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Abstract

With a Bayesian framework, the current study intends to fit the Type II generalized Topp–Leone-G
(TIIGTL-G) model as an accelerated failure time (AFT) model to censored survival data. In this paper, we
have obtained and analysed three AFT models using Type II Generalized Topp-Leone (TIIGTL) distribution
as generator and considering Weibull, Exponential, and Log-Logistic as a baseline distribution. The
fitting of these models to the censored survival data is done with the help of R and STAN. A comparison
of these two models is conducted, and the best model is chosen using the Bayesian model evaluation
criteria LOOIC and WAIC.

Keywords: Type II generalized Topp–Leone G Model, Bayesian Survival Modelling, Censored
data, Leave one out information criteria, STAN

1. Introduction

[1] proposed the Type II generalised Topp-Leone-G (TIIGTL-G) family of distributions, which
uses the Topp-Leone random variable as a generator, and investigated its mathematical properties
and how they were used to fit lifetime data. Research analysts are evaluating lifetime data and
issues with modelling the survival process using the extended form of the standard distribution
in the survival study. It has been shown that the Bayesian paradigm is instrumental in analyzing
survival models in many real-world contexts. [2] set up and analysed Topp-Leone exponential
distribution, Topp-Leone exponentiated exponential distribution and Topp-Leone exponentiated
extension distribution using Bayesian approach. Also, [3] fitted the Weibull, Topp-Leone-Weibull
(TL-W), and Generalized Topp-Leone-Weibull (GTL-W) survival models as accelerated failure
time models using Bayesian approach and have shown that TL-W AFT model is the most suitable
model for fitting a censored data (tumor data). Recently, [4] analysed and compared three
accelerated failure time models—Weibull, log-normal, and log-logistic under Bayesian framework.

In this article, We have fitted a censored survival data using TIIGTL-G model as an accelerated
failure time (AFT) model. The aforementioned models were fitted using the full Bayesian inference-
supporting probabilistic programming language STAN [5] in R. The programming language Stan
is used to define statistical models, and in Bayesian analysis, it is most frequently employed as an
Hamiltonian Monte Carlo (HMC) sampler [6, 7]. STAN primarily uses the No-U-Turn sampler
(NUTS) [8] to obtain posterior simulation for Bayesian analysis. Thus, we have also evaluated and
selected the best model using Leave-One-Out information criteria (LOOIC) and Watanabe-Akaike
information criteria or widely applicable information criteria (WAIC) for the diet data. Using a
fitted Bayesian model and the log-likelihood assessed at the posterior simulations of the parameter
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values, LOO and WAIC are two methods for evaluating the precision of pointwise out-of-sample
predictions [9]. Thus, in this article, we have conducted a Bayesian analysis of TIIGTL-Weibull
AFT, TIIGTL-Exponential AFT, and TIIGTL-Log-logistic AFT models by presenting summaries of
the posterior densities in both numerical and graphical form by using R and Stan.

2. Type II Generalized Topp–Leone–G (TIIGTL-G) family

Let a continuous random variable T with baseline cdf and pdf G(t, φ) and g(t, φ) respectively
with parameter vector φ. The cumulative distribution function (cdf), probability density function
(pdf), survival function, and hazard function of the TIIGTL-G family are respectively given by

FT(t, c, d, φ) = 1− (1− G(t, φ)2d)c (1)

fT(t, c, d, φ) = 2cdg(t, φ)[G(t, φ)]2d−1(1− G(t, φ)2d)c (2)

ST(t, c, d, φ) = 1− FT(t, c, d, φ) = (1− G(t, φ)2d)c (3)

hT(t, c, d, φ) = fT(t, c, d, φ)/ST(t, c, d, φ) (4)

Thus, the random variable T with the pdf given in Equation 2 will be denoted as T ∼ TIIGTL−
G(c, d, φ) where c,d are two shape parameters and φ is parameter vector of baseline distribution.
Also, random number generation from the survival model is accomplished by equating F(t) and
v, where V has Uni f orm(0, 1) distribution. Thus,

F(t) = v (5)

1− (1− G(t)2d)c = v (6)

then we have,
G(t) = [1− (1− v)1/c]1/2d (7)

For any baseline cdf G(t), this is the TIIGTL-G model’s general expression for producing random
numbers.

3. Accelerated Failure Time (AFT) models

It has been noted in statistical literature that many models have been created for assessing survival
data or life time data. The Cox Proportional Hazard (PH) model is the most well-liked of them
all. When examining survival data, the Accelerated Failure Time (AFT) model can be thought of
as a good substitute for the Cox PH model [10]. AFT models are parametric models that take into
account the linear regression of the logarithm of the survival time T on a variety of covariates.
They are used to investigate the impact of a covariate on how quickly or slowly the survival
process advances [3]. According to the AFT model, covariates and failure time have a direct
relationship [11]. If number of covariates x1, x2, ..., xp have an impact on survival time T then we
can write the AFT model as:

log(T) = β0 +
L

∑
k=1

βkxk + σe = x′β + σε (8)

where βk, k = 1, 2, ..., L are the coefficients of regression, σ is a scale parameter such that σ > 0
and ε is the random error with a specified probability distribution.
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3.1. Weibull AFT model

Let survival time T follows Weibull distribution with scale and shape parameter λ and α re-
spectively. Then the probability density function, cumulative distribution function, and survival
function of Weibull distribution are provided as follows [12]:

g(t|α, λ) = (α/λ)(t/λ)α−1exp(−(t/λ)α) (9)

G(t|α, λ) = 1− exp(−(t/λ)α) (10)

S(t|α, λ) = exp(−(t/λ)α) (11)

hence, we can write T ∼ Weibull(α, λ). Now, Let a random variable ε has a standard ex-
treme value distribution with density function g(e) = exp(e − exp(e)) and survival func-
tion S(e) = exp(−exp(e)) substituting e = (logt − x′β)/σ from the Equation 8 in the ex-
treme value distribution and then the Weibull AFT model is obtained and we can write it
as T ∼Weibull(1/σ, exp(x′β)).

3.1.1 TIIGTL-W AFT model

The Type two generalized Topp-Leone-Weibull (TIIGTL-W) AFT model is obtained by considering
weibull AFT model as the baseline model G and substituting it in the TIIGTL-G model. Thus,
the cdf, pdf, survival function, and hazard function of the TIIGTL-W AFT model are respectively
given by

F(t|Ω, x) = 1− (1− G(t)2d)c (12)

f (t|Ω, x) = 2abg(t)[G(t)]2d−1(1− G(t)2d)c (13)

S(t|Ω, x) = (1− G(t)2d)c (14)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (15)

Where t > 0, g(t) and G(t) are the pdf and cdf of Weibull AFT model. Ω = (c, d, σ, β),c,d and α
are shape parameters and λ is scale parameter. Also σ = 1/α, λ = exp(x′β) from the AFT model
and we have T ∼ TIIGTL−W(c, d, 1/σ, exp(x′β)). Now, for random number generation from
TIIGTL-W we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (16)

1− exp(−(t/λ)α) = [1− (1− v)1/c]1/2d (17)

then we get,
t = exp(x′β)[−log(1− (1− (1− v)1/c)1/2d)]σ (18)

This is the TIIGTL-W AFT model’s general expression for producing random numbers, where
λ = exp(x′β) and σ = 1/α.

3.2. Exponential AFT model

Let survival time T follows Exponential distribution with inversescale or rate parameter λ > 0
Then the probability density function, cumulative distribution function, and survival function of
Exponential distribution are provided as follows [12]:

g(t|α, λ) = 1− exp(−λt) (19)

G(t|α, λ) = λexp(−λt) (20)

S(t|α, λ) = exp(−λt) (21)

hence, we can write T ∼ Exp(λ). Now, Let a random variable ε has a standard extreme
value distribution with density function g(e) = exp(e− exp(e)) and survival function S(e) =
exp(−exp(e)). Considering σ = 1 substituting e = (logt − x′β) from the Equation 8 in the
extreme value distribution and then the Exponential AFT model is obtained and we can write it
as T ∼ Exp(exp(−x′β)).
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3.2.1 TIIGTL-E AFT model

The Type two generalized Topp-Leone-Exponential (TIIGTL-E) AFT model is obtained by con-
sidering exponential AFT model as the baseline model G and substituting it in the TIIGTL-G
model. Thus, the cdf, pdf, survival function, and hazard function of the TIIGTL-E AFT model are
respectively given by

F(t|Ω, x) = 1− (1− G(t)2d)c (22)

f (t|Ω, x) = 2cdg(t)[G(t)]2d−1(1− G(t)2d)c (23)

S(t|Ω, x) = (1− G(t)2d)c (24)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (25)

Where t > 0, g(t) and G(t) are the pdf and cdf of Exponential AFT model. Ω = (c, d, β) ,c,d are
shape parameters and λ is inversescale parameter. Also λ = exp(−x′β) from the AFT model and
we have T ∼ TIIGTL− E(c, d, exp(−x′β)) . Now, for random number generation from TIIGTL-E
we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (26)

1− exp(−λt) = [1− (1− v)1/c]1/2d (27)

then we get,
t = (−exp(x′β))log[1− (1− (1− v)1/c)1/2d] (28)

This is the TIIGTL-E AFT model’s general expression for producing random numbers, where
λ = exp(x′β).

3.3. Log Logistic AFT model

Let survival time T follows Log Logistic distribution with scale and shape parameter λ and α
respectively. Then the probability density function, cumulative distribution function, and survival
function of Log Logistic distribution are provided as follows [12]:

g(t|α, λ) = (α/λ)(t/λ)α−1(1 + (t/λ)α)−2 (29)

G(t|α, λ) = 1− (1 + (t/λ)α)−1 (30)

S(t|α, λ) = (1 + (t/λ)α)−1 (31)

hence, we can write T ∼ LL(α, λ). Now, Let a random variable ε has a standard logistic
value distribution with density function g(e) = exp(e)(1 − exp(e))−2 and survival function
S(e) = (1 − exp(e))−1 substituting e = (logt − x′β)/σ from the Equation 8 in the extreme
value distribution and then the Log Logistic AFT model is obtained and we can write it as
T ∼ LL(1/σ, exp(x′β)).

3.3.1 TIIGTL-LL AFT model

The Type two generalized Topp-Leone-log-logistic (TIIGTL-LL) AFT model is obtained by con-
sidering log-logistic AFT model as the baseline model G and substituting it in the TIIGTL-G
model. Thus, the cdf, pdf, survival function, and hazard function of the TIIGTL-W AFT model
are respectively given by

F(t|Ω, x) = 1− (1− G(t)2d)c (32)

f (t|Ω, x) = 2cdg(t)[G(t)]2d−1(1− G(t)2d)c (33)

S(t|Ω, x) = (1− G(t)2d)c (34)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (35)

Where t > 0, g(t) and G(t) are the pdf and cdf of Log-logistic AFT model. Ω = (c, d, σ, β),c,d
and α are shape parameters and λ is scale parameter. Also σ = 1/α, λ = exp(x′β) from the AFT
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model and we have T ∼ TIIGTL− LL(c, d, 1/σ, exp(x′β)). Now, for random number generation
from TIIGTL-LL we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (36)

1− (1 + (t/λ)α)−1 = [1− (1− v)1/c]1/2d (37)

then we get,
t = exp(x′β)[(1− (1− (1− v)1/c)1/2d)−1 − 1]σ (38)

This is the TIIGTL-LL AFT model’s general expression for producing random numbers, where
λ = exp(x′β) and σ = 1/α.

4. Diet Data

90 homogenous rats of the same species, age, and environmental conditions were separated into
three groups and fed with low, saturated, and unsaturated fat diets, respectively, as reported by
[13]. Each rat’s foot pad received an identical dosage of tumour cells. 200 days of observation of
the rats revealed the growth of a tumour as the event. Several of the rats got tumours, but several
did not. Survival time is defined as the amount of time without a tumour or the amount of time
before one develops one. The survival times of the tumor-free animals are marked with stars and
treated as censored. As a result, the data is correctly suppressed, as shown in the Table 1. The
primary objective of this study is to compare the three diets’ tumor-preventing capacities in rats.

Table 1: Tumor-free duration (days) of 90 rats on three different diets (∗ indicates censored)

Low Fat Saturated Fat Unsaturated Fat
(30 rats) (30 rats) (30 rats)
140 87 200∗ 124 96 81 112 63 66
177 56 200∗ 58 142 133 68 63 94
50 66 200∗ 56 86 165 84 77 101
65 73 200∗ 68 75 170∗ 109 91 105
86 119 200∗ 79 117 200∗ 153 91 108
153 140∗ 200∗ 89 98 200∗ 143 66 112
181 200∗ 200∗ 107 105 200∗ 60 70 115
191 200∗ 200∗ 86 126 200∗ 70 77 126
77 200∗ 200∗ 142 43 200∗ 98 63 161
84 200∗ 200∗ 110 46 200∗ 164 66 178

4.1. Data Structure for computation in R

We have produced the data in a listed form necessary for fitting Bayesian models to the data
using stan function.

y = survival times (Tumor-free time in days)

y <- c(140,177,50,65,86,153,181,191,77,84,87,56,66,73,119,140,200,200,

200,200,200,200,200,200,200,200,200,200,200,200,124,58,56,68,79,89,107,

86,142,110,96,142,86,75,117,98,105,126,43,46,81,133,165,170,200,200,200,

200,200,200,112,68,84,109,153,143,60,70,98,164,63,63,77,91,91,66,70,77,

63,66,66,94,101,105,108, 112,115,126,161,178 )

event=1 if tumor is developed or zero if it is censored

event <- c(rep(1,15),rep(0,15),rep(1,23),rep(0,7),rep(1,30))

Low-Fat is considered as reference category

x1 = 1 if saturated fat is applied and 0 otherwise

x1 <- c(rep(0,30),rep(1,30),rep(0,30))
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x2 = 1 if unsaturated fat is applied and 0 otherwise

x2 <- c(rep(0,30),rep(0,30),rep(1,30))

x = cbind(1,x1,x2)

N = nrow(x)

M = ncol(x)

datt = list(y=y, event=event,x=x,N=N,M=M)

5. Bayesian Analysis

In Bayesian analysis, following Bayes Theorem, we look for the exact parameter distributions
known as the posterior distribution by fusing the prior distribution of parameter with the data or
likelihood. We must define a prior distribution for the model’s parameters and likelihood of the
data before building the Bayesian regression model.

5.1. Likelihood

Following the [14] , the joint likelihood function for right censored data is given as

L =
n

∏
i=1

h(ti)
γi S(ti) (39)

Also as an alternative to the likelihood, the log-likelihood can be written as

logL =
n

∑
i=1

(γi(logh(ti) + logS(ti))) (40)

here γi is an indicator variable such that γ = 0 if the observed value is censored and γ = 1 if the
observed value is failed (recorded). In equation 39 we can sustitute the hazard function h(ti) and
survival function S(ti) of TIIGTL-W AFT , TIIGTL-E AFT and TIIGTL-LL AFT models in order
to get the likelihood of TIIGTL-W AFT , TIIGTL-E AFT and TIIGTL-LL AFT survival models
respectively.

5.2. Prior

A prior distribution must be specified for the model’s parameters in order to build a Bayesian
regression model. Two prior types—the student t prior and the normal prior, are used by the
researchers in the remaining sections of this work. Student t distribution is used for the priors
of shape and scale parameters and Normal distribution is used as a prior for the regression
coefficients. These priors are weekly informative priors and are discussed briefly by [3].

5.3. Posterior

The Bayes Theorem can be used to determine the joint posterior distribution of parameter
Ω = (c, d, σ, β) = (c, d, σ, β0, β1, ..., βp) given data as

P(Ω|t, X) ∝ L(Ω|t, X)P(Ω) (41)

P(Ω|t, X) ∝ L(Ω|t, X)P(c)P(d)P(σ)P(β) (42)

Here parameters are assumed to be independent and X is the matrix of covariates. Hence we
can obtain the joint posterior distribution of TIIGTL-W AFT Model, TIIGTL-W AFT Model and
TIIGTL-LL AFT Model by sustituting the likelihood and priors of corresponding models in
equation 42. Because it is challenging to determine the marginal distributions of the parameters
and the normalised joint posterior distribution analytically, the estimates and other relevant
results are obtained using the Markov chain Monte Carlo (MCMC) simulation technique.
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5.4. Implementation using Stan

The package rstan is necessary to run STAN code in R. For the Bayesian modeling, there are
several blocks in Stan such as Data and Transformed data block, Parameter, and Transformed
parameter block, Generated quantities block, etc. Following are the stan codes containing all
these blocks for all three models discussed in this article.

5.4.1 Stan code for TIIGTL-W AFT model

stancode_ttgtlw = "

functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(((1-((weibull_cdf(t[i],shape3,

scale[i]))^(2*shape2)))^(shape1)));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,shape3,scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

weibull_lpdf(t[i]|shape3,scale[i])+

(((2*shape2)-1)*weibull_lcdf(t[i]|shape3,scale[i]))+

((shape1-1)*(log(1-(weibull_cdf(t[i],shape3,

scale[i]))^(2*shape2))))) - ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtlw_lpdf(vector t,vector d,real shape1,

real shape2,real shape3,vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,shape3,scale)+

log_S(t,shape1,shape2,shape3,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates
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matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape3

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

shape2 ~ student_t(5,0,10) T[0, ];//prior for shape2

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtlw(event,shape1,shape2,1/sigma,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+

weibull_lpdf(y[n]|1/sigma,exp(x[n,]*beta))+

(((2*shape2)-1)*weibull_lcdf(y[n]|1/sigma,

exp(x[n,]*beta))))+((shape1-1)*

(log(1-(weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^

(2*shape2))))-(log(((1-((weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta)))^(2*shape2)))^(shape1))))*event[n])+

(log(((1-((weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^(2*shape2)))

^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*(-log((1-(1-((1-u)^(1/shape1)))

^(1/(2*shape2)))^(sigma)));}

}

}

"

5.4.2 Stan code for TIIGTL-E AFT model

stancode_ttgtle = "
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functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,vector inversescale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(((1-((exponential_cdf(t[i],

inversescale[i]))^(2*shape2)))^(shape1)));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,vector inversescale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,inversescale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

exponential_lpdf(t[i]|inversescale[i])+

(((2*shape2)-1)*exponential_lcdf

(t[i]|inversescale[i]))+

((shape1-1)*(log(1-(exponential_cdf

(t[i],inversescale[i]))^(2*shape2))))) - ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtle_lpdf(vector t,vector d,real shape1,

real shape2,vector inversescale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,inversescale)+

log_S(t,shape1,shape2,inversescale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

}

// transformed parameters block

transformed parameters{
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vector[N] linpred;

vector[N] mu;

linpred = -x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0,];//prior for shape1

shape2 ~ student_t(5,0,10) T[0,];//prior for shape2

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtle(event,shape1,shape2,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+

exponential_lpdf(y[n]|exp(-(x[n,]*beta)))+

(((2*shape2)-1)*exponential_lcdf(y[n]|exp(-(x[n,]*

beta)))))+((shape1-1)*

(log(1-(exponential_cdf(y[n],exp(-(x[n,]*

beta))))^

(2*shape2))))-(log(((1-((exponential_cdf(y[n],

exp(-(x[n,]*beta))))^(2*shape2)))^(shape1))))*event[n])+

(log(((1-((exponential_cdf(y[n],

exp(-(x[n,]*beta))))^(2*shape2)))^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*(-log(1-(1-((1-u)^(1/shape1)))

^(1/(2*shape2))));}

}

}

"

5.4.3 Stan code for TIIGTL-LL AFT model

stancode_ttgtlll = "

functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log((1-(((1+(t[i]/scale[i])^(-shape3))^(-1))^(2*shape2)))

^(shape1));

}

return log_S;

}
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//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,shape3,scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

(log(shape3)-(shape3)*log(scale[i])+(shape3-1)*

log(t[i])-2*log(1+(t[i]/scale[i])^(shape3)))+

(((2*shape2)-1)*log(((1+(t[i]/scale[i])^(-shape3))^(-1)))+

((shape1-1)*(log(1-((1+(t[i]/scale[i])^(-shape3))^(-1))^(2*shape2))))))

-ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtlll_lpdf(vector t,vector d,real shape1,

real shape2,real shape3,vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,shape3,scale)+

log_S(t,shape1,shape2,shape3,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape3

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block
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model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

shape2 ~ student_t(5,0,10) T[0, ];//prior for shape2

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtlll(event,shape1,shape2,1/sigma,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+(log(1/sigma)-

(1/sigma)*(x[n,]*beta)+((1/sigma)-1)*log(y[n])-

2*log(1+(y[n]/exp(x[n,]*beta))^(1/sigma)))+

(((2*shape2)-1)*log(((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1))))+

((shape1-1)*(log(1-(((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1))^

(2*shape2))))))-(log(((1-((((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))

^(-1))^(2*shape2)))^(shape1))))*event[n]))+

(log((1-(((((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1)))^(2*shape2)))

^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*((((1-(1-((1-u)^(1/shape1)))^(1/(2*shape2)))

^(-1))-1)^(sigma));}

}

}

"

5.5. Model fitting with Stan

The function stan from the package rstan is used for the fitting of all three models based on
TIIGTL-G family. All relevant codes for the numeric as well as graphical summary are attached
in upcoming sub sections.

5.5.1 Fitting of TIIGTL-W AFT model

require(survival)

betaw = solve(crossprod(x),crossprod(x,log(y)))

betaw = c(betaw)

TTGTLWAFT <- stan(model_code = stancode_ttgtlw,data=datt,

init=list(list(beta=betaw),list(beta=betaw)),iter=5000,chains=2)

Output and graphics Summarization: Table 2 contains the results obtained after fitting the
TIIGTL-W AFT model to the diet data set. The coeffcients beta[2] of saturated fat (x1) and
beta[3] of unsaturated fat (x2) are negative which indicate that both x1 and x2 expedite the tumor
development process, consequently, survival time (time to develop a tumor) will be shorter. From
the summary results and from the caterpillar plot (Figure 1b), it is seen that the 95% credible
intervals do not contain a value of zero for the coefficients of the diets, so the coefficients are
statistically significant. Additionally, we can see the posterior estimates (mean and se_mean), the
standard deviation (sd), and the credible interval. Also we can observe the n_eff (rough estimate
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of the effective sample size), and the Rhat, also known as the potential scale reduction factor [15],
which calculates the Markov chain’s convergence to the target distribution. According to [15]
the allowable range of n_eff is greater than 100 and Rhat values less than 1.1. We can observe
Rhat values for all parameters of the TIIGTL-W AFT model is less than 1.1, this indicates that the
Monte Carlo error is tolerable, the Markov chains reach to the target distribution, and the effective
sample size is appropriate.. Trace plots are also attached (Figure 1a) as indicator of convergence
of MCMC algorithm. Using the Bayesplot package, posterior predictive density (PPD) charts are
used to visually evaluate the model. Posterior predictive density (Figure 2a) graphs shows that
the TIIGTL-W AFT model is consistent with the current data.

Table 2: Summary of Posterior estimates of TIIGTL-W AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 2.825 0.037 1.416 -0.168 0.398 5.402 1440 1.002
beta[2] -0.390 0.003 0.157 -0.695 -0.648 -0.086 2353 1.000
beta[3] -0.658 0.004 0.161 -0.980 -0.930 -0.345 2049 1.000
shape1 9.569 0.154 8.365 0.524 0.936 31.259 2953 1.001
shape2 13.829 0.253 10.081 2.275 2.945 40.073 1586 1.001
sigma 2.726 0.025 0.956 1.044 1.241 4.739 1494 1.002

(a) (b)

Figure 1: (a) Traceplot for TIIGTL-W AFT model, In two separate runs, two chains were displayed; combining the two
chains successfully indicates that MCMC algorithm has converged to the target joint posterior distribution.
(b) Caterpillar plot for TIIGTL-W AFT model

(a) (b)

Figure 2: (a) Posterior predictive density (PPD) plot of the TIIGTL-W AFT model to check model convergence. The
TIIGTL-W AFT model’s posterior predictive density adequately fits the data, according to the PPD plot (b)
Posterior density plot for TIIGTL-W AFT model
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5.5.2 Fitting of TIIGTL-E AFT model

TTGTLEAFT <- stan(model_code = stancode_ttgtle,data=datt,

init=list(list(beta=betae),list(beta=betae)),iter=5000,chains=2)

Output and graphics Summarization: From Table 3 we can observe that the coeffcients beta[2]
of saturated fat (x1) and beta[3] of unsaturated fat (x2) are negative and the Rhat of the TIIGTL-E
AFT model parameters are less than 1.1, which shows Markov chain converges to the target
distribution. Also, n_eff is greater than 100. From the caterpillar plot (Figure 3b), it is seen that
the 95% credible intervals do not contain a value of zero for the coefficients of the diets, so the
coefficients are statistically significant. The PPD plot (Figure 4a) of the TIIGTL-E AFT model
indicates that the posterior predictive density matched the data well.

Table 3: Summary of Posterior estimates of TIIGTL-E AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.507 0.034 1.000 2.950 3.063 6.360 889 1.001
beta[2] -0.362 0.004 0.158 -0.671 -0.619 -0.059 1672 1.001
beta[3] -0.615 0.005 0.185 -0.968 -0.914 -0.245 1231 1.001
shape1 3.206 0.131 5.022 0.168 0.192 18.503 1473 1.000
shape2 4.755 0.163 5.236 1.211 1.296 19.390 1036 1.002

(a) (b)

Figure 3: (a) Traceplot for TIIGTL-E AFT model parameters (b) Caterpillar plot for the TIIGTL-E AFT model

(a) (b)

Figure 4: (a) The posterior predictive density (PPD) plot of the TIIGTL-E AFT model (b) Posterior density plot
TIIGTL-E AFT model parameters
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5.5.3 Fitting of TIIGTL-LL AFT model

TTGTLLLAFT <- stan(model_code = stancode_ttgtlll,,data=datt,

init=list(list(beta=betall),list(beta=betall)),iter=5000,chains=2)

Output and Graphics Summarization: From Table 4 we can observe that the coeffcients
beta[2] of saturated fat (x1) and beta[3] of unsaturated fat (x2) are negative and the Rhat of the
TIIGTL-LL AFT model parameters are less than 1.1, which shows Markov chain converges to
the target distribution. Also, n_eff is greater than 100. From the caterpillar plot (Figure 5b), it is
seen that the 95% credible intervals do not contain a value of zero for the coefficients of the diets,
so the coefficients are statistically significant. The PPD plot (Figure 6a ) of the TIIGTL-LL AFT
model indicates that the posterior predictive density matched the data well.

Table 4: Summary of Posterior estimates of TIIGTL-LL AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 2.951 0.025 1.141 0.713 1.108 5.304 2017 1.000
beta[2] -0.354 0.004 0.157 -0.674 -0.618 -0.039 1987 1.000
beta[3] -0.575 0.004 0.172 -0.913 -0.850 -0.234 1651 1.001
shape1 11.323 0.176 8.929 1.188 1.829 34.794 2566 1.000
shape2 11.555 0.167 8.733 1.568 2.175 33.203 2738 1.000
sigma 1.145 0.007 0.309 0.514 0.616 1.758 1713 1.000

(a) (b)

Figure 5: (a) Traceplot of TIIGTL-LL AFT model parameters (b) Caterpillar plot for TIIGTL-LL AFT model

(a) (b)

Figure 6: (a) The posterior predictive density (PPD) plot of the TIIGTL-LL AFT model (b) Posterior density plot for
TIIGTL-LL AFT model
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5.6. Bayesian model Comparison

We take into account model evaluation and selection standards such as Watanabe Akaike Infor-
mation Criteria (WAIC) and Leave One Out cross-validation Information Criteria (LOOIC) ([16]
,[17]) in order to compare the fitted models. In R, loo package [17] is used to obtain LOOIC and
WAIC by using the log-likelihood evaluated at the posterior simulations of the parameters after
fitting the model through STAN. The lower value of these selection strategies, however, denotes a
better model fit.

Table 5: LOOIC and WAIC values for all models.

Model LOOIC WAIC

TIIGTL-E AFT 1026.4 1026.3
TIIGTL-W AFT 1024.5 1024.5
TIIGTL-LL AFT 1015.0 982.8

From Table 5, we can see that the LOOIC and WAIC value of the TIIGTL-LL AFT model is
lowest among the three, which shows in comparison to other models for diet data, the TIIGTL-LL
AFT model is a superior survival model.

5.7. Conclusion

In a Bayesian framework, the Weibull, Exponential, and Log-Logistic Accelerated Failure Time
models for the diet data are fitted using the Type II Generalized Topp–Leone distribution. Diet
coefficients for each model have statistical significance. The posterior predictive density (PPD)
plots for the TIIGTL-W AFT, TIIGTL-E AFT, and TIIGTL-LL AFT models were used to calculate
the posterior predictive check. The replicated data sets are derived from the same model as the
original data set, and all are sufficient models for projecting the future value, as seen in the PPD
plot where the data y and replicated data set yrep exhibit the same behaviour and share a similar
appearance. TIIGTL-LL AFT model fits the censored diet data better than the other models,
according to comparisons of posterior predictive density plots, LOOIC and WAIC.
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