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Abstract 
 

An important characteristic of relay protection functioning is availability of microproces-
sor relay protection software. An approach to estimation of such parameter and correla-
tion between it and hardware availability on the example of 110/35/10 kV distribution 
network microprocessor protection is considered in the paper. The behavioral nature of 
the availability under research, reasons and a share of various kinds of the error leading to 
failure of program execution, variants of program volume definition, some solution ap-
proaches to the task at hand, including methods of Jelinsky-Moranda, and also examples 
of assessing the ratio of these availabilities are considered. An algorithm for the software 
evaluation used is presented. The influence of different conditions on such evaluation is 
shown. Applications of different approaches to software readiness estimation for the 
above types of protection based on data during debugging of protection programs are giv-
en. 
 
Key words: reliability, availability, software, relay protection module. 

 
 

I Introduction 
 

The reliability index is an important characteristic of relay protection and automatics (RPA) func-
tioning. Many authors, including us [1, 2], noted that such characteristic of modern digital protec-
tions is convenient to divide into components: hardware or technical reliability, connected with 
failure (destruction) of relay protection device elements; traffic reliability, defined by temporary 
loss or distortion of data without failure of process bus element; program reliability due to errors in 
development of execution programs; and resistance to external purposeful influence on transmit-
ted information.  In [3], the behavior of the first component on the reliability indicator was given 
and shown by the example of the 110/35/10 kV distribution network protection system. Here we 
will consider the approach to software reliability characterization, and on the example of the same 
system, we will evaluate the contribution of this component to the total availability of the afore-
mentioned protections. 
 

II Specifics of software reliability 
 
It is known that software failure is associated with its inadequacy to the set tasks. There are many 
definitions of software failure. Most definitions of a software error come down to [4]: Software relia-
bility is the probability that a program will work without failures for a certain period of time taking into ac-
count the degree of their influence on the output results. The frequency of errors from statistical data, 
reduced to 100% errors is given in Table 1, and the position "Incomplete or erroneous task" is dis-
closed in more detail. 
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On the one hand, software is not subject to wear and tear and its reliability is determined only 
by development errors. Thus, this indicator should increase with time, if correction of detected er-
rors does not introduce new errors. On the other hand, many programmers' experience shows that 
in a large software, no matter how much you test it, some errors will remain. Due to the testing 
that simulates almost all the real modes, the errors of incorrect software operation are corrected, 
but there always remains a set of data that occurs due to some, usually external conditions, for ex-
ample, interference or erroneous human actions, which cannot be foreseen and which will lead the 
software to work incorrectly. The next dilemma to solve here is how to optimize the quality/cost 
ratio so as not to lose market priority, or customer confidence. It is important to remember that we 
are here examining the readiness of the software to work.  

 
The manifestation of an er-
ror in the software system is 
reflected in a failure situa-
tion, which leads the pro-
gram either to a hang (stop-
ping while waiting for the 
next command, which does 
not really exist) or to incor-
rect calculations, leading to 
erroneous actions. 
 
The specificity of relay pro-
tection programs is that of-
ten the application pro-
grams are prepared in the 
languages of programmable 
logic controllers (PLCs) [5], 
which reduces the probabil-
ity of program errors. How-

ever, the operating environment is written in more traditional soft- 
ware languages such as C, Java, etc. A system of programs written in different programming  
languages when estimating its reliability, is 
reduced to the average assembler equivalent 
per 1000 lines through "KAELOC - K of As-
sembler Equivalent Lines of Code", where K is 
1000 lines of code [6] (see Table 2). 
 
Basically, software bugs are tried to remove 
when writing and debugging, and a lot of pro-
grams are created to detect bugs at the debug-
ging stage. But it is expected that some (small) 
number of errors is present in the program. 
The detection programs are tuned for specific 
external conditions (which group of people 
prepares the program under test, the tempera-
ture and electromagnetic environment, etc.) What to do with the remaining errors? 1. The salesper-
son continues to test and identify errors, which are corrected in customers. 2. Buyers identify bugs 
and turn them over to the creators for correction. 3. Change the vendor.  
 

 
 

Table 1.  Frequency of occurrence of some error types [4] 

Cause of error Frequency, 
% 

Task deviation 12 
Ignorance of programming rules 10 
Erroneous data sample 10 
Erroneous logic or operation sequence 12 
Erroneous arithmetic operations 9 
Insufficient time to solve 4 
Improper interrupt handling 4 
Incorrect constants or input data 3 
Inaccurate writing 8 
Incomplete or erroneous assignment 28 

⇓ 
Errors in numerical values 12 
Insufficient accuracy requirements 4 
Erroneous characters or symbols 2 
Mistakes in the design 15 
Incorrect description of hardware 2 
Incomplete or inaccurate design basis 52 
Ambiguity of requirements 13 

Table 2. Conversion factors 
Programming language Factor 
Assembler, macroassembler 1 
С 2.5 
С++ 11 
Fortran 3 
Pascal 3.5 
LISP 1.5 
Ada 4.5 
Forth 5 
Query languages (like SQL) 25 

Object-oriented 
 4th generation languages 

16 

PLC languages 10 … 33 
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III Evaluating the software's contribution to availability by programming averages 
 
A fairly rough estimate of software availability can be determined as follows [7]. For responsible 
applications, which include the RPA software, by the time the system is delivered to the client it 
may contain from 4 to 15 errors per 100 000 lines of program code [8]. For illustration, let us note 
that the number of code lines of WINDOWS XP is over 45 million, the NASA program is 40 mil-
lion, the Linux 4.11 kernel is over 18 million. If we estimate the complex of simultaneously working 
RPA programs at 1 million code lines, the number of errors at the beginning of software operation 
E = (V/100 000) ‧ 15 = 150 errors. Then, using the formula of average software MTBF, we get 
 

𝜆!" = 𝛽 #
$
= 0.01 %&'

%'!
= 1.5 ∙ 10()  or   𝑡!" = %

*"#
= %'!

%.&∙-.)'
≈ 76	years,       (1) 

 
where E is the number of errors per complex of jointly working programs accepted for operation, V 
is the size of the complex in code lines, β is the program complexity factor, usually in the range of 
0.001...0.01, λSW is the failure rate and tSW is the MTBF of software, 8760 is the number of hours per 
year. The size of the RPA application programs is most often limited to thousands of assembler 
lines because of the requirement for their speed. Then, at the value of 15 errors per 100 000 code 
lines, adopted for the application software after testing with the volume of code lines E = 
4000‧15/100,000 = 0.6 errors 
 

𝜆!" = 𝛽 #
$
= 0.01 '.)

/'''
= 1.5 ∙ 10() or 𝑡!" = %

*"#
= ).).∙%'$

-.)'
≈ 76	years             (2) 

 
or about one failure per 76 years. With a recovery time of tr = 2 h 𝐴!" = 0

*10
= /2-'

%.&∙%'%!1/2-'
=

0.9999999997. 
 
IV Software contribution to availability according to the Jelinsky-Moranda model 

 
There are a number of models of reliability growth concerning the process of failure detection [9, 
10]. The classification of such models divides them into two groups: models that consider the 
number of failures as a Markov process; models that consider the failure rate as a Poisson process. 
Let us use the model of the second group. 
 
The Jelinsky-Moranda model is based on the following assumptions: 1) the time to the next failure 
is exponentially distributed; 2) the failure rate of a program is proportional to the number of errors 
remaining in the program. 
 
This model assumes that the time elapsed between failures 
follows an exponential distribution with a parameter that is 
proportional to the number of remaining errors in the 
software. Figure 1 shows a stepped curve characteristic of 
program failure rate changes as a function of its model run 
time. It can be seen that as each error is detected, the de-
gree of risk decreases by proportionality constant. This in-
dicates that the impact of each fault correction is the same. 
 
According to these assumptions, the probability of pro-
gram failure as a function of time ti is 

𝑃(𝑡3) = 𝑒(*&4&,                                    (3) 
where the failure rate is 

Время выполнения

Ин
те

нс
ив

но
ст

ь 
сб

ое
в

CD

Fig. 1. In the Jelinsky-Moranda 
model, the failure rate curve de-
creases from constant CD. 
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𝜆5 = 𝐶6[𝐸' − (𝑘 − 1)].                                                    (4) 
 

Here E0 is the initial number of errors, k is the number of the last observed program failure/fault, 
CD is the proportionality factor. The time countdown starts from the penultimate (k – 1) program 
failure. The disadvantage of the model is that it assumes complete elimination of errors after it de-
tection without introducing new errors. 
 
From model (3) and the maximum likelihood method we can write 
 

𝐹 = ∏ 𝐶6(𝐸' − 𝑖 + 1)5(%
37% 𝑒(8'(#((31%)4&,                                    (5) 

 
or logarithmic likelihood function 
 

𝐿 = ln𝐹 = ∑ {ln[𝐶6(𝐸' − 𝑖 + 1)] − 𝐶6(𝐸' − 𝑖 + 1)}5(%
37% ,                      (6) 

 
wherefrom finding the extremum 
 

;<
;8'

= ∑ J %
8'
− (𝐸' − 𝑖 + 1)𝑡3K5(%

37% = 0,                                    (7) 
;<
;=
= ∑ J %

#((31%
− 𝐶6𝑡3K5(%

37% = 0.                                              (8) 

 
From (8) we get 
 

𝐶6 =
∑ % (#((31%)⁄)%*
&+*

∑ 4&)%*
&+*

.                                                           (9) 

 
Substituting (8) into (7), we obtain 
 

(𝑘 − 1) ∑ 4&
)%*
&+*

∑ % (#((31%)⁄)%*
&+*

= ∑ (𝐸' − 𝑖 + 1)𝑡35(%
37% ,                                          (10) 

 
from which we find E0 by trying its values. Since E0 is an integer, we find the minimal difference 
between the left and right parts of (10). The closest integer value E0, at which the difference be-
tween the left and right parts of formula (6) is minimal, is usually given in the range k – 1...2·k, 
since the initial number of errors is not less than the known value of the number sum of corrected 
errors, and the error remaining number is usually not greater than the number of detected errors, 
i.e. the final total value is equal to the doubled detected value.  
 
The manifestation intensity of the remaining errors of the program is determined. According to the 
methodology in [11], such intensity is calculated by the formula 
 

𝜆5 =
∑ ,

-(%∑ &,%*
&+*

)
,+*

∑ 4,)
,+*

L𝐸' − ∑ 𝑖5
@7% M.                                                                (11) 

 
But this intensity is bound to the volume of lines with errors. In reality, the failure rate is statistical-
ly defined as [12] 
 

𝜆(𝑡) ≈ A(4)
B(4)∆4

 ,                                                                        (12) 

 
where m(t) is the number of failed elements (lines with errors) in the considered period ∆t, n(t) is 
the average number of equipment elements (in our case, code lines or program commands) work-
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ing in this interval. Therefore, the obtained in (9) intensity should be recalculated to the full volume 
of lines or commands under study software, i.e. 
 

𝜆 = 𝜆5
#(
=/

 ,                                                                     (13) 

 
where NΣ is the number of lines under study software. 
 
 Assuming a constant error rate in accordance with the Jelinsky-Moranda model concept, we calcu-
late the average time to error in the software: 
  

𝑡# =
%
*
 .                                                                      (14) 

 
When the error detection and correction time is assumed to be 2 hours (µ = 0.5), the software avail-
ability coefficient is 

𝐴!" = 0
*10

 .                                                                 (15) 

 
The calculation algorithm is shown in Fig. 2. The initial data of this calculation are:  
NΣL – number of program lines in programming languages, which are converted by means of Table 
2 into NΣ – number of commands reduced to assembler codes; NT – number of executed tests; array 
[Ei] – number of detected and corrected errors at the i-th stage of testing, which time is determined 
by the array [ti]. DE traces the minimal discrepancy between the left (LP) and the right (RP) part of 
the formula (10) in the E0 search. ΣEi is the sum of errors known from the tests up to position i. Σti 
is the sum of times between tests up to position i. The variable LA corresponds to the manifestation 
intensity of the remaining program errors (λ). 𝐴!" is the software availability index. 
 

Fig. 2. Calculation algorithm for software availability characteristics. 

Preparation of the raw data 
[N?L], NT, [Ei], [ti],  [?Ei], [?ti], 

AHW

Recalculation of program lines 
to  equivalent of assembler N?

Estimating the boundaries E0
L, 

E0
R to determine E0 

E0
L = ?ENT -1, E0

R = 2 ?ENT

 DE = 10 000, j = E0
L 

 LP = 0, RP = 0, i = 1,  E0
* = j

 LP = LP + Ei/(E0
* - ?Ei-1),

RP = RP + (E0
*- ?Ei-1) ti  

E0
* - ?Ei-1  0

i = NT

 LP = ?ENT ?tNT /LP 
  

|LP – RP|< DE

DE = |LP – RP|, E0 = j 

j <  E0
R

j = j + 1

LA = LA + Ei/(E0 - ?Ei-1)
i = i + 1

LA = 0, i = 0

i = NT

LA = LA E0 (E0 - ?ENT)/?tNT/N? , 
tE= 1/LA/8760, 

Asw=Mju/(Mju + LA)
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V Calculation of software contributions to the availability of relay protections 

 
Let's evaluate the software availability of the protection and control modules for the 35 kV bus sec-
tion and transformer section [3]. The necessary data for the studied modules are presented in Ta-
bles 3 and 4. The results of calculations – in Table 5. 
 

Table 3. Transformer section protection and control software module 
Initial data Ei, errors ΣEi, errors ti, hours Σti, hours 

Nt = 4 0 0 0 0 
NΣ = 1439asm+200C++ 1 1 77 77 

NΣ = 3639asm 1 2 63 140 
µ = 0.5 h-1 1 3 7 147 

 1 4 187 334 
С++ – in codes С++, asm – in codes assembler.  

 
Table 4. 35 kV busbar section protection and control software module 

Initial data Ei, errors ΣEi, errors ti, hours Σti, hours 
Nt = 3 0 0 0 0 

NΣ = 1346asm+130C++ 1 1 63 63 
NΣ = 2776asm 1 2 11 74 

µ = 0.5 h-1 1 3 117 191 
С++ – in codes С++, asm – in codes assembler.  

 
Table 5. Calculating results of the software availability characteristics of the modules 

Transformer section protection 
and control module 

35 kV busbar section protec-
tion and control module Flexible logic module 

E0 5 λ, years-1 0.04621 E0 4 λ, years -1 0.07153 E0 4 λ, years -1 0.01016 
Ei 4 tE, years 21.64 Ei 3 tE, years 13.98 Ei 3 tE, years 98.4 

ΔE 1 ASW 0.99998945 ΔE 1 ASW 0.99994558 ΔE 1 ASW 0.99998367 
 

 
According to the protection reliabil-
ity model (Fig. 3) for the hardware 
part, presented in [3], and software 
organization (Fig. 4), we explain that 
the software part of the model con-
sists of two software protection 
blocks, autonomous and centralized, 
included by reliability in parallel 
with the output to the process bus, 

Standalone module
N=3639

λ = 0.04621; μ = 0.5

Centralized module
N=3639

λ = 0.04621; μ = 0.5

Flexible logic 
module
N=800

λ=0.001016; μ = 0.5

Flexible logic 
module
N=800

λ=0.001016; μ = 0.5

Pr
oc

es
s

bu
s

Да
нн

ы
е

O
n

br
ea

ke
r

 
CT Link MU IEDA

m(CT) m(Lk) m(MU)

Measurement channel backup

IEDC

BC PSP
 B

CB
BC PS

Fig. 3. Reliability block diagram of protection. 
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and two parallel blocks of flexible logic program. In the software evaluation of the model, the pro-
cess bus is not taken into account, because it is taken into account in the hardware.  
 
In accordance with the scheme of Fig. 4 we determine the equivalent failure rate and recovery rate 
of the corresponding transformer protection programs based on the known relations:  
𝜆D = ∑ 𝜆33 ; 	𝜇D = 𝜆D/∑

*&
0&3  – for series connection and 𝜇D = ∑ 𝜇33  ; 𝜆D = 𝜇э/∑

0&
*&3  - for parallel connec-

tion. Then for Fig. 4, the equivalent values are: 
left-hand side		𝜇DF = 2 ∙ 0.5 = 1;	𝜆DF = 1 R2 ∙ '.&∙-.)'

'.'/)G%
ST = 5.2751 ∙ 10()	h(%; 

right-hand side		𝜇DH = 2 ∙ 0.5 = 1;	𝜆DH = 1 R2 ∙ '.&∙-.)'
'.'%'%)

ST = 1.1598 ∙ 10()	h(%; 
𝜆D = 5.2751 ∙ 10() +

1.1598 ∙ 10() = 6.4349 ∙
10()	h(% or 0.05637 years – 1; 

𝜇D = 6.4349 ∙ 10() R&.G.&%∙%'
%!1%.%&I-∙%'%!

'.&
ST = 0.5	h(% or 4380 years – 1. 

Consequently, 𝐴!" = 00
*0100

= /2-'
'.'&)2.1/2-'

= 0.999987. 

 
From [3] in the worst case for the hardware model of transformer protection AHW = 0.9999999764, 
i.e. the contribution to the unavailability of protection from the hardware is essentially less, than 
from the software, and its total value AΣ = AHW ·ASW = 0.9999869, and the average time to failure tΣ = 
AΣ /(µe ‧(1– AΣ) ) = 17.6 years or 153565 hours. 
 
The scheme of the 35 kV busbar protection software model also corresponds to fig. 4. Equivalent 
values for the left part: N = 2776 lines of assembler code; λ = 0.007153 years -1; µ = 0.5 h-1. The right 
part is similar to the transformer model. Then the equivalent values of the left part 

𝜇DF = 2 ∙ 0.5 = 1;	𝜆DF = 1 R2 ∙ '.&∙-.)'
'.'.%&2

ST = 8.1655 ∙ 10()	h(%; 
𝜆D = 8.1655 ∙ 10() + 1.1598 ∙ 10() = 9.3253 ∙ 10()	h(% or 0.08169 years – 1; 
𝜇D = 9.3253 ∙ 10() R-.%)&&∙%'

%!1%.%&I-∙%'%!

'.&
ST = 0.5	h(% or 4380 years – 1. 

Consequently, 𝐴!" = 00
*0100

= /2-'
'.'-%)I1/2-'

= 0.999981. 

 
From [3] in the worst case for the hardware model of busbar protection AHW = 0.999999884, i.e. the 
contribution to the unavailability of protection also from the hardware is much less, than from the 
software, and its total value AΣ = AHW ·ASW = 0.9999809, and the average time between errors tΣ = AΣ 
/(µe ‧(1– AΣ) ) = 12.2 years or 106872 hours. 
 
To estimate the contribution of software to the total unavailability of protection, we can use the 
expression 

𝐶𝑡𝑏!" = B-,"#
B-,"#1B-,2#

∙ 100% = *"#
*"#1*А2#

∙ 100% = 4-,2#
4-,"#14-,2#

∙ 100%.             (16) 

Here nE is the number of failures, tE is the average time to failure, the index AHW is the availability 
of the hardware part. 
 
When discussing the results of the presented work, it should be understood that, despite their 
outward resemblance to a quantitative assessment, they represent only qualitative indicators of 
software readiness. On the other hand, the obtained results do not take into account the software 
test control, which improves the studied indicators. Unfortunately, as noted in [13], there are no 
reliable methods for quantitative software evaluations other than statistics for a significant period 
of program operation. Nevertheless, they show that software errors can have a significant influence 
on reliability indicators of microprocessor relay protection. 
 

 
 

Fig. 4. Reliability model of transformer protection software. 
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VI Other approaches to assessing contributions to the availability  

of relay protections 
 
Let's try to estimate the impact of software on RPA functioning from the following statistics. Ac-
cording to [14], the number of microprocessor-based RPA devices in operation in 2013 was 274062 
devices, and in 2014 – 319912 devices (Table 4, [14]). From the data [15] "Distribution of cases of 
device RPA malfunction by types of technical reasons and device RPA types for the period from 
01.01.2020 to 30.06.2020" we know that out of 727 cases of RPA failure 18 cases are related to soft-
ware failure or malfunction. Then the forecast number of RPA devices for 2020 in relation to 2013 
from the formula dn = d1(1+r)n at r = 100·(d2 – d1)/d1 %, where d1 – number of devices of the first year, 
dn – number of devices for n year, r – average annual growth of devices, can make 
 

𝑑. = 274062 \1 +
319912 − 274062

274062 ]
)

= 693328	devices 

 
Let's take Rosseti's share of RPA as 70% of all devices in [15]. Then a rough estimate of the failure 
rate 𝜆 = B

'..∙=4
=	 %-∙G

'..∙)I22G-
= 7.42 ∙ 10(& years-1. Here n – the number of devices, failed due to soft-

ware, for half year (2 in the numerator), 0.7 ∙N – the number of all microprocessor protections, t – 
design period (year). For the recovery time tr = 2 hours 𝐴!" = 0

*10
= /2-'

../G∙%'%$1/2-'
= 0.999999983. 

And the average time between errors  𝑡J =
%
*
= 13477 years, which is of course unreal. From the 

relation 𝐶𝑡𝑏ПО =
B-,"#

B-,"#1B-,2#
∙ 100% = %-

.G.
∙ 100%	≈ 2.5% we will note, that the share of failures be-

cause of program errors was 2.5%.  
 
One more approach on the basis of data of work [16] where at small sample a share of failures be-
cause of software errors in total number of failures can be estimated as (3+1+3+4)/(11+15+18+17) 
=11/61‧100% =18%, where in numerator failures because of software, and in denominator - total 
failures. Of course, the small sample does not allow us to confidently judge the representativeness 
of the figures, but, nevertheless, some idea of the ratio is given. 
 

 VII Conclusion 
 

The approach according to formulas (1) and (2) gives quite a large uncertainty range, depending on 
the choice of the error content coefficient per 100 thousand lines of code and the program complex-
ity coefficient. Its result can be considered as an upper bound of ASW under the chosen conditions. 
An estimation of ASW contribution values showed that software unavailability was 1.3% of the total 
unavailability.  

The Jelinsky-Moranda reliability model can be considered a lower bound for ASW since the ini-
tial conditions are more restrictive here. 

Calculations of software availability with the Jelinsky-Moranda reliability model showed that 
the main unavailability of the considered protections is determined by software unavailability, 
which was 99.8% for transformer protection and 49.8% for busbar protection. Nevertheless, even in 
this case, the average total error time is more than 150 thousand hours for transformer protection 
and more than 100 thousand hours for 35 kV busbar protection. 

In contrast to the calculated data from statistics [14,15] showed that the error rate due to soft-
ware is about 2.5%, and from [16] - 18%. 

The work was carried out within the framework of the theme "Models and methods of adapta-
tion of power systems in modern conditions". 
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