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Abstract

The present paper analyses a retrial queueing system with Catastrophe. Primary and secondary
customers follow Poisson processes. Inter arrival and service times are Exponentially distributed.
Catastrophe occurs on a busy server and follows Poisson process. The server is sent for repair after its
failure. The repair times are also Exponentially distributed. Steady state and time dependent solutions for
number of customers in the system when the server is idle or busy are obtained. The probability of the
server being under repair is obtained. Some performance measures are also evaluated. Numerical results
are obtained and represented graphically.
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1. Introduction

We have seen in many real life situations that sometimes a customer on arriv al does not get the
ser vice instantly . So he tries for the ser vice after some random amount of time which is popularly
known as retrial. Retrial queue is a model of this kind of system if the ser ver is not free, the
customer lea ves the ser vice area and joins the virtual queue known as orbit. Ther eafter it retries
from the orbit after a random amount of time to get ser vice. The queueing systems with these
repeated attempts have been used in many field such as telecommunication, computer netw orks,
data transmission, etc. The analysis of such systems lead to the identificatio of a new class of
queueing systems known as retrial queueing systems.
For example: In call centers wher e when customers call, if they are able to reach a liv e negotiator
immediately , they are answ ered else they repeat the call after a couple of minutes.
The work on retrial queues in its early stages can be found in [1]. In [2] the author discussed
some important single ser ver retrial queueing models and repr esented analytic results. In [3]
the single ser ver retrial queue with finit number of sour ces is analyzed and customer ’s arriv al
distribution, busy period and w aiting time process is established. Time dependent probabilities
for exact number of arriv als and departur es from the system when the ser ver is free or busy are
obtained in [4]. An explanation of the retrial queueing system is shown in the follo wing diagram.
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Figure 1: Basic Structure of Retrial Queueing System

Recently , a new concept of catastr ophe has been introduced in queueing systems. The word
catastr ophe refers to a sudden, unexpected failur e of a machine, computer netw ork, electr onic
system, communication system, etc. Catastr ophes occur randomly , eradicating all customers
present in the system and temporarily inactiv ating the ser vice facilities. Catastr ophe resets the
system from curr ent state to zer o state at random time inter vals. Catastr ophe may come from
outside the system or from another ser vice station. Retrial queueing models with catastr ophe have
applications in call centers, computer netw orks and in telecommunication systems that depend
on satellites. In population dynamics, catastr ophe can be consider ed as the natural disasters such
as floods stor ms, etc. On the other hand when we talk of catastr ophe in queueing systems, it
deletes all the customers present ther e and causes breakdo wn of the ser ver. A basic example of
retrial queueing system with catastr ophe is in call centers wher e if customers are able to reach a
liv e negotiator immediately upon making a call, they are answ ered else they repeat the call after
a couple of minutes. Further mor e, loss of all the customers and inactiv ation of the ser ver will
take place as a result of an incidental power failur e or a virus attack. The diagram belo w sho ws
the retrial queue with catastr ophe.
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Figure 2: Basic Structure of a Retrial Queueing System with Catastrophe

The initial work on catastr ophe occurring in a simple Marko vian queue could be referr ed
from [5] and [6]. In [7] the author discussed mean queue length and the asymptotic beha vior of
the probability of ser ver being free. Also the steady state proba bilities are obtained. The transient
solution for the system with ser ver failur e and non-zer o repair time on M/M/1 queueing system
with catastr ophe is obtained by [8] .
In this resear ch paper when a ser ver fails, it is sent for repair immediately and after getting
repair ed, the ser ver comes back to its working position and the system becomes ready to accept
new customers.
The paper has been organized in the follo wing sections.
In section 2 the complete mathematical description of the model is defined Also, the dif ference-
dif ferential equations are deriv ed in this section. Steady-state solution of the model along with the
expected number of customers in the system is giv en in section 3. In section 4 the transient state
probabilities and the probability of ser ver being under repair are obtained. In section 5 verificatio
of results is giv en. The numerical results are obtained and repr esented graphically in section 6.
In section 7 the busy period probabilities of system and the ser ver are obtained numerically and
presented graphically . Section 8 discusses the conclusion and finall the refer ences are listed.

2. Model Description

In this paper , a single ser ver retrial queueing system with catastr ophe is consider ed. In this
system, the customers arriv e accor ding to Poisson process. On arriv al if a customer find the
ser ver busy , he joins the orbit and retries from the orbit. These retrials are consider ed to be
secondar y arriv als. Catastr ophe occurs on a busy ser ver follo wing Poisson process. It is assumed
that the catastr ophe occurs only when the system is non-empty and the ser ver is busy . It has
no effect on the system when the system is empty . Catastr ophe makes system empty and also
causes breakdo wn of the ser ver. Once the system becomes empty and the ser ver breaks down, it
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is sent for repair immediately . Further , it is assumed that during the repair time no arriv al can
take place.
Assumptions : The assumptions underlying the model are listed belo w.

• Arriv al Process: The primar y customers arriv e at the system accor ding to Poisson process
with mean arriv al rate λ.

• Retrial Process: The secondar y customers arriv e at the system accor ding to Poisson process
with mean arriv al rate θ.

• Service Process: The ser vice times are Exponentially distributed with parameter µ.
• Catastr ophe: Catastr ophe occur at the system accor ding to Poisson process with rate ξ.
• Repair: The repair time is Exponentially distributed with parameter τ.

The input fl w of primar y calls, inter vals betw een repetitions, ser vice times, catastr ophes and
repair times are statistically independent.

Shift operator E is used to increase the value of argument x by h so that E f (x) = f (x + h),
E2 f (x) = E[E f (x)] = E[ f (x + h)] = f (x + 2h) and so on. Her e h is the equal inter val of spacing.
Laplace transfor mation f̄ (s) of f (t) is giv en by:

f̄ (s) =
∫ ∞

0
e−st f (t)dt, Re(s) > 0;

The Laplace inv erse of

Q(p)
P(p)

=
n

∑
k=1

mk

∑
l=1

tmk−leakt

(mk − l)!(l − 1)!
× dl−1

dpl−1

(
Q(p)
P(p)

)
(p − ak)

mk ∀p = ak, ai ̸= ak f or i ̸= k

wher e

P(p) = (p − a1)
m1 (p − a2)

m2 ....... (p − an)
mn

Q(p) is a polynomial of degr ee < m1 + m2 + m3 + ............ + mn − 1

I f L−1{ f (s)} = F(t) and L−1{g(s)} = G(t) then

L−1{ f (s)g(s)} =
∫ t

0
F(u)G(t − u)du = F ∗ G

F ∗ G is called the conv olution of F and G.

2.1. Notations

Pn,0(t) = Probability that ther e are n customers in the system at time t and the ser ver is free.
Pn,1(t) = Probability that ther e are n customers in the system at time t and the ser ver is busy .

Q(t) = Probability that the ser ver is under repair at time t.
Pn(t) = Probability that ther e are n customers in the system at time t.

Pn(t) = Pn,0(t) + Pn,1(t) ∀ n ≥ 0;
and Pn,1(t) = 0 f or n = 0;

Initially
P0,0(0) = 1; Pn,0(0) = 0, n ̸= 0; Pn,1(0) = 0, ∀n; Q(0) = 0 ;
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2.2. The Difference-Dif ferential equations governing the system are:

d
dt

Pn,0(t) = −(λ + nθ)Pn,0(t) + µPn+1,1(t) n ≥ 1 (1)

d
dt

P0,0(t) = −λP0,0(t) + τQ(t) + µP1,1(t) (2)

d
dt

Pn,1(t) = −(λ + µ + ξ)Pn,1(t) + λPn−1,0(t) + λPn−1,1(t)(1 − δn,1) + nθPn,0(t) n ≥ 1 (3)

d
dt

Q(t) = −τQ(t) + ξ
∞

∑
n=1

Pn,1(t) (4)

wher e

δn,1 =

{
1, when n = 1
0, other wise

3. The steady-state difference equations governing the system

Taking Pn(t) → Pn and d
dt Pn(t)→ 0 as t → ∞

(λ + nθ)Pn,0 = µPn+1,1 n ≥ 1 (5)
λP0,0 = µP1,1 + τQ (6)

(λ + µ + ξ)Pn,1 = λPn−1,0 + λPn−1,1(1 − δn,1) + nθPn,0 n ≥ 1 (7)

τQ = ξ
∞

∑
n=1

Pn,1 (8)

wher e

δn,1 =

{
1, when n = 1
0, other wise

3.1. Steady-state solution of the problem

Using E f (x) = f (x + 1), equations (5) and (7) are repr esented as

[(λ + (n + 1)θ)E]Pn,0 − µE2Pn,1 = 0 n ≥ 2 (9)
[λ + ((n + 1)θ)E]Pn,0 + [λ − (λ + µ + ξ)E]Pn,1 = 0 n ≥ 2 (10)

In order to fin the solution of the abo ve system of equations, we need

E[µ(n + 1)θE2 − (λ(λ + (n + 1)θ + ξ) + θ((n + 1)(µ + ξ)))E + λ(λ + (n + 1)θ)] = 0 n ≥ 2
(11)

The values of Pn,0 and Pn,1 are giv en by

Pn,0 =
2

∑
i=0

aizn
i n ≥ 2

Pn,1 =
2

∑
i=0

bizn
i n ≥ 2
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wher e z0, z1, z2 are the roots of (11) with z0 = 0 and ai,bi, i = 0, 1, 2 are the arbitrar y constants to
be evaluated. Other tw o roots of the equation (11) are giv en by

z1, z2 =
1

2µ(θ + nθ)

{(
λ(λ + (n + 1)θ + ξ) + θ((n + 1)(µ + ξ))

)
±

[
2θ2(µξ − µλ + ξλ)

+ 2nθ2(µ2 + ξ2 + λ2 + 2µξ − 2µλ + 2ξλ) + 2λ2(2θξ − µθ) + 2nλ2(2θξ + θλ − θµ)

+ 2θµξλ(n + 1) + λ2(ξ2 + θ2 + λ2) + 2λ3(θ + ξ) + 2ξ2θλ(n + 1) + θ2(µ2 + ξ2)

]1/ 2}
(12)

Clearly the root z1 is alw ays greater than 1 and the root z2 is alw ays less than 1. For the
conv ergence of a solution, a root greater than or equal to 1 must be rejected. So when zi ≥ 1, ai
and bi are taken as equal to zer o.
Since her e z1 is greater than 1, so we take a1 = b1= 0
As z0 = 0 and a1 = b1= 0, ther efor e the values of Pn,0 and Pn,1 are giv en by

Pn,0 = a2zn
2 n ≥ 2 (13)

Pn,1 = b2zn
2 n ≥ 2 (14)

From equations (5) and (7) for n=1 the probabilities P1,0 and P1,1 are giv en by

P1,0 =
µ

(λ + θ)
P2,1 =

µ

(λ + θ)
b2z2

2 (15)

P1,1 =
λ

λ + µ + ξ
P0,0 +

µθ

(λ + µ + ξ)(λ + θ)
b2z2

2 (16)

By substituting the abo ve values in equation (7) for n = 2 and for n = 3, we have

b2z2
2 =

µλ

(λ + θ)(λ + µ + ξ)

(
1 +

θ

λ + µ + ξ

)
b2z2

2 +
λ2

(λ + µ + ξ)2 P0,0 +
2θ

λ + µ + ξ
a2z2

2 (17)

b2z3
2 =

λ

λ + µ + ξ

(
1 +

2θ

λ + µ + ξ

)
a2z2

2 +
µλ2

(λ + θ)(λ + µ + ξ)2

(
1 +

θ

λ + µ + ξ

)
b2z2

2

+
3θ

λ + µ + ξ
a2z3

2 +

(
λ

λ + µ + ξ

)3
P0,0 (18)

On solving equations (17) and (18) we get

a2 =

(
λ

λ+µ+ξ

)2 [(
λ

λ+µ+ξ

)
B − A

]
z2

2

[
2AC − B

(
λ

λ+µ+ξ (1 + 2C) + 3z2C
)]P0,0 (19)

b2 =
1

Bz2
2

{ 2C
(

λ
λ+µ+ξ

)2 [
B
(

λ
λ+µ+ξ

)
− A

]
2AC − B

(
λ

λ+µ+ξ (1 + 2C) + 3z2C
) +

(
λ

λ + µ + ξ

)2}
P0,0 (20)

and the value of P0,0 can be found by using the relation

P0,0 +
∞

∑
n=1

(Pn,0 + Pn,1) + Q = 1

RT&A, No 3 (69) 
Volume 17, September 2022

381



Neelam Singla, Ankita Gar g
SINGLE SERVER RETRIAL QUEUEING SYSTEM WITH CATASTROPHE

After simplificatio

P0,0 =

{
1 +

(
1 +

ξ

τ

)(
λ

λ + µ + ξ

)
+

(
µ

λ + θ
+

(
1 +

ξ

τ

)(
µθ(

λ + θ
)(

λ + µ + ξ
)))

[ 2C
(

λ
λ+µ+ξ

)2 [
B
(

λ
λ+µ+ξ

)
− A

]
2ABC − B2

(
λ

λ+µ+ξ (1 + 2C) + 3z2C
) +

1
B

(
λ

λ + µ + ξ

)2]

+
1

1 − z2

[ (
λ

λ+µ+ξ

)2 [(
λ

λ+µ+ξ

)
B − A

]
(

2AC − B
(

λ
λ+µ+ξ (1 + 2C) + 3z2C

))]

+
1 + ξ

τ

1 − z2

[ 2C
(

λ
λ+µ+ξ

)2 [
B
(

λ
λ+µ+ξ

)
− A

]
2ABC − B2

(
λ

λ+µ+ξ (1 + 2C) + 3z2C
) +

1
B

(
λ

λ + µ + ξ

)2]}−1
(21)

wher e

A = z2 −
µλ2

(λ + θ)(λ + µ + ξ)2

(
1 +

θ

λ + µ + ξ

)
B = 1 − µλ

(λ + θ)(λ + µ + ξ)

(
1 +

θ

λ + µ + ξ

)
C =

θ

λ + µ + ξ

Hence by using the values of a2, b2 and P0,0 , the probabilities Pn,0 , Pn,1 and Q are completely
known for various values of n.

3.2. Expected number of customers in the system

Expected number of customers in the system is giv en by

Ls = Ls,0 + Ls,1

wher e
Ls,0 denotes the expected number of customers in the system when the ser ver is free.
Ther efor e, by definitio of expectation

Ls,0 =
∞

∑
n=1

nPn,0

= P1,0 +
∞

∑
n=2

nPn,0

= P1,0 + a2

∞

∑
n=2

nzn
2

= P1,0 + a2z2

[
1

(1 − z2)2 − 1
]

(22)

Similarly
Ls,1 denotes the expected number of customers in the system when the ser ver is busy .

Ls,1 = P1,1 + b2z2

[
1

(1 − z2)2 − 1
]

(23)
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By using (24) and (25)

Ls = P1,0 + P1,1 + (a2 + b2)

(
1

(1 − z2)2 − 1
)

z2

= P1 + (a2 + b2)

(
1

(1 − z2)2 − 1
)

z2 (24)

4. Laplace transform of difference-differential equations

Using the Laplace transfor mation f̄ (s) of f (t) giv en by

f̄ (s) =
∫ ∞

0
e−st f (t)dt, Re(s) > 0;

in the equations (1)-(4) along with the initial conditions, we have

(s + λ + nθ)P̄n,0(s) = µP̄n+1,1(s) n ≥ 1 (25)
(s + λ)P̄0,0(s)− 1 = τQ̄(s) + µP̄1,1(s) (26)

(s + λ + µ + ξ)P̄n,1(s) = λP̄n−1,0(s) + λP̄n−1,1(s)(1 − δn,1) + nθP̄n,0(s) n ≥ 1 (27)

(s + τ)Q̄(s) = ξ
∞

∑
n=1

P̄n,1(s) (28)

wher e

δn,1 =

{
1, when n = 1
0, other wise

4.1. Transient solution of the Problem

Solving equations (25)-(28) recursiv ely, we have

P̄0,0(s) =
1

(s + λ)
+

τ

(s + λ)
Q̄(s) +

µ

(s + λ)
P̄1,1(s) (29)

P̄n,0(s) =
µ

s + λ + nθ

[n+1

∑
k=1

(
λ

s + λ + µ + ξ

)n−k+1
η
′
k(s)P̄k,0(s) +

(
λ

s + λ + µ + ξ

)n
P̄1,1(s)

]
n ≥ 1 (30)

wher e

η
′
k(s) =


1 if k = 1
1 + kθ

s+λ+µ+ξ if k = 2 to n
kθ

s+λ+µ+ξ if k = n + 1

P̄1,1(s) =
λ

s + λ + µ + ξ

[
1

(s + λ)
+

τ

(s + λ)
Q̄(s) +

µ

(s + λ)
P̄1,1(s)

]
+

θ

s + λ + µ + ξ
P̄1,0(s) (31)

P̄n,1(s) =
n

∑
k=1

[(
λ

s + λ + µ + ξ

)n−k
η
′
k(s)P̄k,0(s)

]
+

(
λ

s + λ + µ + ξ

)n−1
P̄1,1(s)

n ≥ 2 (32)

wher e

η
′
k(s) =


1 if k = 1
1 + kθ

s+λ+µ+ξ if k = 2 to n − 1
kθ

s+λ+µ+ξ if k = n
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Q̄(s) =
ξ

(s + τ)

∞

∑
n=1

P̄n,1(s) (33)

Taking the Inverse Laplace transfor m of equations of (29)-(33), we have

P0,0(t) = e−λt + τe−λt ∗ Q(t) + µe−λt ∗ P1,1(t) (34)

Pn,0(t) = µλne−(λ+nθ)t
[

1
(µ + ξ)n − e−(µ+ξ)t

n−1

∑
r=0

tr

r!
1

(µ + ξ)n−r

]
∗ P1,0(t) + e−(λ+nθ)t

n

∑
k=2

µλn−k+1

[
1

(µ + ξ)n−k+1 − e−(µ+ξ)t
n−k

∑
r=0

tr

r!
1

(µ + ξ)n−k−r+1

]
∗ Pk,0(t) + e−(λ+nθ)t

n

∑
k=2

(µkθ)λn−k+1

[
1

(µ + ξ)n−k+2 − e−(µ+ξ)t
n−k+1

∑
r=0

tr

r!
1

(µ + ξ)n−k−r+2

]
∗ Pk,0(t) + e−(λ+nθ)t(n + 1)µθ

[
1

(µ + ξ)
− e−(µ+ξ)t

(µ + ξ)

]
∗ Pn+1,0(t) + µλne−(λ+nθ)t

[
1

(µ + ξ)n − e−(µ+ξ)t
n−1

∑
r=0

tr

r!
1

(µ + ξ)n−r

]
∗ P1,1(t) n ≥ 1 (35)

Pn,1(t) = λn−1e−(λ+µ+ξ)t tn−2

(n − 2)!
∗ P1,0(t) + e−(λ+µ+ξ)t

n−1

∑
k=2

λn−k tn−k−1

(n − k − 1)!
∗ Pk,0(t) + e−(λ+µ+ξ)t

n−1

∑
k=2

(kθ)λn−k tn−k

(n − k)!
∗ Pk,0(t) + nθe−(λ+µ+ξ)t ∗ Pn,0(t) + λn−1e−(λ+µ+ξ)t tn−2

(n − 2)!
∗ P1,1(t)

n ≥ 2 (36)

P1,1(t) = λe−(λ+µ+ξ)t ∗ P0,0(t) + θe−(λ+µ+ξ)t ∗ P1,0(t) (37)

Q(t) = ξe−τt
∞

∑
n=1

Pn,1(t) (38)

5. Verification of Results

• Summing equations (29)-(33) over n we get,
∞

∑
n=0

[P̄n,0(s) + P̄n,1(s)] + Q̄(s) =
1
s

and hence
∞

∑
n=0

[Pn,0(t) + Pn,1(t)] + Q(t) = 1

which is a verificatio for our results.

6. Numerical Solution and Graphical Representation

The Numerical results are generated using MATLAB programming for the case ρ = ( λ
µ ) = 0.8,

η = ( θ
µ ) = 0.9, τ

′
= ( τ

µ ) = 0.6, ξ
′
= ( ξ

µ ) = 0.4. In follo wing tables, we list some significan
probabilities at various time instants.

Table 1: At time t = 1

t P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P1,1 P2,1 P3,1
1 0.5904 0.0216 0.0033 0.0004 0.0001 0 0.226 0.0701 0.0161
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P4,1 P5,1 Sum
0.0029 0.0005 0.9314

Table 2: At time t = 5

t P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P1,1 P3,1 P4,1
5 0.3644 0.0556 0.0187 0.0069 0.0032 0 0.1572 0.0489 0.0247

P5,1 Q(t) Sum
0.0145 0.2126 0.9067

Table 3: At time t = 15

t P0,0 P1,0 P3,0 P4,0 P5,0 P1,1 P2,1 P3,1 P4,1
15 0.3571 0.0528 0.0078 0.0041 0 0.1514 0.0897 0.0491 0.0274

P5,1 Q(t) Sum
0.018 0.2237 0.9811

Table 4: At time t = 25

t P0,0 P1,0 P2,0 P3,0 P4,0 P5,0 P1,1 P2,1 P3,1
25 0.3571 0.0528 0.0189 0.0078 0.0041 0 0.1514 0.0897 0.0491

P4,1 Q(t) Sum
0.0274 0.2237 0.982

Table 5: At time t = 40

t P0,0 P1,0 P2,0 P3,0 P5,0 P1,1 P2,1 P3,1 P4,1
40 0.3571 0.0528 0.0189 0.0078 0 0.1514 0.0897 0.0491 0.0274

P5,1 Q(t) Sum
0.018 0.2237 0.9959

In the follo wing figu es, the probabilities are graphed against time. Figur e 3 to figu e 5 are
plotted for the case ρ = 0.8, η = 0.9, τ

′
= 0.6, ξ

′
= 0.4.
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Figure 3: Probabilities P0,0 and Q(t) against average service times t

In figu e 3, the probabilities P0,0 and Q(t) (probability of the ser ver being under repair) are
plotted against time t. From the graph, we obser ve that the probability P0,0 decr eases rapidly
from its initial value 1 at t = 0 and ther eafter becomes steady . On the other hand, the probability
Q(t) increases in the beginning and then becomes stable.

Figure 4: Probabilities P1,0 , P2,0 and P3,0 against average service times t

Figure 5: Probabilities P1,1 , P2,1 , P3,1 and P4,1 against average service times t

The probabilities P1,0 , P2,0 , P3,0 are plotted against time t in figu e 4 and the probabilities
P1,1 , P2,1 , P3,1 , P4,1 are plotted against time t in figu e 5. The graphs clearly indicate that all the
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probabilities increase rapidly in the beginning, gradually decline to a certain extent and finall
become stable. Also, it can be seen from figu e 4 that the probability of mor e customers in the
system achie ves a lower highest value. In addition, figu e 5 sho ws that the probability of ser ver
being busy attains a lower steady value when ther e are mor e customers in the system.

Figure 6: Effect of change in ξ
′

on probability Q(t)

In figu e 6, we study the effect of change in ξ
′ (catastr ophe rate per unit ser vice time) on the

probability Q(t)(probability of ser ver being unde r repair). From the graph it can be seen that
whene ver the catastr ophe rate per unit ser vice time increases, the probability Q(t) also increases
which is as desir ed.

Figure 7: Effect of change in τ
′

on probability Q(t)

In figu e 7, the effect of change in τ
′ (repair rate per unit ser vice time) on the probability Q(t)

is studied. From the graph it is clearly visible that whene ver the repair rate per unit ser vice time
increases, the probability Q(t) decr eases.

7. Busy Period Probabilities

This section discusses the busy period probabilities of ser ver and system.
In ter ms of probability , busy ser vers are deter mined as follo ws:

P(Server is busy) = ∑
n≥1

Pn,1(t) (39)

And busy systems are deter mined as follo ws:

P(System is busy ) = ∑
n>0

(Pn,0(t) + Pn,1(t)) + Q(t) (40)
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7.1. Numerical and Graphical Repr esentation of Busy Period Probabilities

The numerical results are obtained using MATLAB programming and follo wing [9]. The Proba-
bilities of system busy and ser ver busy are obtained for dif ferent values of ρ keeping the other
parameters constant and are presented in the table belo w:

Table 6: Probabilities of system busy and server busy for different values of ρ

Probability(System Busy) Probability(S erver Busy)
t ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 0.4 ρ = 0.6 ρ = 0.8
0 0 0 0 0 0 0
1 0.1916 0.2711 0.341 0.1833 0.2548 0.3156
2 0.2361 0.3283 0.4042 0.212 0.2853 0.3434
3 0.2514 0.3463 0.4203 0.2169 0.2884 0.3432
4 0.2577 0.3525 0.4235 0.2178 0.288 0.3407
5 0.2604 0.3544 0.4229 0.2179 0.2872 0.3387
6 0.2615 0.3548 0.4217 0.2177 0.2865 0.3373
7 0.262 0.3547 0.4207 0.2176 0.2861 0.3366
8 0.2621 0.3546 0.4201 0.2175 0.2859 0.3361
9 0.2622 0.3545 0.4197 0.2175 0.2857 0.3359

10 0.2622 0.3544 0.4194 0.2174 0.2857 0.3357

A graph depicting the probabilities of ser ver and system busy is also included.

Figure 8: Probabilities of system busy and server busy against average service times t

In figu e 8, the probabilities of system busy and ser ver busy are plotted against time t for the
case ρ = 0.8, η = 0.9, τ

′
= 0.6, ξ

′
= 0.4. It is clearly visible from the graph that probability of

system busy is higher than probability of ser ver busy . Both probabilities increase rapidly in the
beginning and then become stable with time.
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Figure 9: Probability of system busy for different values of ξ
′

Figure 10: Probability of server busy for different values of ξ
′

In figu es 9 and 10, the probability of system busy and the probability of ser ver busy are
plotted resp ectiv ely against time t for dif ferent values of ξ

′ keeping other parameters constant.
As we know when catastr ophe occurs, the ser ver breaks down and system becomes empty . So
the probability that both system and ser ver remain busy attains lower value for greater values of
catastr ophe rate per unit ser vice time.

8. Conclusion

We have modeled a single ser ver retrial queueing system with catastr ophe to quantify various
perfor mance measur es and understand characteristics of related systems. The catastr ophe has
significan impact on businesses, computer netw orks, etc. It is very important to manage the
risk of catastr ophe for the smooth functioning of the system. In this paper , the steady-state and
transient state probabilities for the number of customers in the system when the ser ver is busy
or idle are obtained by solving dif ference-dif ferential equations. In addition, the probability
that ser ver is under repair is also obtained. Some perfor mance measur es are giv en. Numerical
solutions and busy period probabilities are obtained by using MATLAB programming and
presented graphically . This model is applicable in call centers, computer netw orks, etc.
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