
Valentin Vankov Iliev
ENTROPY AND MUTUAL DEPENDENCE OF THREE EVENTS

On the Degree of Mutual Dependence of Three Events

Valentin Vankov Iliev

•
Institute of Mathematics and Informatics

Bulgarian Academy of Sciences
Sofia, Bulgaria

viliev@math.bas.bg

"...one of the most important problems
in the philosophy of natural sciences is
... to make precise premises which would
make it possible to regard any given
real events as independent."

A. N. Kolmogorov,
Foundations of the Theory of Probability

Abstract

We define degree of mutual dependence of three events in a probability space by using Boltzmann-Shannon
entropy function of an appropriate variable distribution produced by these events and depending on four
parameters varying, in general, within of a polytope. It turns out that the entropy function attains its
absolute maximum exactly when the three events are mutually independent and its absolute minimum at
some vertices of the polytope where the events are "maximally" dependent. By composing the entropy
function with an appropriate linear function we obtain a continuous "degree of mutual dependence"
function with the same domain and the interval [0, 1] as a target. It attains value 0 when the events are
mutually independent (the entropy is maximal) and value 1 when they are "maximally" dependent (the
entropy is minimal). A link is available for downloading a Java code which evaluates the degree of mutual
dependence of three events in the classical case of a sample space with equally likely outcomes.

Keywords: entropy; average information; degree of dependence; probability space; probability
distribution; experiment in a sample space; linear system; affine isomorphism; classification space.

1. Introduction

In our papers [6] and [7]) we introduce and study a measure of dependence of two events
in a probability space, based on the fundamental notion of Boltzmann-Shannon entropy. The
present work is written as a natural conceptual continuation of the above papers for the case of
three events A1, A2, A3. By analogy, we consider the joint experiment J3 of the corresponding
three binary trials, whose probability distribution gives rise to the entropy function that, in turn,
measures the mutual dependence of these events.

In accord with [6, 4.1], any one of the three pairs of events Ai, Aj, 1 ≤ i < j ≤ 3, produces a joint
experiment Jij whose probability distribution satisfies the linear system (3). Since the partition
J3 of the sample space is finer than each partition Jij, its probability distribution (ξ1, . . . , ξ8)
satisfies the linear system (5). After fixing the probabilities α = (α1, α2, α3) of the components of
Yule’s triple A = (A1, A2, A3), the general solution of the last system depends on four parameters
θ = (θ0, . . . , θ3) chosen among ξk’s. Taking into account that ξk(θ)’s are probabilities, we obtain
that θ varies within a subset I7(α) of R4, which is described in Theorem 1. In case α ∈ (0, 1)3 the
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set I7(α) is a polytope, see [2, Ch. 12]. Since the system of linear inequalities (9) which define the
polytope I7(α) is minimal (Lemma 2), we can apply the machinery from the previous citation in
order to use the corresponding properties of this polytope.

The 7-tuples (α, θ) vary within a polytope I7 ⊂ R7 which is the inverse image of the 7-
dimensional simplex ∆7 via the affine isomorphism (7). The projection p(α, θ) = α produces
the fibre bundle (I7, p, [0, 1]3) with fibre p−1(α) = C7(α) where C7(α) = {α} × I7(α), for the
definition see [5, Part I, 2, 1.1]. This fibre bundle is used for classification of all equivalence classes
of Yule’s triples with given α and θ, cf. [6, Theorem 1]. An isomorphic fibre bundle can be used
for classification of all probability distributions produced by the above equivalence classes of
Yule’s triples. The general patterns of these two fibre bundles are described in terms of very
elementary algebraic geometry at the end of Subsection 4.2 where also classification Theorem 2 is
formulated.

Corollary 1, (ii), yields that 0 < ξk(θ) < 1, k = 1, . . . , 8, if and only if θ ∈ I̊7(α). In particular,
I̊7(α) is the natural domain of the entropy function Eα(θ) of the probability distribution (ξk(θ))

8
k=1,

defined in (11).
In Lemma 4 we prove that Eα(θ) is a strictly concave function that can be extended in a unique

way as continuous at the polytope I7(α). Moreover, its continuous extension Êα is also a strictly
concave function. In Corollary 2 we show that all permutations of the members of Yule’s triple
A = (A1, A2, A3) have the same entropy.

Subsection 5.2 is devoted to finding the set of critical points of the entropy function Eα(θ). It
turns out that this set is not empty: The special point θ(α) ∈ I̊7(α) defined by the formulae (10) is
critical, see Lemma 6.

Since the Hessian of Eα(θ) is a negative definite quadratic form everywhere in its domain
I̊7(α), we obtain that the set of local maximums of the entropy function Eα(θ) coincides with the
set of its critical points, see Lemma 7.

In accord with Weierstrass theorem, the extended entropy function Êα(θ) attains an absolute
maximum and an absolute minimum in its compact domain I7(α). Theorems 3 and 4 make
this statement more precise. The former asserts that Êα(θ) has a unique absolute maximum at
the point θ(α). The latter uses the structure of the frontier of the polytope I7(α), described, for
example, in [2, Chapter 12, 12.1], and shows that Êα(θ) attains its absolute minimum only at some
of its vertices. We note here an analogy with the simplex method.

Subsection 6.1 contains two statements that motivate the use the extended entropy function
Êα(θ) for measuring the power of mutual relations among three events. In Lemma 8 we show that
the components of a Yule’s triple are mutually independent if and only if the corresponding θ
coincides with θ(α). In other words, we observe mutual independence exactly when Êα(θ) attains
its absolute maximum, which is in keeping conformity with our intuition. In the case of sample
space with equally likely outcomes, Lemma 9 establishes the set-theoretic relations among the
components of a Yule’s triple when the corresponding θ lies on any one of the 3-faces of the
polytope I7(α). Intuitively, the "maximally" tight-fitting is observed at the vertices some of which
are points of absolute minimum of Êα(θ).

Let A = (A1, A2, A3) be a Yule’s triple with α = (α1, α2, α3), α1 = Pr(A1), α2 = Pr(A2),
α3 = Pr(A3). In the final Subsection 6.2 we compose the extended entropy function Êα(θ)
with a linear function and define a function eα : I7(α) → [0, 1], whose value at any θ ∈ I7(α)
corresponding to A is said to be degree of dependence of the events A1, A2, A3. Note that
eα(θ(α)) = 0 (the events A1, A2, A3 are mutually independent) and eα(θ1) = 1 for any vertex θ1
where Êα(θ) attains its absolute minimum (the events A1, A2, A3 are maximally dependent).

2. Definitions and Notation

Let (Ω,A, Pr) be a probability space with set of outcomes Ω, σ-algebra A, and probability
function Pr. In this paper we are using only the structure of Boolean algebra on A.

We introduce the following notation:
Given events A1, A2, A3 from A, we set A = (A1, A2, A3) ∈ A3;
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R is the range of the probability function Pr : A → R;
Given α1, α2, α3 ∈ R, we set α = (α1, α2, α3);
Given θ0, θ1, θ2, θ3 ∈ R, we set θ = (θ0, θ1, θ2, θ3);
I(αi, αj) = [max(0, αi + αj − 1), min(αi, αj)], 1 ≤ i < j ≤ 3, see [6, 4.1];

I(αi ,αj) = [max(0, αi − αj), min(αi, 1− αj)], 1 ≤ i < j ≤ 3;
[(α)] is the fiber of the surjective map

A3 → R3, (A1, A2, A3) 7→ (Pr(A1), Pr(A2), Pr(A3)),

over α ∈ R3;
[
(
αi, αj

)
] is the fiber of the surjective map

A2 → R2, (Ai, Aj) 7→ (Pr(Ai), Pr(Aj)),

over (αi, αj) ∈ R2, 1 ≤ i < j ≤ 3;

θ
(A)
0 = Pr(A1 ∩ A2 ∩ A3), θ

(A)
1 = Pr(Ac

1 ∩ A2 ∩ A3),

θ
(A)
2 = Pr(A1 ∩ Ac

2 ∩ A3), θ
(A)
3 = Pr(A1 ∩ A2 ∩ Ac

3), A ∈ A3;

θ(A) = (θ
(A)
0 , θ

(A)
1 , θ

(A)
2 , θ

(A)
3 );

[(α, θ)] is the fiber of the map [(α)]→ R4, A 7→ θ(A), over any θ ∈ R4, and R(α) is its range.
We note that the fibers [(α)] for (α) ∈ R3 form a partition of A3 and the fibers [(α, θ)] for

θ ∈ R(α) form a partition of [(α)].
The members of the fiber [(α)] are said to be Yule’s triples of type (α). The members of the fiber

[(α, θ)] are called Yule’s triples of type (α, θ).

3. Methods

In this paper we are using fundamentals of:
• Linear algebra,
• Affine geometry,
• Polytope theory,
• Fibre bundles,
• Real algebraic geometry.

4. Classification of Yule’s Triples

and Their Probability Distributions

4.1. The Probability Distribution of a Yule’s Triple

Any ordered triple A = (A1, A2, A3) ∈ A3 produces three experiments of the form

Jij = (Ai ∩ Aj) ∪ (Ai ∩ Ac
j ) ∪ (Ac

i ∩ Aj) ∪ (Ac
i ∩ Ac

j ), 1 ≤ i < j ≤ 3,

and the experiment

J3 = (A1 ∩ A2 ∩ A3) ∪ (Ac
1 ∩ A2 ∩ A3) ∪ (A1 ∩ Ac

2 ∩ A3) ∪ (A1 ∩ A2 ∩ Ac
3)∪

(A1 ∩ Ac
2 ∩ Ac

3) ∪ (Ac
1 ∩ A2 ∩ Ac

3) ∪ (Ac
1 ∩ Ac

2 ∩ A3) ∪ (Ac
1 ∩ Ac

2 ∩ Ac
3)

(cf. [8, I,§5]). We introduce the following notation:

ξ
(Ai ,Aj)
1 = Pr(Ai ∩ Aj), ξ

(Ai ,Aj)
2 = Pr(Ai ∩ Ac

j ),
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ξ
(Ai ,Aj)
3 = Pr(Ac

i ∩ Aj), ξ
(Ai ,Aj)
4 = Pr(Ac

i ∩ Ac
j ), 1 ≤ i < j ≤ 3.

Moreover, we set
ξ
(A)
1 = Pr(A1 ∩ Ac

2 ∩ Ac
3), ξ

(A)
2 = Pr(Ac

1 ∩ A2 ∩ Ac
3),

ξ
(A)
3 = Pr(Ac

1 ∩ Ac
2 ∩ A3), ξ

(A)
4 = Pr(Ac

1 ∩ Ac
2 ∩ Ac

3),

ξ
(A)
5 = Pr(A1 ∩ A2 ∩ A3), ξ

(A)
6 = Pr(Ac

1 ∩ A2 ∩ A3),

ξ
(A)
7 = Pr(A1 ∩ Ac

2 ∩ A3), ξ
(A)
8 = Pr(A1 ∩ A2 ∩ Ac

3). (1)

The above probabilities satisfy the following identities:

ξ
(A)
5 + ξ

(A)
8 = ξ

(A1,A2)
1 , ξ

(A)
1 + ξ

(A)
7 = ξ

(A1,A2)
2 ,

ξ
(A)
2 + ξ

(A)
6 = ξ

(A1,A2)
3 , ξ

(A)
3 + ξ

(A)
4 = ξ

(A1,A2)
4 ,

ξ
(A)
5 + ξ

(A)
7 = ξ

(A1,A3)
1 , ξ

(A)
1 + ξ

(A)
8 = ξ

(A1,A3)
2 ,

ξ
(A)
3 + ξ

(A)
6 = ξ

(A1,A3)
3 , ξ

(A)
2 + ξ

(A)
4 = ξ

(A1,A3)
4 ,

ξ
(A)
5 + ξ

(A)
6 = ξ

(A2,A3)
1 , ξ

(A)
2 + ξ

(A)
8 = ξ

(A2,A3)
2 ,

ξ
(A)
3 + ξ

(A)
7 = ξ

(A2,A3)
3 , ξ

(A)
1 + ξ

(A)
4 = ξ

(A2,A3)
4 . (2)

For any 1 ≤ i < j ≤ 3 and any (Ai, Aj) ∈ [
(
αi, αj

)
], the probability distribution

(ξ
(i,j)
1 , ξ

(i,j)
2 , ξ

(i,j)
3 , ξ

(i,j)
4 ) = (ξ

(Ai ,Aj)
1 , ξ

(Ai ,Aj)
2 , ξ

(Ai ,Aj)
3 , ξ

(Ai ,Aj)
4 )

satisfies the linear system∣∣∣∣∣∣∣∣∣∣
ξ
(i,j)
1 + ξ

(i,j)
2 = αi

ξ
(i,j)
3 + ξ

(i,j)
4 = 1− αi

ξ
(i,j)
1 + ξ

(i,j)
3 = αj

ξ
(i,j)
2 + ξ

(i,j)
4 = 1− αj.

(3)

The identities (2) and the linear systems (3) yield that for any ordered triple A ∈ [α], the
probability distribution

(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) = (ξ
(A)
1 , ξ

(A)
2 , ξ

(A)
3 , ξ

(A)
4 , ξ

(A)
5 , ξ

(A)
6 , ξ

(A)
7 , ξ

(A)
8 ) (4)

satisfies the linear system∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 + ξ5 + ξ7 + ξ8 = α1
ξ2 + ξ3 + ξ4 + ξ6 = 1− α1
ξ2 + ξ5 + ξ6 + ξ8 = α2

ξ1 + ξ3 + ξ4 + ξ7 = 1− α2
ξ3 + ξ5 + ξ6 + ξ7 = α3

ξ1 + ξ2 + ξ4 + ξ8 = 1− α3.

(5)

Let us denote for short ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) and let H7 be the affine hyperplane in
R8 with equation ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + ξ8 = 1. For any α ∈ R3 the solutions of (5)
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depend on four parameters, say θ0 = ξ5, θ1 = ξ6, θ2 = ξ7, θ3 = ξ8, and for any triple α ∈ R3 form
a 4-dimensional affine space `α in H7 with parametric representation

`α :



ξ1 = α1 − θ0 − θ2 − θ3
ξ2 = α2 − θ0 − θ1 − θ3
ξ3 = α3 − θ0 − θ1 − θ2
ξ4 = 1 − α1 − α2 − α3 + 2θ0 + θ1 + θ2 + θ3
ξ5 = θ0
ξ6 = θ1
ξ7 = θ2
ξ8 = θ3

(6)

The map
ι7 : R7 → H7, (α, θ) 7→ ξ, (7)

defined by formulae (6) is an affine isomorphism with inverse affine isomorphism

χ7 : H7 → R7, ξ 7→ (ξ1 + ξ5 + ξ7 + ξ8, ξ2 + ξ5 + ξ6 + ξ8, ξ3 + ξ5 + ξ6 + ξ7, ξ5, ξ6, ξ7, ξ8). (8)

The symmetric group S3 acts on R7 by the rule σ(α, θ) = (σα; σθ), where σα = (ασ−1(1), ασ−1(2), ασ−1(3))

and σθ = (θ0, θσ−1(1), θσ−1(2), θσ−1(3)), σ ∈ S3. When necessary, we write σα and σθ in order to
distinguish the actions of σ on α’s and θ’s, respectively.

On the other hand, we transport the action of S3 on the set {6, 7, 8} via the bijection 1 7→
6, 2 7→ 7, 3 7→ 8 and define an action of S3 on the hyperplane H7 by the formula

σξ = (ξσ−1(1), ξσ−1(2), ξσ−1(3), ξ4, ξ5, ξσ−1(6), ξσ−1(7), ξσ−1(8)).

Lemma 1. The affine isomorphism ι7 is also an isomorphism of S3-sets: ι7(σ(α, θ)) = σι7(α, θ).

Proof. We check the statement for a set of generators of S3: For σ = (12) we have

ξ1((12)(α, θ)) = ξ2(α, θ), ξ2((12)(α, θ)) = ξ1(α, θ),

ξ6((12)(α, θ)) = ξ7(α, θ), ξ7((12)(α, θ)) = ξ6(α, θ).

For σ = (23) we have

ξ2((23)(α, θ)) = ξ3(α, θ), ξ3((23)(α, θ)) = ξ2(α, θ),

ξ7((23)(α, θ)) = ξ8(α, θ), ξ8((23)(α, θ)) = ξ7(α, θ).

�

4.2. The Geometric Classification

After fixing the coordinates α1, α2, and α3, the isomorphism ι7 from (7) maps the 4-dimensional
affine space ζα = {α} ×R4 onto the 4-dimensional affine space `α in H7. We denote by ι

(α)
7 the

(affine) restriction of ι7 on ζα, so ι
(α)
7 : ζα → `α.

The trace of the 8-dimensional cube {ξ ∈ R8|0 ≤ ξk ≤ 1, k = 1, . . . , 8} onto the hyperplane
H7 is the 7-dimensional simplex ∆7 defined in H7 by the inequalities ξ1 ≥ 0, . . . , ξ8 ≥ 0. The
inverse image T7 = ι−1

7 (∆7) via the affine isomorphism ι7 is the convex polyhedron in R7 with
non-empty interior, defined by the system of inequalities

T7 :



θ0 + θ2 + θ3 ≤ α1
θ0 + θ1 + θ3 ≤ α2
θ0 + θ1 + θ2 ≤ α3

2θ0 + θ1 + θ2 + θ3 ≥ α1 + α2 + α3 − 1.
θ0 ≥ 0

θ1 ≥ 0
θ2 ≥ 0

θ3 ≥ 0

(9)
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The form (8) of the inverse isomorphism χ7 yields that T7 ⊂ [0, 1]7. In particular, T7 is a polytope.
Note that we are using the terminology about polytopes introduced in [2, Ch. 12].

For any α ∈ R3 we set C7(α) = ζα ∩ T7, so C7(α) = {α} × I7(α), where I7(α) ⊂ R4 and R4

is furnished with coordinates θ. The subset I7(α) is defined in R4 via the system (9) with fixed
α. Hence I7(α) is a convex bounded polyhedron in R4. We also set D7(α) = ι7(C7(α)). Since
ι7(ζα) = `α, we obtain that D7(α) = `α ∩ ∆7.

We consider T7, ζα ' R4, C7(α), I7(α), `α, ∆7, and D7(α) as topological subspaces of the
corresponding ambient linear spaces, with topology induced by their standard topology. Moreover,
for each subset A of a topological space X we denote by Å its interior with respect to X. We note
that Å is the largest open set contained in A, see [3, § 1, no6].

Lemma 2. The minimal number of half-spaces in R4, whose intersection is the polyhedron I7(α)
is 8.

Proof. We can not omit any one of the inequalities in (9) formed by the free variables ξ5 = θ0,
ξ6 = θ1, ξ7 = θ2, and ξ8 = θ3. It turns out that the general solution of the linear system (5)
can also be written in terms of the free variables ξ1, ξ2, ξ3, and ξ4. In particular, neither of the
inequalities ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, and ξ4 ≥ 0, that define the polytope T7 can be omitted, too.

�
We define the point θ(α) ∈ R4 by the formulae

θ
(α)
0 = α1α2α3, θ

(α)
1 = (1− α1)α2α3, θ

(α)
2 = α1(1− α2)α3, θ

(α)
3 = α1α2(1− α3). (10)

Lemma 3. If α ∈ [0, 1]3, then θ(α) ∈ I7(α) and the following three statements are equivalent:
(i) One has α ∈ (0, 1)3.
(ii) One has θ(α) ∈ I̊7(α).
(iii) One has I̊7(α) 6= ∅.

Proof. The equalities θ1 + θ3 + θ4 − α1 = −α1(1− α2)(1− α3), θ1 + θ2 + θ4 − α2 = −α2(1−
α1)(1− α3), θ1 + θ2 + θ3 − α3 = −α3(1− α1)(1− α2), and 2θ1 + θ2 + θ3 + θ4 − α1 − α2 − α3 + 1 =
(1− α1)(1− α2)(1− α3) yield that the system (9) is satisfied if α ∈ [0, 1]3. If, in addition, α ∈ (0, 1)3,
then (9) with strict inequalities holds. Thus, the implication (i) =⇒ (ii) is also proved.

(ii) =⇒ (iii) This is trivial.
(iii) =⇒ (i) Let θ ∈ I̊7(α). Then ξk(θ) > 0, k = 1, . . . , 8, their sum is 1, and satisfy the linear

system (5). Therefore α ∈ (0, 1)3.
�

Theorem 1. (i) One has

I7(α) =



(0, 0, 0, 0) if at least two of α′is are 0
{0} × I(α2, α3)× {0} × {0} if α1 = 0, α2 > 0, α3 > 0
{0} × {0} × I(α1, α3)× {0} if α2 = 0, α1 > 0, α3 > 0
{0} × {0} × {0} × I(α1, α2) if α3 = 0, α1 > 0, α2 > 0
{α3} × {0} × {0} × {1− α3} if α1 = 1, α2 = 1, α3 > 0
{α2} × {0} × {1− α2} × {0} if α1 = 1, α3 = 1, α2 > 0
{α1} × {1− α1} × {0} × {0} if α2 = 1, α3 = 1, α1 > 0

{(α2 − θ3, 0, α3 − α2 + θ3, θ3)|θ3 ∈ I(α2,α3)} if α1 = 1, α2 > 0, α3 > 0
{(α3 − θ1, θ1, 0, α1 − α3 + θ1)|θ1 ∈ I(α3,α1)} if α2 = 1, α1 > 0, α3 > 0
{(α1 − θ2, α2 − α1 + θ2, θ2, 0)|θ2 ∈ I(α1,α2)} if α3 = 1, α1 > 0, α2 > 0

and I7(α) is a polytope in R4 if α ∈ (0, 1)3.
(ii) One has ι7(C̊7(α)) = D̊7(α) the interiors being with respect to affine spaces ζα and `α,

respectively.

Proof. (i) The systems (5) and (9) imply the equalities. In case α ∈ (0, 1)3, Lemma 3 yields
that the bounded convex polyhedron I7(α) in R4 has non-empty interior. In other words, it is a
polytope.
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(ii) It is enough to note that the (affine) restriction ι
(α)
7 : ζα → `α is, in particular, a homeomor-

phism.
�

Corollary 1. Let α ∈ R3.
(i) The system of constraint conditions 0 ≤ ξk(θ) ≤ 1, k = 1, . . . , 8, on the solutions (6) of linear

system (5) is equivalent to the property θ ∈ I7(α).
(ii) One has 0 < ξk(θ) < 1, k = 1, . . . , 8, if and only if θ ∈ I̊7(α).

Proof. (i) The equalities C7(α) = ζα ∩ T7 and D7(α) = `α ∩ ∆7 imply part (i). We have
C̊7(α) = ζα ∩ T̊7 and D̊7(α) = `α ∩ ∆̊7, where the interiors T̊7 and ∆̊7 are with respect to affine
spaces R7 and H7, respectively. Now, Theorem 1, (ii), yields part (ii).

�
We have R(α) ⊂ I7(α) and define I(·)7 (α) = R(α). The dotted polytope C(·)

7 (α) = {α} × I(·)7 (α),
(α) ∈ R3, is the locus of all 7-tuples of probabilities (α, θ(A)), where A ∈ [(α)].

By plugging θ(α) in the formulae (6), we obtain the point ξ(α) ∈ H7 with coordinates

ξ
(α)
1 = α1(1− α2)(1− α3), ξ

(α)
2 = (1− α1)α2(1− α3),

ξ
(α)
3 = (1− α1)(1− α2)α3, ξ

(α)
4 = (1− α1)(1− α2)(1− α3),

ξ
(α)
5 = α1α2α3, ξ

(α)
6 = (1− α1)α2α3, ξ

(α)
7 = α1(1− α2)α3, ξ

(α)
8 = α1α2(1− α3).

Let U3 be the rational 3-dimensional algebraic manifold defined in R7 by the equations (10). In
other words, U3 is the locus of the points in R7 of the form (α, θ(α)), α ∈ R3. Let us denote
W3 = ι7(U3), so W3 is the locus of the points ξ(α), α ∈ R3, in H7. Then χ7(W3) = U3, W3 is an
algebraic subvariety of H7, and the restrictions of ι7 and χ7 on U3 and W3, respectively, form a
pair of mutually inverse isomorphisms of 3-dimensional rational algebraic manifolds. Moreover,
W3 ∩ `α = {ξ(α)} for any α ∈ R3. Let us denote κ3 = ι3 ◦ δ3, where δ3 is the isomorphism of
algebraic manifolds R3 → U3, α 7→ (α, θ(α)). Therefore, κ3 : R3 → W3 is also an isomorphism of
algebraic manifolds.

We have the product vector bundle with total space R7, base R3, projection (α, θ) 7→ α, and
fibre ζα. Now, we transport the structure of fibre bundle by means of the pair of isomorphisms
(ι7, κ3) to H7 and W3, thus obtaining a structure of vector bundle with total space H7, base W3,
projection π : H7 → W3, with π−1(ξ(α)) = `α. Via restriction we obtain a fibre bundle with
total space T7, base [0, 1]3, projection (α, θ) 7→ α, and fibre C7(α), as well as a fibre bundle with
total space ∆7 and base w3 = κ3([0, 1]3). Combining the equality ι7(C7(α)) = D7(α), Lemma 3,
and Theorem 1, (ii), we obtain that if α ∈ [0, 1]3 (respectively, α ∈ (0, 1)3), then ξ(α) ∈ D7(α)
(respectively, ξ(α) ∈ D̊7(α)). Thus, w3 ∩ D7(α) = {ξ(α)} and the projection π : ∆7 → w3 has
fibres π−1(ξ(α)) = D7(α). Moreover, the restriction of the pair (ι7, κ3) is an isomorphism of fibre
bundles.

For the sake of transparency, we note that T7 = ∪
(α)∈[0,1]3 C7(α), ∆7 = ∪

(α)∈[0,1]3 D7(α). The

unions T(·)
7 = ∪(α)∈R3 C(·)

7 (α), ∆(·)
7 = ∪(α)∈R3 D(·)

7 (α) are the corresponding dotted polytopes.
The above considerations yield the following classification theorem:

Theorem 2. (i) The affine isomorphism ι7 : R7 → H7 transforms any polytope C7(α) (resp., dotted
polytope C(·)

7 (α)) onto the polytope D7(α) (resp., onto the dotted polytope D(·)
7 (α)).

(ii) The dotted polytope C(·)
7 (α) is the classification space of all Yule’s triples of type [(α, θ)].

The dotted polytope ∆(·)
7 (α) is the classification space of all probability distributions (1) produced

by Yule’s triples of type [(α, θ)].
(iii) ι7 maps the polytope T7 (resp., dotted polytope T(·)

7 ) onto the polytope ∆7 (resp., onto the

dotted polytope ∆(·)
7 ).

(iv) The dotted polytope T(·)
7 is the classification space of all Yule’s triples. The dotted polytope

∆(·)
7 is the classification space of all probability distributions produced by Yule’s triples.
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5. Entropy and Dependence of Yule’s Triples

In this section we suppose α ∈ (0, 1)3, that is (Lemma 3), I̊7(α) 6= ∅.

5.1. The Entropy Function

The function E : ∆̊7 → R, E(ξ) = −∑8
k=1 ξk ln ξk, is strictly concave since the open simplex ∆̊7

is convex and all of its "entropy" summands E(k)(ξ) = −ξk ln ξk are strictly concave. Let us fix
α ∈ (0, 1)3 and let

Eα(θ) =
8

∑
k=1

E(k)
α (θ), E(k)

α (θ) = −ξk(θ) ln ξk(θ), (11)

be the composition of E with the affine isomorphism ι
(α)
7 : Eα(θ) = E(ι(α)7 (θ)). In accord with

Corollary 1, (ii), the entropy function (11) of the experiment J3 has I̊7(α) as a natural domain:
Eα : I̊7(α)→ R.

Lemma 4. (i) The entropy function Eα is a strictly concave function.
(ii) The entropy function Eα can be extended as continuous at I7(α) and this extension Êα is

unique.
(iii) The continuous extension Êα of Eα at I7(α) is also a strictly concave function.

Proof. Note that the polytope I7(α) and its interior I̊7(α) are bounded convex sets.
(i) The function Eα is composition of the affine map ι

(α)
7 followed by the strictly concave

function E(ξ).
(ii) We apply [3, § 8, no5, Theorem 1].
(iii) The point θ(0) belongs to the frontier of the polytope I7(α) if and only if ξk(θ

(0)) = 0 for
indices k from some set K and ξk(θ

(0)) > 0 for the rest of the indices, where k = 1, . . . , 8. Moreover,
for any k ∈ K we have E(k)(θ)→ 0 when θ → θ(0), θ ∈ I̊7(α). In other words, Ê(k)(θ(0)) = 0.

A boundary transition yields that Êα is a concave function. Moreover, since there are indices
k /∈ K, the function Eα is strictly concave. Indeed, let θ(1) ∈ I̊7(α) and λ ∈ (0, 1). In accord with [2,
Ch. 11, Lemma 11.2.4], we have (1− λ)θ(0) + λθ(1) ∈ I̊7(α), hence

Ê(k)((1− λ)θ(0) + λθ(1)) = E(k)((1− λ)θ(0) + λθ(1)) < (1− λ)E(k)(θ(0)) + λE(k)(θ(1))

for any k = 1, . . . , 8.
In case k /∈ K we have Ê(k)(θ(0)) = E(k)(θ(0)) and we are done. Now, let k ∈ K and let θ → θ(0),

θ ∈ I̊7(α). We obtain

Ê(k)((1− λ)θ(0) + λθ(1)) = lim
θ→θ(0)

E(k)((1− λ)θ + λθ(1)) ≤

(1− λ) lim
θ→θ(0)

E(k)(θ) + λE(k)(θ(1)) = (1− λ)Ê(k)(θ(0)) + λÊ(k)(θ(1)).

�
The symmetric group S3 acts on the entropy functions Eα(θ) by the rule σEα(θ) = Eα(σ−1θ),

σ ∈ S3.

Lemma 5. If σ ∈ S3, then Eσα(θ) = σEα(θ) and I7(σα) = σθ I7(α).

Proof. (i) According to Lemma 1, we have σ−1Eσα(θ) = Eσα(σθ) = E(ι(σα)
7 (σθ)) = E(ι7(σα, σθ)) =

E(σι7(α, θ)) = E(ι7(α, θ)) = Eα(θ). Finally, the domain of σEα(θ) is the polytope σθ I7(α) and we
obtain I7(σα) = σθ I7(α).

�

Corollary 2. Let σ ∈ S3.
(i) One has Êσα(σθ) = Êα(θ).
(ii) All permutations of the members of Yule’s triple A = (A1, A2, A3) have the same entropy:

If A ∈ [(α)], then σA ∈ [(σα)] and Êσα(θ(σA)) = Êα(θ(A)).
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Proof. (i) Let θ(0) be point from the frontier of the polytope I7(α). Then σθ(0) is point from the
frontier of the polytope I7(σα) with interior σθ I̊7(α). We have θ → θ(0), θ ∈ I̊7(α), if and only if
σθ → σθ(0), σθ ∈ σ I̊7(α). The equality from Lemma 5 can be written in the form Eσα(σθ) = Eα(θ)
and a boundary transition yields the result.

(ii) Implied by part (i).
�

5.2. The Entropy Function and its Critical Points

For any θ ∈ I̊7(α) we obtain

∂Eα(θ)

∂θ0
= ln

ξ1(θ)ξ2(θ)ξ3(θ)

ξ2
4(θ)ξ5(θ)

,
∂Eα(θ)

∂θ1
= ln

ξ2(θ)ξ3(θ)

ξ4(θ)ξ6(θ)
,

∂Eα(θ)

∂θ2
= ln

ξ1(θ)ξ3(θ)

ξ4(θ)ξ7(θ)
,

∂Eα(θ)

∂θ3
= ln

ξ1(θ)ξ2(θ)

ξ4(θ)ξ8(θ)
.

Thus, the set of critical points of the function Eα(θ) is the intersection of the interior I̊7(α) ⊂ R4

and the algebraic variety in R4 with equations

ξ1(θ)ξ2(θ)ξ3(θ)− ξ2
4(θ)ξ5(θ) = 0, ξ2(θ)ξ3(θ)− ξ4(θ)ξ6(θ) = 0,

ξ1(θ)ξ3(θ)− ξ4(θ)ξ7(θ) = 0, ξ1(θ)ξ2(θ)− ξ4(θ)ξ8(θ) = 0.

Lemma 6. (i) The point θ(α) is a critical point of the entropy function Eα.
(ii) One has

Eα(θ
(α)) = − ln

(
αα1

1 αα2
2 αα3

3 (1− α1)
1−α1(1− α2)

1−α2(1− α3)
1−α3

)
.

Proof. (i) We have

ξ
(α)
1 ξ

(α)
2 ξ

(α)
3 −

(
ξ
(α)
4

)2
ξ
(α)
5 =

α1(1− α2)(1− α3)(1− α1)α2(1− α3)(1− α1)(1− α2)α3−

(1− α1)
2(1− α2)

2(1− α3)
2α1α2α3 = 0,

ξ
(α)
2 ξ

(α)
3 − ξ

(α)
4 ξ

(α)
6 =

(1− α1)α2(1− α3)(1− α1)(1− α2)α3 − (1− α1)(1− α2)(1− α3)(1− α1)α2α3 = 0,

ξ
(α)
1 ξ

(α)
3 − ξ

(α)
4 ξ

(α)
7 =

α1(1− α2)(1− α3)(1− α1)(1− α2)α3 − (1− α1)(1− α2)(1− α3)α1(1− α2)α3 = 0,

ξ
(α)
1 ξ

(α)
2 − ξ

(α)
4 ξ

(α)
8 =

α1(1− α2)(1− α3)(1− α1)α2(1− α3)− (1− α1)(1− α2)(1− α3)α1α2(1− α3) = 0.

(ii) We have

−Eα(θ
(α)) = −E(ξ(α)) =

8

∑
k=1

ξ
(α)
k ln ξ

(α)
k =

ξ
(α)
1 ln(α1(1− α2)(1− α3)) + ξ

(α)
2 ln((1− α1)α2(1− α3))+

ξ
(α)
3 ln((1− α1)(1− α2)α3) + ξ

(α)
4 ln((1− α1)(1− α2)(1− α3))+

ξ
(α)
5 ln(α1α2α3) + ξ

(α)
6 ln((1− α1)α2α3)+

ξ
(α)
7 ln(α1(1− α2)α3) + ξ

(α)
8 ln(α1α2(1− α3)) =

(ξ
(α)
1 + ξ

(α)
5 + ξ

(α)
7 + ξ

(α)
8 ) ln α1 + (ξ

(α)
2 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
8 ) ln α2+
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(ξ
(α)
3 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
7 ) ln α3 + (ξ

(α)
2 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
8 ) ln(1− α1)+

(ξ
(α)
1 + ξ

(α)
3 + ξ

(α)
4 + ξ

(α)
7 ) ln(1− α2) + (ξ

(α)
1 + ξ

(α)
2 + ξ

(α)
4 + ξ

(α)
8 ) ln(1− α3) =

ln
(

αα1
1 αα2

2 αα3
3 (1− α1)

1−α1(1− α2)
1−α2(1− α3)

1−α3
)

.

�

5.3. The Entropy Function and its Second Derivative

Given k, k = 1, . . . , 8, the Hessian of the function E(k)
α (θ), θ ∈ I̊7(α), is the 4× 4 symmetric matrix

H(k)(θ) = ( ∂2E(k)
α

∂θi∂θj
(θ))4

i,j=1, where ∂2E(k)
α

∂θi∂θj
(θ) = − ∂ξk(θ)

∂θi

∂ξk(θ)
∂θj

1
ξk(θ)

. Then the Hessian H(θ) of the

entropy function Eα(θ) is the 4× 4 symmetric matrix H(θ) = ∑8
k=1H(k)(θ). In accord with [4,

Ch. 3, 3.1.4], since the functions E(k)
α (θ) are strictly concave, the corresponding quadratic forms

tτH(k)(θ)τ are negative semi-definite: tτH(k)(θ)τ ≤ 0 for all τ ∈ R4. In particular, the quadratic
form tτH(θ)τ = ∑8

k=1
tτH(k)(θ)τ is negative semi-definite. Moreover, since tτH(5)(θ)τ = − 1

θ0
τ2

1 ,
tτH(6)(θ)τ = − 1

θ1
τ2

2 , tτH(7)(θ)τ = − 1
θ2

τ2
3 , and tτH(8)(θ)τ = − 1

θ3
τ2

4 , the quadratic form tτH(θ)τ

is negative definite for any θ ∈ I̊7(α) and we obtain

Lemma 7. The set of local maximums of the entropy function Eα(θ) coincides with the set of its
critical points.

The compactness of the polytope I7(α) yields that the extended entropy function Êα(θ) attains
its absolute maximum and absolute minimum.

Theorem 3. The extended entropy function Êα(θ) has a unique absolute maximum attained at
the point θ(α) from (10).

Proof. Lemma 6 and Lemma 7 yield that the entropy function Eα(θ) and, therefore, also the
extended entropy function Êα(θ), has a local maximum at the point θ(α). In accord with Lemma 4
and Lemma 10, Êα(θ) has a unique absolute maximum at θ(α).

�

Theorem 4. If the extended entropy function Êα(θ) attains an absolute minimum at some point
from the polytope I7(α), then this point is a vertex of I7(α).

Proof. Lemma 2 allows us to use [2, Theorem 12.1.5, 12.1.8, Proposition 12.1.9] and we
conclude that since the restriction of Êα(θ) on an i-face, i = 1, 2, 3, of the polytope I7(α) is also a
strictly concave function, we can apply at most four times Lemma 11.

�
The continuous extension Êα(θ), θ ∈ I7(α), of the entropy function Eα(θ), θ ∈ I̊7(α), is said to

be the extended entropy function of Yule’s triples of type [(α)].

6. Degree of Mutual Dependence of a Triple of Events

6.1. Two Motivation Statements

Lemma 8. The three components of the Yule’s triple A = (A1, A2, A3) are mutually independent
if and only if θ(A) = θ(α).

Proof. In accord with [8, I,§5, (4)], the events A1, A2, A3 are mutually independent if and
only if Pr(Ai ∩ Aj) = Pr(Ai)Pr(Aj), 1 ≤ i < j ≤ 3, Pr(A1 ∩ A2 ∩ A3) = Pr(A1)Pr(A2)Pr(A3).
Using (2), we write these conditions in the form∣∣∣∣∣∣∣∣

θ0 + θ1 = α2α3
θ0 + θ2 = α1α3
θ0 + θ3 = α1α2
θ0 = α1α2α3.
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The point θ(α) from (10) is the unique solution of this system.
�

Now, we suppose, in addition, that (Ω,A, Pr) is a discrete uniform probability space. The faces
of the polytope I7(α) ⊂ R4 are parts of the hyperplanes with equations ξk(θ) = 0, k = 1, . . . , 8.
According to (1), the following equivalences hold:

Lemma 9. Let A = (A1, A2, A3) be a Yule’s triple of events. One has:

ξ1(θ
(A)) = 0 iff A1 ⊂ A2 ∪ A3, ξ2(θ

(A)) = 0 iff A2 ⊂ A1 ∪ A3,

ξ3(θ
(A)) = 0 iff A3 ⊂ A1 ∪ A2, ξ4(θ

(A)) = 0 iff Ac
1 ⊂ A2 ∪ A3,

ξ5(θ
(A)) = 0 iff A1 ∩ A2 ⊂ Ac

3, ξ6(θ
(A)) = 0 iff A2 ∩ A3 ⊂ A1,

ξ7(θ
(A)) = 0 iff A1 ∩ A3 ⊂ A2, ξ8(θ

(A)) = 0 iff A1 ∩ A2 ⊂ A3.

6.2. Definition of Degree of Mutual Dependence

The value of extended entropy function Êα(θ) of Yule’s triples of type [(α)] at θ = θ(A) is called
entropy of Yule’s triple A = (A1, A2, A3) of type [(α)]. In accord with Corollary 2, the entropy does
not depend on the order of the components of A. This fact together with the opposites described
in Lemmas 8 and 9 motivate the use of the extended entropy function Êα(θ) as a measure of
strength of mutual dependence of three events A1, A2, A3.

Let us denote by M the absolute maximum Êα(θ(α)) and let m be the absolute minimum of
Êα(θ), attained at some vertex of the polytope I7(α), see Theorems 3 and 4. The former also yields
that m < M.

Following [6, 5.2], for any θ ∈ I7(α) we define eα : I7(α)→ [0, 1], eα(θ) =
Êα(θ)−M

m−M . The value of
the function eα at θ ∈ I7(α), θ = θ(A), A = (A1, A2, A3), is said to be degree of mutual dependence of
the events A1, A2, A3, with α1 = Pr(A1), α2 = Pr(A2), α3 = Pr(A3). Intuitively, eα(θ(A)) measures
the strength of the mutual relations among the events A1, A2, A3.

The above definition of eα yields

Corollary 3. The degree of mutual dependence of three events does not depend on the choice of
base of logarithms in the extended entropy function.

Example 5. In case α = ( 1
10 , 1

5 , 3
10 ) the polytope I7(α) has 12 vertices

v1,2,3,8, v1,2,5,8, v1,3,5,8, v2,3,5,8, v1,2,3,5, v1,2,5,7,

v1,2,7,8, v1,5,6,7, v1,5,6,8, v1,6,7,8, v2,5,7,8, v5,6,7,8.

Here by vk1,k2,k3,k4 we denote the vertex which is the intersection point of the hyperplanes with
equations ξk1 = 0, ξk2 = 0, ξk3 = 0, and ξk4 = 0. At the first four vertices the extended entropy
function attains its absolute minimum (approximately equal to 0.8018185525433372). Equivalently,
we have

eα(v1,2,3,8) = eα(v1,2,5,8) = eα(v1,3,5,8) = eα(v2,3,5,8) = 1.

On the other hand, let, for example, the vertex v1,3,5,8 belongs to the dotted polytope I(·)7 (α), that
is, let θ(A) = v1,3,5,8, where A = (A1, A2, A3) is a Yule’s triple.

Moreover, let us assume that (Ω,A, Pr) is a sample space with equally likely outcomes. In
accord with Lemma 9, we can conclude that the system of set-theoretic relations

A1 ⊂ A2 ∪ A3, A3 ⊂ A1 ∪ A2, A1 ∩ A2 ⊂ Ac
3, A1 ∩ A2 ⊂ A3,

or equivalently, the system of relations A3 ⊂ A1 ∪ A2, A1 ⊂ A3 ∩ Ac
2, is one of the most powerful

under the condition α = ( 1
10 , 1

5 , 3
10 ).

On the other hand, v1,3,5,8 is again a vertex in case α = ( 1
5 , 3

10 , 2
5 ) but now the above system of

relations is not the most powerful one: eα(v1,3,5,8) < 1.
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Example 6. [9, Section 3, 3.2], (Bernstein 1928) Let us consider a sample space with four equally
likely outcomes 112, 121, 211, 222. The events A1 = {112, 121}, A2 = {112, 211}, A3 = {121, 211},
are pairwise independent but not mutually independent because A1 ∩ A2 ∩ A3 = ∅. Below
we evaluate their degree of mutual dependence. We set A = (A1, A2, A3) and note that α =

( 1
2 , 1

2 , 1
2 ). Using (1), we obtain ξ

(A)
1 = ξ

(A)
2 = ξ

(A)
3 = ξ

(A)
5 = 0, ξ

(A)
4 = ξ

(A)
6 = ξ

(A)
7 = ξ

(A)
8 = 1

4 .
Therefore Êα(θ(A)) = −2 ln 1

2 . On the other hand, the polytope I7(α) has 50 vertices and the
extended entropy function Êα(θ) attains its absolute minimum m = − ln 1

2 at 48 of them. Since
M = Êα(ξ(α)) = −3 ln 1

2 , we have eα(θ(A)) = 1
2 .

Remark 1. One can find below the link to a Java program which calculates the degree of mutual
dependence of three events in a sample space with equally likely outcomes:

http://www.math.bas.bg/algebra/valentiniliev/

7. Conclusions

This paper finishes the trilogy that begins with [6] and [7]. It presents an original approach to
the problem of measuring the magnitude of dependence of several events in a probability space,
which rests upon Boltzmann-Shannon entropy of a probability distributions produced by these
events. The first two parts are devoted to the fundamental case of two events where, for a given
level of entropy intensity, one can discern negative from positive dependence, thus defining a
direction. Moreover, the function of dependence of two events is closely related to the information
exchanged between the two binary trials generated by these events.

The case of three events is studied here and this examination shows, in particular, that the
general case of a finite number of events differs only in technical difficulties.

A. Appendix

A.1. Folklore Results about Extrema
of a Concave Function

Our source of definitions and results about convex sets is [1, Ch. 11].
Let C ⊂ Rn. We remind that the function f : C → R is said to be concave (respectively, strictly

concave) if C is a convex set and for any two different points c1, c2 ∈ C and any λ ∈ (0, 1) one has
f ((1− λ)c1 + λc2) ≥ (1− λ) f (c1) + λ f (c2) (respectively, f ((1− λ)c1 + λc2) > (1− λ) f (c1) +
λ f (c2)).

Lemma 10. (i) Any local maximum point of a concave function is an absolute one.
(ii) There exists at most one local maximum point of a strictly convex function.
(iii) There exists at most one absolute maximum point of a strictly concave function.

Proof. Let f : C → R be a concave function.
(i) Let c0 ∈ C be a point at which f attains a local maximum and let U ⊂ C be a neighbourhood

of c0 such that f (c0) ≤ f (c) for all c ∈ U. Let us suppose that there exists a point c1 ∈ C such
that f (c1) > f (c0). Then f ((1− λ)c0 + λc1) ≤ (1− λ) f (c0) + λ f (c1) > f (c0) for all λ ∈ (0, 1).
If λ is sufficiently close to 0, then f ((1− λ)c0 + λc1) ∈ U and hence f ((1− λ)c0 + λc1) ≥ f (c0)
which is a contradiction.

(ii) Let, in addition, f be strictly concave and c1, c2 ∈ C be two different points at which f
attains a local maximum. In accord with part (i), we have f (c1) = f (c2) and then f ((1− λ)c1 +
λc2) > (1− λ) f (c1) + λ f (c2) = f (c1) for all λ ∈ (0, 1). Since f attains an absolute maximum at
c1, this is a contradiction.

Part (ii) implies part (iii).
�
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Lemma 11. Let f : C → R be a strictly concave function and let for any point c ∈ C̊ there exists
an open line segment Wc such that c ∈Wc ⊂ C. If f attains an absolute minimum at c0 ∈ C, then
c0 /∈ C̊.

Proof. Let us suppose that c0 ∈ C̊ and let the points c1, c2 ∈ Wc, c1 6= c2, be such that
c0 = (1− λ)c1 + λc2 for some λ ∈ (0, 1). Then f (c1) ≥ f (c0), f (c2) ≥ f (c0), and f (c0) = f ((1−
λ)c1 + λc2) > (1− λ) f (c1) + λ f (c2) ≥ (1− λ) f (c0) + λ f (c0) = f (c0), which is a contradiction.

�
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