures through certain real life applications using three real data sets
and shown that the model is suitable for all the data sets compared to the existing model. Also,
we constructed a test procedure for establishing the significance of the additional parameter β. In
order to assess the performance of the maximum likelihood estimation procedure, we carried out
a brief simulation study. The proposed model is shown to be more appropriate for asymmetric
as well as plurimodal data sets. Certain characteristic properties as well as inferential aspects
of the model are yet to study, which we hope to publish in another article. Even though there
is flexibility in the proposed model compared to the existing model from the practical point of
view, there is scope for developing a further generalized version of the proposed model so as to
model more complicated data sets. Such possibilities are under investigation and hope to publish
through another article shortly.
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Abstract 

This work deals with the Performance Modelling and purposed the Decision Support System (DSS) for 

maintenance priorities of an assembly line system using a probabilistic approach. This system consists of 

four subsystems i.e. Shot Peening, Painting Machine, Assembly Platform and Riveting Machine. 

Performance modelling among various subsystems has been done by Markovian approach. Steady state 

probabilities are determined by drawing transition diagram and solving the differential equations. Decision 

matrices are formed with the help of different combinations of failure and repair rates of all the subsystems. 

The key finding of this work is that painting machine is the most critical subsystem. 

Keywords: Markovian Approach, Availability, DSS, Reliability, Maintainability, 

Performability, RAMS. 

I. Introduction

Automobile sector becomes a driver for the growth of a country like India. Leaf springs are the 

important part of vehicle suspension system which support the overall weight of the vehicle 

and help to maintain a safe and comfortable ride. Leaf spring manufacturing plants  have 

usually very complex systems in their higher production units. The maintenance of these 

complex systems becomes costly and time consuming in today’s industrial scenario. These challenges 

have now taken by engineers as an opportunity. An appropriate decision can reduce the operating as 

well as maintenance costs and also improves the performability of the system. Performability of the 

plant reduces when the system becomes unavailable for longer period of time. Reliability, 

Availability, Maintainability and Safety (RAMS) approach plays a significant role to take better and 

quick decisions in a proper time frame. This is a four dimensional approach which can helps both 

engineers and managers to enhance the performability of the system by utilizing the best combination 

of failure and repair rates. RAMS reduces the cost of the plant which helps to achieve the breakeven 

point rapidly. DSS has been developed using various statistical based techniques such as Reliability 

Hazard Analysis, Failure Mode and Effects Analysis (FMEA), Reliability Block Diagram, Root Cause 

Analysis, Fault Tree Analysis, Finite Element Analysis, Markov Analysis, Petri Nets etc. 

In this work, Markovian approach has been used for performance modeling and analysis of the 

system. Markov birth-death analysis is used to predict a random variable, based upon the current 

state not on the previous activities. It defines the future action on the basis of the current state of a 
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variable. In engineering, this approach has been used to predict the performability of system on the 

basis of their current state. The probability of any variable has been determined by a decision tree, 

called transition diagram. 

II. Literature Review

Over the past decade, many researchers using this markovian approach for performance modeling of 

different complex systems. Zhang and Cao [1] determined the reliability of a heat exchanger in deep-

sea submersibles using Markov analysis method. Jiang et al. [2] applied Markov chain method on the 

measured sensors to get their reliability degradation over time in drilling machines. Salari and Makis 

[3] proposed a modelling for a multi-unit production system using Markov renewal

theory. Galagedarage and Khan [4] introduced a methodology which detect and diagnosis the fault 

using hidden markovian method. Malik and Tewari [5] had done the performance modelling for the 

Water Flow System (WFS) of a thermal power plant. Alizadeh and Srinivas [6] developed a reliability 

redundant model for safety systems using markov method. Hassan et al. [7] purposed a stochastic 

model for liquefied natural gas plant using Markov analysis. Shichang et al. [8] developed a Markov 

model for multistage manufacturing plant for performance analysis. Kumar [9] had done availability 

analysis of air circulation system of a thermal plant by markov modelling. Liu et al. [10] discussed 

double 2-out-of-2 system to obtained time dependent safety and reliability of the system. Kumar et al. 

[11] evaluated the availability of a thermal power plant using markov birth-death technique. Vora

and Tewari [12] described stochastic modelling and analysis of condensate system of a thermal plant 

using markovian approach. Ge and Asgarpoor [13] developed algorithm for reliability evaluation of 

equipment with fuzzy markov model. 

III. System Description

Assembly line system of a leaf spring manufacturing plant has four major subsystems: Shot Peening 

(A), Painting Machine (B), Assembly Platform(C) and Riveting Machine (D). Out of these subsystems, 

only painting machine subsystem has 4 lines in parallel arrangement. Failure of any line of this 

subsystem reduces the capacity of the system. Other subsystems have no provision of redundancy. 

The nomenclatures used for the subsystems (as shown in fig. 1) are described as: 

A, B, C and D    : Represent all subsystems are operating in full capacity. 

B’, B’’, B’’’        : Represent subsystem B is operating in reduces capacity. 

a, b, c and d      : Represent the failure state of all subsystems. 

λi,, i=1,2,3,4        : Mean constant failure rates for different subsystems A,B, C and D respectively. 

µi, i =1, 2, 3, 4    : Mean constant repair rates for different subsystems A, B, C and D respectively. 

Pj(t), j= 0,1,2……19   : Probability at time ‘t’ the system is in jth state 
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Fig 1:Transition Diagram of Assembly Line System 

This transition diagram shows the total 20 states (‘0’ to ‘19’) out of which state ‘0’ represents the full 

capacity operation, 3 states (i.e., ‘1’ to ‘3’) represents the reduced capacity operation, while 15 states 

(i.e., ‘4’ to ‘19’) represents the failure state in the transition diagram. 

IV. Performance Modelling of the Assembly Line System

To determine the performability of an assembly line system of a Leaf spring manufacturing plant, the 

mathematical formulation has been carried out using mnemonic rule for all the subsystems. 

Following mathematical equations represent the two states of the system, transient and steady states.  

I. Transient State

The following first order differential equations associated with the transition diagram of the system at 

time (t+Δt): 

P0 (t+Δt) - P0 (t) = [- λ1Δt - 2λ2Δt - λ3Δt - λ4Δt] P0 (t) + µ1ΔtP4 (t) + µ2Δt {P1 (t) + P2 (t) + P3 (t) + P5 (t) + P9 (t) 

+P13 (t) + P17 (t)} +µ3ΔtP6 (t) + µ4ΔtP7 (t)]

Taking Δt→0, we get: 

P’0 (t) = -X0P0 (t) + µ1ΔtP4 (t) + µ2Δt {P1 (t) + P2 (t) + P3 (t) + P5 (t) + P9 (t) + P13 (t) + P17 (t)} + µ3Δt P6 (t) 

+ µ4ΔtP7 (t)

P’0 (t) + X0P0 (t) = µ1ΔtP4 (t) + µ2Δt {P1 (t) + P2 (t) + P3 (t) + P5 (t) + P9 (t) + P13 (t) + P17 (t)} + µ3Δt P6 (t) 

+µ4Δt P7 (t)  (1) 

Similarly, 

P’1(t) + X1P1 (t) = λ2P0 (t) + µ1P8 (t) + µ3P10 (t) + µ4P11 (t) (2)

RT&A, No 2 (68)
 Volume 17, June 2022

405



Shanti Parkash, P.C.Tewari      

PERFORMANCE MODELING & DSS FOR ALS OF LSMP 

P’2(t) + X1P2 (t) = λ2P1 (t) + µ1P12 (t) + µ3P14 (t) + µ4P15 (t)       (3) 

P’3(t) + X2P3 (t) = λ2P2 (t) + µ1P16 (t) + µ3P18 (t) + µ4P19 (t)       (4) 

Where

X0 = λ1+ 2λ2 + λ3 + λ4 

X1 = λ1 + 2λ2 + λ3 + λ4 + µ2 

X2 = λ1 + λ2 + λ3 + λ4 + µ2 

P’i(t) + µj Pi (t) = λjP0 (t), where, i = 4, 5, 6, 7; j = 1, 2, 3, 4       (5) 

P’i(t) + µj Pi (t) = λjP1 (t), where, i = 8, 9, 10, 11; j = 1, 2, 3, 4      (6)  

P’i(t) + µj Pi (t) = λjP2 (t), where, i = 12, 13, 14, 15; j = 1, 2, 3, 4  (7) 

P’i(t) + µj Pi (t) = λjP3 (t), where, i = 16, 17, 18, 19; j = 1, 2, 3, 4  (8) 

II. Steady State

Steady state probabilities of the system are obtained by imposing the following restriction: as t→∞, 

d/dt→0.Final results for long run availability are obtained from steady state. 

In this state, equation (1) to (8) reduced to the following system of equations: 

X0P0 = µ1P4 + µ2 (P1 + P2 + P3 + P5 + P9 + P13 + P17) + µ3P6 + µ4P7 (9) 

Similarly, 

X1P1 = λ2P0 + µ1P8 + µ3P10 + µ4P11                 (10) 

X2P2 = λ2P1 + µ1P12 + µ3P14 + µ4P15 (11) 

X2P3 = λ2P2 + µ1P16 + µ3P18 + µ4P19  (12) 

µjPi = λjP0, where, i = 4, 5, 6, 7; j = 1, 2, 3, 4       (13) 

µjPi = λjP1, where, i = 8, 9, 10, 11; j = 1, 2, 3, 4       (14) 

µjPi = λjP2, where, i = 12, 13, 14, 15; j = 1, 2, 3, 4       (15) 

µjPi = λjP3, where, i = 16, 17, 18, 19; j = 1, 2, 3, 4       (16) 

By solving these equations, we get 

Where N1= λ1/µ1, N2= λ2/ µ2, N3= λ3/ µ3, N4= λ4/ µ4 

P19 = N4P3 = N4 (λ2/2λ2+µ2)2 (λ2/λ2+µ2) P0,  

P18 = N3P3 = N3 (λ2/2λ2+µ2)2 (λ2/λ2+µ2) P0, 

P17 = N2P3 = N2 (λ2/2λ2+µ2)2 (λ2/λ2+µ2) P0, 

P16 = N1P3 = N1 (λ2/2λ2+µ2)2 (λ2/λ2+µ2) P0, 

P15 = N4P2 = N4 (λ2/2λ2+µ2)2 P0, 
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P14 = N3P2 = N3 (λ2/2λ2+µ2)2 P0, 

P13 = N2P2 = N2 (λ2/2λ2+µ2)2 P0,  

P12 = N1P2 = N1 (λ2/2λ2+µ2)2 P0, 

P11 = N4P1 = N4 (λ2/2λ2+µ2) P0, 

P10 = N3P1 = N3 (λ2/2λ2+µ2) P0,  

P9 = N2P1 = N2 (λ2/2λ2+µ2) P0,  

P8 = N1P1= N1 (λ2/2λ2+µ2) P0,  

P7 = N4P0,  

P6 = N3P0,  

P5 = N2P0,  

P4 = N1P0,  

P3 = (λ2/λ2+µ2) P2 = (λ2/λ2+µ2)(λ2/2λ2+µ2)2 P0, 

P2 = (λ2/2λ2+µ2) P1 = (λ2/2λ2+µ2)2 P0 

P1 = (λ2/2λ2+µ2) P0 

Now under the normalizing condition, summation of all the state probabilities is equal to one, 

Σ Pi = 1, i.e. P0+P1+P2+..........................+P19=1 

We get from the above equations, 

P0 = [1 + (λ2/2λ2+µ2) + (λ2/2λ2+µ2)2 + (λ2/λ2+µ2) (λ2/2λ2+µ2)2 + (λ1/ µ1) + (λ2/ µ2)+ (λ3/ µ3)+ (λ4/ µ4)+  (λ1/µ1) 

(λ2/2λ2+µ2) + (λ2/µ2) (λ2/2λ2+µ2) + (λ3/µ3) (λ2/2λ2+µ2) + (λ4/µ4) (λ2/2λ2+µ2) + (λ1/µ1) (λ2/2λ2+µ2)2 + (λ2/µ2) 

(λ2/2λ2+µ2)2 + (λ3/µ3) (λ2/2λ2+µ2)2 + (λ4/µ4) (λ2/2λ2+µ2)2 + (λ1/µ1) (λ2/2λ2+µ2)2  (λ2/λ2+µ2)  + (λ2/µ2) 

(λ2/2λ2+µ2)2  (λ2/λ2+µ2) + (λ3/µ3) (λ2/2λ2+µ2)2 (λ2/λ2+µ2) + (λ4/ µ4) (λ2/2λ2+µ2)2 (λ2/λ2+µ2) ]-1 

The long run performability of the system in terms of availability A (∞) can now be determined using 

the following equation: 

A (∞) = P0 + P1 + P2 + P3 = P0 + (λ2/2λ2+µ2) P0 + (λ2/2λ2+µ2)2 P0 + (λ2/λ2+µ2) (λ2/2λ2+µ2)2 P0 

         = [1+ (λ2/2λ2+µ2) + (λ2/2λ2+µ2)2 + (λ2/λ2+µ2)(λ2/2λ2+µ2)2] P0  (17) 

Failure and repair data for study were obtained from the maintenance logbook of the plant. Failure 

and repair data follow the exponential distribution. 
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Table 1: Failure and repair rates of assembly line system 

Name of the SUBSYSTEM Exponential Distribution 

Mean Failure Rate (λ) Mean Repair Rate (µ) 

SHOT PEENING 0.0003 (λ1) 0.0050 (µ1) 

PAINTING MACHINE 0.0030 (λ2) 0.0310 (µ2) 

ASSEMBLY 0.0002 (λ3) 0.0076 (µ3) 

RIVETING 0.0030 (λ4) 0.2000 (µ4) 

V. Results and Discussion

Table 2, 3, 4 and 5 represent the performability matrices for various subsystems of the assembly line 

system according to the best possible combinations of failure and repair rates of various subsystems. 

Tables and figs. 2 to 5 show the effect of failure and repair rates of Shot Peening, Painting Machine, 

Assembly Platform and Riveting Machine on the steady state performance of the system respectively. 

Table 2 and fig. 2 reveal the effect of various failure and repair rates of shoot peening on the 

performability of the system in the terms of availability while other parameters remain constant. As 

the failure rate increases from 0.0001 to 0.0005, the performability of the system decreases sharply 

from 0.8077 to 0.6105 (approx.20%) in terms of availability. Similarly, when the repair rate increases 

from 0.0010 to 0.0090, the performability of the system increases from 0.8077 to 0.8702 (approx. 8%) in 

terms of availability. 

Table 2: Effect of the failure and repair rates of shot peening subsystem on system performability (%) 

Failure 

Rates 

Repair Rates of Shot Peening Constant 

Parameters 0.0010 0.0030 0.0050 0.0070 0.0090 

0.0001 0.8077 0.8537 0.8635 0.8678 0.8702 λ2=0.0030 

µ2=0.0310 

λ3=0.0002 

µ3=0.0076 

λ4=0.0030 

µ4=0.2000 

0.0002 0.7473 0.8300 0.8488 0.8571 0.8618 

0.0003 0.6954 0.8077 0.8347 0.8468 0.8537 

0.0004 0.6502 0.7865 0.8210 0.8367 0.8456 

0.0005 0.6105 0.7664 0.8077 0.8268 0.8378 

Fig. 2: Effect of varying failure and repair rates of shot peening subsystem on system performability 
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Table 3 and fig. 3 describe the effect of various failure and repair rates of painting machine on the 

performability of the system in terms of availability while other parameters remain constant. It is 

observed that when the failure rate increases from 0.0010 to 0.0090, the performability of the system 

decreases sharply from 0.8388 and 0.5755 (approx. 27%) and similarly when the repair rate increase 

from 0.0110 to 0.0910, the performability of the system increases from 0.8388 to 0.8990 (approx. 6%). 

Table 3: Effect of the failure and repair rates of painting machine subsystem on system performability (%) 

Failure 

Rates 

Repair Rates of Painting Machine Constant 

Parameters 0.0110 0.0310 0.0510 0.0710 0.0910 

0.0010 0.8388 0.8822 0.8921 0.8965 0.8990 λ1=0.0003 

µ1=0.0050 

λ3=0.0002 

µ3=0.0076 

λ4=0.0030 

µ4=0.2000 

0.0030 0.7278 0.8347 0.8620 0.8745 0.8816 

0.0050 0.6427 0.7920 0.8338 0.8534 0.8649 

0.0070 0.5755 0.7535 0.8074 0.8334 0.8487 

0.0090 0.5210 0.7186 0.7826 0.8143 0.8332 

Fig.3: Effect of varying failure and repair rates of painting machine subsystem on system performability 

Similarly, for the assembly platform the performability of the system in terms of availability varies 

between 67.37% to 84.59% (approx. 17%) for different combination of failure and repair rates of 

respective subsystem when other parameters remain constant as shown in the table 4 and fig.4. 

Table 4: Effect of the failure and repair rates of assembly platform subsystem on system performability (%) 

Failure 

Rates 

Repair Rates of Assembly Platform Constant 

Parameters 0.0016 0.0036 0.0056 0.0076 0.0096 

0.0001 0.8102 0.8336 0.8406 0.8439 0.8459 λ1=0.0003 

µ1=0.0050 

λ2=0.0030 

µ2=0.0310 

λ4=0.0030 

µ4=0.2000 

0.0002 0.7711 0.8148 0.8282 0.8347 0.8385 

0.0003 0.7357 0.7967 0.8161 0.8256 0.8312 

0.0004 0.7033 0.7795 0.8044 0.8167 0.8241 

0.0005 0.6737 0.7630 0.7930 0.8080 0.8171 
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Fig. 4: Effect of varying failure and repair rates of assembly platform subsystem on system performability 

Table 5 and fig. 5 reveal that variation in failure and repair rates of the riveting machine subsystem 

increases the system performability from 81.10% to 84.38% (approx. 3%) in terms of availability when 

other parameters remain constant.  

Table 5: Effect of the failure and repair rates of riveting machine subsystem on system performability (%) 

Failure 

Rates 

Repair Rates of Riveting Machine Constant 

Parameters 0.1000 0.2000 0.3000 0.4000 0.5000 

0.0010 0.8382 0.8417 0.8429 0.8435 0.8438 λ1=0.0003 

µ1=0.0050 

λ2=0.0030 

µ2=0.0310 

λ3=0.0002 

µ3=0.0076 

0.0020 0.8312 0.8382 0.8405 0.8417 0.8424 

0.0030 0.8243 0.8347 0.8382 0.8399 0.8410 

0.0040 0.8176 0.8312 0.8358 0.8382 0.8396 

0.0050 0.8110 0.8278 0.8335 0.8364 0.8382 

Fig. 5: Effect of varying failure and repair rates of assembly platform subsystem on system performability 

These performability matrices (Table 2 to Table 5) are very helpful to propose the maintenance 

priorities for assembly line system. Painting machine has the highest impact on the performance of 

the system having a variation of 37.82% whereas the lowest impact is done by riveting machine where 

the variation of 3.28% occurs. 
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VI. Conclusions and Future Scope

The present work is a case study of assembly line system of leaf spring manufacturing plant. 

Performance analysis in term of availability is carried out using the Markova method. The study 

reveals that painting machine subsystem being the most critical component of assembly line system 

whereas riveting machine system being the lowest contributor in the performance of the system. On 

the basis of this detailed analysis, a DSS (Decision Support System) has been proposed for 

maintenance priorities for various subsystem of assembly line system due to which system 

performance will be enhanced. It is presented in the Table 6. 

Table 6: DSS for assembly line system 

Subsystem Variation in Failure Rates λ 

(Repair Rates µ) 

Effect on System 

Performability (%) 

Recommended 

Maintenance Priority 

Shot Peening 0.0001-0.0005(0.001-0.009) 0.8702-0.6105(25.97) II 

Painting Machine 0.0010-0.0090(0.011-0.091) 0.8990-0.5210(37.82) I 

Assembly Platform 0.0001-0.0005(0.0016-0.0096) 0.8459-0.6737(17.22) III 

Riveting Machine 0.001-0.005(0.10-0.30) 0.8438-0.8110(3.28) IV 

This work enhances the system performance using the Markovian approach. Markovian approach has 

some limitations; literature review reveals that use of Petri Nets overcomes these limitations. In fact, 

selection of appropriate technique had done an impact on maintenance costs.  Further the results can 

be validated with some other robust techniques such as Genetic Algorithm (GA), Teacher Learning 

Based Optimization (TLBO), Ant Colony Algorithm (ACA), Particle Swarm Optimization (PSO) etc. 

for such industrial systems. 
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Abstract

We classify Lorentzian para-Kenmotsu manifolds which satisfy the curvature conditions W2.C = 0,
Z.C = LCQ(g, C), W2.Z − Z.W2 = 0 and W2.Z + Z.W2 = 0, where W2 is the Weyl- projective
tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor. We study and have
shown that the manifold M is η-Einstein provided that the Weyl-projective curvature tensor W2 meets
the condition W2.Z − Z.W2 = 0, and it is an Einstein manifold if W2.Z + Z.W2 = 0. Finally, in
this article, we derive the conditions in relation to conformally flatness of the manifold, whenever the
LP-Kenmotsu manifold satisfies the condition Z.C = LCQ(g, C).

Keywords: Para-contact metric manifold, LP-Kenmotsu manifold, concircular curvature tensor,
conformal curvature tensor, Weyl-projective tensor.
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I. Introduction

In 1989, K. Matsumoto [7] introduced the notion of Lorentzian paracontact and in particular,
Lorentzian para-Sasakian (LP-Sasakian) manifolds. Later, these manifolds have been widely
studied by many geometers Matsumoto and Mihai [8], Mihai and Rosca [6], Mihai, Shaikh and
De [5], Venkatesha and Bagewadi [15], Venkatesha, Pradeep Kumar and Bagewadi [16, 17] and
obtained several results of these manifolds.

In 1995, Sinha and Sai Prasad [2] defined a class of almost paracontact metric manifolds namely
para-Kenmotsu (briefly P-Kenmotsu) and special para-Kenmotsu (briefly SP-Kenmotsu) mani-
folds in similar to P-Sasakian and SP-Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra
Prasad defined a class of Lorentzian almost paracontact metric manifolds namely Lorentzian
para-Kenmotsu (briefly LP-Kenmotsu) manifolds [1] and they studied ϕ-semisymmetric LP-
Kenmotsu manifolds with a quarter-symmetric non-metric connection admitting Ricci solitons
[13].

On the other hand, In 1970 [4], Pokhariyal and Mishra introduced new tensor fields, called
the Weyl-projective curvature tensor W2 of type (1, 3) and the tensor field E on a Riemannian
manifold.The Weyl-projective curvature tensor W2 with respect to Riemannian connection on a
Riemannian manifold M is given by:

W2(X, Y)W = R(X, Y)W +
1

n − 1
[g(X, W)QY − g(Y, W)QX], (1)
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where QX = (n − 1)X, which plays an important role in the theory of the projective transforma-
tions of connections.

Further, Pokhariyal [3] studied the properties of these tensor fields on a Sasakian manifold. Mat-
sumoto, Ianus and Mihai extended these concepts to almost para-contact structures and studied
para-Sasakian manifolds admitting these tensor fields [9] in 1986 and these results were gener-
alised by De and Sarkar, in 2009 [14]. Sai Prasad and Satyanarayana studied the W2-tensor field
in an SP-Kenmotsu manifold [10]. In our earlier work, we consider LP-Kenmotsu manifolds
admitting the Weyl-projective curvature tensor W2 and shown that these manifolds admiting a
Weyl-flat projective curvature tensor, an irrotational Weyl-projective curvature tensor and a con-
servative Weyl-projective curvature tensor are an Einstein manifolds of constant scalar curvature
[11, 12].

Inspired by these studies, in the present work, we explore a class of Lorentzian para-Kenmotsu
manifolds that admits certain curvature conditions. The current study is arranged as follows:
Section 2 has certain prerequisites. In section 3, it is illustrated that the manifold M is η-Einstein
provided that the Weyl-projective curvature tensor W2 meets the condition W2.Z − Z.W2 = 0,
and it is an Einstein manifold if W2.Z + Z.W2 = 0. Finally, we derive the conditions in rela-
tion to conformally flatness of the manifold, whenever the LP-Kenmotsu manifold satisfying the
condition Z.C = LCQ(g, C), where the concircular curvature tensor Z(X, Y) is given by:

Z(X, Y)W = R(X, Y)W − r
n(n − 1)

[g(Y, W)X − g(X, W)Y]. (2)

II. Preliminaries

An n-dimensional differentiable manifold M admitting a (1, 1) tensor field ϕ, contravariant vec-
tor field ξ, a 1-form η and the Lorentzian metric g(X, Y) satisfying

ϕ2X = X + η(X)ξ, g(ϕX, ϕY) = g(X, Y) + η(X)η(Y) (3)

and
η(ξ) = −1, ϕξ = 0, η(ϕX) = 0, g(X, ξ) = η(X), rankϕ = n − 1. (4)

is called Lorentzian almost paracontact manifold [7].

In a Lorentzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X), (5)

where Φ(X, Y) = g(X, ϕY).

A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu manifold if
[1]

(∇Xϕ)Y = −g(ϕX, Y)ξ − η(Y)ϕX, (6)

for any vector fields X and Y on M and ∇ is the operator of covariant differentiation with respect
to the Lorentzian metric g.

In the Lorentzian para-Kenmotsu manifold, the following relations hold good:

∇Xξ = −ϕ2X = −X − η(X)ξ (7)

and
(∇Xη)Y = −g(X, Y)ξ − η(X)η(Y). (8)

RT&A, No 2 (68)
 Volume 17, June 2022

414



Sunitha, Sai Prasad and Satyanarayana
ON A CLASS OF LP-KENMOTSU MANIFOLDS

Further, on a Lorentzian para-Kenmotsu manifold M, the following relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z) = g(Y, Z)η(X)− g(X, Z)η(Y), (9)

R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (10)

R(X, Y)ξ = η(Y)X − η(X)Y; when X is orthogonal to ξ, (11)

R(ξ, X)ξ = X + η(X)ξ, (12)

S(X, ξ) = (n − 1)η(X), (13)

S(ϕX, ϕY) = S(X, Y) + (n − 1)η(X)η(Y). (14)

A Lorentzian para-Kenmotsu manifold M is said to be an η-Einstein manifold if its Ricci tensor
S(X, Y) is of the form

S(X, Y) = ag(X, Y) + bη(X)η(Y), (15)

where a and b are scalar functions on M.

Next we define endomorphisms R(X, Y) and X ∧A Y by

R(X, Y)W = ∇X∇YW −∇Y∇XW −∇[X, Y]W, (16)

(X ∧A Y)W = A(Y, W)X − A(X, W)Y, (17)

A is the symmetric (0, 2)- tensor.

For a (0, k)-tensor field T, K ≥ 1, on (Mn, g) we define W2.T, Z.T and Q(g, T) by

(W2(X, Y).T(X1, X2, ..., Xk) =− T(W2(X, Y)X1, X2, ..., Xk)

− T(X1, W2(X, Y)X2, ..., Xk)

− ... − T(X1, X2, ..., W2(X, Y)Xk),

(18)

(Z(X, Y).T(X1, X2, ..., Xk) =− T(Z(X, Y)X1, X2, ..., Xk)

− T(X1, Z(X, Y)X2, ..., Xk)

− ... − T(X1, X2, ..., Z(X, Y)Xk),

(19)

Q(g, T)(X1, X2, ..., Xk; X, Y) =− T((X ∧ Y)X1, X2, ..., Xk)

− T(X1, (X ∧ Y)X2, ..., Xk)

− ... − T(X1, X2, ..., (X ∧ Y)Xk),

(20)

respectively.

By definition the Weyl Conformal curvature tensor C is given by

C(X, Y)Z =R(X, Y)Z − 1
n − 2

[
S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY

]
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y],

(21)

where Q denotes the Ricci operator, i.e., S(X, Y) = g(QX, Y) and r is scalar curvature. The Weyl
conformal curvature tensor C is defined by C(X, Y, Z, W) = g(C(X, Y)Z, W). If C = 0, n ≥ 4,
then M is conformally flat.
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III. MAIN RESULTS

In the present section we consider the LP-Kenmotsu manifold satisfying the curvature condi-
tions W2.C = 0, Z.C = LCQ(g, C), W2.Z − Z.W2 = 0, and W2.Z + Z.W2 = 0.

First we give the following proposition.

Proposition 1. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. If the condition
W2.C = 0 holds on M, then

S2(X, U) = (n − 1)(r − 2)η(X)η(U) + (r + n − 2)S(U, X)− (n − 1)g(X, U)

is satisfied on M, where S2(X, U) = S(QX, U).

Proof: Assume that M is an n-dimensional, n > 3, LP-Kenmotsu manifold satisfying the condi-
tion W2.C = 0. From (18) we have

(W2(V, X).C)(Y, U)W =− W2(V, X)C(Y, U)W

− C(W2(V, X)Y, U)W − C(Y, W2(V, X)U)W

− C(Y, U)W2(V, X)W = 0,

(22)

where X, Y, U, V, W ∈ χ(M). Taking V = ξ in (22), we have

(W2(ξ, X).C)(Y, U)W =− W2(ξ, X)C(Y, U)W

− C(W2(ξ, X)Y, U)W − C(Y, W2(ξ, X)U)W

− C(Y, U)W2(ξ, X)W = 0,

(23)

Furthermore, substituting (1), (9), (13), (21) into (23) and multiplying with ξ, we get.

− g(X, C(Y, U)W)− g(X, Y)η(C(ξ, U)W + η(Y)η(C(X, U)W)

− g(X, U)η(C(Y, ξ)W) + η(U)η(C(Y, X)W)− g(X, W)η(C(Y, U)ξ)

+ η(W)η(C(Y, U)X) +
1

n − 1
[
η(C(Y, U)W)− η(Y)η(C(QX, U)W)

+ g(X, Y)η(C(Qξ, U)W) + g(X, U)η(C(Y, Qξ)W)− η(U)η(C(Y, QX)W)

− η(W)η(C(Y, U)QX) + g(X, W)η(C(Y, U)Qξ)
]
= 0.

(24)

Thus replacing W with ξin (24), we have

− g(X, C(Y, U)ξ)− η(C(Y, U)X) +
1

n − 1
[η(C(Y, U)QX)] = 0. (25)

Again taking Y = ξ in (25)and after some calculations, since n > 3, we get

S2(U, X) = (n − 1)(r − 2)η(X)η(U) + (r + n − 2)S(U, X)− (n − 1)g(X, U).

Theorem 2. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. If the condition
Z.C = LCQ(g, C) holds on M, then either M is conformally flat or LC = r

n(n−1) − 1.

Proof. Let M be an LP-Kenmotsu manifold. So we have

(Z(V, X).C)(Y, U)W = LCQ(g, C)(Y, U, W; V, X).

Then from (19) and (20) we can write,

Z(V, X)C(Y, U)W − C(Z(V, X)Y, U)W − C(Y, Z(V, X)U)W

− C(Y, U)Z(V, X)W

= LC[(V ∧ X)C(Y, U)W − C((V ∧ X)Y, U)W

− C(Y, (V ∧ X)U)W − C(Y, U)(V ∧ X)W].

(26)
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Therefore, replacing v with ξ in (26), we have

Z(ξ, X)C(Y, U)W − C(Z(ξ, X)Y, U)W − C(Y, Z(ξ, X)U)W

− C(Y, U)Z(ξ, X)W

= LC[(ξ ∧ X)C(Y, U)W − C((ξ ∧ X)Y, U)W

− C(Y, (ξ ∧ X)U)W − C(Y, U)(ξ ∧ X)W].

(27)

Using (20), (9) and taking the inner product of (27) with ξ, we get[
1 − r

n(n − 1)
− LC

]
[−g(X, C(Y, U)W)− η(X)η(C(Y, U)W)

− g(X, Y)η(C(ξ, U)W) + η(Y)η(C(X, U)W)

− g(X, U)η(C(Y, ξ)W) + η(U)η(C(Y, X)W) + η(W)η(C(Y, U)X)
]
= 0.

(28)

Putting X = Y in (28), we have[
1 − r

n(n − 1)
− LC

]
[−g(Y, C(Y, U)W) + η(W)η(C(Y, U)Y)

− g(Y, Y)η(C(ξ, U)W)− g(Y, U)η(C(Y, ξ)W)
]
= 0.

(29)

A contraction of (29) with respect to Y gives us[
1 − r

n(n − 1)
− LC

]
η(C(ξ, U)W) = 0. (30)

If LC ̸= 1 − r
n(n−1) , then eq.(30) is reduced to

η(C(ξ, U)W) = 0, (31)

which gives

S(U, W) =
( r
(n − 1)

− 1
)

g(U, W) +
( r
(n − 1)

− n
)
η(U)η(W). (32)

Therefore, M is a η-Einstein manifold. So, using (31) and (32), we have eq. (28) in the form

C(Y, U, W, X) = 0,

which means that M is conformally flat.

If LC ̸= 0 and η(C(ξ, U)W) ̸= 0, then 1 − r
n(n−1) − LC = 0, which gives LC = 1 − r

n(n−1) .
This completes the proof of the theorem.

Corollary 3. Every n-dimensional (n > 3) nonconformally flat LP-Kenmotsu manifold satis-
fies Z.C =

(
1 − r

n(n−1)

)
Q(g, C).

Theorem 4. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. M satisfies the condi-
tion

W2.Z − Z.W2 = 0

if and only if M is a η-Einstein manifold.
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Proof. Let M satisfy the condition W2.Z − Z.W2 = 0. Then we can write

W2.Z − Z.W2 =R(V, X)R(Y, U)W +
1

n − 1
[
g(V, R(Y, U)W)QX − g(X, R(Y, U)W)QV

]
− r

n(n − 1)
g(U, W)

[
R(V, X)Y +

1
n − 1

(
g(V, Y)QX − g(X, Y)QV

)]
+

r
n(n − 1)

g(Y, W)
[
R(V, X)U +

1
n − 1

(
g(V, U)QX − g(X, U)QV

)]
− R(V, X)R(Y, U)W +

r
n(n − 1)

[
g(X, R(Y, U)W)V − g(V, R(Y, U)W)X

]
− 1

n − 1
g(Y, W)

[
R(V, X)QU − r

n(n − 1)
(

g(X, QU)V − g(V, QU)X
)]

+
1

n − 1
g(U, W)

[
R(V, X)QY − r

n(n − 1)
(

g(X, QY)V − g(V, QY)X
)]

= 0.

(33)

Therefore, replacing V with ξ in (33), we have

W2.Z − Z.W2 =
1

n − 1
[
g(ξ, R(Y, U)W)QX − g(X, R(Y, U)W)Qξ

]
− r

n(n − 1)
g(U, W)

[
R(ξ, X)Y +

1
n − 1

(
g(ξ, Y)QX − g(X, Y)Qξ

)]
+

r
n(n − 1)

g(Y, W)
[
R(ξ, X)U +

1
n − 1

(
g(ξ, U)QX − g(X, U)Qξ

)]
− R(ξ, X)R(Y, U)W +

r
n(n − 1)

[
g(X, R(Y, U)W)ξ − g(ξ, R(Y, U)W)X

]
− 1

n − 1
g(Y, W)

[
R(ξ, X)QU − r

n(n − 1)
(

g(X, QU)ξ − g(ξ, QU)X
)]

+
1

n − 1
g(U, W)

[
R(ξ, X)QY − r

n(n − 1)
(

g(X, QY)ξ − g(ξ, QY)X
)]

= 0.

(34)

Using (10), (13), we get

W2.Z − Z.W2 =
1

n − 1
[
g(ξ, R(Y, U)W)QX − g(X, R(Y, U)W)Qξ

]
− r

n(n − 1)
g(U, W)

[
g(X, Y)ξ − η(Y)X

]
− r

n(n − 1)
g(U, W)η(Y)X

+
r

n(n − 1)
g(U, W)g(X, Y)ξ +

r
n(n − 1)

g(Y, W)
[
g(X, U)ξ − η(U)X

]
− r

n(n − 1)
g(Y, W)η(U)X − r

n(n − 1)
g(Y, W)g(X, U)ξ

+
r

n(n − 1)
[
g(X, R(Y, U)W)ξ − g(ξ, R(Y, U)W)X

− 1
(n − 1)

g(Y, W)
[
g(X, QU)ξ − η(QU)X

]
+

r
n(n − 1)2 g(Y, W)g(X, QU)ξ

− r
n(n − 1)2 g(Y, W)η(QU)X +

1
(n − 1)

g(U, W)
[
g(X, QY)ξ − η(QY)X

]
− r

n(n − 1)2 g(U, W)g(X, QY)ξ − r
n(n − 1)2 g(U, W)η(QY)X = 0.

(35)
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Again, taking U = ξ in (35), we get

1
n − 1

[
g(ξ, g(Y, W)ξ − η(W)Y)(n − 1)X − g(X, g(Y, W)ξ − η(W)Y)(n − 1)ξ

]
− r

n(n − 1)
η(W)

[
g(X, Y)ξ − η(Y)X

]
− r

n(n − 1)
η(Y)η(W)X

+
r

n(n − 1)
g(X, Y)η(W)ξ +

r
n(n − 1)

g(Y, W)
[
η(X)ξ + X

]
− r

n(n − 1)
g(Y, W)η(U)X − r

n(n − 1)
g(Y, W)g(X, U)ξ

+
r

n(n − 1)
g(Y, W)X − r

n(n − 1)
g(Y, W)η(X)ξ

+
r

n(n − 1)
[
g(X, g(Y, W)ξ − η(W)Y)ξ − g(ξ, g(Y, W)ξ − η(W)Y)x

− 1
(n − 1)

g(Y, W)
[
(n − 1)η(X)ξ − (n − 1)X

]
+

r
n(n − 1)

g(Y, W)η(X)ξ

− r
n(n − 1)2 g(Y, W)X +

1
(n − 1)

η(W)
[
(n − 1)g(X, Y)ξ − (n − 1)η(Y)X

]
− r

n(n − 1)2 η(W)S(X, Y)ξ − r
n(n − 1)

η(W)η(Y)X = 0.

(36)

Taking the inner product of (36) with ξ, we find

−2η(W)η(Y)η(X)− 2η(W)g(X, Y) +
r

n(n − 1)
η(W)g(X, Y) +

2r
n(n − 1)

η(W)η(Y)η(X)

+
2r

n(n − 1)
η(X)g(Y, W) +

r
n(n − 1)2 η(W)S(X, Y) = 0.

(37)

Again, taking W = ξ and using (4) in (37), we get

S(X, Y) =
[2(n − 1)

r
η(X)η(Y) +

(n − r)(n − 1)
r

g(X, Y) (38)

So, M is a η-Einstein manifold.

Conversely, if M is a η-Einstein manifold, then it is easy to show that W2.Z − Z.W2 = 0. Our
theorem is thus proved.

Theorem 5. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. M satisfies the condi-
tion

W2.Z + Z.W2 = 0

if and only if M is an Einstein manifold.

Proof. Let M satisfy the condition W2.Z + Z.W2 = 0. Then from (33) and (34) we can write

2R(V, X)R(Y, U)W +
1

n − 1
[
g(V, R(Y, U)W)QX − g(X, R(Y, U)W)QV

]
− r

n(n − 1)
g(U, W)

[
R(V, X)Y +

1
n − 1

(
g(V, Y)QX − g(X, Y)QV

)]
+

r
n(n − 1)

g(Y, W)
[
R(V, X)U +

1
n − 1

(
g(V, U)QX − g(X, U)QV

)]
− r

n(n − 1)
[
g(X, R(Y, U)W)V − g(V, R(Y, U)W)X

]
+

1
n − 1

g(Y, W)
[
R(V, X)QU − r

n(n − 1)
(

g(X, QU)V − g(V, QU)X
)]

− 1
n − 1

g(U, W)
[
R(V, X)QY − r

n(n − 1)
(

g(X, QY)V − g(V, QY)X
)]

= 0.

(39)
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Therefore, replacing V with ξ in (39), we have

2R(ξ, X)R(Y, U)W +
1

n − 1
[
g(ξ, R(Y, U)W)QX − g(X, R(Y, U)W)Qξ

]
− r

n(n − 1)
g(U, W)

[
R(ξ, X)Y +

1
n − 1

(
g(ξ, Y)QX − g(X, Y)Qξ

)]
+

r
n(n − 1)

g(Y, W)
[
R(ξ, X)U +

1
n − 1

(
g(ξ, U)QX − g(X, U)Qξ

)]
− r

n(n − 1)
[
g(X, R(Y, U)W)ξ − g(ξ, R(Y, U)W)X

]
+

1
n − 1

g(Y, W)
[
R(ξ, X)QU − r

n(n − 1)
(

g(X, QU)ξ − g(ξ, QU)X
)]

− 1
n − 1

g(U, W)
[
R(ξ, X)QY − r

n(n − 1)
(

g(X, QY)ξ − g(ξ, QY)X
)]

= 0.

(40)

Again, taking Y = ξ in (40), we get

2R(ξ, X)R(ξ, U)W +
1

n − 1
[
g(ξ, R(ξ, U)W)QX − g(X, R(ξ, U)W)Qξ

]
− r

n(n − 1)
g(U, W)

[
R(ξ, X)ξ − 1

n − 1
QX − 1

n − 1
η(X)Qξ

]
+

r
n(n − 1)

η(W)
[
R(ξ, X)U +

1
n − 1

η(U)QX − 1
n − 1

g(X, U)Qξ
]

− r
n(n − 1)

[
g(X, R(ξ, U)W)ξ − g(ξ, R(ξ, U)W)X

]
+

1
n − 1

η(W)
[
R(ξ, X)QU − r

n(n − 1)
S(X, U)ξ +

r
n(n − 1)

(n − 1)η(U)η(X)
]

− 1
n − 1

g(U, W)
[
(n − 1)R(ξ, X)ξ − r

n(n − 1)
(n − 1)η(X)ξ − r

n(n − 1)
(n − 1)X

]
= 0.

(41)

Taking the inner product of (41) with ξ and using (7), (10), we get

eta(W)g(X, U)− r
n(n − 1)

η(W)g(X, U)− 1
n − 1

η(W)S(X, U) +
r

n(n − 1)2 S(X, U) = 0. (42)

Again, taking W = ξ and using (4) in (42), we get

− g(X, U)− r
n(n − 1)

g(X, U) +
1

n − 1
S(X, U) +

r
n(n − 1)2 S(X, U) = 0. (43)

Thus, from (43), we have
S(X, U) = (n − 1)g(X, U) (44)

So, M is an Einstein manifold.

Conversely, if M is an Einstein manifold, then it is easy to show that W2.Z + Z.W2 = 0. Our
theorem is thus proved.
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Abstract

The purpose of this paper is to fit the Marshall-Olkin generalized-G(MOG-G) family to censored
survival data with random effect in the Bayesian environment. Three special distrbution based on MOG-G
family are obtained, namely Marshall-Olkin generalized-exponential, Marshall-Olkin generalized-Weibull,
and Marshall-Olkin generalized-Lomax. The probabilistic programming language STAN is used for the
fitting of these three distrbution to the survival data. STAN offers full Bayesian inference and implements
via Hamiltonian Monte Carlo algorithm and No-U-Turn Sampler(NUTS) algorithm of MCMC. We
compared the models with the help of leave one out cross-validation information criteria and Watanabe
Akaike information criteria. Stan codes for the analysis are provided.

Keywords: Bayesian modeling, Marshall-Olkin generalized-G family, censored survival data,
random effect, Leave one out information criteria, STAN

1. Introduction

In the survival analysis, researchers are using the extended version of standard distribution to ana-
lyze the lifetime data and problems related to the modeling of the aging or failure process. In this
paper, we have used the Marshall-Olkin generalized-G (MOG-G) family to fit censored survival
data, including the random effect. [1] proposed the MOG-G family and studied its mathematical
properties along with application in the fitting of lifetime data.The Marshall Olkin distribution
has been extended by using the genesis of other distributions to create a wider family of distri-
bution. see for example, Marshall-Olkin-G family [2], Kumaraswamy marshal-Olkin family [3],
beta Marshall-Olkin family [4], Beta Generalized Marshall-Olkin-G family [5], Exponentiated
Marshall-Olkin family [6], The generalized Marshall-Olkin-Kumaraswamy-G family [7], The Beta
generalized Marshall-Olkin Kumaraswamy-G [8], The exponentiated generalized Marshall–Olkin
family [9], The Weibull Marshall–Olkin family [10].

We have considered the three models based on the MOG-G family and are fitted to the
survival data. The first model is Marshall-Olkin Generalized-Exponential(MOG-E), the second
is Marshall-Olkin Generalized-Weibull (MOG-W) model, and the third one is Marshall-Olkin
Generalized-Lomax (MOG-L) model. The data with random effect significantly affects the
distribution of the patients’ survival time and accounts heterogeneity among the patients. Fitting
a large number of random effects in a non-Bayesian setting requires a large amount of data. Often,
the data is too small to estimate random-effects parameters reliably. However, Bayesian modeling
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can be used if there is not enough data for inferential statistics. So, the above three models have
been fitted to the censored survival data under the Bayesian setup in R [11] using the probabilistic
programming language STAN [12], which offers full Bayesian inference. STAN uses Hamiltonian
Monte Carlo (HMC) sampling [13],[14] and its extension. No-U-Turn Sampler(NUTS) [15]
algorithm of MCMC for the simulation and computation of posterior estimate. HMC is a
more efficient and sophisticated MCMC algorithm, and it is the combination of MCMC and
deterministic simulation methods. To find the region of posterior distribution with high mass,
HMC uses the gradient of the log posterior density. After that, it jumps around the posterior
distribution [16]. Whether the priors are conjugate or not, the above algorithms converge at a fast
rate to high dimensional target distributions as compared to other algorithms of MCMC [15].

The purpose of this paper is to fit the three models, namely MOG-E, MOG-W, and MOG-L, to
the censored survival data containing random effects under the Bayesian environment using the
R and STAN and select the best model for the real survival data.

2. Marshal-Olkin Generalized-G family

Suppose that G(t, ψ) and g(t, ψ) be baseline cdf and pdf of a continuous random variable T with
parameter vector ψ. The cdf, pdf, survival function, and hazard function of the MOG-G family
are respectively given by

F(t, a, α, ψ) =
1− [1− G(t, ψ)]a

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (1)

f (t, a, α, ψ) =
αag(t, ψ)[1− G(t, ψ)]a−1

[1− (1− α)[1− G(t, ψ)]a]2
, t ∈ R (2)

S(t, a, α, ψ) =
α[1− G(t, ψ)]a

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (3)

h(t, a, α, ψ) =
ag(t, ψ)[G(t, ψ)]−1

1− (1− α)[1− G(t, ψ)]a
, t ∈ R (4)

Hence forth a random variable T with pdf (2) is denoted by T∼MOG-G(α,a,ψ), where α and a are
two positive shape parameter.

2.1. Marshall-Olkin Generalized Exponential model

Consider T as a continous random variable follow an exponential distribution with scale parameter
λ > 0, whose pdf and cdf is given by g(t) = 1

λ e−
t
λ and G(t) = 1− e−

t
λ , t > 0. Then the pdf and

cdf of MOG-E model are respectively given by

f (t) =
αa 1

λ exp(−a t
λ )[

1− (1− α)exp(−a t
λ )
]2 (5)

F(t) =
1− exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(6)

The survival function corresponding to Equation (6) is given as

S(t) =
α exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(7)

Hazard function of the MOG-E model is written as

h(t) =
a 1

λ

1− (1− α)exp(−a t
λ )

(8)
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In survival analysis, random generation of time variable from a survival model is done by putting
u = S(t), where U is a random variable follow Uni f orm(0, 1). So, the generation of time variable
from MOG-E model is obtained by

t =
λ

a
log
( α

u
+ (1− α)

)
(9)

Following the [17], the joint likelihood function for right censored data is given as

L =
n

∏
i=0

Pr(ti, δi) =
n

∏
i=0
{h(ti)}δi S(ti) (10)

here δi is an indicator variable

δi =

{
0, censored
1, observed

The likelihood function for the MOG-E survival model is given by

L =
n

∏
i=0

{
a 1

λ

1− (1− α)exp(−a t
λ )

}δi

×
α exp(−a t

λ )

1− (1− α)exp(−a t
λ )

(11)

2.2. Marshall-Olkin Generalized Weibull model

Let g(t) and G(t) be the pdf and cdf of Weibull distribution with shape parameter γ > 0 and
scale parameter λ > 0. Where, g(t) = γ

λγ tγ−1e−(
t
λ )

γ
and G(t) = 1− e−(

t
λ )

γ
, t > 0. Then the pdf

of MOG-W model is given by

f (t) =
αaγ 1

λ tγ−1exp(−a( t
λ )

γ)[
1− (1− α)exp(−a( t

λ )
γ)
]2 (12)

Therefore, random variable T is denoted by T∼MOG-W(α,a,γ,λ). The cdf of MOG-W model is
written as

F(t) =
1− exp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(13)

Survival function and hazard function of the MOG-W model are given respectively

S(t) =
αexp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(14)

h(t) =
aγ 1

λ tγ−1

1− (1− α)exp(−a( t
λ )

γ)
(15)

Random generation from the MOG-W model is done by the expression given below

t = λ

[
1
a

log
( α

u
+ (1− α)

)] 1
γ

(16)

Using the Equation (10), the joint likelihood function for the MOG-W model based on right
censored is written as

L =
n

∏
i=0

{
aγ 1

λ tγ−1

1− (1− α)exp(−a( t
λ )

γ)

}δi

×
αexp(−a( t

λ )
γ)

1− (1− α)exp(−a( t
λ )

γ)
(17)
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2.3. Marshall-Olkin Generalized Lomax model

Taking Lomax distribution with parameters γ > 0 and λ > 0 having pdf g(t) = γ
λ

(
1 + t

λ

)−(γ+1)

and cdf G(t) = 1−
(
1 + t

λ

)−γ, t > 0. Then the pdf and cdf of a random variable T∼MOG-
L(α,a,γ,λ) model are given respectively

f (t) =
αa γ

λ

(
1 + t

λ

)−1 (1 + t
λ

)−aγ[
1− (1− α)

(
1 + t

λ

)−aγ
]2 (18)

F(t) =
1−

(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (19)

Survival function of the MOG-L is given by

S(t) =
α
(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (20)

Hazard function of the MOG-L is written as

h(t) =
αa γ

λ

(
1 + t

λ

)−1

1− (1− α)
(
1 + t

λ

)−aγ (21)

Generation of survival time from the MOG-L model is given by

t = λ

[( α

u
+ (1− α)

) 1
aγ − 1

]
(22)

The joint likelihood function for the MOG-L model is written as

L =
n

∏
i=0

{
αa γ

λ

(
1 + t

λ

)−1

1− (1− α)
(
1 + t

λ

)−aγ

}δi

×
α
(
1 + t

λ

)−aγ

1− (1− α)
(
1 + t

λ

)−aγ (23)

3. Kidney catheter data

This dataset, originally discussed in [18]. The study concerns with the recurrence times to
infection, at the point where the catheter is inserted, for kidney patients using portable dialysis
equipment. The data consist of times until the first and second recurrence of kidney infection
in 38 patients. Each patient has exactly two observations. Each survival time is the time until
infection since the insertion of the catheter. A Catheter may be removed for reasons other than
infection, in which case the observation is censored. There are about 24% censored observations
in the dataset. This data set has unmeasured or ’random’ effect that is an identification code of
patients, which accounts heterogeneity among the patients. This data set available in the package
survival [19] of R [11].

Discription of kidney catheter data variables are given below:
time: time to infection in days
status: event status, 1=infection occurs or 0=censored
age: age in years
sex: 1=male, 2=female
disease: disease type(0=GN, 1=AN, 2=PKD, 3=Other)
id: identification code of the patients
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3.1. Construction of data frame in R

Fitting of Bayesian models to the kidney catheter data with stan function requires data in a listed
form, which we have created as below;

require(survival)
data(cancer, package="survival")
head(kidney)
y=kidney$time
x1=kidney$age
x2=kidney$sex
kidney$disease1=as.numeric(kidney$disease)
x3=kidney$GN=as.numeric(kidney$disease1==2)
x4=kidney$AN=as.numeric(kidney$disease1==3)
x5=kidney$PKD=as.numeric(kidney$disease1==4)
x=cbind(1,x1,x2,x3,x4,x5)
N=nrow(x)
M=ncol(x)
J=38
event=kidney$status
Id=as.integer(kidney$id)##identity of subject
datk=list(y=y,x=x,N=N,M=M,event=event,J=J,Id=Id)

4. Bayesian Analysis of MOG-G family

4.1. Prior Specification

For the construction of the Bayesian regression model, we need to specify a prior distribution to
the parameters of the model. We have chosen half-Cauchy prior for shape and scale parameters
and regularizing prior for regression coefficient.

4.1.1 Half-Cauchy prior distribution

The probability density function of half-Cauchy distribution with scale γ is given by

f (x) =
2γ

π(x2 + γ2)
, x > 0, γ > 0

The mean and variance of half-cauchy distribution does not exist, but its mode is equal to zero.
The half-cauchy distribution with scale γ=25 is nearly flat prior but not completely, the prior
distribution that are not completely flat provides enough information for the numerical approx-
imation algorithm to continue to explore the target density, the posterior distribution [20],[21].
[22] support the use half cauchy prior for scale parameter because of its excellent frequentist risk
properties, and its sensible behaviour in the presence of sparsity compared to the usual conjugate
aternative. [20] have also discussed the points in support of half cauchy prior.

4.1.2 Gaussian prior distribution

The probability density function of Gaussian distribution with mean µ and variance σ2 is given
by

f (x) =
1√

2πσ2
exp(− (x− µ)2

2σ2 ), −∞ < x < ∞, σ > 0, µ > 0

In this paper, we have chosen Gaussian prior with mean 0, and standard deviation 5 for β
coefficient as a regularizing prior because this prior prevent a model from getting too excited by
the data that slows the rate of over excitement of model and reduce the overfitting of data to the
model [23].
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4.2. Model Specification

Following the [24] to build a regression model, we have introduced covariates including random
intercept through the log link function i.e.

log(λi) = β1 + w[subji ] + β2xi1 + β3xi2 + β4xi3 + β5xi4 + β6xi5

λi = exp(β1 + w[subji ] + β2xi1 + β3xi2 + β4xi3 + β5xi4 + β6xi5)

or,
λi = exp(w[subji ] + xiβ)

where, w[subji ] is the variability accounted by subject or patients called as the random intercept,
w ∼ N(0, σw), and β ∼ N(0, σ = 5)

4.2.1 Posterior density of MOG-E

By using bayes theorem, the joint posterior distribution is given as

P(a, α, β|X, t) ∝ L(t|a, α, β, X)× P(a)× P(α)× P(β) (24)

P(a, α, β|X, t) ∝
n

∏
i=0


a 1

exp(w[subji ]
+xi β)

1− (1− α)exp(−a t
exp(w[subji ]

+xi β)
)


δi

×
α exp(−a t

exp(w[subji ]
+xi β)

)

1− (1− α)exp(−a t
exp(w[subji ]

+xi β)
)

(25)

× 2× 25
π(a2 + 252)

× 2× 25
π(α2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.2.2 Posterior density of MOG-W

By using bayes theorem, the joint posterior distribution is given as

P(a, α, γ, β|X, t) ∝ L(t|a, α, γ, β, X)× P(a)× P(α)× P(γ)× P(β) (26)

P(a, α, γ, β|X, t) ∝
n

∏
i=0


aγ 1

exp(w[subji ]
+xi β)

tγ−1

1− (1− α)exp(−a( t
exp(w[subji ]

+xi β)
)γ)


δi

(27)

×
αexp(−a( t

exp(w[subji ]
+xi β)

)γ)

1− (1− α)exp(−a( t
exp(w[subji ]

+xi β)
)γ)
× 2× 25

π(a2 + 252)
× 2× 25

π(α2 + 252)

× 2× 25
π(γ2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.2.3 Posterior density of MOG-L

By using bayes theorem, the joint posterior distribution is given as

P(a, α, γ, β|X, t) ∝ L(t|a, α, γ, β, X)× P(a)× P(α)× P(γ)× P(β) (28)
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P(a, α, γ, β|X, t) ∝
n

∏
i=0


αa γ

exp(w[subji ]
+xi β)

(
1 + t

exp(w[subji ]
+xi β)

)−1

1− (1− α)

(
1 + t

exp(w[subji ]
+xi β)

)−aγ


δi

(29)

×
α

(
1 + t

exp(w[subji ]
+xi β)

)−aγ

1− (1− α)

(
1 + t

exp(w[subji ]
+xi β)

)−aγ ×
2× 25

π(a2 + 252)
× 2× 25

π(α2 + 252)

× 2× 25
π(γ2 + 252)

× 1
σw
√

2π
exp

(
−

w2
i

2σ2
w

)
×

J

∏
j=0

1
5
√

2π
exp

(
− 1

2× 25
β2

j

)

4.3. Implementation using Stan

Bayesian modeling of MOG-G family in STAN language includes the creation of blocks: functions
block, data block, transformed data block, parameters block, transformed parameters block,
model block, and generated quantities block. To run STAN code in R requires package rstan that
is an interface of R and STAN.

4.3.1 Stan code for MOG-E model

modelMOGE="functions{
vector log_moegs(vector t, real a, real alpha, vector lambda){
vector[num_elements(t)]log_moegs;
for(i in 1:num_elements(t)){
log_moegs[i]=log(alpha)-a*t[i]/lambda[i]-log(1-(1-alpha)*exp(-a*t[i]/lambda[i]));
}
return log_moegs;
}
vector log_moegh(vector t, real a, real alpha, vector lambda){
vector[num_elements(t)]log_moegh;
for(i in 1:num_elements(t)){
log_moegh[i]=log(a)-log(lambda[i])-log(1-(1-alpha)*exp(-a*t[i]/lambda[i]));
}
return log_moegh;
}
real surv_MOEG_lpdf(vector t, vector d, real a, real alpha, vector lambda){
vector[num_elements(t)] llikmoeg;
real prob;
llikmoeg=d .* log_moegh(t,a,alpha,lambda)+log_moegs(t,a,alpha,lambda);
prob=sum(llikmoeg);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
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real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOEG_lpdf(y|event,a,alpha,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmoeg;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)-log(lambda[n])-log(1-(1-alpha)*exp(-a*y[n]/
lambda[n])))+log(alpha)-a*y[n]/lambda[n]-log(1-(1-alpha)*exp(-a*y[n]/lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmoeg[n]=(lambda[n]/a)*log(alpha/u+(1-alpha));
}
dev=dev+(-2)*surv_MOEG_lpdf(y|event,a,alpha,lambda);
}"

4.3.2 Stan code for MOG-W model

modelMOGW="functions{
vector log_mogws(vector t, real a, real alpha,real gamma, vector lambda){
vector[num_elements(t)]log_mogws;
for(i in 1:num_elements(t)){
log_mogws[i]=log(alpha)-a*(t[i]/lambda[i])^(gamma)-log(1-(1-alpha)
*exp(-a*(t[i]/lambda[i])^(gamma)));
}
return log_mogws;
}
vector log_mogwh(vector t, real a, real alpha, real gamma, vector lambda){
vector[num_elements(t)]log_mogwh;
for(i in 1:num_elements(t)){
log_mogwh[i]=log(a)+log(gamma)-gamma*log(lambda[i])+(gamma-1)*log(t[i])
-log(1-(1-alpha)*exp(-a*(t[i]/lambda[i])^(gamma)));
}
return log_mogwh;
}
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real surv_MOGW_lpdf(vector t, vector d, real a, real alpha,real gamma,vector lambda){
vector[num_elements(t)] llikmogw;
real prob;
llikmogw=d .* log_mogwh(t,a,alpha,gamma,lambda)+log_mogws(t,a,alpha,gamma,lambda);
prob=sum(llikmogw);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
real<lower=0> gamma;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(gamma|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOGW_lpdf(y|event,a,alpha,gamma,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmogw;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)+log(gamma)-gamma*log(lambda[n])+(gamma-1)*
log(y[n])-log(1-(1-alpha)*exp(-a*(y[n]/lambda[n])^(gamma))))+log(alpha)
-a*(y[n]/lambda[n])^(gamma)-log(1-(1-alpha)*exp(-a*(y[n]/lambda[n])^(gamma)));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmogw[n]=lambda[n]*((1/a)*log(alpha/u+(1-alpha)))^(1/gamma);
}
dev=dev+(-2)*surv_MOGW_lpdf(y|event,a,alpha,gamma,lambda);
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}"

4.3.3 Stan code for MOG-L model

modelMOGL="functions{
vector log_mogls(vector t, real a, real alpha,real gamma, vector lambda){
vector[num_elements(t)]log_mogls;
for(i in 1:num_elements(t)){
log_mogls[i]=log(alpha)-a*gamma*log(1+t[i]/lambda[i])-log(1-(1-alpha)
*(1+t[i]/lambda[i])^(-a*gamma));
}
return log_mogls;
}
vector log_moglh(vector t, real a, real alpha, real gamma, vector lambda){
vector[num_elements(t)]log_moglh;
for(i in 1:num_elements(t)){
log_moglh[i]=log(a)+log(gamma)-log(lambda[i])-log(1+t[i]/lambda[i])-
log(1-(1-alpha)*(1+t[i]/lambda[i])^(-a*gamma));
}
return log_moglh;
}
real surv_MOGL_lpdf(vector t, vector d, real a, real alpha,real gamma,vector lambda){
vector[num_elements(t)] llikmogl;
real prob;
llikmogl=d .* log_moglh(t,a,alpha,gamma,lambda)+log_mogls(t,a,alpha,gamma,lambda);
prob=sum(llikmogl);
return prob;
}}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] event;
int M;
matrix[N,M] x;
int<lower=1>J;
int<lower=1,upper=J>Id[N];
}
parameters{
real<lower=0>a;
vector[M] beta;
real<lower=0> alpha;
real<lower=0> gamma;
vector[J] w;
real<lower=0>sigma_w;
}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*beta;
for(i in 1:N){
lambda[i]=exp(w[Id[i]]+linpred[i]);
}}
model{
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
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target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(gamma|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(beta|0,5);
target+=normal_lpdf(w|0,sigma_w);
target+=cauchy_lpdf(sigma_w|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=surv_MOGL_lpdf(y|event,a,alpha,gamma,lambda);
}
generated quantities{
vector[N] log_lik;
vector[N] yrepmogl;
real dev;
dev=0;
for(n in 1:N) log_lik[n]=event[n]*(log(a)+log(gamma)-log(lambda[n])-log(1+y[n]/lambda[n])
-log(1-(1-alpha)*(1+y[n]/lambda[n])^(-a*gamma)))+log(alpha)-a*gamma*log(1+y[n]/lambda[n])
-log(1-(1-alpha)*(1+y[n]/lambda[n])^(-a*gamma));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepmogl[n]=lambda[n]*((alpha/u+(1-alpha))^(1/(a*gamma))-1);
}
dev=dev+(-2)*surv_MOGL_lpdf(y|event,a,alpha,gamma,lambda);
}"

4.4. Fitting with Stan

To fit the survival models based on MOG-G family, the function stan is used, and list datk of
data pass into the function stan. STAN used C++ compiler to samples the posterior distrbution
of the model parameters, including random intercepts wj for each patient J. To get summary of
result, the function print is used.

4.4.1 Fitting of MOG-E model

MOGE=stan(model_code = modelMOGE,data=datk,iter=5000,chains = 2)
print(MOGE)

Summarizing Output: After fitting of MOG-E survival model to the kidney data set, we get the
results in tabular form are given in Table 1. It contains posterior estimates, standard deviation,
credible interval, n_eff(crude estimate of effective sample size), and Rhat called as potential scale
reduction factor [16], which estimate the convergence of Markov chain to the target distribution.
Besides R̂, Traceplot also shows the convergence of the Markov chain. According to [16] the
acceptable limit of n_eff is >100 and R̂ values lower than 1.1. Rhat for all parameters of the
MOG-E model is close to 1, which means Markov chains converge to the target distribution, the
Monte Carlo error is acceptable, and the effective sample size is reasonable. Here, we can see that
the posterior estimate of parameters β1 (Intercept) is 4.440, and β3 (Sex) is 1.678 are statistically
significant as 95% credible interval (CI) does not contains 0 respectively. The positive value of β3
inferred that the male patients have more chance to get infected at the place where a catheter is
inserted than the female patients. The posterior estimate of parameters β2 (Age) is -0.002, β4 (AN)
is -0.116, β5 (GN) is -0.544 and β6 (PKD) is 0.906 are not statistically significant as corresponding
CI includes 0.
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Table 1: Posterior summary of MOG-E model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.440 0.033 1.728 0.833 4.468 7.612 2699 1.001
beta[2] -0.002 0.000 0.013 -0.029 -0.002 0.025 2584 1.000
beta[3] 1.678 0.007 0.387 0.917 1.678 2.427 3309 1.000
beta[4] -0.116 0.009 0.483 -1.085 -0.112 0.836 2678 1.000
beta[5] -0.544 0.009 0.484 -1.533 -0.533 0.397 2777 1.000
beta[6] 0.906 0.014 0.717 -0.493 0.910 2.317 2456 1.000
a 129.344 78.878 2544.490 0.671 18.762 275.779 1041 1.002
alpha 2.825 0.059 2.186 0.534 2.225 8.820 1397 1.001
sigma_w 0.651 0.012 0.221 0.195 0.660 1.091 367 1.003

Graphical Analysis

(a) (b)

Figure 1: (a) Traceplot of MOG-E model parameters, two chains were run depicted in different color and mixing of
two chains is good means Markov chains converge to the target distribution, and (b) Caterpillar plot of the MOG-E
model parameters.
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(a) (b)

Figure 2: (a) Posterior density plot MOG-E model parameters, (b) Autocorrelation plot of MOG-E model parameters,
after 20 lag autocorrelation declining towards zero.

Figure 3: The posterior predictive density (PPD) plot of the MOG-E model is done by plotting the data
y and then overlaying the density of the predicted values yrep, which are generated from the posterior
predictive distribution of the given model. PPD plot of the MOG-E model shows that the posterior predictive
density fits the data well.

4.4.2 Fitting of MOG-W model

MOGW=stan(model_code = modelMOGW,data=datk,iter=5000,chains = 2)
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print(MOGW)

Summarizing Output: It is an evident from Table 2 that the Rhat of the MOG-W model parame-
ters are close to 1, which indicates Markov chain converges to the target distribution and effective
sample size is enough to get conversion.

Table 2: Posterior summary of MOG-W model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.289 0.053 2.252 -0.936 4.468 8.381 1807 1.000
beta[2] -0.001 0.000 0.014 -0.028 -0.001 0.027 1892 1.001
beta[3] 1.688 0.007 0.391 0.930 1.686 2.451 2978 1.000
beta[4] -0.164 0.010 0.479 -1.130 -0.155 0.744 2102 1.002
beta[5] -0.586 0.011 0.489 -1.582 -0.577 0.350 1935 1.001
beta[6] 0.841 0.020 0.742 -0.625 0.858 2.323 1383 1.002
a 38.413 2.699 169.093 0.786 15.061 185.706 3926 1.000
alpha 72.737 12.350 726.957 0.109 7.801 335.523 3465 1.001
gamma 0.800 0.010 0.357 0.289 0.744 1.562 1332 1.000
sigma_w 0.622 0.013 0.227 0.175 0.630 1.063 288 1.002

Graphical Analysis

(a) (b)

Figure 4: (a) Traceplot of MOG-W model parameters, two chains were run depicted in different color and (b)
caterpillar plot of the MOG-W model parameters.
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(a) (b)

Figure 5: (a) Posterior density plot MOG-W model parameters, (b) Autocorrelation plot of MOG-W model parameters,
after 20 lag autocorrelation declining towards zero.

Figure 6: PPD plot of the MOG-W model shows that the posterior predictive density fits the data well and
good compatibility of the model to the data.

4.4.3 Fitting of MOG-L model

MOGW=stan(model_code = modelMOGW,data=datk,iter=5000,chains = 2)
print(MOGW)
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Table 3: Posterior summary of MOG-L model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 5.180 0.115 3.164 -0.916 5.636 10.534 753 1.012
beta[2] -0.002 0.000 0.013 -0.027 -0.002 0.025 2500 1.000
beta[3] 1.693 0.007 0.377 0.944 1.700 2.433 3111 1.000
beta[4] -0.153 0.010 0.494 -1.146 -0.161 0.839 2577 1.000
beta[5] -0.562 0.009 0.470 -1.478 -0.567 0.394 2478 1.000
beta[6] 0.869 0.014 0.713 -0.530 0.867 2.274 2501 1.000
a 41.617 9.152 641.724 0.119 9.765 182.772 4916 1.000
alpha 11.755 1.010 41.049 0.639 3.193 82.591 1653 1.004
gamma 32.510 2.419 163.682 0.129 10.641 152.084 4580 1.000
sigma_w 0.611 0.014 0.226 0.201 0.612 1.058 253 1.013

Graphical Analysis

(a) (b)

Figure 7: (a) Traceplot of the MOG-L model parameters, two chains were run depicted in different color and (b)
caterpillar plot of the MOG-L model parameters.
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(a) (b)

Figure 8: (a) Posterior density plot the MOG-L model parameters, (b) Autocorrelation plot of the MOG-L model
parameters, after 20 lag autocorrelation declining towards zero.

Figure 9: PPD plot of the MOG-L model shows that the posterior predictive density fits the data well, and
the model is compatible with the given data.

4.5. Bayesian model Comparison

In order to compare the fitted models, we consider the model selection criteria like Watanabe
Akaike information criteria [25] and leave one out cross-validation information criteria (LOOIC).
However, the lower value of these selection methods indicates a better model fit. The WAIC and
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LOOIC are two fully Bayesian selection methods than the others information criteria. They are
methods for estimating pointwise out of sample prediction accuracy from a fitted Bayesian model
using the log-likelihood evaluated at the posterior simulations of the parameters [16]. Although
WAIC is asymptotically equal to LOOIC, it is preferable to use LOOIC because of its robustness
in finite cases with weak priors or influential observation.

Table 4: WAIC and LOOIC values for all models.

Model No of parameters WAIC LOOIC

MOG-E 3 667.9 673.3
MOG-W 4 671.1 675.8
MOG-L 4 670.5 674.0

From Table 4, it is evident that the value of WAIC and LOOIC of the MOG-E model is less
than the MOG-W and MOG-L, which means the MOG-E model is a better survival model as
compared to other models for Kidney catheter data.

5. Discussion and Conclusion

In this paper, the MOG-G family are fitted to the real survival data includes random effect in
Bayesian setup, which is implemented by STAN language using package rstan of R. For all models,
the Markov chains converges to the target distribution, and covariate Sex is significant. The
Posterior predictive check has been computed using the posterior predictive density plot for the
MOG-E, MOG-W, and MOG-L models. We have seen in the PPD plot, the data y and replicated
data set yrep are showing the same behavior and looks similar which means the replicated data
sets are coming from the same model as the given data set, and all are the adequate model for
predicting the future value. Upon comparison with the results obtained through LOOIC and
WAIC, it can be concluded that the MOG-E model fits the data better than MOG-W and MOG-L.
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Abstract

The joint experiment J(A,B) of two binary trials A∪ Ac and B∪ Bc in a probability space can be produced
not only by the ordered pair (A, B) but by a set consisting, in general, of 24 ordered pairs of events
(named Yule’s pairs). The probabilities ξ1, ξ2, ξ3, ξ4 of the four results of J(A,B) are linear functions in
three variables α = Pr(A), β = Pr(B), θ = Pr(A ∩ B), and constitute a probability distribution. The
symmetric group S4 of degree four has an exact representation in the affine group Aff(3, R), which is
constructed by using the types of the form [α, β, θ] of those 24 Yule’s pairs. The corresponding action of
S4 permutes the components of the probability distribution (ξ1, ξ2, ξ3, ξ4), and, in particular, its entropy
function is S4-invariant. The function of degree of dependence of two events, defined in the first part of
this paper via modifying the entropy function, turns out to be a relative invariant of the dihedral group of
order 8.

Keywords: probability space; experiment in a sample space; probability distribution; entropy;
degree of dependence; relative invariant.

1. Introduction

The initial idea of this work was to describe all symmetries of the sequence of Yule’s pairs from (1)
which produce one and the same experiment [3, 4.1,(1)]. If we consider the equivalence classes
of the form [(α, β, θ)] that contain the members of (1), then the naturally constructed in terms of
coordinate functions α, β, θ affine automorphisms of the linear space R3 form a group which is
isomorphic to the symmetric group S4, see Section 2, Theorem 1. The components ξ1, ξ2, ξ3, ξ4 of
the probability distribution [3, 4.1,(2)] are linear functions in α, β, θ. The group S4 naturally acts
via above isomorphism and permutes ξi’s. As a consequence we obtain Theorem 2 which asserts
that the entropy function Eα,β(θ) = E(α, β, θ) of the probability distribution (ξ1, ξ2, ξ3, ξ4) (see [3,
5.1]) is an absolute S4-invariant.

In Section 3, Theorem 3, we show that the degree of dependence function eα,β(θ), defined in [3,
5.2] via "normalization" of the entropy function Eα,β(θ), is a relative invariant of the dihedral
group D8, see [2, Ch.1,1.]. The proof uses the embedding of D8 as one of the three Sylow
2-subgroups of S4.

We use definitions and notation from [3, 2].

2. Methods

In this paper we are using fundamentals of:
• Affine geometry and Real algebraic geometry
• Invariant Theory.
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3. The Group of Symmetry of an Experiment

3.1. Yule’s Pairs and Experiments

Let A, B ∈ A. We define A♦B = (A4B)c, where A4B = (Ac ∩ B) ∪ (A ∩ Bc) is the symmetric
difference of A and B.

Any ordered pair (A, B) ∈ A2 produces the experiment J = J(A,B) from [3, 4.1,(1)], which
is naturally identified with the partition {A ∩ B, A ∩ Bc, Ac ∩ B, Ac ∩ Bc} of Ω (cf. [4, I,§5]). The
proof of the next Lemma is straightforward.

Lemma 1. Yule’s pairs from the sequence with members

(A, B) of type (α, β, θ),

(A, Bc) of type (α, 1− β, α− θ),

(Ac, B) of type (1− α, β, β− θ),

(Ac, Bc) of type (1− α, 1− β, 1− α− β + θ),

(B, A) of type (β, α, θ),

(B, Ac) of type (β, 1− α, β− θ),

(Bc, A) of type (1− β, α, α− θ),

(Bc, Ac) of type (1− β, 1− α, 1− α− β + θ),

(A, A♦B) of type (α, 1− α− β + 2θ, θ),

(A♦B, A) of type (1− α− β + 2θ, α, θ),

(B, A♦B) of type (β, 1− α− β + 2θ, θ),

(A♦B, B) of type (1− α− β + 2θ, β, θ),

(Ac, A♦B) of type (1− α, 1− α− β + 2θ, 1− α− β + θ),

(A♦B, Ac) of type (1− α− β + 2θ, 1− α, 1− α− β + θ),

(Bc, A♦B) of type (1− β, 1− α− β + 2θ, 1− α− β + θ),

(A♦B, Bc) of type (1− α− β + 2θ, 1− β, 1− α− β + θ),

(A, A4B) of type (α, α + β− 2θ, α− θ),

(A4B, A) of type (α + β− 2θ, α, α− θ),

(B, A4B) of type (β, α + β− 2θ, β− θ),

(A4B, B) of type (α + β− 2θ, β, β− θ),

(Ac, A4B) of type (1− α, α + β− 2θ, β− θ),

(A4B, Ac) of type (α + β− 2θ, 1− α, β− θ),

(Bc, A4B) of type (1− β, α + β− 2θ, α− θ),

(A4B, Bc) of type (α + β− 2θ, 1− β, α− θ),

(1)

are exactly the pairs that produce the experiment J(A,B).

Remark 1. (i) According to [1, 2.1, 2.7.1, 2.8.4], the set of points (α, β, θ) in R3 where the types
from Lemma 1 are pair-wise different is semi-algebraic, open, and three-dimensional. Its trace U3
on the interior T̊3 of the classification tetrahedron T3 from [3, 4.1] is not empty because otherwise
T̊3 would be subset of a finite union of planes. Theorem 2.2.1 from [1, 2.1] guaranties that the
open two dimensional projection U2 of U3 onto αβ-plane is semi-algebraic. Note that "openness"
is with respect to the standard topology in R3.

(ii) Under some "plentifulness" condition on Boolean algebra A (for example, if it is non-
atomic), there exist plenty of Yule’s pairs (A, B) of type (α, β) ∈ U2. In this case (we call it
"general") the sequence from Lemma 1 consists of 24 Yule’s pairs.
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3.2. The Group of Symmetry

Let E be the set of all experiments in the probability space (Ω,A, Pr), that is, the set of all finite
partitions of Ω with members from A. The rule (A, B) 7→ J(A,B) defines a map J : A2 → E and
Lemma 1 implies that the inverse image J−1(J(A,B)) coincides with the associated set of the
sequence (1). Let us denote by I(A,B) the set of equivalence classes in A2 of the form [(α, β, θ)],
which contain the members of J−1(J(A,B)). If α = Pr(A), β = Pr(B), θ = Pr(A ∩ B), then (A, B)
is a Yule’s pair of type (α, β, θ), (A, Bc) is a Yule’s pair of type (α, 1− β, α− θ), (Ac, B) is a Yule’s
pair of type (1− α, β, β− θ), etc. Considering α, β, θ as coordinate functions in R3, the members
of I(A,B) produce the set S4 consisting of 24 affine automorphisms of R3 from the following list:

ϕ(1)(α, β, θ) = (α, β, θ),

ϕ(12)(34)(α, β, θ) = (α, 1− β, α− θ),

ϕ(13)(24)(α, β, θ) = (1− α, β, β− θ),

ϕ(14)(23)(α, β, θ) = (1− α, 1− β, 1− α− β + θ),

ϕ(23)(α, β, θ) = (β, α, θ),

ϕ(1342)(α, β, θ) = (β, 1− α, β− θ),

ϕ(1243)(α, β, θ) = (1− β, α, α− θ),

ϕ(14)(α, β, θ) = (1− β, 1− α, 1− α− β + θ),

ϕ(34)(α, β, θ) = (α, 1− α− β + 2θ, θ),

ϕ(243)(α, β, θ) = (1− α− β + 2θ, α, θ),

ϕ(234)(α, β, θ) = (β, 1− α− β + 2θ, θ),

ϕ(24)(α, β, θ) = (1− α− β + 2θ, β, θ),

ϕ(142)(α, β, θ) = (1− α, 1− α− β + 2θ, 1− α− β + θ),

ϕ(1423)(α, β, θ) = (1− α− β + 2θ, 1− α, 1− α− β + θ),

ϕ(143)(α, β, θ) = (1− β, 1− α− β + 2θ, 1− α− β + θ),

ϕ(1432)(α, β, θ) = (1− α− β + 2θ, 1− β, 1− α− β + θ),

ϕ(12)(α, β, θ) = (α, α + β− 2θ, α− θ),

ϕ(123)(α, β, θ) = (α + β− 2θ, α, α− θ),

ϕ(132)(α, β, θ) = (β, α + β− 2θ, β− θ),

ϕ(13)(α, β, θ) = (α + β− 2θ, β, β− θ),

ϕ(1324)(α, β, θ) = (1− α, α + β− 2θ, β− θ),

ϕ(134)(α, β, θ) = (α + β− 2θ, 1− α, β− θ),

ϕ(124)(α, β, θ) = (1− β, α + β− 2θ, α− θ),

ϕ(1234)(α, β, θ) = (α + β− 2θ, 1− β, α− θ).

The above affine automorphisms of R3 are indexed by the permutations σ from the symmetric
group S4 because of the theorem below.

The operator of symmetry

σ : H → H, (ξ1, ξ2, ξ3, ξ4) 7→ (ξσ−1(1), ξσ−1(2), ξσ−1(3), ξσ−1(4)),

permutes the components of the probability distribution [3, 4.1,(2)] produced by the experiment
J(A,B) and we have
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Theorem 1. (i) One has ι ◦ ϕσ−1 = σ ◦ ι.

(ii) The map
S4 → Aff(3, R), σ 7→ ϕσ−1 , (2)

is a group anti-monomorphism with image S4.
(iii) The group S4 is the affine symmetry group of the classification tetrahedron T3.

Proof. (i) It is enough to check the equality ϕσ−1 = ι−1 ◦ σ ◦ ι for all σ ∈ S4. For example, let
σ = (1243), so σ−1 = (1342). We have

(σ ◦ ι)(α, β, θ) = (ξσ−1(1), ξσ−1(2), ξσ−1(3), ξσ−1(4)) = (ξ3, ξ1, ξ4, ξ2),

(ι−1 ◦ σ ◦ ι)(α, β, θ) = ι−1(ξ3, ξ1, ξ4, ξ2) = (β, 1− α, β− θ) =

ϕ(1342)(α, β, θ) = ϕσ−1(α, β, θ).

(ii) The map (2) is injective; moreover, it is a group anti-homomorphism because ϕ(1) = ι−1 ◦
(1) ◦ ι = (1) and ϕτ−1σ−1 = ϕ

(στ)−1 = ι−1 ◦ (στ) ◦ ι = ι−1 ◦ σ ◦ τ ◦ ι = ι−1 ◦ σ ◦ ι ◦ ι−1 ◦ τ ◦ ι =
ϕσ−1 ◦ ϕτ−1 .

(iii) In accord with part (i), for any σ ∈ S4 we have ι(ϕσ(T3)) = σ−1(ι(T3)) = σ−1(∆3) = ∆3,
hence ϕσ(T3) = ι−1(∆3) = T3. On the other hand, S4 is the symmetry group of the regular
tetrahedron (see, for example, [5, 8.4]). Since both tetrahedrons are isomorphic as affine spans,
the proof is done.

�
For any σ ∈ S4 we write down the affine automorphism ϕσ in terms of coordinates in

R3: ϕσ(α, β, θ) = (α(σ), β(σ), θ(σ)) and obtain that ϕσ maps the components of the partition
T3 = ∪

(α,β)∈[0,1]2{α} × {β} × I(α, β) onto the corresponding components of the partition T3 =

∪
(α,β)∈[0,1]2{α

(σ)} × {β(σ)} × I(α(σ), β(σ)). Moreover, ϕσ maps the components of the partition

T̊3 = ∪
(α,β)∈(0,1)2{α} × {β} × I̊(α, β) onto the corresponding components of the partition T̊3 =

∪
(α,β)∈(0,1)2{α(σ)} × {β(σ)} × I̊(α(σ), β(σ)).

Let us set T̂3 = ∪
(α,β)∈(0,1)2{α} × {β} × I(α, β). In particular, we obtain the following

Lemma 2. Let (α, β) ∈ (0, 1)2, σ ∈ S4. (i) The automorphism ϕσ maps the set

{(α, β, `(α, β)), (α, β, r(α, β))}

of endpoints of the segments {α} × {β} × I(α, β) onto the set

{(α(σ), β(σ), `(α(σ), β(σ))), (α(σ), β(σ), r(α(σ), β(σ)))}

of endpoints of their images {α(σ)} × {β(σ)} × I(α(σ), β(σ)).
(ii) One has ϕσ(T̂3) = T̂3.

In accord with Theorem 1, (ii), the group S4 acts on the real functions F : R3 → R via the rule
σ · F = F ◦ ϕσ−1 . Let

G : ∆̊3 → R, G(ξ1, ξ2, ξ3, ξ4) = −ξ1 ln ξ1 − ξ2 ln ξ2 − ξ3 ln ξ3 − ξ4 ln ξ4,

E : T̊3 → R, E = G ◦ ι.

The function G is continuously differentiable on the interior ∆̊3 and can be extended under the
name Ĝ as continuous on ∆̂3 = ι(T̂3). The function E is continuously differentiable on the interior
T̊3 and can be extended under the name Ê as continuous on T̂3 (cf. [3, 5.1,Theorem 2, (iii)]).
Moreover, Ĝ = Ĝ ◦ σ (that is, Ĝ is an absolute S4-invariant) and Ê = Ĝ ◦ ι. Lemma 2, (ii), allows
us to extend the action of the symmetric group S4 on T̂3 via the rule σ · Ê = Ê ◦ ϕσ−1 .

Throughout the end of the paper, with an abuse of the language, we designate Ĝ via G and Ê
via E.
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Theorem 2. The function E : T̂3 → R is an (absolute) invariant of the symmetric group S4.

Proof. Theorem 1, (i), yields E = G ◦ ι = G ◦ σ ◦ ι = G ◦ ι ◦ ϕσ−1 = E ◦ ϕσ−1 = σ · E for all
σ ∈ S4.

�

4. Degree of Dependance: Further Properties

4.1. The Groups of Symmetry

Let us suppose (α, β) ∈ (0, 1)2 and set

e(α, β, θ) =

 −
E(α,β,αβ)−E(α,β,θ)

E(α,β,αβ)−E(α,β,`(α,β)) if `(α, β) ≤ θ ≤ αβ
E(α,β,αβ)−E(α,β,θ)

E(α,β,αβ)−E(α,β,r(α,β)) if αβ ≤ θ ≤ r(α, β),
(3)

where I(α, β) = [`(α, β), r(α, β)]. Note that in [3, 5.2] the function eα,β(θ) = e(α, β, θ) is said to be
the degree of dependence of events A and B with α = Pr(A), β = Pr(B), and θ = Pr(A ∩ B).

Let us consider the dihedral subgroup D8 = 〈(1342), (14)〉 of S4 and let χ : D8 → R∗ be its
Abelian character with kernel K = 〈(14), (23)〉 and image {1,−1}.

Theorem 3. The function e from (3) is a relative invariant of weight χ of the dihedral group D8.

Proof. Given σ ∈ S4 we have

(σ−1 · e)(α, β, θ) = e(ϕσ(α, β, θ)) = e(α(σ), β(σ), θ(σ)) = −
E(α(σ),β(σ),α(σ)β(σ))−E(α(σ),β(σ),θ(σ))

E(α(σ),β(σ),α(σ)β(σ))−E(α(σ),β(σ),`(α(σ),β(σ)))
if `(α(σ), β(σ)) ≤ θ(σ) ≤ α(σ)β(σ)

E(α(σ),β(σ),α(σ)β(σ))−E(α(σ),β(σ),θ(σ))
E(α(σ),β(σ),α(σ)β(σ))−E(α(σ),β(σ),`(α(σ),β(σ)))

if α(σ)β(σ) ≤ θ(σ) ≤ r(α(σ), β(σ)),

where I(α(σ), β(σ)) = [`(α(σ), β(σ)), r(α(σ), β(σ))]. For any σ ∈ D8 we have ϕσ(α, β, αβ) =
(α(σ), β(σ), α(σ)β(σ)). On the other hand, given σ ∈ K, the inequalities `(α, β) ≤ θ ≤ αβ are
equivalent to the inequalities `(α(σ), β(σ)) ≤ θ(σ) ≤ α(σ)β(σ) and the inequalities αβ ≤ θ ≤ r(α, β)
are equivalent to the inequalities α(σ)β(σ) ≤ θ(σ) ≤ r(α(σ), β(σ)). Given σ ∈ D8\K, the inequal-
ities `(α, β) ≤ θ ≤ αβ are equivalent to the inequalities α(σ)β(σ) ≤ θ(σ) ≤ r(α(σ), β(σ)) and the
inequalities αβ ≤ θ ≤ r(α, β) are equivalent to the inequalities `(α(σ), β(σ)) ≤ θ(σ) ≤ α(σ)β(σ). The
corresponding equalities hold simultaneously because of Lemma 2, (i). Now, Theorem 2 yields
that σ · e = χ(σ)e for all permutations σ ∈ D8.

�
We obtain immediately the following

Corollary 1. For any (α, β) ∈ (0, 1)2 and for any θ ∈ I(α, β) one has

eα,β(θ) = eβ,α(θ) = e1−α,1−β(1− α− β + θ) = e1−β,1−α(1− α− β + θ),

−eα,β(θ) = eα,1−β(α− θ) = e1−α,β(β− θ) = eβ,1−α(β− θ) = e1−β,α(α− θ).

Acknowledgements

I would like to thank the referees for their very useful remarks.
This research received no specific grant from any funding agency in the public, commercial, or
not-for-profit sectors.

Declaration of Conflicting Interests

The Author declares that there is no conflict of interest.

Valentin Vankov Iliev
ENTROPY AND DEPENDENCE OF TWO EVENTS

RT&A, No 2 (68)
 Volume 17, June 2022

445



References

[1] Bochnak J., Coste M., Roy M-F. (1998). Real Algebraic Geometry, Springer.
[2] Dieudonne J. A., Carrell J. B. (1970). Invariant Theory, Old and New, Academic Press, Inc.
[3] Iliev V. V. (2021). On the Use of Entropy as a Measure of Dependence of Two Events.

Reliability: Theory & Applications, 16(2): 237 - 248.
[4] Kolmogorov A. N. (1956). Foundations of the Theory of Probability, Chelsea Publishing

Company, New Yourk.
[5] Smith J. T. (2000). Methods of Geometry, John Wiley & Sons.

Valentin Vankov Iliev
ENTROPY AND DEPENDENCE OF TWO EVENTS

RT&A, No 2 (68)
 Volume 17, June 2022

446



G. Ayyappan, G. Archana @ Gurulakshmi, B. Somasundaram
ANALYSIS OF MAP/PH/1 QUEUEING MODEL WITH MULTIPLE...

RT&A, No 2 (68) 
Volume 17, June 2022

Analysis of MAP/PH/1 Queueing model with Multiple
Vacations, Optional Service, Close-down, Setup,

Breakdown, Phase Type Repair and Impatient Customers

G. Ayyappan, G. Archana @ Gurulakshmi*, B. Somasundaram

∙
Department of Mathematics,

Puducherry Technological University,
Puducherry, India.

Department of Mathematics,
Vel Tech Rangarajan Dr. Sagunthala

R & D Institution of Science and Technology,
Tamilnadu, India.

ayyappanpec@hotmail.com, archanagurulakshmi@gmail.com, somu.b92@gmail.com

Abstract

The purpose of this paper is to analyse a single server queueing model with multiple vacations, optional
service, close-down, setup, balking, breakdown and repair under the assumption that the customers arrive
according to a Markovian Arrival Process (MAP). The service and repair times follow the phase-type
distributions. At the completion of service, in case there are no customers in the system, the server closes
down the system and goes for vacation. After completion of the vacation, the server has to start the
setup process if a minimum of one customer is present in the system or else the server goes for another
vacation. The server provides optional service to the customers those who are in need of additional
services. By employing the matrix analytic method, the stationary probability vector has been evaluated.
The stability condition, busy period analysis, distribution function for waiting time and some of the
system performance measures concerning this model are derived. The outcome arising out of numerical
values and graphical representations are also presented for this model.

Keywords: Multiple vacations, Optional service, Close-down, Setup, Breakdown, Phase type
repair, Balking.

AMS Subject Classification (2010): 60K25, 68M30, 90B22 .

1. Introduction

During almost all the day-to-day activities of our life, we come across various queues in many
places like shopping malls, traffic signals, billing section, railway counters, communication net-
works, telecommunication systems, etc in which the queues are either visible or invisible. Mostly
people do not prefer to stand in a queue for a long time. Considering the attendant consequences
of spending enormous time in queues, it becomes imperative to employ appropriate queueing
models to offer remedial measures for these congestion situations.

In the analysis of a queue, Markovian Arrival Process (MAP) proves to be a very useful
appliance in the point process which includes the Markov Modulated Poisson Process and phase
type renewal process. Neuts [24] has introduced Versatile Markovian Point Processes (VMPP)
through which the arrival process is formulated. Later, MAP and BMAP were introduced by
Lucantoni et al. [17] . A method of analysis was provided by Chakravarthy [4] who considered
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the Markovian arrival process with various types of arrivals in the representation of parameter
matrices (D0, D1) with dimension n where D0 governs for no arrivals and D1 governs for arrivals.
Let D be the generator matrix defined by D = D0 + D1.

A queueing system with a single server and K waiting rooms with finite capacity was examined
by Niu et al. [28]. They considered the arrival of a batch of customers with the server taking
multiple vacations during the idle time. Jau-Chuan Ke et al. [10] have investigated a multi server
retrial queue with single and multiple vacations. In this system, they have analysed the cost
function to determine the optimum value of the server at minimum cost.

Artalejo et al. [1] have carried out a busy period analysis by considering the distribution
function of the waiting time with multi-servers and finite retrial group. They have dealt with a
system possessing finite buffer for retrial group and provided certain numerical illustrations in
their model.

Chakravarthy [7] explored the working of a single server queueing model with multiple
vacations and optional secondary services. Choudhury and Paul [8] have recognized a single
server queueing system with Bernoulli schedule and multiple vacations policy. They have
evaluated the distribution function of the waiting time with busy period analysis and gone into
the performance measures of effectiveness.

Kulkarni and Choi [14] have investigated a single server retrial queue with breakdown and
repair. Wang and Zhang [27] have analysed a queueing system with balking, reneging and
motivating. They also have performed a busy period analysis.

Chakravarthy and Agarwal [5] have analysed a machine repair problem with an unreliable
server and phase type repairs and services. Maragathasundari et al. [18] have examined a single
server queueing model with compulsory short vacation and considered the reneging during long
vacation as optional.

Wang and Zhang [26] studied a single server Discrete-time Retrial G-queue with breakdown
and repairs due to negative arrivals. They considered the negative arrival of a customer which
distracts the positive arrival of a customer. A single server queue with Bernoulli vacation, setup
time, reneging, balking, Bernoulli feedback, breakdown and repair have been examined by
Ayyappan and Gowthami [2]. With the help of matrix-geometric method, they have evaluated the
probability vector and the rate matrix. They have derived the probability of the server to be idle,
busy and the repair time.

MAP arrivals, impatient customers and a perishable inventory system with N-policy have
been discussed by Suganya et al. [25]. They have analysed the cost function and presented
numerical illustrations of their queueing model. Kumar and Sharma [13] studied a finite capacity
single server queueing model with retention of reneging and balking. In addition, they derived
the stability condition and the probability of server being idle, busy and on vacation.

A multi-server queueing system with Bernoulli feedback, impatient customers, single and
multiple vacation policies have been examined by Kadi et al. [20]. Further, cost analysis and
performance measure are also presented for their model. Ayyappan and Thilagavathy [3] have
examined a single server queue with vacation, immediate feedback, breakdown, delayed repair,
starting failures, stand-by server, and impatient customers.

An overview of the remaining part of this article is as follows: In section 2, we briefly explain
the implementation of our model. The description of the model is provided in section 3. In
section 4, we present a generation of the matrix and the notations of our model. In section 5,
the stability condition, the stationary probability vector and the rate matrix R are evaluated.
We have performed the analysis of busy period in section 6. In section 7, the features of some
performance measures are examined. Particular case of our model have been dealt with in section
8. In section 9, we have evaluated the distribution of the waiting time in our model. In section 10,
the numerical illustrations and graphical representation are provided. The conclusion part of this
model has been presented in section 11.
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2. Implementation of our model

As a measure of illustration of our model, let us consider a nationalized bank which has more
than one serving counters. We choose any one of these counters for our model. In the counter,
the server deals with many transaction processes listed below:

1. Deposit or withdrawal.
2. Foreign currency transaction.
3. Loan process, etc.

A customer may demand money transaction process in any of the ways as mentioned above.
When the customer arrives, if he finds the availability of the server, then he receives the service
immediately; otherwise, the customer has to wait in the line until he reaches the service point.
After the customer gets service, he may exit the counter or he has an option to go for another
service (optional service). After providing the service, the server goes for vacation (like receiving
the telephone calls, arranging the money, checking the transactions, etc.). After the completion
of the service, the server will put down the system and go for vacation (close-down). At the
completion of vacation, if there is no customer in the system for receiving the service, then the
server takes another vacation (multiple vacation). Once the vacation is completed, the server
will do some settings in the system and refresh the system to give the service (setup). During
the period of vacation, the incoming customer may balk in the particular counter due to the
impatience (balking). In the time of busy period, the server can attain breakdown (like power
problem, lack of network, hanging the system etc.). After carrying out the repair process, the
server will be ready to provide the service to the waiting customers, those are in interruption of
service in front of the queue. Our model has been formulated to hold in all these situations.

3. Model Description

A single server queueing system with infinite capacity has been dealt with in this model. The
arrival of customers is according to Markovian arrival process with (D0, D1) as its parameter
matrices of order m. The matrix D0 is governed for the transition which deals for no arrival and
the matrix D1 deals for the arrival of customers.
The time duration of both normal and optional services follow PH-distributions with the notation
(α1, T1) and (α2, T2) of order t1 and t2 where T0

1 + T1e = 0 and T0
2 + T2e = 0. The repair times of

the server during both the normal and optional services are based on the PH-distributions with
notation (β1, S1) and (β2, S2) of order s1 and s2, respectively where S0

1 + S1e = 0 and S0
2 + S2e = 0.

Upon the completion of the process of service, the customer may either leave the system with
probability q, or he may need optional service by the server with probability p, with p + q = 1.
After the service is completed, the system will be close-down by the server only if the system
becomes empty in which case the server moves on to vacation.
After the completion of vacation, if there is a customer waiting in the system for the service then
the server starts the setup process. Otherwise, the server goes on to another vacation.
During the busy period (both normal and optional), the server may encounter failure of its service
and it would start the repair process immediately. At that time, the customer who are getting the
service from the server have to join the head of the queue.
After the completion of the repair process, the server begins the service to the customers those
who are waiting in the queue.
During the vacation period, the arriving customers may balk the system with probability b or
they may join the system with probability (1 − b).
The close-down times, vacation times, setup times, breakdown times all follow exponential
distribution with the parameters ϕ, η, ψ, τ respectively.
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4. Generation of the matrix under QBD process

Let us list down some notations concerning this model and describe the construction of the
generator matrix of the Quasi-Birth and Death process in this section:

Notations:
∙ ⊗ - Kronecker product of two matrices with various orders.
∙ ⊕ - Kronecker sum of two matrices with various orders.
∙ Im - An Identity matrix of m-dimensional.
∙ e = e(t1+t2+s1+s2+3)m.
∙ e2(g) - 2m × 1 vector with m + 1 to 2m elements are 1 and the remaining elements are zero.
∙ e(a) - (t1 + t2 + s1 + s2 + 3)m × 1 vector with first t1m elements are 1 and the remaining

elements are zero.
∙ e(b) - (t1 + t2 + s1 + s2 + 3)m × 1 vector with t1m + 1 to t1m + t2m elements are 1 and the

remaining elements are zero.
∙ e(c) - (t1 + t2 + s1 + s2 + 3)m × 1 vector with t1m + t2m + 1 to t1m + t2m + s1m elements

are 1 and the remaining elements are zero.
∙ e(d) - (t1 + t2 + s1 + s2 + 3)m × 1 vector with t1m + t2m + s1m + 1 to t1m + t2m + s1m + s2m

elements are 1 and the remaining elements are zero.
∙ e(g) - (t1 + t2 + s1 + s2 + 3)m × 1 vector with t1m + t2m + s1m + s2m + m + 1 to t1m + t2m +

s1m + s2m + 2m elements are 1 and the remaining elements are zero.
∙ Let λ be the fundamental arrival rate defined by λ = πD1em where π is the stationary

probability vector.
∙ The normal and optional service rates of the server are indicated as µ1 = [α1(−T−1

1 )et1 ]
−1

and µ2 = [α2(−T−1
2 )et2 ]

−1.
∙ The repair rates (breakdown occurred during normal and optional services) for the server

are indicated as
σ1 = [β1(−S−1

1 )es1 ]
−1 and σ2 = [β2(−S−1

2 )es2 ]
−1 respectively.

∙ N(t) is the number of customers in the system at time t.
∙ C(t) be the status of the server at time t, where

C(t) =



0, if the server is busy with normal service
1, if the server is busy with optional service
2, if the server is under PH repair process (breakdown occurred during normal service)
3, if the server is under PH repair process (breakdown occurred during optional service)
4, if the server is on close-down process
5, if the server is on vacation
6, if the server is on setup process

∙ S(t) is the service phase.
∙ K(t) is the repair phase.
∙ A(t) is the Markovian arrival process phase.

Let
{

N(t), C(t), S(t), K(t), A(t), t ≥ 0
}

be the Continuous Time Markov Chain (CTMC) with
state level independent QBD structure for which the state space is provided by

Ω = l(0) ∪ l(i)

where

l(0) = {(0, j, a) : j = 4, 5 : 1 ≤ a ≤ m}

and for i ≥ 1,
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l(i) = {(i, 0, k1, a) : iεZ+, 1 ≤ k1 ≤ t1, 1 ≤ a ≤ m}∪ {(i, 1, k2, a) : iεZ+, 1 ≤ k2 ≤ t2, 1 ≤ a ≤ m}
∪{(i, 2, r1, a) : iεZ+, 1 ≤ r1 ≤ s1, 1 ≤ a ≤ m} ∪ {(i, 3, r2, a) : iεZ+, 1 ≤ r2 ≤ s2, 1 ≤ a ≤ m}
∪{(i, 4, a) : iεZ+, 1 ≤ a ≤ m} ∪ {(i, 5, a) : iεZ+, 1 ≤ a ≤ m} ∪ {(i, 6, a) : iεZ+, 1 ≤ a ≤ m}

4.1. The Infinitesimal Matrix Generation

The QBD process has infinitesimal generator matrix Q is given by

Q =


B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
. . . . . . . . . . . . . . .


The entries of the Q matrix are defined by

B00 =

[
D0 − ϕIm ϕIm

0 D0 + bD1

]
, B01 =

[
0 0 0 0 D1 0 0
0 0 0 0 0 (1 − b)D1 0

]
,

B10 =



qT0
1 ⊗ Im 0

T0
2 ⊗ Im 0

0 0
0 0
0 0
0 0
0 0


, A0 =



It1 ⊗ D1 0 0 0 0 0 0
0 It2 ⊗ D1 0 0 0 0 0
0 0 Is1 ⊗ D1 0 0 0 0
0 0 0 Is2 ⊗ D1 0 0 0
0 0 0 0 D1 0 0
0 0 0 0 0 (1 − b)D1 0
0 0 0 0 0 0 D1


,

A1 =


T1 ⊕ D0 − τ1 Imt1 α2 ⊗ pT0

1 ⊗ Im e2 ⊗ τ1 β1 ⊗ Im 0 0 0 0
0 T2 ⊕ D0 − τ2 Imt2 0 e2 ⊗ τ2 β2 ⊗ Im 0 0 0

α1 ⊗ S0
1 ⊗ Im 0 S1 ⊕ D0 0 0 0 0
0 α2 ⊗ S0

2 ⊗ Im 0 S2 ⊕ D0 0 0 0
0 0 0 0 D0 − ϕIm ϕIm 0
0 0 0 0 0 bD1 + D0 − η Im η Im

ψ(α1 ⊗ Im) 0 0 0 0 0 D0 − ψIm

 ,

A2 =



qT0
1 ⊗ α1 ⊗ Im 0 0 0 0 0 0

T0
2 ⊗ α1 ⊗ Im 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

5. System Analysis

To ensure that the system is stable, we have to evaluate our model under certain conditions are
described in the sequel:
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5.1. Analysis of stability condition

Let A be the matrix defined by A = A0 + A1 + A2 and ς be the stationary probability vector of A
which satisfies the condition

ςA = 0, ςe = 1.

where the vector ς represents the state given by ς = (ς0, ς1, ς2, ς3, ς4, ς5, ς6).

The vector ς, partitioned as ς = (ς0, ς1, ς2, ς3, ς4, ς5, ς6) is evaluated with the help of the equation:

ς0[(It1 ⊗ D1) + (T1 + D0 − τ1 Imt1) + (qT0
1 ⊗ α1 ⊗ Im)] + ς1[T0

2 ⊗ α2 ⊗ Im]

+ ς2[α1 ⊗ S0
1 ⊗ Im] + ς6[ψα1 ⊗ Im] = 0,

ς0[α2 ⊗ pT0
1 ⊗ Im] + ς1[(It2 ⊗ D1) + (T2 + D0 − τ2 Imt2)] + ς3[α2 ⊗ S0

2 ⊗ Im] = 0,

ς0[e2 ⊗ τ1β1 ⊗ Im] + ς2[(Is1 ⊗ D1) + (S1 ⊗ D0)] = 0,

ς1[e2 ⊗ τ2β2 ⊗ Im] + ς3[(Is2 ⊗ D1) + (S2 ⊗ D0)] = 0,

ς4[D − ϕIm] = 0,

ς4[ϕIm] + ς5[D − η Im] = 0,

ς5[η Im] + ς6[D − ψIm] = 0

subject to

ς0emt1 + ς1emt2 + ς2ems1 + ς3ems2 + ς4em + ς5em + ς6em = 1.

The necessary and sufficient condition for the stability of the system is that the QBD process
satisfies the condition ςA0e < ςA2e.
i.e.,

ς0[It1 ⊗ D1] + ς1[It2 ⊗ D1] + ς2[Is1 ⊗ D1] + ς3[Is2 ⊗ D1] + (ς4 + ς6)[D1] + ς5[(1 − b)D1]

< ς0[qT0
1 ⊗ α1 ⊗ Im] + ς1[T0

2 ⊗ α1 ⊗ Im].

5.2. Analysis of stationary probability vector

Let X be the stationary probability vector. It is subdivided as X=(X0, X1, X2, ...) which is the
steady state probability vector of Q.

The dimensions of X0 and Xi , i ≥ 1 are 2m and (t1 + t2 + s1 + s2 + 3)m respectively. The
vector X of Q satisfies the condition

XQ = 0 and Xe = 1.

However, once the stability condition is satisfied, we find the vector X as invariant probability
with the help of the equation,

Xi = X1Ri−1, i ≥ 2.

where the matrix R is the minimal non-negative solution to

R2 A2 + RA1 + A0 = 0.

By means of the equations

X0B00 + X1B10 = 0,
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X0B01 + X1[A1 + RA2] = 0

we can find the vectors namely X0 and X1 subject to normalizing condition

X0e2m + X1[I − R]−1e(t1+t2+s1+s2+3)m = 1.

The "Logarithmic Reduction Algorithm" can be used to quickly calculate the rate matrix R as
specified by Latouche and Ramaswami [16].

6. Busy Period Analysis

A busy period can be measured as the interval between the customers entering into an empty
system and when the system size reduces to empty for the first time. As a result, this is the
first passage time between the level i and level i − 1, i ≥ 2 under the consideration of QBD
process. The first return time to level 0 with minimum one visit to a state in any other level is
known as busy cycle. It is necessary to deal with i = 0, 1 independently for the boundary states.
For each and every level i, where i ≥ 1, we can observe that there are m(t1 + t2 + s1 + s2 + 3) states.

Notations:

1. Gj,j′(k, x) - The probability that the QBD moves by making k left transitions to the level
(i − 1) and entering the state (i, j′), with the condition of beginning from the state (i, j) at
time t = 0.

2. Let the joint transform matrix be

G̃j,j′(z, s) =
∞

∑
k=1

zk
∫ ∞

0
e−sxdGj,j′(k, x); |z| ≤ 1, Re(s) ≥ 0

3. The matrix G̃(z, s) = (G̃j,j′(z, s)). (Neuts [21])

4. The matrix G = (Gj,j′) = G̃(1, 0) concerns the first passage times except for the boundary
states.

5. G(1,0)
j,j′ (k, x) - The probability that the system moves from level 0 to level 1 at time t = 0.

6. G(0,0)
j,j′ (k, x) - The probability that the system returns to level 0 at time t = 0.

7. S1j - The average first passage time among the levels i and i − 1, the process in the state (i, j)
at time t = 0.

8. S̃1 - The column vector with S1j as its entries.

9. S2j - The average number of customers who receive the service at the first passage time
among the levels i and i − 1, beginning in the state (i, j) at time t = 0.

10. S̃2 - The column vector with S2j as its entries.

11. S̃(1,0)
1 - The average first return time from level 1 to 0.

12. S̃(1,0)
2 - The average number of services completed during the first return time from level 1

to 0.

13. S̃(0,0)
1 - The average first return time to level 0.

14. S̃(0,0)
2 - The average number of services completed during the first return time to level 0.
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We can compute the matrix G̃(z, s) with the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s).

After evaluating the rate matrix R, the G matrix can be computed with the help of logarithmic
reduction algorithm (Lautouche and Ramaswami, [16]) provided by

G = −(A1 + RA2)
−1 A2.

The equations

G̃(1,0)(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G̃(z, s)G̃(1,0)(z, s)

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(1,0)(z, s).

which are satisfied by G̃(1,0)(z, s) and G̃(0,0)(z, s) lead to the boundary states namely 1 and 0, respectively.

Since G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are all stochastic matrices, we can calculate the moments as follows:

S̃1 = −∂G̃(z, s)
∂s

∣∣
s=0,z=1 = −[A0(G + I) + A1]

−1e,

S̃2 =
∂G̃(z, s)

∂z
∣∣
s=0,z=1 = −[A0(G + I) + A1]

−1]A2e,

S̃(1,0)
1 = −∂G̃(1,0)(z, s)

∂s
∣∣
s=0,z=1 = −[A1 + A0G]−1[e + A0S̃1],

S̃(1,0)
2 =

∂G̃(1,0)(z, s)
∂z

∣∣
s=0,z=1 = −[A1 + A0G]−1[B10e + A0S̃2],

S̃(0,0)
1 = −∂G̃(0,0)(z, s)

∂s
∣∣
s=0,z=1 = −B−1

00 [e + B01S̃(1,0)
1 ],

S̃(0,0)
2 =

∂G̃(0,0)(z, s)
∂z

∣∣
s=0,z=1 = −B−1

00 [B01S̃(1,0)
2 ].

7. Performance Measure

∙ Probability that the server is busy with the normal service

PBNS = X1(I − R)−1e(a)

∙ Probability that the server is busy with the optional service

PBOS = X1(I − R)−1e(b)

∙ Probability that the server is in breakdown during the normal service

PBDNS = X1(I − R)−1e(c)

∙ Probability that the server is in breakdown during the optional service

PBDOS = X1(I − R)−1e(d)

∙ Probability of the server being in vacation

PVAC = X1(I − R)−1e(g) + X0e2(g)
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∙ Expected size of the system

ES =
∞

∑
z=1

zXze = X1(I − R)−2e

∙ Expected system size that the server is busy with the normal service

EBNS = X1(I − R)−2e(a)

∙ Expected system size that the server is busy with the optional service

EBOS = X1(I − R)−2e(b)

∙ Expected system size that the server will be in breakdown during the normal service

EBDNS = X1(I − R)−2e(c)

∙ Expected system size that the server will be in breakdown during the optional service

EBDOS = X1(I − R)−2e(d)

∙ Expected system size that the server being in vacation

EVAC = X1(I − R)−2e(g).

8. Particular case

We consider an exponential distribution for the arrival, service and repair times. Let us denote:

D0=[−λ], D1=[λ], α1=[1], T1=[µ1], α2=[1], T2=[µ2], β1=[1], S1=[σ1], β2=[1], S2=[σ2]

With our assumption, the infinitesimal generator matrix becomes

Q =


B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
. . . . . . . . . . . . . . .

 .

The entries of the Q matrix are defined by

B00 =

[
−λ − ϕ ϕ

0 −λ + bλ

]
, B01 =

[
0 0 0 0 λ 0 0
0 0 0 0 0 (1 − b)λ 0

]
, B10 =



qµ1 0
µ2 0
0 0
0 0
0 0
0 0
0 0


,

A1 =



−λ − µ1 − τ1 pµ1 τ1 0 0 0 0
0 −λ − µ2 − τ2 0 τ2 0 0 0
σ1 0 −σ1 − λ 0 0 0 0
0 σ2 0 −σ2 − λ 0 0 0
0 0 0 0 −λ − ϕ ϕ 0
0 0 0 0 0 bλ − λ − η η
ψ 0 0 0 0 0 −λ − ψ

,
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A2 =



qµ1 0 0 0 0 0 0
µ2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, A0 =



λ 0 0 0 0 0 0
0 λ 0 0 0 0 0
0 0 λ 0 0 0 0
0 0 0 λ 0 0 0
0 0 0 0 λ 0 0
0 0 0 0 0 (1 − b)λ 0
0 0 0 0 0 0 λ


,

Consequently, the matrix A becomes

A =



−µ1 − τ1 + qµ1 pµ1 τ1 0 0 0 0
µ2 −µ2 − τ2 0 τ2 0 0 0
σ1 0 −σ1 0 0 0 0
0 σ2 0 −σ2 0 0 0
0 0 0 0 −ϕ ϕ 0
0 0 0 0 0 −η η
ψ 0 0 0 0 0 −ψ

 .

The stationary probability vector ξ of A which satisfies ξA = 0 and ξe = 1 is given by
ξ = (ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6), where

ξ0 = µ2σ1σ2
µ2σ1σ2+µ2σ2τ+µ1 pσ1σ2+µ1 pσ1τ , ξ1 = µ1 pσ1σ2

µ2σ1σ2+µ2σ2τ+µ1 pσ1σ2+µ1 pσ1τ , ξ2 = µ2σ2τ
µ2σ1σ2+µ2σ2τ+µ1 pσ1σ2+µ1 pσ1τ ,

ξ3 = µ1 pσ1τ
µ2σ1σ2+µ2σ2τ+µ1 pσ1σ2+µ1 pσ1τ , ξ4 = 0, ξ5 = 0, ξ6 = 0.

The necessary and sufficient condition required by the system to remain stable is ξ A0e < ξA2e.
Hence

λ <
µ1µ2σ1σ2

µ2σ1σ2 + µ2σ2τ + µ1 pσ1σ2 + µ1 pσ1τ
.

9. Waiting Time Distribution

Using the first passage time, we perform an analysis of waiting time distribution of such of those
customers who arrive in the queueing line. Let W(t), t ≥ 0 denote the distribution function of the
waiting time of the incoming tagged customer in the queue. When the server is in busy, repair
process or in vacation, the customer has to wait in the queueing line to get service from the server.

The absorbing state (*) corresponds to the upcoming tagged customer to receive the service
without waiting in the queue. Let us introduce the absorption time in a continuous time Markov
chain with the state space as follows:

Ω̃ = (*) ∪ {0, 1, 2, 3, ...}

where

l(0) = {(0, j) : j = 4, 5}

and for i ≥ 1,
l(i) = {(i, 0, k1) : iεZ+, 1 ≤ k1 ≤ t1} ∪ {(i, 1, k2) : iεZ+, 1 ≤ k2 ≤ t2}

∪{(i, 2, r1) : iεZ+, 1 ≤ r1 ≤ s1} ∪ {(i, 3, r2) : iεZ+, 1 ≤ r2 ≤ s2}
∪{(i, 4) : iεZ+, 1 ≤ a ≤ m} ∪ {(i, 5) : iεZ+} ∪ {(i, 6) : iεZ+}

Let the transition matrix Q̃ of this Markov process be
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Q̃ =



0 0 0 0 0 0 . . .
M0 P00 0 0 0 0 . . .
M1 P1 P 0 0 0 . . .
0 0 P2 P 0 0 . . .
0 0 0 P2 P 0 . . .
...

...
. . . . . . . . . . . . . . .


where the entries of the Q̃ matrix are defined by

M0 =

[
0
η

]
, P00 =

[
−ϕ ϕ
0 −η

]
, M1 =



qT0
1

T0
2

0
0
0
0
0


, P1 =



0 0
0 0
0 0
0 0
0 0
0 0
0 0


, P2 =



qT0
1 ⊗ α1 0 0 0 0 0 0

T0
2 ⊗ α1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

P =



T1 − τ1 Ins pT0
1 ⊗ α2 e2 ⊗ τ1β1 0 0 0 0

0 T2 − τ2 Ios 0 e2 ⊗ τ2β2 0 0 0
α1 ⊗ S0

1 0 S1 0 0 0 0
0 α2 ⊗ S0

2 0 S2 0 0 0
0 0 0 0 −ϕ ϕ 0
0 0 0 0 0 −η η

ψα1 0 0 0 0 0 −ψ


.

Let us define z(0)=(z0(0), z1(0), z2(0), ...) which is the conditional probability distribution of the
system state defined on the arrival of the tagged customers. The probability vectors of z0(0) and
zi(0) are respectively given by

z0(0) = x0
[
I2 ⊗

D1em

λ

]
zi(0) = xi[It1+t2+s1+s2+3 ⊗

D1em

λ
], for i ≥ 1

where the fundamental arrival rate of the Markovian arrival process is denoted by λ. Let

z(t) = (z*(t), z0(t), z1(t), ...),

where

z0(t) : vector of order (1 × 2),

zi(t), i ≥ 1 : vector of order 1 × (t1 + t2 + s1 + s2 + 3).

The elements of zi(t), i ≥ 1 are the probabilities of the CTMC wherein the respective states
of level i with the generator matrix Q̃ are at epoch t. The probability of the process being in the
absorbing state at time t is given by z*(t).

We have W(t) = z*(t), for t ≥ 0.

The differential equation z′(t) = z(t)Q̃, where t ≥ 0 becomes

z′*(t) = z0(t)M0 + z1(t)M1,

z′0(t) = z0(t)P00 + z1(t)P1,

z′i(t) = zi(t)P + zi+1(t)P2, i ≥ 1.

where ′ denotes the derivative with respect to t.
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Let us compute the Laplace Stieltjes Transform (LST) of W(t) with the aid of the technique
mentioned by Neuts [23].

The process is commenced at the state i with initial probability vector zi(0), i ≥ 1.

Let w(s) be the row vector which specifies the Laplace-Stieltjes transform of the initial tran-
sit time to level 1.

As per the scheme specified by Neuts [22], we have

w(s) =
∞

∑
i=1

[(sI − P)−1P2]
i−1. (1)

Let the Laplace-Stieltjes transform of absorbing time to the state (*) correspond to the process
starting at state level i = 0, 1 be indicated by φ(i, s). Applying a result in Neuts [22], we have

φ(0, s) = [sI − P00]
−1M0, (2)

φ(1, s) = [sI − P]−1P1φ(0, s) + [sI − P]−1M1. (3)

Thus, the LST of the waiting time distribution W̃(s) is evaluated as

W̃(s) = z0(0)φ(0, s) + w(s)φ(1, s). (4)

9.1. Expected Waiting Time

The expected waiting time is denoted by

E(W) = −z0(0)φ′(0, 0)− w′(0)et1+t2+s1+s2+3 − w(0)φ′(1, 0)en. (5)

When the system has the state level i = 0, the average time to enter into the absorbing state (*) is
denoted by the foremost terms of the preceding equation.

Likewise, if the system has the state level i ≥ 1, the average amount of time to enter into
the absorbing state (*) is denoted by the last two terms of the above equation.

On differentiating (2) and (3) with respect to t and substituting s = 0, we get

φ′(0, 0) = (−1)[−P00]
−2M0, (6)

φ′(1, 0) = (−1)[−P]−2P1φ(0, 0) + [−P]−1P1φ′(0, 0)− [−P]−2M1. (7)

By using the expression (6) together with the probability vector

z(0) = (z0(0), z1(0), z2(0), ...),

we can determine the first term of (5). From (1), we have

w(0) =
∞

∑
i=1

zi(0)Vi−1, (8)

where V = [−P]−1P2. Since V is a stochastic matrix, we get

w(0)et1+t2+s1+s2+3 = 1 − z0(0)e2. (9)

With the help of (7) and (9) together with the probability vector z(0) = (z0(0), z1(0), z2(0), ...), we
can compute the final term of (5).
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On differentiating (1) with respect to t and substituting s = 0, we get

w′(0) = (−1)
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

V j[−P]−1Vi−j. (10)

The stochastic nature of V implies that

(−1)w′(0)et1+t2+s1+s2+3 = (−1)
∞

∑
i=1

zi+1(0)
i−1

∑
j=0

V j[−P]−1et1+t2+s1+s2+3. (11)

We can evaluate the value of (−1)w′(0)et1+t2+s1+s2+3, by using the method specified in Neuts [22].

Now, let us consider the stochastic matrix V2 satisfying two conditions namely I − V + V2
is non-singular and the generalized inverse of the form I − V. Then, the matrix V2 may be chosen
as V2 = v0et1+t2+s1+s2+3, where v0 is the stationary probability vector of V such that

v0V = v0 and v0et1+t2+s1+s2+3 = 1.

In view of the property
VV2 = V2V = V2.

we get

i−1

∑
j=0

V j(I − V + V2) = I − Vi + iV2, for i ≥ 1. (12)

Substituting (12) in (11) and carrying out some simplifications, we get

(−1)w′(0)et1+t2+s1+s2+3 =
[
x1[I − R]−1[It1+t2+s1+s2+3 ⊗

D1em

λ
]

− w(0) + x1R[I − R]−2[It1+t2+s1+s2+3 ⊗
D1em

λ
V2
]

× [I − V + V2]
−1[−P]−1et1+t2+s1+s2+3. (13)

Thus, we have determined all the terms of (5). By using (5), the expected waiting time can be
easily evaluated.

10. Numerical Results

In this section, we examine the outcome of our system with the utilisation of numerical and
graphical methods. The five different MAP representations are given below with distinct variance
and correlation structure and their mean values are 1. These values are suggested by Chakravarthy
[4] . In the first three process of arrival, like ERL − A, EXP − A and HYP.EXP − A correspond
to renewal process and thus the correlation is zero.

Arrival in Erlang of order 2 (ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
Arrival in Exponential (EXP-A):

D0 = [−1], D1 = [1]
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Arrival in Hyper exponential (HYP-EXP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
MAP-NC-A: Arrival in MAP - Negative Correlation:

D0 =

−1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 , D1 =

 0 0 0
0.01002 0 0.99220

223.4925 0 2.2575


MAP-PC-A: Arrival in MAP - Positive Correlation:

D0 =

1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 , D1 =

 0 0 0
0.99220 0 0.01002
2.2575 0 223.4925

 .

Let us consider the following PH-distributions for the service and repair process which are
suggested by Chakravarthy [4].

ERL-S (Service in Erlang of order 2):

α1 = α2 = (1, 0), T1 = T2 =

[
−2 2
0 −2

]
ERL-R (Repair in Erlang of order 2):

β1 = β2 = (1, 0), S1 = S2 =

[
−2 2
0 −2

]
EXP-S (Service in Exponential):

α1 = α2 = (1), T1 = T2 = [−1]

EXP-R (Repair in Exponential):

β1 = β2 = (1), S1 = S2 = [−1]

HYP.EXP-S (Service in Hyper exponential):

α1 = α2 = (0.8, 0.2), T1 = T2 =

[
−2.8 0

0 −0.28

]
HYP.EXP-R (Repair in Hyper exponential):

β1 = β2 = (0.8, 0.2), S1 = S2 =

[
−2.8 0

0 −0.28

]
.

10.1. Illustrative Example 1

From the Tables 1-5, we explore the effect of the fundamental arrival rate (λ) on the Expected
system size (ES) and Expected waiting time (EW). Fix µ1 = 15, µ2 = 12, σ1 = 8, σ2 = 6, η = 8,
τ = 1, ϕ = 10, ψ = 10, p = 0.2, q = 0.8, b = 0.1.
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Table 1: Fundamental arrival rate (λ) vs ES and EW - EXP-A
EXP − S ERL − S HYP − S

λ ES EW ES EW ES EW
1.0 0.15853 0.30160 0.15741 0.30182 0.16332 0.29898
1.2 0.16477 0.36572 0.16339 0.36566 0.17067 0.36396
1.4 0.17091 0.43122 0.16925 0.43075 0.17796 0.43085
1.6 0.17696 0.49815 0.17502 0.49714 0.18522 0.49972
1.8 0.18296 0.56659 0.18071 0.56490 0.19247 0.57067
2.0 0.18892 0.63661 0.18635 0.63409 0.19973 0.64383
2.2 0.19486 0.70832 0.19196 0.70480 0.20703 0.71930
2.4 0.20080 0.78180 0.19755 0.77712 0.21438 0.79723
2.6 0.20677 0.85719 0.20316 0.85116 0.22181 0.87777
2.8 0.21278 0.93460 0.20879 0.92704 0.22935 0.96107

Table 2: Fundamental arrival rate (λ) vs ES and EW - ERL-A
EXP − S ERL − S HYP − S

λ ES EW ES EW ES EW
1.0 0.14153 0.29431 0.14086 0.29510 0.14543 0.29040
1.2 0.14657 0.35594 0.14567 0.35661 0.15163 0.35268
1.4 0.15177 0.41860 0.15063 0.41905 0.15806 0.41660
1.6 0.15706 0.48236 0.15566 0.48243 0.16466 0.48225
1.8 0.16241 0.54724 0.16072 0.54681 0.17138 0.54970
2.0 0.16778 0.61332 0.16579 0.61222 0.17818 0.61904
2.2 0.17317 0.68065 0.17085 0.67871 0.18507 0.69038
2.4 0.17856 0.74932 0.17590 0.74636 0.19203 0.76384
2.6 0.18396 0.81942 0.18094 0.81523 0.19908 0.83955
2.8 0.18939 0.89105 0.18598 0.88543 0.20621 0.91765

Table 3: Fundamental arrival rate (λ) vs ES and EW - HYP-EXP-A
EXP − S ERL − S HYP − S

λ ES EW ES EW ES EW
1.0 0.17911 0.31245 0.17708 0.31172 0.18736 0.31350
1.2 0.18868 0.38164 0.18618 0.38018 0.19877 0.38521
1.4 0.19808 0.45341 0.19507 0.45097 0.21005 0.46028
1.6 0.20740 0.52794 0.20386 0.52429 0.22127 0.53894
1.8 0.21671 0.60549 0.21262 0.60036 0.23251 0.62140
2.0 0.22610 0.68632 0.22143 0.67945 0.24383 0.70793
2.2 0.23564 0.77074 0.23037 0.76186 0.25529 0.79880
2.4 0.24540 0.85911 0.23952 0.84794 0.26695 0.89431
2.6 0.25546 0.95182 0.24894 0.93807 0.27886 0.99479
2.8 0.26588 1.04931 0.25872 1.03271 0.29107 1.10060
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Table 4: Fundamental arrival rate (λ) vs ES and EW - MAP-NC-A
EXP − S ERL − S HYP − S

λ ES EW ES EW ES EW
1.0 0.21789 0.32963 0.21810 0.33120 0.21685 0.32110
1.2 0.22094 0.39857 0.22097 0.40024 0.22086 0.38946
1.4 0.22416 0.46873 0.22399 0.47041 0.22513 0.45954
1.6 0.22757 0.54021 0.22718 0.54180 0.22966 0.53149
1.8 0.23116 0.61312 0.23053 0.61448 0.23444 0.60542
2.0 0.23493 0.68755 0.23404 0.68855 0.23947 0.68149
2.2 0.23888 0.76360 0.23771 0.76409 0.24474 0.75981
2.4 0.24301 0.84138 0.24153 0.84121 0.25025 0.84055
2.6 0.24732 0.92102 0.24552 0.92001 0.25600 0.92385
2.8 0.25181 1.00264 0.24968 1.00061 0.26200 1.00989

Table 5: Fundamental arrival rate (λ) vs ES and EW - MAP-PC-A
EXP − S ERL − S HYP − S

λ ES EW ES EW ES EW
1.0 4.93292 5.03451 5.02349 5.12623 4.43675 4.53209
1.2 5.06281 6.18903 5.15683 6.30311 4.54890 5.56542
1.4 5.18831 7.38672 5.28604 7.52488 4.65537 6.63320
1.6 5.31349 8.63171 5.41520 8.79585 4.76012 7.73857
1.8 5.44069 9.92837 5.54670 10.12062 4.86538 8.88481
2.0 5.57147 11.28133 5.68210 11.50408 4.97259 10.07536
2.2 5.70694 12.69553 5.82258 12.95143 5.08272 11.31383
2.4 5.84801 14.17626 5.96905 14.46829 5.19652 12.60403
2.6 5.99546 15.72922 6.12233 16.06069 5.31459 13.95000
2.8 6.15001 17.36055 6.28322 17.73519 5.43745 15.35604

From the above tables 1, 2, 3, 4 and 5, the following observations are made:

∙ As fundamental arrival rate (λ) increases, the expected system size (ES) increases for various
probable sequence of arrival and service times.

∙ As fundamental arrival rate (λ) increases, the expected waiting time of the system (EW)
increases for various probable sequence of arrival and service times.

∙ With the estimation of the values of various arrival times, the average system size increases
much faster for hyper exponential service time and slowly for Erlang service time.

10.2. Illustrative Example 2

The two dimensional graphs are illustrated in the following Figures 1 − 12. We explore the effect
of the vacation rate (η) on the Expected system size (ES) and Expected waiting time (EW). Fix
λ = 1, µ1 = 15, µ2 = 12, σ1 = 8, σ2 = 6, τ = 1, ϕ = 10, ψ = 10, p = 0.2, q = 0.8, b = 0.1.

RT&A, No 2 (68) 
Volume 17, June 2022

462



G. Ayyappan, G. Archana @ Gurulakshmi, B. Somasundaram
ANALYSIS OF MAP/PH/1 QUEUEING MODEL WITH MULTIPLE...

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

E
S

 a
n

d
 E

W
M/M/1

EW

ES

Figure 1: Vacation rate (η) vs. ES and EW
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Figure 2: Vacation rate (η) vs. ES and EW
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Figure 3: Vacation rate (η) vs. ES and EW
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Figure 4: Vacation rate (η) vs. ES and EW
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Figure 5: Vacation rate (η) vs. ES and EW
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Figure 6: Vacation rate (η) vs. ES and EW
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Figure 7: Vacation rate (η) vs. ES and EW
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Figure 8: Vacation rate (η) vs. ES and EW
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Figure 9: Vacation rate (η) vs. ES and EW
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Figure 10: Vacation rate (η) vs. ES and EW
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Figure 11: Vacation rate (η) vs. ES and EW
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Figure 12: Vacation rate (η) vs. ES and EW

We observe from the above Figures 1 − 12, that when lifting the vacation rate η, the Expected
system size (ES) and Expected waiting time (EW) increase rapidly in the case of arrival by
hyper-exponential and slowly in Erlang arrival. Likewise it is high in Erlang service and slow
in hyper-exponential. By examining the graphs, we see that the Expected system size (ES) and
Expected waiting time (EW) decrease faster for Erlang service rather than those of exponential
service and hyper-exponential services.

10.3. Illustrative Example 3

From the three dimensional graphs 13 − 24, we explore the effect of the normal service rate (µ1)
and the breakdown rate (τ) on the probability that the server is busy with the normal service
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(PBNS). Fix λ = 1, µ2 = 12, σ1 = 8, σ2 = 6, η = 8, ϕ = 10, ψ = 10, p = 0.2, q = 0.8, b = 0.1.

Figure 13: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 14: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 15: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 16: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 17: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 18: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS
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Figure 19: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 20: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 21: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 22: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 23: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

Figure 24: Normal service rate (µ1) and Breakdown
rate(τ) vs. PBNS

We observe from the Figures 13 − 24 that when lifting both the normal service rate (µ1) and
the breakdown rate (τ), the probability that the server is busy with the normal service (PBNS)
decreases for various arrival and service patterns. The negative arrival (NC) of MAP increases
rapidly rather than that for hyper-exponential arrival. Likewise, the increment rate reduces in
Erlang service and increases in hyper-exponential services.
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11. Conclusion

In this paper, we have dealt with a single server queueing model with multiple vacations, optional
service, close-down, setup, balking, breakdown and phase type repair. The arrival time follows
MAP and service and repair times follow phase type distributions. We have presented the busy
period analysis and waiting time distribution of this model. We have evaluated the probability of
the situation that the server is busy, under repair and on vacation. Particular case has also been
discussed. Numerical illustrations and graphical representations are presented in this paper. The
future direction of our work can be the investigation of the queueing model by using BMAP for
the arrival process with N-policy.
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Abstract

This paper examines the stochastic behavior of standby redundant system having two non-identical units.
The system comprised of main unit and non-identical cold standby unit. When the main unit collapses,
standby unit is exposed to operable conditions. Due to long-time and non-use of standby unit, though
with small chances, it is observed that standby unit gets corrupt and becomes inoperable even in standby
mode. Further, it demands repair/maintenance to make it worth-operating. Henceforth, it is considered
to perform random inspection of standby unit to ensure that whether it is in operable condition or not.
Inspection as well as repair both the tasks are performed by single repair facility. semi-Markov and
regenerative processes are applied to derive expressions for the system performance indices. Profit function
and bounds (upper/lower) for various costs involved are evaluated. Numerical study has been performed
to illustrate the behavior of model developed. Sensitivity and relative sensitivity analysis has also been
done for MTSF and steady-state availability.

Keywords: Reliability, Pre-operation random inspection, Cost-benefit analysis, Bounds, Sensitivity
analysis

1. Introduction

Technological advances in recent decades have paved the way for numerous complicated and
sophisticated systems. The ever increasing tech savvy inclination of consumers urges industries
to introduce automation in their industrial process. Therefore, the need of hour is reduction
in failures, availability and improvement in operational capacity of such systems. Redundancy
is technique by which a system can be made highly reliable. Standby redundant systems
have been used at a large scale in automation industry especially in computer and network,
telecommunication and power systems. The two unit standby system and the various issues
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arising during the usage of such systems like switch over and activation time of standby unit,
imperfect switching, random change of standby unit etc. have been addressed very extensively
by several researchers. A standby system with switching device for activating standby unit and
repaired failed unit for operations was investigated by Singh and Singh [1]. Mokaddis et al. [2]
analyzed reliability models for standby system. Different working modes of the operative unit
were taken into account. The perfect or imperfect switching of standby unit by assuming arbitrary
distributions for failure and repair times were also studied.

Considering the activation time of standby unit, economic study of two-unit standby system
was performed by Gupta et al. [3]. El-Said and El-Sherbeny [4] investigated profitability function
for standby system, wherein the operative and standby unit interchanged randomly. Parashar
and Taneja [5] analyzed stochastically hot standby PLC system. The study was carried out by
collecting real data from various industries. Imperfect switching of standby unit as well as
repairman patience time was studied by Rashad et al. [6]. A standby system with different failure
types was discussed by Mahmoud and Mosherf [7].The preventive maintenance of online unit
was also done when its operative time reaches to time t, subject to the availability of standby
unit. Mathew et al. [8] analyzed two-unit working in parallel configuration casting plant system.
Different kinds of failures were taken into the consideration. Jain and Rani [9] used Markov
process to obtain availability characteristics for the standby system having switching failure and
reboot delay. Manocha and Taneja [10] discussed two stages of repair for standby system. Jia et
al. [11] compared perfect and imperfect switching policies for standby system. Barak et al. [12]
investigated standby system, in which inspection of failed standby unit was conducted to confirm
its reparability status. Wang et al. [13] investigated a warm standby system. The failures due to
hardware and human errors were considered in their study and priority in use was given to main
unit. Profit analysis was not done by the authors. El-Sherbeny et al. [14] discussed the idea of
change between active unit and standby unit after random amount of time. Eventually, it can be
concluded that certain technical issues that affect operational capacity of the system needs to be
addressed as a prerequisite for standby units. Keeping this in view, the present article examines a
two non-identical unit cold standby system, wherein standby unit may be inspected randomly
to see as to whether it is worth useable or not. Sensitivity analysis with regard to MTSF and
availability has also been done.The present paper is organised as follows.

System description and assumptions made to carry out the analysis are given in Section
2.Notations, different states and method used in the study are cited in Section 3, 4 and 5
respectively.In Section 6 stochastic model for the system (as defined in Section 2) is developed.
Explicit expressions for different performance denoting characteristics of the system, profit and
sensitivity function are derived in Section 7, 8 and 9 respectively. Numerical discussions are made
in Section 10. Concluding remarks are stated in Section 11.

2. System Description and Assumptions

Proposed system consists of operative main unit and non-identical cold standby unit. Whenever,
main unit get fail, the standby unit starts working and main unit goes for repair. There is a
possibility that due to long-time non-use of standby unit in non-operative mode, it may be
degraded and may become inoperable. The standby unit is inspected randomly to check either it
can be made operable or it is inoperable due to degradation. Immediately the inoperable standby
unit goes under repair/maintenance of the repairman. The repair process follows the first-come-
first served (FCFS) rule. A single repair facility is considered for the system which takes cares
of repair as well as inspection related activities. We use regenerative and semi-Markov process
to obtain the various performance indicating characteristics of the system like Reliability, MTSF,
point wise and transient availability, expected number of visits and time taken by repairman
for repairing/inspecting the units. Finally these measures are used to formulate the profit and
sensitivity function.The life time distribution of both the units is taken as exponential, whereas
other time distribution are considered general. After each repair, unit is supposed to works like
new one. The random variables used in developing stochastic model are independent.
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3. Nomenclature

The notations for various rates/probabilities/pdf/states are:
λ/α: failure rate of main/standby unit
p/q: probability of operable/inoperable standby unit
p1/q1: probability of operable/inoperable standby unit after random inspection
WiF/WiI : P[repairman is engaged in regenerative state i for repair/inspection at instant t

without switching to any other state]
®/ ©: symbol of Stieljes/ Laplace convolution.
E0: Initial state of system
g(t)(G(t))/g1(t)(G1(t)): pdf (cdf) of repair time of main / standby unit
h(t)(H(t))/i(t)(I(t)): pdf (cdf) of time to/ time of inspection of standby unit
qij(t)(q

(k)
ij (t))/Qij(t)(Q

(k)
ij (t)): pdf/cdf of transition time from regenerative state i to j (or via

non-regenerative state k).
Refer [5] for rest of the nomenclature used in the study

4. State of the System

The various states of the system at certain time point are described as:

State 0:(Mo, S) State 1:(Mo, Si) State 2:(Mr, Swr)
State 3:(Mr, So) State 4:(Mwr, SI) State 5:(Mo, Sr)
State 6:(Mwr, Sr) State7:(MR, Swr) State 8:(Mwr, SR)

where,

Mo: main unit is operative
S: standby unit
Si: standby unit is under inspection
Mr: main unit is under repair
Swr: standby unit is inline to get repaired
So: standby unit is operative
Mwr: main unit is waiting for repair
SI : Inspection of standby unit is continued from last state
Sr: repair of standby unit is in progress
MR: repair of main unit is in progress from last state
SR: repair of standby unit is in progress from last state

5. Material and Methods

The time point at which system conditions are no longer relevant to system situation before to
that time point are referred to as regenerative point, and the corresponding state is known to
it as regenerative state otherwise non-regenerative state. In the model being discussed, when
the repair/inspection is considered from previous state, the state is non-regenerative. The
repair/inspection time distribution has been taken arbitrary; whereas the state where operation is
continued from the previous state is the regenerative state as the failure time has been considered
to follow exponential distribution which has the memory less property. Therefore the process
is not purely Markov and hence semi-Markov (Branson and Shah[15]) process and regenerative
process (Srinivasan and Gopalan [16]) have been used.
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6. Stochastic Model

The transition between various states as described in Section 4 are shown in Fig.1. The state space
is ξ=(0,1,2,3,4,5,6,7,8), where Ω=( 2,6,7,8) and ϕ= (4) are failure and down state space respectively.
By definition of regenerative process and assumptions made the sets ω=(0,1,2,3,5,6) and ω=(4,7,8)
represents set of regenerative and non-regenerative states respectively. The transition densities

Figure 1: State transition diagram

from state i to j (or via k) are:

q01(t) = e−λth(t), q02(t) = λqe−λtH(t), q03(t) = λpe−λtH(t)

q10(t) = p1e−λti(t), q(4)13 (t) = p1(λe−λt©1)i(t), q15(t) = q1e−λti(t)

q(4)16 (t) = q1(λe−λt©1)i(t), q25(t) = g(t), q30(t) = e−αtg(t)

q37(t) = αe−αtG(t), q(7)35 (t) = (αe−αt©1)g(t), q50(t) = e−λtg1(t)

q(8)53 (t) = (λe−λt©1)g1(t), q58(t) = λe−λtG1(t), q63(t) = g1(t)

(1)

Mean sojourn time (µi) in state i ∈ ω is

µ0 =
∫ ∞

0
e−λtH(t)dt, µ1 =

∫ ∞

0
e−λt I(t)dt, µ2 =

∫ ∞

0
G(t)dt

µ3 =
∫ ∞

0
e−αtG(t)dt, µ5 =

∫ ∞

0
e−λtG1(t)dt, µ6 =

∫ ∞

0
G1(t)dt

(2)

Further, defining

mij = E(qij(t)) =
∫ ∞

0
tqij(t)dt (3)

and
m(k)

ij = E(q(k)ij (t)) =
∫ ∞

0
tq(k)ij (t)dt (4)
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we have,
m01 + m02 + m03 = µ0, m10 + m15 + m(4)

13 + m(4)
16 = K1(say)

m25 = µ2, m30 + m37 = µ3

m30 + m(7)
35 = µ2, m50 + m58 = µ5

m50 + m(8)
53 = µ6, m63 = µ6

(5)

7. System Performability Measures

7.1. System Reliability

If m fi(t) represents the cdf of time, taken by the system to transit from state i, i ∈ ω to a failed
state, then from transition diagram we have

m f0(t) = Q01(t)®m f1(t) + Q03(t)®m f3(t) + Q02(t) (6)

m f1(t) = Q10(t)® m f0(t) + Q(4)
13 (t)®m f3(t) + Q15(t)®m f5(t) + Q(4)

16 (t) (7)

m f3(t) = Q30(t)®m f0(t) + Q37(t) (8)

m f5(t) = Q50(t)®m f0(t) + Q58(t) (9)

Making use of Laplace-Stieljes transformation for eqns. (6)-(9),the expressions obtained for
m f ∗∗0 (s), reliability{R(t)} of the system and MTSF (mean time to system failure) are

m f ∗∗0 (s) = L(s)/D(s) (10)

R(t) = L−1{1 − m f ∗∗0 (s)/s} (11)

MTSF =
∫ ∞

0
R(t)dt = L/D (12)

where

L(s) = Q∗∗
01 (s){Q(4)∗∗

13 (s)Q∗∗
37 (s) + Q∗∗

15 (s)Q
∗∗
58 (s) + Q(4)∗∗

16 (s)}+ Q∗∗
03 (s)Q

∗∗
37 (s) + Q∗∗

02 (s) (13)

D(s) = 1 − Q∗∗
01 (s){Q∗∗

10 (s) + Q(4)∗∗
13 (s)Q∗∗

30 (s) + Q∗∗
15 (s)Q

∗∗
50 (s)} − Q∗∗

03 (s)Q
∗∗
30 (s) (14)

L = µ0 + p01K1 + (p01 p(4)13 + p03)µ3 + p01 p15µ5 (15)

D = 1 − p01 p10 − p01 p(4)13 p30 − p01 p15 p50 − p03 p30 (16)

7.2. System Availability

Let Wi(t)= P[system is in operative state i, i ∈ ω, instead of transferring either to any state j, j ∈ ω
or to itself via state k, k ∈ ω], Then

W0(t) = e−λt H(t) (17)

W1(t) = e−λt I(t) (18)

W3(t) = e−αtG(t) (19)

W5(t) = e−λtG1(t) (20)

Defining AVi(t)=P[system is operative at instant t | E0 = i, i ∈ ω]. Referring to contentions
of regenerative process and from transition state diagram, the availabilities AVi(t) satisfies the
relations

AV0(t) = W0(t) + q01©AV1(t) + q02©AV2(t) + q03©AV3(t) (21)
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AV1(t) = W1(t) + q10©AV0(t) + q(4)13 ©AV3(t) + q(4)16 ©AV6(t) + q15©AV5(t) (22)

AV2(t) = q25©AV5(t) (23)

AV3(t) = W3(t) + q30©AV0(t) + q(7)35 ©AV5(t) (24)

AV5(t) = W5(t) + q50©AV0(t) + q(8)53 ©AV3(t) (25)

AV6(t) = q63©AV3(t) (26)

Using Laplace transformation and method of determinants for eqns. (21)-(26), we obtain

AV∗
0 (s) = L1(s)/D1(s) (27)

The system’s transient and steady-state availability are

AV0(t) = L−1{L1(s)/D1(s)} (28)

AV∞ = lim
t→∞

AV0(t) = lim
s→0

sAV∗
0 (s) = L1/D1 (29)

where,

L1(s) = {1 − q(7)∗35 (s)q(8)∗53 (s)}{W∗
0 (s) + q∗01(s)W

∗
1 (s)}+ {q∗01(s)q

(4)∗
16 (s)q∗63(s) + q∗03(s)

+ q∗01(s)q
(4)∗
13 (s)}{W∗

3 (s) + q(7)∗35 (s)W∗
5 (s)}+ {q∗01(s)q

∗
15(s)

+ q∗02(s)q
∗
25(s)}{q(8)∗53 (s)W∗

3 (s) + W∗
5 (s)}

(30)

D1(s) = {1 − q(7)∗35 (s)q(8)∗53 (s)}{1 − q∗01(s)q
∗
10(s)} − q∗02(s)q

∗
25(s)q

∗
50(s)− q∗01(s)q

∗
15(s)q

∗
50(s)

− q∗30(s){q∗03(s) + q∗03(s)q
(7)∗
35 (s)q∗50(s) + q∗01(s)q

(4)∗
13 (s) + q∗01(s)q

∗
15(s)q

(8)∗
53 (s)

+ q∗02(s)q
∗
25(s)q

(8)∗
53 (s)} − q∗01(s)q

(4)∗
16 (s)q∗63(s){q∗30(s) + q(7)∗35 (s)q∗50(s)}

(31)

L1 = (1 − p(7)35 p(8)53 )(µ0 + p01µ1) + {p01(p(4)13 + p(4)16 + p15 p(8)53 ) + p03 + p02 p(8)53 }µ3 + {p01(p(4)13 p(7)35

+ p(4)16 p(7)35 + p03 p(7)35 + p15) + p02 p25}µ5

(32)

D1 = (1 − p(7)35 p(8)53 )(µ0 + p01K1 + p02µ2) + (1 − p01 p10 − p01 p15 p50 − p02 p50)µ2 + {(1 − p01 p10)p(7)35

+ p02 p30 + p01 p15 p50 + p(4)16 (1 − p(7)35 p(8)53 )}µ6

(33)

Employing the same procedure as discussed in Sub-section 7.2, other performability measures of
the system are as follows:

7.3. Busy Period Analysis

7.3.1 Expected Time for Repairing the Failed Unit

Let Bi(t)=P[repairman is engaged in repair at instant t | E0 = i, i ∈ ω].The expected time taken
by repairman in repairing the failed unit is

B∞ = lim
t→∞

B0(t) = lim
s→0

sB∗
0 (s) = lim

s→0
s{L2(s)/D1(s)} = L2/D1 (34)

where,

L2(s) = {1 − q(7)∗35 (s)q(8)∗53 (s)}{q∗01(s)q
(4)∗
16 (s)W∗

6F(s) + q∗02(s)W
∗
2F(s)}+ q∗01(s)q

∗
15(s)q

(8)∗
53 (s)

+ {q∗03(s) + q∗01(s)q
(4)∗
16 (s)q∗63(s) + q∗01(s)q

(4)∗
13 (s)}{W∗

3F(s) + q(7)∗35 (s)W∗
5F(s)}

+ q∗02(s)q
∗
25(s){q(8)∗53 (s)W∗

3F(s) + W∗
5F(s)}

(35)

L2 = p01{(p(4)13 + p(4)16 )(µ2 + p(7)35 µ6) + p15 p(8)53 + (1 − p(7)35 p(8)53 )µ6}+ p02{(1 − p(7)35 p(8)53 )µ2

+ p(8)53 µ2 + µ6}+ p03(µ2 + p(7)35 µ6)
(36)
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7.3.2 Expected Time for Inspection of the Standby Unit

Letting Ii(t)=P[repairman remains involved in inspection at time t | E0 = i, i ∈ ω].The expected
time for which standby unit is under inspection, in steady-state is

I∞ = lim
t→∞

I0(t) = lim
s→0

sI∗0 (s) = lim
s→0

s{L3(s)/D1(s)} = L3/D1 (37)

where,
L3(s) = q∗01(s){1 − q(7)∗35 (s)q(8)∗53 (s)}W∗

1I(s) (38)

L3 = p01{1 − p(7)35 p(8)53 }K1 (39)

7.4. Expected Number of Visits by the Repairman

If M(t) denotes the expected number of visits by repairman in the time interval (0,t] then
NVi(t)= E{M(t) | E0 = i, i ∈ ω}. In steady-state, the number of visits are

NV∞ = lim
t→∞

NV0(t) = lim
s→0

sNV∗∗
0 (s) = lim

s→0
s{L4(s)/D1(s)} = L4/D1 (40)

where,

L4(s) = {Q∗∗
01 (s) + Q∗∗

02 (s) + Q∗∗
03 (s)}{1 − Q(7)∗∗

35 (s)Q(8)∗∗
53 (s)} (41)

L4 = (1 − p(7)35 p(8)53 ) (42)

D1(s) and D1 are specified in eqns. (31) and (33) respectively. Now, derived indexes are used to
perform cost-benefit analysis in the succeeding section.

8. Cost-Benefit Analysis

As we know, the profit for any manufacturing system is the difference of expected revenue and
expected recurring cost.Utilizing eqns.(29), (34), (37) and (40), the profit function for the defined
system, in steady-state, is

P∞ = (R0 AV∞)− (CBB∞ + CI I∞ + CVV∞) (43)

where,R0=Revenue generated per unit time
CB/CI= Recurring cost per unit time for repairing/inspecting the units
CV= Recurring cost at per visit of repairman
For the system to be profitable, the eq.(43) is used to obtain the bounds for revenue/cost(s), which
are shown in Table 1.

Table 1: Bounds for revenue and various cost(s)

Revenue/Cost Bound Value

R0 Lower (CBB∞+CI I∞+CVV∞)/AV∞
CB Upper (R0 AV∞−CI I∞−CVV∞)/B∞
CI Upper (R0 AV∞−CBB∞−CVV∞)/I∞
CV Upper (R0 AV∞−CBB∞−CI I∞)/V∞
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9. Sensitivity and Relative Sensitivity Analysis

Sensitivity analysis is performed to find out how the variation in incoming variable affects the
specific outgoing variable under certain specific conditions. Since, there is significance difference
between the values of incoming variables, so to compare their effects on outgoing variables,
relative sensitivity function is used. Relative sensitivity function is defined as percentage change
that results from the percentage change in one of the variable. The sensitivity and relative
sensitivity functions for MTSF and availability (AV∞) are formulated as:

πk =
∂MTSF

∂k
(44)

δk = πk(
k

MTSF
) (45)

ρk =
∂AV∞

∂k
(46)

τk = ρk(
k

AV∞
) (47)

where k = λ, α, β, β1, γ, θ.

10. Results and Discussion

In this section numerical analysis is done to illustrate the developed stochastic model.Input/Output
variables are specified in the subsections 10.1 and 10.2 respectively for further discussions.

10.1. Input Variables

The repair time of main/standby unit, time to inspection and time for inspection of standby unit
are supposed to be exponential with parameters β,β1,θ and γ respectively. Then
G(t) = 1 − exp(−βt),G1(t) = 1 − exp(−β1t), H(t) = 1 − exp(−θt) and I(t) = 1 − exp(−γt).
Time (t) and various rates/cost(s) are our input variables and their values are taken as:
λ = 0.001, α = 0.008, p = 0.98, q = 0.02, p1 = 0.95, q1 = 0.05, β1 = 0.85, γ = 10, β = 0.65, θ = 0.004
R0 = 40, CB = 5000, CI = 2000, CV = 2000.

10.2. Output Variables

Measures including reliability, MTSF, availability, profit and sensitivity functions are output
variables as obtained in sections 7, 8 and 9 respectively. Variations in output variables caused by
changes in input variables have been investigated and are discussed in the following subsections.

10.3. Trend of Reliability{R(t)} w.r.t. time(t) for varying λ

Taking the other parameter constant, as mentioned in subsection 10.1, the mathematical expres-
sions for reliability {R(t)} of the system for varied λ are as follows:
For λ = 0.001

R(t) = 0.991602 + 2.14908 × 10−10e−10.001t − 3.11 × 10−7e−0.85122t − 1.81 × 10−5e−0.658973t

+ 0.00841596e−0.00382477t
(48)

For λ = 0.002

R(t) = 0.983342 + 4.29906 × 10−10e−10.002t − 6.23 × 10−7e−0.852221t − 3.6 × 10−5e−0.659946t

+ 0.016695e−0.00385044t
(49)
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For λ = 0.003

R(t) = 0.975214 + 6.4499 × 10−10e−10.003t − 9.37 × 10−7e−0.853222t − 5.4 × 10−5e−0.660919t

+ 0.0248404e−0.00387604t
(50)

Fig.2 shows the trends of system reliability {R(t)} for varied (t, λ). Clearly, it goes down with the
rise in the values of variables t and λ respectively.

Figure 2: Reliability {R(t)} w.r.t time (t)

10.4. Trend of MTSF and Availability (AV∞) for varying rates

The numerical values of MTSF and availability (AV∞) are obtained for (λ, β) and (θ, γ) respectively.
The other parameters are kept fixed as assumed in subsection 10.1. The results are tabulated as in
Table 2 and 3 respectively. It is noted that,
(i) MTSF decreases as λ increases. However, it increases as β increases.
(ii) Availability (AV∞) increases with the increase in both the parameters θ as well as γ.

Table 2: MTSF w.r.t. λ for varied β

λ MTSF

β=0.55 β=0.65 β=0.75

0.0010 29215.21 31146.55 32740.61
0.0011 26563.96 28319.28 29768.06
0.0012 24354.58 25963.23 27290.93
0.0013 22485.11 23969.64 25194.91
0.0014 20882.71 22260.85 23398.31
0.0015 19493.96 20779.90 21841.26
0.0016 18278.80 19484.07 20478.85
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Table 3: AV∞ w.r.t. θ for varied γ

θ AV∞

γ=3 γ=5 γ=10

0.0020 0.9999343 0.9999346 0.9999348
0.0024 0.9999354 0.9999358 0.9999360
0.0028 0.9999364 0.9999369 0.9999371
0.0032 0.9999372 0.9999377 0.9999380
0.0036 0.9999379 0.9999384 0.9999387
0.0040 0.9999384 0.9999390 0.9999394

10.5. Trend of Profit function (P∞) for varying rates/costs

The trend of profit function (P∞) with respect to R0 for varied β and CB for varied R0 is revealed
by Fig.3 and Fig.4 respectively.Evidently,
(i)With the increase in R0 and β, P∞ increases.
(ii)With the increase in CB, P∞ decreases but increasing trend of P∞ is observed with increase in
R0.

Figure 3: P∞ versus R0 for varied β

Figure 4: P∞ versus CB for varied R0
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Bearing economic viability of the system in mind, the bounds obtained for R0 and CB are
shown in Table 4.

Table 4: Bounds for revenue/cost

Revenue/Cost Varied Bounds For
Parameter Profitability(P∞ > 0)

β=0.55 R0>54.69
R0 β=0.65 R0>51.90

β=0.75 R0>49.86

R0=30 CB<2202.7
CB R0=40 CB<3479.5

R0=50 CB<4756.8

10.6. Numerical calculations for sensitivity analysis

Using the values of incoming variables (as considered in subsection 10.1) Table 5 and 6 represents
the values of sensitivity and relative sensitivity functions (defined in section 9) for MTSF and
AV∞ respectively.

Table 5: Sensitivity and Relative sensitivity of MTSF w.r.t. different rates

Variable MTSF

(k) πk= ∂MTSF
∂k δk = πk(

k
MTSF )

λ -8174507 -1.048
α -685533 -0.352
β 8710.824 0.363
β1 129.51 0.007
γ 0.567 0.0004
θ -28955 -0.0074

Table 6: Sensitivity and Relative sensitivity of availability (AV∞) w.r.t. different rates

Variable Availability (AV∞)

(k) ρk= ∂A∞
∂k τk = ρk(

k
AV∞

)

λ 0.0012 2.4 × 10−6

α -0.0056 -4.5 × 10−5

β 0.0002 1.4 × 10−4

β1 -0.0001 -1.06 × 10−4

γ 2.71 × 10−8 1.4 × 10−7

θ 0.0014 5.6 × 10−6

Considering the absolute values of defined functions, Table 5 and Table 6 reveals that the
MTSF is more sensitive with respect to failure rate of main unit λ whereas AV∞ is impacted
more by failure rate of standby unit α. However, the order of incoming variables in which they
influence the MTSF and AV∞ is:
MTSF: λ > α > θ > β > β1 > γ.
AV∞ : β > β1 > α > θ > λ > γ.
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11. Conclusion

This article proposes a probabilistic model for two non-identical units’ standby system in which
standby unit may be inspected randomly to ensure its operability. Various performability indices
are derived. Keeping the cost factor in mind, bounds (lower/upper) for various costs are obtained
to account for economic and budgetary constraints. The numerical study has been carried out
for exponential case. Sensitivity analysis is performed for MTSF and steady-state availability of
the system. The developed model is quite lucrative for any commercial/industrial establishment
using such systems, in their production and operational commitments.
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Abstract
A new two-parameter negative binomial mixture distribution named as negative binomial-Akash distri-
bution is introduced in this paper. The proposed distribution is attained by compounding the negative
binomial distribution with the Akash distribution. Some of its special characteristics are also derived,
including factorial moments, mean, variance, index of dispersion etc. Furthermore, the behaviour of
mean, variance and index of dispersion are discussed. The parameters of the proposed distribution are
estimated using the maximum likelihood estimation method. This distribution can be used for modeling
overdispersed count data. The usefulness and application of the proposed distribution are illustrated
using two actual count data sets.

Keywords: Akash distribution, AIC, BIC, count data, method of maximum likelihood, mixture
distribution.

1. Introduction

Count data modeling plays a vital role in the statistical literature. Usually Poisson distribution(PD)
is used for analyzing the count data. It is a discrete probability distribution for modeling the
number of occurrences of an event in a given period of time. Equi-dispersion is a main feature of
PD which means that variance and mean are equal. However, in practice, the count data observed
often shows overdispersion with mean smaller than variance (or underdispersion with mean
greater than variance). Even in many fields, the count data shows the nature of the overdispersion.
When this happens, the PD cannot handle overdispersed count data. To overcome this problem,
an extension of PD is applicable. Therefore, the negative binomial distribution (NBD) was used
in modeling over dispersed count data. The NBD is in fact a Poisson mixture distribution in
which the distribution’s parameter itself is considered as a random variable which follows gamma
distribution. The NBD is a discrete failure distribution in a Bernoulli test sequence before a
predetermined success occurs. The application of NBD can be found in various sectors, such
as bio-statistics, accident statistics, actuarial science and economics. Although the NBD allows
excessive dispersion, if the count data shows an excessive number of zeros, the NBD also does not
work well. As a result, many studies have been conducted to find new distributions which provide
better fit for overdispersed count data. Experiments show that mixed distribution, such as Poisson
mixture and NB mixture distributions, provides better fit to count data than traditional count
distributions. Numerous studies show that mixing PD and NBD with some lifetime probability
distributions, such as the exponential distribution, provide better fit to overdispersed count data
with an excessive number of zeros. However, studies show that Lindley distribution(LD) is a better
model than one based on an exponential distribution. A detailed study of various mathematical
properties, parameter estimation and application of LD was conducted by Ghitany et al., [3]
and showed that LD is better than the exponential distribution. And this lifetime distribution
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was introduced by Lindley [5] . However, there are many cases where the LD is not adequate.
Therefore, Shanker [14] introduced a new lifetime distribution with a parameter called Akash
distribution to model lifetime data, which is more flexible than LD. He derived some important
statistical properties of the proposed distribution and the usefulness and applicability of this
distribution were also discussed and illustrated with two sets of real life data. In addition to these
models many more mixture distributions have been proposed and studied in the literature.

The Poisson mixture distribution was proposed by Sankaran[9] as a mixture of the PD with
the LD named Poisson Lindley distribution(PLD). Later Mishra [13] achieved a two-parameter
PLD by mixing the PD and the two-parameter Lindley distribution(TP-LD). The two-parameter
distribution of Lindley was proposed by Shanker and Mishra [10]. Further, Shanker and Tekie
[12] introduced a new quasi PLD by mixing the Poisson distribution with a new quasi Lindley
distribution(QLD)[11]. After that Zamani et al., [17] introduced a new mixed PD called the
Poisson-weighted Exponential distribution. Moreover, literature shows that NB mixtures provide
better fit for count data than the Poisson mixture distributions. A new distribution of NB mixture
by combining the NB with LD was proposed by Zamani and Ismail [16] which perform better
than PD and NBD for count data. Subsequently Lord and Geedipally [6] analyzed the crash data
containing excess number of zeroes using the NB-Lindley distribution(NB-LD) and compared
their performance with PD and the NBD and found that the NB-LD works better than PD and
the NBD. A new mixture distribution named NB TP-LD was proposed by Denthet et al.,[2].
Later a new three parameter mixed NBD called NB-Erlang distribution was introduced, and
the applications of this distribution were performed using two sets of actual count data [4].
Saengthong and Bodhisuwan[8] studied four parameters NB-Crack distribution and estimated
the parameters for the NB-Crack distribution using the MLE method and the moment method
and these methods were illustrated with an application to accident data. The NB-generalized
exponential distribution was introduced by Aryuyuen and Bodhisuwan [1]. Recently a new NB
mixture distribution named NB-Sushila distribution was proposed by Yamrubboon et al., [15].
The NB-LD is a special case of this distribution.

In this article we present a new mixed NBD attained by compounding the NBD with the
parameters s and θ = e−γ and Akash distribution with parameter α. Furthermore, we derive
various properties of the negative binomial-Akash distribution, including factorial moments (FM),
mean and second order moment. The parameters of the NB-Akash distribution are derived by
moment method and MLE method. We present the performance of the PD, the NBD, NB-LD and
NB-Akash distribution using two sets of real data in terms of chi-square test of goodness of fit,
log-likelihood, p-value, AIC(Akaike Information Criteria) and BIC(Bayesian Information Criteria)
In Section 2, subsection 1 deals with the NBD, subsection 2 discusses the Akash distribution,
subsection 3 discusses the proposed distribution called negative binomial-Akash(NB-Akash)
distribution and derives its probability mass function. In Section 3 we discuss distributional
characteristics such as FM, the mean and the second order moment and the behaviour of mean,
variance and index of dispersion(ID). The estimation of the parameters is reported in Section 4.
The usefulness and application of the NB-Akash distribution is discussed in Section 5. Finally,
the conclusion is discussed in Section 6.

2. Proposed Model

2.1. Negative Binomial Distribution

The NBD is used in cases where the data is overdispersed, that is, the mean smaller than the
variance, to model count data. A discrete random variable Z is said to be a NBD with the
parameters s and θ if its probability mass function (pmf) is

p(z) =
(

z + s − 1
z

)
θs(1 − θ)z; z = 0, 1, 2, ..., s > 0, 0 < θ < 1 (1)
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θ is the probability of success and the experiment is repeated many times to obtain s successes.
The FM of order m, the mean and the second order moment of NBD are

µ[m](Z) =
Γ(s + m)

Γ(s)
(1 − θ)m

θm ; m = 0, 1, 2, ... (2)

E(Z) =
s(1 − θ)

θ

E(Z2) =
s(1 − θ)[1 + s(1 − θ)]

θ2

The likelihood function (LF) of the NBD is given by

L(s, θ) =
n

∏
j=1

(
s + zj − 1

zj

)
θns(1 − θ)∑n

j=1 zj

The log-likelihood(LL) function is

ℓ(s, θ) =
n

∑
j=1

log
(

s + zj − 1
zj

)
+ nslog(θ) +

n

∑
j=1

zjlog(1 − θ)

2.2. Akash Distribution

The Akash distribution was proposed by [14]. It is a modified version of Lindley distribution. The
probability density function(pdf) of the one parameter Akash distribution with parameter α is

f (z; α) =
α3

α2 + 2
(1 + z2)e−αz; z > 0, α > 0 (3)

The mean, variance and the MGF of the Akash distribution are

E(Z) =
α2 + 6

α(α2 + 2)

V(Z) =
α4 + 16α + 12

α2(α2 + 2)2

MZ(t) =
α3

α2 + 2

[
1

α − t
+

2
(α − t)3

]
(4)

2.3. Construction of NB-Akash Distribution

Definition 2.1. If the NBD has parameters s > 0 and θ = e−γ, Z|γ ∼ NB(s, θ = e−γ), where
γ is distributed as Akash distribution with parameter α, γ ∼ Akash(α), then the r.v Z follows
NB-Akash distribution with parameters s and α, Z ∼ NB − Akash(s, α).

Theorem 1. Let Z ∼ NB − Akash(s, α) be a NB-Akash distribution as defined in Definition 2.1,
then the pmf of Z is

p(z) =
α3

α2 + 2

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)k

[
1

α + s + k
+

2
(α + s + k)3

]
; (5)

z = 0, 1, 2, ..., s, α > 0

Proof. Since Z|γ ∼ NB(s, θ = e−γ) and γ ∼ Akash(α), then pmf of Z can be attained by

p(z) =
∫ ∞

0
p(z|γ) f (γ; α)dγ (6)
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where

p(z|γ) =
(

z + s − 1
z

)
e−γs(1 − e−γ)z =

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)ke−γ(s+k) (7)

and f (γ; α) is the pdf of Akash distribution.
Substituting (7) in (6) we get

p(z) =

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)k

∫ ∞

0
e−γ(s+k) f (γ; α)dγ

=

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)k Mγ(−(s + k))

=
α3

α2 + 2

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)k

[
1

α + s + k
+

2
(α + s + k)3

]
■

Figure 1: The pmf of the NB-Akash distribution for various values of parameters

3. Some Distributional Characteristics

This section is devoted to the discussion of FM, mean, variance and Index of Dispersion of
NB-Akash distribution.

Theorem 2. If Z ∼ NB − Akash(s, α), then the FM of order m of Z is

µ[m](Z) =
α3

α2 + 2
Γ(s + m)

Γ(s)

m

∑
k=0

(
m
k

)
(−1)k

[
1

α − m + k
+

2
(α − m + k)3

]
(8)

Proof. If Z|γ ∼ NB(s, θ = e−γ ) and γ ∼ Akash(α), then the FM of the order m of Z can be
attained by

µ[m](Z) = Eγ[µ[m](Z|γ)]
The FM of order m of a NB mixture distribution where θ = e−γ is

µ[m](Z) = Eγ

[
Γ(s + m)

Γ(s)
(1 − e−γ)m

e−γm

]
=

Γ(s + m)

Γ(s)
Eγ(eγ − 1)m
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Using binomial expansion for the term (eγ − 1)i we can write

µ[m](Z) =
Γ(s + m)

Γ(s)

m

∑
k=0

(
m
k

)
(−1)kE(eγ(m−k))

=
Γ(s + m)

Γ(s)

m

∑
k=0

(
m
k

)
(−1)kMγ(m − k)

=
α3

α2 + 2
Γ(s + m)

Γ(s)

m

∑
k=0

(
m
k

)
(−1)k

[
1

α − (m − k)
+

2
(α − (m − k))3

]
■

The mean and variance are derived from (8) are given by

E(Z) = s
[

α3(α2 − 2α + 3)
(α − 1)3(α2 + 2)

− 1
]

(9)

E(Z2) = s(s + 1)
α3(α2 − 4α + 6)
(α − 2)3(α2 + 2)

− (2s2 + s)
α3(α2 − 2α + 3)
(α − 1)3(α2 + 2)

+ s2 (10)

V(Z) = s(s + 1)
α3(α2 − 4α + 6)
(α − 2)3(α2 + 2)

− (3s2 + s)
α3(α2 − 2α + 3)
(α − 1)3(α2 + 2)

+ 2s2 (11)

Index of Dispersion (ID) is defined as the ratio of the variance to the mean denoted by D=V(Z)/E(Z)

D =
s(s + 1) α3(α2−4α+6)

(α−2)3(α2+2) − (3s2 + s) α3(α2−2α+3)
(α−1)3(α2+2) + 2s2

s
[

α3(α2−2α+3)
(α−1)3(α2+2) − 1

] (12)

Table 1: Mean, variance and ID of NB-Akash distribution for various parameter values

Mean

s
α

3 4 5 6 7 8

3 2.5227 1.3457 0.9063 0.6834 0.5496 0.4604
4 3.3636 1.7942 1.2083 0.9112 0.7328 0.6138
5 4.2045 2.2428 1.5104 1.1389 0.9159 0.7673
6 5.0455 2.6914 1.8125 1.3667 1.0991 0.9208
7 5.8864 3.14 2.1146 1.5945 1.2823 1.0742
8 6.7273 3.5885 2.4167 1.8223 1.4655 1.2277

Variance

s
α

3 4 5 6 7 8

3 52.340 8.7693 3.4687 1.9336 1.2835 7.838
4 85.685 13.965 5.3878 2.943 1.9224 1.3938
5 126.98 20.299 7.688 4.1349 2.6668 1.9137
6 176.22 27.7689 10.370 5.5091 3.5168 2.5022
7 233.41 36.3754 13.433 7.0659 4.4724 3.1593
8 298.56 46.1187 16.878 8.805 5.5335 3.8850

Index of Dispersion

s
α

3 4 5 6 7 8

3 20.748 6.517 3.828 2.83 2.335 2.047
4 25.474 7.734 4.459 3.23 2.624 2.27
5 30.2 9.051 5.09 3.63 2.912 2.494
6 34.928 10.318 5.722 4.031 3.2 2.718
7 39.654 11.585 6.353 4.431 3.488 2.941
8 44.381 12.852 6.984 4.832 3.776 1.6055
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Table 1 sum up the behavior of mean, variance and ID of NB-Akash distribution for selected
parameter values, where ID is defined as the ratio of the variance to the mean denoted by
D=V(Z)/E(Z)

Figure 2 shows the behaviour of mean, variance and ID for different values of the parameters.
Since the ID is greater than 1, the distribution is suitable for overdispersed count data.

Figure 2: Behavior of mean, variance and ID for various values of parameters

4. Estimation of Parameters

The NB-Akash distribution parameters are evaluated using the moments method and the MLE
procedure.

4.1. Method of Moments

The NB-Akash distribution has two parameters to estimate, which can be estimated using the
first two moments about zero. For moment method, the parameters, s and α are evaluated by
equating the moments of the sample and population.

m1 = s
[

α3(α2 − 2α + 3)
(α − 1)3(α2 + 2)

− 1
]

(13)

m2 = s(s + 1)
α3(α2 − 4α + 6)
(α − 2)3(α2 + 2)

− (2s2 + s)
α3(α2 − 2α + 3)
(α − 1)3(α2 + 2)

+ s2 (14)

By equating equations 13 and 14 to the first two sample moments, the moment estimates of the
two parameters s and α can be obtained.
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4.2. Method of Maximum Likelihood

The LF of the NB − Akash(s, α) is

L(z; s, α) =
α3n

(α2 + 2)n

n

∏
j=1

(
s + zj − 1

zj

) zj

∑
k=0

(
zj

k

)
(−1)k

×
[

1
α + s + k

+
2

(α + s + k)3

]
Hence the LL function is

ℓ(z; s, α) = 3nlog(α)− nlog(α2 + 2)

+
n

∑
j=1

log(s + zj − 1)! − logzj! − log(s − 1)!

+
n

∑
j=1

log
zj

∑
k=0

(
zj

k

)
(−1)k

[
1

α + s + k
+

2
(α + s + k)3

]
The optimal estimates of the parameters are obtained by partially differentiating this equation
with respect to s and α.

∂

∂s
ℓ(z; s, α) =

n

∑
j=1

(Ψ(s + zj)− Ψ(s))

+
n

∑
j=1

∑
zj
k=0 (

zj
k )(−1)k

(
1

(α+s+k)2 +
6

(α+s+k)5

)
∑

zj
k=0 (

zj
k )(−1)k

(
1

α+s+k +
2

(α+s+k)3

) (15)

where Ψ(k) = Γ′(k)
Γ(k) is a digamma function

∂

∂α
ℓ(z; s, α) =

3n
α

− 2nα

α2 + 2

+
n

∑
j=1

∑
zj
k=0 (

zj
j )(−1)k

(
1

(α+s+k)2 +
6

(α+s+k)5

)
∑

zj
k=0 (

zj
k )(−1)k

(
1

α+s+k +
2

(α+s+k)3

) (16)

Maximum likelihood estimates are obtained by equating Eq.(15) and Eq.(16) to zero. But solving
these equations is complicated and difficult. So these equations are solved numerically using
Newton Raphson method.

5. Result and Discussion

This section explains the application and usefulness of the NB-Akash distribution. The proposed
distribution is compared with PD, NBD, NB-LD using two real-time data sets. The distributions
used for comparison are:

(a)Poisson distribution(PD): The pmf of Poisson distribution for the random variable Z can
be written as

P(Z = z) =
e−λλz

z!
; z = 0, 1, 2, ..., λ > 0 (17)

(b)Negative Binomial Distribution(NBD): If Z denotes a random variable which follows negative
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binomial distribution with parameters s and θ, then

P(Z = z) = [probability of having (s − 1) successes in (z + s − 1)

trial]× [probability of achieving sth success]

=

[(
z + s − 1

s − 1

)
θs−1(1 − θ)(z+s−1)−(s−1)

]
× θ

=

(
z + s − 1

z

)
θs(1 − θ)z; z = 0, 1, 2, ..., s > 0, 0 < θ < 1 (18)

(c)Negative Binomial Lindley Distribution (NB-LD ): The pmf of NB-LD can be written as:

P(Z = z) =
θ2

θ + 1

(
s + z − 1

z

) z

∑
j=0

(
z
j

)
(−1)j θ + s + j + 1

(θ + s + j)2 ; (19)

z = 0, 1, 2, ..., s, θ > 0

(d)Negative Binomial Akash Distribution (NB-Akash):The pmf of NB-Akash distribution is
given by

p(Z = z) =
α3

α2 + 2

(
z + s − 1

z

) z

∑
k=0

(
z
k

)
(−1)k

[
1

α + s + k
+

2
(α + s + k)3

]
; (20)

z = 0, 1, 2, ..., s, α > 0

Example 5.1. The data for this example is taken from the article [16] which provides information
on 9,461 motor insurance policies according to which the number of accidents of each policy is
recorded. The data set is overdispersed because the variance of the data is greater than its mean.
The result of the proposed distribution is compared with Poisson, negative binomial, negative
binomial-Lindley distributions. The parameter estimation and goodness-of-fit analysis are done
through R software. For model comparison, measures such as chi-square test, the p-value, LL,
AIC and BIC are used. Based on these measurements, the table 2 shows the NB-Akash distribution
performs better than the PD, NBD and NB-LD.

Table 2: Observed and expected frequencies of Example 5.1

No. of No. of Fitting of distribution
claims drivers Poisson NB NB-LD NB-Akash

0 7840 7638.3 7843.3 7853.6 7852.1
1 1317 1634.6 1290.2 1287.4 1288.4
2 239 174.9 257.7 247.6 247.9
3 42 12.5 54.5 54.2 54.3
4 14 0.7 11.8 13.2 13.2
5 4 0 2.6 3.5 3.5
6 4 0 .6 1 1
7 1 0 0.2 0.3 0.3
8 0 0 0.1 0.2 0.3

Estimated λ̂ = 0.214 ŝ = 0.7 ŝ = 4.63 ŝ = 4.7477
parameter θ̂ = 0.765 θ̂ = 23.55 α̂ = 23.2

degrees of freedom 2 3 4 4
Chi-square 293.8 8.66 6.997 6.79

p-value ≤ 0.01 0.01 0.072 0.079
LL -5490.78 -5348.00 -5344.7 -5344.678

AIC 10983.56 10700 10693.4 10693.36
BIC 10982.95 10699.22 10692.98 10692.94
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Example 5.2. The data are taken from the article [6]. The data contain fatal accidents at the exit
of the single vehicle highway on horizontal two-lane rural curves between 2003 and 2008. The
parameters are estimated using the MLE method and the Poisson, negative binomial, negative
binomial-Lindley distribution are fitted to the data. The performances of these distributions are
compared in terms of chi-square tests of goodness of fit, p-value, LL, AIC and BIC. Table 3 shows
the NB-Akash distribution performs better than the PD, NBD and NB-LD.

Table 3: Observed and expected frequencies of Example 5.2

No. of No. of Fitting of distribution
claims drivers Poisson NB NB-L NB-Akash

0 29087 28471.6 29204.8 29133.6 29099.6
1 2952 3918 2706 2855.5 2906.1
2 464 269.6 567.4 503.1 498
3 108 12.4 141.1 120.9 116.2
4 40 0.4 37.8 35.9 33.4
5 9 0 10.6 13.1 11.2
6 5 0 3 3.3 4.2
7 2 0 .9 3.3 1.7
8 3 0 0.3 0 0.8
9 1 0 0.1 0 0.4

10+ 1 0 0 3.3 0.4
Estimated λ̂ = 0.138 ŝ = 0.138 ŝ = 1.018 ŝ = 1.1881
parameter θ̂ = 0.2584 θ̂ = 9.212 α̂ = 10.364

degrees of freedom 2 3 4 4
Chi-square 2297.31 57.47 11.68 8.0666

p-value ≤ 0.01 ≤ 0.01 0.02 0.089
LL -14,208.1 -13,557.7 -13,529.8 -13528.43

AIC 28418.2 27119.4 27063.6 27060.86
BIC 28417.59 27118.98 27063.49 27060.75

6. Conclusion

In this paper a new mixed NB distribution named as negative binomial-Akash distribution is
proposed by mixing the negative binomial distribution and Akash distribution. Some of the
important characteristics such as FM, mean, variance and ID are studied, . The MLE method
is used to evaluate the parameters of the NB-Akash distribution. The utility of NB-Akash
distribution was illustrated using two real data sets. From the result it can be inferred that the
NB-Akash distribution provides better fit than the PD, NBD and NB-LD.
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Abstract

Modeling of datasets requires knowledge of their appropriate distributional assumptions. In this
research, we generalized the transmuted exponential-exponential distribution, and it was observed that
the addition of the shape parameter to the model proved to be helpful in improving the flexibility of the
model. Different characteristics, as well as structural properties of the model, were investigated and
presented in an explicit form. The probability density function of the order statistics and numerical
results for some descriptive statistics were obtained. A 95% confidence interval and interval widths,
together with biases and mean square errors (MSEs) of the mean estimates, were equally evaluated using
the Monte-Carlo simulation approach. To validate the flexibility of the model, we used real datasets and
the generalized transmuted exponential-exponential distribution (GTE-ED) outperformed the competing
distributions.

Keywords: Transmuted Exponential-Exponential distribution, descriptive statistics, Order statis-
tics, Confidence Interval

1. Introduction

The procedure of parameter(s) induction to a parent distribution has fascinated the attention of
numerous researchers in the recent years [1]. The addition of one or more shape parameter(s) to a
given baseline model strengthens the distribution, especially when studying its tail characteristics.
The parameter induction method has proved useful for boosting the fitness of a proposed model
[2].

In statistics, the modelling of datasets requires knowledge of appropriate distributional as-
sumptions about the datasets. In theory, the tractability of a probability distribution can be
helpful since it is easier to manipulate when modelling a dataset. The concept of generalizing
distributions was proposed by [3] which concern basically with raising the distribution function
of the baseline distribution say A(y) to the power of an arbitrary parameter c > 0 which give rise
to a new model or distribution of the form B(y) = (A(y))c f or c > 0. The parameter (c) plays an
important role in adding skewness to the function A(y). In the early 1990s, generalized models
were found to be useful in numerous areas of statistics and medical sciences due to their ability
to model different forms of data. These distributions were proposed by statisticians from various
fields. The concept of generating generalized distributions was used by [4] to developed a new

RT&A, No 2 (68) 
Volume 17, June 2022

492



Mohammed, A. S., Ugwuowo, F. I., Patrice, T. S., Muhammad, H.
GENERALIZED TRANSMUTED EXPONENTIAL-EXPONENTIAL

Weibull distribution named the exponentiated Weibull distribution. Furthermore, [5] studied the
general characteristics of the exponentiated Weibull distribution. A new two-parameter model
called exponentiated exponential distribution which outperformed other competing distribution
in the study when applied to a real dataset was studied by [6]. Notable authors like [7], [8]
and [9] applied the same methodology and developed the exponentiated type distributions, and
exponentiated generalized inverse Gaussian distribution respectively. The properties of exponen-
tiated transmuted generalized Rayleigh distribution was proposed and studied by [10] and [11]
studied the exponentiated generalized class of distributions. Consequently, the properties and
MLEs of generalized odd generalized exponential- exponential distribution was presented in an
explicit form by [12]. The properties and applications of the transmuted exponential-exponential
distribution (TE-ED) which has two scale parameters and a transmuted parameter. In practice, to
find the distribution that captures the sensitive part of a given dataset, there are many possibilities
was studied by [13]. We can either estimate non-parametrically the density function as well as the
distribution function and compare them with the existing distributions to see which one is closest
to the empirical distribution. However, in some situations for which we are obliged to consider
some characteristics such as hazard rate, many of the existing distributions cannot adequately
model a dataset with non-monotone hazard rates, and as such, these distributions are limited in
applications.
The current kinds of literature in mathematical statistics as highlighted by [14] pay more attention
to proposing more flexible distributions but give less concern to the hazard function of the
distributions. It is critical to generate distributions with varying failure rates because the hazard
rate function guides model selection [11]. Furthermore, many of the existing exponential extended
distributions cannot adequately describe some of the existing datasets, particularly the ones with
monotone and non-monotone hazard rates. For example, exponentiated exponential, transmuted
exponential-exponential, and Weibull exponential distribution, among others. This has opened
the room for more research that can account for monotone and non-monotone hazard rate data.

In this research, we are motivated by the above-mentioned rationale to develop a new
exponential extended distribution called the generalized transmuted exponential-exponential
distribution (GTE-ED). As compared to the existing exponential extended distributions, the
GTE-ED is more flexible and can model both monotone and non-monotone hazard rate data.

Table 1: Hazard rates behaviour for GTE-E and the competing distributions

Distribution Constant Increasing Decreasing Unimodal
GTE-E Yes Yes Yes Yes
TE-E Yes Yes No No
EE Yes Yes Yes No
E Yes No No No

From table 1, we can deduce that GTE-ED has more advantages over the competing distribu-
tions in the study and, as such, it will be more robust in analysing data with different hazard
rates.

2. The Generalized Transmuted Exponential-Exponential Distribution

Consider the density function a(y; λ, θ, α) = λα (1− θ) e−αλy + 2λθαe−2αλy and distribution func-
tion A(y; λ, θ, α) =

(
1− e−λαy) (1 + θe−λαy) of the transmuted exponential-exponential distribu-

tion with scale parameter α, λ > 0, transmuted parameter −1 ≤ θ ≤ 1 and y ≥ 0 (Mohammed
and Ugwuowo 2021). The cumulative distribution function and density of generalized transmuted
exponential distribution (GTE-ED) are respectively derived from the following functions:

B(y) = (A(y))c f or c > 0 (1)
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and,
b(y) = ca(y) (A(y))c−1 (2)

The GTE-ED is then defined as;

B(y) =
[(

1− e−λαy
) (

1 + θe−λαy
)]c

(3)

and by taking the differential of B(y), we have;

b(y) = c
[
λα (1− θ) e−α λy + 2λθαe−2α λy

] [(
1− e−λ α y

) (
1 + θe−λ α y

)]c−1
(4)

where, y ≥ 0, α, λ, c > 0 and − 1 ≤ θ ≤ 1.

Equation (4) can be written in the following contracted form;

b(y) = me−λ α( f+g+1)y
(
(1− θ) + 2θ e−αλy

)
(5)

where, m = c λ α
∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

)
Figure 1 displays some possible shapes of density and distribution function of the GTE-ED

for chosen values of the parameters a = α, b = λ, d = θ and c. Moreover, the density changes in
shape when the parameters take different values.

Figure 1: density and distribution function of GTE-ED

3. Statistical Properties of the model

Here, some statistical properties of GTE-ED including survival and hazard functions, quantile
function, moments, moment generating function, limiting behaviour, and order statistics are
considered and presented in an explicit form.

3.1. Survival and Hazard function

If Y has GTE− E(α, λ, c, θ) model, then the survival and hazard function are respectively given as;
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The survival function is defined mathematically as;

S(x) = 1− B(y)

S(y) = 1−
((

1− e−λαy
) (

1 + θe−λαy
))c

(6)

The hazard function is defined mathematically as;

h(y) = b(y)
1−B(y)

h(y) =
c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1[

1−
((

1− e−λαy
) (

1 + θe−λαy
))c
] (7)

Figures 3 and 4 displays some possible shapes of hazard and survival function (hf) of the GTE-ED
for chosen values of the parameters a = α, b = λ, d = θ and c. The hf can take the shape of either
increasing, decreasing, and unimodal as the parameter keep changing.

Figure 2: Hazard function of GTE-ED

Figure 3: Survival function of GTE-ED
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Limiting behaviour of the distribution

In this section, the asymptotic behaviour of the model is investigated by taking the limit
as y→ 0 and y→ ∞ of the distribution function.

lim
y→0

B(y) = lim
y→0

((
1− e−λαy) (1 + θe−λαy))c

= 0

and,

lim
y→∞

B(y) = lim
y→∞

((
1− e−λαy) (1 + θe−λαy))c

= 1

The results show that the GTE-ED is a valid distribution since lim
y→0

B(y) = 0 and lim
y→∞

B(y) = 1.

3.2. The rth moments and moment generating function

If Y has GTEE(α, λ, c, θ) then, the rth moments is given as;

E (yr) =
c Γ(r + 1)
(λ α)r

∞

∑
f ,g=0

(−1) f
(

c−1
f

) (
c−1
g

){ (1− θ)

( f + g + 1)r+1 +
2 θ

( f + g + 2)r+1

}
(8)

By using (8) the first two moments about the origin are obtained which can pave way in
finding the variance and the coefficient of variation.

When r =1,

E (y) = c
(λ α)

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)2 +
2 θ

( f+g+2)2

}
When r =2,

E
(
y2) = 2 c

(λ α)2

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)3 +
2 θ

( f+g+2)3

}
Let, A1 =

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)2 +
2 θ

( f+g+2)2

}
A2 =

∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)

( f+g+1)3 +
2 θ

( f+g+2)3

}
Therefore, E (y) = c

(λ α)
A1 and E

(
y2) = 2 c

(λ α)2 A2

If Y has GTE− E(α, λ, c, θ) then, the variance and the coefficient of variation of GTE-ED are
respectively given as;

Var(y) = 2 c
(λ α)2 A2 − c

(λ α)
A1 and C V =

√
2 c

(λ α)2
A2− c

(λ α)
A1

c
(λ α)

A1

Moment Generating Function

If Y has GTE− E(α, λ, c, θ) distribution then, the moment generating function (MGF) is given
as;

Ky(t) = c λ α
∞

∑
f ,g=0

(−1) f
(

c−1
f

) (
c−1
g

){ (1− θ)

λ α( f + g + 1)− t
+

2 θ

λ α( f + g + 2)− t

}
(9)

RT&A, No 2 (68) 
Volume 17, June 2022

496



Mohammed, A. S., Ugwuowo, F. I., Patrice, T. S., Muhammad, H.
GENERALIZED TRANSMUTED EXPONENTIAL-EXPONENTIAL

3.3. The rth moments about the mean

If Y has GTE− E(α, λ, c, θ) distribution then, the rth moments about the mean is given;

E(y− µ)r = c
∞
∑

f ,g=0

r
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (r
h
)

µh×{
(1−θ)Γ(r−h+1)

(( f+g+1))r−h+1(λ α)r−h +
2 θ Γ(r−h+1)

(( f+g+2))r−h+1(λ α)r−h

} (10)

If µ = 0 , the result will give us the moment about the origin.

E(yr) = c
∞
∑

f ,g=0
(−1) f

(
c−1
f

) (
c−1
g

){
(1−θ)Γ(r+1)

(( f+g+1))r+1(λ α)r +
2 θ Γ(r+1)

(( f+g+2))r+1(λ α)r

}
In order to find the skewness and kurtosis, we have to find the expressions for r =1,2,3 and 4.

The expressions are given below;

If r =1,

E(y− µ) = c
∞
∑

f ,g=0

1
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(2−h)

(( f+g+1))2−h(λ α)1−h +
2 θ Γ(2−h)

(( f+g+2))2−h(λ α)1−h

}
If r =2,

E(y− µ)2 = c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

}
If r =3,

E(y− µ)3 = c
∞
∑

f ,g=0

3
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(4−h)

(( f+g+1))4−h(λ α)3−h +
2 θ Γ(4−h)

(( f+g+2))4−h(λ α)3−h

}
If r =4,

E(y− µ)4 = c
∞
∑

f ,g=0

4
∑

h=0
(−1) f+h

(
c−1
f

) (
c−1
g

) (1
h
)

µh×{
(1−θ)Γ(5−h)

(( f+g+1))5−h(λ α)4−h +
2 θ Γ(5−h)

(( f+g+2))5−h(λ α)4−h

}
The coefficient of skewness are kurtosis of the GTE-ED are respectively given as;

C S = E(y−µ)3

(E(y−µ)2)
3
2

C S =
c

∞
∑

f ,g=0

3
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(4−h)

(( f+g+1))4−h(λ α)3−h +
2 θ Γ(4−h)

(( f+g+2))4−h(λ α)3−h

}
(

c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

}) 3
2

and

C K = E(y−µ)4

(E(y−µ)2)
2
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C K =
c

∞
∑

f ,g=0

4
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(5−h)

(( f+g+1))5−h(λ α)4−h +
2 θ Γ(5−h)

(( f+g+2))5−h(λ α)4−h

}
(

c
∞
∑

f ,g=0

2
∑

h=0
(−1) f+h

(
c−1
f

)
(c−1

g )(1
h)µh

{
(1−θ)Γ(3−h)

(( f+g+1))3−h(λ α)2−h +
2 θ Γ(3−h)

(( f+g+2))3−h(λ α)2−h

})2

Table 2: Some selected measures of Y ∼ GTE− E for some chosen values of the c and α = 2, λ = 0.3, θ = 0.5. The
standard errors (SEs) in bracket, where τ1 and τ2 stands for the mean deviation about mean and the mean
deviation about the median

Parameter (c)
1 2 3 4 5

Mean
1.2704

(0.1022)
1.9317

(0.1168)
2.3875

(0.1239)
2.7374

(0.1284)
3.0223

(0.1315)

Variance
2.1170

(0.5922)
2.7815

(0.6601)
3.1413

(0.6927)
3.3761

(0.7127)
3.5445

(0.7265)

Skewness
2.4648

(0.7892)
2.0447

(0.6535)
1.8681

(0.5996)
1.7658

(0.5696)
1.6971

(0.5501)

Kurtosis
12.1973
(7.7423)

9.5389
(5.6921)

8.5507
(4.9328)

8.0148
(4.5232)

7.6712
(4.2619)

τ1
0.4023

(0.0408)
0.4793

(0.0425)
0.5168

(0.0433)
0.5401

(0.0438)
0.5564

(0.0441)

τ2
0.3666

(0.0349)
0.4490

(0.0376)
0.4888

(0.0388)
0.5134

(0.0395)
0.5306
(0.04)

Table 3: Some selected measures of Y ∼ GTE− E for some chosen values of the c and α = 2, λ = 0.3, θ = −0.5 The
standard errors (SEs) in bracket, where τ1 and τ2 stands for the mean deviation about mean and the mean
deviation about the median

Parameter (c)
1 2 3 4 5

Mean
2.1051

(0.1317)
3.0448

(0.1414)
3.6465

(0.1450)
4.0886

(0.1468)
4.4381

(0.1479)

Variance
3.5522

(0.7368)
4.1168

(0.7727)
4.3324

(0.7859)
4.4453

(0.7927)
4.5147

(0.7969)

Skewness
1.7785

(0.5441)
1.5157

(0.4921)
1.4258
(0.4758

1.3808
(0.4679)

1.3539
(0.4633)

Kurtosis
7.8311

(4.3142)
6.7415

(3.5522)
6.4140

(3.3160)
6.2586

(3.0221)
6.1681

(3.1351)

τ1
0.5588

(0.0451)
0.06278
(0.0454)

0.6278
(0.0456)

0.6370
(0.0457)

0.6425
(0.0458)

τ2
0.5286

(0.0409)
0.5860

(0.0418)
0.6060

(0.0422)
0.6162

(0.0424)
0.6223

(0.0425)
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From tables 2 and 3, it can be deduced that as the value of the parameter (c) increases, the
mean, variance, mean deviation about mean and the mean deviation about the median also
increases. While the skewness and kurtosis decrease.

3.4. The Quantile function of the model

The quantile function can be defined mathematically as; Q(u) = In f {y ∈ < : u ≤ F(y)} for
which 0 < u < 1. Since the function F(y) is continuous and monotonically increasing, then we
have Y = F−1(u).

Corollary 1. The quantile function of the GTE-ED is given as;

Q(u) = − 1
α λ

ln

 θ − 1 +
√
(1 + θ)2 − 4 θ u

1
c

2 θ

 , 0 < u < 1 (11)

Note that, when u=0.5 (11) gives the median.

The effect of the shape and Transmuted parameter were examined on the skewness and
kurtosis and it was evaluated by using the relationship of Bowley (BS) and Moors (MK). Figures
(a) and (b) shows the plot of Bowley (BS) and Moors (MK) for GTE-ED for fixed parameters (α and
λ) respectively. The plot for the skewness shows a steady decrease as the parameter (c)increases
while for parameter θ shows a steady increase to a minimum point before decreasing as its
value increases. Again, the Kurtosis shows a steady decrease to a certain point and decreases
as the parameter (c) increases while for parameter θ, shows a steady decrease as its value increases.

SkB =
Q( 3

4 )−2Q( 1
2 )+Q( 1

4 )
Q( 3

4 )−Q( 1
4 )

and KuM =
Q( 7

8 )−Q( 5
8 )+Q( 3

8 )−Q( 1
8 )

Q( 6
8 )−Q( 2

8 )

Figure 4: 3D diagram for Skewness and kurtosis
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3.5. Order Statistics of the GTE-ED

The general form of the density of the hth order statistics for a given random samples y1, y2, ..., yn

from the distribution function is obtained as; bn,h (y) = n!
(h−1)!(n−h)! b(y)B(y)h−1 (1− B(y))n−h.

Therefore, by substituting the resulting density as well as the distribution function of the GTE-ED
we have;

bn,h (y) = n!
(h−1)!(n−h)!

(
c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(((

1− e−λαy) (1 + θe−λαy))c
)h−1 (

1−
((

1− e−λαy) (1 + θe−λαy))c
)n−h (12)

The distribution of the minimum and maximum order statistics for the GTE-ED are respectively
given as;

bn,1 (y) = n
(

c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(

1−
((

1− e−λαy) (1 + θe−λαy))c
)n−1

and,

bn,n (y) = n
(

c
(
λα (1− θ) e−αλy + 2λθαe−2αλy) ((1− e−λαy) (1 + θe−λαy))c−1

)
×
(((

1− e−λαy) (1 + θe−λαy))c
)n−1

4. Estimation of the Parameters of GTE-ED

If the parameters of the GTE-ED are unknown, then the maximum likelihood estimates of the
parameters are presented below, let y1, y2, ..., yn be the random sample of size (n) from the GTE-ED,
then the log-likelihood function of (4) is obtained as;

ll(Ψ) = n log α + n log λ + n log c− λα
n
∑

i=1
yi +

n
∑

i=1
log
(
1− θ + 2θe−α λ yi

)
+(c− 1)

n
∑

i=1
log
(
1 + θe−α λ yi − e−α λ yi − θe−2 α λ yi

) (13)

By differentiating the ll(Ψ) with respect to the parameters. The following results were ob-
tained;

δll(Ψ)
δα = n

α − λ
n
∑

i=1
yi − 2λθ

n
∑

i=1

yie−α λ yi

(1−θ+2θe−α λ yi )

+(c− 1)
n
∑

i=1

λ yi e−α λ yi−θ λ yi e−α λ yi+2 θ λ yi e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δλ = n

λ − α
n
∑

i=1
yi − 2α θ

n
∑

i=1

yie−α λ yi

(1−θ+2θe−α λ yi )

+(c− 1)
n
∑

i=1

α yi e−α λ yi−θ α yi e−α λ yi+2 θ α yi e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δθ =

n
∑

i=1

2e−α λ yi−1
(1−θ+2θe−α λ yi )

+ (c− 1)
n
∑

i=1

e−α λ yi− e−2α λ yi

(1+θe−α λ yi−e−α λ yi−θe−2α λ yi )

δll(Ψ)
δc = n

c +
n
∑

i=1
log
(
1 + θe−α λ y − e−α λ y − θe−2α λ y)

The ML Estimator
_

Φ =
(
_
α,

_

λ, _c ,
_

θ
)T

of the parameter vector is gotten by finding the solution

of the set of nonlinear system of equations. The results will give the MLEs _
α,

_

λ, _c and
_

θ . We
applied an optimization technique to numerically maximize the log- likelihood (LL) function
given in (13).
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5. Simulation Study

5.1. The Design

Here, a simulation study is conducted to assess the performance of the maximum likelihood
estimation method as expressed above. So also, 10,000 random samples were generated for
different sizes, n= 20, 50, 100, 200, 300, and 500 from GTE-ED. Furthermore, the estimates, Biases,
MSEs, Confidence Interval (C. Is) at 95%, widths are evaluated. The steps are:

i Choose the initial values of the parameters and the sample size say (n).

ii Draw a random sample of size (n) from the GTE-ED using the quantile function given in
(11).

iii Evaluate the estimates of the parameters using the approach of maximum likelihood.

iv Repeat steps i and ii for N=10,000 times to evaluate the bias, mean square error, 95% C.I
and the interval width of the given estimates.

Table 4: Results for the MLEs, Biases and MSEs, 95% C. Is, and Widths of the GTE-ED for α = 3, λ = 2, c =
0.5, θ = 0.5

C I
Sample Parameter Esimate Bias MSE LC UC width

α 3.1657 0.1657 0.1334 2.9580 3.3734 0.4154
n=20 λ 2.2169 0.2169 0.2664 1.7868 2.6469 0.8601

c 0.5379 0.0379 0.0345 0.4732 0.6026 0.1294
θ 0.3583 -0.1417 0.3579 -0.3038 1.0203 1.13241

α 3.1072 0.1072 0.0794 2.9741 3.2403 0.2662
n=50 λ 2.1433 0.1433 0.1680 1.8543 2.4324 0.5782

c 0.5022 0.0022 0.0105 0.4817 0.5227 0.0410
θ 0.3480 -0.1520 0.2873 -0.1697 0.8658 1.0355

α 3.0888 0.0888 0.0640 2.9787 3.1989 0.2206
n=100 λ 2.1280 0.1280 0.1416 1.8827 2.3734 0.4907

c 0.4952 -0.0048 0.0050 0.4854 0.5051 0.0196
θ 0.3514 -0.1486 0.2227 -0.0419 0.7447 0.7866

α 3.0670 0.0670 0.0510 2.9757 3.1582 0.1825
n=200 λ 2.0978 0.0978 0.1165 1.8883 2.3073 0.4190

c 0.4943 -0.0057 0.0023 0.4898 0.4988 0.0090
θ 0.3841 -0.1159 0.1552 0.1063 0.6620 0.5557

α 3.0539 0.0539 0.0429 2.9754 3.1323 0.1568
n=300 λ 2.0787 0.0787 0.0962 1.9023 2.2551 0.3528

c 0.4942 -0.0058 0.0015 0.4913 0.4972 0.0058
θ 0.4035 -0.0965 0.1228 0.1811 0.6258 0.4448

α 3.0430 0.0430 0.0346 2.9788 3.1072 0.1284
n=500 λ 2.0580 0.0580 0.0770 1.9135 2.2024 0.2888

c 0.4.951 -0.0049 0.0008 0.4935 0.4967 0.0032
θ 0.4267 -0.0733 0.0920 0.2569 0.5964 0.3395

The bias and MSE are respectively calculated as;
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B
(
Ψj
)
= 1

N

N
∑

i=1

(_

Ψj −Ψj

)
and MSE

(
Ψj
)
= 1

N

N
∑

i=1

(_

Ψj −Ψj

)2
where,

_

Ψj stands for the esti-

mate of Ψj for j = 1, ..., 4.

Table 5: Results for the MLEs, Biases and MSEs, 95% C. Is, and Widths of the GTE-ED for α = 0.3, λ = 0.5, c =
1, θ = 0.7

C I
Sample Parameter Esimate Bias MSE LC UC width

α 0.3361 0.0361 0.0108 0.3175 0.3547 0.0372
n=20 λ 0.5095 0.0095 0.0126 0.4850 0.5340 0.0490

c 1.1427 0.1427 0.2028 0.7852 1.5002 0.7150
θ 0.6781 -0.0219 0.1180 0.4478 0.9084 0.9084

α 0.3225 0.0225 0.0057 0.0057 0.3327 0.0204
n=50 λ 0.5003 0.0003 0.0007 0.4867 0.5140 0.0273

c 1.0390 0.0390 0.0486 0.9467 1.1314 0.1847
θ 0.6606 -0.0394 0.1028 0.4622 0.8590 0.3968

α 0.3168 0.0168 0.0038 0.3098 0.3237 0.0139
n=100 λ 0.4993 -0.0007 0.0046 0.4903 0.5082 0.0180

c 1.0111 0.0111 0.0211 0.9701 1.0523 0.0822
θ 0.6523 -0.0477 0.0905 0.4795 0.8252 0.3458

α 0.3101 0.0101 0.0026 0.3051 0.3150 0.0099
n=200 λ 0.5007 0.0007 0.0028 0.4952 0.4952 0.0110

c 0.9992 -0.0008 0.0099 0.9798 1.0186 0.0389
θ 0.6608 -0.0392 0.0705 0.5257 0.7960 0.2703

α 0.3083 0.0083 0.0023 0.3040 0.3126 0.0086
n=300 λ 0.5016 0.0016 0.0022 0.4972 0.5060 0.0088

c 0.9948 -0.0052 0.0067 0.9817 1.0080 0.0263
θ 0.6599 -0.0401 0.0626 0.5403 0.7794 0.2390

α 0.3067 0.0067 0.0019 0.3031 0.3103 0.0071
n=500 λ 0.5015 0.0015 0.0018 0.4979 0.5051 0.0072

c 0.9935 -0.0065 0.0042 0.9854 1.0015 0.0162
θ 0.6649 -0.0351 0.0522 0.5651 0.7647 0.1997

Interpretation of the results for tables 3 and 4:

a . The difference between the true and the estimated values of the parameters are relatively
small.

b . As the sample size increases the estimates converge toward the true values of the
parameters.

c . The interval widths, biases and MSEs decrease with an increase in sample size.
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6. Applications

6.1. Datasets

The first data is on the remission times (in months) of a randomly selected (128) bladder cancer
patients, which can be found in [15]. The second data was used by [16] and it represents the
number of million revolutions before failure for each of the twenty-three ball bearings in the life
tests. These datasets are used in order to check the flexibility of the proposed distribution over
the competing distribution in the study.

Table 6: Summary Statistics for the first dataset

Min. Mean Variance Max. Skewness Kurtosis
0.080 9.366 110.425 79.050 3.2866 18.4831

Table 7: Summary Statistics for the second dataset

Min. Mean Variance Max. Skewness Kurtosis
17.88 72.23 1404.783 173.40 0.9419 3.4889

6.2. The Criteria

The generalized transmuted exponential-exponential (GTE-ED), transmuted exponential-exponential
distribution (TE-ED), exponentiated exponential distribution (EED) and exponential distribution
(ED) are compared using some goodness-of-fit statistics, including Akaike Information Crite-
rion (AIC), Cramer-von Mises Criterion (W), Anderson-Darling Criterion (AD) and Kolmogorov
Smirnov (KS). Furthermore, the model with the smallest values of these criteria indicates better
fit. The R software (AdequacyModel package) is employed to evaluate these statistics.

Table 8: Estimated parameters for the first data

Model _
α

_

λ
_

θ
_c

GTE-E 0.8313 0.1007 0.7914 1.3506
TE-E 0.6401 0.0922 0.8898 -
EE 0.1199 - - 1.2222
E 0.1066 - - -

Table 9: Goodness-of-fit statistics for the first dataset

Model -LL AIC AD W KS
GTE-E 410.8999 829.7998 0.3314 0.0523 0.0523
TE-E 413.5223 833.0447 0.4945 0.0824 0.0725
EE 413.0901 830.1802 0.6705 0.1116 0.0778
E 414.3419 830.6841 0.7156 0.1192 0.0844

Tables 8 and 10 give the estimates of the parameters for the GTE-ED and the competing models
in the study. The values of the computed goodness-of-fits statistics are given in tables 9 and
11. It was observed that GTE-ED has the lowest values of these statistics among the competing
distributions in this study. Hence, the GTE-ED provides a better fit to the datasets.

Figures 5 and 6 show that the GTE-ED fits both the datasets well compared to the competing
distributions.
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Table 10: Estimated parameters for the second data

Model _
α

_

λ
_

θ
_c

GTE-E 0.1516 0.2095 0.1407 5.8194
TE-E 0.1053 0.2037 -0.9996 -
EE 0.0150 - - 1.3535
E 0.0139 - - -

Table 11: Goodness-of-fit statistics for the second dataset

Model -LL AIC AD W KS
GTE-E 112.9714 233.9428 0.1868 0.0315 0.1037
TE-E 116.0201 238.0402 0.2064 0.0367 0.2172
EE 118.8677 241.7355 0.2110 0.0377 0.2226
E 121.4366 244.8731 0.2157 0.0386 0.3072

Figure 5: Shows the estimated densities and ecdf for first data

Figure 6: Shows the estimated densities and ecdf for second data
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7. Conclusion

This research proposed an extension of the transmuted exponential-exponential distribution
named the generalized transmuted exponential-exponential distribution. Expressions for some of
its statistical properties, including the moments, moment generating function, limiting behaviour,
and quantile function, were explicitly derived. A simulation study was conducted, and numerical
values for some of the descriptive statistics were obtained and presented. The method of the
maximum likelihood is adopted in estimating the unknown parameters of GTE-ED. A 95%
confidence interval and interval widths together with biases, mean square errors (MSEs) of the
mean estimates were equally presented on a table for different parameter values. An application
to real datasets proved that the GTE-ED outperformed the competing distributions with lower
values of the goodness-of-fit statistics used in this research.
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Abstract

The aim of this paper is to analyze a single server batch service queue model with feedback and second
optional service under a transient and steady state environment. The server provides the first essential
service (FES) to all customers who arrive at the system and the second optional service (SOS) to those
who need it. After completion of FES, if the customer is not satisfied with the service, he may rejoin the
queue or may opt for SOS or exit the system with a particular probability. The service times of both FES
and SOS follow exponential distribution. We use the probability generating function and the Laplace
transform expression to obtain probabilities in the transient state after inverting Laplace transforms into
the time domain. Also, we apply the Tauberian property in the Laplace transform expression to get the
steady state probabilities. Finally, some performance measures and numerical results are provided.

Keywords: Batch service queue; Transient state; Feedback; First essential service; Second optional
service.

I. Introduction

In queue theory, the customers are served one by one or served in batches whose sizes are
fixed or variable in size. When the customers are served, they will depart, but when the customer
does not seem satisfied they will return to the queue again to be served; this situation is called
feedback. Queueing model with feedback have been studied by many researchers such as [1]
who is the first to introduce the concept of feedback mechanism in queues which includes the
probability of the customer to back the counter and take the service. Later, [2] investigated a single
server with feedback wherein the queue is formed in two categories, one is formed in a waiting
room and the other is formed in the service room and obtained the queue size, waiting time, and
total time spent in the system. [3] presented a single server model with limiting behavior of the
waiting time process and having a certain feedback property. Lemoine [3] classified the queue
into two types: the primary queue where customers receive a maximum of time units of service.
The secondary queue is formed from the customers who are not satisfied with the service in the
primary queue. Those customers are attended to only when all customers who enter the system
before them have departed and when the primary waiting room is empty.

[4] discussed M/G/1/∞ queueing system with instantaneous Bernoulli feedback. They
obtained the time-stationary distribution of the number of customers in the system at an arbitrary
epoch. The queueing system with delayed feedback has been studied by [5]. They considered two
servers; a lower server with a general service and an upper server with an exponential service.
The decision to feedback or not depends on the queue length at the two servers. Other existing
works on feedback are found in [7], [10], [9], [11], [12], [14], [15], [16], [17], etc.

In many real service systems, customers want both essential and optional services provided by
the server. More precisely, we may consider a system where a single server’s service is classified
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into two phases. The first phase is required for all customers and only some of them are routed
to the second phase service. [6] studied a single server batch arrival and arbitrary service time
distribution queue system with second multi-optional service and a finite number of immediate
Bernoulli feedback. They provided a steady state analysis of the model, including the asymptotic
behavior under a high rate of retrials.
[8] studied the priority retrial queue with immediate Bernoulli feedback and second multi-
optional service. In this case, the customers’ feedback after completing both phases of services.
They use the embedded Markov chain technique and probability generating function to obtain
the queue size and orbit size. [13] and [17] presented the queue system with batch arrival and
multi-optional service with feedback. They consider two kinds of independent customers’ arrival:
positive and negative arrival. Positive arrivals in batches with the Poisson process and negative
arrived singly with the Poisson process. The arrival of a negative customer removes the positive
customer in service from the system and makes down the server.
The batch service queues have potential applications in various areas, including manufacturing,
production, computer networks, cargo loading and unloading at a harbor, etc. In this situation,
the number of items is processed in batches with a limit on the number of items taken at a time
for processing. A number of researchers have made substantial contributions to batch service
models. [19] investigated a batch service retrial system with feedback in a steady state. They
considered two kinds of the arrival of the customers; the positive customer who is served in batch
and the negative customer who arrives in the system and removes the positive customer. Some
additional works on queuing with batch service are found in [20], [21], etc. One can study a
queue system in two states viz., : transient and steady state. However, most of the literature works
involved steady-state only. Steady state results are inappropriate in cases where the time horizon
of operation is finite. In this situation, we need time-dependent (transient state) to analyze the
system behavior by tracking down the system operation at any instant of time. The transient state
has been widely studied in [23], [22], and the references therein.
This paper extends the work of [18] by including the feedback policy. The inclusion of feedback,
batch service and SOS makes the model more adaptable. This motivates us to explore the Marko-
vian batch service queue with feedback and SOS under transient and steady state environments.
The rest of the paper is organized in the following way: Section 2 contains a discussion of the
model as well as the mathematical formulation of differential difference equations. We use the
Laplace transform and probability generating functions with Rouche’s theorem in Section 3 to
develop the system transient state equations. Section 4 presents the steady-state analysis, followed
by Section 5 with performance measures. Section 6 presents the numerical investigation and
conclusions are made in Section 7.

II. Mathematical Formulation and Description of the Model

Consider a feedback of single batch service M/M[b]/1 queue system with SOS, in which the
arrival of customers follows a Poison process with parameter λ. During FES and SOS the service
times are distributed exponentially with rate µ1 and µ2, respectively. The services are rendered in
batches that does not exceed the maximum capacity b. This means if the server finds the units
that are equal or fewer than b in the waiting line, then he serves them all in the batch. Otherwise,
if he sees in excess of b units in the waiting line, he takes a batch of b on a first-come, first-served,
and the other units remain waiting in the queue. All arriving units required FES, and after a batch
of units complete the FES, the batch (on the same server) may opt for SOS with the probability r0
or leave the system with probability r1. Further, if the batch is unsatisfied with the service in FES,
they rejoin the queue (feedback) with probability (r2 = 1− r0 − r1).

Model Formulation of Differential Difference Equations

The single batch service queue with SOS can be modeled by continuous time of two dimensional
Markov process {(K(t), W(t)); t ≥ 0}; where
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Figure 1: Transition State diagram for b=2

K(t) is number of units in a line at time t,
W(t) is server state at time t with

W(t) =
{

1, FES providing by server,
2, SOS providing by server.

The state-space of a Markov process is given as follows:

Ω = {(m, j); m ≥ 0; j = 1, 2} .

The probabilities in transient state are given by

Pm,j(t) = Pr {K(t) = m, W(t) = j} ; m ≥ 0, j = 1, 2

where the probability in transient state is Pm,j(t) when m units in the waiting line at time t and
the server is rendering FES (j = 1) or SOS (j = 2).
O(t) is the probability in transient state when the waiting line is empty at time t and the server is
idle. The differential difference equations for our model using Markov theory are as follows:

O′(t) = −λO(t) + r1µ1P0,1(t) + µ2P0,2(t), (1)

P′0,1(t) = −(λ + r0µ1 + r1µ1)P0,1(t) + λO(t) + r1µ1

b

∑
i=1

Pi,1(t) + µ2

b

∑
i=1

Pi,2(t), (2)

P′m,1(t) = −(λ + r0µ1 + r1µ1)Pm,1(t) + λPm−1,1(t) + r1µ1Pm+b,1(t) + µ2Pm+b,2(t),

m ≥ 1, (3)

P′0,2(t) = −(λ + µ2)P0,2(t) + r0µ1P0,1(t), (4)

P′m,2(t) = −(λ + µ2)Pm,2(t) + λPm−1,2(t) + r0µ1Pm,1(t), m ≥ 1. (5)

III. The Model’s Transient Solution

In this part, the Laplace transform (L.T) and probability generating function are employed to get
the transient probability of the number of units in the waiting line during server idle and busy.
We consider that time has been calculated from the moment that the server has taken a batch for
service, without leaving none in the queue. i.e, P0,1(0) = 1. Let us denote the Laplace transform
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for O(t), Pm,1(t) Pm,2(t) as O∗(s), P∗m,1(s) and P∗m,2(s), respectively. Taking L.T of equations (1),
(2), (3), (4), (5), we get

(s + λ)O∗(s) = r1µ1P∗0,1(s) + µ2P∗0,2(s), (6)

(s + λ + r0µ1 + r1µ1)P∗0,1(s) = 1 + λO∗(s) + r1µ1

b

∑
i=1

P∗i,1(s) + µ2

b

∑
i=1

P∗i,2(s), (7)

(s + λ + r0µ1 + r1µ1)P∗m,1(s) = λP∗m−1,1(s) + r1µ1P∗m+b,1(s) + µ2P∗m+b,2(s), m ≥ 1, (8)

(s + λ + µ2)P∗0,2(s) = r0µ1P∗0,1(s), (9)

(s + λ + µ2)P∗m,2(s) = λP∗m−1,2(s) + r0µ1P∗m,1(s), m ≥ 1. (10)

The probability generating functions are defined as:

P1(s, z) =
∞

∑
m=0

P∗m,1(s)z
m, P2(s, z) =

∞

∑
m=0

P∗m,2(s)z
m.

Multiplying equations (7) and (8) by zm then summing over m = 0 to m = ∞, adding to (6) and
re-arranging the terms, we have

P1(s, z) =

zb(sO∗(s)− 1) + (1− zb)
(

r1µ1 ∑b−1
m=0 P∗m,1(s)z

m + µ2 ∑b−1
m=0 P∗m,2(s)z

m
)

− µ2P2(s, z)
λzb+1 − (s + λ + µ1)zb + r1µ1

. (11)

Similarly, from equations (9) and (10), we get

P2(s, z) =
−r0µ1P1(s, z)

λz− (s + λ + µ2)
. (12)

Substituting equation (12) in equation (11), we have

P1(s, z) =

[
zb(sO∗(s)− 1) + (1− zb)

[
r1µ1 ∑b−1

m=0 P∗m,1(s)z
m + µ2 ∑b−1

m=0 P∗m,2(s)z
m
]]

(λz− (s + λ + µ2))

λ2zb+2 − λ(2s + 2λ + r0µ1 + r1µ2 + µ2)zb+1 + (s + λ ++r0µ1 + r1µ2)(s + λ + µ2)zb

+ λr1µ1z− (s + λ + µ2)r1µ1 − r0µ1µ2

.

(13)
The expression for P1(s, z) has the characteristic of converging within the unit circle. We can

see that the denominator of P1(s, z) has exactly b + 2 zeros. Applying the Rouche’s theorem for
denominator of P1(s, z) to find the number of zeros on and within the unit circle of the analytic
function, we observe that b of these roots lie inside or on the unit circle, one of zeros is z = 1
and others b− 1, lies inside the circle and must agree with zeros of the numerator of P1(s, z) to
be converged. As a result, one zero in the denominator of P1(s, z) is canceled by P1(s, z) of the
numerator, so that the two remaining zeros of the denominator are found outside the unit circle
and let us consider them as z0 and z1. Since two polynomial differ by at most a multiplicative
function (constant), let us call it A(s) and is independent of z. Therefore, equation (13) can be
written as

P1(s, z) =
(λz− (s + λ + µ2))(1− zb)A(s)

(z− 1)(z− z0)(z− z1)
. (14)

Applying the rule of L’Hospital and setting z = 1 in (14), we obtain

P1(s, 1) =
(s + µ2)bA(s)
(1− z0)(1− z1)

, (15)

Taking z = 1 in (12), we get

P2(s, 1) =
r0µ1P1(s, 1)
(s + µ2)

. (16)
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Applying the normalization condition

P1(s, 1) + P2(s, 1) + O∗(s) =
1
s

,

we get

P1(s, 1) =
(1− sO∗(s))(s + µ2)

s(s + r0µ1 + µ2)
. (17)

Using (15) and (17), we can determined the function A(s) as

A(s) =
(1− sO∗(s))(1− z0)(1− z1)

s(s + r0µ1 + µ2)b
. (18)

Substituting (18) into (14), we have

P1(s, z) =
(1− sO∗(s))(1− z0)(1− z1)(λz− (s + λ + µ2))(1− zb)

s(s + r0µ1 + µ2)b(z− 1)(z− z0)(z− z1)
. (19)

When z = 0, equation (19) becomes

P∗0,1(s) =
(1− sO∗(s))(q0 − 1)(q1 − 1)(s + λ + µ2)

s(s + r0µ1 + µ2)b
, (20)

where q0 = 1
z0

, q1 = 1
z1

. Note that P∗0,1(s) is the L.T of the probability of empty queue and server
providing FES.
From equation (12), when z = 0 and using (20), we have

P∗0,2(s) =
r0µ1(1− sO∗(s))(q0 − 1)(q1 − 1)

s(s + r0µ1 + µ2)b
. (21)

P∗0,2(s) is the L.T of the probability of empty queue and server providing SOS.
Using (6), (20) and equation (21), we can determine O∗(s) as below:

O∗(s) =
r1µ1(q0 − 1)(q1 − 1)(s + λ + µ2)r0µ1µ2(q0 − 1)(q1 − 1)

s [(s + λ)(s + r0µ1 + µ2)b + (r1µ1(s + λ + µ2) + r0µ1µ2)(q0 − 1)(q1 − 1)]
. (22)

Equation (22) indicates the Laplace transform of the state probability that the server is idle and
the queue is empty.

IV. Steady State Analysis

Using the Tauberian property, we get the closed form expressions of the stationary probability
for the number of items in the waiting line while the server is idle or active in FES and SOS. We
define the stationary probabilities.

O = lim
t→∞

O(t) = lim
s→0

sO∗(s), (23)

Pm,1 = lim
t→∞

Pm,1(t) = lim
s→0

sP∗m,1(s), (24)

Pm,2 = lim
t→∞

Pm,2(t) = lim
s→0

sP∗m,2(s). (25)

Assuming that the steady state probabilities exist, the equations (20), (21) and (22) are, respectively
given by

P0,1 =
(1−O)(q0 − 1)(q1 − 1)(λ + µ2)

(r0µ1 + µ2)b
,

P0,2 =
r0µ1(1−O)(q0 − 1)(q1 − 1)

(r0µ1 + µ2)b
,

O =
r1µ1(q0 − 1)(q1 − 1)(λ + µ2) + r0µ1µ2(q0 − 1)(q1 − 1)

λ(r0µ1 + µ2)b + (r1µ1(λ + µ2) + r0µ1µ2)(q0 − 1)(q1 − 1)
.

As a special case, if r2 = 0, the model reduces to M/Mb/1 queueing system with second
optional service [18].
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V. Performance Measures

The measures of performance are key aspects of queueing models as they demonstrate the models
efficient and effective index. In this section, we present the probability when the server is active
with FES or SOS and the anticipated number of units in the waiting line during the server busy
with FES or SOS.

I. The Measures of Performance in Transient State

The probability while the server is active with FES

P[FES](s) =
∞

∑
m=0

P∗m,1(s) =
(1− sO∗(s))(s + µ2)

s(s + r0µ1 + µ2)
. (26)

Similarly, the probability while the server is active with SOS

P[SOS](s) =
∞

∑
m=0

P∗m,2(s) =
r0µ1(1− sO∗(s))
s(s + r0µ1 + µ2)

. (27)

When the server is active with FES or SOS, the probability is

Pb(s) =
∞

∑
m=0

P∗m,1(s) +
∞

∑
m=0

P∗m,2(s). (28)

When the server is active with FES the anticipated number of items in the waiting line is

E[FES](s) =
∞

∑
m=0

mP∗m,1(s).

Taking derivative of (19) with respect to z, putting z = 1, then applying the rule of L’Hospital, the
expected number of units in the waiting line when the server is active with FES is obtained as

∞

∑
m=0

mP∗m,1(s) =

[[((s + µ2)b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [(s + µ2)b(4q0q1 − 2(q0 + q1))]]
(1− sO∗(s))

2b (s(s + r0µ1 + µ2)(q0 − 1)(q1 − 1))
.

(29)
Similarly, from equations (12) and (29), the anticipated number of units in the waiting line when the server
is active with SOS is given by

E[SOS](s) =
∞

∑
m=0

mP∗m,2(s)

=

[[(b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [b(4q0q1 − 2(q0 + q1))]]
r0µ1(1− sO∗(s))

2b (s(s + r0µ1 + µ2)(q0 − 1)(q1 − 1))

+
λr0µ1(1− sO∗(s))

s(s + µ2)(s + r0µ1 + µ2)
. (30)

The overall queue length is given by

Lq(s) =
∞

∑
m=1

mPm,1(s) +
∞

∑
m=1

mPm,2(s) = E[FES](s) + E[SOS](s). (31)

The overall amount of time a unit spends in the waiting line is determined by

Wq(s) =
∑∞

m=1 mPm,1(s) + ∑∞
m=1 mPm,2(s)

λ
=

E[FES](s) + E[SOS](s)
λ

. (32)
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II. The Measures of Performance in Steady State

Suppose the limit of (23), (24) and (25) exist, the steady state quantities from (26) to (32), respec-
tively are denoted by

P[FES] =
∞

∑
n=0

Pm,1 =
(1−O)µ2

r0µ1 + µ2
,

P[SOS] =
∞

∑
m=0

Pm,2 =
r0µ1(1−O)

r0µ1 + µ2
,

Pb =
∞

∑
m=0

Pm,1 +
∞

∑
m=0

Pm,2,

∞

∑
m=0

mPm,1 =

[[µ2b(b− 1)− 2λb](r0 − 1)(r1 − 1)− [µ2b(4r0r1 − 2(r0 + r1))]]
(1−O)

2b (r0µ1 + µ2)(r0 − 1)(r1 − 1))
,

∞

∑
m=0

mPm,2 =
[[b(b− 1)− 2λb](q0 − 1)(q1 − 1)− [b(4q0q1 − 2(q0 + q1))]] r0µ1(1−O)

2b (µ2(r0µ1 + µ2)(q0 − 1)(q1 − 1))

+
λr0µ1(1−O)

µ2(r0µ1 + µ2)
,

Lq =
∞

∑
m=0

mPm,1 +
∞

∑
m=0

mPm,2 = E[FES] + E[SOS],

Wq =
∑∞

m=1 mPm,1 + ∑∞
m=1 mPm,2

λ
=

E[FES] + E[SOS]
λ

.

(33)

VI. Numerical Results and Discussion

In this part, the numerical examples are presented after inverting L.T of equations (20), (21), (22)
and (26) to (32) into time domain with the help of Mathematica software. Since an inverted L.T
expressions are too long, therefore, we compute the model numerically by using the arbitrary
model parameters as λ = 2, µ1 = 4.5, µ2 = 3.5, r0 = 0.36, b = 5, r1 = 0.4.
The effect of these parameters on probability and other performance measure with respect to
time are shown in terms of graphs and tables.

Table 1: The effect of r0 on r1, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r2 = 0.1, b = 5.

r0 r1 LqFES LqSOS Lq

0.1 0.8 1.61413 0.136298 1.75042
0.2 0.7 1.52905 0.258306 1.78736
0.3 0.6 1.44568 0.366441 1.81213
0.4 0.5 1.36723 0.462234 1.82947
0.5 0.4 1.29436 0.54716 1.84152
0.6 0.3 1.22737 0.622792 1.85016
0.7 0.2 1.16602 0.69048 1.8565
0.8 0.1 1.10997 0.751454 1.86143

Table 1 depicts the effect of the probability of opting for SOS (r0) on the expected queue length
(Lq). We observe that for fixed feedback probability (r2), an increase in r0 leads to a decrease in
the probability of the departure (r1), resulting in decrease of LqFES while LqSOS and overall Lq
increases. This is because as r0 increases, more customers attend for SOS, resulting in increasing
the Lq in SOS and overall queue size, as we expect.
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Table 2: Effect of feedback probability (r2) on r0, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r1 =
0.2, b = 5

r2 r0 LqFES LqSOS Lq

0.2 0.6 1.29082 0.663747 1.95457
0.3 0.5 1.44771 0.630166 2.07788
0.4 0.4 1.65249 0.586778 2.23927
0.5 0.3 1.93281 0.527648 2.46045
0.6 0.2 2.34909 0.441877 2.79096
0.7 0.1 3.05593 0.30109 3.35702

Table 2 shows the effect of feedback probability (r2) on the expected queue length. For the
fixed probability of the departure (r1), as r2 increases, the probability of opting for SOS (r0)
decreases, which leads to decrease LqSOS and opposite trend observed in LqFES and overall Lq.
This implies that as r2 increases more customers are not satisfied with service (FES). Therefore,
the customers feedback by joining the queue tends to increase LqFES and overall queue size.

Table 3: The effect of r1 on feedback probability r2, LqFES, LqSOS and Lq with λ = 2, µ1 = 4.5, µ2 = 3.5, r0 =
0.1, b = 5

r1 r2 LqFES LqSOS Lq

0.1 0.8 1.61413 0.136298 1.75042
0.2 0.7 1.52905 0.258306 1.78736
0.3 0.6 1.44568 0.366441 1.81213
0.4 0.5 1.36723 0.462234 1.82947
0.5 0.4 1.29436 0.54716 1.84152
0.6 0.3 1.22737 0.622792 1.85016
0.7 0.2 1.16602 0.69048 1.8565
0.8 0.1 1.10997 0.751454 1.86143

From Table 3, for the fixed probability of opting for SOS r0, as r1 increase, r2 decrease, resulting
in decreasing LqFES, LqSOS and overall Lq, which agrees with our intuition.

Table 4: The effect of µ1 on the expected queue length with different values of µ2 and r0 = 0.36, r1 = 0.4, λ = 3.8.

µ1 µ2 = 1.8 µ2 = 2 µ2 = 2.2

2.4 6.54206 6.09142 5.7638
2.8 5.71485 5.31505 5.02568
3.2 5.23358 4.85613 4.57894
3.6 4.92135 4.55096 4.27954
4.0 4.7030 8 4.33623 4.06484
4.4 4.54338 4.17542 3.90165

The impact of µ1 on the expected queue length (Lq) with different values of µ2 is shown in
Table 4. Here Lq deceases as µ1 increases, as we expect. Furthermore, for fixed µ1, as µ2 increases,
Lq decreases. The reason is that, by increasing µ1( µ2), customers are serviced faster and results
in reducing the length of the queue.
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Figure 2: The effect of departure probability r1 on the Lq

Figure 2 shows the effect of departure probability r1 after completing FES on the expected
queue ( Lq). We observe that Lq decreases with time until it reaches a steady state. Further, we
notice that as r1 increases , Lq decreases. The reason is that more customers depart from the
system after completion of FES, hence reducing Lq.

Figure 3: The effect of λ on the expected Lq as time progresses
.

Figure 3 display the effect of the rate of arrival (λ ) on the expected queue length (Lq). As time
progresses, Lq decreases until it attains steady state. Moreover, as λ increases, more customers
enter the queue, resulting in increase in Lq.
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Figure 4: The effect of arrival rate on Lq with different batch size
.

Figure 4 displays the effect of λ on the expected length of queue (Lq) with different batch
size. For fixed λ, we observe that as b increases, Lq decreases. This is because, more customers
are served in batch at a time, which results in reducing the queue length. Further, as b keeps
constant, Lq increases as λ increases, as intuitively expected.

Figure 5: The effect of r2 on Wq

.

The effect of the probability of feedback (r2) on the expected waiting time in the queue (Wq)
is presented in Figure 5 . We can observe from the graph that as r2 increases, WqFES, WqSOS,
and overall Wq increase. Because as r2 increases, more customers rejoin the queue (feedback),
resulting in increasing WqFES, WqSOS and overall Wq.
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VII. Conclusion

We investigate the transient and steady state behavior of a single server batch service queue with
SOS and feedback. We use the probability generating function, Laplace transforms, and Rouche’s
theorem to obtain the transient state probabilities after inverting Laplace transform into the time
domain. Also, the Tauberian theorem is applied in Laplace transform expression to obtain the
steady state probabilities. Finally, we present numerical results as tables and figures to show the
effects of various parameters on the model performance measures.
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