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Abstract

An integral PID control sliding surface with first order filter is proposed in this paper to the systems
with single-input single-output (SISO). In this The developed sliding mode controller results well,
even though there are differences in the model of the system via parametric uncertainty. To verify its
applicability to disturbances, the presented work validates the controller performance with the application
of an external load. An integral and filtered type sliding surface has advantages in terms of the stability of
the systems. The proposed controller properties of stability and robustness are proven by the Lyapunov’s
stability theorem. By the adoption of switching gain with predetermined parameters of system, the
chattering problem phenomenon is greatly minimized. Therefore, the proposed controller in this work
is appropriate for extended use in real world systems. In this method proposed control is verified using
simulation examples and results for its performance. It will be compared to a similar controller shown in
the previous literature work.

Keywords: Integral sliding mode control, Robustness, Stability, Uncertain systems

1. Introduction

Most real-world applications involve non-linear systems, but for analytical and control purposes
these are approximated by linear systems. The control for systems composed of the specifications
of parameter inaccuracy, that is, the structured uncertainty of the system, the neglected dynamics
of unstructured uncertainty, and the generally approximated time delay impose serious challenges
to controller design. [1]. The nonlinear controller design techniques, like feedback linearization
and sliding mode control are proved to be promising and applicable in control issues includes
only an approximate linear description of the system [2, 3]. The sliding mode control (SMC),
recommended in initial phase of the early 1950s, validated with ability to handle framework
uncertainties and outside disturbances with greater strength [4]-[6]. The dynamic behaviour of
system can be modified with the system specifications by the suitable selection of switching of
oscillatory function with the SMC method.

In literature, one of the major application of sliding mode control is to limit the effects of
external disturbance present in th uncertain systems. control, as presented in the international
literature developed earlier in Russia [5]. There are so many sliding mode theories are available
in the literature. In the initial study, the focus is on conventional or traditional sliding modes.
Traditional SMCs use approximate system models to provide a systematic design procedure
[7].Therefore, they are widely used in industries with applications including power electronic
converters, position or speed control and robotics, space technology applications, and power
converters [8]. Conventional SMCs are popular because of their robustness to modelling errors and
their insensitivity to external disturbances and parameter changes [9]. However, in many practical
applications, the problem in the control action of vibrations known as chattering occurs because
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of the SMC design. Chattering is a high-frequency (theoretically infinite frequency) switching
in control input because of the unmodeled system dynamics. The high frequency oscillations in
control signal called chattering occurs due to discontinuous control term is dangerous, specially,
in the systems with mechanical parts. The chattering causes undesired overuse of the actuators
and final control elements and also results in system instability [10]. The advances in digital
control technology has impacted attention of highly robust controller such as SMCs because it
can be easily implemented in digital systems such personal computer or can be implemented in
discrete domain [11]- [12]. However, if SMC is designed in discrete mode, the discrete control
law of discontinuous or switching term, not only induces chattering phenomenon but it drives
the system to be unstable due to infinite sampling rate, and the sampling rate due to infinity
may be distant. This can be answered by making the discontinuous term value very small [11].
In literature, for state regulation [13, 14, 15, 25] or for set-point tracking [16, 17, 7, 11, 27] either
continuous or discrete SMCs are designed . In literature, it is common that, the concerned
researchers have developed a continuous-time sliding mode controller (CSMC) or discrete time
sliding mode controller (DSMC)that tracks the setting value considering specific application
[33]. Among them, Tannuri et al. [19] and Lee et al. [20] reviewed the positioning control
system application, and Orr et al. [21] and Lu et al. [22] has prepared a CSMC for spacecraft
applications. tn the Mihoub et al. [23] work furnished, a DSMC with the phase variable state
model of second order, for tracking of semi-batch reactors. Eker’s research mainly focuses on use
of traditional SMC or second order SMC for the speed control application of electromechanical
system [16, 17, 26]. Recent contribution by Furat and Eker in development of second order
integral SMC for the speed control of electromechanical system through experimental application
[24] for the reduction of chattering including robustness to disturbances and uncertainties. In
this work, a simple SMC algorithm based on the PID with a first-order filter sliding surface
was developed. This developed algorithm is used to tune a general system with second order
behaviour. Considering the basic second order model (or an identified second order model), an
equivalent or continuous controller is designed with the help of sliding surface parameters and
model parameters. It is easy to synthesize and implement a new simple sliding-mode controller
with the help of filter parameter λ and PID parameters like Kp, Ki, Kd which can consider for
plant uncertainties. In meeting the sliding condition of controller of the closed loop system, the
system behaviour and the robust stability are investigated. The scheme presented in this paper
is further extended to systems capable of handling the inverse response process. The control
application for the FOPDT framework is additionally included as a unique case in a similar
manner. The usefulness and applicability of the method proposed is being carefully studied and
assessed through several general processes.It also includes performance comparison with few
current sliding mode control methods as reliable evaluation criteria.

In the real system instead, the controllers are used in a continuous time domain, as we use
microprocessors or computer systems in general. Recently, among the researchers involved in
introducing continuous SMC to a discrete time SMC. In the literature, it was discovered that
much of the work had been completed in a different way for the design of a continuous SMC.
The limitations of the Continuous SMC is some extent removed using the DTSMC approach[33]
The paper is organized as follows, the section II includes the description of electromechanical
system with mathematical model while section III focuses on the integral sliding surface. Further
part of the paper is organized in following manner. The nest section describes the system for
transformation of the system with lower order and higher order into the general second order
system models. section III introduces the design of sliding surface and derives overall control law,
whereas section IV provides a typical examples for continuous and discrete SMC. The typical
controllers are compared to the proposed controller to test its control capabilities and usefulness
in a closed loop. Section V presents conclusions and future directions for work.
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2. Description of Systems

In general case, second order system is represented as

Y(s)
U(s)

=
Kω2

n
s2 + 2ζωns + ω2

n
=

Cn

s2 + Ans + Bn
(1)

where, ζ is damping factor, ωn is natural frequency of oscillation of system, and K is gain of
system. Then the given system is required to translate in second order system given by the above
Eq. 1. Let us discuss the case of system with low order and in subsequent subsection the case of
higher order systems be also considered.

2.1. First order plus delay time systems

The first order plus delay time (FOPDT) model of a system is considered as

Y(s)
U(s)

=
ke−tds

τs + 1
(2)

where, the term τ represents time constant, td represents time delay, and k represents steady-state
gain. As the time delays become too small in comparison with time constant τ, then a system
model may become modified by approximation as [7]:

Y(s)
U(s)

=
k

(τs + 1)(tds + 1)
=

Cn

s2 + Ans + Bn
(3)

Here in above case, the Taylor series approximation in case of time delay e−tds = 1/(tds + 1) is
used. As this is common in the control theory to use Taylor series approximation for the delay
time during the design of control system [5].

2.2. Higher order plus delay time systems

Now transfer function model of higher order plus delay time system is considered as,

G1
P(s) =

b0

sq + a1
1sq−1 + a1

2sq−2 + ... + a1
q

e−tds, (4)

where, a1
j (j = 1, 2, · · · , q) are constant coefficients of the polynomial. The delay time term e−tds

is replaced by the first order Taylor approximation with 1/(1 + tds). After approximation, the
transfer function in equation (4) can be written as

Gp(s) =
b

sn + a1sn−1 + a2sn−2 + ... + an
, (5)

where aj (j = 0, 1, 2, · · · , n) represents the constant coefficients. The conversion of any high order
system model by first order plus dead time model by approximation is a regular practice. As
a matter of fact, all the qualities of higher order process are included in the FOPDT model, but
it is sufficient to provide an explanation to the effective dead time, overall time constant, and
process gain of system of this type [28]. There are three unknown parameters are needed to
create a reasonable FOPDT model to be approximate, namely τ, td and k should be determined
steady-state gain. Let the transfer function of lower model is denoted by

l(s) =
Y(s)
U(s)

=
ke−tds

τs + 1
, (6)
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and for higher order it is denoted by h(s) = Gp(s). In the literature, the higher order and lower
order models at certain places tried to fit the Nyquist plots, but it was unsuccessful [29].

l(0) = h(0) (7)

|l(jωc)| = |h(jωc)|
∠l(jωc) = ∠h(jωc)

where, ωc represents phase crossover frequency. As a result, the FOPDT model parameters may
be determined with the help of [28],

k = h(0) (8)

τ =

√
( h(0)
|h(jωc | )

2 − 1

ωc

td =
π − tan−1(τωc)

ωc

Now from Eq. 3 by getting the above three values of constant parameters, it is easy to obtain the
specified structure.

3. Sliding Mode Control Approaches

3.1. Continuous SMC

For continuous SMC, the sliding surface for PID controller with first order filter is defined by:

σ(t) =
[

Kp +
Ki
s
+ sKd

]n−1
Ψ(E(s)) (9)

where Ψ(E(s)) is the Laplace domain tracking error filter, Ψ(E(s)) = 1/(λs + 1)E(s) and ‘n′

is the order of system. In this, terms Kp, Ki Kd and λ are the parameters used for tuning the
controller, these supports in defining the sliding surface σ(t) and determined by designer. The
sliding surface can be used to determine the how well the system perform. Designing a control
law has the purpose of guaranteeing the output of plant response y(t) equal to the set value of
reference r(t) for the remaining time, which means the value of error and derivatives of all errors
must be equal to zero. In SMC law, the main purpose is to reduce the error signal e(t) to move
towards the defined sliding surface also it must stay along with it towards origin. By putting the
value of Ψ(E(s)) = 1/(λs + 1)E(s) in Eq. (9), results in

σ(t) =
1

λs + 1
KpE(s) +

Ki
s(λs + 1)

E(s) +
1

λs + 1
KdsE(s) (10)

. The transfer function of model is second order, means the term n = 2.
The tracking error, in mathematical way may be represented by the equation

e(t) = r(t)− y(t) (11)

. where, reference input is represented by r(t), e(t) represents error signal, and plant output is
represented by y(t). The Second Derivative of above Eq. 11 is

ë(t) = r̈(t)− ÿ(t) (12)

Generally, from Eq. 3, ÿ(t) = −Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t)).
Substituting value of ÿ(t) = −Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t)) into the Eq. 12, therefore

ë(t) = r̈(t)− [−Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t))] (13)
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ë(t) = r̈(t) + Anẏ(t) + Bny(t)− Cnu(t)− D(t, u(t)) (14)

The sliding surface second-order derivative which is taken from Eq. 10 is determined with
multiplication on both side of equation by ’s(λs + 1)’. Hence, Eq. 10 may get modified as

s(λs + 1)σ(t) = sKpE(s) + KiE(s) + s2KdE(s) (15)

. By modifying above Eq. 15 in the time domain and represented as

σ̈(t) =
Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ

ë(t)−
˙σ(t)
λ

(16)

. In view of the Eq. 13, we know that, ë(t) = r̈(t) + Anẏ(t) + Bny(t)− Cnu(t)− D(t, u(t)). Put
this in 16, now it is written as,

σ̈(t) =
Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (17)

−Cnu(t)− D(t, u(t))]−
˙σ(t)
λ

. When condition σ(t)=σ̇(t) and σ̈(t) = 0 with u(t) = ueq(t) is determined, then controller
algorithm designed in the form of second-order SMC is primarily established by the equivalent
control concept. The control of a system at its nominal parameters is achieved by equivalent
control, if D(t, u(t)) = 0, given by the steps :
Step 1
As σ̈(t) = 0, put in Eq. 17

Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (18)

−Cnu(t)]−
˙σ(t)
λ

= 0,

. Step 2
Replace u by ueq in Eq. 18

Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (19)

−Cnueq(t)]−
˙σ(t)
λ

= 0.

Step 3
Obtain ueq from above Eq. 19

ueq(t) =
1

KdCn
(Kp ė(t) + Kie(t) + Kd r̈(t) + Kd Anẏ(t) (20)

+KdBny(t)) +
1

KdCn
(−

Kp

λ
e−

t
λ e(t)− Kie(t) + Kie−

t
λ e(t)

−Kd
λ

e−
t
λ ė(t)).

The above value is named equivalent controller. The form of input control to the conventional
SMC is:

u(t) = ueq(t) + usw(t) (21)

Now we take the switching control, here three switching controls are taken as represented by

usw(t) = kswr2(t)ẽ(t)sgn
( ks f

ẽ(t)
σ̇(t)

)
+

1
KdCn

sgn(σ(t)) (22)
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where the term ksw is a positive gain employed for reduction of high frequency oscillations known
as chattering, by preserving the tracking efficiency, and considering that r(t) 6= 0 the setpoint and
ẽ(t) is the corrected error given by:

ẽ(t) = ε1sgn(e(t)) i f |e(t)| ≤ ε1 (23)

and
ẽ(t) = e(t)) i f |e(t)| ≥ ε1 (24)

where, ε1 is a number with small positive value used for avoiding the situation of zero division.
At the time os starting, when t = 0, the amount of error present in the switching control gain is
maximum, so the switching control law provides the maximum control signal. As time approaches
infinity, the error value tends to zero. This means that limt→∞usw(t) ∼= 0. Depending on the
uncertainty of a given time or the error due to external disturbance of the load, the amount of
switching control increases and converges to the setpoint more quickly. As the sliding surface
represents a functional variable of error signal, condition σ(t) = σ̇(t) = 0 is determined by slight
variations near zero, if the error value tends to zero.

3.2. Discrete SMC

The design of the DSMC required to satisfy the stability condition for the reaching phase and
sliding phase as same like the continuous SMC given in the section (III). The concept of the
reaching condition [25] ,

s(t) ˙s(t) ≤ 0, i.e. (25)

| s(k + 1) |<| s(k) |

apply the Lyapunov stability criteria for ideal condition of sliding mode [32]

˙ν(t) < 0, (26)

where

ν(t)(t) =
1
2

s2(t) (27)

which may be written in discrete time as

ν(t)(k + 1)− ν(t)(k) < 0, (28)

where

ν(t)(k) =
1
2

s2(k) (29)

Let us consider the continuous time model of the system represented in the discrete-time model
as represented by:

x(k + 1) = Ax(k) + Bu(k) + δ(k)

y(k) = Cx(k) (30)

By defining a state error vector with the equation

e(k) = x(k)− y(k) (31)

where e(k) is the error signal, and x (k) = <n is the vector of state variables, u (k) ∈ < is the
vector input control signal and y (k) ∈ < is the scalar output signal of the system. A, B and C are
representing constant value matrices with proper dimensions. The DSMC approach involved in
designing the controller have the following steps:
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• Determination of a switching function s(x) in such a way that the sliding mode on switching
surface s(x) = 0 becomes stable.

• Determination of a control law

u(k) =

{
1, when s(k) > 0
−1, when s(k) ≤ 0

(32)

4. Simulation Examples

Example 1: Simulation of sliding mode control is conducted for a brushless DC motor. Results
show the successfulness of the controller. The controller is differentiated with existing sliding
mode controllers present in literature. For simulation the MathworksTM MATLAB 2019a is used.
This paper uses a flat BLDC motor of Maxon’s EC 45 with diameter of Φ 45 mm, 30 Watt from
Maxon motors [30]. Mathematical models use the parameters that are obtained from the Motor’s
datasheet as well as othr relevant information. For LDC motors, the mathematical model uses the
parameters available in the datasheet [30].

G(s) =
1/Kg

τmτes2 + τms + 1

where Kg, τm and τe are the constants and required to be determined.
The term τe is determined using the relation

τe =
L

3R
=

0.560× 10−3

3× 1.10
.

Thus,

τe = 151.56× 10−6

The term τm is determined using the relation

τm =
3Rφ J
KgKt

= 0.0171

where Ke is

Ke =
3Rφ J
τmKt

= 0.0763

Hence, the DC motor model is represented by transfer function form is

G(s) =
13.11

155.56× 0.0171× 10−6s2 + 0.0171s + 1

or

G(s) =
82620

s2 + 269.7s + 6302
=

Cn

1 + An + Bn
.

The various parameters defined for the controller of proposed here and Furat & Eker [24] are
taken as: ksw=200; ksf=0.025; Kp=12; Ki=0.001; Kd=0.0024; with λ = 0.9; as filter parameter for
suggested method. Fig. 1,Fig. 2 and Fig. 3 respectively reveals the output, input and sliding
surface responses of the suggested SMC and other considered controllers. Looking at the output
response, Furat & Eker provided controller and the controllers implemented here showed speedy
and reasonably acceptable response, instead the slow response given by Camacho-2000 and
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Figure 1: Output Responses
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Figure 2: Input Responses
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Figure 3: Error Responses

Camacho-2007. The suggested response by Camacho-2000 shows high overshoot and unsuitable
for applications of electromechanical systems in speed control of the DC motor. The proposed
controller provides the smooth response and the stable sliding surface.

At the time t = 0.05s, to check the stability and behaviour of all controllers, the output
disturbance d = 0.2r is inserted in the system. The controller responses of the controllers are
shown in Fig. 4. From the Fig. 4 shows that, controllers provided by Camacho-2000 and Camacho-
2007 are not suitable due to poor performance. The controller proposed in this paper provides
comparable and preferable performance characteristics.

Example 2: The repeated pole systems are well studied in the literature and are used for
design of controller in higher order systems [29].

Gp(s) =
1

(s + 1)5

Using the technique given in section II, the FOPDT parameters of the system are k = 1, τ = 3.7540
and td = 2.6566. The second order model with Taylor approxiamtion for delay time is,

Y(s)
U(s)

=
0.1003

s2 + 0.6428s + 0.1003

4.1. Simulation example of DSMC

Consider the higher order transfer function given in Example 2 reduced in to the third order
approximation and represented in state space form [29]

Gp(s) =
1

(s + 1)5
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Figure 4: Output Responses under 20% external disturbance

An equation in state space can be derived by matched pole-zero method with selected sampling
interval of T[s] = 0.1s and may be given as

A =

 −1.5630 −1.0140 −0.2375
1.0000 0 0

0 1.0000 0

 , B =

 1
0
0

 ,

C =

 0.0896
−0.1608
0.2406


and D=[0].
The parameters used for the prevalent controller Khandekar et.al. , Weibing Gao et.al. & our
previous work [31, 32, 33] are: In simulation of [31] switching gain alpha = 0.4, Kt = 1 and
the controller gain matrix ct = [-5.3630 -1.1215 -0.3097]. In simulation of [32] switching gain
alpha = 0.8, Kt = 0.8 and the controller gain matrix ct = [-3.3630 -0.1215 -0.3097]. In simulation
of [33] switching gain alpha = 0.6, Kt = 0.8 and the controller gain matrix ct = [-1.3630 -0.1215
-0.3097]. The performances of DSMC [33] and other controllers are shown in Fig. 5 and Fig. 6
respectively in relation to the output responses and input responses. From these figures, it is
observed that the output responses of the controller given by DSMC in [33] controllers gives fast
and satisfactory response. It is also observed that the responses are more oscillatory for DSMC of
prevalent controllers.

5. Conclusion

According to the results, the integral SMC performs better than the conventional SMC and
PID controller in terms of output response. The output response of the integral SMC had no
overshoot,faster rise time, and a faster settling time in magnitude. Traditional SMC and PID
controllers are unable achieve needs of precise control requirements, resulting in large percentage
overshoots and settling times are required for system. The second order integral SMC gives
superior performance compared to the conventional SMC or traditional PID controller like
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reducing the overshoot exist in speed, also minimising the rise time and settling time of the
system response. Based on the results of simulation, second order integral SMC compared to both
conventional SMC techniques gives improved results under nominal parameter or system with
uncertainties in the parameters. However, the results obtained for the nominal parameters are
better than the results obtained for the system under parametric uncertainties. The conventional
SMC simulation results are preferable when the system is at its nominal parameters,but are not
acceptable for systems with parametric uncertainty. The second order integral SMC is suitable
for systems with uncertain parameters that cannot ne estimated or measured. In case of external
disturbance the proposed controller will be useful. Selecting the right sliding surface is critical in
the approach to SMC design, also selecting a sliding sirface can significantly reduce the chattering
phenomenon, but with an extra work it can be eliminated. The results can be compared to other
second order Integral sliding surfaces or by using different control laws. The control approach
used in this work is restricted to second order integral SMC, conventional SMC and PID controller,
but other control approaches such as higher order SMC, predictive SMC can also be implemented.
This work may be further moved forward for the systems with higher than 10% parametric
variation with uncertainty in the modification of the control law. This discussed study may be
further worked with the applications in real time by designing an experimental setup and DC
drive interfacing accessories.
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