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Abstract 

 
Proper maintenance of non-repairable systems is essential for optimum utilization of systems to 
prevent lost production runs, cost inefficiencies, defective output which leads to customer 
dissatisfaction and unavailability of the facility for future use. This work proposes new preventive 
replacement maintenance models with constant-interval preventive replacement time with 
associated cost of replacement maintenance. Improved results of economic values with respect to 
optimal replacement time at minimum cost were obtained for radio transmitter system with sudden 
but non-constant failure rate when compared to some existing models. Other parameters and 
maintenance probabilities of the system were also obtained including; reliability, hazard rate and 
availability to ascertain the operational condition of the system. 
 
Keywords: Birnbaum-Saunders distribution, Radio Transmitter Systems, Reliability, 

Replacement model, Availability, Optimum replacement time and cost. 
 
 

I. Introduction 
 
The failure behaviour in time of a system could be examined by the failure rate of the system. The 
failure rate is also a function of time, which is also known as the hazard rate. In reliability studies, 
systems can be classified into two main categories which are repairable and non-repairable system. 
A repairable system is one which can be restored to satisfactory operation by any maintenance 
action, including parts replacement or changes to adjustable settings. Examples of such systems are 
mechanical systems like the generators, grinding machines, welding machines, etc. while a non-
repairable system is one in which its component or the entire system is always replaced during any 
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form of maintenance. Examples of these systems are mainly electronic systems like stabilizers, 
refrigerators, transmitters and many more. It is characterized by the  failure time distribution such 
as the cumulative distribution function of its time to failure, whereas a repairable system’s 
behavior is described by a stochastic point process, and so must be characterized differently, for 
example by using the rate of occurrence of failures (ROCOF) or the expected number of failures for 
a given time period. 

According to [1] and [2], maintenance can be defined as “the combination of all technical 
and associated administrative actions intended to retain an item or system, or restore it to a state in 
which it can perform its required function.” Maintenance does not only improve the cost-efficiency 
of operating a system but it can also significantly reduce the probability of catastrophic failure of 
the system, [3]. Therefore, maintenance managers must plan the maintenance actions, so that a 
balance is achieved between the expected benefits and corresponding expected potential 
consequences, [4]. On the contrary, poor maintenance of production facilities can result in 
defective end-product and customer dissatisfaction, lost production runs, cost inefficiencies, and 
sometimes, unavailability of the facility for future use, [5]. It was further observed by [6] that 
“facility maintenance is the effort in connection with different technical and administrative action 
to keep a physical asset, or restore it to a condition where it can perform a require function”.  
Maintenance can be classified according to its type and its degree: corrective maintenance (CM) 
and preventive maintenance (PM). Corrective maintenance are all maintenance actions performed 
after a system has failed with the objective of restoring its functionality while preventive 
maintenance refers to planned maintenance actions performed while the system is operational 
with the objective of maintaining the system over a desired operational time horizon by preventing 
or delaying failures. For instance, in an age replacement maintenance policy a unit is replaced at 
failure (CM) or at PM time, T where T is a constant, [7] and [8]. The principle of age replacement 
model was applied by [9] in developing a periodic replacement policy for a two-unit system with 
failure rate interaction between units. 

Preventive maintenance policies are perhaps one of the most studied maintenance policies 
in the literature, [10]. Furthermore, the expected replacement costs per unit time and the age that 
minimizes this value was used to provide the optimal maintenance interval, [11]. These fixed time 
frames are established ahead of time and remain in place regardless of when actual failures occur. 
This means that if a failure occurs just before reaching the fixed time frame, the unit will be 
replaced both at the failure and immediately again at the time interval. Replacement models of 
expected cost rates and optimal replacement times were obtained by [12] for a required availability 
level and were optimized. A theory for non-random preventive replacement (and corrective 
replacement only for units with exponential failure) and modification of age replacement was 
established for the situation when the life cycle of the unit is a random variable with probability 
distribution. The history and development of replacement model from the earliest work to the 
general replacement model was considered by [13]. They combined age and random replacement 
models and treated replacement first, replacement last, replacement overtime, replacement 
overtime first and replacement overtime last. These made up the general replacement models with 
n replacement times which were obtained by formulating the distributions of replacement times 
with n variables. The performances of seven optimization models of age replacement policy were 
evaluated by [14]. The performances were evaluated from perspectives; cost (or availability) and 
reliability. Furthermore, three performance measures that correspond to cost, reliability and 
overall performance, respectively, were developed for evaluating the performances of the models. 
A survey on age replacement model involving minimal repair was conducted by [15] by 
considering a parallel-series system with two subsystems. Age replacement models (involving 
minimal repair) that determine the optimal replacement time of the parallel-series system based on 
two different policies (Policy 1 and Policy 2) were formulated and compared using numerical 
example.  

 

109



 
Nse Udoh, Ini Uko, Akaninyene Udom 
OPTIMAL AGE ECONOMIC REPLACEMENT MODELS 

RT&A, No 3 (69) 
Volume 17, September 2022  

 
 

 
It is on this premise that this work seeks new perspectives by formulating new preventive 

replacement models characterized by failure and hazard distribution functions of the system that 
would provide optimal replacement time and minimum cost of maintenance. 

The remainder of this paper shall consider methods in section II on the concept of 
formulating and optimizing age preventive replacement models and its application to the 
maintenance of radio transmitter system. Section III deals with numerical analysis based on the 
failure time distribution and maintenance probabilities of the radio transmitter system. Results 
would also be discussed in this section. The paper is concluded in section IV. 

 
 

II. Methods 
 
1 Formulation of Preventive Replacement Model 
In developing a replacement model, the decision criterion is defined by , which is the 
expected cost/cycle time of replacing a part of the system in cycle period (0,t). It was shown in [16] 
that the expected number of failures occurring in the cycle period (0,t) is equal to the probability of 
occurrence of failures before time, t, denoted by F(t). The number of failures occurring during the 
period (0,t) is defined as N(t), which is a discrete random variable. Its probability distribution 
function is defined as; 

𝑃[𝑁(𝑡) = 𝑛] = 𝐺(𝑛); 𝑛 = 0,1,2, …                                        
Its expected value is then equal to; 

 
𝐸[𝑁(𝑡)] = ∑ 𝑁(𝑡) × 𝐺[𝑁(𝑡)]!(#)%&

!(#)%'                                        
Where 𝐺[𝑁(𝑡)]  is the failure distribution function of N(t) occurring in the period (0, t).  It is 
assumed that each interval is made as short as the need may be so that the probability of having 
more than one failure is negligible. In this situation, the probability of having two failures is small 
compared to having a single failure and so on. That is; 

𝑃[𝑁(𝑡) = 2] < 𝑃[𝑁(𝑡) = 1] 
and the probability of having three failures is smaller compared to having two failures; 

𝑃[𝑁(𝑡) = 3] < 𝑃[𝑁(𝑡) = 2], etc. 
Therefore, 

𝑃[𝑁(𝑡) = 1] < 𝑃[𝑁(𝑡) = 2] > ⋯ 
In the case of preventive replacement at τ, the expected number of failures in the period (0, τ), 
denoted by 𝐸[𝑁(𝜏)]can be estimated from the following; 

𝐺(1) = 𝑃[𝑁(𝑡) = 1] ≈ 𝐹(𝜏)𝑎𝑛𝑑𝐺(0) = 𝑃[𝑁(𝑡) = 0 ≈ 1 − 𝐹(𝜏)] 
Then,    𝐸[𝑁(𝜏)] = ∑ 𝑛 × 𝐺(𝑛) = 0 × [1 − 𝐹(𝜏)] + 1 × 𝐹(𝜏)(

&%'  

𝐸[𝑁(𝜏)] = 𝐹(𝜏)                                                                           (1) 
Therefore, 𝐸[𝑁(𝜏)] is equal to the probability of occurrence of a failure before time, τ and F(τ) is the 
cumulative failure function. Let Cfr be the total cost of failure replacement, Cpr be the total cost of 
preventive replacement maintenance and τ is the replacement time. The total expected cost per 
cycle for preventive replacement maintenance at replacement time, τ is defined as; 

 
𝐸[𝑁(𝜏)] = #)#*+	-./-0#-1	0)2#

3-/+*0-4-&#	#54-
= 6!"76#"{!(9)]

9
                                                (2) 

 

Therefore;                                         𝐸[𝐶(𝜏)] = 6!"76#";(9)]

9
                                                                           (3) 

Also, [17] stated that the mean number of failures occurring during the cycle (0,τ] is equal to the 
cumulative hazard rate at time, τ using the concept of non-homogeneous Poisson process. Hence, 
the expected cost per unit time for preventive replacement maintenance is given by; 

( )[ ]tcE
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𝐸[𝐶(𝜏)] = 6!"76#"<(9)]

9
                                                                           (4) 

Where H(τ) is the cumulative hazard function. The objective is to determine the time necessary for 
preventive replacement maintenance in order to minimize the total expected replacement cost per 
unit time. 

2 The propose age replacement models 

Let 𝐶3 be the replacement maintenance costs for each failed unit (RM), let 𝐶/ be the preventive 
maintenance cost for each non-failed unit, where 𝐶/ < 𝐶3. Also, let 𝑁=(𝑡) denote the number of 
failures in the interval (0, t] and 𝑁>(𝑡) denote the number of non-failed units that are preventively 
maintained in the interval (0, t]. Therefore, the expected cost during (0, t] is expressed as: 

𝐶>(𝑇) = 𝐶3𝐸{𝑁=(𝑡)} + 𝐶/𝐸{𝑁>(𝑡)} 

Based on the renewal reward theorem, [18], the expected cost per unit time (expected cost rate) for 
an infinite time span is; 

𝐶>(𝑇) ≡ lim
?→(

𝐶>(𝑇)
𝑡 =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑜𝑛𝑒	𝑐𝑦𝑐𝑙𝑒
𝑚𝑒𝑎𝑛	𝑡𝑖𝑚𝑒	𝑜𝑓	𝑜𝑛𝑒	𝑐𝑦𝑐𝑙𝑒  

Let T,  be the time for a planned replacement of a component with failure time, 𝜏; the 
expected cost on a cycle as obtained in [19] is expressed as; 

𝐶3𝑃(𝜏 ≤ 𝑇) + 𝐶/𝑃(𝜏 > 𝑇) = 𝐶3𝐹(𝑇) + 𝐶/𝐹/(𝑇) 
where      𝐹/(𝑇) = 1 − 𝐹(𝑇) 
The mean time of a cycle is denoted by	𝜏, where a cycle refers to the interval from the start of the 
system to the completion of repair maintenance action or replacement maintenance. Hence, our 
propose expected cost function is given in (5). An optimal policy can be found by obtaining the 
value of 𝜏 that minimizes this cost function. 
 

𝐶>(𝑇) = 6";(?)76!;/(?)

9
                                                                    (5) 

Similarly, if we also assume that the mean number of failures occurring during the cycle (0, τ] is 
equal to the cumulative hazard rate at time, τ using the concept of non-homogeneous Poisson 
process as in [17]; the expected cost per unit time for preventive replacement maintenance is given 
by; 

𝐶>(𝑇) = 6";(?)76!</(?)

9
                                                                 (6) 

2.1 Minimization of the expected cost functions: 
Taking the partial derive of (2) with respect to  yields; 

𝜏∗ =
%!"
%#"

7C[!(9)]

&
&'C[!(9)]

                                                                       (7) 

To obtain for the models in (3) and (4), we respectively have; 

𝐸[𝑁(𝜏)] =
𝑑
𝑑𝜏 𝐸

[𝑁(𝜏)] =
𝑑
𝑑𝜏 𝐹

(𝜏) = 𝑓(𝑡)
 

𝜏∗ =
%!"
%#"

7;(9)

E(#)
                                                                       (8) 

and 

𝐸[𝑁(𝜏)] = 𝐻(𝑡);	
𝑑
𝑑𝜏 𝐸

[𝑁(𝜏)] =
𝑑
𝑑𝜏𝐻

(𝜏) = ℎ(𝑡) 

 

( )¥£<T0

t

*t
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    ∴ 𝜏∗ =
%!"
%#"

7<(9)

F(#)
                                                                     (9)

   
Similarly, we also obtain  respectively from (5) and (6), as; 

𝜏∗ = ;(9)
E(#)

+ 0!
G0"H0!IE(?)

                                                              (9)
 

𝜏∗ = <(9)
F(#)

+ 0!
G0"H0!IF(?)

                                                            (10)
 

3. Limiting Availability of a System 
Availability is the probability that a system will work as required during a particular period of 
time. 
Let A(τ*) denote the availability of a system at optimal time,  
E[Up] is the expected uptime at optimal time,  

E[Down] is the expected downtime at optimal time,  
Dpr is the average downtime for preventive replacement 
Dfr is the average downtime for failure replacement 
R(τ*) is the reliability at optimal time,  
F(τ*) is the cumulative failure at optimal time,  

According to [17]; 

𝐸[𝑈𝑝] = Y 𝑡𝑓(𝑡)𝑑𝑡 +
(

'
𝜏∗𝑅(𝜏∗)

 
where  

Y 𝑡𝑓(𝑡)𝑑𝑡 = 𝜏∗𝑓(𝜏∗) − 0 × 𝑓(0) = 𝜏∗ × 𝑓(𝜏∗)
(

'
 

𝐸[𝐷𝑜𝑤𝑛] = 𝐷/3𝐹(𝜏∗) + 𝐷E3𝑅(𝜏∗)
 where  

𝐷E3 =
∑ K(
)
(*+
&

	 and 𝐷/3 =
∑ K(
,
-*+

4
          

𝐴(𝜏∗) = C(LM)
C(L/)7C(K)N&)

= 9∗E(9∗)79∗O(9∗)

9∗E(9∗)79∗O(9∗)7PK!";(9∗)7K#"O(9∗)Q
                                  (12) 

 
4. Application of Replacement models to the maintenance of radio transmitter 
system 
 
4.1 The Birnbaum-Saunders (Fatigue Life) Failure Distribution 
The Birnbaum Sanders (BS) distribution has appeared in several different contexts, with varying 
derivations. It was given by Fletcher in 1911, and was formally obtained by [20].  However, it was 
the derivation by [21] that brought the usefulness of this distribution into a clear focus. Authors in 
[22] introduced a two-parameter lifetime distribution to model fatigue life of a metal, subject to 
cyclic stress by making a monotone transformation on the standard normal random variable. 
Consequently, the distribution is also sometimes referred to as the fatigue-life distribution.  Since 
then, extensive work has been done on this model providing different interpretations, 
constructions, generalizations, inferential methods, and extensions to bivariate and multivariate 
cases, [23]. Its application is sought in this work as the best fit probability model to provide 
parameters estimates and optimal probabilities for inter-failure times of electronic systems with 
radio transmitter system as a case study. These estimates would be used to obtain optimal 
replacement policies in existing age preventive replacement maintenance models as well as our 
propose class of models. 
The radio transmitter is a complex electronic device which major components are integrated 
circuits, diodes and fuses which are replaced after each failure. Hence, it is a non-repairable 
system. It fails suddenly but at a non-constant rate. The inter-failure times of the transmitter 

*t

*t
*t

*t

*t
*t
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system was modeled as the Birnbaum-Saunders distribution having a chi-square best fit of rank 1 
using Easyfit (5.6) software. 
 
4.1.1 Failure and Cumulative Failure Distributions of the Two-Parameter 
Birnbaum-Saunders distribution 
 
Consider a material that continually undergoes cycles of stress loads. During each cycle, a 
dominant crack grows towards a critical length that will cause failure. Under repeated application 
of n cycles of loads, the total extension of the dominant crack can be written as; 𝑊& = ∑ 𝑌R&

R%= . Let Q 
be an integer-valued non-negative random variable denoting the smallest number of cycles at 
which Wn exceeds a critical value ω, which the failure of the material occurs. Clearly, 𝑃(𝑄 ≤ 𝑛) =
𝑃(𝑊& ≥ 𝜔) and this implies that; 

𝑃(𝑄 ≤ 𝑛) = 1 − 𝑃c∑ 𝑌R&
R%= ≤ 𝜔d                                                        (13)

 Since Yj’s are assumed to have mean, µ and variance, σ2, thus the Yj’s can be standardized to give  

𝑃(𝑄 ≤ 𝑛) = 1 − 𝑃e
∑ c𝑌R − 𝜇d&
R%=

𝜎√𝑛
≤
𝜔 − 𝑛𝜇
𝜎√𝑛

i 

Another assumption is that the Yj’s are independent. Also if n is large (a criterion easy to satisfy in 
fatigue studies), the central limit theorem applies. Hence, by the symmetry of the normal 
distribution, 

𝑃(𝑄 ≤ 𝑛) = 1 − ∅kSH&T
U√&

l = ∅k &T
U√&

− S
U√&

l ; where = ∅(𝑋) = ∫ -
/0
0

√>W
𝑑𝑠.

H(  

The above derivation, which involved a non-negative integer-valued random variable Q, can be 
extended to continuous variables. Let T, a continuous non-negative random variable denote the 
time to failure of the material with a distribution function, F(t). If T is viewed as the continuous 
analog of Q, and t as a continuous analog of n, then, 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(𝑄 ≤ 𝑛) = ∅kT√&
U
− S

U√&
l                                               (14)

 
Replacing n by t, we have; 

𝐹(𝑡) = ∅o∅e
𝜇√𝑡
𝜎 −

𝜔
𝜎√𝑡

ip
 

Let 
𝛼 =

𝜎
√𝜇𝜔

	𝑎𝑛𝑑	𝛽 =
𝜔
𝜇

 Then 

𝐹(𝑡; 𝛼, 𝛽) = ∅e=
X
st#

Y
−tY

#
ui                                                   (15)

 
Equation (15) is the two parameter Birnbaum-Saunders failure cumulative distribution function 
with shape parameter α and scale parameter β. It follows that; 

𝑍 = =
X
st?

Y
−tY

?
u                                                                  (16) 

Then, Eq (16) is distributed with mean 0 and variance 1 and that the probability density function of 
T is; 

𝑓(𝑡; 𝛼, 𝛽) = =
>√>WXY

sk#
Y
l
+
0 + kY

#
l
1
0u 𝑒𝑥𝑝 w− =

>X0
k#
Y
+ Y

#
− 2lx ; 𝑡 > 0; 𝛼, 𝛽 > 0                  (17) 
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4.1.2 The Mean and Variance of the two-parameter Birnbaum-Saunders 
Distribution using Monotone Transformation 

The mean and variance of T can be found in the usual manner by integration. For ease of 
computation, however, the following alternative approach is adopted. Let a random variable X be 
normally distributed with mean 0 and variance α2/4. It follows that 2X is also normally distributed 
with mean 0, and variance α. Moreover, since Z has a unit normal distribution, αZ is distributed 
normally with mean 0 and variance α2. Thus, 

𝑍 =
2𝑋
𝛼 ⇒ 𝛼𝑍 = 2𝑋 

 

Hence, from Eq (16);                               2𝑋 = et?
Y
−tY

?
i                                                                        (18) 

Squaring both sides we have; 

4𝑋> = {
𝑇
𝛽 +

𝛽
𝑇 − 2| × 𝛽𝑇

 𝑇> + 𝛽> − 2𝑇(𝛽 + 2𝛽𝑋>) = 0                                              (19) 

The positive roots yield; 
𝑇 = 𝛽 k1 + 2𝑋> + 2𝑋(1 + 𝑋>)

+
0l                                         (20)                                     

where T is the Birnbaum-Saunders random variable. 

The mean of T 

𝐸[𝑇] = 𝐸 }𝛽 {1 + 2𝑋> + 2𝑋(1 + 𝑋>)
=
>|~ 

𝐸[𝑇] = 𝛽 w𝐸[1] + 2𝐸[𝑋>] + 2[𝑋]𝐸(1 + 𝑋>)
+
0x                                            (21) 

But X follows a normal distribution with mean,	𝜇 = 0 and variance, 𝜎 = 𝛼>
4� ; then we have that; 

𝐸[𝑋>] = 𝑣𝑎𝑟(𝑋) = X0

Z
                                                          (22)

 
∴ 𝐸[𝑇] = 𝛽 k1 + >X0

Z
l                                                            (23)

 
Variance of T 

𝑉𝑎𝑟(𝑇) = 𝑣𝑎𝑟 e𝛽 {1 + 2𝑋> + 2𝑋(1 + 𝑋>)
=
>|i = 𝛽> }𝑣𝑎𝑟(1) + 𝑣𝑎𝑟(2𝑋>) + 𝑣𝑎𝑟 {2𝑋(1 + 𝑋>)

=
>|~ 

= 𝛽> e𝑣𝑎𝑟(1) + 4𝑣𝑎𝑟(𝑋>) + 4𝑣𝑎𝑟 k𝑋(1 + 𝑋>)
+
0li                                   (24)

 
From the non-central moment of a normal distribution, we have that; 

𝐸(𝑋Z) = 𝜇 + 6𝜇>𝜎> + 3𝜎Z 
But 

𝜇 = 0, 𝜎> =
𝛼>

4  Then,  

𝐸(𝑋Z) =
3𝛼>

16 ; 	𝐸
(𝑋>) = 𝑣𝑎𝑟(𝑋) =

𝛼>

4  
∴ 	𝑣𝑎𝑟(𝑋>) = [X0

=\
− kX

0

Z
l
>
= >X2

=\
                                                    (25)

 Let 

𝑌 = 𝑋(1 + 𝑋>)
=
> 
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𝑉𝑎𝑟 {𝑋(1 + 𝑋>)
=
>| = 𝐸 e{𝑋(1 + 𝑋>)

=
>|

>
i − e𝐸 {𝑋(1 + 𝑋>)

=
>|i

>

 𝐸c𝑋>(1 + 𝑋>)d = 𝐸(𝑋> + 𝑋Z) = 𝐸(𝑋>) + 𝐸(𝑋Z) 
𝑉𝑎𝑟 k𝑋(1 + 𝑋>)

+
0l = X0

Z
+ [X0

=\
                                                  (26) 

Substitute (25) and (26) into (24), we have; 
𝑉𝑎𝑟(𝑇) = 𝛽>𝛼> k1 + ]X0

Z
l                                               (27)

 
4.1.3 Modified moment estimation for the two-parameter Birnbaum-Saunders 
Distribution 
 
For the usual moment estimators in a two-parameter case, the first and second population 
moments are equated with the corresponding sample moments. In the case of modified moment 
estimation (MME), the expectation of the random variable is equated to the sample arithmetic 
mean and the expectation of the inverse of the random variable is equated to the sample harmonic 
mean. Let {𝑡=, 𝑡>, 𝑡[…} be a random sample of size n from the Birnbaum–Saunders distribution 
with the probability density function as given in Eq (17). The sample arithmetic and harmonic 
means are defined by; 

𝑆 = ∑ #(
)
(*+
&

                                                       (28)
 

𝑟 = k∑ #(3+
)
(*+
&

l
H=

                                              (29)
 Therefore by MME; 

𝑆 = 𝐸(𝑇) and 𝑟 = 𝐸(𝑇H=)
 If T has a Birnbaum–Saunders distribution with parameters α and β, then T-1 also has a Birnbaum–

Saunders distribution with the corresponding parameters α and β-1 respectively, [21]. Therefore, 
we readily have; 

𝐸(𝑇H=) = 𝛽H= e1 +
𝛼>

2 i 

𝑉𝑎𝑟(𝑇H=) = 𝛼>𝛽H> e1 +
5𝛼>

4 i 

Hence; 
𝑆 = 𝛽 k1 + X0

>
l                                                          (30)

 𝑟H= = 𝛽H= k1 + X0

>
l                                                      (31) 

𝑆
𝑟H= =

𝛽 {1 + 𝛼
>

2 |

𝛽H= {1 + 𝛼
>

2 |
= 𝛽>

 ∴ 𝛽> = √𝑆𝑟                                                                 (32) 

By substituting (28) and (29) in (32), we obtain; 

𝛽> = �k
∑ #()
(*+
&
l ek

∑ #(3+)
(*+
&

l
H=
i                                                         (33) 

Substituting (31) into (29), we have; 

𝑆 = √𝑆𝑟	e1 +
𝛼>

2 i 

𝛼� = �2k ^
√^3

− 1l�
+
0 = �2 k^

Y_
− 1l�                                             (34) 
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4.1.4 Reliability Function of Birnbaum- Saunders Distribution 
Let R(t) be the reliability function of the Birnbaum – Saunders distribution given as; 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 > 𝑡); 𝑡 > 0 

= 1 −Y 𝑓(𝑢)𝑑𝑢 =
#

'
Y 𝑓(𝑢)𝑑𝑢
(

#  Hence, R(t) is the probability that the item does not fail in the time interval (0,t], or, in other words, 
the probability that the item survives the time interval (0, t] and is still functioning at time t. 
For the two parameter Birnbaum-Saunders distribution, we have; 

𝑅(𝑡) = 1 − 𝐹(𝑡; 𝛼, 𝛽) 
Recall Eq (15): 

𝐹(𝑡; 𝛼, 𝛽) = ∅�
1
𝛼 o�

𝑡
𝛽 −

�𝛽
𝑡p�

 

𝑅(𝑡) = 1 − ∅�
1
𝛼o�

𝑡
𝛽 −

�𝛽
𝑡p�

 
Because of the symmetry of the normal distribution, we have that; 

𝑅(𝑡) = ∅ �=
X
etY

#
−t#

Y
i�                                                      (35)

  
4.1.5   Determination of Hazard Function, h(t) 
 
The probability that an item will fail in the interval (𝑡, 𝑡 + ∆𝑡) when we know that the item is 
functioning at time, t is; 

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡/𝑇 > 𝑡) =
𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)

𝑃(𝑇 > 𝑡) =
𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

𝑅(𝑡)  

By dividing this probability by the length of the time interval, ∆t, and letting ∆t→0, we get the 
failure rate function, h(t) of the item as; 

	
ℎ(𝑡) = lim

∆#→'

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡/𝑇 > 𝑡)
∆𝑡 = lim

∆#→'

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)
∆𝑡 ×

1
𝑅(𝑡) =

𝑓(𝑡)
𝑅(𝑡) 

∴ 𝑅(𝑡) = E(#)
O(#)

                                                                 (36) 

Note: According to [24], the density of Birnbaum-Saunders failure distribution can be written in a 
different form as; 

𝑓(𝑡) =
et𝑡𝛽 − t

𝛽
𝑡i

2𝛼𝑡 × ∅�
1
𝛼 o�

𝑡
𝛽 −

�𝛽
𝑡p�

 

𝑍 =
1
𝛼 o�

𝑡
𝛽 −

�𝛽
𝑡p

 
 

∅(𝑍) =
𝑒𝑥𝑝 {−𝑍

>

2 |

√2𝜋  Therefore, 
𝑅(𝑡) = ∅(−𝑍) 

and 

ℎ(𝑡) =
ab45Hb

5
4c

>X#
× k ∅(e)

∅(He)
l                                                        (37)
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4.1.6   The Cumulative Hazard function of Birnbaum-Saunders distribution 
By definition; 

𝑓(𝑡) =
𝑑
𝑑𝑡 𝐹

(𝑡) =
𝑑
𝑑𝑡 c1 − 𝑅

(𝑡)d = −𝑅(𝑡)
 Then 

ℎ(𝑡) =
𝑅/(𝑡)
𝑅(𝑡) = −

𝑑
𝑑𝑡 𝑙𝑛𝑅(𝑡) 

Recall 

Y ℎ(𝑡) 𝑑𝑡 = −𝑙𝑛𝑅(𝑡) = 𝐻(𝑡)
 

𝐻(𝑡) = −𝑙𝑛𝑅(𝑡)                                                                (38)
  

III. Results 
 

I. Estimation of the Birnbaum-Saunders Parameter of the Radio Transmitter 
System 

The modified moment estimators as given in (33) and (34) were used to obtained estimated shape 
parameter, 𝛼� = 0.95701	and scale parameter, 𝛽> = 557.37 for the inter-failure times of the radio 
transmitter which follows a two-parameter Birnbaum-Saunders distribution. Easyfit version 5.6 
was used for the goodness-of fit test as well as the estimation of parameters. 

 
II. Replacement models and probability functions of radio transmitter systems at 
respective optimum times 

Optimal probability functions in Eqs (15) and (17), availability factor in Eq (12) and expected cost 

per cycle in Eqs (3) - (6) were obtained in Table 1 at the respective optimum values of the four 

replacement models under consideration. 

Table 1: Optimal probabilities, availability and expected cost functions for replacement models 
Probability 

function 
Cumulative Failure-
Based Replacement 

model A 
 

Cumulative Hazard-
Based Replacement 

model B 
 

Proposed 
Replacement 

model C based on 
cumulative 

failures, 153 

Proposed 
Replacement 

model D based on 
cumulative 

hazard,  

 0.00115 0.001081 0.001376 0.001145 

 
0.06256 0.0560 0.093197 0.069341 

 0.0012 0.0015 0.0015174 0.001231 

 
0.93744 0.94407 0.906803 0.930659 

 
0.9829 0.98 0.9597 0.95903 

 388 392 208 166 
 

 

143* =t 137* =t
=*t 149* =t

)( *tf
)( *tF
)( *th
)( *tR
)( *tA

( )[ ]*tCE
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IV. Discussion 

I. Estimated parameters of the Birnbaum-Saunders distribution   

The estimates 𝛼� = 0.95701	 and 𝛽> = 557.37 are the respective shape and scale parameters of the 
Birnbaum-Saunders distribution. The shape of the failure density function and the hazard function 
are governed by α. Also, the failure density function is unimodal for all values of α. The scale 
parameter is also known as the median of the distribution. As α increases the hazard rate and the 
failure density function of the distribution becomes more skewed to the right. 

II. Choice of Optimal Replacement Models 

The propose replacement maintenance models by the authors yield improved results and are 
therefore considered the preferred economic optimal model for maintenance policy of the system 
due to the following reasons; 

i. Improved optimal operational time estimate before replacement: The cumulative failure 
function-based replacement model A from [16] in column (2) of Table 1 yields an optimal 
replacement time of 143 hours versus our propose optimal replacement time of 153 hours 
based on model C with same parameters in column 4. Also, the cumulative hazard function-
based replacement model B by [17] in column 3 of Table 1 shows that the radio transmitter 
system has an optimal replacement time of 137 hours versus our propose optimal replacement 
time of 149 hours from model D based on the parameters of the same kind in column 5. 

ii. Improved expected minimum cost value for replacement maintenance: The cumulative failure 
function-based replacement model A from [16] in column (2) of Table 1 yields an expected 
minimum cost value of 388naira versus our propose expected minimum cost value of 208 
naira from model C based on the same parameters. Also, the cumulative hazard function-
based replacement model B by [17] in column 3 of Table 1 shows that the radio transmitter 
system has an expected minimum cost value of 396 naira versus our propose expected 
minimum cost value of 166 in model D based on the same parameters. 

iii. Comparative chance of failure occurrence: The cumulative failure based function replacement 
model A from [16] in column (2) of Table 1 yields a 0.12% chance of failure occurrence versus 
a 0.15% chance of failure occurrence obtained from our propose model C of same kind. But, 
the cumulative hazard function-based replacement model B by [17] in column 3 of Table 1 
yields a 0.15% chance of failure occurrence versus a lesser percentage of 0.12% chance of 
failure occurrence obtained from our propose model D of the same kind. 

The results obtained in this study show that the failure distribution of Radio transmitter system 
used as a case study follows the Birnbaum-Sanders distribution with best fit parameters: 𝛼� =
0.95701	and 𝛽> = 557.37. Hence, the Birnbaum-Sanders failure distribution is recommended as a 
good probability model which characterized the failure distribution of transmitter and similar 
systems.  It is also clear from the results that the propose class of replacement maintenance models 
gives improved results than earlier models by [16] and [17]. Specifically, our second propose 
cumulative hazard function-based model yields the most economic cost (166 naira) at optimal time 
𝜏∗ = 149 with competing availability and reliability values and a smaller chance of failure 
occurrence before replacement maintenance. It is remarkable that the propose models are better in 
terms of optimal replacement time and minimum expected cost, with comparable variations in the 
probability of occurrence of failure in the cumulative failure function-based model and an 
improved result from our cumulative hazard-based replacement models. These provide good 
reasons for the choice of our propose hazard function-based model as the preferred model in 
particular and the propose class of models in general for the study.  
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Consequently, our propose preventive replacement maintenance models are the optimal economic 
models with respect to time and cost as vital economic factors in formulating replacement 
maintenance policies for the radio transmitter and similar systems. 
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