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Abstract 
 

This paper deals with the transient state behavior of an M/M/1 retrial queueing model contains two 
parallel servers with departures occur in batches. At the arrival epoch, if all servers are busy then 
customers join the retrial group. Whereas, if the customers find any of one server is free then they 
join the free server and start its service immediately. Here, we assume that primary customers 
arrive according to Poisson process. The retrial customers also follow the same fashion. Service time 
follows an exponential distribution. Explicit time dependent probabilities of exact number of 
arrivals and exact number of departures when both servers are free or when one server is busy or 
when both servers are busy are obtained by solving the difference differential equation recursively. 
Some important verification and conversion of two-state model into single state are also discussed. 
Some of the existing results in the form of special cases have been deduced. 
 
Keywords: Retrial, Queueing, Arrivals, Departures, Batch 
 
 
 

1. Introduction 
 
In recent years, computer networks and data communication systems are the fastest growing 
technologies, which have led to significant development in applications such as advance in 
internet, audio data traffic, video data traffic, etc. Recently there have been significant 
contributions to retrial queueing system in which arriving customer who finds the server busy 
upon arrival is require leaving the service area and repeating his demand after some time. Between 
trials, a blocked customer who remains in a retrial group is said to be in orbit. Retrial queue have 
applications in telephone switching systems, telecommunication networks and computers are 
competing to gain service from a central processing unit. Moreover, retrial queues are also used as 
mathematical models of several computer systems: packet switching networks, shared bus local 
area networks operating under the carrier-sense multiple access protocol and collision avoidance 
star local area networks etc. There are enough of literatures available on retrial queues. We 
referred some of the work like Artalejo and Corral [1], Falin and Templeton [2] and Artalejo [3] etc. 
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  In many queueing systems it is assumed that customers arrive singly at a service facility and 
depart singly from the service facility. However, this assumption is violated in many other real 
word situations. Letters arriving at a post office, ships arriving at a port in convoy, people going to 
a theatre and so on are some examples of queuing in which customers do not arrive and depart 
singly but in bulk or groups. The size of an arriving group and departing group may be a random 
variable or a fixed number. Mathematically as well as practically the cases where the size of an 
arriving group and departing group is a random variable, are more common, and also more 
difficult to handle. 
       One can note that the batch arrival queue may not always be given the name ‘batch’ but 
instead of this many authors chose to use the term ‘bulk’. Predominantly, this reflects two leading 
strands of applications, where ‘bulk’ often gives a connotation of transportation settings whereas 
‘batch’ frequently implies applications in communications.  
       Queueing situations in which arrivals occur singly, but service is in bulk are considered in this 
research. Bulk service queues have potential applications in many areas e.g. in loading and 
unloading of cargoes at a seaport, in traffic signal systems, in computer networks where jobs are 
processed in batches, manufacturing/ production systems, cinema halls, in transportation 
processes involving buses, airplanes, trains, ships, elevators etc. Bailey [4] introduced the concept 
of bulk service and the same was later studied by a number of parishioners. Juan [5] obtained a 
numerical method for the single server bulk service queueing system with variable capacity. 
Janssen and Leeuwaarden [6] presented an analytic rather than a numerical framework for dealing 
with discrete time bulk service queue. Goswami et al. [7] analysed a discrete time single server 
infinite buffer bulk service queues. In this research, the inter-arrival time of successive arrivals and 
service times of batches are assumed to be independent and geometrically distributed. Al-
khedhairi and Tadj [8] investigated the queueing process of a bulk service queueing system under 
Bernoulli schedule. 
        The classical transient results for the M/M/1, M/M/c and M/G/1 queue provide little insight 
into the behavior of a queueing system through a fixed operation time 𝑡. The function 𝑃!(𝑡) gives 
the distribution for the number in the system at time 𝑡, but practically provides no information on 
how the system has regulated up until time 𝑡. The question seems to be answered by Pegden and 
Rosenshine [9]. The analysis of their paper based on M/M/1 queueing model in which the state of 
the system is given by (𝑖, 𝑗),	where 𝑖 is the number of arrivals and 𝑗 is the number of departures 
until time 𝑡. Kalra and Singla [10] investigated the performance analysis of a two-state retrial 
queueing model with batch departures. In this paper, they obtained time dependent probabilities 
of exact number of arrivals in the system and exact number of departures from the system when 
only one server is free or busy. Garg and Kumar [11] studied a single server retrial queue with 
impatient customers and obtained time-dependent probabilities of number of exact arrivals and 
number of exact departures from the orbit. 
      This research studies a time dependent retrial queueing model by obtaining the explicit 
probabilities of the exact number of arrivals in the system and the exact number of departures from 
the system by a given time 𝑡 wherein the departures occur from the orbit in batches of variable 
size. 
       The rest of this paper is organized as follows: Section 2 gives a relatively formal description of 
the queueing model. In Section 3, we defined the two-dimensional state model and derived the 
difference-differential equations. The time dependent solution for the model is obtained in section 
4. Section 5 presents the some useful performance measures of the system and Section 6 discussed 
some special cases. The last section ends with a suitable conclusion. 
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2. Model Description 

2.1. Assumption and Notation 
 
The two parallel servers retrial queueing system is considered wherein departures take place in 
batches of variable size whenever these occur from the orbit. The primary calls follow a Poisson 
distribution with rate 𝜆. If the server is busy at the arrival time, then the arriving call joins the orbit, 
whereas if the server is free then the service of arriving call gets started. The behavior of customers 
in orbit is same as in the main model, i.e. every customer in orbit produces a Poisson flow of 
repeated calls with rate	𝜃. If a batch of repeated calls finds the server free, it is served and leaves 
the system after service otherwise, if the server is occupied at that time then the system state does 
not change. Arrivals occur one by one and departures occur from the orbit in batches of variable 
size with rate 𝜇. The input flow of primary calls, intervals between repeated trials and service 
times are mutually independent. For distribution of arrivals, service times and retrials, we make 
use of the following assumptions and notations: 
 
1) The repeated calls for each server follow a Poisson distribution with parameter	𝜃. 
2) In this model the departures occur from the orbit is treated as bulk departures whose capacity 

is determined afresh before each service which is equal to newly determined capacity of the 
server or units present in the orbit, whichever is less. In this case capacity of the server is a 
random variable. The size of the batch is determined at beginning of the each service. The 
probability that the server can serve a batch of g units is 𝑏" so that	∑ 𝑏" = 1#

"$% , where K is the 
maximum capacity of the server. 

3) The Service times for each call depart in batches of variable size and follow an exponential 
distribution with parameter 𝜇. 

 
Laplace transformation 𝑓(̅𝑠) of 𝑓(𝑡)  is given by 

𝑓(̅𝑠) = ∫ 𝑒!"#∞
$  𝑓(𝑡) dt,    Re (s) > 0 

The Laplace inverse of 

%(')
)(')

	𝑖𝑠	 ∑ ∑ #!"#$	*&"'

(+"!,)!(,!.)!
+"
,/.

0
1/. × 2

$#(	%(')
2'$#(	)(')

	(𝑝 − 𝑎1)+"	 ∀ p=	𝑎1, 		𝑎4 ≠ 𝑎1 for i ≠ k. 

where, 

𝑃(𝑝) = (𝑝 − 𝑎.)+( (𝑝 − 𝑎5)+) ………. (𝑝 − 𝑎0)+* 

𝑄(𝑝) is a polynomial of degree < 𝑚.+𝑚5+𝑚6 +………….𝑚0-1. 

If 𝐿!.{𝑝(𝑠)} = 𝑃(𝑡) and 𝐿!.{𝑞(𝑠)} = 𝑄(𝑡) , then 

𝐿!.{𝑝(𝑠)	𝑞(𝑠)} = ∫ 𝑃(u)𝑄(t − u)#
$ du = 𝑃 ∗ 𝑄, where 𝑃 ∗ 𝑄 is the convolution of P and Q. 

 
3. The Two-Dimensional State Model 

3.1. Definitions 
 
𝑃&,(,)(𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the 
system by time 𝑡 when server is idle. 
𝑃&,(,*(𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the 
system by time 𝑡 when 𝑘 servers are busy.    𝑘 = 1,2. 
𝑃&,((𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the system 
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by time 𝑡. 
											𝑃&,((𝑡) = 𝑃&,(,)(𝑡) + 𝑃&,(,%(𝑡)								∀𝑖, 𝑗; 			𝑖 ≥ 𝑗. 

Also 
𝑃&,(,%(𝑡) = 0, 𝑖 ≤ j;	𝑃&,(,)(𝑡) = 0, 𝑖 < 𝑗. 

Initially  
																																𝑃),),)(0) = 1;	𝑃&,(,)(0) = 0	&	𝑃&,(,*(0) = 0;		∀𝑖, 𝑗 ≠ 0.		𝑘 = 1,2. 

 
3.2. The difference – differential equations governing the system are 

 
  2
2#
𝑃4,4,$(𝑡) = −	𝜆	𝑃4,4,$(𝑡) + 𝜇	 ∑ A∑ 𝑏,8

,/9 C8
9/. 𝑃4,4!9,.(𝑡)  																																																							𝑖 ≥ 0, 𝑖 ≥ K                              (1) 

	 2
2#
𝑃4,:,$(𝑡) = −(𝜆 + (𝑖 − 𝑗)𝜃)𝑃4,:,$(𝑡) + 𝜇	∑ 𝑏98

9/. 𝑃4,:!9,.(𝑡)																																														𝑖 > 𝑗,𝑖 > 0; 𝑗 ≥ K                    (2) 

 2
2#
𝑃.,$,.(𝑡) = −(𝜆 + 𝜇)𝑃.,$,.(𝑡) + 	𝜆𝑃$,$,$(𝑡)                                                                                                               (3) 

	 2
2#
𝑃5,$,5(𝑡) = −(𝜆 + 𝜇)𝑃5,$,5(𝑡) + 	𝜆𝑃.,$,.(𝑡)                                                                                                               (4) 

2
2#
𝑃4,:,.(𝑡) = 																										−(𝜆 + 𝜇 + (𝑖 − 𝑗 − 1)𝜃)𝑃4,:,.(𝑡) + 	𝜆𝑃4!.,:,$(𝑡) +	(𝑖 − 𝑗)𝜃𝑃4,:,$(𝑡) +

																														2𝜇𝑃4,:!.,5(𝑡)																																																																																																											𝑖 > 1, 𝑖> j ≥ 0                          (5) 

𝑑
𝑑𝑡 𝑃4,:,5

(𝑡) = −(𝜆 + 2𝜇)𝑃4,:,5(𝑡) + 	𝜆𝑃4!.,:,.(𝑡) + 	𝜆A1 − 𝛿4!5,:C𝑃4!.,:,5(𝑡) + (𝑖 − 𝑗 − 1)𝜃𝑃4,:,.(𝑡)																												 

																																																																																																																																																															𝑖 > 2, 𝑖	> j ≥ 0                           (6)   

where	𝛿4!5,: = M1, 𝑤ℎ𝑒𝑛	𝑖 − 2 = 𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Using the Laplace transformation 𝑓 ̅(s) of 𝑓(𝑡)which is given by 

𝑓 ̅(s) = ∫ 𝑒!"#∞
$ 𝑓(𝑡)	dt,    Re (s) > 0  

in the equations (1) - (6) along with the initial conditions, the following equations are obtained: 

(𝑠 + 𝜆)𝑃S$,$,$(𝑠) = 𝑃$,$,$(0)
(𝑠 + 𝜆)𝑃S4,4,$(𝑠) = 𝜇∑ A∑ 𝑏,8

,/9 C𝑃S4,4!9,.(𝑠)	8
9/.

T 																																																																							𝑖	> 0, 𝑖 ≥ K                               (7) 

(𝑠 + 𝜆 + (𝑖 − 𝑗)𝜃)𝑃S4,:,$(𝑠)	= 𝜇∑ 𝑏98
9/. 𝑃S4,:!9,.(𝑠)	                                               𝑖 > 𝑗, 𝑖 > 0, 𝑗	 ≥ 	K																			(8) 

(𝑠 + 𝜆 + 𝜇)𝑃S.,$,.(𝑠)	= 𝜆	𝑃S$,$,$(𝑠)	                                                                                                                               (9) 

(𝑠 + 𝜆 + 𝜇)𝑃S5,$,5(𝑠)	= 𝜆	𝑃S.,$,.(𝑠)	                                                                                                                             (10) 

(𝑠 + 𝜆 + 𝜇 + (𝑖 − 𝑗 − 1)𝜃)𝑃S4,:,.(𝑠)	=𝜆	𝑃S4!.,:,$(𝑠) + (𝑖 − 𝑗)𝜃𝑃S4,:,$(𝑠) + 2𝜇𝑃S4,:,!.,5(𝑠) 

                                                                                                                                            𝑖 > 1, 𝑖 > 𝑗	 ≥ 0																								(11) 

(𝑠 + 𝜆 + 2𝜇)𝑃S4,:,5(𝑠)	=𝜆	𝑃S4!.,:,.(𝑠) + 𝜆	A1 − 𝛿4!.,:C𝑃S4!.,:,5(𝑠) + (𝑖 − 𝑗 − 1)𝜃𝑃S4,:,.(𝑠) 

                                                                                                                                             𝑖 > 2, 𝑖 > 𝑗	 ≥ 0                    (12) 

  
3.3. Solution of the Problem 
 
Solving equations (7) to (12) recursively, the following results are obtained 

𝑃<),),)(𝑠) =
%
+,l

                                                                                                                               (13) 

𝑃<%,%,)(𝑠) =
l-

(+,l)!	(+,l,µ)
                                                                                                                 (14) 

𝑃<&,&,)(𝑠) =
%
+,l

𝜇∑ >∑ 𝑏1#
1$" ?𝑃<&,&2",%(𝑠)																																																																						#

"$% 𝑖 > 1                               (15) 

124



 
Neelam Singla, Sonia Kalra 
ANALYSIS OF A TWO-STATE PARALLEL SERVERS  
RETRIAL QUEUEING MODEL WITH BATCH DEPARTURES 

RT&A, No 3 (69) 
Volume 17, September 2022  

 

𝑃<&,3,)(𝑠) =
µ

(4,l,µ,(&23)q	)
A𝑏%𝑃<&,%,%(𝑠) + 𝑏3𝑃<&,),%(𝑠)B																																																					𝑖 > 2																																			(16) 

𝑃<%,),%(𝑠) = C %
+,l
D C l

4,l,µ
D                                                                                                                 (17)

     

𝑃<3,%,%(𝑠) =
l

(4,l,µ	)
𝑃<%,%,)(𝑠) + 2𝜇

l

(4,l,3µ	)(4,l,µ	)
𝑃<%,),%                                                                                 (18) 

𝑃<&,%,%(𝑠) =
3µ

(4,l,µ,(&23)q	)
l"#$

(+,l,3µ)"#$
𝑃<%,),%(𝑠)																																																														𝑖 > 2                         (19) 

 𝑃<&,&2%,%(𝑠) =
l

(4,l,µ	)
𝑃<&2%,&2%,)(𝑠) +

q
(4,l,µ	)

𝑃<&,&2%,)(𝑠) +
3-

(4,l,µ	)
𝑃<&,&23,3(𝑠) 

                                                                                                         𝑖 > 2																																							(20) 

𝑃<&,),3(𝑠) =
l"#$

(+,l,3µ)"#$
𝑃<%,),%(𝑠)                                                                    𝑖 > 1                         (21) 

𝑃<&,(,3	(𝑠) = E∑ C l

+,l,3µ
D
&2(2*&2(

*$% η5
, (s)𝑃<(,*,(,%(s)G                                           𝑖	 ≥ 𝑗 + 2, 𝑗	 ≥ 1																		(22)

  

where	η5
,  (s) = 

⎩
⎪
⎨

⎪
⎧ 1											𝑓𝑜𝑟	𝑘 = 1
C1 + (*2%)q

+,l,3µ
D 					𝑓𝑜𝑟	𝑘 = 2	𝑡𝑜	𝑖 − 𝑗 − 1

(*2%)q
+,l,3µ

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗
 

 

𝑃<&,(,%	(𝑠) =
l

(4,l,µ	,(&2(2%)q)
𝑃<&2%,(,)	(𝑠) + (&2()q

(4,l,µ,(&2(2%)q	)
𝑃<&,(,)	(𝑠) 

3µ
(4,l,µ,(&2(2%)q	)

E∑ C l

+,l,3µ
D
&2(2*&2(

*$) η5
, (s)𝑃<(,*,(2%,%(s)G  

 

                                                                                                     𝑖	 ≥ 𝑗 + 2, 𝑗	 ≥ 2                   (23) 

𝑤ℎ𝑒𝑟𝑒	η5
, (s) =

⎩
⎪
⎨

⎪
⎧

1											𝑓𝑜𝑟	𝑘 = 0

S1 +
𝑘q

𝑠 + l+ 2µT 					𝑓𝑜𝑟	𝑘 = 1	𝑡𝑜	𝑖 − 𝑗 − 1

𝑘q
𝑠 + l+ 2µ 											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗

 

𝑃<&,(,)	(𝑠) =
%

(4,l,(&2()q	)
>µ∑ 𝑏"#

"$% ?𝑃<&,(2",%(s)                                               𝑖 > 𝑗 ≥ 3                                (24) 

Using the Inverse Laplace transformation 

6(7)
8(7)

is∑ ∑ 9%&#'	:)&*

(;&21)!(12%)!
;&
1$%

!
*$% × =

'#$	

=7'#$	
C6(7)
8(7)

D (𝑝 − 𝑎*);& 			∀	𝑝 = 𝑎*, 𝑎& ≠ 𝑎* for 𝑖≠ 𝑘. 

where 

 𝑃(𝑝) = (𝑝 − 𝑎%);$(𝑝 − 𝑎3);! ……… . (𝑝 − 𝑎!);+ 

	𝑄(𝑝)is a polynomial of degree <𝑚%+𝑚3+𝑚> +………….𝑚! − 1. 

If 𝐿2%{f(s)} = F(t) and 𝐿2%{g(s)} = G(t), then 

𝐿2%{f(s) g(s)} = ∫ 𝐹(u)𝐺(t − u)9
) du = F * G,   F * G is called the convolution of F and G. 
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and 

The Laplace inverse of 𝑁b!$,+!,+-
?,@,A (𝑠) = %

(+,?)+$(+,@)+!(+,A)+-
 is  

𝑁!$,+!,+-
?,@,A (𝑡) =∑ ∑

:#)*		9+-#'(2%)%.$B '#$%#$CB∏ (!$,/#0#$
1$23 E$)CB∏ (!!,0#!

1!23 E!)C

(!-21)!(;2%)!	(@2?)+!.%#$(A2?)+$.'#%
1
;$%

!-
1$%  

														+cc
𝑒2@9		𝑡!!21(−1);,%> 12%;2%?>∏ (𝑛% +F2G2%

E$$) g%)?>∏ (𝑛> +G23
E!$) g3)?

(𝑛3 − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑏)!-,;2%(𝑐 − 𝑏)!$,12;

1

;$%

!!

1$%

 

+cc
𝑒2A9		𝑡!$21(−1);,%> 12%;2%?>∏ (𝑛3 +F2G2%

E$$) g%)?>∏ (𝑛> +G23
E!$) g3)?

(𝑛% − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑐)!-,;2%(𝑏 − 𝑐)!!,12;

1

;$%

!$

1$%

 

in equations (13) to (24), the following probabilities are 

𝑃),),)(𝑡) = 𝑒2l9																																																																																																																																															                               (25) 

𝑃%,%,)(𝑡) = lµ(𝑡𝑒2l9)𝑒2(l,µ)9																																																																																																																																										(26) 

𝑃&,&,)(𝑡) = jµ∑ >∑ 𝑏1#
1$" ?	𝑒2l9#

"$% k ∗ 𝑃%,&2",%(𝑡)																																																																		𝑖 > 1																																(27) 

𝑃&,3,)(𝑡) = µ𝑏%𝑒2(l,µ,(&23)q	)9 ∗ 𝑃&,%,%(𝑡) + µ𝑏3𝑒2(l,µ,(&23)q	)9 ∗ 𝑃&,),%(𝑡)																			𝑖 > 2                         (28) 

𝑃%,),%(𝑡) = l𝑒2l9 C%
µ
− :#µ*

µ
D                                                                                                                                                                                                                (29) 

𝑃3,%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃%,%,)(𝑡)+ 2lµ𝑒2(l,µ)9 C %
3µ
− :#!µ*

3µ
D ∗ 𝑃%,),%(𝑡)                                                      (30) 

𝑃&,%,%(𝑡) = m2µl&2%𝑒2(l,µ,(&23)q	)9 n %
(3µ)"#$

−𝑒23µ9c (9)4

H!

&23

H$)

%
(3µ)"#4

op ∗ 𝑃%,),%(𝑡)  

                                                                                                                           										𝑖 > 2                         (31) 

𝑃&,&2%,%(𝑡) = 																										l𝑒2(l,µ)9 ∗ 𝑃&2%,&2%,)(𝑡) + q𝑒2(l,µ)9 ∗ 𝑃&,&2%,)(𝑡) + 2µ𝑒2(l,µ)9 ∗

																																	𝑃&,&23,3(𝑡)																																																																																																		𝑖 > 2                            (32)

        

𝑃&,),3(𝑡) = Cl&2% 9"#!

(&23)!
𝑒2(l,3µ)9D ∗ 𝑃%,),%(𝑡) 																																																																		𝑖 > 1                         (33) 

 𝑃&,(,3(𝑡) = Cl&2(2% 9"#5#!

(&2(23)!
𝑒2(l,3µ)9D ∗ 𝑃(,%,(,%(𝑡) + 

q Cl&2(2* 9"#5#&#$

(&2(2*2%)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +c Cl&2(2*(k − 1)q 9"#5#&

(&2(2*)!
𝑒2(l,3µ)9D ∗

&2(2%

*$3

&2(2%

*$3

𝑃(,*,(,%(𝑡) + >(i − j − 1)q𝑒2(l,3µ)9? ∗ 𝑃&,(,%(𝑡) 																																																												𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1																(34) 

𝑃&,(,%(𝑡) = l𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&2%,(,)(𝑡) + (𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&,(,)(𝑡) 	+

												2µl&2(𝑒2(l,µ	,(&2(2%)q)9 n %
(3µ)"#5

−𝑒23µ9c (9)4

H!

&2(2%

H$%

%
(3µ)"#5#4

o ∗ 	𝑃(,(2%,%(𝑡) +

									2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
n %
(3µ)"#5#&

−𝑒23µ9c (9)4

H!

&2(2*2%

H$)

%
(3µ)"#5#&#4

o ∗	𝑃(,*,(2%,%(𝑡) +

								2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
(kq) n %

(3µ)"#5#&.$
−𝑒23µ9c (9)4

H!

&2(2*

H$)

%
(3µ)"#5#&.$#4

o ∗

									𝑃(,*,(2%,%(𝑡) + 2µ(𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 C
%
3µ
− :#!µ*

3µ
D ∗ 𝑃&,(2%,%(𝑡)� 
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                                                                                                                                 𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 2             (35) 

𝑃&,(,)(𝑡) = >µ∑ 𝑏"𝑒2(l,µ	,(&2()q)9#
"$% ? ∗ 𝑃&,(2",%(𝑡)																																																						𝑖 > 𝑗 ≥ 3																											(36) 

 
4. Measures of Effectiveness 

 
4.1. The Laplace transform of the probability 𝑃&.(𝑡) that exactly i units arrive by time t is : 

𝑃<&.(𝑠) = t 𝑃<&,(	(𝑠)
&
($) = l"

(+,l)".$
 ;i > 0                                                                                    (37) 

 
And its Inverse Laplace transform is 

𝑃&.(𝑡)=
:#l*	(l9)"

&!
                                               (38) 

 
The basic assumption on primary arrivals is that it forms a Poisson process and above analysis of 
abstract solution also verifies the same. 
 

4.2. The probability that exactly j customers have been served by time t. 𝑃.(	(𝑡) in terms of 𝑃&,(	(𝑡) is 
given by:        

𝑃.(	(𝑡) =c𝑃&,(	(𝑡)
J

&$(

 

4.3. From the abstract solution of our model, we verified that the sum of all possible probabilities       
is one i.e. taking summation over i and j on equations (15)-(31) and adding, we get 

ccj𝑃<&,(,)	(𝑠) + 𝑃<&,(,%(𝑠) + 𝑃<&,(,3(𝑠)k =
1
𝑠

&

($)

∞

&$)

 

Taking inverse Laplace transformation, we get 

ccj𝑃&,(,)	(𝑡) + 𝑃&,(,%	(𝑡) + +𝑃&,(,3	(𝑡)k = 1,
&

($)

∞

&$)

 

which is a verification of our results. 
 

4.4. Converting two-state model into single state model: 
 
To convert two-dimensional state model into a single state model probability	𝑄!,*	(𝑡) is defined as 

under: 
	𝑄!,*	(𝑡) = Probability that there are 𝑛 customers in the orbit at time 𝑡 and the servers are free or 
busy according as 𝑘 = 0,1,2. 
The probability of exactly 𝑛 customers in the system at time 𝑡 in terms of	𝑃&,(	,)(𝑡) and 	𝑃&,(	,*(𝑡): 
  When the server is free, it is defined by probability	𝑄!,)	(𝑡) 

𝑄!,)	(𝑡) = 	c𝑃(,!,(,)(𝑡)
∞

($)

 

In this case, the number of customers in the orbit is equal to 𝑛 which is obtained by using: 
𝑛 = (number of arrivals – number of departures)    
When 𝑘 servers are busy, it is defined by probability 𝑄!,*	(𝑡) 
																																																														𝑄!,*	(𝑡) = 	t 𝑃(,!,*,(,*(𝑡)

∞
($) 																																																											(𝑘 = 1,2)

  
                                              where 𝑘	defines the number of servers. 
In this case, the number of customers in the orbit is equal to 𝑛 which is obtained by using: 
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𝑛 = (number of arrivals – number of departures – 𝑘)   
Using the above definitions from the equations (1) to (6) the set of equations in statistical 
equilibrium are: 
l𝑄),)	 = µA∑ >∑ 𝑏1#

1$" ?#
"$% B𝑄",%																																																																		                                                           (39) 

(l+ 𝑛𝜃)𝑄!,)	 = µ>∑ 𝑏1#
1$" ?𝑄!,",%																																																																																																															𝑛 > 0											(40)                        

(l+ 𝑛𝜃 + µ)𝑄!,%	 = l𝑄!, + (𝑛 + 1)𝜃𝑄!,%,) + 2µ𝑄!,3,)																																																																			𝑛 ≥ 0          (41)
  
(l+ 2µ)𝑄!,3 = l𝑄!,%	 + (𝑛 + 1)𝜃𝑄!,%,% + l𝑄!2%,3																																																																									𝑛 ≥ 0           (42) 
 

           4.5. Special Case: 
 

1. When the units are served singly and considering𝐾 = 1, 𝑏% = 1, 𝑏3 = 𝑏> = 𝑏K = ⋯ = 𝑏# = 0 in     
equations (25) to (36), then the probabilities coincide with the results of Singla and Kalra [12]. 
𝑃),),)(𝑡) = 𝑒2l9																																																				                                                                                               (43) 

  𝑃%,%,)(𝑡) = lµ(𝑡𝑒2l9)𝑒2(l,µ)9																																																																																																									                                           (44) 

	𝑃&,&,)(𝑡) = lµ𝑒2l9 C%
µ
− :#µ*

µ
D ∗ 𝑃&2%,&2%,)(𝑡) + µq𝑒2l9 C%

µ
− :#µ*

µ
D ∗ 𝑃&,&2%,)(𝑡) + 	2µ3𝑒2l9 C

%
µ
− :#µ*

µ
D ∗

																														𝑃&,&23,3(𝑡)                                            																																																			𝑖 > 1                         (45) 

 𝑃&,3,)(𝑡) = 2µ3𝑒2(l,(&23)q)9 C %
(µ,(&23)q	)

− :#(µ.("#!)q	)*

(µ,(&23)q	)
D ∗ 𝑃&,),3(𝑡)																															𝑖 ≥ 3                         (46) 

                                                                                    𝑃%,),%(𝑡) = l𝑒2l9 C%
µ
−

:#µ*

µ
D																																																																																																									                               (47) 

𝑃3,%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃%,%,)(𝑡)+ 2lµ𝑒2(l,µ)9 C %
3µ
− :#!µ*

3µ
D ∗ 𝑃%,),%(𝑡)                                                      (48) 

𝑃&,%,%(𝑡) = m2µl&2%𝑒2(l,µ,(&23)q	)9 n %
(3µ)"#$

−𝑒23µ9c (9)4

H!

&23

H$)

%
(3µ)"#4

op ∗ 𝑃%,),%(𝑡)  

                                                                                                                                  𝑖 > 2                         (49) 

𝑃&,&2%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃&2%,&2%,)(𝑡) + q𝑒2(l,µ)9 ∗ 𝑃&,&2%,)(𝑡) + 2µ𝑒2(l,µ)9 ∗ 		𝑃&,&23,3(𝑡)   

                                                                                                                                 𝑖 > 2                             (50)

  

𝑃&,),3(𝑡) = Cl&2% 9"#!

(&23)!
𝑒2(l,3µ)9D ∗ 𝑃%,),%(𝑡)																		                                             𝑖 > 1                         (51) 

                            𝑃&,(,3(𝑡) = Cl&2(2% 9"#5#!

(&2(23)!
𝑒2(l,3µ)9D ∗ 𝑃(,%,(,%(𝑡) +q Cl&2(2* 9"#5#&#$

(&2(2*2%)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +

&2(2%

*$3

																																											c Cl&2(2*(k − 1)q 9"#5#&

(&2(2*)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +	>(i − j	 − 1)q𝑒2(l,3µ)9?

&2(2%

*$3
∗ 𝑃&,(,%(𝑡) 

                                                                             𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1															(52) 

 𝑃&,(,%(𝑡) = 											l𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&2%,(,)(𝑡) + (𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&,(,)(𝑡) 		+

															2µl&2(𝑒2(l,µ	,(&2(2%)q)9 n %
(3µ)"#5

−𝑒23µ9c (9)4

H!

&2(2%

H$%

%
(3µ)"#5#4

o ∗ 		𝑃(,(2%,%(𝑡) +

																2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
n %
(3µ)"#5#&

−𝑒23µ9c (9)4

H!

&2(2*2%

H$)

%
(3µ)"#5#&#4

o ∗
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																	𝑃(,*,(2%,%(𝑡) +

																	2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
(kq) n %

(3µ)"#5#&.$
−𝑒23µ9c (9)4

H!

&2(2*

H$)

%
(3µ)"#5#&.$#4

o ∗

												𝑃(,*,(2%,%(𝑡) + 2µ(𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 C
%
3µ
− :#!µ*

3µ
D ∗ 𝑃&,(2%,%(𝑡) 

                                                                                                                                 𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 2								      (53) 

𝑃&,(,)(𝑡) = lµ𝑒2(l,(&2()q)9 C %
µ	,(&2()q

− :#(µ	.("#5)q)*

µ	,(&2()q
D ∗ 𝑃&2%,(2%,)(𝑡) + 

µ(𝑖 − 𝑗 + 1)q𝑒2(l,(&2()q)9 w
1

µ	 + (𝑖 − 𝑗)q−
𝑒2(µ	,(&2()q)9

µ	 + (𝑖 − 𝑗)qx ∗ 𝑃&,(2%,)
(𝑡)

+ 2µ3l&2(,% y c c
𝑒2(l,(&2()q)9		𝑡(&2(,%)21(−1);,%> 12%;2%?>∏ (1 +F2G2%

E$$) g%)?>∏ (1 +G23
E!$) g3)?

>(𝑖 − 𝑗 + 1) − 𝑙?! (𝑚 − 1)!	(µ);(2µ− (𝑖 − 𝑗)q)%,12;

1

;$%

&2(,%

1$%

−		
𝑒2(l,µ	,(&2()q)9

(µ)(&2(,%)(µ− (𝑖 − 𝑗)q)
+

𝑒2(l,3µ)9

(2µ− (𝑖 − 𝑗)q)(&2(,%)(µ− (𝑖 − 𝑗)q)z
∗ 𝑃(2%,(23,%(𝑡) + 	2µ3c l(&2(,%)2*

&2(

*$%

 

m∑ ∑
:#(l.("#5)q)*		98("#5.$)#&9#'(2%)%.$B '#$%#$CB∏ (%,/#0#$

1$23 E$)CB∏ (%,0#!
1!23 E!)C

(((&2(,%)2*)21)!(;2%)!	(µ)%(3µ2(&2()q)$.'#%
1
;$%

(&2(,%)2*
1$% −

												 :#(l.µ	.("#5)q)*

(µ)("#5.$)#&(	µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)("#5.$)#&(	µ2(&2()q)
p�∗ 𝑃(,*2%,(23,%(𝑡) + 	2µ3 ∑ l(&2(,%)2*&2(

*$% (𝑘q)

 m∑ ∑
:#(l.("#5)q)*		9((("#5.$)#&).$)#'(2%)%.$B '#$%#$CB∏ (%,/#0#$

1$23 E$)CB∏ (%,0#!
1!23 E!)C

L(((&2(,%)2*),%)21M!(;2%)!	(µ)%(3µ2(&2()q)$.'#%
1
;$%

L(&2(,%)2*M,%
1$% −

:#(l.µ	.("#5)q)*

(µ)8("#5.$)#&9.$(µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)8("#5.$)#&9.$(µ2(&2()q)
p ∗ 𝑃(,*2%,(23,%(𝑡) + 2µ3	(𝑖 − 𝑗 +

1)q { :#(l.("#5)q)*

(µ)(3µ2(&2()q)
− :#(l.µ.("#5)q)*

(µ)(µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)(µ2(&2()q)
| ∗ 𝑃&,(23,%(𝑡) 

                                                                                                                                          𝑖 > 𝑗 ≥ 3               (54) 

2. Letting	𝐾 = 1, 𝑏% = 1, 𝑏3 = 𝑏> = 𝑏K = ⋯ = 𝑏# = 0 and 𝜇 = 1 in (39) to (42), then the following 

equations are: 

(l+ 𝑛𝜃)𝑄!,)	 = 𝑄!,%																																																																																																																			𝑛 ≥ 0                     (55) 

(l+ 𝑛𝜃 + 1)𝑄!,%	 = l𝑄!,)	 + (𝑛 + 1)𝜃𝑄!,%,) + 2𝑄!,3																																																																													𝑛 ≥ 0          (56)   

(l+ 2)𝑄!,3 = l𝑄!,%	 + (𝑛 + 1)𝜃𝑄!,%,% + l𝑄!2%,3																																																														𝑛 ≥ 0          (57) 

which coincide with the results (2.1) – (2.3) of Falin and Templeton [2]. 

 

6. Conclusion 
 

In this study, a two retrial queueing system with bulk departures having two identical parallel 
servers is investigated. Bulk queueing systems are common in real-life situations such as 
elevators, loading and unloading cargoes, giant wheel, chemical manufacturing process, 
communication networks and tourism etc.  
 
Transient probabilities of exact number of arrivals and departures are found by solving difference 
differential equations recursively when no, one or both servers are busy. Further, some particular 
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cases of interest are discussed along with special cases. From two-dimensional state queueing 
model, factors are well understood and quantified.  
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