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Abstract 
 

In this paper, we discussed an issue in fuzzy transportation problem, which involves fuzzy costs, 
fuzzy supply, and fuzzy product needs. The goal of this article is to convey the item from point of 
origin to point of destination at the least possible cost. For fuzzy transportation problems with 
balance and unbalance types, the proposed technique provides a superior optimal. Transportation 
costs, supply, and demand are represented by generalized triangular fuzzy numbers using this 
proposed named Row - Column Maxima Method (RCMM). A numerical example of a fuzzy 
transportation problem is illustrated and the solution is compared with the outcomes of other 
approaches. This method reduces iterations and which help to understand and implement easily in 
real life applications. 
 

Keywords: Fuzzy set, Fuzzy Number, Triangular fuzzy number, Fuzzy Transportation problem, 
RCM- Method, Fuzzy optimal solution. 

 
 

1. Introduction 
 
In 1941, Hitchcock had his initial idea regarding the transportation problem. In 1965, L.A. Zadeh 
[17] created fuzzy set theory and successfully applied it to a variety of fields. There is a need to 
send products from various origins (Factories) to various destinations in a variety of real-world 
situations (warehouses). The decision maker's goal is to figure out how much product to order. 
Many distribution challenges in today's actual world, such as in business or industrial settings are 
imprecise in nature due to parameter variances. However, due to some unavoidable 
circumstances, all of these elements of the transportation problem may not be precisely understood 
in real time. In 1978, the fuzzy decision-making method was introduced.  Zimmermann developed 
a variety of fuzzy optimization algorithms for TP and FTP [18]. Hitchcock [5] was the first to come 
up with the basic transportation problem. To handle the totally fuzzy transportation problem, 
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Dhanaseker et al. [4] presented the Hungarian-Modi technique.  Muthuperumal et al. [9] offered an 
algorithmic solution to the problem of unbalanced triangular fuzzy transportation. Senthil Kumar 
et al. [13] suggested the Harmonic Mean Way as a new method for solving the Generalized Fuzzy 
Transportation problem. A new strategy for finding an optimal solution to Generalized Fuzzy 
Transportation Problems was proposed by Srinivasaro Thota and Raja [16].  Fuzzy Transportation 
Problem By Using Triangular Fuzzy Numbers With Ranking Using Area Of Trapezium, Rectangle, 
And Centroid At Different Levels Of -Cut was discussed by Ambadas Deshmukh et al[1]. 
Balasubramanian et al. [2], [3] explored utilizing a ranking function to solve the Fuzzy 
Transportation Problem.  Srinivasan et al. [14] established a method for handling fully fuzzy 
transportation problems in which the materials are transformed, and this method is 
straightforward to evaluate and can rank many forms of triangular fuzzy numbers. This study by 
Ladji Kane et al. [8] addressed a Simplified approach for Solving Transportation Problems with 
Triangular Fuzzy Numbers in Fuzzy Environments.  Purushoth kumar et al. [10] proposed 
employing the diagonal optimum method to address fully fuzzy transportation problems. Indira 
Singuluri et al. [6] proposed their strategies to address a novel transportation approach to solving 
type-2 triangular intuitionistic fuzzy transportation problems. 
     In this study, we offer a new method for solving the fuzzy transportation problem called the 
RCM method, which assumes supply, demand, and unit transportation cost as triangular fuzzy 
integers. It provides a minimal value when compared to other approaches such as the NWCM 
[North-West Corner Method], LCM [Least Cost Method], VAM [Vogel’s Approximation Method], 
and RMM [Row Minima Method]. Finally, an example is provided to aid in the comprehension of 
the method. 
     The remainder of this work is arranged in the following manner. Present the fundamental 
definitions and mathematical constructions of transportation problems in section 2. Present a new 
algorithm to handle the fully fuzzy transportation problem in section 3. The proposed approach is 
illustrated numerically in Section 4. The conclusion and future study is presented in section 5. 

 
 

2. Preliminaries 
 
Definition 2.1[17]   
     Let U is a collection of elements indicated by 𝑢 then a fuzzy set 𝒫 is a set of ordered pairs in U: 
𝒫 = %&𝑢, 	µ𝒫(𝑢),|	𝑢 ∈ U/, where the membership function or grade of membership of 𝑢	in	𝒫 is 
µ𝒫(𝑢):U⟶ [0,1]. 
 
Definition 2.2[4]  
   P is a fuzzy set of real numbers that is defined on the universal set of real numbers. If R's 
membership function satisfies the following properties, R is said to be a fuzzy number. 

1.  𝜇𝒫(𝑢) is a piecewise continuous  

2. 𝒫 is convex. µ𝒫(𝛿𝑢" + (1 − 𝛿)𝑢#) ≥ min&µ𝒫(𝑢"), 	µ𝒫(𝑢#), , ∀𝑢", 	𝑢# ∈ ℛ & ∀𝛿 ∈ [0, 	1]. 

3. 𝒫 is Normal. 

 
 Definition 2.3[4]  
   If the membership function 𝒫:ℛ → [0,1] of a fuzzy number P on R satisfies the following 
characteristics, it is said to be a triangular fuzzy number (TFN) or linear fuzzy number.  
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𝒫(𝑢) =

⎩
⎪
⎨

⎪
⎧
𝑢 − 𝑝!
𝑝" − 𝑝!

, for	𝑝! ≤ 𝑢 ≤ 𝑝"
1								,								𝑢 = 𝑝"				

𝑝# − 𝑢
𝑝# − 𝑝"

, for	𝑝" ≤ 𝑢 ≤ 𝑝#

0, 	elsewhere

 

  
 
2.4 Arithmetic Operation on Fuzzy Numbers [4]: 
     The operations that can be performed on triangular fuzzy numbers are as follows: Then, if	𝒫 =
(𝑝", 𝑝#, 𝑝$) and 𝒬 = (𝑞", 𝑞#, 𝑞$).   

(i) Addition: 𝒫 + 𝒬 = (𝑝" + 𝑞", 𝑝# + 𝑞#, 𝑝$ + 𝑞$). 
(ii) Subtraction: 𝒫 − 𝒬 = (𝑝" − 𝑞$, 𝑝# − 𝑞#,𝑝$ − 𝑞").  
(iii) Multiplication: 𝒫 × 𝒬 = (𝑝"𝑞", 𝑝#, 𝑝$𝑞$). 

 
2.5 MATHEMATICAL CONSTRUCTION [9]: 

A fuzzy transportation problem can be expressed mathematically as follows: 
Minimize (Total cost)  𝒵 = ∑ 𝒸%& ∑ 𝓍%&'

&("
)
%("  

Subject to the constraints 
∑ 𝓍%&'
&(" = 𝓈% , 						𝑖 = 1,2, ……… ,𝑚(Fuzzy Supply constraints) 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛(Fuzzy Demand constraints) 

𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚 and 𝑗 = 1,2, ……… , 𝑛 
Where m: Total number of sources, n: Total number of destinations 

 
Notations: 

𝓈%: The product's fuzzy availability at 𝑖*+ the source. 
𝒹&: The product's fuzzy demand at 𝑗*+ destination. 
𝒸%&: The fuzzy transportation cost of transporting one unit of commodity from 𝑖*+source to 
𝑗*+	destinations. 
𝓍%&: To minimize total fuzzy transportation, a fuzzy quantity is delivered from 𝑖*+source to 
𝑗*+destination (or fuzzy decision variables). 
∑ ∑ 𝒸%&𝓍%&'

&("
)
%(" : The fuzzy cost of transporting one unit of the product from 𝑖*+source to the 𝑗*+ 

destination. 
∑ 𝓈%)
%(" : 	The product's total fuzzy availability 

∑ 𝒹&'
&(" : The product's total fuzzy demand 

 

 Destination 1 Destination 2 … Destination n Supply 

Source 1 𝒸""𝓍"" 𝒸"#𝓍"# … 𝒸"'𝓍"' 𝓈" 

Source 2 𝒸#"𝓍#" 𝒸##𝓍## … 𝒸#'𝓍#' 𝓈# 

…
 

…
 

...
 

…
 

…
 

…
 

Source m 𝒸)"𝓍)" 𝒸)#𝓍)# … 𝒸)'𝓍)' 𝓈) 

Demand 𝒹" 𝒹# … 𝒹' R𝓈%

)

%("

=R𝒹&

'

&("
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2.6 Balanced and unbalanced FTP [11]:  
 
Balanced fuzzy transportation problem: The total fuzzy supply is equal to total fuzzy demand 

i. e. 	R𝓈%

)

%("

=R𝒹&

'

&("

 

Unbalanced fuzzy transportation problem:  
     The total fuzzy supply is not equal to total fuzzy demand 

i. e. 	R𝓈%

)

%("

≠R𝒹&

'

&("

 

 
2.7 To Modify Unbalanced FTP to Balanced FTP: An Unbalanced FTP may occur in two different 
forms: (i) Excess of availability, (ii) Shortage in availability. 
     We now discuss these two cases by considering the usual m- sources, n- destinations FTP with 
the condition that ∑ 𝓈%)

%(" ≠ ∑ 𝒹&'
&("  

Case1: (Excess of Availability, i.e.	∑ 𝓼𝒊 ≥ ∑𝓭𝒋) 
The general FTP may be stated as follows: 

Minimize (Total cost)  𝒵 = ∑ ∑ 𝓍%&𝒸%&'
&("

)
%("  

Subject to the constraints 
∑ 𝓍%&'
&(" ≤ 𝓈% , 						𝑖 = 1,2, ……… ,𝑚(Fuzzy Supply constraints) 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛(Fuzzy Demand constraints) 

and 𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚 and 𝑗 = 1,2, ……… , 𝑛 
The problem will possess a fuzzy feasible solution if ∑𝓈% ≥ ∑𝒹& . In the first constraints, the 
introduction of slack variable 𝓍%,'/"(𝑖 = 1,2, ……… ,𝑚) gives 

⟹R𝓍%& + 𝓍%,'/"

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

⟹RYR𝓍%& + 𝓍%,'/"

'

&("

Z
)

%("

=R𝓈%

)

%("

 

⟹R[R𝓍%&

)

%("

\
'

&("

+R𝓍%,'/"

)

%("

=R𝓈%

)

%("

 

⟹∑ 𝓭𝒋'
&(" +∑ 𝓍%,'/")

%(" = ∑ 𝓈%)
%("    (∵ ∑ 𝓍%&)

%(" = 𝒹& 
⟹∑ 𝓍%,'/")

%(" = ∑ 𝓈%)
%(" −∑ 𝓭𝒋'

&(" = Excess of Availability 
If this excess availability is denoted by 𝒹'/", the modified FTP, can be reformulated as: 

Minimize   𝒵 = ∑ ∑ 𝓍%&𝒸%&'/"
&("

)
%(" ,  

Subject to the constraints 

R𝓍%& + 𝓍%,'/"

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 + 1 and 𝓍%& ≥ 0, for all i and j 

and 𝑐%,'/" = 0, 	for		𝑖 = 1,2, ……… ,𝑚 and ∑ 𝓈%)
%(" = ∑ 𝒹&'/"

&("  
This is clearly the balanced FTP and thus can be easily solved by fuzzy transportation 
algorithm. 

 
Working Rule:If ∑ 𝓈% ≥ ∑𝒹& , avoid using a fake row or column when converting to balance. Let see 

𝜔 = ∑ 𝓈%)
%(" − ∑ 𝒹&'

&(" .  The difference	𝜔 added to the demand (𝒹", 𝒹#, 𝒹$) minimum. 
Reconstruct the provided Fuzzy transportation table using (𝒹" +𝜔", 𝒹# +𝜔#, 𝒹$ +𝜔$). 
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Case2: (Shortage in Availability, i.e.	∑𝓼𝒊 ≤ ∑𝓭𝒋) 
In this case, the general FTP becomes: 

Minimize  𝒵 = ∑ ∑ 𝓍%&𝒸%&'
&("

)
%("  

Subject to the constraints 

R𝓍%&

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

R𝓍%&

)

%("

≤ 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 

and 𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚; 𝑗 = 1,2, ……… , 𝑛 
Now, introducing the slack variable 𝓍)/",&(𝑗 = 1,2, ……… , 𝑛) in the second constraint, we get 

⟹R𝓍%& + 𝓍)/",&

)

%("

= 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 

⟹R[R𝓍%& + 𝓍)/",&

)

%("

\
'

&("

=R𝒹&

'

&("

 

⟹RYR𝓍%&

'

&("

Z
)

%("

+R𝓍)/",&

'

&("

=R𝒹&

'

&("

 

⟹∑ 𝓈%)
%(" +∑ 𝓍)/",&'

&(" = ∑ 𝒹&'
&("    (∵ ∑ 𝓍%&'

&(" = 𝓈% 
⟹∑ 𝓍)/",&'

&(" = ∑ 𝒹& −∑ 𝓈%)
%("

'
&(" = Shortage in availability 𝓈)/", say 

 Thus the modified FTP, in this case becomes: 
Minimize   𝒵 = ∑ ∑ 𝓍%&𝒸%&'

&("
)/"
%(" , 

Subject to the constraints 

R𝓍%&

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 + 1 

∑ 𝓍%& + 𝓍)/",&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 and 𝓍%& ≥ 0, for all i and j 

where 𝑐)/",& = 0, 	for		𝑗 = 1,2, ……… , 𝑛 and ∑ 𝓈%)/"
%(" = ∑ 𝒹&'

&("  
This is clearly the balanced FTP and thus can be easily solved by fuzzy transportation 
algorithm. 

 
Working Rule: If ∑ 𝓈%)

%(" ≤ ∑ 𝒹&'
&(" , avoid using a fake row or column when converting to balance. 

Let see 𝜔 = ∑ 𝒹&)
%(" − ∑ 𝓈%'

&(" .  The difference	𝜔 added to the supply (𝓈", 𝓈#, 𝓈$) minimum. 
Reconstruct the provided Fuzzy transportation table using (𝓈" +𝜔", 𝓈# +𝜔#, 𝓈$ +𝜔$). 

 
2.8 Fuzzy Feasible Solution [9]:  

      A fuzzy feasible solution is any set of fuzzy non negative allocations 𝑥%&(𝑥%& ≥ 0) that fulfills 
(in the sense equivalent) the row and column requirements. 

 
2.9 Fuzzy Basic Feasible Solution [9]: 

    If the number of positive allocations is exactly equal to (𝑚 + 𝑛 − 1), a fuzzy feasible solution 
to a fuzzy transportation problem with m origins and n destinations is said to be fuzzy basic 
feasible solution. 

 
2.10 Fuzzy Optimal Solution [9]:  

      If the entire fuzzy transportation cost is minimized, a fuzzy feasible solution is said to be 
fuzzy optimum. 

 
Theorem 2.11 [11]: (Existence of Fuzzy feasible solution) 
     A necessary and sufficient condition for the existence of feasible solution of a fuzzy 
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transportation problem is ∑ 𝓈%)
%(" = ∑ 𝒹&'

&("  (𝑖 = 1,2, ……… ,𝑚; 𝑗 = 1,2, ……… , 𝑛). 
Proof: The condition is necessary: Let there exist a feasible solution to the fuzzy transportation 
problem.  Then, 

∑ ∑ 𝓍%&'
&("

)
%(" = ∑ 𝓈%)

%(" ,                                        (1) 
∑ ∑ 𝓍%&)

%("
'
&(" = ∑ 𝒹&'

&(" ,  (2) 
From equation (1) and (2), we get 

⟺∑ 𝓈%)
%(" = ∑ 𝒹&'

&(" . 
 
The condition is sufficient: Let ∑ 𝓈%)

%(" = ∑ 𝒹&'
&(" = 𝒦 (say). 

If 𝜇% ≠ 0 be any real number such that 𝓍%& = 𝜇%𝒹&∀	𝑖, 𝑗, then 𝜇%is given by 

R𝑥%&

'

&("

=R𝜇%𝒹&

'

&("

= 𝜇%R𝒹&

'

&("

= 𝒦𝜇% 

⟹ 𝜇% =
"
𝒦
∑ 𝑥%&'
&(" = 𝓈!

𝒦
 (∵ ∑ 𝑥%&'

&(" = 𝓈%) 

Thus, 𝓍%& = 𝜇%𝒹& =
𝓈!𝒹"
𝒦
≥ 0, since 𝓈% > 0, 𝒹& > 0	∀	𝑖, 𝑗.  Hence a Fuzzy feasible solution exists. 

. 
3. Proposed algorithm 

 
In this paper, we proposed Row-Column maxima method [RCMM] to find optimum solution and 
this result compared with NWCM, LCM, RMM, VAM methods. 
 
Step 1: Check to see if the given FTP is balanced or not.  
Case1: If	 ∑ 𝓈%)

%(" = ∑ 𝒹&'
&(" . then go to step 3. 

Case2: If ∑ 𝓈%)
%(" ≠ ∑ 𝒹&'

&(" , possible, avoid using a fake row or column when converting to 
balanced. Let see (𝑖)𝜔 = ∑ 𝓈%)

%(" −∑ 𝒹&'
&(" 𝑖𝑓 ∑ 𝒹&'

&(" < ∑ 𝓈%)
%("   or  

            (𝑖𝑖)𝜔 = ∑ 𝒹&)
%(" −∑ 𝓈%'

&(" 𝑖𝑓 ∑ 𝓈%)
%(" < ∑ 𝒹&'

&(" . 
Step 2: The difference	𝜔 will be divided into three parts (𝜔", 𝜔#, 𝜔$) such that 	𝜔 = ∑ 	𝜔%$

%("  and 
added to the supply (𝓈", 𝓈#, 𝓈$) or demand (𝒹", 𝒹#, 𝒹$) minimum. Reconstruct the 
provided Fuzzy transportation table using (𝓈" +𝜔", 𝓈# +𝜔#, 𝓈$ +𝜔$)/(𝒹" +𝜔", 𝒹# +
𝜔#, 𝒹$ +𝜔$). 

Step 3: For each row, find the difference between the first and second maximum values and use 
that value instead of the first maximum value. 

Step 4: After completing step 3, calculate the difference between the 1st and 2nd maximum values 
and use that value to replace the 1st maximum value in each column. 

Step 5: Choose the fuzzy cost's minimum value in either a row or a column. Then determine the 
minimum supply and demand value and assign it. 

Step 6: After step 5, delete the row/column in which supply/demand has reached its limit. 
Step 7: Steps 5 – 6 should be repeated until (m + n-1) cells have been allotted. 
Step 8: Calculate the minimum Fuzzy Transportation Cost. That is,  
             Total Cost= ∑ 𝒸%& ∑ 𝓍%&'

&("
)
%(" . 

 
4. Numerical Example 

 
A manufacturing company produces diesel engines in 10 cities 𝐶",𝐶#, 𝐶$,𝐶3,	𝐶4,	𝐶5,	𝐶6,	𝐶7,	𝐶8,	𝐶"9 
and they are purchased by ten trucking companies 𝑇", 𝑇#,	𝑇$,	𝑇3,	𝑇4,	𝑇5,	𝑇6,	𝑇7,	𝑇8,	𝑇"9. The table 
below indicates how many engines are required by 𝑇", 𝑇#,	𝑇$,	𝑇3,	𝑇4,	𝑇5,	𝑇6,	𝑇7,	𝑇8,	𝑇"9. It also 
displays the cost of transportation per engine from origin to destination. The corporation wants to 
maintain the total transportation cost to a minimum. 
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Table 1: Triangular Fuzzy Transportation Problem 
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (11,12,13) (2,3,4) (7,8,9) (5,6,7) (12,14,16) (1,4,7) (7,8,9) (15,20,25) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (14,16,18) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (14,15,16) (2,3,4) (8,9,10) (4,8,16) (9,10,11) (14,16,18) (25,30,35) 

𝑪𝟒 (9,10,11) (2,5,7) (2,3,4) (3,5,7) (10,15,20) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (14,16,18) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (14,16,18) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (13,15,17) (70,75,80) 

𝑪𝟕 (5,6,7) (12,14,16) (13,15,17) (5,6,7) (0,1,2) (11,13,15) (14,16,18) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (16,18,20) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (14,15,16) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (11,12,13) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (14,15,16) (11,12,13) (14,16,18) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Applying the proposed algorithm [RCMM]: 
Step 1: 

  ∑ 𝓈%)
%(" = (500,550,600) and ∑ 𝒹& = (500,550,600)'

&(" . 
  ⟹∑ 𝓈%)

%(" = ∑ 𝒹&'
&("  (Total supply = Total demand). 

 Since the given Fuzzy Transportation Problem is balanced.  So go to step 3, 
Step 3: 

In first row, First maximum value = (12,14,16) 
Second maximum value = (11,12,13) 
The difference between 1st and 2nd maximum value 
 i.e., (12,14,16) − (11,12,13) = (−1,2,5) 
Then replace the subtracted value instead of the first maximum value 
 i.e., (12,14,16) = (−1,2,5) 
Similarly, apply step 3 other 2nd, 3rd up to 10th row, then we get table 2. 

 
Table 2: Row-wise Difference Table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (11,12,13) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (15,20,25) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (14,15,16) (2,3,4) (8,9,10) (4,8,16) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (9,10,11) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (13,15,17) (70,75,80) 

𝑪𝟕 (5,6,7) (12,14,16) (13,15,17) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (14,15,16) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (14,15,16) (11,12,13) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 4: In table 2, apply the step 4 of proposed algorithm 

In first column, First maximum value = (9,10,11), Second maximum value = (8,9,10) 
The difference between 1st and 2nd maximum value = (9,10,11) − (8,9,10) = (−1,1,3) 
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Then replace the subtracted value instead of the first maximum value. [(9,10,11) = (−1,1,3)] 
Similarly, apply step 4 other 2nd, 3rd up to 10th column, then we get table 3. 

 
Table 3: Column-wise difference table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (-2,1,4) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) 
(15,20,25) 
- (5,10,15) 
= (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 5: Follow step 5 of the outlined procedure in table 4 to assign the initial allocation. 

 
Table 4: First allocation table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) 
(5,10,15) 
(-2,1,4) 

(2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) 
(15,20,25) 
- (5,10,15) 
= (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) 
(1,3,5) 

 
(3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 6: Using step 6 of the proposed method, remove 𝑇3 from table 4, and then the new reduction 

indicated in table 5, and again execute steps 5 to 6 for the second allocation shown in table 6. 
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Table 5: New Reduced Table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
 
 
 

Table 6: Second allocation table 
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (0,3,6) (12,13,14) (5,7,9) 
(5,10,15) 

(0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (50,55,60) (70,75,80) (90,95,100) 
(85,90,95) 
-(5,10,15) 

=(70,80,90) 
(65,70,75) (55,60,65)  

 
 
 
Step 7: Using Steps 5 to 6 of the proposed technique once again, all allocations are made as 
indicated in Table 7. 
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Table 7: Final allocations of fuzzy transportation table  
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (5,10,15) 
(-2,1,4) 

(2,3,4) (7,8,9) (5,6,7) (0,10,20) 
(-1,2,5) 

(1,4,7) (7,8,9) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) 
(5,10,15) 

(0,1,2) 
(2,4,6) (6,7,8) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) 
(25,30,35) 

(-2,1,4) 

𝑪𝟒 
(15,20,25) 

(-1,1,3) 
(2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (15,25,35) 

(1,3,5) 
(3,6,9) (10,11,12) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) 
(15,25,35) 

(1,4,7) 
(0,4,8) 

(65,70,75) 
(1,2,3) 

(8,9,10) 

𝑪𝟔 (6,7,8) (12,13,14) 
(25,30,35) 

(-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) 
(35,45,55) 

(2,4,6) (7,8,9) (1,4,7) 

𝑪𝟕 (5,6,7) (40,45,50) 
(-2,1,4) 

(-2,2,6) (5,6,7) (0,10,20) 
(0,1,2) 

(11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) 
(5,30,55) 

(4,5,6) 
(-10,10,30) 
(10,11,12) 

(-40,0,40) 
(3,6,9) 

(3,5,7) 
(20,30,40) 

(4,6,8) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) 
(30,45,60) 

(1,2,3) 
(25,45,65) 

(2,4,6) 
(3,5,7) (5,6,7) (8,9,10) (4,5,6) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) 
(55,60,65) 

(-1,1,3) (-2,1,4) (0,2,4) (2,3,4) 

 
     As a result, (𝑚 + 𝑛 − 1) = (10 + 10 − 1 = 19,  cells are assigned and we have a feasible solution. 
Then find the minimum fuzzy transportation cost. 
 
Step 8: Calculate the minimum Fuzzy Transportation Cost. Total cost 𝑍 = ∑ 𝒞%& ∑ 𝒳%&

'
&("

)
%(" . 

⟹Z = (5,10,15) (-2,1,4) + (0,10,20) (-1,2,5) + (5,10,15) (0,1,2) + (25,30,35) (-2,1,4) + (15,20,25) (-1,1,3) + 
(15,25,35) (1,3,5) + (15,25,35) (1,4,7) + (65,70,75) (1,2,3) + (25,30,35)  (-3,1,5) + (35,45,55) 
(2,4,6) + (40,45,50) (-2,1,4) + (0,10,20) (0,1,2) + (5,30,55) (4,5,6) + (-10,10,30) (10,11,12) + (-
40,0,40) (3,6,9) + (20,30,40) (4,6,8) + (30,45,60) (1,2,3) + (25,45,65) (2,4,6) + (55,60,65) (-1,1,3) 

 Z = (-160, 1440, 3930) 
 
4.1 Result and discussion:  
      
The fuzzy transportation cost Z of the given FTP is a TFN as given below: 

Z = (-160, 1440, 3930).  
The result can be explained (Refer to Fig. 2) as follows:  
 

 

 
 
The least amount of the minimum total transportation cost is -160.  
The most possible amount of the minimum total transportation cost is 1440.   
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The greatest amount of the minimum total transportation cost is 3930. i.e., the minimum total 
transportation cost will always be greater than -160 and less than 1440, and highest chances are 
that the minimum total transportation cost will be 3930.  
The above result was verified by MATLAB. 

 

  
   

Table 8: Comparative results of NWCM, LCM, RMM, VAM and proposed method (RCMM) for example 1 

Numerical 
example NWCM LCM RMM VAM 

Proposed 
method 

(RCMM) 
1 (-570,4050,11080) (445,2160,4755) (455,2110,4775) (-70,1760,4260) (-160,1440,3930) 

 
  The comparative results in table 8 are also depicted using bar graphs and the results are given in 
the Figure 5.  
 

 
4.2 Comparison of results: The numerical examples 2, 3, 4, 5, 6 are taken from the referred 
journals 1, 8, 9, 10, 14 respectively, and it is verified with our proposed method and the existing 
methods NWCM, LCM, RMM, VAM. 
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Table 9: Comparative results of NWCM, LCM, RMM, VAM and proposed method (RCMM) for example 2 to 6 

Numerical 
examples 

NWCM LCM RMM VAM Proposed method RCMM 

2[Ref:1] (68,176,316) (62,150,258) (62,150,258) (52,149,274) (62, 150, 258) (-2,83,208) 

3[Ref:8] (1850,6609,12882) (1790,6609,12998) (1900,8292,19080) (1850,6609,12882) (3532, 6609, 9852) (-462,3249,8798) 

4[Ref:9] (40,1230.3560) (-120,1210,3860) (140,1250,3220) (120,1210,3140) (270,1210,2750) (-1140,500,3760) 

5[Ref:10] (125,1000,2950) (-175,850,2925) (-275,950,3450) (-25,850,2625) (-75,850,2750) (-175,350,2425) 

6[Ref:14] (-270,4285,10470) (160,2455,5470) (-330,2290,6500) (-25,2220,5455) (1825,2455,3085) (-340,1025,4180) 

 
5. Conclusion and future study 

 
Our proposed method uses the comparison table to find the best initial feasible solution to the 
balanced and unbalanced fuzzy transportation problems. We compared our strategy to others and 
discovered that ours is the most effective. This technique considers the entire fuzzy cost of each 
origin and destination for allotment, allowing for a reduction in iterations to provide the best basic 
feasible solution to FTP. In addition, the proposed method is used to achieve the best solution for 
an unbalanced TP by converting it to a balanced TP without the need of a dummy 
source/destination, saving time and space. The proposed method is simple to implement and can 
be used to solve a variety of fuzzy transportation problems, including minimizing the total 
transportation costs.  In the future, this technique might be expanded to fuzzy multiple objective 
transportation problems and used to solve real-world transportation problems using fuzzy 
numbers. 
 
Conflict of interest: There are no conflicts of interest declared by the authors. 
 
References: 
 

[1]  Ambadas Deshmukh, Dr. Arun Jadhav, Ashok S. Mhaske, K. L. Bondar, “ Fuzzy 
Transportation Problem By Using TriangularFuzzy Numbers With Ranking Using Area Of 
Trapezium, Rectangle And Centroid At Different Level Of α-Cut”, Turkish Journal of Computer and 
Mathematics Education, Vol.12 No.12 (2021), 3941-3951, 2021.   

[2]  Balasubramanian K, Subramanian S, “Optimal Solution of Fuzzy transportation problem 
using Ranking Function”, International journal of Mechanical and Production Engineering Research and 
development (IJMPERD), ISSN (P): 2249 – 6890; ISSN (E): 2249 – 8001, Vol.8, Issue 4, 551-558, 2018. 

[3]  Balasubramanian K, Subramanian S, “Solving Fuzzy transportation problem using 
Ranking Function”, International journal of Mechanical and Production Engineering Research and 
development (IJMPERD), ISSN (P): 2249 – 6890; ISSN (E): 2249 – 8001, Vol.9, Issue 4, 93-98, 2019. 

[4]  Dhansekar S, Hariaran S, Seker, “Fuzzy Hungarian MODI Algorithem to solve Fully Fuzzy 
Transportation Problems”, International journal of fuzzy systems, 19(5); 1479-149, 2017. 

[5]  Hitchcock FL, “The distribution of a product from several sources to numerous localities”, 
J. Math. Phys., 20, 224-230, 1941. 

[6]  Indira Singuluri, N. Ravishankar, “A Novel Transportation Approach To Solving Type-2 
Triangular Intuitionistic Fuzzy Transportation Problems”, Reliability: Theory and Applications, No 4 
(65) Volume 16, December 2021.  

[7]  Klir G.J., Yuan B, “Fuzzy Sets and Fuzzy Logic-Theory and Applications”, Prentice Hall, 
New York, 1995.  

342 



 
A. Kokila, G. Deepa 

FUZZY TRANSPORTATION PROBLEM BY IMPLEMENTING 
THE ROW-COLUMN MAXIMA METHOD 

 
RT&A, No 4 (71) 

Volume 17, December 2022 
 

 

[8]  Ladji Kane, Hamala sidbe, Soulelmane kane, Hawa Bado, Moussa Konate, Daouda 
Diawara and Lassina Diabate, “A Simplified Method for solving Transportation problem with 
Triangular Fuzzy Numbers under Fuzzy Circumstances”,  Journal of Fuzzy Extension & Applications,  
Vol. 2, No.1, 89-105, 2021. 

[9]  Muthuperumal S, Titus P, and Venkatachalapathy M, “An Algorithmic approach to Solve 
Unbalanced Triangular Fuzzy Transportation Problems”, Soft computing 24: 18689 – 18689, 
https://doi:org/10.10007/s000500-020-05103-3, 2020. 

[10]  Purushoth kumar M.K, Ananathanarayanan M and Dhansekar S, “Fuzzy Diagonal 
Optimal Algorithm to solve Fully Fuzzy Transportation problems”, ARPN Journal of Engineering 
and Applied Sciences, Vol.14, No.19, ISSN: 1819-6608, 2019. 

[11]  S.D Sharma: Operation Research, (Kedar nath, Ram nath publication 2015). 
[12]  Senthil Kumar R, Jahir Hussain, “computationally simple approach for solving fully 

intuitionistic fuzzy real life transportation problems”, Int J sys Assur 7(Suppl. 1):S90–S101             
DOI 10.1007/s13198-014-0334-2, 2016. 

[13]  Senthil Kumar S, Raja P, Shanmugasundram P, Srinivas Thota, “A New method to solving 
Generalized Fuzzy Transportation problem – Harmonic Mean method”.  International journal of 
Chemistry, Mathematics and Physics (IJCMP) [Vol -4, Issue -3, ISSN: 2456-866X], 2020. 

[14]  Srinivasan R, Karthikeyan N, Renganathan K and Vijan, “Method for solving fully fuzzy 
transportation problem to transform the materials”, Materials Today: Proceedings, 
https://doi.org/10.1016/j.matpr.2020.05.423, 2020. 

[15]  Srinivasan R, Muruganandam R.S and Vijan V, “A New Algorithm for Solving Fuzzy 
Transportation Problem with Triangular Fuzzy Number”, Asian Journal of information Technology, 
3501-3805, 2016. 

[16]  Srinivasarao Thaota, Raja P, “A New Method for finding an optimal solution of 
Generalized Fuzzy Transportation Problems”, Asian Journal of Mathematical Sciences (AJMS), ISSN: 
2581 -3463, 2020. 

[17]  Zadeh L.A., “Fuzzy sets”, Information and Control Vol. 8, pp. 338–353, 1965.  
[18]  Zimmermann HJ, “Fuzzy programming and linear programming with several objective 

functions”, Fuzzy sets System, 1:45–55, 1978. 
 

343 




