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Abstract 

This paper aims to compare some bridge systems with multiple types of components in stochastic, 
hazard rate, and likelihood ratio order. Such systems are generally used in the designing and 
production industries. These systems are supported by a buffer store that balances the fluctuation in 
two production lines during the production process. The survival signature tool and distortion 
function technique are employed to compare the performance of four different bridge systems. 
Survival signature and henceforth survival function is computed for each considered system. The 
findings of comparisons are facilitated with the help of tables and figures. The comparison of large 
size coherent systems based on the structure-function approach is quite challenging. As this study is 
based on survival signature, so it is not so complex and has future scope.  
 
Keywords: survival signature; bridge system; survival function; distortion 
function. 
 

1. Introduction 
 
In today’s competitive and technology-driven world, it has become consequential to develop safe, 
reliable and long-lasting systems. The accurate reliability assessment of components and systems is 
crucial, and hence the branch of reliability engineering is in very much demand. In reliability theory, 
the stochastic comparison of systems is an imperative concept and has been explored by many 
researchers. It is quite challenging to compare complex systems, and most realistic cases generally 
have complex structures. Birnbaum et al. [2] and Barlow and Proschan [1] compared the same order 
coherent systems based on component lifetime using the structure-function approach. But these 
methods involve analytical complexities while comparing complex manufacturing systems. 
Recently, system signature and survival signature have emerged as advanced and promising tools 
in reliability analysis. These tools have suitable applications in studying system reliability and 
comparing various coherent systems. 

A system having monotonic structure function with each of its components being relevant is 
known as coherent system. Samaniego [12] introduced the concept of system signature for the 
systems having independent and identically distributed (iid) components, with common 
distribution function F. For such coherent systems, Samaniego [12] derived an explicit expression of 
the failure rate in terms of components’ failure rate and F. The IFR closure theorem for 𝑘-out-of-𝑛 
system is also discussed by researcher. Kochar et al. [6] further derived the expression of system 
signature for k-out-of-n systems with component-wise and system-wise redundancy. Samaniego 
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[11] extended the concept of signature for preservation, characterisation, and system reliability. The 
applications of network reliability and economical reliability to systems having shared components 
are also presented. Navarro et al. [9] defined a joint signature for coherent systems with shared 
components. They discussed the sufficient condition for bivariate stochastic ordering between the 
joint lifetimes of two pairs of the systems. 

Coolen and Coolen-Maturi [3] extended the concept of system signature to systems with 
multiple types of components, and they coined the new term ‘survival signature’. The survival 
function of the coherent systems having iid and exchangeable components is evaluated using the 
survival signature tool. Coolen et al. [4] further adopted this technique and developed non 
parametric predictive inference for studying the reliability of systems. Krpelık et al. [8] introduced 
the formula for computing system survival signatures by means of merging survival signatures of 
multiple subsystems. They also introduced a decomposition method that allows decoupling the 
dependencies among subsystems. Huang et al. [5] analysed the reliability of the phased mission 
systems having identical components in each phase using survival signature. 

Several authors have worked on the stochastic comparison of coherent systems. Kochar et al. 
[6] compared various systems on the basis of stochastic, hazard rate, and likelihood ordering using 
the notion of system signature. Authors derived an important theorem on hazard rate ordering of 
the system based on its components’ hazard rate ordering. Coolen and Coolen-Maturi [3] compared 
some coherent systems with iid and non-iid components based on a novel technique of survival 
signature. Koutras et al. [7] stochastically compared two systems having exchangeable components. 
They further provided a necessary and sufficient condition for examining hazard rate ordering and 
reverse hazard rate ordering. Samaniego and Navarro [13] presented the methodology to compare 
some systems having heterogeneous components in different modes (stochastic, hazard rate, and 
likelihood ratio ordering) using survival signature and distortion function. 

The bridge systems are broadly used in system designing in addition to the series and the 
parallel systems. Such systems are found in the production process in various industries. The 
production system having two parallel production lines connected by a buffer store to balance their 
productivity variation is investigated as a bridge structure system [10]. The analytical evaluation of 
the lifetime of the bridge system is too dense. Therefore, the comparison among such systems 
becomes more complicated. The present study compares the lifetimes of the bridge systems having 
multiple types of components at different positions. The survival signature technique is used to 
compare these complex systems. This paper investigates some bridge systems having two/three 
types of components shown in Figure 1, Figure 2, and Figure 3. The comparative analysis of 
considered systems is done using the survival signature approach [13].  

 
2. Definitions and Notations 

 
The present section includes prevalent concepts, definitions, and theorems. For ‘𝑚’ components 
system, the state vector 𝑥 = (𝑥!, 𝑥", … . 𝑥#) ∈ {0,1}#, where  
 

𝑥$ = 01, 𝑤ℎ𝑒𝑛	𝑖%&	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑜𝑓	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑠	𝑤𝑜𝑟𝑘𝑖𝑛𝑔
0,			𝑤ℎ𝑒𝑛	𝑖%&𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑜𝑓	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑠	𝑛𝑜𝑡	𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 

 
for all 𝑖 = 1, 2, 3, . . , 𝑚. Thus, the set {0,1}# represents all the possible state vectors of 𝑚-order binary 
coherent system. Barlow and Proschan [1] defined the structure function 𝜙 mapped from the set 
{0,1}# to {0,1} as follows 
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   𝜙(𝑥!, 𝑥", . . , 𝑥#) = B
	1, 𝑖𝑓	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑤𝑜𝑟𝑘𝑠
0, 𝑖𝑓	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑓𝑎𝑖𝑙𝑠.         

                        
As compared to structure function, system signature [12] is less general but more significant. For the 
coherent system of order ‘𝑚’, the system signature is a probability vector such that some 𝑖%& 
component causes system failure. Mathematically, the 𝑖%& element ‘𝑠$’, of the system signature	𝑠 =
(𝑠!, 𝑠", . . , 𝑠#) is expressed as  
 
    𝑠$ = 	𝑃	(𝑇 = 𝑋$:#) = 	

#!
#!
	   

    
where 𝑇 denotes the lifetime of the system, 𝑋$:#	represents the ith order statistic of the failure time of 
the m-components and 𝑚$ is number of those orderings corresponding to which system fails on 
failure of ith component. It is evident that ∀	𝑖, 𝑠$ ≥ 0 and ∑ 𝑠$ = 1#

$)! .  
For a coherent system with m iid components having a continuous lifetime distribution, the 

survival signature Φ(𝑙) for 𝑙 = 0,1, 2, … ,𝑚 is defined as the probability of functioning of system, 
provided that its exactly l components are working [3]. Mathematically, the survival signature of 
coherent system is given by  

 

    Φ(𝑙) =
∑ +	(.)"#$%

|1%|
= L𝑚𝑙 M

2!
∑ 𝜙(𝑥).31%   

  
where 𝑠4 is the set of all such state vectors whose exactly l components (𝑥$) are 1 and remaining are 
0. The system reliability 𝐹O5(𝑡) in terms of survival signature for 𝑖𝑖𝑑 components is  
 
                                    𝐹O5(𝑡) = 𝑃	(𝑇 > 𝑡) = 	∑ Φ(𝑙) L

𝑚
𝑙 M [𝐹(𝑡)]

#24	[𝐹O(𝑡)]4#
4)6             

             
where 𝐹(𝑡), 𝐹O(𝑡) be the distribution and survival function respectively of components. 

Coolen and Coolen-Maturi [3] considered the coherent system of order m, with 𝐾 > 1 types of 
independent components. All the components of certain type are assumed to be identically 
distributed. Considering 𝑚7 components of type k, the survival signature Φ(𝑙!, 𝑙", … . , 𝑙8) is given by  

 

Φ(𝑙!, 𝑙", … . , 𝑙8) 	= UVL
𝑚7
𝑙7 M

2!
8

7)!

W X 𝜙(𝑥)
.31%&,%(,…,%*

 

 
where 𝑙7 (𝑘 = 1,2, … , 𝐾) is the number of functioning units of type k. In the above expression, 𝑥 is a 
state vector given by 𝑥 = (𝑥!, 𝑥", … . , 𝑥8), where 𝑥7 = (𝑥!7 , 𝑥"7 , … , 𝑥#*

7 ). In case 𝑙7 (𝑘 = 1,2,… , 𝐾) units 
of type k are working, then the vector  𝑥7 has precisely its 𝑙7	components (𝑥$7) as 1 and remaining 
are 0. The set of all such state vectors is denoted by 𝑠4&,4(,…,4*. The reliability function 𝐹O5(𝑡)	of such 
systems in terms of survival signature as given by Coolen and Coolen-Maturi [3] is 
 

𝐹O5(𝑡) = 𝑃(𝑇 > 𝑡) = X …. X UΦ(𝑙!, 𝑙", … . , 𝑙8)VL
𝑚$
𝑙$ M

8

$)!

		𝐹$(𝑡)#!24!𝐹O$(𝑡)4!W
#*

4+)6	

#&

4&)6	

	 

 
where 𝐹$(𝑡), 𝐹O$(𝑡) be the distribution and survival function of the 𝑖%& component.  
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Some results on stochastic order properties which appeared in [14] are discussed below. Let 
𝑇!, 𝑇"	be the random variables with the distribution functions 𝐹!(𝑡), 𝐹"(𝑡)	and reliability 
functions	𝐹!Z (𝑡),	𝐹"OOO(𝑡) respectively, then 
• 𝑇! is smaller than 𝑇" in usual stochastic order, i.e.  𝑇! ≤;5 𝑇" if 𝐹!Z (𝑡) ≤ 𝐹"OOO(𝑡)for all 𝑡; 
• 𝑇! is smaller than 𝑇" in the hazard rate order, i.e. 𝑇! ≤<= 𝑇" if 𝐹"OOO(𝑡)/𝐹!Z (𝑡) is increasing in 𝑡; 
• 𝑇! is smaller than 𝑇" in the likelihood ratio order, i.e. 𝑇! ≤>= 𝑇" if 𝑓"(𝑡)/𝑓!(𝑡) is increasing in             

𝑡; where 𝑓!(𝑡) and 𝑓"(𝑡) are probability density functions (pdfs) of 𝑇! and 𝑇"	respectively.   
Samaniego and Navarro [13] also derived a result for the comparison of two systems having 

𝑚7 independent type k components with distribution function 𝐹7 for 𝑘	 ∈ {	1,2, . . , 𝑟}. The following 
theorem appeared as Theorem 2.1. in Samaniego and Navarro [13] . 
 
Theorem 1. If 𝑇!, 𝑇" be the lifetimes and Φ!, Φ" be survival signatures of two systems A and B 
respectively and if for all vectors	(𝑙!, … , 𝑙?), with 𝑙7 = 0,… ,𝑚7	𝑎𝑛𝑑	𝑘 = 1,… . , 𝑟, the inequality 
    Φ!(𝑙!, … . , 𝑙?) ≤ 	Φ"(𝑙!, … , 𝑙?)                               
holds, then it follows that 𝑇! ≤;5 𝑇" for all distribution functions 𝐹!, … , 𝐹?.  

Samaniego and Navarro [13] further proved a theorem, which aids in the comparison of two 
systems having different orders. For such comparisons, some irrelevant components are considered 
and added to the systems. The following proved result appeared as Theorem 3.1 in Samaniego and 
Navarro [13] . 
 
Theorem 2. Let Φ be the survival signature of m-order coherent system, having r types of 
components and suppose it has to be compared with some system of order m+1.  An irrelevant 
component of type-k is added to m-order coherent system, and let Φ∗ be the survival signature of 
resulting new m+1 order system. Considering 𝑚A components of type 𝑗, Samaniego and Navarro [13] 
established following relations for survival signatures Φ and Φ∗ 
(i) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, 𝑘 + 1,… , 𝑟, 

𝛷∗(𝑙!, … 𝑙72!, 0, 𝑙7B!, … , 𝑙?) = 	𝛷(𝑙!, … 𝑙72!, 0, 𝑙7B!, … , 𝑙?)	
(ii) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, … , 𝑟, 𝑎𝑛𝑑	𝑓𝑜𝑟		1 ≤ 𝑙7 ≤ 𝑚7 ,	

𝛷∗(𝑙!, … 𝑙72!, 𝑙7 , … , 𝑙?) 																																																																																																																																													

= 	 a
𝑙7

𝑚7 + 1
b 	𝛷(𝑙!, … 𝑙72!, 𝑙7 − 1,… , 𝑙?) 	+	a

𝑚7 − 𝑙7 + 1
𝑚7 + 1

b 	𝛷(𝑙!, … 𝑙72!, 𝑙7 , … , 𝑙?) 

(iii) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, 𝑘 + 1… , 𝑟,	
𝛷∗(𝑙!, … 𝑙72!, 𝑚7 + 1, 𝑙7B!, … , 𝑙?) = 	𝛷(𝑙!, … 𝑙72!, 𝑚7 , 𝑙7B!, … , 𝑙?). 

 
Samaniego and Navarro [13] also adopted a generalized distorted distribution technique for 
comparing two systems. They employed a dual distortion function, 𝑄O(𝑢!, 𝑢", … , 𝑢?) and distortion 
function 𝑄(𝑢!, 𝑢", … , 𝑢?) in this technique. These functions satisfy the following properties: 
(i) 𝑄O(𝑢!, 𝑢", … , 𝑢?) is a continuous increasing function   
(ii) 𝑄O(𝑢!, 𝑢", … , 𝑢?) = 0 if 𝑢$ = 0	∀	𝑖 ∈ {1,2, . . , 𝑟}  
(iii)  𝑄O(𝑢!, 𝑢", … , 𝑢?) = 1	if 𝑢$ = 1	∀	𝑖 ∈ {1,2, . . , 𝑟}. 
(iv) 𝑄(𝑢!, 𝑢", … , 𝑢?) = 1 − 𝑄O(1 − 𝑢!, 1 − 𝑢", … ,1 − 𝑢?) 
The survival function 𝐹O5(𝑡)  of coherent system having r types of components can be expressed as-  

𝐹O5(𝑡) = 	𝑄O(𝐹O!(𝑡), 𝐹O"(𝑡), … , 𝐹O?(𝑡)), 
where 𝐹CZ  is the reliability function of components of type l. The lifetimes 𝑇! and 𝑇" of the two coherent 
systems with r types of components can be compared using the distortion function as discussed 
below. The following proved result appeared as Theorem 4.1. in Samaniego and Navarro [13]. 
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Theorem 3. Let 𝐹!, 𝐹", … , 𝐹? be the distribution functions of the components of type 1, type 2,…, type 
r respectively.  Samaniego and Navarro [13] proved that if 	𝑄O! and 𝑄O" be the dual distortion functions 
of two considered systems, then   
(i) 𝑇! ≤;5 𝑇" holds for all 𝐹!, . . . , 𝐹? if and only if 𝑄O! ≤ 𝑄O" in (0,1)?; 
(ii) 𝑇! ≤<= 𝑇" holds for all 𝐹!, . . . , 𝐹? if and only if 𝑄O"/𝑄O!is decreasing in (0,1)?; 
(iii) 𝑇! ≤>= 𝑇" holds for all 𝐹!, . . . , 𝐹?, if the distributions of 𝑇! and 𝑇" are absolutely continuous,  

and if 𝛾(𝑢!, 𝑢", … , 𝑢? , 𝑣", … , 𝑣?) is decreasing in 𝑢!, 𝑢", … , 𝑢? and increasing (decreasing) in 𝑣? 
in (0,1)? × (0,∞)?2! and 𝐹! ≤>= 𝐹$ 	(≥>=) for i = 2,… , 𝑟 where 

𝛾(𝑢!, 𝑢", … , 𝑢? , 𝑣", … , 𝑣?) =
D&EF((G&,G(,…,G,)B∑ H!

,
!-( D!EF((G&,G(,…,G,)

D&EF&(G&,G(,…,G,)B∑ H!,
!-( D!EF&(G&,G(,…,G,)

, 

																	𝐷$𝑄OA denotes the partial derivatives of 𝑄OA about 𝑖%& component for 𝑖 ∈ {1,… , 𝑟} and 𝑗	 ∈ {1,2} 
and  𝑢? denotes components’ reliability function of type 𝑟 and 𝑣? denotes the ratio of pdfs 
of components of type 𝑟 to the type 1.                 

                                           
3. Analysis and Discussion 

 
The purpose of this article is to compare the bridge systems having multiple types of components. 
The survival signature tool is used to compare the considered systems in three different senses 
(stochastic, hazard rate, and likelihood ratio ordering). The bridge system as shown in Figure 1 has 
two units	𝑥!!, 𝑥"! of type 1 and three components namely 𝑥!", 𝑥"", 𝑥I" of type 2. The second 
considered system as shown in Figure 2 has again two components of type 1 and three components 
type 2, but at different positions. The bridge system (Figure 3) having three types of components is 
also investigated in this study.  

 
                  Figure 1: System A (five-component bridge system) 

 

 
 

Figure 2: System B (five-component bridge system with changed positions of components) 

 
 

                 Figure 3: System C (five-component bridge system containing three types of components) 

 
 

 
 

 

𝑥11  

𝑥21  

𝑥12  

𝑥22  

𝑥32  

 
 

 
 

𝑥12  

𝑥11  
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𝑥32  
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3.1. Comparison of two bridge systems with two types of components at 
different positions 
 
Theorem 4. Consider two bridge systems of order five with two types of components at different 
positions. Let 𝑇!, 𝑇"  be the lifetimes of bridge systems A and B (Figure 1 and Figure 2) respectively. 
Then, 𝑇! is smaller than  𝑇" in usual stochastic order i.e.,  𝑇! ≤;5 𝑇". 

Proof. Let Φ!(𝑙!, 𝑙") and Φ"(𝑙!, 𝑙") be the survival signatures of the systems A and B respectively. 
These systems have two and three components of type 1 and type 2 respectively. The general 
expression of the survival signature Φ(𝑙!, 𝑙")	for considered systems is as follows 

 

    Φ(𝑙!, 𝑙") = a2𝑙!
b
2!
a3𝑙"
b
2!
∑ 𝜙(𝑥).31%&,%(

 

 
where 𝑠4&,4( is set of all state vectors of the system. 
 

Table 1: Survival signature 𝛷! of the system A 
 
 
 
 

 
Table 2: Survival signature 𝛷" of the system B 

 
 
 
 
 
As discussed in Theorem 1, the survival signatures Φ!(𝑙!, 𝑙")	and	Φ"(𝑙!, 𝑙") given in Table 1 and Table 
2 are non-comparable because Φ!(0,2) < Φ"(0,2)	 and Φ!(1,2) > Φ!(1,2). Thus, the domination of 
survival signature is not possible for the considered systems. To compare these systems, we need to 
do further analysis. Let 𝐹O5&(𝑡),	𝐹O5((𝑡) be the survival functions of the bridge systems A and B with 
components distribution function 𝐹!(𝑡) and 𝐹"(𝑡). The difference between survival function 𝐹O5((𝑡) 
and 𝐹O5&(𝑡) is given by 
𝐹O5((𝑡) − 𝐹O5&(𝑡) = ∑ ∑ (Φ"	(𝑙!, 𝑙") − Φ!(𝑙!, 𝑙")I

4()6	
"
4&)6	 ) L"4&M L

I
4(
M		𝐹!(𝑡)"24&𝐹O!(𝑡)4& 	𝐹"(𝑡)I24(𝐹O"(𝑡)4( .        (1) 

 

 
Figure 4: The difference function 𝐷(𝑥!, 𝑥")	. 

Φ!(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙I = 3 
𝑙! =0 0 0 0 0 
𝑙! = 1 0 1/3 1 1 
𝑙! =2 0 2/3 1 1 

Φ"(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙I = 3 
𝑙! = 0 0 0 1/3 1 
𝑙! = 1 0 0 2/3 1 
𝑙! = 2 1 1 1 1 
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To simplify the system’s comparison, we consider the variable 𝐹O!(𝑡) = 1 − 𝐹!(𝑡) as 𝑥! and 𝐹O"(t) =
1 − 𝐹"(𝑡) as 𝑥". So, the pair (𝑥!, 𝑥") belongs to unit square as 𝑡 ∈ [0,∞). The above difference in 
Equation (1), is taken as 𝐷(𝑥!, 𝑥") and can be represented as- 
 
𝐷(𝑥!, 𝑥") = 𝑥!"(1 − 𝑥")I − 2𝑥!𝑥"(1 − 𝑥!)𝑥"(1 − 𝑥")" + 𝑥!"𝑥"(1 − 𝑥")" + 𝑥""(1 − 𝑥!)"(1 − 𝑥") −

2𝑥!𝑥""(1 − 𝑥!)(1 − 𝑥") + 𝑥"I(1 − 𝑥!)" . 
 

The difference function 𝐷(𝑥!, 𝑥")	illustrated in Figure 4 has clearly non-negative values for each 
value of 𝑥! and 𝑥". i.e., 𝐷(𝑥!, 𝑥") ≥ 0, ∀	𝑥!, 𝑥" ∈ [0,1]. This implies that 𝐹O5((𝑡) ≥ 𝐹O5&(𝑡). Hence the 
lifetime 𝑇! is smaller than lifetime 𝑇" in usual stochastic order i.e., 𝑇! ≤;5 𝑇"	holds for all 𝐹O!(𝑡), 𝐹O"(𝑡).  
 
3.2. Comparison of bridge systems using distortion functions 
 
In this part, the systems A and B are compared as per stochastic, hazard rate and likelihood ratio 
ordering, by using their distortion functions. 
 
Theorem 5. Let 𝑇!, 𝑇" be the lifetimes of the bridge systems A and B (Figure 1 and Figure 2) 
respectively. These systems have two types of components with the distribution functions 
𝐹!(𝑡), 𝐹"(𝑡) and reliability function 𝐹O!(𝑡), 𝐹O"(𝑡). The lifetime of system A is smaller than the lifetime 
of system B in usual stochastic order but not in hazard rate and likelihood ratio order. 

Proof. Let 𝑄O! and 𝑄O" be dual distortion functions of systems A and B respectively. We have, 
 
𝑄O"(𝑥!, 𝑥") − 𝑄O!(𝑥!, 𝑥")

= (1 − 𝑥")I𝑥!" − 2𝑥!𝑥"(1 − 𝑥")"(1 − 𝑥!) + 𝑥!"𝑥"(1 − 𝑥")" + (1 − 𝑥!)"𝑥""(1 − 𝑥")
− 2𝑥!𝑥""(1 − 𝑥!)(1 − 𝑥") + 𝑥"I(1 − 𝑥!)". 

 
Figure 4 indicates that 𝑄O"(𝑥!, 𝑥") ≥ 𝑄O!(𝑥!, 𝑥") ∀	𝑥!, 𝑥" ∈ [0,1]. Using Theorem 3, we can say that the 
system lifetime 𝑇! is smaller than system lifetime 𝑇" in usual stochastic order. i.e., 𝑇! ≤;5 𝑇" hold for 
all 𝐹O!(𝑡), 𝐹O"(𝑡). 

Let 𝑅 be the ratio of 𝑄O" to 𝑄O! i.e.,  

𝑅(𝑥!, 𝑥") =
𝑄O"
𝑄O!

 

 
Figure 5 exhibits that the ratio 𝑅(𝑥!, 𝑥") is neither increasing nor decreasing in 𝑥!, 𝑥" in (0,1)2. Data 
presented in Table 3 confirms the same. Using Theorem 3, we can say the system lifetime 𝑇! is not 
smaller than system lifetime 𝑇" in hazard rate order i.e., 𝑇! ≰<= 𝑇". Figure 6, further shows that these 
two bridge systems are not hazard rate ordered when the components of type-1 and type-2 follow 
exponential and Weibull distribution respectively. 

 
Table 3: The ratio 𝑅(𝑥!, 𝑥") 

      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 	0.59944 	0.69933 

	0.00010 1.000 499.908 999.330 1498.767 1998.220 2497.687 2997.169 3496.667 
	0.09999 458.761 1.000 1.235 1.635 2.086 2.566 3.068 3.588 
	0.19988 861.762 1.220 1.000 1.076 1.236 1.436 1.663 1.912 
	0.29977 1239.023 1.567 1.073 1.000 1.039 1.129 1.251 1.397 
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0.39966 1611.871 1.939 1.216 1.037 1.000 1.024 1.085 1.172 
	0.49955 1998.480 2.331 1.390 1.121 1.023 1.000 1.017 1.063 
	0.59944 2417.177 2.754 1.588 1.231 1.081 1.017 1.000 1.013 
	0.69933 2889.461 3.225 1.812 1.365 1.162 1.061 1.013 1.000 

 
To compare the hazard rate ordering of system A and component of type 1, the ratio 𝑅.&

! (𝑥!, 𝑥") is 
computed. We get 
 

𝑅.&
! =

𝑄O!(𝑥!, 𝑥")
𝑥!

= 2𝑥"(1 − 𝑥")"(1 − 𝑥!) + 6𝑥""(1 − 𝑥!)(1 − 𝑥") + 2𝑥"I(1 − 𝑥!) + 2𝑥!𝑥"(1 − 𝑥")"

+ 3𝑥!𝑥""(1 − 𝑥") + 𝑥!𝑥"I. 
 
Figure 7 indicates that the ratio 𝑅.&

! (𝑥!, 𝑥") increases with increase in 𝑥", but it decreases with increase 
in 𝑥! in (0,1)". Therefore, the lifetimes of system A and type 1 components are not comparable in the 
hazard rate order, i.e., 𝑇! ≰<= 𝑋! where 𝑋! indicates the type 1 component’s lifetime. Similarly, for 
hazard rate order comparison of system A and the type 2 components, the ratio 𝑅.(

!  is evaluated. We 
obtain 
 

𝑅.(
! =

𝑄O!(𝑥!, 𝑥")
𝑥"

= 2𝑥!(1 − 𝑥")"(1 − 𝑥!) + 6𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥") + 2𝑥!𝑥""(1 − 𝑥!) + 2𝑥!"(1 − 𝑥")"

+ 3𝑥!"𝑥"(1 − 𝑥") + 𝑥!"𝑥"". 
 

Here, the ratio 𝑅.(
! (𝑥!, 𝑥") decreases with increase in 𝑥!, but it neither increases nor decreases with 

increase in 𝑥" in (0,1)2. Therefore, 𝑇! ≰<= 𝑋", where 𝑋" is type 2 component’s lifetime. In the same 
manner, system B is compared with type 1 and type 2 components in hazard rate order by evaluating 
the ratios 𝑅.&

"  and 𝑅.(
"  respectively. We have 

 

𝑅.&
" =

𝑄O"(𝑥!, 𝑥")
𝑥!

=
𝑥""

𝑥!
(1 − 𝑥")(1 − 𝑥!)" +

𝑥"I

𝑥!
(1 − 𝑥!)" + 4(1 − 𝑥!)𝑥""(1 − 𝑥") + 2𝑥"I(1 − 𝑥!)

+ 𝑥!(1 − 𝑥")I + 3𝑥!𝑥"(1 − 𝑥")" + 3𝑥!(1 − 𝑥")𝑥"" + 𝑥!𝑥"I 
 
and 
 

𝑅.(
" =	

𝑄O"(𝑥!, 𝑥")
𝑥"

= 𝑥"(1 − 𝑥")(1 − 𝑥!)" + (1 − 𝑥!)"𝑥"" + 4𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥") + 2𝑥!𝑥""(1 − 𝑥!)

+
𝑥!"(1 − 𝑥")I

𝑥"
+ 3𝑥!"(1 − 𝑥")" + 3𝑥!"𝑥"(1 − 𝑥") + 𝑥!"𝑥"". 
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Figure 5: The Graphical interpretation of the function 𝑅(𝑥!, 𝑥") 

 
 
Here, the ratio 𝑅.&

" (𝑥!, 𝑥") increases with 𝑥" but it is not monotonic in 𝑥! in (0,1)2. Thus,		𝑇" ≰<= 𝑋!. 
The ratio	𝑅.(

" (𝑥!, 𝑥") increases with increase in 𝑥! but decreases with increase in 𝑥" in (0,1)2. 
Therefore,		𝑇" ≰<= 𝑋". 
 

 
Figure 6: Hazard rate functions of the bridge systems (A (dash), B (dot)) and their components (dark lines). Type 1 and 

Type 2 components follow exponential and Weibull distribution (𝑎 = 2, 𝑏 = 1) respectively for 𝑡 > 0 
 

Let 𝑋!, 	𝑋" be the lifetimes of the components of type 1 and type 2 with respective pdfs 𝑓!(𝑡), 
𝑓"(𝑡). The components of Type 1 and type-2 are assumed to be exponentially (mean = 1) and Weibull 
(𝑎 = 2, 𝑏 = 1) distributed respectively. The ratio J((%)

J&(%)
 is increasing in 𝑡 as shown in Figure 8. Hence, 

we get that	𝑋!  is smaller than 𝑋" in likelihood ratio ordering i.e., 𝑋! ≤>= 𝑋". For likelihood ratio 
ordering comparison of systems A and B, as per Theorem 3, we have function ΥL𝑥!, 𝑥",

J((%)
J&(%)

M as- 

 

Υa𝑥!, 𝑥",
𝑓"(𝑡)
𝑓!(𝑡)

b =

𝑣(2𝑥""(𝑥! − 1)" − 2𝑥!𝑥""(𝑥! − 1) − 2𝑥"(𝑥" − 1)(𝑥! − 1)" + 8𝑥!𝑥"(𝑥! − 1)(𝑥" − 1))
−2𝑥!(𝑥" − 1)I + 6𝑥!𝑥"(𝑥" − 1)" − 2𝑥!𝑥""(𝑥" − 1) + 2𝑥""(𝑥! − 1)(𝑥" − 1)

𝑣(2𝑥!"(𝑥" − 1)" − 2𝑥!"𝑥"(𝑥" − 1) − 2𝑥!(𝑥! − 1)(𝑥" − 1)" + 8𝑥!𝑥"(𝑥! − 1)(𝑥" − 1))
−2𝑥"I(𝑥! − 1) + 2𝑥!𝑥"(𝑥" − 1)" − 2𝑥"(𝑥! − 1)(𝑥" − 1)" + 6𝑥""(𝑥! − 1)(𝑥" − 1)

 

 
where J((%)

J&(%)
= 𝑣.  
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Figure 7:  The Ratio 𝑅#!

! , 𝑅#!
" , 𝑅#"

! , 𝑅#"
"  

 

 
 

Figure 8: Likelihood ratio ordering of the components of type 1 and type 2 
 
Table 4 indicates that the function Υ(𝑥!, 𝑥", 0.0001) is increasing in 𝑥! for the particular value of 𝑥". 
But we can see the function is neither increasing nor decreasing in 𝑥" for any particular values of 𝑥!. 
In Table 5, the function Υ(𝑥!, 0.09999, 𝑣) is increasing in 𝑥! for the particular values of 𝑣. Table 5 
further shows that the function is increasing in 𝑣 for 𝑥! = 0.0001, but it is decreasing in 𝑣 for 𝑥! =
	0.09999, 0.19998, 0.29977. Hence, we get that the function ΥL𝑥!, 𝑥",

J((%)
J&(%)

M is increasing in 𝑥 but not 

monotonic in J((%)
J&(%)

 in set (0,1)" × (0,∞). Therefore, these considered bridge systems are not likelihood 

ratio ordered. i.e., 𝑇! ≰>= 𝑇".   
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Table 4: The function 𝛶(𝑥!, 𝑥", 0.0001)  
      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 	0.59944 	0.69933 

	0.00010 1.000	 908.936	 1665.738	 2306.254	 2855.383	 3331.387	 3747.970 4115.610 
	0.09999 0.083	 1.000 1.965 2.985 4.062 5.203 6.412 7.697 
	0.19988 0.138	 0.549 1.000 1.497 2.049 2.664 3.355 4.135 
	0.29977 0.173	 0.414 0.687 1.000 1.361 1.783 2.283 2.885 
0.39966 0.193	 0.349 0.530 0.744 1.000 1.312 1.701 2.199 
	0.49955 0.200	 0.304 0.428 0.579 0.764 1.000 1.307 1.725 
	0.59944 0.193	 0.264 0.349 0.454 0.587 0.762 1.000 1.343 
	0.69933 0.173	 0.219 0.276 0.346 0.438 0.561 0.735 1.000 

 
Table 5: The function 𝛶(𝑥!, 0.09999, 𝑣) 

      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 0.59944 0.69933 

	0.00010 0.083	 1.000	 1.965	 2.985	 4.062	 5.203	 6.412 7.697 
	0.09999 0.175	 1.000 1.715 2.349 2.923 3.451 3.945 4.413 
	0.19988 0.266	 1.000 1.540 1.963 2.312 2.611 2.876 3.116 
	0.29977 0.358	 1.000 1.410 1.704 1.932 2.119 2.279 2.422 
0.39966 0.449	 1.000 1.311 1.519 1.672 1.795 1.898 1.989 
	0.49955 0.541	 1.000 1.232 1.379 1.484 1.565 1.634 1.694 
	0.59944 0.633	 1.000 1.168 1.270 1.340 1.395 1.440 1.479 
	0.69933 0.724	 1.000 1.115 1.182 1.228 1.263 1.291 1.316 

 
3.3.  Comparison of two bridge systems with different number of components 
 
Theorem 6. Suppose 𝑇!, 𝑇K be the lifetimes of the bridge systems A and D shown in Figure 1 and 
Figure 9 respectively. The system D has six components, where type 1 components are 𝑥!!, 𝑥"! and 
𝑥I!  and type 2 components are 𝑥!", 𝑥"" and 𝑥I". Then the lifetime 𝑇K is smaller than 𝑇! in usual 
stochastic order. i.e., 𝑇K ≤;5 𝑇!. 

Proof. Let ΦK(𝑙!, 𝑙")  be the survival signature	of the system D. The survival signature Φ!(𝑙!, 𝑙") 
of system A is already discussed and given in Table 1. An independent irrelevant component of type 
𝑘 = 1 is added to system A, and let us suppose that Φ!

∗(𝑙!, 𝑙") be the survival signature of new 
resulting system of order 6. Using Theorem 2, we have 
(i) 𝐹𝑜𝑟	0 ≤ 𝑙" ≤ 𝑚" 

Φ!
∗(0, 𝑙") = Φ!(0, 𝑙") 

(ii) For 1 ≤ 𝑙! ≤ 𝑚! and 0 ≤ 𝑙" ≤ 𝑚" 	

Φ!
∗(𝑙!, 𝑙") = a

𝑙!
𝑚! + 1

bΦ!(𝑙! − 1, 𝑙") + a
𝑚! − 𝑙! + 1
𝑚! + 1

bΦ!(𝑙!, 𝑙")	

(iii) For 	0 ≤ 𝑙" ≤ 𝑚"	 
Φ!
∗(𝑚! + 1, 𝑙") = 	Φ!(𝑚!, 𝑙"). 
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Figure 9: System D (six-component bridge system) 

 
Tables 6 and 7 indicate that the survival signature Φ!

∗ 	is greater than ΦK for all values of 𝑙!, 𝑙" i.e., 
Φ!
∗(𝑙!, 𝑙") ≥ ΦK(𝑙!, 𝑙") ∀ 𝑙!, 𝑙" ∈ {0,1,2,3}. Thus, the lifetime 𝑇K is smaller than 𝑇! in usual stochastic 

order, i.e., 𝑇K ≤;5 𝑇!. 
 

Table 6: Survival signature 𝛷!∗ of the bridge system A with irrelevant component of type-1 
 

 
 
 

Table 7: Survival signature	𝛷$ of the bridge system D 
 

 
 
 
 
 
 
3.4.  Comparison of lifetimes of two bridge systems with two and three types of 
components 
 
Theorem 7. Consider two bridge systems A and C, shown in Figures 1 and 3. Let 𝑇! and 𝑇I be the 
respective lifetimes of systems A and C. Type 1, type 2 and type 3 components are assumed to be iid 
with reliability functions 𝐹O!, 𝐹O" and  𝐹OI respectively. Then 𝑇! ≤;5 𝑇I if 𝐹O"(𝑡) ≤ 𝐹OI(𝑡). 

Proof. Let Φ!(𝑙!, 𝑙") and ΦI(𝑙!, 𝑙", 𝑙I) be the survival signature of bridge systems A and C 
respectively. Here, system C contains two components of type 1, two components of type 2, and one 
component of type 3. The survival signature ΦI(𝑙!, 𝑙", 𝑙I) can be written as ΦI(𝑙!, 𝑙", 𝑙I) =

a2𝑙!
b
2!
a2𝑙"
b
2!
a1𝑙I
b
2!
∑ 𝜙(𝑥),.31%&,%(,%.

 and is given in Table 8. For comparison of bridge systems A and 

C, we have added an irrelevant component of type 3 (𝑘 = 3) to system A. Using Theorem 2, we have 
survival signature Φ!

∗(𝑙!, 𝑙", 𝑙I)  of resulting 6-components system as: 
(i) For 0 ≤ 𝑙A ≤ 𝑚A; 	𝑗 = 1,2 

Φ!
∗(𝑙!, 𝑙", 0) = Φ(𝑙!, 𝑙", 0) 

(ii) For 0 ≤ 𝑙A ≤ 𝑚A ; 𝑗 = 1,2 
Φ!
∗(𝑙!, 𝑙", 𝑚I + 1) = Φ(𝑙!, 𝑙", 𝑚I). 

 
 

 

𝑥21  

𝑥31  

𝑥12  

𝑥22  

𝑥32  

𝑥11  

Φ!
∗(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙" = 3 
𝑙! = 0 0 0 0 0 
𝑙! = 1 0 2/9 2/3 2/3 
𝑙! = 2 0 4/9 1 1 
𝑙! = 3 0 2/3 1 1 

ΦK(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙" = 3 
	𝑙! = 0 0 0 0 0 
	𝑙! = 1 0 0 0 0 
𝑙! = 2 0 2/9 2/3 2/3 
𝑙! = 3 0 2/3 1 1 
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Similarly, we have added one component of type 2 (𝑘 = 2) which is irrelevant in nature to system 
C. Using Theorem 2, the survival signature ΦI

∗   of the resultant 6-components system is given by 
(i) For 0 ≤ 𝑙A ≤ 𝑚A; 	𝑗 = 1,3 

ΦI
∗(𝑙!, 0, 𝑙I) = ΦI(𝑙!, 0, 𝑙I) 

(ii) For 0 ≤ 𝑙A ≤ 𝑚A ;	𝑗 = 1,3 and 1 ≤ 𝑙" ≤ 𝑚" 

ΦI
∗(𝑙!, 𝑙", 𝑙I) =

𝑙"
3 ΦI(𝑙!, 𝑙" − 1, 𝑙I) +

3 − 𝑙"
3 ΦI(𝑙!, 𝑙", 𝑙I) 

(iii)  For 0 ≤ 𝑙A ≤ 𝑚A ;	𝑗 = 1,3 
ΦI
∗(𝑙!, 𝑚" + 1, 𝑙I) = ΦI(𝑙!, 𝑚", 𝑙I). 

 
Table 8: The survival signature 𝛷%(𝑙!, 𝑙", 𝑙%)	of the system C  
𝑙! 𝑙" 𝑙I ΦI(𝑙!, 𝑙", 𝑙I) 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
0 2 0 0 
0 2 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1/2 
1 1 1 1 
1 2 0 1 
1 2 1 1 
2 0 0 0 
2 0 1 0 
2 1 0 1 
2 1 1 1 
2 2 0 1 
2 2 1 1 

 
Table 9 shows that the survival signatures Φ!

∗ and ΦI
∗  are identical for all the combinations of 𝑙!, 𝑙", 𝑙I 

except two cases. The survival signature Φ!
∗ and ΦI

∗  are not dominated in any sense since Φ!
∗(1,1,1) <

ΦI
∗(1,1,1) but  Φ!

∗(1,2,0) > ΦI
∗(1,2,0). So, the comparison of systems A and C needs further analysis. 

Let 𝐹O5&(𝑡), 𝐹O5.(𝑡)	be the respective reliability functions of systems A and C. We have    

𝐹O5.(𝑡) − 𝐹O5&(𝑡) = X X X[(ΦI
∗ 	(𝑙!, 𝑙", 𝑙I)

!

4.)6

I

4()6	

"

4&)6	

−	Φ!
∗(𝑙!, 𝑙", 𝑙I)] a

2
𝑙!
b a
3
𝑙"
b a
1
𝑙I
b	𝐹!(𝑡)"24&𝐹O!(𝑡)4&𝐹"(𝑡)I24(𝐹O"(𝑡)4(𝐹I(𝑡)!24.𝐹OI(𝑡)4. 

 
Using survival signature given in Table 9, we get 
 

                            𝐹O5.(𝑡) − 𝐹O5&(𝑡) = −2	𝐹!(𝑡)𝐹O!(𝑡)𝐹"(𝑡)𝐹O"(𝑡)"𝐹I(𝑡) + 2	𝐹!(𝑡)𝐹O!(𝑡)𝐹"(𝑡)"𝐹O"(𝑡)𝐹OI(𝑡)                          
(2) 
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Table 9: The survival signature  𝛷!∗ and 𝛷%∗ of systems after adding an irrelevant component of type-3 and type-2 
respectively to system A and system C 

𝑙! 𝑙" 𝑙I Φ!
∗(𝑙!, 𝑙", 𝑙I) ΦI

∗(𝑙!, 𝑙", 𝑙I) 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 1 0 0 
0 2 0 0 0 
0 2 1 0 0 
0 3 0 0 0 
0 3 1 0 0 
1 0 0 0 0 
1 0 1 0 0 
1 1 0 1/3 1/3 
1 1 1 1/3 2/3 
1 2 0 1 2/3 
1 2 1 1 1 
1 3 0 1 1 
1 3 1 1 1 
2 0 0 0 0 
2 0 1 0 0 
2 1 0 2/3 2/3 
2 1 1 2/3 2/3 
2 2 0 1 1 
2 2 1 1 1 
2 3 0 1 1 
2 3 1 1 1 

 
To simplify the comparison process, we have taken variable 𝐹O!(𝑡) =1 − 𝐹!(𝑡) as 𝑥!, 𝐹O"(𝑡) =1 − 𝐹"(𝑡) 
as 𝑥" and 𝐹OI(𝑡) =1 − 𝐹I(𝑡) as 𝑥I. The 3-tuple (𝑥!, 𝑥", 𝑥I) lies in the unit cube as 𝑡 varies from 0 to ∞. 
For 𝑡 ∈ [0,∞), the difference 𝐹O5.(𝑡) − 𝐹O5&(𝑡) given in Equation (2) can be written as the multivariable 
function 𝐷(𝑥!, 𝑥", 𝑥I) as 
 

𝐷(𝑥!, 𝑥", 𝑥I) = −2𝑥!(1 − 𝑥!)(1 − 𝑥")(1 − 𝑥I)𝑦" + 2𝑥!𝑥"𝑥I(1 − 𝑥!)(1 − 𝑥")" 
= 2𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥")(𝑥I − 𝑥"). 

 
If 𝑥" ≤ 𝑥I or 𝑥I = 1 then 𝐷(𝑥!, 𝑥", 𝑥I) ≥ 0. In addition, 𝐷(𝑥!, 𝑥", 𝑥I) = 0	𝑖𝑓	𝑥!, 𝑥" = 1	𝑜𝑟	𝑥" = 𝑥I. This 
implies that the system's lifetime 𝑇! is smaller than 𝑇I in usual stochastic order if the components 
lifetime of type 2 is less than the component lifetime of type 3. i.e., 𝑇! ≤;5 𝑇I if 𝐹O"(𝑡) ≤ 𝐹OI(𝑡) . 

 
4. Conclusion 

 
The bridge structures are generally used in the design and production industry. The comparative 
study of such systems is crucial to ensure system productivity and to distinguish the system that 
performs well. Comparing bridge systems having iid and multiple types of components without 
knowing their component’s distribution is very challenging. In this paper, we have seen that the 
lifetime of bridge system A is smaller than the lifetime of bridge system B in usual stochastic order.  
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However, the lifetimes of these systems (Figure 1 and Figure 2) are not found to be hazard rate and 
likelihood ratio ordered. Further, coherent systems A (five order) and D (six order) are compared 
stochastically by adding irrelevant components. It is found that the lifetime of system D is smaller 
than A in usual stochastic order. For stochastic comparison of lifetimes of bridge systems A and C, 
a result has been derived by imposing some conditions on the survival function of its components. 
This study compares bridge systems by considering different cases with the aid of survival 
signature. There is further scope to analyse the reliability characteristics and compare the 
combination of higher-order multi-state bridge systems with different types of components. 
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