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Abstract

An infinite server Markovian queueing system with randomly occurring breakdowns and non
zero exponentially distributed repair time is proposed. Upon arrival, a catastrophes deactivate
all the servers and system is under catastrophic failure. Immediately, a repair process is started
and after successful repair the system is ready to serve the newly arrived customers. Continued
fraction techniques have been used to obtain the time dependent probabilities of the studied
model. The stationary probability distribution for the number of customers in the system is also
derived. Some important stationary as well as transient moments are also determined. Further,
The availability and reliability of the system under consideration are investigated. Finally, some
graphical results are presented to visualize the model practically.

Keywords: M/M/∞ Queue, Server Breakdown, Transient Analysis,Steady State Solution, Conflu-
ent Hypergeometric Function, Reliability and Availability.

1. Introduction

Here, we consider a classical M/M/∞ queueing model subjected to randomly occurring breakdowns
(catastrophes). Upon arrival, a catastrophes deactivate all the servers and system is under disasters
breakdown. Immediately a repair process is started and after successful repair the system is again
restart their functioning and provide service to a newly arrived customer. We analyze this model
and provide steady state and time dependent solution.
During the last four decades the interest in catastrophic queueing model has been increased by a
rapid phase. Therefore queueing models in the presence of catastrophes has been analyzed by many
researchers.(see e.g., [1],[2],[3], [12],[17],[19],[21][22]). Occurrence of catastrophes destroys all present
customers and also breakdown the servers. Some authors assumes that whenever catastrophes
occurs, it flush out all present customers and immediately the server is ready for service for a newly
arrived customer(see e.g. [1], [3],[8], [9]). And some assumes that the server or system may take a
non zero repair time for their re-functioning whenever it is affected by a catastrophic failure(see e.g.
[4], [18], [21], [25]).
Infinite servers queueing models are also analyzed by many researchers with the possibility of catas-
trophes. Gursoy et al. [15] analyzed an infinite server queue with randomly occurring interruption
and provide steady state solution . Giorno et al. [26] have discussed the various properties of a
bilateral birth-death process, affected by randomly occurring catastrophes. Linton and Purdue[6]
have obtained the stationary and transient distribution of the probabilities for an M/G/∞ queue
with catastrophes. Yechiali [25] considered an M/M/∞ queues with catastrophes and studied the
impatient behavior of customers when server is down. The transient solution of an infinite servers
Markovian queue subjected to catastrophes has been obtained by Krishna Kumar et al. [5] and
Gulab Singh Bura [8].
In this work, we present an M/M/∞ queuing system with catastrophes, Server breakdown and
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non-zero repair time. Although,the operating model has been already analyzed by Sophia and
Murali [23]. Then, objective of this paper is to illustrate a different approach and provide some
additional important measures of the system under consideration.
The M/M/∞ queueing system with repairable servers finds its application in telecommunication
field. Our system under consideration is a University campus which provide free Wi-Fi service to
their students. Within the campus, each mobile is considered as one queueing server. Whenever a
breakdown occur i.e. (connectivity loss or signal failure), all the servers gets deactivated and none
of them works until that breakdown is repaired. So, an M/M/∞ queue with system failure and
repair is a suitable approximation.

The paper is arranged in the following way. Next section describe the formulation of the model.
The transient solution of the model have been obtained in section 3. Under section 4, we have
obtained some moments of the model in transient form. Section 5, gives the time independent
solution of the model. In Section 6, we have discussed about the availability and reliability of the
system. Section 7 presents some graphical illustrations to observe the system performance with the
effect of various parameters. Conclusion is given in the last Section.

2. MATHEMATICAL MODEL

An infinite servers Markovian queueing system with server breakdown and repair is in operation.
Arrivals occur one by one in a Poisson stream with mean rate 𝜆. Service times are exponentially
distributed with parameter 𝜃. The system may fails due the disastrous breakdown occurs at a
Poisson rate 𝛾. Whenever a catastrophes occur all the servers are deactivated and the system is
under disasters breakdown. Immediately a repair process is started and the repair time distribution
is exponential with rate 𝜂. After successful repair the system again restart their functioning and
provide service to a newly arrived customer. Also, it is assumed that, no customer is allowed to
enter in to the system during the repair process of failed servers. Let the random variable 𝐶(𝑡)

represents the number of customers present in the system at time t and 𝑃𝑛(𝑡) denotes its probability.

3. TRANSIENT ANALYSIS UNDER MARKOVIAN SETUP

This section provides the probability mass function of the random variable 𝐶(𝑡). For this, the
differential-difference equations are given as:

𝐹 ′(𝑡) = 𝛾(1− 𝐹 (𝑡)− 𝑃0(𝑡))− 𝜂𝐹 (𝑡) (1)
𝑃 ′
0(𝑡) = 𝜃𝑃1(𝑡) + 𝜂𝐹 (𝑡)− 𝜆𝑃0(𝑡) (2)

𝑃 ′
𝑛(𝑡) = (𝑛+ 1)𝜃𝑃𝑛+1(𝑡) + 𝜆𝑃𝑛−1(𝑡)− (𝜆+ 𝑛𝜃 + 𝛾)𝑃𝑛(𝑡), 𝑛 = 1, 2, 3, ... (3)

Initially, at 𝑡 = 0,

𝑃𝑛(0) =

{︂
1 if 𝑛 = 0;

0 if 𝑛 ̸= 0.
(4)

Taking Laplace transform of Eq.(1),Eq.(2),Eq.(3) and by the use of Eq.(4), we have

(𝑠+ 𝛾 + 𝜂)𝐹 *(𝑠) = 𝛾(
1

𝑠
− 𝑃 *

0 (𝑠)) (5)

(𝑠+ 𝜆)𝑃 *
0 (𝑠) = 1 + 𝜃𝑃 *

1 (𝑠) + 𝜂𝐹 *(𝑠) (6)

(𝑠+ 𝜆+ 𝑛𝜃 + 𝛾)𝑃 *
𝑛(𝑠) = (𝑛+ 1)𝜃𝑃 *

𝑛+1(𝑠) + 𝜆𝑃 *
𝑛−1(𝑠), (7)

After some manipulation, Eq.(7), gives an expression

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜆
𝜃

𝑠+𝜆+𝛾
𝜃 + 𝑛)− (𝑛+ 1)

𝑃*
𝑛+1(𝑠)

𝑃*
𝑛(𝑠)
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𝜆

𝜃

𝑃 *
𝑛−1(𝑠)

𝑃 *
𝑛(𝑠)

=

(︂
𝑠+ 𝜆+ 𝛾

𝜃
+ 𝑛

)︂
−

(𝑛+ 1)𝜆𝜃(︁
𝑠+𝜆+𝛾

𝜃 + 𝑛+ 1
)︁
−

(𝑛+ 2)𝜆𝜃(︁
𝑠+𝜆+𝛾

𝜃 + 𝑛+ 2
)︁
− · · ·

(8)

Now using the identity given by Lorentzen and Waadeland [13]

1𝐹1(𝑞 + 1; 𝑟 + 1; 𝑧)

1𝐹1(𝑞; 𝑟; 𝑧)
=

𝑟

𝑟 − 𝑧+

(𝑞 + 1)𝑧

𝑟 − 𝑧 + 1+

(𝑞 + 2)𝑧

𝑟 − 𝑧 + 2+
...

rewritten as
1𝐹1(𝑞; 𝑟; 𝑧)

1𝐹1(𝑞 + 1; 𝑟 + 1; 𝑧)
=

𝑟 − 𝑧

𝑟+

(𝑞 + 1)𝑧

𝑟 − 𝑧 + 1+

(𝑞 + 2)𝑧

𝑟 − 𝑧 + 2+
..., (9)

by using Eq.(9) in Eq.(8), we have

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜆

𝜃
1𝐹1(𝑞 + 1; 𝑟 + 1, 𝑧)(︀
𝑠+𝛾
𝜃 + 𝑛

)︀
1𝐹1(𝑞; 𝑟; 𝑧)

, (10)

therefore for 𝑛 ≥ 1,we have

𝑃 *
𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1;−𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1;−𝜆

𝜃 )
𝑃 *
0 (𝑠), (11)

𝑃 *
𝑛(𝑠) = 𝜁*𝑛(𝑠)𝑃

*
0 (𝑠), (12)

where

𝜁*𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1;−𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1;−𝜆

𝜃 )
, (13)

It is well known that

𝐹 *(𝑠) +
∞∑︁

𝑛=0

𝑃 *
𝑛(𝑠) =

1

𝑠
, (14)

by the use of Eq.(12) and Eq.(5), we get

𝑃 *
0 (𝑠) = (1 +

𝜂

𝑠
)

[︃
(𝑠+ 𝜆+ 𝜂)− 𝜃𝜁*1 (𝑠) + 𝜂

∞∑︁
𝑛=1

𝜁*𝑛(𝑠)

]︃−1

(15)

after simplification Eq.(15) reduces to

𝑃 *
0 (𝑠) = (1 +

𝜂

𝑠
)

∞∑︁
𝑗=𝑜

(−1)𝑗

(𝑠+ 𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁
*
𝑘(𝑠)

]︃𝑗

(16)

on inversion, we get

𝑃0(𝑡) =
∞∑︁
𝑗=0

(−1)𝑗
∫︁ 𝑡

0

𝑒−(𝜆+𝜂)(𝑡−𝑢)(𝑡− 𝑢)𝑗

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁𝑘(𝑢)

]︃*𝐽

𝑑𝑢

+𝜂

∞∑︁
𝑗=0

(−1)𝑗
∫︁ 𝑡

0

𝑒−(𝜆+𝜂)𝑥𝑥
𝑗

𝑗!

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁𝑘(𝑥)

]︃*𝐽

𝑑𝑥 (17)

Now for 𝑃𝑛(𝑡), consider Eq.(12), which on inversion, gives

𝑃𝑛(𝑡) = 𝜁𝑛(𝑡) * 𝑃0(𝑡), (18)

where the symbol * denotes the convolution and 𝑃0(𝑡) given in Eq.(17).
Next we derive the expression for 𝜁𝑛(𝑡), where 𝜁𝑛(𝑡) represents the inverse Laplace transform of
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𝜁*𝑛(𝑠).
From Eq.(13)

𝜁*𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1; −𝜆

𝜃 )
.

We known that

1𝐹1(𝑛+ 1;
𝑠+ 𝛾

𝜃
+ 𝑛+ 1;

−𝜆

𝜃
) =

∞∑︁
𝑘=0

(𝑛+ 1)𝑘
(︀−𝜆

𝜃

)︀𝑘
( 𝑠+𝛾

𝜃 + 𝑛+ 1)𝑘𝑘!

where (𝑏)𝑘 represents the Pochhammor symbol, i.e.

(𝑏)𝑘 =

{︂
1 if 𝑘 = 0;

𝑏(𝑏+ 1)(𝑏+ 2)...(𝑏+ 𝑘 + 1) if 𝑘 = 1, 2, 3, ....

Therefore
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀ =
∞∑︁
𝑘=0

(︀
𝑛+𝑘
𝑘

)︀ (︀
−𝜆

𝜃

)︀𝑘∏︀𝑛+𝑘
𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
Applying partial fraction expansion, the above equation can be written as

1𝐹1(𝑛+ 1; 𝑠+𝛾
𝜃 + 𝑛+ 1; −𝜆

𝜃 )∏︀𝑛
𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀ =𝜃

∞∑︁
𝑘=0

(︂
𝑛+ 𝑘

𝑘

)︂(︂
−𝜆

𝜃

)︂𝑘

𝑛+𝑘∑︁
𝑗=1

(−1)𝑗−1

(𝑗 − 1)! (𝑛+ 𝑘 − 𝑗)! (𝑠+ 𝛾 + 𝑗𝜃)
. (19)

Also

1𝐹1

(︂
1;

𝑠+ 𝛾

𝜃
+ 1;

−𝜆

𝜃

)︂
=

∞∑︁
𝑘=0

(−𝜆)
𝑘
𝑑*𝑘(𝑠),

where
𝑑*𝑘(𝑠) =

1∏︀𝑘
𝑗=1 (𝑠+ 𝛾 + 𝑗𝜃)

𝑎𝑛𝑑 𝑑*0(𝑠) = 1.

1

1𝐹1(1;
𝑠+𝛾
𝜃 + 1; −𝜆

𝜃 )
=

∞∑︁
𝑘=0

(𝜆)𝑘𝑒*𝑘(𝑠), (20)

where 𝑒*0(𝑠) = 1, and for k=1,2,3,...

𝑒*𝑘(𝑠) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝑑*1(𝑠) 1 . . .

𝑑*2(𝑠) 𝑑*1(𝑠) 1 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) 𝑑*𝑘−3(𝑠) . . . 𝑑*1(𝑠) 1

𝑑*𝑘(𝑠) 𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) . . . 𝑑*2(𝑠) 𝑑*1(𝑠)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

=

𝑘∑︁
𝑙=1

(−1)𝑙−1𝑒*𝑘−𝑙(𝑠)𝑑
*
𝑙 (𝑠).

By substituting Eq.(19) and Eq.(20) in Eq.(13), we get

𝜁*𝑛(𝑠) = (𝜆)𝑛
∞∑︁
𝑖=0

(−𝜆)𝑖
(︂
𝑛+ 𝑖

𝑖

)︂
𝑑*𝑛+𝑖(𝑠)

∞∑︁
𝑘=0

(𝜆)𝑘𝑒*𝑘(𝑠).

RT&A, No 4 (71) 
Volume 17, December 2022 

146 



Gulab Singh Bura
M/M/∞ Queue with Catastrophes and Repairable servers

On inversion, we obtain

𝜁𝑛(𝑡) = (𝜆)𝑛
∞∑︁
𝑖=0

(−𝜆)𝑖
(︂
𝑛+ 𝑖

𝑖

)︂
𝑑𝑛+𝑖(𝑡)

∞∑︁
𝑘=0

(𝜆)𝑘𝑒𝑘(𝑡), (21)

where

𝑑𝑘(𝑡) =
1

(𝜃)𝑘−1

𝑘∑︁
𝑗=1

(−1)𝑗−1

(𝑘 − 𝑗)! (𝑗 − 1)!
𝑒(−𝑗𝜃+𝛾)𝑡, 𝑘 = 1, 2, 3, ...,

𝑒𝑘(𝑡) =
𝑘∑︁

𝑗=1

(−1)𝑗−1𝑑𝑗(𝑡) * 𝑒𝑘−𝑗(𝑡), 𝑘 = 2, 3, 4, ...; 𝑒1(𝑡) = 𝑑1(𝑡)

Now from Eq(5) , we have

𝐹 *(𝑠) =
𝛾

𝑠+ 𝛾 + 𝜂

(︂
1

𝑠
− 𝑃 *

0 (𝑠)

)︂
On inversion,

𝐹 (𝑡) = 𝛾

∫︁ 𝑡

0

(1− 𝑃0(𝑧))𝑒
−(𝛾+𝜂)(𝑡−𝑧)𝑑𝑧 (22)

4. TIME DEPENDENT MOMENTS

4.1. MEAN

Let A(t) denote the mean value of the random variable C(t),therefore

𝐴(𝑡) = 𝐸(𝐶(𝑡)) =

∞∑︁
𝑛=1

𝑛𝑃𝑛(𝑡) (23)

Initially, at t=0, Eq(23) gives
𝐴(0) = 0,

which implies

𝐴′(𝑡) =

∞∑︁
𝑛=1

𝑛𝑃 ′
𝑛(𝑡), (24)

where 𝐴′(𝑡) denotes the derivative of 𝐴(𝑡). Application of Eq.(3) in Eq.(24),after some calculation
gives

𝐴′(𝑡) = −(𝜃 + 𝛾)𝐴(𝑡) + 𝜆 (25)

which is a linear differential equation in 𝐴(𝑡), whose solution gives

𝐴(𝑡) =
𝜆

𝜃 + 𝛾
[1− 𝑒−(𝜃+𝛾)𝑡] (26)

4.2. VARIANCE

An average is not sufficient to understand completely the distribution of the random variable
𝐶(𝑡)).Hence, variance is also needed for better understanding. Let 𝑉 𝑎𝑟(𝐶(𝑡)) represents the
variance of the random variable 𝐶(𝑡), then

𝑉 𝑎𝑟(𝐶(𝑡)) = 𝐸[𝐶(𝑡)− 𝐸(𝐶(𝑡))]2

Which may be written as
𝑉 𝑎𝑟(𝐶(𝑡)) = 𝑐(𝑡)− [𝐴(𝑡)]2, (27)

and

𝑐(𝑡) = 𝐸(𝐶2(𝑡)) =
∞∑︁

𝑛=1

𝑛2𝑃𝑛(𝑡),
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with
𝑐(0) = 0,

and

𝑐′(𝑡) =
∞∑︁

𝑛=1

𝑛2𝑃 ′
𝑛(𝑡) (28)

Substitution of 𝑃 ′
𝑛(𝑡) in Eq.(28), after some calculation results in the form of a linear differential

equation in 𝑐(𝑡) i.e.
𝑐′(𝑡) = −(2𝜃 + 𝜂)𝑐(𝑡) + (2𝜆+ 𝜃)𝐴(𝑡) + 𝜆 (29)

which after integration gives

𝑐(𝑡) =
(2𝜆+ 𝜃)𝜆(𝜃 − 𝑒−(2𝜃+𝛾)𝑡(3𝜃 + 𝛾) + 𝑒−(𝜃+𝛾)𝑡(2𝜃 + 𝛾))

(2𝜃 + 𝛾)𝜃(𝜃 + 𝛾)

+
𝜆

(2𝜃 + 𝛾)
[1− 𝑒−(2𝜃+𝛾)𝑡]. (30)

subsitutation of Eq.(30) in Eq.(27), gives the expression of 𝑉 𝑎𝑟(𝐶(𝑡)).

5. STEADY STATE SOLUTION

Here, we derive an expression for the stationary probabilities of the operating model

Theorem 5.1. Stationary probabilities of the system under consideration are given as

𝐹 =
𝛾

𝛾 + 𝜂
(1− 𝜂𝜌1)

𝑃𝑛 = 𝜂𝜌𝑛𝜌1

𝑃0 = 𝜂𝜌1

where

𝜌𝑛 =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝛾
𝜃 + 1; −𝜆

𝜃 )
.

and

𝜌1 =
∞∑︁
𝑗=𝑜

(−1)𝑗

(𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑛=1

(𝜂 − 𝛿𝑛𝜃)𝜌𝑛

]︃𝑗

Proof. Multiplying by 𝑠 on both side of Eq.(16) and taking limit as 𝑠 → 0, and using
lim𝑠→0 𝑠𝑃

*
0 (𝑠) = 𝑃0, we get

𝑃0 = 𝜂𝜌1 (31)
where

𝜌1 =
∞∑︁
𝑗=𝑜

(−1)𝑗

(𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑛=1

(𝜂 − 𝛿𝑛𝜃)𝜌𝑛

]︃𝑗

For 𝑛 = 1, 2, ...,
Multiplying by 𝑠 on both side of Eq.(12) and taking limit as 𝑠 → 0, and using lim𝑠→0 𝑠𝑃

*
𝑛(𝑠) = 𝑃𝑛,

we get
𝑃𝑛 = 𝜂𝜌𝑛𝜌1, (32)

where

𝜌𝑛 =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝛾
𝜃 + 1; −𝜆

𝜃 )
.

The failure distribution is obtained by multiplying 𝑠 on both sides of Eq(5) and using Tauberian
theorem after taking the limit as 𝑠 → 0, we get

𝐹 =
𝛾

𝛾 + 𝜂
(1− 𝜂𝜌1) (33)

� It is observed that the stationary solution exist only if 𝜌1 < 1.
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5.1. Mean and Variance

Taking limit as 𝑡 → ∞ in Eq.(26) and in Eq.(27) after putting the values of 𝑐(𝑡)𝑎𝑛𝑑𝐴(𝑡), we get
directly an expression for steady state mean and variance i.e.

𝐴 =
𝜆

(𝜃 + 𝛾)
(34)

𝑉 𝑎𝑟(𝐶) =
1

2𝜃 + 𝛾

[︀
(2𝜆+ 𝜃)𝐴+ 𝜆− (2𝜃 + 𝛾)𝐴2

]︀
(35)

6. RELIABILITY AND AVAILABILITY ANALYSIS

The probability that a system perform well without any failure for a given period of time is known
as its reliability. In this section, we derive an expression for availability and reliability of the
system. Let 𝐴𝑣(𝑡) be the probability that a repairable system is available at a given point of time t.
Therefore, from Eq(22), the availability of the system is obtained as

𝐴𝑣(𝑡) = 1− 𝐹 (𝑡)

=
1

(𝜂 + 𝛾)
(𝛾 + 𝜂𝑒−(𝛾+𝜂)𝑡) + 𝛾

∫︁ 𝑡

0

𝑃0(𝑥)𝑒
−(𝜂+𝛾)(𝑡−𝑥)𝑑𝑥, (36)

where 𝑃0(𝑡) is given by Eq(17).
Next, we obtain an expression for the average availability of the system i.e.

𝐴𝑣(𝑡)* =
1

𝑡

∫︁ 𝑡

0

𝐴𝑣(𝑦)𝑑𝑦

=
1

(𝜂 + 𝛾)

(︂
𝛾 +

𝜂

(𝜂 + 𝛾)𝑡
[1− 𝑒−(𝜂+𝛾)𝑡]

)︂
+

𝛾

(𝜂 + 𝛾)𝑡

∫︁ 𝑡

0

𝑃0(𝑦)[1− 𝑒−(𝜂+𝛾)(𝑡−𝑦)]𝑑𝑦, (37)

If 𝜂 = 0, then we get from Eq(22)

𝐹 (𝑡) = 1− 𝑒−𝛾𝑡 − 𝛾

∫︁ 𝑡

0

𝑃0(𝑥)𝑒
−𝛾(𝑡−𝑥)𝑑𝑥

Therefore 𝑅(𝑡), the system reliability is obtained as

𝑅(𝑡) = 1− 𝐹 (𝑡)

= 𝑒−𝛾𝑡

(︂
1 + 𝛾

∫︁ 𝑡

0

𝑒𝛾𝑥𝑃0(𝑥)𝑑𝑥

)︂
(38)

7. NUMERICAL ANALYSIS

Here, some graphical results are presented to study the behavior of the probability 𝑃0 and 𝐸(𝐶)

with various parameters i.e. arrival rate 𝜆, catastrophic rate 𝛾 and service rate 𝜃.
In fig.(1 to 2) we have plotted the probability 𝑃0 as a function of (𝜆, 𝛾) and (𝜃, 𝛾) respectively. We

observe that the value of 𝑃0 is decreasing with increasing value of 𝜆 and increasing with increasing
value of 𝜃. Also, in both the figures 𝑃0 increases with increasing 𝛾 i.e. the probability of an empty
system increases with the increase in catastrophic rate. Fig.(3 and 4), illustrates that the expected
number of customers decreases with the increasing service and catastrophic rates and increases
with the corresponding increase in arrival rate.
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Figure 1: 𝑃0 as a function of 𝜆 for 𝜃 = 10
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Figure 2: 𝑃0 as a function of 𝜃 for 𝜆 = 1
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Figure 3: 𝐸(𝐶) as a function of 𝜆 for 𝜃 = 10
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Figure 4: 𝐸(𝐶) as a function of 𝜃 for 𝜆 = 1
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8. CONCLUSION

In this paper, we have considered an infinite servers Markovian queueing system with catastrophes
and repairable servers. The transient and stationary probabilities are obtained analytically. The
system availability and reliability are two important characteristics for those queueing system which
are failed and repaired. Therefore, these two measures are also investigated for the system. Some
graphical results are also added to visualize the model in practical situations.
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