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Abstract 
 
The work analyzes the security model described by the controlled semi-Markov process with 
catastrophes. Management optimization is associated with determining the frequency of restoration 
work of the subsystem (security subsystem) which acts up attempts of malicious persons to disrupt 
the normal operation of the main system. The optimization criterion is the mathematical expectation 
of the time before the catastrophe (the moment of the first successful attempt to disrupt the normal 
operation of the main system). In the context of new linear limitations on management strategies, the 
structure of the optimal strategy was examined. 
 
Keywords: controlled semi-Markov process, safety, management, strategy, randomization, 
optimization problem. 

 
 
 

1. Introduction. Description Of Structural Elements  
Of Security Model Under Examination 

 
Before we set a mathematical problem, let us describe a real physical (practical) situation, the 

mathematical model of which will be the object of examination of the present work. 
Let us suppose that some system 𝑆 is operating, performing important, responsible and 

necessary work. Let us suppose that there is another system	𝑆! (opponent, malicious person) which 
tries to disrupt the high-quality performance of the work of the original system 𝑆. Finally, there is a 
security system 𝑆" which must act up attempts to disrupt the uninterrupted operation of the original 
system and ensure its safe operation. 

Regarding the "functioning" of the system 𝑆! we assume that the moments of attempts 
(attacks) to disrupt the operation of the main system 𝑆 form a discrete set on the time axis. Regarding 
the operation of the system 𝑆"	we assume that it can break and restore (the exact description of this 
process will be given below). Therefore, periods of good operation interchange with periods when 
the security system cannot perform its protection functions. For this reason one of the main 
hypothesis is formulated as follows: if the moment of the attempt to disrupt the operation of the system 𝑆 
falls during the period of good operation, then this attempt is acted up, if this moment falls during the period 
of broken operation and restoration, then an undesired event (catastrophe) occurs. If it is possible to reduce 
the periods of broken operation and restoration of the security system, that is, to manage the 
operation process, then by linking the moment of catastrophe  with this control process, it is possible 
to set a mathematical task of finding the optimal management strategy. This will be done below. 
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2. Mathematical Hypotheses 

 
1. With regard to system 𝑆, there is no need to introduce any mathematical hypotheses, since 

management is related only to the security system 𝑆!, and the moment of catastrophe  
depends on the state of the system 𝑆"	and the characteristics of the system 𝑆!. 

2. Regarding the system 𝑆!, we assume that the flow of attempts (attacks) in time is described 
by the stationary Poisson process with the parameter 𝜆. In the Poisson process the intervals 
𝜂 between adjoined attacks are independent collectively and distributed according to 
exponential law with the parameter 𝜆 

𝑃{𝜂 < 𝑥} = +
0, 𝑥 ≤ 0,
1 − 𝑒#$% , 𝑥 > 0.                                                    (1) 

The Poisson process is the Markov process. For the arbitrary moment 𝑡, the waiting time 
until the next attempt (attack) is also distributed according to the exponential law (1) with the same 
parameter. This property will be used when deriving basic relations. 

3. The system 𝑆"	breaks and the uptime 𝜉 is distributed according to the law 

𝐹(𝑥) = 𝑃{𝜉 < 𝑥} = +
0, 𝑥 ≤ 0,
1 − 𝑒#&% , 𝑥 > 0, 𝐹9 (𝑥) = 1 − 𝐹(𝑥) = 𝑃{𝜉 ≥ 𝑥} = 𝑒#&% , 𝑥 > 0. 

4. Let us suppose that the breakdown that appeared during the operation of the system is not 
detected (does not appear) by itself, and if we mark random time of the independent 
manifestation of the breakdown as 𝜁, then its distribution is equal to (𝑥) = 𝑃{𝜁 < 𝑥} = 0, 𝑥 <
∞,	that is, the random time of the independent manifestation of the breakdown with the 
probability of one is equal to infinity. 
Further, we will describe the maintenance process (control process). At the beginning 

moment 
 𝑡! = 0, the operation of the security system begins and a planned preventive update (prevention) of 
the system is assigned through the time 𝜐 ≥ 0 distributed according to the law 𝐺(𝑢) =
𝑃{𝜐 < 𝑢}, 𝐺(0) = 0. 

If the security system is not broken by the appointed moment 𝜐 ≥ 0, that is the event 
{𝜐 < 𝜉}	occurred, then at the moment of  𝜐 ≥ 0 a planned preventive update of the system will begin 
which according to the hypothesis updates the system completely. Let us mark the duration of this 
planned preventive (prevention) update 𝛾", and the distribution function of this time length we mark 
 𝐹9"(𝑥) = 𝑃{𝛾" ≥ 𝑥}.  

If the system breaks by the assigned moment 𝜐 ≥ 0 (the event {𝜐 ≥ 𝜉} occurred), but its 
breakdown was not detected by itself (the event {𝜐 < 𝜉 + 𝜁} occurred), then the planned emergency 
system update will begin at the assigned moment	𝜐 ≥ 0. The duration of this restoration work we 
will mark 𝛾', and the distribution law we will mark 𝐹'(𝑥) = 𝑃{𝛾' < 𝑥}, 𝐹9'(𝑥) = 𝑃{𝛾' ≥ 𝑥}. 

In the future for mathematical expectations entered above the restoration times 𝛾( , 𝑖 =
1,2	we will use the symbols  

𝑇( = E 𝐹9((𝑥)𝑑𝑥, 𝑖 = 1,2.
)

!
	 (2) 

After the possible restoration works, when the security system is fully updated according to 
the hypothesis, the moment of the next preventive restoration work is rescheduled regardless of the 
past run of the process and the entire maintenance process is repeated again. 

It is easy to see that the evolution of the security system 𝑆" is described with the semi-Markov 
process 𝜉(𝑡), in which Markov moments are the moments of the beginning and end of restoration 
work. When determining a set of states let us note that at the start of restoration work it is known 
which restoration work begins. The duration of restoration work depends only on its type. Therefore, 
at this moment, the past run of the process and the future behavior of the process are independent if 
it is known which restoration work begins.  
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At the end of restoration work, the system by definition is a new one and the moment of 
eventual preventive prevention is rescheduled regardless of the past. Therefore, even at this moment 
of the end of restoration, the past run of the process and the future behavior of the process are 
independent. 
           Let us consider 𝜉(𝑡) = 1, if at the nearest Markov moment, preceding moment 𝑡, the planned 
preventive prevention of the system begins. Let us consider 𝜉(𝑡) = 2, if at the nearest Markov 
moment, preceding 𝑡, the planned emergency restoration of the system begins. Finally, we assume 
𝜉(𝑡) = 0 if the closest Markov moment, preceding 𝑡, is the moment the security system is updated. 
It should be noted here that part of the time in this state the security system spends in a broken state 
(hidden breakdown), and the breakdown does not appear itself, and that is why the model provides 
for periodic determination of the state of the security system. 

5. In accordance with the basic hypothesis of the occurrence of catastrophes, formulated above, 
it is now possible to describe the effect of this process on the evolution of the security  system 
𝑆". 

         Let us enter into consideration the absorption state, in which the process 𝜉(𝑡)	passes at the 
moment of the first unreflected attack. Such an event will occur when the attack appears on the 
restoration period (states 1 or 2) or on the latent breakdown period (state 0). At this moment 𝑡 we 
consider that 𝜉(𝑡) = 3. 

Therefore, the process 𝜉(𝑡) characterizing the evolution of the security system and taking 
values from the finite set 𝐸 = {0,1,2,3} is described. Figure 1 shows the transition graph of the process 
𝜉(𝑡). 

 

 
Figure 1: Transition graph of the process	𝜉(𝑡) 

 
 

3. Determination Of Process Characteristics. Setting The Mathematical 
Task 

 
The random process 𝜉(𝑡)	described above is a homogeneous controlled semi-Markov 

process with a finite set of states 𝐸 = {0,1,2,3}, management is realized only in state 0 and is contained 
in choosing the period through which the restoration work should begin. Therefore, trajectories are 
step functions and equality 𝑈 = 0,+∞) is true for the management (decision) space 𝑈 in state 0. The 
management strategy is determined by the distribution of 𝐺(𝑢) = 𝑃{𝜐 < 𝑢}, 𝐺(0) = 0, that is, it 
belongs to a set of Markov homogeneous randomize strategies. 

More details on the construction, characteristics and properties of homogeneous controlled 
semi-Markov processes with a finite set of states can be found in [1]. 

A homogeneous controlled semi-Markov process 𝑋(𝑡) = K𝜉(𝑡), 𝑢(𝑡)L is defined as a two-
dimensional step process, the first component of which 𝜉(𝑡) describes the evolution of the controlled 
component, and the second one 𝑢(𝑡) describes the control process. One of the main characteristics of 
the homogeneous controlled semi-Markov process is the semi-Markov kernel 𝑄(*(𝑡, 𝑢), 𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈
0,+∞), 𝑢 ∈ 𝑈 which is defined as the conditional probability that the following condition of the 
first component will be the condition j and transition to this state will happen until moment 𝑡 under 
as long as the previous condition is 𝑖 and the decision 𝑢 is made. 
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Construction of a semi-Markov kernel. 
From the description of the system functioning it follows that if 𝑖 = 1,2, the following 

equalities are true 

𝑄(!(𝑡) = 𝑄(!(𝑡, 𝑢) = 𝑃{𝛾( < 𝑡, 𝜂 > 𝛾(} = E 𝑒#$%𝑑𝐹((𝑥)
+

!
,	

𝑄(*(𝑡, 𝑢) = 0, 𝑗 = 1,2,	
𝑄(,(𝑡) = 𝑄(,(𝑡, 𝑢) = 𝑃{𝜂 < 𝑡, 𝜂 < 𝛾(} = ∫ 𝜆𝑒#$%𝐹9((𝑥)𝑑𝑥

+
!                                     (3) 

The last equalities in (3) are true, since the Markov moments of the beginning and end of 
restoration work interchange. In addition, to go to zero state, it is necessary and enough that the 
carried out restoration work ends before moment 𝑡 and there are no attacks during the restoration 
work. To go to state 3, it is necessary and enough that the attack takes place before 𝑡, and the carried 
out restoration work before that moment does not end. 

It should be noted that these functions are independent of management, since in states 𝑖 =
1,2, management is not realized. 

If 𝑖 = 0, the following equalities are true: 

𝑄!!(𝑡, 𝑢) = 0, 𝑄!"(𝑡, 𝑢) = + 0, 𝑢 > 𝑡,
𝑒#&-, 𝑢 < 𝑡,

	

𝑄!'(𝑡, 𝑢) = Q
0, 𝑢 > 𝑡,
&

&#$
K𝑒#$- − 𝑒#&-L, 𝑢 < 𝑡, 𝑄!,(𝑡, 𝑢) = R

1 − &
&#$

𝑒#$+ + $
&#$

𝑒#&+ , 𝑢 > 𝑡,

1 − &
&#$

𝑒#$- + $
&#$

𝑒#&-, 𝑢 < 𝑡,
            (4) 

With the limit transition if 𝑡 → ∞, we get the transition probabilities of the states of the 
imbedded Markov chain 𝑝(* = 𝑙𝑖𝑚+→) ∫ 𝑄(*(𝑡, 𝑢)𝑑𝐺(𝑢)

)
! , 𝑖, 𝑗 ∈ 𝐸 = {0,1,2,3}. 

For the model under examination, we have from equalities (3) and (4) 

𝑝!! = 0, 𝑝!" = E 𝑒#&-𝑑𝐺(𝑢)
)

!
, 𝑝!' = E

𝜇
𝜇 − 𝜆 K𝑒

#$- − 𝑒#&-L𝑑𝐺(𝑢)
)

!
	

𝑝!, = E X1 −
𝜇

𝜇 − 𝜆 𝑒
#$- +

𝜆
𝜇 − 𝜆 𝑒

#&-Y𝑑𝐺(𝑢)
)

!
	

𝑝(! = ∫ 𝑒#$%𝑑𝐹((𝑥)
)
! , 𝑝(* = 0, 𝑗 = 1,2, 𝑝(, = ∫ 𝜆𝑒#$%𝐹9((𝑥)𝑑𝑥

)
! , 𝑖 = 1,2.                      (5) 

It is not difficult to test the obvious equality if i=0,1,2  
𝑙𝑖𝑚+→)Z𝑄(*(𝑡) =Z𝑝(* =

*∈0

1
*∈0

. 

Now we will formulate a mathematical task. When describing the security model, it was 
noted that attacks are reflected, when the moments of attacks fall on the periods of good operation 
of the security system, and the moment of the first unreflected attack is determined as a catastrophe 
moment. The security system will not be able to defeat the attack if it is in restoration states 𝑖 = 1,2. 
In addition, and in the state 𝑖 = 0 part of the period, the security system can be in the state of latent 
breakdown and skip the attack. Therefore, the increase in the safety of operation of the main system 
𝑆 or the increase in the efficiency of operation of the security system 𝑆" will be associated with the 
numerical characteristic of a random moment of catastrophe - the mathematical expectation of the 
time before the catastrophe. This expectation depends on the initial characteristics, in particular, on 
the distribution function 𝐺(𝑢), which determines the periodicity of planned restoration work. In the 
future, we will say that the distribution 𝐺(𝑢) determines the management strategy. It should be 
noted here that in the model under examination, the management is realized only in state 𝑖 = 0 and 
depends only on the state at the moment of decision-making. Therefore, in this case, the strategy has 
the property of Markov, homogeneity (there is no dependence on calendar time). In addition, the 
model considers a class of randomize strategies, since a random experiment is used when choosing 
a solution (the implementation of a random coefficient having a distribution 𝐺(𝑢) determines the 
solution). The set of distribution definition 𝐺(𝑢) we will call the management space 𝑅1 = (0,∞). 

Thus, we come to the following mathematical tasks: 
• to calculate the dependence of the mathematical expectation of the time before the 

catastrophe 𝑀(𝜏/𝜉(0) = 0) = 𝑀!(𝐺) from the distribution 𝐺(𝑢) determining the 
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management strategies (here 𝜏 is the time before the catastrophe and it is assumed 
that the security system is good at zero moment); 

• to find the maximum functional 𝑀!(𝐺) by the set of permissible management 
strategies and determine the strategy on which this extremum is achieved. 

Further, let us be clear the concept of permissible strategies (distributions) introduced above. 
Let us mark the functional 𝑀(𝜏/𝜉(0) = 𝑖) = 𝑀((𝐺) = 𝑀( and 𝛺", 𝐺 ∈ 𝛺", the set of 

distributions for which these functionals exist. Next, we will introduce two distribution functions. 
0 ≤ 𝐺"(𝑡) ≤ 𝐺'(𝑡) ≤ 1, 𝑡 ≥ 0, 𝐺"(𝑡) = 𝐺'(𝑡) = 0, 𝑡 ≤ 0, 

and define a set of distributions 
𝛺' = {0 ≤ 𝐺"(𝑡) ≤ 𝐺(𝑡) ≤ 𝐺'(𝑡) ≤ 1}                                      (6) 

Then the set of permissible distributions by the equality 
𝛺 = 𝛺" ∩ 𝛺'                                                                     (7) 

Let us note that limitations (6) can be represented as limitations of the type of inequalities 
on linear functionals 

𝐺"(𝑡) ≤ E 𝑢(𝑥, 𝑡)
1)

!
𝑑𝐺(𝑥) ≤ 𝐺'(𝑡), 𝑢(𝑥, 𝑡) = a1, 𝑥 < 𝑡,

0, 𝑥 ≥ 𝑡; 𝑡 ∈ [0,+∞). 

Now, in the accepted notations, it is possible to formulate a mathematical task: to determine 
the maximum 𝑀(𝜏/𝜉(0) = 𝑖) = 𝑀((𝐺) = 𝑀( by the set of permissible distributions (7) and the distribution 
𝐺(!) - the strategy on which this maximum is achieved, 𝑚𝑎𝑥

4∈5
𝑀!(𝐺) = 𝑀!K𝐺

(!)L. 
 

4. Definition Of Target Functional Structure 
 
Let us calculate the dependency of mathematical expectations of the time before the 

catastrophe. For conditional mathematical expectations 𝑀( = 𝑀(𝜏/𝜉(0) = 𝑖), 𝑖 = 0,1,2, we write out 
a system of algebraic equations using the formula of full mathematical expectation 

𝑀! =Z𝑀!(𝑝!(

,

(6"

	

𝑀( = 𝑀(!𝑝(! +𝑀(,𝑝(,, 𝑖 = 1,2,                                             (8) 
where 𝑀(* means a conditional mathematical expectation of the time before the catastrophe if 𝜉(0) =
𝑖 and this component made the first transition to the state 𝑗. From the above description, there are 
the following equalities 

𝑀!( =
∫ ∫ 𝑡𝑑+𝑄("(𝑡, 𝑢)𝑑𝐺(𝑢)

)
!

)
!

𝑝!(
+𝑀( , 𝑖 = 1,2,	

𝑀(, =
∫ +8!9"#(+)
$
%

:"#
, 𝑖 = 0,1,2, 𝑀(! =

∫ +8!9"%(+)
$
%

:"%
+𝑀!, 𝑖 = 1,2.                       (9) 

Substituting (9) into equations (8), we obtain a system of algebraic equations 
 

 
Solution of this system 

𝑀! =
∫ ∫ 𝑡𝑑+(∑ 𝑄!((𝑡, 𝑢),

(6" )𝑑𝐺(𝑢))
!

)
! + ∑ 𝑝!( ∑ ∫ 𝑡𝑑+𝑄(*(𝑡)

)
*6!,,(6",'

1 − 𝑝"!𝑝!" − 𝑝'!𝑝!'
 

determines the functional under examination - the mathematical expectation of the time before the 
catastrophe. If we take into account the equations (2) and (4), we get 

Z𝑄!((𝑡, 𝑢)
,

(6"

= R1 −
𝜇

𝜇 − 𝜆 𝑒
#$+ +

𝜆
𝜇 − 𝜆 𝑒

#&+ , 𝑢 > 𝑡,

1, 𝑢 < 𝑡,
	

( ) ( )

( ) ( )

,

, , .

3

0 t 0i 1 01 2 02
i 10 0

i t i0 t i3 0 i0
0 0

M td Q t u dG u M p M p

M td Q t td Q t M p i 1 2

¥ ¥

=

¥ ¥

æ ö= + +ç ÷
è ø

= + + =

åòò

ò ò
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Z 𝑄(*(𝑡)
*6!,,

= 1 − 𝐹9((𝑡)𝑒#$+ , 𝑖 = 1,2. 

Thus, taking into account (5), we finally obtain that 𝑀! = 𝑀!(𝐺) is bilinear functional 

𝑀!(𝐺) =
∫ 𝐴(𝑢)𝑑𝐺(𝑢)1)
!

∫ 𝐵(𝑢)𝑑𝐺(𝑢)1)
!

, (10) 

in which the subintegral functions are determined by the equalities   

𝐴(𝑢) =
(𝜇 + 𝜆)
𝜆𝜇 −

1
(𝜇 − 𝜆)𝜆𝜇 K𝜇

'𝑒#$- − 𝜆'𝑒#&-L +	

+𝑒#&-E 𝐹9"(𝑡)𝑒#$+𝑑𝑡
)

!
+

𝜇
𝜇 − 𝜆 K𝑒

#$- − 𝑒#&-LE 𝐹9'(𝑡)𝑒#$+𝑑𝑡
)

!
	

𝐵(𝑢) = 1 − 𝑒#&- ∫ 𝑒#$%𝑑𝐹"(𝑥)
)
! − &

&#$
K𝑒#$- − 𝑒#&-L∫ 𝑒#$%𝑑𝐹'(𝑥)

)
!                         (11) 

 
5. Solution Of Optimization Task. Optimal Management Strategy Construction 

 
The above research proves that the task of constructing the optimal management strategy is 

now formulated as follows: to determine the maximum of the bilinear functional (10), in which the 
subintegral functions are determined by equalities (11), by the set of distribution functions satisfying 
conditions (6) and (7), and the distribution 𝐺(!)  where this maximum is reached 

𝑀!K𝐺(!)L = 𝑚𝑎𝑥4∈5𝑀! (𝐺). 
The basis for solving the task will be two statements: 

• A theorem on distribution structure where the maximum linear functional over the 
set of distributions (7) is achieved, the proof of which is given in [2]; 

• A theorem on coincidence of sets of distributions where the maximum of bilinear 
functional is reached and the maximum of specially selected linear functional is 
reached, the proof of which is given in [3]. 

Further we will give the definitions of these statements. 
THEOREM [2]. If there is the maximum of the linear functional L(G) = ∫ C(u)dG(u)1)

!  with 
respect to the set (7) and the subintegral function C(u) has the maximum at point 0 ≤ 𝑡" ≤ +∞ and 
in the area 0 < 𝑡 < 𝑡" the subintegral function is non-decreasing, and in the area 𝑡" < 𝑡 < +∞ the 
subintegral function is non-increasing, then the maximum of the functional is achieved on the 
distribution 

𝐺(!)(𝑢) = Q𝐺"(𝑢), 0 ≤ 𝑢 ≤ 𝑢",
𝐺'(𝑢), 𝑢" < 𝑢 ≤ +∞,

                                                   (12) 

that is  
𝑚𝑎𝑥
4∈5

𝐿(𝐺) = 𝐿(𝐺(!)) =	

= ∫ С(𝑢)𝑑𝐺"(𝑢)
+-
! + С(𝑢") o 𝑙𝑖𝑚

-→-&1!
𝐺'(𝑢) − 𝐺"(𝑢")p + ∫ С(𝑢)𝑑𝐺'(𝑢)

1)
-&1!

= 𝐶.                    (13) 

and the following equality is correct 
𝑚𝑎𝑥
-∈[!,))

a∫ С(𝑥)𝑑𝐺"(𝑥)
-
! + С(𝑡) r 𝑙𝑖𝑚

%→+1!
𝐺'(𝑥) − 𝐺"(𝑢)s + ∫ С(𝑥)𝑑𝐺'(𝑥)

1)
-1! t = 𝐶.                (14) 

LEMMA [3]. If there is the maximum of bilinear functional M!(G!) = max=∈>M! (G) = C (10) 
in some set distributions Ω then 

{𝛷:𝑀!(𝛷) = 𝐶 = 𝑚𝑎𝑥4∈5𝑀! (𝐺)} = {𝛷:𝑚𝑎𝑥4∈5 𝐿 (𝐺) = 𝐿(𝛷)}, 
where the subintegral function of the linear functional 𝐿(𝐺) = ∫ 𝐶(𝑢)𝑑𝐺(𝑢)1)

!  is defined by the 
equality 𝐶(𝑢) = А(𝑢) − 𝐶В(𝑢). 

The lemma condition about existence of the maximum of functional (10) means that the set 
{𝛷:𝑀!(𝛷) = 𝐶 = 𝑚𝑎𝑥4∈5𝑀! (𝐺)} is not empty. 

The converse statement is also true. 
STATEMENT. If there is such a constant 𝐶 for which 

~𝛷:𝑚𝑎𝑥4∈5 ∫ K𝐴(𝑢) − 𝐶𝐵(𝑢)L𝑑𝐺(𝑢))
! = ∫ K𝐴(𝑢) − 𝐶𝐵(𝑢)L𝑑𝛷(𝑢))

! � ≠ ∅, 
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then there is the maximum of bilinear functional (10) and this maximum is C. 
From the above statements follows 
COROLLARY [2]. If there is the maximum of bilinear functional M!(G!) = max=∈>M! (G) =

C (10) in set distributions Ω, determined by correlations (6) and (7), and function C(u) = A(u) − CB(u) 
has the maximum in the point 0 ≤ 𝑡" ≤ +∞ and in the area 0 < 𝑡 < 𝑡" subintegral function is non-
decreasing, and in the area 𝑡" < 𝑡 < +∞ the subintegral function is non-increasing, then the 
maximum of this bilinear functional is reached on distribution (12) and 

                              (15) 

If you use these statements to find the maximum of the bilinear functional 𝑀!(𝐺) (10), in 
which the subintegral functions are determined by equations (11), then the task will result in 
examining the function 𝐶(𝑢) = А(𝑢) − 𝐶В(𝑢). 

To simplify transformations let us enter symbols 

𝛽( = E 𝐹9((𝑡)𝑒#$+𝑑𝑡
)

!
, 𝛼( = E 𝑒#$+𝑑𝐹((𝑡)

)

!
, 𝑖 = 1,2,	

𝛼( = −E 𝑒#$+𝑑𝐹9((𝑡)
)

!
= 1 − 𝜆𝛽( ≥ 0. 

Then, taking into account the equalities (11) and the accepted symbols for the function 𝐶(𝑢), 
we have 

𝐶(𝑢) = А(𝑢) − 𝐶В(𝑢) =	

=
(𝜇 + 𝜆)
𝜆𝜇 −

1
𝜇𝜆(𝜇 − 𝜆) K𝜇

'𝑒#$- − 𝜆'𝑒#&-L + 𝑒#&-𝛽" +
𝜇

𝜇 − 𝜆 K𝑒
#$- − 𝑒#&-L𝛽' −	

−С�1 − 𝑒#&-(1 − 𝜆𝛽") −
𝜇

𝜇 − 𝜆 K𝑒
#$- − 𝑒#&-L(1 − 𝜆𝛽')� ,	

𝐶(0) = 𝛽"(1 − С𝜆) ≤ 0, 𝐶(∞) = (&1$)
$&

− С             (16) 

The latter inequality follows from the obvious correlations 
𝛽" > 0, 𝐶 ≥ "

$
. 

For the derivative of the function 𝐶(𝑢) after transformations, we have the equality 
𝑑𝐶(𝑢)
𝑑𝑢 ==

1
(𝜇 − 𝜆) K𝜇𝑒

#$- − 𝜆𝑒#&-L − 𝜇𝑒#&-𝛽" −
𝜇

𝜇 − 𝜆 K𝜆𝑒
#$- − 𝜇𝑒#&-L𝛽' −	

−С�
𝜇'

𝜇 − 𝜆
(𝛽' − 𝛽")(1 − 𝜆𝐶)(1 − 𝜆𝛽") +

𝜇
𝜇 − 𝜆 K𝜆𝑒

#$- − 𝜇𝑒#&-L(1 − 𝜆𝛽')� =	

= 𝑒#&- �
1

(𝜇 − 𝜆)
(𝐶𝜇𝜆 − 1) +

𝜆
𝜇 − 𝜆𝛽"

(1 − 𝜆𝐶) +
𝜇'

𝜇 − 𝜆
(𝛽' − 𝛽")(1 − 𝜆𝐶)� +	

+𝑒#$- o
𝜇

(𝜇 − 𝜆)
(1 − 𝜆𝛽')(1 − 𝜆С)p. 

Now the derivative under examination can be represented as the product of two functions 
𝑑𝐶(𝑢)
𝑑𝑢 = 𝛹"(𝑢)𝛹'(𝑢)	

𝛹"(𝑢) = 𝑒#&-, 𝛹'(𝑢) = 𝐶! + 𝐶", 

𝐶! = �
1

(𝜇 − 𝜆)
(𝐶𝜇𝜆 − 1) +

𝜆
𝜇 − 𝜆𝛽"

(1 − 𝜆𝐶) +
𝜇'

𝜇 − 𝜆
(𝛽' − 𝛽")(1 − 𝜆𝐶)�	

𝐶" =
𝜇

(𝜇 − 𝜆)
(1 − 𝜆𝛽')(1 − 𝜆С) 

The first function 𝛹"(𝑢) is positive and the second function 𝛹'(𝑢) is decreasing since 
𝑑𝛹'(𝑢)
𝑑𝑢 = 𝑒(&#$)-𝜇(1 − 𝜆𝛽')(1 − 𝜆С) ≤ 0.	 

[ )

(0)
0 0

1 2 1 20
0 0

0,

1 2 1 20
0 0

max ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
max .

( ) ( ) ( ) ( ) ( ) ( ) ( )
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Thus, it has been proved that the derivative of the function (16) changes the sign from plus 
to minus up to one time, that is, the function (16) is either monotonic in the area R1 = 0,∞) or has 
the maximum on area boundaries and fully satisfies the conditions of the above statements. 

Therefore, the maximum of the functional (10), in which the subintegral functions are 
determined by the equalities (11), over the set distributions satisfying the inequalities 
{𝐺: 0 ≤ 𝐺"(𝑢) ≤ 𝐺(𝑢) ≤ 𝐺'(𝑢) ≤ 1,0 ≤ 𝑢 ≤ +∞} (6), is achieved on the distribution 

𝐺(!)(𝑢) = Q𝐺"(𝑢), 0 ≤ 𝑢 ≤ 𝑢",
𝐺'(𝑢), 𝑢" < 𝑢 ≤ +∞,

 

moreover, the parameter u" is defined as maximum point of function 15. We remind that functions 
А(u) and В(u) are defined by equalities (11). 

 
6. Conclusion 

 
The conducted researches allowed to bring the task of functional analysis - the search for the 

extremum of bilinear functional by the set distribution functions to the task of mathematical analysis 
- the search for the maximum of some function by the set of real numbers. This essentially simplifies 
the practical use of the results set forth. 
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