
M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

M. I. Uspensky

•
Komi SC UB RAS, Syktyvkar, Russian Federation.

uspensky@energy.komisc.ru

Abstract

An important characteristic of relay protection functioning is availability of microproces-
sor relay protection software. An approach to estimation of such parameter and correla-
tion between it and hardware availability on the example of 110/35/10 kV distribution
network microprocessor protection is considered in the paper. The behavioral nature of
the availability under research, reasons and a share of various kinds of the error leading to
failure of program execution, variants of program volume definition, some solution ap-
proaches to the task at hand, including methods of Jelinsky-Moranda, and also examples
of assessing the ratio of these availabilities are considered. An algorithm for the software
evaluation used is presented. The influence of different conditions on such evaluation is
shown. Applications of different approaches to software readiness estimation for the
above types of protection based on data during debugging of protection programs are giv-
en.

Key words: reliability, availability, software, relay protection module.

I Introduction

The reliability index is an important characteristic of relay protection and automatics (RPA) func-
tioning. Many authors, including us [1, 2], noted that such characteristic of modern digital protec-
tions is convenient to divide into components: hardware or technical reliability, connected with
failure (destruction) of relay protection device elements; traffic reliability, defined by temporary
loss or distortion of data without failure of process bus element; program reliability due to errors in
development of execution programs; and resistance to external purposeful influence on transmit-
ted information. In [3], the behavior of the first component on the reliability indicator was given
and shown by the example of the 110/35/10 kV distribution network protection system. Here we
will consider the approach to software reliability characterization, and on the example of the same
system, we will evaluate the contribution of this component to the total availability of the afore-
mentioned protections.

II Specifics of software reliability

It is known that software failure is associated with its inadequacy to the set tasks. There are many
definitions of software failure. Most definitions of a software error come down to [4]: Software relia-
bility is the probability that a program will work without failures for a certain period of time taking into ac-
count the degree of their influence on the output results. The frequency of errors from statistical data,
reduced to 100% errors is given in Table 1, and the position "Incomplete or erroneous task" is dis-
closed in more detail.

31

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

On the one hand, software is not subject to wear and tear and its reliability is determined only
by development errors. Thus, this indicator should increase with time, if correction of detected er-
rors does not introduce new errors. On the other hand, many programmers' experience shows that
in a large software, no matter how much you test it, some errors will remain. Due to the testing
that simulates almost all the real modes, the errors of incorrect software operation are corrected,
but there always remains a set of data that occurs due to some, usually external conditions, for ex-
ample, interference or erroneous human actions, which cannot be foreseen and which will lead the
software to work incorrectly. The next dilemma to solve here is how to optimize the quality/cost
ratio so as not to lose market priority, or customer confidence. It is important to remember that we
are here examining the readiness of the software to work.

The manifestation of an er-
ror in the software system is
reflected in a failure situa-
tion, which leads the pro-
gram either to a hang (stop-
ping while waiting for the
next command, which does
not really exist) or to incor-
rect calculations, leading to
erroneous actions.

The specificity of relay pro-
tection programs is that of-
ten the application pro-
grams are prepared in the
languages of programmable
logic controllers (PLCs) [5],
which reduces the probabil-
ity of program errors. How-

ever, the operating environment is written in more traditional soft-
ware languages such as C, Java, etc. A system of programs written in different programming
languages when estimating its reliability, is
reduced to the average assembler equivalent
per 1000 lines through "KAELOC - K of As-
sembler Equivalent Lines of Code", where K is
1000 lines of code [6] (see Table 2).

Basically, software bugs are tried to remove
when writing and debugging, and a lot of pro-
grams are created to detect bugs at the debug-
ging stage. But it is expected that some (small)
number of errors is present in the program.
The detection programs are tuned for specific
external conditions (which group of people
prepares the program under test, the tempera-
ture and electromagnetic environment, etc.) What to do with the remaining errors? 1. The salesper-
son continues to test and identify errors, which are corrected in customers. 2. Buyers identify bugs
and turn them over to the creators for correction. 3. Change the vendor.

Table 1. Frequency of occurrence of some error types [4]

Cause of error Frequency,
%

Task deviation 12
Ignorance of programming rules 10
Erroneous data sample 10
Erroneous logic or operation sequence 12
Erroneous arithmetic operations 9
Insufficient time to solve 4
Improper interrupt handling 4
Incorrect constants or input data 3
Inaccurate writing 8
Incomplete or erroneous assignment 28

⇓
Errors in numerical values 12
Insufficient accuracy requirements 4
Erroneous characters or symbols 2
Mistakes in the design 15
Incorrect description of hardware 2
Incomplete or inaccurate design basis 52
Ambiguity of requirements 13

Table 2. Conversion factors
Programming language Factor
Assembler, macroassembler 1
С 2.5
С++ 11
Fortran 3
Pascal 3.5
LISP 1.5
Ada 4.5
Forth 5
Query languages (like SQL) 25

Object-oriented
 4th generation languages

16

PLC languages 10 … 33

32

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

III Evaluating the software's contribution to availability by programming averages

A fairly rough estimate of software availability can be determined as follows [7]. For responsible
applications, which include the RPA software, by the time the system is delivered to the client it
may contain from 4 to 15 errors per 100 000 lines of program code [8]. For illustration, let us note
that the number of code lines of WINDOWS XP is over 45 million, the NASA program is 40 mil-
lion, the Linux 4.11 kernel is over 18 million. If we estimate the complex of simultaneously working
RPA programs at 1 million code lines, the number of errors at the beginning of software operation
E = (V/100 000) ‧ 15 = 150 errors. Then, using the formula of average software MTBF, we get

𝜆!" = 𝛽 #
$
= 0.01 %&'

%'!
= 1.5 ∙ 10() or 𝑡!" = %

*"#
= %'!

%.&∙-.)'
≈ 76	years, (1)

where E is the number of errors per complex of jointly working programs accepted for operation, V
is the size of the complex in code lines, β is the program complexity factor, usually in the range of
0.001...0.01, λSW is the failure rate and tSW is the MTBF of software, 8760 is the number of hours per
year. The size of the RPA application programs is most often limited to thousands of assembler
lines because of the requirement for their speed. Then, at the value of 15 errors per 100 000 code
lines, adopted for the application software after testing with the volume of code lines E =
4000‧15/100,000 = 0.6 errors

𝜆!" = 𝛽 #
$
= 0.01 '.)

/'''
= 1.5 ∙ 10() or 𝑡!" = %

*"#
=).).∙%'$

-.)'
≈ 76	years (2)

or about one failure per 76 years. With a recovery time of tr = 2 h 𝐴!" = 0

*10
= /2-'

%.&∙%'%!1/2-'
=

0.9999999997.

IV Software contribution to availability according to the Jelinsky-Moranda model

There are a number of models of reliability growth concerning the process of failure detection [9,
10]. The classification of such models divides them into two groups: models that consider the
number of failures as a Markov process; models that consider the failure rate as a Poisson process.
Let us use the model of the second group.

The Jelinsky-Moranda model is based on the following assumptions: 1) the time to the next failure
is exponentially distributed; 2) the failure rate of a program is proportional to the number of errors
remaining in the program.

This model assumes that the time elapsed between failures
follows an exponential distribution with a parameter that is
proportional to the number of remaining errors in the
software. Figure 1 shows a stepped curve characteristic of
program failure rate changes as a function of its model run
time. It can be seen that as each error is detected, the de-
gree of risk decreases by proportionality constant. This in-
dicates that the impact of each fault correction is the same.

According to these assumptions, the probability of pro-
gram failure as a function of time ti is

𝑃(𝑡3) = 𝑒(*&4&, (3)
where the failure rate is

Время выполнения

Ин
те

нс
ив

но
ст

ь
сб

ое
в

CD

Fig. 1. In the Jelinsky-Moranda
model, the failure rate curve de-
creases from constant CD.

33

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

𝜆5 = 𝐶6[𝐸' − (𝑘 − 1)]. (4)

Here E0 is the initial number of errors, k is the number of the last observed program failure/fault,
CD is the proportionality factor. The time countdown starts from the penultimate (k – 1) program
failure. The disadvantage of the model is that it assumes complete elimination of errors after it de-
tection without introducing new errors.

From model (3) and the maximum likelihood method we can write

𝐹 = ∏ 𝐶6(𝐸' − 𝑖 + 1)5(%
37% 𝑒(8'(#((31%)4&, (5)

or logarithmic likelihood function

𝐿 = ln𝐹 = ∑ {ln[𝐶6(𝐸' − 𝑖 + 1)] − 𝐶6(𝐸' − 𝑖 + 1)}5(%
37% , (6)

wherefrom finding the extremum

;<
;8'

= ∑ J %
8'
− (𝐸' − 𝑖 + 1)𝑡3K5(%

37% = 0, (7)
;<
;=
= ∑ J %

#((31%
− 𝐶6𝑡3K5(%

37% = 0. (8)

From (8) we get

𝐶6 =
∑ % (#((31%)⁄)%*
&+*

∑ 4&)%*
&+*

. (9)

Substituting (8) into (7), we obtain

(𝑘 − 1) ∑ 4&
)%*
&+*

∑ % (#((31%)⁄)%*
&+*

= ∑ (𝐸' − 𝑖 + 1)𝑡35(%
37% , (10)

from which we find E0 by trying its values. Since E0 is an integer, we find the minimal difference
between the left and right parts of (10). The closest integer value E0, at which the difference be-
tween the left and right parts of formula (6) is minimal, is usually given in the range k – 1...2·k,
since the initial number of errors is not less than the known value of the number sum of corrected
errors, and the error remaining number is usually not greater than the number of detected errors,
i.e. the final total value is equal to the doubled detected value.

The manifestation intensity of the remaining errors of the program is determined. According to the
methodology in [11], such intensity is calculated by the formula

𝜆5 =
∑ ,

-(%∑ &,%*
&+*

)
,+*

∑ 4,)
,+*

L𝐸' − ∑ 𝑖5
@7% M. (11)

But this intensity is bound to the volume of lines with errors. In reality, the failure rate is statistical-
ly defined as [12]

𝜆(𝑡) ≈ A(4)
B(4)∆4

 , (12)

where m(t) is the number of failed elements (lines with errors) in the considered period ∆t, n(t) is
the average number of equipment elements (in our case, code lines or program commands) work-

34

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

ing in this interval. Therefore, the obtained in (9) intensity should be recalculated to the full volume
of lines or commands under study software, i.e.

𝜆 = 𝜆5
#(
=/

 , (13)

where NΣ is the number of lines under study software.

 Assuming a constant error rate in accordance with the Jelinsky-Moranda model concept, we calcu-
late the average time to error in the software:

𝑡# =
%
*
 . (14)

When the error detection and correction time is assumed to be 2 hours (µ = 0.5), the software avail-
ability coefficient is

𝐴!" = 0
*10

 . (15)

The calculation algorithm is shown in Fig. 2. The initial data of this calculation are:
NΣL – number of program lines in programming languages, which are converted by means of Table
2 into NΣ – number of commands reduced to assembler codes; NT – number of executed tests; array
[Ei] – number of detected and corrected errors at the i-th stage of testing, which time is determined
by the array [ti]. DE traces the minimal discrepancy between the left (LP) and the right (RP) part of
the formula (10) in the E0 search. ΣEi is the sum of errors known from the tests up to position i. Σti
is the sum of times between tests up to position i. The variable LA corresponds to the manifestation
intensity of the remaining program errors (λ). 𝐴!" is the software availability index.

Fig. 2. Calculation algorithm for software availability characteristics.

Preparation of the raw data
[N?L], NT, [Ei], [ti], [?Ei], [?ti],

AHW

Recalculation of program lines
to equivalent of assembler N?

Estimating the boundaries E0
L,

E0
R to determine E0

E0
L = ?ENT -1, E0

R = 2 ?ENT

 DE = 10 000, j = E0
L

 LP = 0, RP = 0, i = 1, E0
* = j

 LP = LP + Ei/(E0
* - ?Ei-1),

RP = RP + (E0
*- ?Ei-1) ti

E0
* - ?Ei-1 0

i = NT

 LP = ?ENT ?tNT /LP

|LP – RP|< DE

DE = |LP – RP|, E0 = j

j < E0
R

j = j + 1

LA = LA + Ei/(E0 - ?Ei-1)
i = i + 1

LA = 0, i = 0

i = NT

LA = LA E0 (E0 - ?ENT)/?tNT/N? ,
tE= 1/LA/8760,

Asw=Mju/(Mju + LA)

End

Ca
lc
ul
at
io
n
Е0

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

35

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

V Calculation of software contributions to the availability of relay protections

Let's evaluate the software availability of the protection and control modules for the 35 kV bus sec-
tion and transformer section [3]. The necessary data for the studied modules are presented in Ta-
bles 3 and 4. The results of calculations – in Table 5.

Table 3. Transformer section protection and control software module
Initial data Ei, errors ΣEi, errors ti, hours Σti, hours

Nt = 4 0 0 0 0
NΣ = 1439asm+200C++ 1 1 77 77

NΣ = 3639asm 1 2 63 140
µ = 0.5 h-1 1 3 7 147

 1 4 187 334
С++ – in codes С++, asm – in codes assembler.

Table 4. 35 kV busbar section protection and control software module

Initial data Ei, errors ΣEi, errors ti, hours Σti, hours
Nt = 3 0 0 0 0

NΣ = 1346asm+130C++ 1 1 63 63
NΣ = 2776asm 1 2 11 74

µ = 0.5 h-1 1 3 117 191
С++ – in codes С++, asm – in codes assembler.

Table 5. Calculating results of the software availability characteristics of the modules

Transformer section protection
and control module

35 kV busbar section protec-
tion and control module Flexible logic module

E0 5 λ, years-1 0.04621 E0 4 λ, years -1 0.07153 E0 4 λ, years -1 0.01016
Ei 4 tE, years 21.64 Ei 3 tE, years 13.98 Ei 3 tE, years 98.4

ΔE 1 ASW 0.99998945 ΔE 1 ASW 0.99994558 ΔE 1 ASW 0.99998367

According to the protection reliabil-
ity model (Fig. 3) for the hardware
part, presented in [3], and software
organization (Fig. 4), we explain that
the software part of the model con-
sists of two software protection
blocks, autonomous and centralized,
included by reliability in parallel
with the output to the process bus,

Standalone module
N=3639

λ = 0.04621; μ = 0.5

Centralized module
N=3639

λ = 0.04621; μ = 0.5

Flexible logic
module
N=800

λ=0.001016; μ = 0.5

Flexible logic
module
N=800

λ=0.001016; μ = 0.5

Pr
oc

es
s

bu
s

Да
нн

ы
е

O
n

br
ea

ke
r

CT Link MU IEDA

m(CT) m(Lk) m(MU)

Measurement channel backup

IEDC

BC PSP
 B

CB
BC PS

Fig. 3. Reliability block diagram of protection.

36

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

and two parallel blocks of flexible logic program. In the software evaluation of the model, the pro-
cess bus is not taken into account, because it is taken into account in the hardware.

In accordance with the scheme of Fig. 4 we determine the equivalent failure rate and recovery rate
of the corresponding transformer protection programs based on the known relations:
𝜆D = ∑ 𝜆33 ; 	𝜇D = 𝜆D/∑

*&
0&3 – for series connection and 𝜇D = ∑ 𝜇33 ; 𝜆D = 𝜇э/∑

0&
*&3 - for parallel connec-

tion. Then for Fig. 4, the equivalent values are:
left-hand side		𝜇DF = 2 ∙ 0.5 = 1;	𝜆DF = 1 R2 ∙ '.&∙-.)'

'.'/)G%
ST = 5.2751 ∙ 10()	h(%;

right-hand side		𝜇DH = 2 ∙ 0.5 = 1;	𝜆DH = 1 R2 ∙ '.&∙-.)'
'.'%'%)

ST = 1.1598 ∙ 10()	h(%;
𝜆D = 5.2751 ∙ 10() +

1.1598 ∙ 10() = 6.4349 ∙
10()	h(% or 0.05637 years – 1;

𝜇D = 6.4349 ∙ 10() R&.G.&%∙%'
%!1%.%&I-∙%'%!

'.&
ST = 0.5	h(% or 4380 years – 1.

Consequently, 𝐴!" = 00
*0100

= /2-'
'.'&)2.1/2-'

= 0.999987.

From [3] in the worst case for the hardware model of transformer protection AHW = 0.9999999764,
i.e. the contribution to the unavailability of protection from the hardware is essentially less, than
from the software, and its total value AΣ = AHW ·ASW = 0.9999869, and the average time to failure tΣ =
AΣ /(µe ‧(1– AΣ)) = 17.6 years or 153565 hours.

The scheme of the 35 kV busbar protection software model also corresponds to fig. 4. Equivalent
values for the left part: N = 2776 lines of assembler code; λ = 0.007153 years -1; µ = 0.5 h-1. The right
part is similar to the transformer model. Then the equivalent values of the left part

𝜇DF = 2 ∙ 0.5 = 1;	𝜆DF = 1 R2 ∙ '.&∙-.)'
'.'.%&2

ST = 8.1655 ∙ 10()	h(%;
𝜆D = 8.1655 ∙ 10() + 1.1598 ∙ 10() = 9.3253 ∙ 10()	h(% or 0.08169 years – 1;
𝜇D = 9.3253 ∙ 10() R-.%)&&∙%'

%!1%.%&I-∙%'%!

'.&
ST = 0.5	h(% or 4380 years – 1.

Consequently, 𝐴!" = 00
*0100

= /2-'
'.'-%)I1/2-'

= 0.999981.

From [3] in the worst case for the hardware model of busbar protection AHW = 0.999999884, i.e. the
contribution to the unavailability of protection also from the hardware is much less, than from the
software, and its total value AΣ = AHW ·ASW = 0.9999809, and the average time between errors tΣ = AΣ
/(µe ‧(1– AΣ)) = 12.2 years or 106872 hours.

To estimate the contribution of software to the total unavailability of protection, we can use the
expression

𝐶𝑡𝑏!" = B-,"#
B-,"#1B-,2#

∙ 100% = *"#
*"#1*А2#

∙ 100% = 4-,2#
4-,"#14-,2#

∙ 100%. (16)

Here nE is the number of failures, tE is the average time to failure, the index AHW is the availability
of the hardware part.

When discussing the results of the presented work, it should be understood that, despite their
outward resemblance to a quantitative assessment, they represent only qualitative indicators of
software readiness. On the other hand, the obtained results do not take into account the software
test control, which improves the studied indicators. Unfortunately, as noted in [13], there are no
reliable methods for quantitative software evaluations other than statistics for a significant period
of program operation. Nevertheless, they show that software errors can have a significant influence
on reliability indicators of microprocessor relay protection.

Fig. 4. Reliability model of transformer protection software.

37

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

VI Other approaches to assessing contributions to the availability

of relay protections

Let's try to estimate the impact of software on RPA functioning from the following statistics. Ac-
cording to [14], the number of microprocessor-based RPA devices in operation in 2013 was 274062
devices, and in 2014 – 319912 devices (Table 4, [14]). From the data [15] "Distribution of cases of
device RPA malfunction by types of technical reasons and device RPA types for the period from
01.01.2020 to 30.06.2020" we know that out of 727 cases of RPA failure 18 cases are related to soft-
ware failure or malfunction. Then the forecast number of RPA devices for 2020 in relation to 2013
from the formula dn = d1(1+r)n at r = 100·(d2 – d1)/d1 %, where d1 – number of devices of the first year,
dn – number of devices for n year, r – average annual growth of devices, can make

𝑑. = 274062 \1 +
319912 − 274062

274062]
)

= 693328	devices

Let's take Rosseti's share of RPA as 70% of all devices in [15]. Then a rough estimate of the failure
rate 𝜆 = B

'..∙=4
=	 %-∙G

'..∙)I22G-
= 7.42 ∙ 10(& years-1. Here n – the number of devices, failed due to soft-

ware, for half year (2 in the numerator), 0.7 ∙N – the number of all microprocessor protections, t –
design period (year). For the recovery time tr = 2 hours 𝐴!" = 0

*10
= /2-'

../G∙%'%$1/2-'
= 0.999999983.

And the average time between errors 𝑡J =
%
*
= 13477 years, which is of course unreal. From the

relation 𝐶𝑡𝑏ПО =
B-,"#

B-,"#1B-,2#
∙ 100% = %-

.G.
∙ 100%	≈ 2.5% we will note, that the share of failures be-

cause of program errors was 2.5%.

One more approach on the basis of data of work [16] where at small sample a share of failures be-
cause of software errors in total number of failures can be estimated as (3+1+3+4)/(11+15+18+17)
=11/61‧100% =18%, where in numerator failures because of software, and in denominator - total
failures. Of course, the small sample does not allow us to confidently judge the representativeness
of the figures, but, nevertheless, some idea of the ratio is given.

 VII Conclusion

The approach according to formulas (1) and (2) gives quite a large uncertainty range, depending on
the choice of the error content coefficient per 100 thousand lines of code and the program complex-
ity coefficient. Its result can be considered as an upper bound of ASW under the chosen conditions.
An estimation of ASW contribution values showed that software unavailability was 1.3% of the total
unavailability.

The Jelinsky-Moranda reliability model can be considered a lower bound for ASW since the ini-
tial conditions are more restrictive here.

Calculations of software availability with the Jelinsky-Moranda reliability model showed that
the main unavailability of the considered protections is determined by software unavailability,
which was 99.8% for transformer protection and 49.8% for busbar protection. Nevertheless, even in
this case, the average total error time is more than 150 thousand hours for transformer protection
and more than 100 thousand hours for 35 kV busbar protection.

In contrast to the calculated data from statistics [14,15] showed that the error rate due to soft-
ware is about 2.5%, and from [16] - 18%.

The work was carried out within the framework of the theme "Models and methods of adapta-
tion of power systems in modern conditions".

38

M. Uspensky
SOFTWARE CONTRIBUTION TO THE AVAILABILITY
OF MICROPROCESSOR-BASED RELAY PROTECTION

RT&A, No 3 (69)
Volume 17, September 2022

References

1. Morozov Yu.M. Reliability of hardware and software systems. St. Petersburg, 2011. 136 p. . (In
Russian).

2. Uspensky M.I. Contribution of Hardware, Software, and Traffic to the WAMS Communication
Network Availability // Reliability: Theory & Applications Vol. 15, No 3. 2020, pp.70-83.
DOI:https:// doi.org/10.24411/1932-2321-2020-13007

3. Uspensky M.I. Reliability Assessment of the Digital Relay Protection System // Reliability: The-
ory & Applications Vol. 14, No 3. 2019, pp. 10-17. DOI: https://doi.org/10.24411/1932-2321-2019-
13001.

4. Shklyar VN. Reliability of control systems. Tomsk, Russia: Publishing house of Tomsk Poly-
technic University. 2009;126 p. (In Russian).

5. Livshits, Yu. E. Programmable Logic Controllers for Process Control / Minsk: BNTU, 2014, Ch.
1, 206 p. (In Russian).

6. Baranov S.P., Domaratsky A.N., Lastochkin N.K., Morozov V.P. Defects prevention during
software products creation // Software Products, #1, 2000, pp. 59-63. (In Russian).

7. Borovikov SM, Dik SS, Fomenko NK. A method for predicting applied software tools at the ear-
ly stages of their development// Reports of the Belarusian State University of Informatics and
Radioelectronics. 2019, #5, pp. 45-51. (In Russian).

8. Chukanov VO, Gurov VV, Prokopyeva EV. Methods of ensuring software and hardware relia-
bility for computing systems// Russia, Presentation of the report at the seminar, pp. 1-44. Avail-
able: http://www.mcst.ru/files/5357 ec/dd0cd8/50af39/000000/seminar_metody_ obespecheni-
ya_apparatno-programmnoy_nadezhnosti_vychislitelnyh_sistem.pdf (In Russian). (accessed
12.03.2019)

9. Bubnov V. P., Safonov V. I., Shardakov K. S. Review of existing models of nonstationary service
systems and methods of their calculation // Control, Communication and Security Systems.
2020, # 3, pp. 65-121. DOI: 10.24411/2410-9916-2020-10303. (In Russian).

10. Vasilenko N.V., Makarov V.A. Software Reliability Assessment Models // Bulletin of Novgorod
State University, 2004, # 28, pp. 126-132. (In Russian).

11. Iyudu K.A. Reliability and diagnostics of computing machines and systems: Textbook on spe-
cial "Computing machines, complexes, systems and networks" / M.:Vyssh. shk. 1989, 216 p. (In
Russian).

12. Shalin A.I. Reliability and diagnostics of relay protection of power systems. Novosibirsk: Pub-
lishing house of NSTU, 2002, 384 p. (In Russian).

13. Littlewood B., Strigini L. “Validation of ultra-high dependability…” – 20 years on // BL-LS-SCSS
newsletter2011_02_v04distrib.pdf, 5 p. Available: http:// www.staff.city.ac.uk

14. Concept for the Development of Relay Protection and Automation in the Electric Grid Sector //
Appendix # 1 to Rosseti's Management Board Protocol # 356pr dated June 22, 2015. М.,2015, 49
p. Available: https://mig-energo.ru›wp-content/uploads/2015/12/rza-fsk.pdf. (In Russian).

15. Distribution of malfunctions of RPA devices by types of technical reasons and types of RPA
devices for the period from 01.01.2020 to 30.06.2020// Available: https://www.so-ups.ru/ filead-
min/files/ company/rza/rza_rez_info/rza_rez_vid_teh_1-2k2020.xls. (In Russian).

16. Zakharov O. G. Reliability of Digital Relay Protection Devices. Indicators. Requirements. Esti-
mates. Moscow: Infra-engineering, 2018, 128 p. (In Russian).

39

