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Abstract

The current research article explores a finite capacity discrete-time multiple working vacations queue
with impatient clients and congestion dependent service rates. An arriving client can choose either to
enter the queue or balk with a certain probability. Due to impatience, he may renege after joining
the queue as per geometric distribution. Rather than totally shutting down the service throughout
the vacation period, the server functions with a different service rate. The times of services during
regular service and during working vacation periods are considered to be geometrically distributed.
The vacation periods are also presumed to be geometrically distributed. In addition, the service rates
are considered to be dependent on the number of clients in the system during regular service period
and during working vacation period. The model’s steady-state probabilities are calculated using matrix
approach and a recursive solution is also provided. The recursive solution is used for obtaining the
corresponding continuous-time results. Various system performance metrics are presented. Finally, the
numerical representation of the consequences of the model parameters on the performance metrics is
furnished.

Keywords: Queue, discrete-time, working vacations, balking, reneging, congestion dependent
service rates

1. Introduction

A discrete-time queueing model is one in which the time between two arrivals and the ser-
vice times are discrete random variables. Such queueing models are more relevant than the
continuous-time queuing models for designing and monitoring the efficacy of computer systems,
communications network systems, industrial and production systems, traffic systems and health-
care systems. Furthermore, discrete-time analysis can be used to approximate a continuous-time
system but this is not the case in reverse. Shizhong Zhou et al. [13] investigated a discrete-time
queue with preferred customers and partial buffer sharing. Michiel De Muynck et al. [9] anal-
ysed a discrete-time queue with general service demands and phase-type service capacities. A
discrete-time queue with three different strategies has been studied by Ivan Atencia et al. [7].
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Individuals are always concerned while waiting for service, hence dissatisfaction is a most
noteworthy characteristic in queueing systems. In reality, queues with impatient clients fre-
quently occur where clients become irritated owing to lengthy waiting lines. Due to which,
clients either balk (i.e., refuse to join the queue) or renege (i.e., abandon the queue without
being served). In real-world congestion situations, performance examination of queueing sys-
tems with balking and reneging is advantageous since fresh managerial insights are gained.
The importance of the aforementioned queueing systems can be seen in telecom companies,
networking and telecommunication systems, production system, machinery operating systems,
health emergency rooms, inventory management systems, etc. The amount of lost revenues can
be estimated using the balking and reneging probabilities when deciding on the service rate of
servers required in the service system to satisfy the needs that change over time. The concept
of balking and reneging has been introduced by Haight [5] and Haight [6], respectively. Cus-
tomers’ balking and reneging behaviour in queueing theory were compared by Amit and Sonja
[1]. Rakesh Kumar [10] conducted an economic analysis of a finite buffer multi server queuing
model including balking, reneging and customer retention. The busy period study of a queuing
model with balking and reneging was presented by Wang and Zhang [17]. G. S. Kuaban et al.
[8] investigated a multi-server queuing model with balking and correlated reneging.

Working vacation (WV) models are the ones in which the server stays available and serves
clients at a lower rate throughout the vacation period. If the queue is not empty at the vacation
termination epoch, the server enters a regular service period with regular service rates; oth-
erwise, the server returns to WV. Such type of working vacation policy is termed as multiple
working vacations (MWV). This type of working vacation policy was introduced by Servi and
Finn [12]. The discrete-time multiple working vacation queue with balking has been studied by
Vijaya Laxmi et al. [14]. Vijaya Laxmi and Jyothsna [15] analyzed a finite buffer discrete-time
batch service queue with multiple working vacations. A survey on working vacation queueing
models has been presented by Chandrsekaran et al. [2]. Rama Devi et al. [11] analyzed an
M/M/1 queue with working vacation, server failure and customer’s impatience.

Queues with single server whose service rates are proportional to the queue size are accu-
rate models for systems where the server’s performance must be adjusted in accordance to the
quantity of clients in the queue. In congestion dependent queueing systems, the server’s service
rate may be influenced by the availability of work in the system. The service rate for each client
can be dynamically updated as a function of the number of clients in the system using conges-
tion dependent services. Furthermore, queueing networks get benefited from queueing models
with finite capacity and congestion dependent services, which often add to the complexity of
these systems’ solutions. For literature on congestion dependent queues, see [4, 16, 3] and the
references therein.

The current paper considers a finite buffer discrete-time MWV queue with impatient clients
and congestion dependent service rates. Service times are supposed to be geometrically dis-
tributed and congestion dependent throughout regular service and during working vacations.
The inter-arrival times of clients and vacation times are both presumed to be geometrically dis-
tributed. The queue is analyzed under the late arrival system with delayed access (LAS-DA) and
the steady-state system length distributions are obtained using matrix approach and a recursive
solution is also provided. The results of the corresponding continuous-time queue are obatined
from the recursive solution of the discrete-time queue. A few model performance metrics are
developed using the steady-state probabilities. Finally, the parameter effect on the performance
indices of the system is exhibited through some numerical results.

The remaining part of the paper is laid out in the following manner. In Section 2, the de-
scription of the model and steady-state probabilities are presented. The performance metrics of
the model are displayed in Section 3. Section 4 depicts the impact of the model parameters on
the performance metrics in the form of a table and graphs. The paper is concluded in Section 5.
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Figure 1: Different time instants in late arrival system with delayed access (LAS-DA)

2. Description of the model and steady-state probabilities

Under the late arrival system with delayed access (LAS-DA), we study a finite buffer discrete-
time balking and reneging single server queue with multiple working vacations and congestion
dependent service rates. Suppose that the time axis is divided into equal-length intervals with
the duration of a slot being equal to one and are labeled as 0, 1, 2, . . . , t, . . . . A possible arrival of
a client occurs in (t−, t) while a potential departure of the client occurs in (t, t+). The different
time instants in LAS-DA are displayed in Figure 1.

The system is presumed to have a finite capacity N. The inter-arrival times A of clients are
independent and geometrically distributed with probability mass function (p.m.f.) P(A = i) =
λ̄i−1λ, i ≥ 1, 0 < λ < 1 where for xϵ[0, 1], we denote x̄ = 1 − x. If a client arrives and discovers
the system is busy, the client can choose to join the queue or balk. When the system size is
n, let bn indicate the probability that a client will join the queue for service or will balk with
probability b̄n. Furthermore, we assume that b0 = 1, 0 < bn < bn+1 ≤ 1, 1 ≤ n ≤ N − 1, bN = 0.

Each client will wait a specified amount of time T for service to commence after joining the
queue. If it hasn’t started by then, he’ll become frustrated and exits the queue without being
served. The impatient time T is geometrically distributed and independent with common p.m.f.
P(T = i) = ᾱi−1α, i ≥ 0, 0 < α < 1. As an impatient client’s arrival and departure without
service are unrelated, r(n) = (n − 1)α, 1 ≤ n ≤ N can be used as the function of the average
reneging rate of the client.

The clients are served on a first-come first-served (FCFS) discipline. The service times of
clients S are geometrically distributed and independent with p.m.f. P(S = i) = µ̄i−1

n µn, i ≥
1, 0 < µn < 1 when there are n clients in the system. The durations of service during a working
vacation period Sv are geometrically distributed and independent with p.m.f. P(Sv = i) =
η̄i−1

n ηn, i ≥ 1, 0 < ηn < 1. When the server detects that the system is vacant, it follows multiple
working vacation policy. Upon return of the server after a working vacation discovers that the
system is vacant, another working vacation commences. Or else, the server initiates a regular
service period. The vacation times V are geometrically distributed and independent with p.m.f.
P(V = i) = ϕ̄i−1ϕ, i ≥ 0, 0 < ϕ < 1.

Let Pn, 0 ≤ n ≤ N be the probability that the system has n clients when the server is on WV
at steady-state and when the server is in regular service period Qn, 1 ≤ n ≤ N represents the
probability that there are n clients in the system. The steady-state equations can be expressed as
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follows based on the one-step transition analysis.

P0 = λ̄P0 + h1(η1)P1 + t2(η2)P2 + h1(µ1)Q1 + t2(µ2)Q2, (1)

Pn = ϕ̄ (gn(ηn)Pn + fn−1(ηn−1)Pn−1 + hn+1(ηn+1)Pn+1 + tn+2(ηn+2)Pn+2) ,

1 ≤ n ≤ N − 2, (2)

PN−1 = ϕ̄ (gN−1(ηN−1)PN−1 + fN−2(ηN−2)PN−2 + hN(ηN)PN) , (3)

PN = ϕ̄ (gN(ηN)PN + fN−1(ηN−1)PN−1) , (4)

Q1 = g1(µ1)Q1 + h2(µ2)Q2 + t3(µ3)Q3 + ϕ
(

g1(η1)P1 + λP0 + h2(η2)P2 + t3(η3)P3)), (5)

Qn = gn(µn)Qn + hn+1(µn+1)Qn+1 + tn+2(µn+2)Qn+2 + fn−1(µn−1)Qn−1 + ϕ
(

gn(ηn)Pn

+ fn−1(ηn−1)Pn−1 + hn+1(ηn+1)Pn+1 + tn+2(ηn+2)Pn+2), 2 ≤ n ≤ N − 2, (6)

QN−1 = gN−1(µN−1)QN−1 + hN(µN)QN + fN−2(µN−2)QN−2 + ϕ
(

gN−1(ηN−1)PN−1

+ fN−2(ηN−2)PN−2 + hN(ηN)PN), (7)

QN = gN(µN)QN + fN−1(µN−1)QN−1 + ϕ
(

gN(ηN)PN + fN−1(ηN−1)PN−1), (8)

where

fn(x) =

{
λ, n = 0,
λbn x̄ (1 − (n − 1)α)) , 1 ≤ n ≤ N − 1,

gn(x) =

{
(1 − λb1)x̄ + λb1x : n = 1,
(1 − λbn)x̄(1 − (n − 1)α) + λbn (x(1 − (n − 1)α) + x̄(n − 1)α) , 2 ≤ n ≤ N,

hn(x) =

{
(1 − λb1)x, n = 1,
(1 − λbn) (x(1 − (n − 1)α) + x̄(n − 1)α) + λbnx(n − 1)α, 2 ≤ n ≤ N,

tn(x) = (1 − λbn)x(n − 1)α, 2 ≤ n ≤ N.

Matrix Solution
To determine the steady-state probabilities, we propose a matrix solution. The infinitesimal
generator of the Markov process can be represented as below using the lexicographical sequence
for the states.

Q =



A0 D0
B1 A1 D1
C2 B2 A2 D2

C3 B3 A3 D3
. . . . . . . . .

CN−2 BN−2 AN−2 DN−2
CN−1 BN−1 AN−1 DN−1

CN BN AN


,

where

A0 =
(
−λ

)
; D0 =

(
ϕ̄ f0(η0) λϕ

)
;

B1 =

(
h1(η1)
h1(µ1)

)
; C2 =

(
t1(η2)
t1(µ2)

)
;

An =

(
ϕ̄gn(ηn)− 1 ϕgn(ηn)

0 gn(µn)

)
, 1 ≤ n ≤ N;

Bn =

(
ϕ̄hn(ηn) ϕhn(ηn)

0 hn(µn)

)
, 2 ≤ n ≤ N;

Cn =

(
ϕ̄tn(ηn) ϕtn(ηn)

0 tn(µn)

)
, 3 ≤ n ≤ N.
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Let Π = (Π0, Π1, . . . , ΠN−1, ΠN) be the vector of steady-state probabilities, where Π0 = (P0), Πn =
(Pn, Qn), for 1 ≤ n ≤ N. The equations at steady-state ΠQ = 0 can be expressed as

Π0A0 + Π1B1 + Π2C2 = 0, (9)

Π0D0 + Π1A1 + Π2B2 + Π3C3 = 0, (10)

Πn−1Dn−1 + ΠnAn + Πn+1Bn+1 + Πn+2Cn+2 = 0, 2 ≤ n ≤ N − 2, (11)

ΠN−2DN−2 + ΠN−1AN−1 + ΠNBN = 0, (12)

ΠN−1DN−1 + ΠNAN = 0. (13)

After recursive substitutions, equations (11) to (13) yields

Πn = ΠNMnD−1
n , 1 ≤ n ≤ N − 1, (14)

where

MN−1 = −AN ,

MN−2 = −MN−1D−1
N−1 − BN ,

MN−3 = −MN−2D−1
N−2AN−2 − MN−1D−1

N−1BN−1 − CN ,

Mn = −Mn+1D−1
n+1An+1 − Mn+2D−1

n+2Bn+2 − Mn+3D−1
n+3Cn+3, 1 ≤ n ≤ N − 4.

Assuming PN to be known, equation (10) and(14) yields QN in PN . From equations (14),
Pn(0 ≤ n ≤ N − 1) and Qn, (1 ≤ n ≤ N − 1) can be evaluated in terms of PN . Finally, PN
is computed from the normalization condition P0 + ∑N

n=1 Πne = 1, where e is a column vector
with each component equal to one. The steady-state probabilities are calculated using a com-
puter code.

Recursive Solution
In order to approximate the corresponding continuous-time results we have obtained the ex-
pressions of the steady-state probabilities using recursive method though the matrix method
is easy to program and implement. Solving the equations (2) to (8) recursively and utilizing
the normalization condition ∑N

n=0 Pn + ∑N
n=1 Qn = 1, the explicit expressions of the steady-state

probabilities are obtained as

Pn = ψn

(
N

∑
n=0

ψn +
N

∑
n=1

(ωn + kφn)

)−1

, 0 ≤ n ≤ N,

Qn = (ωn + kφn)

(
N

∑
n=0

ψn +
N

∑
n=1

(ωn + kφn)

)−1

, 1 ≤ n ≤ N,
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where

ψN = 1,

ψN−1 = (1 − ϕ̄gN(ηN))/ϕ̄ fN−1(ηN−1),

ψN−2 = ((1 − ϕ̄gN−1(ηN−1))ψN−1 − ϕ̄hN(ηN)) /ϕ̄ fN−2(ηN−2),

ψn = ((1 − ϕ̄gn+1(ηn+1))ψn+1 − ϕ̄hn+2(ηn+2)ψn+2 − ϕ̄tn+3(ηn+3)ψn+3) /ϕ̄ fn(ηn),

n = N − 3, . . . , 0,

φN = 1, ωN = 0,

φN−1 = (1 − gN(µN)) / fN−1(µN−1),

ωN−1 = −ϕ (gN(ηN) + fN−1(ηN−1)ψN−1) / fN−1(µN−1),

φN−2 = ((1 − gN−1(µN−1))φN−1 − hN(µN)) / fN−2(µN−2),

φn = (1 − gn+1(µn+1))φn+1 − hn+2(µn+2)φn+2 − tn+3(µn+3)φn+3) / fn(µn),

n = N − 3, . . . , 1,

ωN−2 =
(
((1 − gN−1(µN−1))ωN−1 − hN(µN)ωN)− ϕ

(
gN−1(ηN−1)ψN−1

+ fN−2(ηN−2)ψN−2 + hN(ηN)ψN
))

/ fN−2(µN−2),

ωn =
(
((1 − gn+1(µn+1))ωn+1 − hn+2(µn+2)ωn+2 − tn+3(µn+3)ωn+3)− ϕ

(
gn+1(ηn+1)ψn+1

+ fn(ηn)ψn + hn+2(ηn+2)ψn+2 + tn+3(ηn+3)ψn+3
))

/ fn(µn), n = N − 3, . . . , 1,

k =
(
ϕ
(

g1(η1)ψ1 + λψ0 + h2(η2)ψ2 + t3(η3)ψ3
)
−
(
(1 − g1(µ1))ω1 − h2(µ2)ω2

−t3(µ3)ω3
)
)/
(
(1 − g1(µ1))φ1 − h2(µ2)φ2 − t3(µ3)φ3

)
.

Remark: In continuous-time context, let β, νn, ϱn and ς represent the arrival rate, service rates
during regular busy period, during WV period and vacation rate, respectively. Further, let the
time axis be divided into equal length slots of length ∆ > 0, so that λ = β∆, µn = νn∆, ηn = ϱn∆
and ϕ = ς∆ where ∆ is small enough. Now, the results of the corresponding continuous-time
M/M(n)/1/N/MWV queue with balking and reneging are obtained by substituting λ, µn, ηn
and ϕ in the recursive solution.

3. Performance metrics

Let Ls denote the mean of the number of clients in the system and is expressed as

Ls =
N

∑
n=1

n(Pn + Qn).

During regular service and during WV, the busy probability of the server are denoted as pb and
pv, respectively. The probabilities pb and pv are given by

pb =
N

∑
n=1

Qn, pv =
N

∑
n=0

Pn.

The average balking rate (br), average reneging rate (rr) and the average rate of client loss due
to impatience (lr) are given as

br =
N

∑
n=1

λ(1 − bn)(Pn + Qn),

rr =
N

∑
n=1

(n − 1)α(Pn + Qn),

lr = br + rr.
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Table 1: Performance metrics for different ηm

ηm 0.054167 0.216667 0.4874999 0.866667 1.35417
Ls 2.075441 2.074633 2.073842 2.073065 2.072303
lr 0.545119 0.544945 0.544773 0.544603 0.544436
pb 0.965786 0.965623 0.965460 0.965297 0.965134
pv 0.034214 0.034376 0.034539 0.034702 0.034866
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Figure 4: µm versus pb and pv

4. Numerical results

The influence of the system parameters on the model’s various performance metrics is presented
in this section. The capacity of the system is assumed as N = 12. The balking function is taken
as bn = 1/(n + 1), 1 ≤ n ≤ N − 1 with the assumption that b0 = 1 and bN = 0. The model
parameters are arbitrarily chosen to be λ = 0.7, ϕ = 0.6, α = 0.09. The congestion-dependent
service rates of the system are taken to be µn = 0.8n/N, ηn = 0.6n/N with means µm = 0.433333
and ηm = 0.325, respectively.

The values of the performance metrics for various mean service rates during WV are pre-
sented in Table 1. The average number of clients in the system (Ls), average rate of losing a client
(lr) and the probability of the server in regular service (pb) - all show a diminishing trend as the
mean service rate during WV grows. With an increase in ηm, the probability of the server being
in WV (pv) increases.

The arrival rate’s impact on the different performance metrics of the model is displayed in
Figure 2. From the figure it is evident that the performance metrics lr, Ls and pb increase with
the increase of λ while the performance metric pv decreases with the increase of λ.

The influence of mean service rate during regular busy period µm on the performance mea-
sures Ls and lr is depicted in Figure 3. It is clearly apparent from the graph that both Ls and lr
decrease with the increase of µm as intuitively expected.

Figure 4 presents the changes in pb and pv with the the increase of µm. With the increase of
µm, the probability of the service being busy with regular service (pb) falls but the probability of
the server being busy in WV (pv) increases.

5. Conclusions

The study of a finite buffer discrete-time congestion dependent queue with balking, reneging
and multiple working vacations is presented in this paper. The stationary probabilities of the
model are obtained using matrix method as well as recursive method. Different performance
characteristics of the model such as average number of clients in the system, busy probability
of the server during regular service, busy probability of the server during working vacations,
average balking rate, average reneging rate and average rate of loosing a client are presented.
A variety of numerical findings in the form of tables and graphs are used to demonstrate com-
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putational experiences. Future research can be focussed on the extension our findings to a
GI/Geo(n)/1/N queue with WV and impatient clients.
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