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The article talks about a remarkable man and an outstanding scientist  –    Alexander Dmitrievich Soloviev. He
was Doctor of Physics and Mathematics, Professor, Laureate of the State Prize of the USSR, Professor of the
Probability  Theory  Department  of  the  Faculty  of  Mechanics  and  Mathematics  at  Lomonosov  Moscow  State
University.  Alexander  Dmitrievich  lived  an  amazing  creative  life  that  can  serve  as  an  example  for  modern
researchers. Victor Kashtanov, his student, shares his recollections and reflections on some episodes in the life of
his teacher and friend.
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Victor Netes

A failure is one of the key concepts in dependability. Therefore, it is very important to distinguish  whether a
failure has occurred or not. To do this, a failure criterion is formulated. This article  describes main approaches
to  determining  failure  criteria.  Special  attention  is  paid  to  the  parametric  approach,  in  which  a  failure  is  an
event when one of the parameters characterizing the functioning  of an item goes beyond the specified limits. In
addition, a time over threshold can also be set. This  means that short-term disruptions in item’s operation are
not  considered  as  failures.  The  meaning  of  setting  such  a  threshold  is  explained  and  examples  of  its  use  in 
telecommunications are given.  For a parallel system with a time over threshold in a failure criterion, calculation
formulas for  dependability measures are derived. The errors that the use of traditional formulas gives in this
situation are estimated.

Analysis of risks in the modelling of material consumption
trends in the production process  ......................................................................................  43

Alena Breznická,  Ľudmila Timárová,  Beáta Kopiláková

Quantitative risk analysis approaches in today's  technologically advanced age represent a suitable  process for 
mathematical investigation, revealing the context of the origin and existence of risks and  their possible effects
on  ensuring  reliability.  Today,  manufacturing,  and  industrial  companies,  with  the  growing  pressure  of
globalization,  must  deal  with  vast  amounts  of  data  that  evaluate  various  processes  in  maintenance
management,  warehouse  and  inventory  management,  or  quality  evaluation  processes.  One  way  to  ensure
objective  collection,  analysis  and  evaluation  of  robust  data  is  to  use  Bootstrapping  principles  and  modules.
Many companies use these tools and are now becoming available  to a wider range of users. Bootstrap principles,
with  which  it  is  possible  to  enter  the  calculation  of  robust  estimates,  e.g.,  standard  errors  and  confidence
intervals  based  on  the  bootstrap  method  is  therefore  suitable  for  estimating  statistics  such  as  mean,  median,
correlation coefficient or regression  coefficients. In this article, we will take a closer look at what bootstrapping
is, show you how to enter  the calculation of bootstrap estimates, and what types of output are then displayed.
Logistic forecasting  of spare parts with sporadic consumption are difficult because of problems associated with
obtaining  data  inscrutable  demand,  which  is  usually  characterized  by  long  periods  of  zero  demand.  The
presented  contribution  presents  the  possibilities  of  using  the  method,  which  is  the  starting  point  for  the
stochastic forecast of future consumption. Based on this method, we can  determine the minimum  order stock
level. The results of the simulations are also presented in graphical outputs
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An approach to the formalization of the standard knowledge management process is proposed, taking into 
account the requirements for information protection. The approach has been developed to the level of methodical 
approach for estimation and rationale system solutions to reduce risks and/or retain risks within acceptable 
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knowledge management process performance by probabilistic measures (including threats to the violation of 
information protection requirements). The usability of the proposed methodical approach is demonstrated by 
examples. 
 
 
Improving Dijkstra’s algorithm for Estimating Project 
Characteristics and Critical Path ...................................................................................... 65 
 
Adilakshmi Siripurapu, Ravi Shankar Nowpada, K. Srinivasa Rao 
 
Developing a project planning structure for all industries is a technological challenge involving evaluating 
several restrictions for each activity’s respective task and its planning tools. Any restriction affects the 
completion time, operating costs, and overall project performance. Programme Evaluation Review Technique 
(PERT) and Critical Path Method (CPM) processes made many researchers study the possible ways of finding 
the critical paths and activities in the network. The advancement of the CPM and PERT towards a probabilistic 
environment is still a long way off. However, Artificial intelligence approaches such as the Genetic Algorithm, 
Dijkstra’s algorithm, and others are utilized for network analysis within the project management framework. 
This study is to help the project manager plan schedule for a construction project to determine the expected 
completion time. In this research paper, we describe a method for obtaining the earliest and latest times of a 
critical path using modified Dijkstra’s algorithm with triangular fuzzy numbers. Forward pass and backward 
pass algorithms are designed to find the optimal path for the proposed method. Numerical examples are also 
illustrated for the same. Simulation results are included by the use of the “C” program. Finally, a comparison is 
made with the traditional method PERT. 
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David.I.J., Adubisi.D.O., Ogbaji.O.E., Adehi.U.M., Ikwuoche.O.P.  
 
This research presents the maximum likelihood estimation of a three-parameter Gamma distribution with 
application to four types of average rainfall intensities in Nigeria. These data sets are average half-yearly, 
yearly, quarterly and monthly rainfall intensities. The fitted three-parameter Gamma is compared to a two-
parameter Gamma distribution using empirical distribution function (EDF) tests. The tests used are Cramér-
von Mises, Anderson-Darling and Kolmogorov-Smirnov statistics. Based on the results obtained at 10% 
significance level both the two-parameter and three-parameter Gamma distributions are of good fit to only the 
average yearly rainfall intensity data. A kernel density plot revealed that the average half-yearly, quarterly and 
monthly rainfall intensity data sets are multi-modal in nature hence a reason for both Gamma distributions 
poor fit to the data sets. Also, the PDF, CDF and Q-Q plots are presented which supported the outcome of the 
analysis. 
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The most appropriate procedures in the inventory organization area are inventory arrangements based on ABC 
investigation, a well-known technique for establishing the objects in a different collection, giving their status 
and principles. This research Bi- A mathematical goal to advance the inventory group founded on the ABC. The 
Planned model instantly improves the amenity level, the amount of inventory grouping, and the number of due 
things. An Arithmetical model is available in this study to categorize inventory objects, considering significant 
revenue and rate decrease catalogues. The model aims to maximize the net gain of available items. Economic 
and inventory constraints are also taken into account. The Benders decay and Lagrange reduction procedures 
respond to classical arithmetical stands. The outcomes of the two answers are then equated. TOPSIS and 
numerical examinations estimate the planned answers and choose the best. Later, numerous sensitivity studies 
on the classic were completed, which assists inventory control executives in regulating the outcome of 
inventory administration rates configured for optimum verdict production and element grouping. The 
Arithmetical diagram was run for ten different arithmetic instances, and the results of the two suggested 
explanations were statistically equated using a t-test. As a result, the TOPSIS technique was appropriate; the 
Lagrangean approach was chosen as the more fabulous technique. 
 
 
BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS  
OF POISSON TYPE RAYLEIGH CLASS MODEL ....................................................... 98  
 
Rajesh Singh, Preeti A. Badge, Pritee Singh 
 
In this article, two-sided Bayesian interval is proposed for the parameters of Poisson type Rayleigh class 
software reliability growth model. In this work, the failure intensity function, mean time to failure function and 
likelihood function of this model have been derived by considering parameter total number of failures i.e. 𝛾0 and 
scale parameter 𝛾1. The mathematical expressions of Bayesian interval for the parameters have been obtained by 
considering non informative priors. The performance of proposed Bayesian interval is studied on the basis of 
average length and coverage probability. Average length and coverage probability is obtained by using Monte 
Carlo simulation technique after generating 1000 random samples. From the obtained results, it is concluded 
that Bayesian interval of parameters perform better for appropriate choice of execution time and certain values 
of parameters. 
 
 
AN INFERENTIAL STUDY OF DISCRETE BURR-HATKE EXPONENTIAL 
DISTRIBUTION UNDER COMPLETE AND CENSORED DATA .......................... 109  
 
Arvind Pandey, Ravindra Pratap Singh, Abhishek Tyagi 
 
In this article, a new one-parameter discrete distribution called discrete Burr-Hatke exponential distribution is 
introduced and its mathematical characteristics are thoroughly investigated. The proposed distribution is 
capable of modelling over-dispersed, positively skewed, decreasing failure rate, and randomly right-censored 
data. We have also introduced many statistical properties including moments, skewness, kurtosis, mean 
residual life and mean past lifetime, index of dispersion, coefficient of variation, stress strength parameter, 
quantile function, and order statistics. Method of maximum likelihood is used to estimate unknown model’s 
parameter under complete and censored data. In addition, a technique for generating randomly right-censored 
data from the proposed model is provided. To evaluate the behaviour of the estimator with complete and 
censored data, two simulation studies are presented. Two complete and two censored datasets from various 
disciplines are studied to demonstrate the significance of the suggested distribution in comparison to the 
existing discrete probability distributions. 
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This study uses percentiles under the exponentiated Rayleigh distribution to build a skip lot sampling plan of 
the SkSP-V type for a life test. A truncated life test may be carried out to determine the minimum sample size 
to guarantee a specific percentage lifetime of products. In particular, this paper highlights the construction of 
the Skip lot Sampling Plan of the type SkSP-V by considering the Singe Sampling Plan as reference plans for 
life tests based on percentiles of Exponentiated Rayleigh Distribution. Calculations are made for various quality 
levels to determine the minimum sample size, prescribed ratio, and operational characteristic values. The 
proposed sampling plan, which is appropriate for the manufacturing industries for the selection of samples, is 
also analyzed in terms of its parameters and metrics. The curve is produced after tabulating the operating 
characteristic data of the plan. Illustrations are provided to help you comprehend the plan. In addition, it 
addresses the feasibility of the new strategy. 
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R. K. Yadav, N. Nandal, S.C. Malik 
 
We describe the development of a stochastic model for a computer system with cold standby redundancy, 
priority and failure of service facility. A computer system (called a single unit) means the simultaneous 
working of its hardware and software components. The system has one more unit (called computer system) that 
can be used as and when required at the failure of any of the hardware/software components of the initially 
operative computer system. A single repair facility is made available to rectify the faults which occur due to the 
failure of hardware and software components. The failed hardware component undergoes for repair immediately 
while failed software is up-graded. The service facility is subjected to failure during hardware repair. The 
provision of perfect treatment has been made for the failed service facility. The components work as new after 
repair and up-gradation with the same life time distribution. The priority is given to the software up-gradation 
over the hardware repair. In steady state, the expressions for some important reliability measures have been 
derived using the well known semi-Markov process and regenerative point technique. The behavior of some 
useful reliability characteristics has been observed for particular values of the parameters related to failure 
times, repair and up-gradation times and treatment time which follow negative exponential distribution. 
 
 
M/M/∞ Queue with Catastrophes and Repairable Servers ......................................... 143  
 
Gulab Singh Bura 
 
An infinite server Markovian queueing system with randomly occurring breakdowns and non zero 
exponentially distributed repair time is proposed. Upon arrival, a catastrophes deactivate all the servers and 
system is under catastrophic failure. Immediately, a repair process is started and after successful repair the 
system is ready to serve the newly arrived customers. Continued fraction techniques have been used to obtain 
the time dependent probabilities of the studied model. The stationary probability distribution for the number of 
customers in the system is also derived. Some important stationary as well as transient moments are also 
determined. Further, The availability and reliability of the system under consideration are investigated. Finally, 
some graphical results are presented to visualize the model practically. 
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CH. Uma Swetha, N. Ravishankar, Indira Singuluri 
 
The transportation problems have much utilization in logistics and supply chains for minimizing costs. In real 
life circumstances, the limitations of transportation models may not be known absolutely because of 
unmanageable elements. In the several research papers the transportation costs, availability and demands of the 
commodity are shown as general fuzzy numbers and L-R flat fuzzy numbers for minimizing the transportation 
cost using different algorithms. But in this article, proposed the fuzzy costs, supply, and demands of the 
commodity at origins and destinations are taken as L-R type hexagonal fuzzy numbers for obtaining the 
optimal solution of unbalanced and balanced fuzzy transportation model by using ranking function to get 
minimum transportation cost. Here in, the numerical examples are also included. It is very simple to express 
and execute in real world transportation problem for decision maker. 
 
Solving Bi-objective Assignment Problem under 
Neutrosophic Environment ............................................................................................... 164  
 
S. Sandhiya, D. Anuradha 
 
The assignment problem (AP) is a decision-making problem that is used in production planning, industrial 
organizations, the economy and so on. As the single objective AP is no longer sufficient to handle today's 
optimization problems, bi-objective AP (BOAP) is considered. This research article introduces BOAP in 
neutrosophic environment. The neutrosophic BOAP (NBOAP) is formulated by adding the elements of cost 
matrices with single-valued trapezoidal neutrosophic numbers (SVTrNNs). A new method namely, fixing 
point approach (FPA) is proposed in this paper. The aim of this study is not only to determine the set of efficient 
solutions but also to find the optimal compromise solution for NBOAP using FPA. The proposed approach is 
elucidated with a numerical example and its solutions are plotted in a graph using MATLAB, which 
demonstrates its efficiency and optimality in practical aspects. This approach is more profitable for decision 
makers (DMs) and more efficient than other existing approaches because it provides the best optimal 
compromise solution in a neutrosophic environment. 
 
Fuzzy Linear Programming Approach for Solving 
Production Planning Problem .......................................................................................... 176  
 
Mahesh M. Janolkar, Kirankumar L. Bondar, Pandit U. Chopade 
 
One of the various optimization methods that addresses optimization under uncertainty is fuzzy linear 
programming. This model can be used when there is ambiguity in the situation because it is not precisely 
specified or when the problem does not require an exact value. With fuzzy linear programming, there is a range 
of grey between the two extremes as opposed to binary models, where an event may only be either black or 
white. As a result, it broadens the range of potential applications because most scenarios involve a spectrum of 
values rather than a bipolar state. In this article, a new FLP-based method is developed using a single MF, 
called modified logistics MF. The modified MF logistics and its modifications taking into account the 
characteristics of the parameter are from the analysis process. This MF was tested for useful performance by 
modeling using FLP. The developed version of FLP provides confidence in the existing IPPP application. This 
approach to resolving the IPPP can get feedback from the decision maker, the implementer and the analyst. In 
this case, this process can be called FLP interaction. FS self-assembly for MPS problems can be developed to 
find satisfactory solutions. The decision maker, researcher and practitioner can apply their knowledge and 
experience to get the best results. 
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Muthukrishnan. R , Kalaivani. S 
 
In machine learning, support vector machines (SVM) are supervised learning models with associated learning 
algorithms that analyze data for classification and regression analysis. SVM is one of the most robust 
prediction method based on statistical learning frameworks. Regression is a statistical method that attempts to 
determine the strength and character of the relationship between dependent and independent variables. This 
paper explores the idea of support vector Regression. The most commonly used classical procedure is Least 
Squares, which is less efficient and very sensitive when the data contains outliers. To overcome this limitations, 
alternative robust regression procedures exist such as LMS regression, S-estimator, MM-estimator and 
Support Vector Regression (SVR). In this study, the comparisons have made for the classical regression 
procedure and the robust regression procedures. In that, various measures of errors are much efficient when we 
work with robust regression procedures. In this paper, an attempt has been made to review the existing theory 
and methods of SVR. 
 
 
The Seasonal Effect of Working Conditions of an Ice-cream Plant .......................... 192  
 
Upasana Sharma, Drishti 
 
An ice-cream plant’s workings are analyzed in the summer and winter seasons of the paper. The ice-cream unit 
along with the other three units i.e., flavoring, freezing and combined flavouring and freezing units are always 
operational in summers, due to the high demand, while in winters the combined flavoring and freezing unit is 
kept in cold standby as a backup in case there is a demand for ice-cream. In this work, the semi-Markov process 
and the regenerative point technique have been used to analyze the system. Numerical analysis has been 
conducted using MATLAB. A variety of measures have been developed to evaluate the effectiveness of a system. 
The Code Blocks have been used in interpreting the graph in the specific case presented. All evaluation is based 
on the milk production data collected by the plant. Improvements to the system performance will lead to 
increased profits. Similar techniques can be applied to other systems. 
 
 
An Upgraded Approach to Solve Fuzzy Transportation Problems ........................... 204  
 
Kaushik A Joshi, Kirankumar L. Bondar, Pandit U. Chopade 
 
TP has many applications and applications and applications to reduce costs. A good algorithm has been 
developed to adjust the TP in the context of all given parameters, namely the supply, demand and TC team one, 
well. However, in real applications, there are many different situations due to uncertainty. It is therefore 
important to study PT in an uncertain environment. In this paper, an updated procedure is proposed to fix FTP 
where all parameters represents the non-triangular FN. The first is to use a non-trivial assembly to convert 
FTP to an LP with FC and net resistance. The second is to use a new vending system to turn the problem-
solving lab into a three-wire lab. The value of a well-updated system is assessed compared to existing systems 
from an application model. The results obtained show that the updated method proposed in this study is simpler 
and more efficient than some existing methods commonly used in literature. 
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Distribution under Symmetric and Asymmetric Loss Functions .............................. 218  
 
Proloy Banerjee,	Shreya Bhunia 
 
In this article, minimax estimation of the scale parameter λ of the inverse Rayleigh distribution is performed 
under symmetric (QLF) and asymmetric (SLELF and GELF) loss functions by applying the Lehmann’s 
theorem (1950). An extended Jeffrey’s prior and gamma prior are assumed to derive the minimax estimators 
under each of the considered loss functions. An extensive simulation study is carried out to compare the 
performance of the minimax estimators with the maximum likelihood (MLE), which is traditionally used as a 
classical estimator, on the basis of biases and mean squared errors (MSE). The obtained results suggest that 
under the assumption of extended Jeffrey’s prior, minimax estimators with positive c values are superior as 
compared to the MLE. Moreover, it is found that in most of the cases, minimax estimator under quadratic loss 
function (QLF) performs satisfactory on the assumption of gamma prior. 
 
 
The power continuous Bernoulli distribution: Theory and applications ................ 232  
 
Christophe Chesneau, Festus C. Opone 
 
The continuous Bernoulli distribution is a recently introduced one-parameter distribution with support [0, 1], 
finding numerous applications in applied statistics. The idea of this article is to propose a natural extension of 
this distribution by adding a shape parameter through a power transformation. We introduce the power 
continuous Bernoulli distribution, aiming to extend the modeling scope of the continuous Bernoulli 
distribution. Basics of its mathematical properties are derived, such as the shapes of the related functions, the 
determination of various moment measures, and an evaluation of the overall amount of its randomness via the 
Rényi entropy. A statistical analysis of the distribution is then performed, showing how it can be applied when 
dealing with data. Estimates of the parameters are discussed through the maximum likelihood method. A Monte 
Carlo simulation study investigates the asymptotic behavior of these estimates. The flexibility of the power 
continuous Bernoulli distribution in real-life data fitting is analyzed using two data sets. Also, fair competitors 
are considered to highlight the accuracy of this distribution. At all stages, numerous graphics and tables 
illustrate the findings. 
 
 
Stress-strength Reliability for Equi-correlated Multivariate 
Normal and its estimation ................................................................................................. 249  
 
Anirban Goswami, Babulal Seal 
 
In this article it is mainly focused on discussion about estimation of stress-strength reliability under equi-
correlated multivariate setup. It is seen in some situations that the components of a system are equi-correlated. 
Generally, the form of the equi-correlation structure within the components of a system is known for a given 
situation, however parameters that are involved in the equi-correlation structure always unknown. In this 
article, we propose a procedure to compute and estimate the stressstrength reliability R= Pr(𝒂!𝒙 > 𝒃!𝒚) when 𝒙 
and 𝒚 are distributed non-independently equicorrelated multivariate normal distribution, where 𝒂 and 𝒃 are 
two known vectors. Here we have proposed the method of moments estimator to estimate these unknown 
parameters. Actually, we want to find out overall strength is larger than overall stress. In order to do that we 
take 𝒂!𝒙 and 𝒃!𝒚 as their representatives e.g. principal components of the respective vectors do the job 
approximately. An asymptotic distribution used to obtain confidence intervals for the stress-strength 
reliability. The performance of these intervals checked through the simulation study. Finally, we provide a real 
data analysis. 
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RELIABILITY ANALYSIS FOR GDC SYSTEM USING REPAIR  
AND REPLACEMENT FACILITY IN PISTON FOUNDRY PLANT ........................ 268  
 
Raman Gill, Upasana Sharma 
 
The system in industries is greatly impacted by failure. Eliminating these defects is therefore essential for 
enhancing system performance. This study aims to assess the range of repair/replacement facilities in the GDC 
(Gravity Die Casting) system at the Piston Foundry Plant. Two sub-units are connected to one main unit, 
which makes up the GDC system. Any component failure results in system failure. In this situation, the system 
will first attempt to be repaired, and if that is unsuccessful, it will be replaced. To operate effectively, the 
primary unit needs to be built of aluminium alloy (Al). Lack of raw materials is what leads to a system failing. 
Using semi-Markov processes and the regenerating point method, the aforementioned measurements were 
computed numerically and graphically. The results of this study are unusual since no prior research has 
concentrated on the GDC system repair/replacement facilities at piston foundries. The conclusions, according 
to the discussion, are very helpful for businesses who manufacture pistons and utilise the GDC system. 
 
 
Comparison of Bridge Systems with Multiple Types of Components .................... 282  
 
Garima Chopra, Deepak Kumar 
 
This paper aims to compare some bridge systems with multiple types of components in stochastic, hazard rate, 
and likelihood ratio order. Such systems are generally used in the designing and production industries. These 
systems are supported by a buffer store that balances the fluctuation in two production lines during the 
production process. The survival signature tool and distortion function technique are employed to compare the 
performance of four different bridge systems. Survival signature and henceforth survival function is computed 
for each considered system. The findings of comparisons are facilitated with the help of tables and figures. The 
comparison of large size coherent systems based on the structure-function approach is quite challenging. As 
this study is based on survival signature, so it is not so complex and has future scope. 
 
 
Classical and Bayesian Estimation of Parameter of 
SSE(e)-distribution Under Type-II Censored Data ...................................................... 297  
 
P. Kumar, D. Kumar, P. Kumar, U. Singh 
 
In this present piece of work, we have considered a lifetime distribution based on trigonometric function called 
SSE(e)-distribution and discuss its various properties which have not been added previously by host as well as 
any other authors. This distribution is useful and a good contribution in research under trigonometric function. 
We are deriving some more useful properties such as moments, conditional moments, mean deviation about 
mean, mean deviation about median, order statistics etc. Estimation of parameter has been done for both 
classical and Bayesian paradigms under Type-II censored sample. Simulation study has also been carried out to 
know the progress of the estimators in the sense of having smallest risk (over the sample space) at the long-run 
use. 
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Statistical properties and estimation procedures for a new 
flexible two parameter lifetime distribution ................................................................. 311  
 
S. K. Singh, Suraj Yadav, Abhimanyu Singh Yadav 
 
In this article, a new transformation technique based on the cumulative distribution function is proposed, the 
proposed transformation technique is very useful to generate a class of lifetime distribution. The various 
statistical properties of the proposed transformation method are studied. Further, the proposed technique is 
illustrated by considering exponential distribution as a baseline distribution. Various statistical properties such 
as survival and hazard rate, moments, mean deviation about mean and median, order statistics, moment 
generating function (MGF), Bonferroni’s, and Lorenz curves, entropy, stressstrength reliability have been 
discussed. Different classical estimation methods are used to estimate the unknown parameters. Finally, two 
real data sets are considered to justify the use of the proposed distribution in real scenario. 
 
 
A DIFFERENT INITIATIVE TO FIND AN OPTIMAL SOLUTION  
TO THE TRIANGULAR FUZZY TRANSPORTATION PROBLEM  
BY IMPLEMENTING THE ROW-COLUMN MAXIMA METHOD ......................... 331  
 
A. Kokila, G. Deepa 
 
In this paper, we discussed an issue in fuzzy transportation problem, which involves fuzzy costs, fuzzy supply, 
and fuzzy product needs. The goal of this article is to convey the item from point of origin to point of 
destination at the least possible cost. For fuzzy transportation problems with balance and unbalance types, the 
proposed technique provides a superior optimal. Transportation costs, supply, and demand are represented by 
generalized triangular fuzzy numbers using this proposed named Row - Column Maxima Method (RCMM). A 
numerical example of a fuzzy transportation problem is illustrated and the solution is compared with the 
outcomes of other approaches. This method reduces iterations and which help to understand and implement 
easily in real life applications. 
 
 
A METHOD FOR GENERATING LIFETIME MODELS 
AND ITS APPLICATION TO REAL DATA .................................................................. 344  
 
Fasna K 
 
In the present work, we are going to propose a new transformation called Beta transformation. The new model 
includes the exponential distribution as a special case and it is known as Beta transformed exponential(BTE) 
distribution. We have been obtained its various statistical properties such as moments, moment generating 
function, median, hazard rate function, entropies, and order statistics. Parameters of BTE distribution are 
estimated by the method of maximum likelihood, Cramer-von-Mises and method of least square. Monte Carlo 
simulation is performed in order to investigate the performance of these estimates. Finally, two data sets have 
been analyzed to show how the proposed model works in practice. 
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Second Order Sliding Mode Control for Robust Performance of the Systems ...... 358  
 
V. S. Biradar, G. M. Malwatkar 
 
An integral PID control sliding surface with first order filter is proposed in this paper to the systems with 
single-input single-output (SISO). In this The developed sliding mode controller results well, even though 
there are differences in the model of the system via parametric uncertainty. To verify its applicability to 
disturbances, the presented work validates the controller performance with the application of an external load. 
An integral and filtered type sliding surface has advantages in terms of the stability of the systems. The 
proposed controller properties of stability and robustness are proven by the Lyapunov’s stability theorem. By 
the adoption of switching gain with predetermined parameters of system, the chattering problem phenomenon is 
greatly minimized. Therefore, the proposed controller in this work is appropriate for extended use in real world 
systems. In this method proposed control is verified using simulation examples and results for its performance. 
It will be compared to a similar controller shown in the previous literature work. 
 
An Effective Sentiment Analysis in Hindi-English Code-Mixed  
Twitter Data using Swea Clustering and Hybrid BLSTM-CNN Classification ..... 371 
 
Abhishek Kori, Jigyasu Dubey 
 
Sentiment Analysis is the process of examining the individual’s emotions. In tweet sentiment analysis, 
opinions in messages are categorized into positive, negative and neutral categories. A clustering-based 
classification approach is used to increase the accuracy level and enhance the performance in sentiment 
classification. The input dataset comprises of Hindi-English code-mixed text data. Initially, the input text data 
is pre-processed with different pre-processing techniques such as stop word removal, tokenization, Stemming, 
lemmatization. This effectively pre-processes the data and makes it appropriate for further processing. 
Afterwards, effective features such as Count Vectors, Modified term frequency-inverse document frequency 
(MTF-IDF), Feature hashing, Glove feature and Word2vector features are extracted for enhancing the 
classification performance. Afterwards, Sentiment word embedding-based agglomerative (SWEA) clustering is 
presented for effective sentiment feature clustering. Finally, a hybrid Bidirectional long shortterm memory-
convolutional neural network (Hybrid BLSTM-CNN) is used to accurately classify tweet sentiments into 
positive, negative, and neutral. Here, modified horse herd optimization (MHHO) approach is used for weight 
optimization in Hybrid BLSTM-CNN. This optimization approach further enhances the performance of 
classification. The dataset used for the implementation is a Hindi-English mixed dataset. The experimental 
result significantly improves the different existing approaches in terms of accuracy, precision, recall, and F-
measure. 
 
Confidence intervals for the reliability characteristics via 
different estimation methods for the power Lindley model ...................................... 392  
 
Abhimanyu S.Yadav, P. K. Vishwakarma, H. S. Bakouch, Upendra Kumar, S. Chauhan 
 

In this article, classical and Bayes interval estimation procedures have been discussed for the reliability 
characteristics, namely mean time to system failure, reliability function, and hazard function for the power 
Lindley model and its special case. In the classical part, maximum likelihood estimation, maximum product 
spacing estimation are discussed to estimate the reliability characteristics. Since the computation of the exact 
confidence intervals for the reliability characteristics is not directly possible, then, using the large sample 
theory, the asymptotic confidence interval is constructed using the above-mentioned classical estimation 
methods. Further, the bootstrap (standard-boot, percentile-boot, students t-boot) confidence intervals are also 
obtained. Next, Bayes estimators are derived with a gamma prior using squared error loss function and linex 
loss function. The Bayes credible intervals for the same characteristics are constructed using simulated 
posterior samples. The obtained estimators are evaluated by the Monte Carlo simulation study in terms of mean 
square error, average width, and coverage probabilities. A real-life example has also been illustrated for the 
application purpose. 
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Inventory Model with Truncated Weibull Decay Under Permissible  
Delay in Payments and Inflation Having Selling Price Dependent Demand ........ 413  
 
K Srinivasa Rao, M Amulya, K Nirupama Devi 
 
For optimal utilization of resources, the inventory models are required in several places such as market yards, 
production processes, warehouses, oil exploration industries and food vegetable markets. Huge work has been 
produced by several researchers in inventory models for obtaining optimal ordering quantity and pricing 
policies. This paper addresses an EOQ model for deteriorating items having Weibull decay under inflation and 
permissible delay in payments. It is considered that the demand of items is a function of selling price. It is 
further assumed that the decay of items starts after certain period of time which can be well characterized by 
truncated Weibull probability model for the life time of the commodity. The optimal ordering and pricing 
policies of this system are derived and analyzed in the light of the input parameters and costs. Through 
sensitivity analysis it is demonstrated that the delay in the payments and rate of inflation have significant effect 
on the optimal policies. This model is very useful in the analyzing market yards where sea foods, vegetables, 
fruits, edible oils are stored and distributed. 
 
 
Comparison of Queuing Performance Using Fuzzy Queuing Model and 
Intuitionistic Fuzzy Queuing Model with Infinite capacity / /1 FM FD  ................. 429  
 
S. Aarthi, M. Shanmugasundari  
 
Under assorted fuzzy numbers, we portray an FM/FD/1 queuing model with an unrestrained limit. The 
foremost target of this paper is to compare the efficacy of an FM/FD/1 queuing model based on fuzzy queuing 
theory and intuitionistic fuzzy queuing theory. Birth (arrival) and death (service) rates are thought to be 
triangular and triangular intuitionistic fuzzy numbers. The fuzzy consequence of unpredictability modeling is 
a fuzzy random variable because arbitrary events can only be recognized in an undefined manner. As a 
consequence, it is essential to interpret the direct correlation between volatility and vagueness. The lining 
miniature's prosecution dimensions are fuzzified and then examined using arithmetic and logical operations. 
The evaluation metrics for the fuzzy queuing theory model are furnished as a range of outcomes, meanwhile, the 
intuitionistic fuzzy queuing theory model has plenty of virtues. An approach is conducted to ascertain quality 
measures using a methodological approach in which fuzzy values are preserved without being incorporated into 
crisp values, allowing us to draw scientific conclusions in an uncertain environment. The arithmetical precepts 
are defined in dealing with various fuzzy numbers to test the model's technical feasibility. A comparison 
illustration is constituted for each fuzzy number. 
 
 
ANALYSIS OF A TWO-STATE PARALLEL SERVERS 
RETRIAL QUEUEING MODEL WITH BATCH DEPARTURES .............................. 443  
 
Neelam Singla, Sonia Kalra 
 
This paper deals with the transient state behavior of an M/M/1 retrial queueing model contains two parallel 
servers with departures occur in batches. At the arrival epoch, if all servers are busy then customers join the 
retrial group. Whereas, if the customers find any of one server is free then they join the free server and start its 
service immediately. Here, we assume that primary customers arrive according to Poisson process. The retrial 
customers also follow the same fashion. Service time follows an exponential distribution. Explicit time 
dependent probabilities of exact number of arrivals and exact number of departures when both servers are free 
or when one server is busy or when both servers are busy are obtained by solving the difference differential 
equation recursively. Some important verification and conversion of two-state model into single state are also 
discussed. Some of the existing results in the form of special cases have been deduced. 
 

17 



Table of Contents RT&A, No 4 (71) 
Volume 17, December 2022  

 

 
The Transmuted Weibull Frechet Distribution: Properties and Applications ....... 453  
 
Joseph Thomas Eghwerido 
 
The behaviour of everyday real life processes played a greater role in distribution theory. Thus, this article 
proposes a transmuted Weibull Frechet (TWFr) distribution for modeling real life datasets. Of most important, 
the statistical properties of the TWFr distribution such as the hazard, survival functions, order statistic, 
quantile, odd, cumulative functions were derived and examined. A simulation study to examine the 
performance of the TWFr distribution was also conducted. A glass fiber data and breaking stress of carbon data 
real life application were used to showcase the performance of the proposed model. The results showed that the 
TWFr distribution competes favourably well with other types of continuous distributions in the Frechet family 
of distributions. 
 
 
AN IMPROVED DIFFERENCE CUM – EXPONENTIAL RATIO  
TYPE ESTIMATOR IN RANKED SET SAMPLING ................................................... 469  
 
Khalid Ul Islam Rather, Asad Ali, M. Iqbal Jeelani 
 
Ranked set sampling is an approach to data collection originally combines simple random sampling with the field 
investigator's professional knowledge and judgment to pick places to collect samples. Alternatively, field screening 
measurements can replace professional judgment when appropriate and analysis that continues to stimulate substantial 
methodological research. The use of ranked set sampling increases the chance that the collected samples will yield 
representative measurements. This results in better estimates of the mean as well as improved performance of many 
statistical procedures. Moreover, ranked set sampling can be more cost-efficient than simple random sampling because 
fewer samples need to be collected and measured. The use of professional judgment in the process of selecting sampling 
locations is a powerful incentive to use ranked set sampling. This paper is devoted to the study, we introduce an approach 
to the mean estimators in ranked set sampling. The amount of information carried by the auxiliary variable is measured 
with the on populations and samples and to use this information in the estimator, the basic ratio and the generalized 
exponential ratio estimators are as an improved form of a difference cum exponential ratio type estimator under the 
ranked set sampling in order to estimate the population mean of study variate Y using single auxiliary variable X. The 
expressions for the mean squared error of propose estimator under ranked set sampling is derived and theoretical 
comparisons are made with competing estimators. We show that the proposed estimator has a lower mean square error 
than the existing estimators. In addition, these theoretical results are supported with the aid of some real data sets using 
R studio. Therefore, Under RSS architecture, a better difference cum exponential ratio type estimator has been suggested. 
The estimator's mathematical form has been developed, and its efficiency requirements have been developed in relation to 
various already-existing estimators from the literature. By imputing various values for the constants used in the creation 
of our proposed estimator, we also provide several specific situations of our estimator. 
 
 
Bayesian Analysis of Type II Generalized Topp–Leone Accelerated  
Failure Time Models Using R and Stan .......................................................................... 477  
 
Devashish, Athar Ali Khan 
 
With a Bayesian framework, the current study intends to fit the Type II generalized Topp–Leone-G (TIIGTL-G) 
model as an accelerated failure time (AFT) model to censored survival data. In this paper, we have obtained and 
analysed three AFT models using Type II Generalized Topp-Leone (TIIGTL) distribution as generator and 
considering Weibull, Exponential, and Log-Logistic as a baseline distribution. The fitting of these models to the 
censored survival data is done with the help of R and STAN. A comparison of these two models is conducted, 
and the best model is chosen using the Bayesian model evaluation criteria LOOIC and WAIC. 
 
 

Y
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Reliability and Performance Analysis of a Complex Manufacturing  
System with Inspection facility using Copula Methodology ..................................... 494  
 
Surabhi Sengar, Mangey Ram 
 
This paper deals with the assessment of various reliability factors of a real-life manufacturing system having 
inspection facility. This multistate manufacturing system have five workstations those are connected in series 
configuration as: W1, W2, W3, W4, W5. Workstations W2 and W4 has the configuration 2-out-of -3: G and 1-
out-of-3: F. Due to failure of the any of the workstation, whole manufacturing system can completely fail. Apart 
from this machine failure can also make system down. To avoid sudden failure in the system pre-emptive 
maintenance strategy has been adopted. This is a corrective maintenance action before a failure occurs and 
scheduled during off days. Risk analysis is done because of fault of W5 workstation in material quality 
inspection. Probability distributions like exponential time distribution is followed by all failures and general 
time distribution by all repairs. To study the probabilistic behavior of the system in different possible transition 
states, Markov process have been used. Supplementary variable technique and copula method of finding joint 
probability distribution have been used to obtained various reliability features such as steady state behavior of 
the system, reliability function, availability, Mean time to failure, sensitivity analysis and profit analysis. 
 
 
On the Minimum of Exponential and Teissier Distributions .................................... 509  
 
Vishwa Prakash Jha, V. Kumaran 
 
In reliability theory minimum of two random variables has a significant meaning, and models with increasing 
failure rates play a vital role. Motivated by these facts, in this article, a two-parameter lifetime distribution with 
an increasing failure rate is constructed by considering the method of a minimum of two independent random 
variables following the exponential and Teissier distributions and studied in detail. Several exciting features, 
such as moments, quantiles, Bonferroni and Lorenz curves, entropies, stress–strength reliability, moments of a 
residual lifetime, and order statistics, are derived for the proposed distribution. For the estimation purpose, 
eight different techniques have been used, including maximum likelihood, ordinary least square, weighted least 
square, Cramer-von Mises, maximum product spacing, Anderson-Darling, right-tailed Anderson-Darling, and 
bootstrapping (parametric and nonparametric). The performance of these estimators is compared using three 
real datasets. The exact Fisher information matrix elements are derived, and confidence intervals based on the 
information matrix and bootstrapping techniques are constructed. A simulation study is carried out to see the 
efficiency of the maximum likelihood in terms of mean square error and bias. Negative log-likelihood, Akaike 
information criteria, Bayesian information criteria, Consistent Akaike information criteria, and Hannan-Quinn 
information criteria are the goodness-of-fit statistics employed. Furthermore, other nonparametric test statistics 
such as Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises are used for model selection. 
Moreover, three real datasets related to epidemiology, seismology, and reliability are modeled and compared 
with exponential, exponentiated exponential, Lindley, exponentiated Lindley, Rayleigh, exponentiated 
Rayleigh, Gompertz, exponentiated Gompertz, Weibull, and exponentiated Weibull distributions to 
demonstrate how the suggested model performs in practice. And it is observed that the proposed distribution 
provides a better fit among all considered models, according to most of the test statistics. The proposed lifetime 
distribution is unimodal and capable of modeling positive datasets with an increasing failure rate which 
contains Gompertz one-parameter model as a particular case. It is a simple model with only two parameters 
resulting from expressions for different characteristics that are analytically tractable. So, it is expected that it 
will be helpful in various disciplines where such types of data exist, such as reliability, lifetime modeling, and 
survival analysis. 
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ON CONSISTENCY OF BAYESIAN PARAMETER  
ESTIMATORS FOR A CLASS OF ERGODIC MARKOV MODELS ....................... 521  
 
A.I. Nurieva, A.Yu. Veretennikov 
  
The consistency of the Bayesian estimation of a parameter is shown for a class of ergodic discrete Markov 
chains. J.L. Doob’s method was used, offered earlier for the i.i.d. situation. The result may be useful in the 
reliability theory for models with unknown parameters, in the risk management in financial mathematics, and 
in other applications. 
 
On the Degree of Mutual Dependence of Three Events ............................................. 530  
 
Valentin Vankov Iliev 
 
We define degree of mutual dependence of three events in a probability space by using Boltzmann-Shannon 
entropy function of an appropriate variable distribution produced by these events and depending on four 
parameters varying, in general, within of a polytope. It turns out that the entropy function attains its absolute 
maximum exactly when the three events are mutually independent and its absolute minimum at some vertices 
of the polytope where the events are "maximally" dependent. By composing the entropy function with an 
appropriate linear function we obtain a continuous "degree of mutual dependence" function with the same 
domain and the interval [0, 1] as a target. It attains value 0 when the events are mutually independent (the 
entropy is maximal) and value 1 when they are "maximally" dependent (the entropy is minimal). A link is 
available for downloading a Java code which evaluates the degree of mutual dependence of three events in the 
classical case of a sample space with equally likely outcomes. 
 
Power Length biased weighted lomax distribution ..................................................... 543  
 
Shamshad Ur Rasool, S.P. Ahmad 
 
In this research paper, we have proposed the Power Length Biased Weighted Lomax Distribution (PLBWLD) as 
a new probability model. Moments, moment generating function, characteristic function, cumulant generating 
function, and reliability analysis such as survival function, hazard rate, reverse hazard rate, cumulative hazard 
function, and mills ratio are among the statistical features of PLBWLD that have been obtained here. Order 
statistics and PLBWLD’s generalized entropy are also calculated. Maximum likelihood estimation is used to 
estimate the parameters of the model. Finally for demonstration purposes an application to the real data sets is 
provided to understand the new probability model’s performance and flexibility. 
 
Inferences for two parameter Teissier distribution in case 
of fuzzy progressively censored data .............................................................................. 559  
 
Sudhanshu Vikram Singh, Vikas Kumar Sharma, Sanjay Kumar Singh 
 
In process of observing data, it is sometimes not possible to obtain data precisely and fuzzy methods are useful 
for analyzing such data sets. In this article, we propose location-scale family of the Teissier distribution for 
fitting fuzzy censored data sets. The maximum likelihood, least squares and Bayes estimators of the parameters 
of the Teissier distribution are constructed in the presence of the progressively fuzzy censored samples. In 
addition to that statistical properties of the distribution are also derived. Fitting of the tensile strengths of the 
carbon fibers is done using the proposed distribution with comparison to the location-scale families of the 
exponential, Maxwell and Lindley distributions. We found that the Teissier distribution can be effectively used 
for fitting complete and fuzzy censored data as well. 
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Record-based Transmuted Power Lomax Distribution:

Properties and its Applications in Reliability  ............................................................... 574

K.M.  Sakthivel,  V.  Nandhini

In this paper, we consider a record-based transmuted version of Power Lomax distribution and it is named as

Record-based Transmuted Power Lomax (RTPL) distribution. Further, we present several statistical properties

of the proposed distribution such as moments,  quantiles, stochastic ordering, order statistics, and its explicit     
expressions.  Some  of  its  reliability  measures  such  as  survival  function,  hazard  function,  cumulative  hazard

function, mean residual time, and mean inactivity time is also discussed. The maximum likelihood method is

used  to  estimate  the  parameters  of  the  RTPL  distribution  and  this  new  extended  model  is  applied  to  a  real

datasets to access the suitability and applicability of the model based on well-known information criteria and

test for goodness of fit. The simulation study is performed to verify the efficiency and asymptotic behavior of the         
maximum likelihood estimators.

Censoring and  Reliability  Inferences for  Power Lindley  Distribution

with  Application on  Hematologic  Malignancies  Data................................................. 593

Abbas Pak, Mohamed E. Ghitany

In this paper,  by using progressively type II censored samples, we discuss on estimation of the parameters of a

power  Lindley  model.  Maximum  likelihood  estimates  (MLE)  and  approximate  confidence  intervals  of  the          
unknown  parameters  are  obtained.  Then,  considering  squared  error  loss  function,  the  Bayes  estimates  of  the        
parameters  are  derived.  Because  there  are  not  closed  forms  for  the  Bayes  estimates,  we  use  Tierney  and

Kadane’s  technique,  to  calculate  the  approximate  Bayes  estimates.  Further,  the  results  are  extended  to  the

stress-strength reliability parameter involving two power Lindley distributions. The ML estimate of the stress-

strength parameter and its approximate confidence interval are obtained. Then, the Bayes estimates and highest           
posterior  density  credible  interval  of  the  involved  parameter  are  obtained  by  using  a  Markov  Chain  Monte

Carlo method. To evaluate the performances of maximum likelihood and Bayes estimators simulation studies

are conducted and two examples of real data sets are provided to illustrate the procedures.
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Abstract 

The article talks about a remarkable man and an outstanding scientist – Alexander Dmitrievich 

Soloviev. He was Doctor of Physics and Mathematics, Professor, Laureate of the State Prize of 

the USSR, Professor of the Probability Theory Department of the Faculty of Mechanics and 

Mathematics at Lomonosov Moscow State University. Alexander Dmitrievich lived an 

amazing creative life that can serve as an example for modern researchers. Victor Kashtanov, 

his student, shares his recollections and reflections on some episodes in the life of his teacher 

and friend.  
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. 

Such events happen in life that you only realize their significance many years later. One of 

such events in my life I consider my meeting with Alexander Dmitrievich Soloviev (Doctor of 

Physical and Mathematical Sciences, Professor, Laureate of the State Prize of the USSR, Professor of 

the Department of Probability Theory of the Faculty of Mechanics and Mathematics, Moscow State 

University named after M.V. Lomonosov, Professor, Department of Probability Theory, Faculty of 

Mechanics and Mathematics, Moscow State University, M.V. Lomonosov). Already, being a young 

specialist, working for a year after graduating from the Faculty of Mechanics and Mathematics of 

Moscow State University, in 1958 I went to work at Scientific Research Institute № 17 (NII-17) in the 

Mathematical Laboratory. At that time, A. D. Soloviev, a thirty-year-old associate professor at the 

Department of Mathematical Analysis of the Faculty of Mechanics and Mathematics, Moscow State 

University, was "moonlighting" in this laboratory (this was the former name of my part-time job). It 

was there that our first meeting took place. Later it turned out that we could have met earlier. I was 

told that he led classes in mathematical analysis in some groups of our course, but in our student 

group he was not. Later, my classmates talked about him as a good teacher - knowledgeable, fair, 

calm.  

In the mathematical laboratory, Alexander Dmitrievich solved a wide variety of problems. 

Naturally, practical problems were solved. Consequently, solutions had to be brought to numbers, 

complex cumbersome formulas had to be simplified, and the accuracy of the obtained approximated 

results had to be evaluated. This is where his highest mathematical qualification as an analyst 

became apparent. In 1955 Alexander Dmitriyevich defended his PhD thesis "The problem of 

moments for integer analytic functions", the thesis supervisor was the corresponding member of the 

USSR Academy of Sciences, Professor A. O. Gelfond. It is also necessary to note fruitful cooperation 

of Alexander Dmitrievich with Prof. M.A. Evgrafov (see joint works published in the Doklady of the 

1 Reprinted from: Kashtanov, V.A. About the teacher. Alexander Soloviev. Dependability. - 2010. - 

№2. - Moscow. Publishing House "TECHNOLOGIES". - С. 71-79. 
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USSR). (see joint papers published in Reports of the Academy of Sciences of the USSR: "On one 

general criterion of basis", vol. 113, no. 3; "Determination of convergence class of interpolation series 

for some problems", no. 113, no. 5; "On one class of reversible operators in the ring of analytic 

functions", no. 114, no. 6) - an important expert on asymptotic methods (M.A. Evgrafov "Asymptotic 

estimates and integer functions", Moscow, 1962). Alexander Dmitrievich had a perfect command of 

subtle analytical methods for constructing asymptotic expansions and asymptotic evaluations, 

which he successfully used in the study of practical problems. 

Mathematicians were also faced with the problem of studying stochastic models. At creation 

of radio equipment, the tasks of random processes processing, construction of estimations of 

correlation functions and spectral densities were solved. Tasks of evaluating reliability of developed 

equipment also arose. I have in front of me report "Mathematical Problems of Reliability of Radio-

Electronic Equipment", signed by Aleksandr Dmitrievich (original signature) and approved by the 

management on March 19, 1958. The content of the report is surprising. Firstly, it is felt that there is 

still no unified terminology accepted in this science. Therefore, the reliability of an element is 

understood as the probability of failure-free operation, there is no concept of failure rate, this 

function is called a reliability characteristic. On the other hand, the concept of an aging element is 

used, estimates are constructed from below of the probability of no-failure operation of an aging 

element, which depend on the numerical characteristics determined by statistical tests. It is 

characteristic for all works of Alexander Dmitrievich – to bring mathematical formulas to practical 

use because the numerical characteristics can be obtained by the results of statistical tests, the 

estimates from below give the guaranteed value of the indicator. Reliability of systems with arbitrary 

structure is investigated, reliability of elements of which depends on a condition of others.  

The content of a simple ordinary technical report shows how far Alexander Dmitrievich has 

advanced in formulating, solving, and understanding reliability problems. 

In the late 50's - early 60's of the last centuries there were quantitative accumulations of results 

in the mathematical reliability theory, separate mathematical models under different, sometimes 

very significant, limitations were investigated, in a certain sense the terminology was formed, and 

specialists began to speak the same language and to understand each other better. Alexander 

Dmitrievich took an active part in forming the principles of constructing the mathematical theory of 

reliability. Suffice it to point out the work "Mathematical justification of the reliability theory", 

published in 1958 (Radioelectronic Industry, No.4). 

Much later, a joint work "Mathematics and Reliability Theory" by B.V. Gnedenko and A.D. 

Soloviev was written (Izdatel'nye Znanie. New in Life, Science and Technology. Series 

"Mathematics, Cybernetics". №10. 1982), in which the authors outlined the history and their 

participation in this process. 

In 1960, the leadership of the laboratory (Yuri Alexandrovich Arkhangelsky, later Doctor of 

Physical and Mathematical Sciences, Professor of the Department of Theoretical Mechanics at the 

Faculty of Mechanics and Mathematics, Moscow State University) offered us young specialists, who 

had worked in the laboratory for three years, to go to graduate school. To my indescribable joy, 

Alexander Dmitrievich agreed to be my supervisor. I hope I did not let my teacher down in the 

future, since I was his first student, who defended both his master's and doctoral dissertations. So, 

our scientific cooperation and collaboration began. 

Since the early 60's Alexander Dmitrievich has been working with postgraduate students. But 

from the beginning of the 70's after his return from Cuba (Alexander Dmitriyevich spent several 

years there, being engaged in teaching and scientific work) the work with graduate students 

acquired a mass character. It should be noted that more than 30 postgraduate students under the 

guidance of Alexander Dmitrievich defended their doctoral theses. Some of them later became 

Doctor of Science. Let me mention the names of Doctor of Physical and Mathematical Sciences, 

Professor O. P. Vinogradov, Doctor of Physical and Mathematical Sciences, Professor A. M. Zubkov, 

Doctor of Physical and Mathematical Sciences, Professor O. Sakhobov. Alexander Dmitrievich never 

left his graduate students to the mercy of fate. His help was concrete and substantial. He spent a lot 

of time talking with a graduate student, showing ways to solve the problem, correcting mistakes. 
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Criticism was always benevolent. He was generous in imparting knowledge and new results. Suffice 

it to say that I had no joint work with my teacher until 1983. 

If we adhere to chronology, then the beginning and the middle of the 1960s contain the 

formation of the remarkable scientific team of B.V. Gnedenko, Yu.K. Belyaev, A.D. Soloviev, 

organization of the seminar on mathematical reliability theory at the Mechanical and Mathematical 

Faculty of MSU, organization of the Reliability Study and cycles of lectures at the Polytechnic 

Museum on reliability and progressive methods of quality control of products. Of special note is the 

writing of the monograph "Mathematical Methods in the Reliability Theory" in 1965 (Moscow. 

Nauka.1965). 

Writing a monograph summarizing the results of the development of the mathematical theory 

of reliability was an overdue necessity. Now, evaluating the appearance of this book, we can say 

that it has shaped domestic mathematical reliability theory and determined further ways of its 

development. It is a milestone in development of the domestic mathematical theory of reliability. 

Boris Vladimirovich Gnedenko defined in this monograph the subject of the mathematical 

theory of reliability, highlighting the life cycles of complex technical systems, defining the theoretical 

basis of the theory and the ultimate practical tasks facing it. 

"A general scientific discipline that studies general methods and techniques to be followed in 

designing, manufacturing, accepting, transporting and operating products to ensure maximum 

efficiency in the process of their use, as well as developing general methods of calculating the quality 

of devices according to the known qualities of their components" - this is the definition by B. V. 

Gnedenko.  

The book, published in 1965, on the one hand, summed up the development of the domestic 

mathematical theory of reliability, on the other hand, determined the further directions of 

development of this theory, defined the relationship of the mathematical theory of reliability with 

the classical probability theory, the theory of random processes with the theory of mass service, 

mathematical statistics. 

On this basis, the following areas were intensively developed at the time of writing: 

• Problems of predicting reliability and durability, studies of distributions of positive 

random variables and their properties (aging and aging distributions), 

• reliability characteristics of various structures (systems) under given distributions of 

no-failure times of their individual parts (study of distributions of functions from a 

set of random quantities) for restorable and non-restorable systems,  

• evaluation of reliability characteristics based on test results, construction of various 

test plans. 

At the stage of theory formation these very directions were considered by the authors to be 

the main ones. Therefore, basing on the conception of formation of mathematical reliability theory 

proposed by B. V. Gnedenko, the authors set forth in the monograph modern (at that time) results 

on estimation of reliability characteristics by test results (Y. K. Belyaev) and on research of reliability 

characteristics of different structures with elements of operation - restoration of failed elements (A. 

D. Soloviev). 

In the sections of the monograph written by Alexander Dmitrievich the strengths of his 

mathematical and analytical qualifications were evident. Yu. K. Belyaev wrote about it in 

"Reliability" magazine (№4, 2006). He meant the time when their joint work had not yet begun. Let 

us cite this quote: "At that time, I learned from V.A. Kashtanov that very similar problems interested 

Alexander Dmitrievich Soloviev, whom Victor Alexeevich considered (and it was in fact) an 

unsurpassed virtuoso of asymptotic methods of mathematical analysis. 

To the period of the early 1960s we start negotiations of Alexander Dmitrievich with Andrey 

Nikolayevich Kolmogorov about his transfer to the "Probability Theory" department. When this 

transfer took place, a group of authors was formed, which created a classical work called 

"Mathematical Methods in Reliability Theory". 

Much later, reviewing his scientific work, Alexander Dmitrievich wrote in a letter to Igor 

Nikolayevich Kovalenko about the stages of his scientific activity (we will cite this excerpt in full): 
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"My scientific work went through several stages: 

 

1. 1960s-70s. The construction of a mathematical theory of reliability; 

2. 1970-80s. Creation of asymptotic theory, which allows to estimate the reliability of 

restored systems under small load. The main thing here is the proof of the limit theorems of 

the uniform type, in which in the limit transition all parameters and functions defining the 

system change, and the limit transition itself is defined by some small functional; 

3. 1980s-90s. The transition from limit theorems to asymptotically exact bilateral inequalities 

from which, in particular, the limit theorems themselves follow; 

4. I've had several themes in recent years: 

• The study of restorable systems with arbitrary service disciplines. Finding 

asymptotically optimal disciplines; 

• Reliability assessment of restorable systems with high redundancy and finite load." 

 

As can be seen from the above quote, these periods have no clear boundaries, they overlap. For us it 

will be important to highlight the main ideas and achievements of Alexander Dmitrievich in these 

years. In the same letter Alexander Dmitrievich indicates his monograph "Mathematical Methods in 

the Reliability Theory" as the main work of the first period, which was republished many times in 

different countries. There are 7 editions of this monograph in Moscow, Berlin, Bucharest, New York, 

Budapest, and Japan during 1965-1972. 

In addition, more than 40 articles were written during this period. If we evaluate in general 

the places of publication and the nature of publications, we can trace a deep interest of practitioners 

(industry representatives) in the theoretical research of mathematicians. The main publications that 

published Alexander Dmitrievich's works are departmental journals: "Radioelectronic Industry," 

"Problems of Radioelectronics," and "Automation and Computer Engineering. Three articles were 

published in the collected articles "Cybernetics to the service of Communism" (1964), which collected 

papers delivered at three scientific seminars: on reliability theory (Dependability Section of the 

Scientific Council on Cybernetics under the Presidium of the USSR Academy of Sciences); on mass 

service theory (the Mechanical and Mathematical Department of the Lomonosov Moscow State 

University, the Moscow State University, the Moscow Engineering Physics Institute, the Central 

Research Institute of the USSR Academy of Sciences); and on mass service theory (the Department 

of Physics and Technology of the Moscow State University). A seminar on the theory of reliability 

was held jointly by the Department of Mechanics and Mathematics, Lomonosov Moscow State 

University, and the Popov Radio Engineering and Telecommunications Scientific Research Institute. 

A.S. Popov). The academic journals "Proceedings of the USSR Academy of Sciences, Technical 

Cybernetics" and "Proceedings of the USSR Academy of Sciences, OTN, Power Engineering and 

Automation" also published Alexander Dmitrievich's works of that period. 

For the second and third periods of AD's creative activity we refer to the monograph 

"Questions of the Mathematical Theory of Reliability", Moscow, Radio and Communications, 1983. 

In the preface to this monograph B.V. Gnedenko, describing the sections belonging to Alexander 

Dmitrievich, wrote: "The author managed to find an elegant manner of exposition, which allowed 

him to put an extensive material in a comparatively small volume. It is also noteworthy that the 

author does not make assumptions about the exponential distribution of the duration of no-failure 

operation or recovery time, and he managed to obtain general results under very broad assumptions. 

It is also important that in the limit theorems he obtained very accurate bilateral inequalities, which 

can be successfully used in practical situations.  

Note that in addition to the "traditional" sections and research directions written by A. D. 

Soloviev and Yu. K. Belyaev, other sections appeared in the 1983 book. I. N. Kovalenko 

complemented the material with the subsection "Methods of statistical modeling" (the chapter 

"Multidimensional Markov Processes that describe complex systems and their statistical modeling" 

and the chapter "Analytical-statistical method of calculation of characteristics of high-reliability 
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systems"). There also appeared the section "Problems of Optimization of Reliability and Efficiency 

of Functioning" written by E.Yu. Barzilovich, V.A. Kashtanov and I.A. Ushakov. If in the initial 

works the quality (efficiency) was estimated by distribution of the time of no-failure operation or by 

mathematical expectation of this time, then in the later works other indicators were investigated, 

which were defined as functionals built on trajectories of random processes describing evolution of 

a technical system. The solution of the problem was completed by the optimization of these 

functionalities (indicators). 

From the mid-1970s to the mid-80s, Alexander Dmitrievich published about 30 works, 

many of them written jointly with his graduate students.  

Note that Alexander Dmitrievich publishes his results during this period in the "Znanie" 

publishing house. This is since at the end of the 1960s the reliability cabinet begins to work on the 

premises of the Polytechnical Museum in Moscow, where the seminar on reliability and progressive 

methods of quality control of products, where mathematicians consult for industry representatives 

on practical problems of reliability arising during development of various apparatuses, is held. In 

the large auditorium of the Polytechnic Museum cycles of lectures on reliability for engineers are 

organized. The materials of the lectures are published in separate brochures. These were reviews of 

mathematical methods in reliability theory, the volume of materials was 40-50 pages. Let us point 

out three issues under the title "Fundamentals of the mathematical theory of reliability" (Moscow, 

Znanie, 1975). Of course, the mathematical results are adapted to the audience, but this gives the 

theory a practical orientation. Communication with the engineering audience allowed us to feel the 

applied problems, to describe new models, to formulate new problems. (Note that Alexander 

Dmitrievich had a great experience of delivering lectures at the Faculty of Mechanics and 

Mathematics of Moscow State University for specialists with higher engineering education and 

wishing to improve their mathematical qualification, for the so called "engineering stream"). Let's 

give the name of one of Alexander Dmitrievich's works, published after his lecture course for 

engineers: "Heuristic derivation of reliability characteristics of standby systems with fast restoration" 

(Moscow, Znanie, 1968). Such approach of Alexander Dmitrievich to the presentation of the material 

testifies to his desire to give practitioners a tool that could be easily used when solving practical 

problems.  

The practical orientation of Alexander Dmitrievich's mathematical works is constantly 

traced. For him, the main task was not only to get some dependence (formula, equation, limit 

theorem), but also to show how this result can be used, to bring the research to number and to 

develop practical recommendations. He sought to formulate simple sufficient conditions, the 

verification of which allowed this mathematical result to be used in practice. 

As noted above, Alexander Dmitrievich's research in the 80-90s dealt with subtle issues of 

asymptotic analysis of mass service and reliability models. He solves more complicated problems of 

constructing asymptotically accurate bilateral estimators, which allow not only to obtain the limiting 

values of the characteristics under study, but also to determine the convergence rates. The solution 

of these problems is related to the problem of summing up a random number of random terms. In 

his book "Boris Gnedenko in Memoirs of Students and Associates" (URSS. Moscow, 2006) I. N. 

Kovalenko wrote: "Boris Gnedenko's great merit was introducing into the mathematical theory of 

reliability the methods of summation theory of independent random variables. This stimulated the 

creation of a new direction - the limit theorems of the theory of redundant systems in the "triangular" 

scheme. The greatest contribution to the development of this direction was made by A.D. Solov'ev 

and his students...". 

The works devoted to the construction of asymptotically exact bilateral estimates of the 

characteristics under study were mentioned above. In a certain sense, the chapters written by 

Alexander Dmitrievich in his 1983 monograph are a milestone work. These materials summarized 

the results of the studies that began with the publications of 1976-1977. 

There are numerous examples in this book in which these two-way estimates can be used: 

• Loaded duplication with recovery; 

• Lightweight duplication with prophylactics; 
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• Temporary Reservation; 

• Loaded duplication with recovery. 

Let's mention works written together with O. Sahobov "Two-sided estimations of reliability 

of restored systems" (Izvestiya AS UzSSR, series Physics-Mat, ¹5, 1977), "Two-sided estimations of 

reliability in general redundancy model with one repair unit" (Izvestiya AS USSR. Technical 

Cybernetics, ¹4, 1977), "Two-sided estimations for system failure probability on one period of 

regeneration" (Izvestiya AS UzSSR, series Physics-Mat, ¹2, 1977). 

In the 90's Alexander Dmitrievich published several works on reliability estimation of 

different systems. In collaboration with D.G. Konstantinidis he wrote the paper "Uniform reliability 

estimation of a complex restorable system with unlimited number of repair units" (Vestnik (Herald) 

of MSU, Series Mathematics, Mechanics. No.3, 1991), "Reliability Assessment of a Complex 

Reconstruction System with Unlimited Number of Repair Units" (Probability Theory and its 

Applications, vol. 37, issue 1, 1992), "Reliability Assessment of a Cold Reserving with Restoration 

Model in Case of Unlimited Number of Repair Units" (jointly with A. P. Polyakov, Vestnik (Herald) 

of MSU, Math. No.5, 1992), "An Estimation of the Average Lifetime of Reconstructed Systems" 

(jointly with N.G. Karaseva, Vestnik (Herald) of MSU, Math. №5, 1998). 

All of Alexander Dmitrievich's co-authors mentioned in the latter papers were his graduate 

students, so it is obvious that all the mathematical ideas presented in these papers belong to his 

supervisor. 

Researchers have long seen the connection between reliability models and mass 

maintenance models. Alexander Dmitrievich, investigating reliability models of restorable systems, 

devoted several his works to the analysis of various maintenance and restoration disciplines. 

These works solve the problem of finding optimal recovery (maintenance) disciplines, 

which is fundamentally important from a practical point of view. One of the first works in this 

direction was the article "Optimal maintenance of restoring systems" (together with V.V. Kozlov. 

Izvestia of the Academy of Sciences of the USSR. Technical Cybernetics, Nos.3,4, 1977). This was 

followed by the paper "On a System with Maintenance Discipline of the First Demand with 

Minimum Remaining Length" (jointly with A. V. Pechinkin and S. F. Yashkov. Izvestia of the 

Academy of Sciences of the USSR. Technical Cybernetics, No.5, 1979). Let us also note the paper 

"Analysis of M/G/1/∞ system for different service disciplines" (The Theory of Mass Service. 

Proceedings of the All-Union School-Seminar. M. VNIISI, 1881), in which a wide range of service 

disciplines is investigated, a review of the results is given, and a list of characteristics obtained in 

closed form for various disciplines is given. 

Besides his works devoted to the analysis of mass-service and reliability models, Alexander 

Dmitrievich wrote some historical and mathematical works. Let us mention the works related to the 

history of asymptotic methods of analysis, devoted to the problems very close to his scientific 

interests. These include the work "On the History of the Creation of the Passage Method" (published 

jointly with S. S. Petrova. SPb. These include: "On the History of the Creation of the Passage Method" 

(together with S. S. Petrova, SPb), "Historical and Mathematical Studies, Vol. 35, 1994", "P. A. 

Nekrasov and the Central Limit theorem of Probability Theory" (M. Historical and Mathematical 

Studies, Second Series, Issue 2(37), 1997), and "Asymptotic Methods of Laplace" (M. Historical and 

Mathematical Studies, Second Series, Issue 4(39), 1999). 

Next, let us proceed to characterize the content of works on the mathematical theory of 

reliability and the ideas embedded in them. 

The first works concerned the construction of probabilistic characteristics of reliability of 

systems by the characteristics of its individual parts. In other words, it was about the study of 

functions from random variables. However, when studying the process of functioning, when the 

model includes restoration of failed subsystems, it becomes necessary to consider the evolution of 

the system in time. Therefore, random processes are used to describe the model. In his first works, 

Alexander Dmitrievich used Markov processes. Regarding one of them (1964) it was written: "A. D. 

Soloviev's large work "On Reserving without Recovery" is a serious study, where the theory of 

reserving is systematically outlined, and many questions are far advanced based on random 
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processes of death and reproduction" (see material from the editors in the article "Cybernetics - to 

the Service of Communism"). 

Alexander Dmitrievich sought to set and solve problems as much as possible under general 

assumptions with respect to the initial assumptions. Where it was possible to abandon some special 

assumptions (for example, exponentiality of some initial distributions), the problem was solved in 

general assumptions. With this approach, it is very rare to get a closed-form result. Then Alexander 

Dmitrievich's high erudition as a specialist in asymptotic methods worked. In his works, the terms 

asymptotic distribution, rare event, fast recovery, and the like appear. And all this in the study of 

reliability models. Here are the titles of some of these works: "Asymptotic Distribution of the 

Lifetime of a Duplicated Item" (Proceedings of the Academy of Sciences of the USSR, Technical 

Cybernetics, No. 5, 1964), "One Combinatorial Identity and its Application to the Problem of the First 

Occurrence of a Rare Event" (Probability Theory and its Applications, vol. XI, vol. 2, 1966), 

"Reserving with Fast Recovery" (Izvestia AS USSR, Technical Cybernetics, No.1, 1970), "Asymptotic 

Behavior of the Moment of the First Occurrence of a Rare Event in a Regenerating Process" (Izvestia 

AS USSR, Technical Cybernetics, No.6, 1971), "Asymptotic Analysis of Post-Failure Reliability 

Characteristics" (Proceedings of III All-Union School Meeting on Mass Service Theory, vol. 1, MSU, 

1976). 

Several works on asymptotic analysis dealt with mass service models. The relationship 

between reliability models and mass service models was mentioned above. 

In 1972 Alexander Dmitrievich successfully defended his doctoral thesis "Systems of mass 

service with fast service" in the council of the Faculty of Mechanics and Mathematics of Moscow 

State University. Here is a citation from the abstract of this thesis, which fully demonstrates the 

characteristic features of Alexander Dmitrievich as a mathematician. Here is what he wrote in the 

thesis abstract. 

Let us note two characteristic features of the work: 

1. Almost everywhere the limit theorems have a uniform form, in other words, all the initial 

distributions and parameters change in the limit transition, and the topology of the limit transition 

is given by some small functional on distributions and parameters; 

2. Each limit theorem looked for the most effective conditions, that is, conditions expressed 

explicitly and quite simply through the initial characteristics. 

The study of numerous specific models of mass service and reliability eventually made it 

possible to develop a general basic mathematical model of a random process describing the 

evolution of the system under study, which can be used to judge the efficiency of its functioning. 

It turns out to be a regenerating random process for which some event may occur at some point 

during the regeneration period. In specific models this event can be treated as the first loss of 

demand, system failure, etc. adverse events. Already in the 1983 monograph we find paragraphs 

and sections "Limit theorems for regenerating processes, exact distribution of the moment of the first 

event occurrence, regenerating processes of special type, estimation of event occurrence probability". 

To demonstrate Alexander Dmitrievich's profound ideas, let us analyze the article "One 

General Model of Redundancy with Restoration," written jointly with D.B. Gnedenko (Izvestia of 

the Academy of Sciences of the USSR. Technical Cybernetics, No. 6, 1974). 

In this paper we investigate a system consisting of n+1th element. During failures the 

elements are restored. There are r repair crews for repair, the duration of repair are independent 

random variables with an arbitrary distribution G(x). In addition, with respect to the structure of the 

system, it is assumed that there are n-r places to wait for repairs. If at time t there are k failed elements 

in the system, 𝜉(𝑡) = 𝑘 , then the next failure appears after a random time distributed by the 

exponential law with the parameter 𝜆𝑘 . The failure of the system occurs at the moment of failure of 

n+1th element, 𝜉(𝑡) = 𝑛 + 1 .  

It is easy to see that the described reliability model coincides completely with a mass service 

system having r serving devices, n-r queue places, and for which the intensity of the input flow 

depends only on the number of demands in the system. An adverse event is the first loss of a 

demand. 
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Since service times are distributed arbitrarily, and several demands can be served 

simultaneously, the random process 𝜉(𝑡) - number of demands in the system at time t does not have 

good properties (such as the Markov property), which allows to involve known mathematical 

methods. The only property that can be used is the regeneration property. Moments of regeneration 

are moments of release of the system from requirements. Regeneration periods have two 

components – a free (random) period with an exponential distribution and an occupancy period 

when there are requirements in the system.  

For such a regenerating process the theorem is proved 

 
lim

𝜆0𝑇1→0
𝑃{𝜆0𝑞𝜏 > 𝑥} = 𝑒−𝑥, 

 

where q is the probability of claim loss at one regeneration period, T1 is the mathematical expectation 

of the employment period,𝜏 is the moment of the first claim loss.  

 

However, it is difficult to use the theorem in the presented form because it is necessary to 

express through the initial characteristics the mathematical expectation of the employment period 

and the probability of claim loss at one regeneration period.  

Therefore, simpler sufficient conditions for convergence to the exponential distribution are 

formulated:  

 

                    If 𝑇 = ∫ 𝑥𝑑𝐺(𝑥) → 0
∞

0

  then  𝑃{𝜆0𝑞𝜏 > 𝑥} → 𝑒−𝑥 

 

Note the original method of proving this theorem - the construction of a majority process. We 

construct a random process 𝜉(𝑡) - number of demands at time t for a single-channel mass service 

system with an infinite queue, which receives a Poisson flow of demands with parameter 𝜆 =

𝑚𝑎𝑥0≤𝑘≤𝑛 𝜆𝑘 . It is argued that the process 𝜉(𝑡) majorizes the process𝜉(𝑡) in the sense that any 

realization of the process 𝜉(𝑡, 𝜔) is not superior to the corresponding realization of the process 𝜉(𝑡, �̄�) 

,𝜉(𝑡, 𝜔) ≤ 𝜉(𝑡, �̄�) . Here we need to clarify what the correspondence of the realizations of the two 

processes means. The realizations of random processes 𝜉(𝑡, 𝜔) и 𝜉(𝑡, �̄�) are defined by the intervals 

between neighboring moments of arrival of demands 𝑡 = {𝑡𝑘, 𝑘 ≥ 1} and the service times of each 

demand 𝜏 = {𝜏𝑘 , 𝑘 ≥ 1} . If these sequences are the same, then the above inequality is fulfilled by 

in the second model there is one servicing device. The same inequality holds for the occupancy 

periods 𝜈1(𝑡, 𝜏) ≤ 𝜈2(𝑡, 𝜏) of the first and second models. Obviously, the occupancy period is a 

nonincreasing function of the intervals tk. Therefore, similar inequalities are true for the 

mathematical expectations of the occupancy periods, provided that the distributions of the intervals 

between the moments of arrival of demands have exponential distributions with parameters 𝜆 ≥ 𝜆𝑘 

. This proves the theorem under simply testable conditions. 

However, the question remains open about determining the probability q of the loss of the 

claim on the regeneration period. And here an original solution is proposed. It is proved that under 

certain conditions the probability q is equivalent to the probability q0 of loss of a claim along a 

monotone trajectory when no claim has been served during the regeneration period (monotone 

trajectory method). We end up with a very nice result 

 
𝑙𝑖𝑚𝑚𝑛+1

𝑚1
𝑛 →0

𝑃 {𝜆0𝐼𝜏 > 𝑥} = 𝑒−𝑥, 

 

where 𝐼 = 𝜆1𝜆2. . . 𝜆𝑛 ∫
{∫ [1−𝐺(𝑦)]𝑑𝑦}𝑟−1𝑥𝑛−𝑟∞

𝑥

(𝑟−1)!(𝑛−𝑟)!
[1 − 𝐺(𝑥)]𝑑𝑥

∞

0
, 𝑚𝑘 = ∫ 𝑥𝑟𝑑𝐺(𝑥)

∞

0
 and easily verifiable 

conditions for its fulfillment. Some special cases are also given at r=n the equality 𝑃{𝜆0𝑞𝜏 > 𝑥} → 𝑒−𝑥 

is valid, at r=1 the equality𝐼 =
𝜆1𝜆2...𝜆𝑛

𝑛!
𝑚𝑛 is valid. 
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This detailed analysis shows the depth of the ideas proposed by A. D. Soloviev, and the use 

of these ideas in the asymptotic analysis of other models testifies to their effectiveness. 

Concluding these notes, I would like to say that in life Alexander Dmitriyevich Soloviev was 

a cheerful and benevolent man, treating any interlocutor with respect. He played the guitar, knew 

many stories and anecdotes, in the company was the soul of society. He liked to joke around. In 1967, 

at a Central Asian market in Tashkent, he would offer everyone a taste of bitter green pepper and 

immediately offer some fruit to eat to anyone who fell for his joke.  

Time flies inexorably forward. It's been twenty-one years since Alexander Dmitrievich left 

us. Let's keep the memory of this wonderful man and be grateful to him for everything he did for 

us. 
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Abstract 
 

A failure is one of the key concepts in dependability. Therefore, it is very important to distinguish 
whether a failure has occurred or not. To do this, a failure criterion is formulated. This article 
describes main approaches to determining failure criteria. Special attention is paid to the parametric 
approach, in which a failure is an event when one of the parameters characterizing the functioning 
of an item goes beyond the specified limits. In addition, a time over threshold can also be set. This 
means that short-term disruptions in item’s operation are not considered as failures. The meaning 
of setting such a threshold is explained and examples of its use in telecommunications are given. 
For a parallel system with a time over threshold in a failure criterion, calculation formulas for 
dependability measures are derived. The errors that the use of traditional formulas gives in this 
situation are estimated. 
 
Keywords: failure criterion, parametric approach, time over threshold, parallel 
system, MTBF, MTTR, availability 
 
 

1. Introduction 
 
The concept of a failure is one of the most important in the dependability theory. A failure of an 
item is defined as the loss of its ability to perform as required [1] (the terminology used in this 
paper mainly follows this basic international standard). In other words, a failure of an item is an 
event that transfers it from up to down state. Usually these two states are considered for an item in 
the reliability analysis: up or available state, in which it is able to perform as required, and down or 
unavailable state, in which it is unable to perform as required due to internal reason. Therefore, it 
is very important to distinguish between these two states. 

As a rule, a failure criterion is introduced for this, which means a pre-defined condition for 
acceptance as conclusive evidence of failure [1]. The importance of the correct choice and 
formulation of failure criteria for reliability engineering is undeniable. In particular, one of the first 
popular books on reliability theory says [2, p. 14]: "We have placed great emphasis on the need for 
a clear-cut definition of the function of the device and its adequate performance on the one hand, 
and of failure or malfunction on the other". 

In many works on reliability, it is assumed that the failure criterion has already been 
established in some way, but its exact formulation remains outside the scope of consideration. 
However, this can be done in various ways. Nevertheless, until now, insufficient attention has 
been paid to this issue, there is no sufficiently complete and clear description and analysis of 
possible approaches to determining a failure criterion in the literature. Perhaps the only field in 
which there are many publications devoted to this issue is materials science. It is easy to see by 
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doing a Google search for the phrase "failure criterion". Even a special website is dedicated to this 
(https://www.failurecriteria.com). 

This paper is devoted to eliminating this gap. It is organized as follows. Section 2 considers 
how a failure criterion can be determined. First, the two main approaches used for this are 
described. Then a time over threshold is introduced and explained. This means that short-term 
disruptions in item’s operation are not considered as failures. The situations in which this may be 
appropriate are pointed out. The presence of such a threshold requires the correction of some well-
known mathematical expressions and formulas used in reliability theory. They are discussed in the 
following sections. In section 3, the general mathematical model introduced in the classical 
monograph [3] is considered and its modification is proposed for the case of a time over threshold 
in the failure criterion. Section 4 explains why corrections in calculation formulas for dependability 
measures of a parallel system with time over threshold are required and the corrected formulas are 
derived. In this connection, the errors that the use of traditional formulas gives in this situation are 
estimated. At last, section 5 summarizes the main findings. 

The presentation in section 2 is illustrated with specific examples from the field of 
telecommunications in which the author works. However, to understand them, the reader does not 
need to be an expert in this field; they will be understandable and useful to specialists in other 
industries. These examples are taken from the ITU-T documents. ITU-T is the Telecommunication 
Standardization Sector of the International Telecommunication Union (ITU). The International 
Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), and 
ITU form the World Standards Cooperation. ITU standards (called Recommendations) are 
fundamental to the operation of today’s information and communication networks. 

 
2. How a Failure Criterion Can Be Determined 

 
2.1. Two Approaches to Determining a Failure Criterion 
 
There are two approaches to the formulation of a failure criterion. They have been known for a 
long time and were mentioned in [2, p. 14]: “…In some simple cases, where devices of the “go–no 
go” type are involved, the distinguish between adequate performance and malfunction is a very 
simple matter. <…> But there are many more cases of a nature such that a clear-cut decision cannot 
be made so easily and a number of performance parameters and their limits must first be specified; 
operation within the limits is considered adequate or satisfactory, and outside of the specified 
limits it is considered inadequate”. 

Similar considerations are presented in the classical monograph [3, p. 71]. As a typical 
example of an item having a well-defined failure, an electric light bulb was given in it: “The 
operation of light bulb has, as a rule, two states: either it gives normal illumination or it gives no 
illumination at all”. As an example of an item with a parametric failure assignment, a resistor was 
considered “for which the basic parameter determining quality is the magnitude of the resistance 
expressed in ohms”. 

Thus, these two approaches to determining the failure criterion can be called “go/no-go” and 
parametric. Similar two approaches exist when defining the general concept of “dependability” [4]. 
There is also an analogy here with two inspection methods in statistical quality control: inspection 
by attributes and inspection by variables [5]. 

It is worth mentioning that formally the go/no-go failure criterion can also be set 
parametrically. In this case, a binary parameter is used, which takes the value 1 in up state and the 
value 0 in down state. This is widely used, in particular, to describe the state of a system 
depending on the states of its elements by means of the structural function of the system [6]. In this 
case, the states of the elements and the entire system are characterized by binary variables (1 or 0). 
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In many cases, the failure criterion can be defined as a set of several conditions connected by a 
logical “or”, i.e. the fulfillment of any of them is regarded as a failure. Some of these conditions 
may be “go/no-go”, others may be parametric. 

As the first example, consider analogue cable transmission systems and associated 
equipments. According to [7], a failure of such a system is considered to occur when there is: 

1) complete loss of signal; 
2) one in which the pilot level drops by 10 dB below nominal value; 
3) when the total unweighted noise power, measured or calculated with an integrating time of 

5 ms exceeds 1 million pW on the 2500 km hypothetical reference circuit. 
The first condition has the go/no-go type. The second and third conditions are parametric. 

Each of them uses a specific parameter (the pilot level and the total unweighted noise power, the 
meaning of these parameters is not important for this consideration), for which a threshold value is 
set. 

The Recommendation [7] is quite old. For more modern digital telecommunication networks, 
a parametric approach is used to determine a failure criterion. In general, it was formulated in [8]. 
Exactly, it says that the transitions between the available (up) and the unavailable (down) states 
based on events which are defined as occurring when the value of a function of a primary 
performance parameter(s) crosses a particular threshold. 

 
2.2. A Time over Threshold in a Failure Criterion 
 
When determining a failure criterion, a threshold value for time can also be used. As an example, 
consider again the failure criterion from [7]. In its above wording, the last phrase was omitted. 
However, it is very important. It reads: “In all instances, this condition must last at least 10 
seconds”. Thus, a time over threshold is introduced here. A similar situation takes place for other 
telecommunication systems. Often a threshold of 10 seconds is also used for them. 

In general, there may be the following reasons to use a time over threshold: 
• An item may have certain inertia, and a short-term disruption in its operation has 

no serious negative consequences. 
• Using time over threshold allows reducing the number of alarms in fault 

management systems [9]. 
• The parameter used in the failure criterion may be statistical in nature, and 

obtaining a representative sample for its evaluation requires some time. 
The latter situation is typical for modern telecommunications, where the main performance 

parameters used to formulate failure criteria are statistical in nature. For example, these are 
parameters such as the bit error rate, frame loss ratio, packet loss ratio, etc. In many cases, such a 
parameter is evaluated within a one second, the resulting value is compared with a certain 
threshold, in case of crossing which the second is regarded as “bad” (in each case, there is a special 
formal name for such a second). The failure criterion is the appearance of a certain number of 
“bad” seconds in a row. 

As an example, consider technology Ethernet, which is widely used in computer networks. In 
such networks, data is transmitted in units called frames. A “bad” second occurs for a block of 
frames observed during a one-second interval when the corresponding frame loss ratio (i.e., the 
ratio of lost frames to total frames in the block) exceeds 0.5 [10]. 

Ten consecutive “bad” seconds are considered as a failure, i.e. the transition from the 
available state to the unavailable state. The corresponding 10-second period of time is considered 
to be part of unavailable time. The reverse transition from the unavailable state to the available 
state occurs when ten consecutive “not bad” seconds appear. The corresponding 10-second period 
of time is considered to be part of available time. All this is depicted in Fig. 1. 
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Figure 1: Available and unavailable times with 10-second time over threshold 
 

 
3. A Time over Threshold in the General Set-Theoretic Model 

 
In [3], a very general set-theoretic mathematical model was proposed to define and evaluate 
reliability measures. It is conceptual in nature and formed the basis for many further studies. It can 
be described as follows. Firstly, for the item under consideration, a set S = {x} of states x is 
introduced that differ from each other in terms of reliability. It is called the phase space. For 
example, for the analogue cable transmission system discussed above, x = (x1, x2, x3), where x1 is a 
binary variable that characterizes the presence (x1 = 1) or loss (x1 = 0) of the signal, x2 is a non-
negative variable equal to the pilot level, x3 is a non-negative variable equal to the total 
unweighted noise power. 

Then a random process with values in the phase space x(t) is determined, which describes the 
change in the states of the item over time. Finally, the phase space S is divided into two disjoint 
subsets: S1 and S0	(S1 ∪ S0	=	S,	S1 ∩ S0	=	∅). If x(t) ∈ S1, then at the moment t the item is in up state; if 
x(t) ∈ S0, then at the moment t the item is in down state. 

The moment of time t* > 0 is the moment of failure, if and only if the following criterion is met: 
 

(∃ε > 0		∀𝑡 ∈ (𝑡∗ − ε, 𝑡∗)		𝑥(𝑡) ∈ 𝑆")	⋀ 	(𝑥(𝑡∗) ∈ 𝑆#).                                         (1) 
 

The first condition in (1) means that immediately before the moment t* an item was in up state, the 
second condition means that at the moment t* it is in down state. 

In this model, a reliability measure can be defined as the mathematical expectation of some 
functional Φ[x(t)] assigning numerical values to trajectories of the random process x(t) [3]. For 
example, let 

 
Φ1[x(t)] = min { t* > 0 | t* satisfies (1)}.                                                   (2) 

 
Then, EΦ1[x(t)] is the mean operating time to the first failure (E is the symbol of mathematical 
expectation). 

Another widely used measure is the reliability in the interval (t1, t2) (i.e., the probability of 
failure-free operation in this interval) R(t1, t2). It is usually assumed that the item is in up state at 
the beginning of the time interval. R(t1, t2) = EΦ2[x(t)], where Φ2[x(t)] is defined as 

 

Φ$[𝑥(𝑡)] = 61,		if		∀𝑡 ∈
(𝑡", 𝑡$)		𝑥(𝑡) ∈ 𝑆";

0,		if		∃𝑡 ∈ (𝑡", 𝑡$)		𝑥(𝑡) ∈ 𝑆#.
 

 
If there is a time over threshold in the failure criterion, the situation becomes more 

complicated. Indeed, the presence of the process x(t) at the moment t at one or another point of the 
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phase space no longer determines whether the item is currently in up or down state. This state 
depends on both the previous and future behavior of the process x(t). The following are the 
appropriate formulations for this situation. 

The phase space S is also divided into two disjoint subsets S1 and S0.	However, in this case 
x(t) ∈ S1 only means that at the moment t all the parameters used in the failure criterion are within 
the limits specified for them; x(t) ∈ S0 means that at least one of these parameters has gone beyond 
these limits. 

Denote the time over threshold by q. Then the moment of time t* > q is the moment of failure, 
if and only if the following criterion is met: 

 

(	∃𝑡% < 𝑡∗ − θ		(∀𝑡 ∈ [𝑡′, 𝑡′ + θ]		𝑥(𝑡) ∈ 𝑆") 	∧ 	(∃𝑡%% ∈ [𝑡% + θ, 𝑡∗]	∀𝑡 ∈ [𝑡%%, 𝑡%% + θ]	𝑥(𝑡) ∈ 𝑆#)	) 	∧	
∧ (∀𝑡 ∈ [𝑡∗, 𝑡∗ + θ]		𝑥(𝑡) ∈ 𝑆#).                                                        (2) 

 
The first and the second conditions in (2) together mean that immediately before the moment t* an 
item was in up state (the overline means negation), the third condition means that starting from 
the moment t* it is in down state. 

The expectation of the functional Φ1[x(t)], defined similarly to (2) with the replacement of (1) 
by (3), is equal to the mean operating time to the first failure. To determine R(t1, t2), the functional 
Φ2[x(t)] in this case takes the form 

 

Φ$[𝑥(𝑡)] = 61,		if		∀𝑡′ ∈
(𝑡", 𝑡$ − θ)	∃𝑡 ∈ (𝑡%, 𝑡% + θ)	𝑥(𝑡) ∈ 𝑆";

0,		if		∃𝑡% ∈ (𝑡", 𝑡$ − θ)	∀𝑡 ∈ (𝑡%, 𝑡% + θ)	𝑥(𝑡) ∈ 𝑆#.
 

 
 

4. Calculation of Dependability Measures for a Parallel System with a Time over 
Threshold 

 
The time over threshold also leads to the fact that adjustments have to be made to some well-
known and widely used calculation formulas. In particular, this concerns formulas for mean 
operating time between failures (MTBF), mean time to restoration (MTTR) and availability of a 
parallel system. 

Let the time over threshold q be set for all elements and for the system as a whole. A parallel 
system is in down state if all its elements are in down state. However, periods of coincidence of 
down times of the elements can have different durations, both longer and shorter than q. In the 
latter case, a system failure does not occur and such a short-term coincidence should not be 
considered as down time for the system. For the simplest example of a system having two parallel 
elements, this is shown in Fig. 2. 

 

 
Figure 2: Down time for a system of two parallel elements 
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The traditional formulas do not take into account this circumstance. For most cases 
encountered in practice, the error in the calculation results will be very small. However, in order to 
evaluate it, it is necessary to be able to calculate dependability measures taking into account this 
circumstance, that is, to exclude short coincidences of downtime from consideration. The 
corresponding formulas will be derived below. To do this, a heuristic approximation is used, 
which gives good results for highly reliable systems [11, 12]. The higher the reliability, the more 
precise will be the result. 

Consider a system of two independent parallel elements (as in Fig. 2). Let Ti and τi denote, 
respectively, the MTBF and the MTTR of the ith element, i = 1, 2. They are determined taking into 
account the time over threshold q in the failure criteria. To apply the heuristic approximation, it is 
assumed that Ti >> τi. In practice, this condition is usually met. The distribution function for the 
time to restoration of the ith element is denoted by Gi(t). When t ≤ q, Gi(t) = 0. 

Denote by T0 and τ0 the MTBF and the MTTR of the system, calculated without taking into 
account the time over threshold, and the same measures determined taking the threshold into 
account are denoted by T and τ. For T0 and τ0 there are the following formulas [11]: 

 

𝑇# ≈
𝑇"𝑇$
τ" + τ$

,																																																																																	(3) 

 

τ# ≈
τ"τ$
τ" + τ$

.																																																																																(4) 

 
The duration of a coincidence of elements’ down times is the residual restoration time of the 

element that failed first, starting from the moment of failure of another element. This residual 
restoration time of the ith element has the density function [1 – Gi(t)]/τi [13]. Therefore, the 
probability qi that this time for the ith element is less than q can be calculated as follows: 

 

𝑞& = G
1 − 𝐺&(𝑡)

τ&

'

#

𝑑𝑡 =
θ
τ&
	. 

 
The total flow of coincidences has the rate λ0 ≈ (τ1 + τ2)/(T1T2) [9]. The coincidences in which 

the ith element fails first form a flow with the rate λ0i ≈ τi/(T1T2). So, the probability that the ith 
element initially fails when a coincidence occurs, πi = λ0i/λ0 ≈ τi/(τ1 + τ2). Hence, for the probability 
that the duration of a coincidence is less than q, we get: 

 

𝑞 = π"𝑞" + π$𝑞$ =
τ"

τ" + τ$
∙
θ
τ"
+

τ$
τ" + τ$

∙
θ
τ$
=

2θ
τ" + τ$

	.																																			(5) 

 
Using (3) and (5), the MTBF of the system can be calculated as follows: 

 

𝑇 =
𝑇#

1 − 𝑞 ≈
𝑇"𝑇$
τ" + τ$

∙
τ" + τ$

τ" + τ$ − 2θ
=

𝑇"𝑇$
τ" + τ$ − 2θ

	.																																									(6) 

 
To compare T and T0, their ratio is calculated. It follows from (3) and (6) that 

 
𝑇
𝑇#
≈

τ" + τ$
τ" + τ$ − 2θ

	.																																																																										(7) 

 
Hence when q << τi 
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𝑇
𝑇#
≈ 1 +

2θ
τ" + τ$

	.																																																																													(8) 

 
The mean duration of a short (less than q) coincidence is q/2. Therefore, the following equality 

holds: 
 

τ# = 𝑞(q/2) + (1 − 𝑞)τ.     (9) 
 

Expressing τ from (9) and substituting τ0 from (4) and q from (5), we get: 
 

τ ≈
τ"τ$ − θ$

τ" + τ$ − 2θ
	.																																																																										(10) 

 
From (4) and (10), under the same condition q << τi, an expression similar to (8) can be 

obtained: 
 

τ
τ#
≈ 1 +

2θ
τ" + τ$

	. 

 
For example, if τi/q ≈ 100, not taking into account the time over threshold when calculating the 

MTBF and the MTTR of the system gives a relative error of about 1 %. However, if τi/q ≈ 5, the 
error will be about 20…25 %. 

Availability and unavailability of the system can be calculated based on its MTBF and MTTR. 
In this case, it is advisable to compare the unavailability, which using (6) and (10) is expressed as 

 

𝑈 =
τ

𝑇 + τ ≈
τ"τ$ − θ$

𝑇"𝑇$ + τ"τ$ − θ$
	.																																																											(11) 

 
Since q < τi << Ti, it follows from (11) that 

 

𝑈 ≈
τ"τ$ − θ$

𝑇"𝑇$
=
τ"τ$
𝑇"𝑇$

−
θ$

𝑇"𝑇$
	. 

 
In the traditional calculation, 𝑈# = 𝑈"𝑈$, where 𝑈& = τ&/(𝑇& + τ&) is the unavailability the ith 

element. When τi << Ti, 𝑈& ≈ τ&/𝑇&. Therefore 𝑈# ≈ (τ"τ$)/(𝑇"𝑇$), from which it follows that 
 

𝑈 ≈ 𝑈# −
θ$

𝑇"𝑇$
	.																																																																												(12) 

 
It can be seen from (12) that the difference between the values of unavailability 𝑈 and 𝑈# is 

significantly less than for MTBF and MTTR. This is quite natural, since, as was shown above, the 
relative errors from not taking into account the time over threshold when calculating MTBF and 
MTTR are approximately the same, and the unavailability depends only on the ratio MTBF/MTTR. 

Similar formulas can be derived for parallel systems with a number of elements greater than 
two, although rather cumbersome expressions are obtained. For example, for a system of three 
elements, they have the form: 

 

𝑇 ≈
𝑇"𝑇$𝑇$

τ"τ$ + τ"τ( + τ$τ( − 2θ(τ" + τ$ + τ() + 3θ$
	, 

 

τ ≈
τ"τ$τ( − θ$(τ" + τ$ + τ() + 2θ(

τ"τ$ + τ"τ( + τ$τ( − 2θ(τ" + τ$ + τ() + 3θ$
	, 
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𝑈 ≈
τ"τ$τ( − θ$(τ" + τ$ + τ() + 2θ(

𝑇"𝑇$𝑇$
	. 

 
These formulas were obtained as follows. Initially, the first and second elements were 

replaced by one element, MTBF and MTTR for which were taken in accordance with (6) and (10), 
respectively. This element was then combined with the third element. 

 
5. Conclusion 

 
The main findings of this article are as follows. 
 
• When specifying quantitative dependability requirements for an item, a failure criterion 

should be formulated for it. In particular, this can be done in a parametric way. This means 
that some performance parameters are selected and acceptable limits are set for them. When 
one of the parameters drifts out of its limits, a failure is fixed. 

• A time over threshold can also be set in a failure criterion. This means that short-term 
disruptions in item’s operation lasting less than this threshold are not considered as failures. 

• The presence of a time over threshold requires correction in calculation formulas for 
dependability measures of parallel systems. However, when this threshold is much less than 
the mean times to restoration of elements, the error from applying traditional formulas will be 
insignificant. 
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Abstract 

 
Quantitative risk analysis approaches in today's technologically advanced age represent a suitable 
process for mathematical investigation, revealing the context of the origin and existence of risks and 
their possible effects on ensuring reliability. Today, manufacturing, and industrial companies, with 
the growing pressure of globalization, must deal with vast amounts of data that evaluate various 
processes in maintenance management, warehouse and inventory management, or quality evaluation 
processes. One way to ensure objective collection, analysis and evaluation of robust data is to use 
Bootstrapping principles and modules. Many companies use these tools and are now becoming avail-
able to a wider range of users. Bootstrap principles, with which it is possible to enter the calculation 
of robust estimates, e.g., standard errors and confidence intervals based on the bootstrap method is 
therefore suitable for estimating statistics such as mean, median, correlation coefficient or regression 
coefficients. In this article, we will take a closer look at what bootstrapping is, show you how to enter 
the calculation of bootstrap estimates, and what types of output are then displayed. Logistic forecast-
ing of spare parts with sporadic consumption are difficult because of problems associated with 
obtaining data inscrutable demand, which is usually characterized by long periods of zero demand. 
The presented contribution presents the possibilities of using the method, which is the starting point 
for the stochastic forecast of future consumption. Based on this method, we can determine the mini-
mum order stock level. The results of the simulations are also presented in graphical outputs 
 
Keywords: bootstrap, simulation, inventory management  
 

1. Introduction 
 
The method used makes it possible to modify the investigated data set. It will generate a number of 
usable and simulated samples. Based on this principle, the method makes it possible to determine 
standard errors, perform hypothesis testing for numerous types of statistics, and construct 
confidence intervals. Empirical values about sporadic consumption may contain random zero 
values. As a result, variable results can be affected to determine the desired quantity. Due to 
imponderability of input data naturally random distribution of variable / consumption / do not 
correspond to standard theoretical probability distributions. Suitable alternative is non-parametric 
method using past data of sporadic consumption known as bootstrapping [1]. We include it in the 
simulation statistical methods - MC, which are based on stochastic prediction of future consumption 
from data of past consumption. Matlab software can also be considered a suitable simulation tool, 
with which we can determine the prediction of individual indicators and we can thus prevent losses. 
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The used method analyzes the system based on the assessment of data with random consumption 
data, from which the simulation processes the experimental function PDF, CDF allocation, random 
variable / consumption / useful for determining the modeling parameters of surface management of 
supplies. The probability of a phenomenon or observed event that is equal to or less than a given 
value is defined by a function that has the character of a cumulative distribution. In technical 
terminology, abbreviated CDF. The inverse value of the CDF is defined as a function of the 
percentage value and gives a discrete result that is less than or equal to the probability of the 
phenomenon. 
 
• PDF: Probability Density Function, returns the probability of a given continuous outcome. 
• CDF: Cumulative Distribution Function, returns the probability of a value less than or equal to a 

given outcome. 
 
Bootstrapping software products are now offered as software products of companies dealing with 
information technology, consulting in the areas of demand forecasting, inventory planning and 
optimization, for example Smart Software [2]. The method used is one of the possible application 
methods. It offers possibilities for simulating what states might occur if repeating data sets from a 
base file were followed. The principle then is that repeated random selections from the available 
data. Such selections of a random nature can have a small-er dimension than the dimension of the 
available data and therefore can be created without repetition or with repetition. The random 
sampling forecast is based on long-term, statistical monitoring of consumption, which may not be 
representative. They are therefore universal and suitable for use in many areas. 
 
This article presents the possibilities of use and the basics of bootstrapping. The paper offers an 
example using real data to create confidence intervals. With suitable process prediction and 
programming tools with knowledge of bootstrapping principles, it is possible to use the possibilities 
of simulation modeling in processes that are demanding, and we can create a simulated model. We 
can then use the simulation together with the application in practice. 
 
Bootstrapping is applied Monte Carlo method, where we make no parametric assumptions about 
the studied set n of data x = (x1, x2,.,xn), from which are randomly generated samples y. Monte Carlo 
simulation is a well-known simulation method using random sampling. Monte Carlo permutation 
is a method developed by Dr. The master who used it for testing. The statistical simulation method 
developed by Smart and Willema in is based on bootstrapping prediction [3]. It is a random selection 
based on a long consumption history, but may not be representative. If in practice these data are not 
available for a sufficiently long time, it is possible to use information on the consumption of a stock 
item for a shorter previous period, usually a month, a year. In a study that was carried out in practice, 
we assessed selected parameters in 50 monitored periods of data collection. The following figure 
graphically shows the basic scheme of the frequency of the monitored quantity. 
 

 
 

Figure 1: Bar graph of consumption item in 50 monitored period 
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The input data can be characterized as a set of data from the assessed, monitored consumption. From 
the given file we can determine the numerical characteristics of consumption. These are expressed 
deterministically. The given characteristics do not have the stochastic character of the consumption 
process. As an example, for the items of Fig. 1: min = 0, max = 9, average = 1.9600, default value = 
2.8209. Bootstrapping is a statistical method based on repetitive selections from a single data set. 
This means that in this way it generates a large random selection of data from the input data and 
thus calculates the specified statistics for each of these selections [4]. The used method provides 
results about the numerical characteristics of the assessed system and further offers outputs of 
statistical characteristics, namely histograms and data sampling. Bootstrap random selections y are 
generated from the examined set several thousand times by se-lection with repetition or replacement 
of selected data from the examined data set x = (x1, x2, ......., xn, y = (y1, y2, ........, ym) required 
number of m (n) data The selected numerical values of yi are independent of each other and collected 
when selecting the Bootstrap with the same probability (even distribution). The monitored samples 
often have characteristics of differences. Since a recurring selection, some xi data may appear 
repeatedly or not at all. Appropriate use of the method is to determine future consumption for 
inventory / delivery time. Based on a random selection of data and a simulated number of selections, 
we can calculate and compile a histogram of the frequencies of the sum of the consumption of items. 
This will allow us to determine a signal level that will alert us to an impending shortage of items in 
stock. We can use the principles of lean maintenance. The following figure shows a histogram of 
frequencies from a given selection of monitored periods. 
 

 

Figure 2: Histogram of sum frequency for 10000 selections 
 

 

Figure: 3 Histogram of sum frequency for 10000 selections 
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Statistical data such as average, standard deviation, variance of consumption for lead-time are 
calculated directly from the data needed to create the histogram, not to generate a derived empirical 
distribution function. This provides the basic assumptions for the design and representation of the 
cumulative frequency or probability of future consumption of an item [5]. 

 
2. Experiment and simulation model 

 
The presented simulation model was built from available algorithms and MATLAB software 
commands with the following sequence. MATLAB is a simulation language developed for scientific 
and technical calculations, modelling, algorithm design, simulation, data analysis and presentation, 
measurement and processing signals, design of control and communication systems. Therefore, its 
use for modelling bootstrapping processes is advantageous. The basis is the computational core, 
which is focused on operations with matrices and is therefore considered the strongest aspect of the 
MATLAB simulation language with its optimal algorithms. The kernel is extended by a number of 
extensions (Toolboxes = application libraries), which are intended for solving tasks from almost all 
areas of technical practice. The process simulation and prediction model is designed from simple 
MATLAB algorithms and commands with the following sequence, so that it is easily defined and 
usable as a universal procedure [6]. Initial sample for the determination of the consumption data 
vector. Determination of the sequence of calculation of numerical characteristics of samples of initial 
consumption. 
 
Determination of the sequence in compiling the simulation algorithm: 
 

• the model takes data of a random nature from the bootstrapping module options, 
• defining the time interval requirement of the model, 
• inventory decline and analysis / blue, 
• the signal level informs about reaching more states than the order level, insufficient stocks. 

 
Experiments created for the simulation of the given process should have the character of 
confirmation of the validity of the value of the optimal inventory for the tracked items defined by 
bootstrapping depending on the delivery date, the chosen probability of providing the item and the 
total cost of the inventory. The aim of the experiment is to assess the impact of changing the delivery 
time with different input data: the number of repetitions of the bootstrapping simulation, the 
number of time periods of the simulation, financial costs for storage, financial costs per warehouse 
unit of material tracked per day, costs for transportation and delivery of material. Determination of 
simulation input data. We have selected monitored variables such as the number of selected delivery 
time periods, the number of bootstrap selections of the quantile required logistic delivery support 
[7]. Subsequently, using the Matlab simulation tool, we generate matrices of bootstrap indexes of 
evenly distributed selections. The final steps are to convert the index matrix to the bootstrap selection 
consumption matrix and the sum of the bootstrap selection values. Graphic and statistical processing 
of output data are shown in the following figures. Simulation model was created from simple 
algorithms and MATLAB commands with the following sequence. Given the results of simulation 
experiments for determining the safety inventory in the likelihood of assuring 0.95 / starred / for 
periods for 100000 Bootstrap selections. 
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Figure 4: Result of simulation bootstrap experiments 
 
 

 
 

 

Figure 5: Result of simulation bootstrap experiments 
 

The empirical CDF is interesting, but also as the fundamental component of a statistical approach 
called the bootstrap [8]. The use of the empirical CDF curve gives us a picture of the statistical 
sample. The cumulative distribution function of the fair value of the random variable X is a given 
function 𝐹!(𝑥) = 𝑃(𝑋 ≤ 𝑥).If we made a simulation experiment with hundreds of thousands of 
selections of item consumption data for 50 monitored periods, we would see that sums of selections 
according to index of item oscillate approximately at the level of 2000, which confirms that selections 
are made with uniform distribution probability. 
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Figure 6: Simulation of sum of 100000 whole initial sample selections 
 
The presented analysis and model combines the simulation algorithm of the supply process based 
on the principle of simulation with a variable time step. 
 
We can characterize the parameters of the model: 

• Lead Time, the number of time units from sending the order to the delivery of the item. 
• Stock order level – Reorder Level is set as an optimal level with regard to delivery time and 

security probability. 
• Probability of provision – The level of service provided. Demand during implementation 

will not exceed supply with a specified probability. 
• Safety Stock – Safety Stock. Inventory created due to fluctuating demand and/or lead time 

to protect against item shortages. 
• Determining the stock level - the level is defined as the optimal level depending on the 

delivery time. The optimal order level is modelled by bootstrapping selection with the 
demand forecast requirement during the supplier's lead time rounded to the nearest higher 
order quantity. Fig. 7. at the time when the stock ordering level is reached, the software will 
generate an order request to the supplier marked with a red star.  

The descriptive approach allows tracking the level of the order as well as the time to draw the offer 
to replenish the stock with the requirements for the specified level of logistics security. 
Protection against item shortages is implemented through insurance stocks, which are dimensioned 
due to unstable demand. The safety stock is not necessary if we define the optimal stock using the 
bootstrapping definition of the optimal stock. Curves in graphic form then evaluate the current state 
of supplies of materials to warehouses. 

 

Figure 7: Development of simulation experiment with level inventory management 
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3. Results 
 

The above approach allows to set the ordering level ordering and the time of issue of requirement 
to resupply according to determined level of logistic support [9]. At the point of intersection with 
ordering level information system generates an order to the supplier. Ordered quantity is 
determined by bootstrap forecasts of consumption during the delivery period of the supplier and 
rounded to the next higher order quantity. Level management and course of simulation through the 
simulation model for its use is shown in Fig.7. The initial inventory is current consumption is 
gradually reduced to the optimum level of inventory (bottom green signal level).  
 
The model allows to change the levels of input values / number of simulation periods, the level of 
probability of logistic support, initial inventory, the level of ordering /. The logic of model is useful 
for setting up automatic level management of inventory for items with sporadic consumption. The 
signal level set by bootstrap method ensures maintenance of required logistics service. From the 
presented simulation of the processes, we can determine that the increased demand for logistical 
support of the optimal level of supply can cause an increase in the level of the optimal stock level 
and also an increase in costs. Interestingly, procurement costs are about the same, shipping costs are 
going down and storage costs are going up. Simulation experiments are intended to demonstrate 
the validity of determining the optimal inventory of an item determined by bootstrapping, 
depending on the lead time of the order, the selected probability of securing the item and the total 
cost of inventory. The presented model makes it possible to change the levels of input values / 
number of simulation periods, required level of probability of logistics security, initial stock level, 
order level/. The logic of the model can be used to set up automatic stock level control in the case of 
items with sporadic consumption 
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Abstract 

 
An approach to the formalization of the standard knowledge management process is proposed, 
taking into account the requirements for information protection. The approach has been developed 
to the level of methodical approach for estimation and rationale system solutions to reduce risks 
and/or retain risks within acceptable limits for various threats scenarios. The use of the approach 
allows to estimate the impact of various threats on knowledge management process performance by 
probabilistic measures (including threats to the violation of information protection requirements). 
The usability of the proposed methodical approach is demonstrated by examples.  

 
Keywords: analysis, engineering, information protection, knowledge, model, prediction, 

risk, system 
 
 

1. Introduction 
 
Modern enterprises widely use the standard system process of knowledge management (see, for 
example, the descriptions of the standard process in ISO/IEC/IEEE 15288 “Systems and software 
engineering — System life cycle processes”). This concerns to both developing and operating 
systems, their subsystems and processes. In particular, the enterprise may be considered as a system 
interested in knowledge management about itself. The purpose of the system knowledge 
management process is to improve the quality and/or security and/or effectiveness of the system or 
related systems through the acquisition, creation, distribution, timely application and storage of 
useful knowledge in lifecycle. In turn, the knowledge itself serves as the basis for extracting latent 
effects and preventing possible errors during creation, operation of systems and their 
decommissioning. 

Note. Knowledge means the volume of comprehensions and skills that are invented by people.   

In the process of knowledge management, new knowledge is created and acquired, knowledge 
bases and centers (KnC) are formed. This explains the importance of the problem of storing acquired 
knowledge in the conditions of heterogeneous threats, including threats to the information 
protection. There are many works on risk analysis, see for example [1-22]. In [20] a qualitative risk 
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assessment is carried out using a general method of analogy, the essence of which is to analyze a set 
of data on similar projects. In [21] risk analysis, risk factors identification and systematization are 
based on spatial structuring in the coordinate plane, including development trends and features of 
the territory, taking into account its own possibility, the ability for innovations and competent risk 
management. In [22] the risks identification, the definition of priority strategies for reducing risks in 
supply chain is carried out using the supply chain Performance Standard (SCOR), Fuzzy Failure 
mode and Effect analysis (Fuzzy FMEA) and Fuzzy Analytical Hierarchical Process (FAHP). 
According to ISO Guide 73 risk is understood as effect of uncertainty on objectives considering 
consequences (an effect is a deviation from the expected — positive and/or negative). However 
despite a lot of works, the issue of risks prediction, choosing system solutions to reduce risks and 
retain them within acceptable limits continues to remain relevant.  

In comparison with the existing approaches, the proposed approach allows to estimate the 
impact of various threats on the effectiveness of the knowledge management process (including 
threats to the violation of information  protection requirements), allows us to predict risks taking 
into account the complexity of the modelled system and measures to counter threats in each element, 
determine the reliability of the process and required information protection. It is expected that the 
use of the proposed approach in knowledge management processes in modern KnC will help both 
to increase the effectiveness of the process itself, and to choose and apply the rational measures to 
reduce risks and/or retain risks within acceptable limits for various threats scenarios. 

 
2. General  

 
It is proposed the approach to assess the integral risk of violation of the knowledge management 
process performance, taking into account the requirements for information protection and the 
particular risks (concerning the actions performance and the generalized risk of unreliability of 
knowledge management process performance).  

It is proposed to characterize particular risks by the probabilities of corresponding events (in 
comparison with possible consequences): 

- the probability of violating the reliability of the knowledge acquisition process performance  
without taking into account the requirements for information protection; 

- the probability of violating the reliability of creating useful knowledge  without taking into 
account the requirements for information protection; 

- the probability of violating the reliability of the distribution of acquired or created useful 
knowledge without taking into account the requirements for information protection. 

In turn, the reliable distribution of acquired or created useful knowledge means their application 
in time. 

The generalized risk of unreliability of the system knowledge management process performance 
takes into account all the listed particular risks . 

Possible ways to reduce risks that can be quantitatively justified are itself the mechanisms for 
directly managing risks in the knowledge management process performance: 

- for the risk of violating the reliability of the knowledge management process performance 
without taking into account the requirements for information protection, this is the fulfillment of the 
necessary conditions with the completion of all the actions taken by the processes of acquiring 
knowledge and creating useful knowledge (compliance with the delivery dates of acquired 
knowledge and created useful knowledge and the acceptable level of defects in them);  

- the risk of violating the requirements for information protection in the process of knowledge 
management – this is a reduction in the frequency of occurrence of sources of threats to the violation 
of information  protection requirements in the process of knowledge management (if possible), an 
increase in the time of threat development before the violation (if possible), optimization of the time 
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period between system diagnostics, reducing the duration of system diagnostics and system 
recovery time after a violation, choosing a prognostic period when effective preventive management 
actions are possible; 

- the integral risk of the violation of the knowledge management process performance, taking 
into account the requirements for information protection, is a balanced action to ensure the reliability 
of the knowledge management process performance and information protection in the process, 
aimed at risks retention within acceptable limits. 

The following statement are to be considered: 
- analyzed objects for risks prediction in the knowledge management process performance; 
- propositions on formalization; 
- measures; 
- the procedure for risks prediction; 
- calculation methods, examples, interpretations. 

 
3. Analyzed objects for risks prediction in the knowledge management process 

performance  
 
To predict the risks it is proposed to define: 

- the composition of the output results and performed actions of the knowledge management 
process and the assets used in this process; 

- a list of potential threats and possible scenarios of the occurrence and development of threats 
for the output results, the actions performed by the process and the assets used in this process; 

- technologies for countering threats used in the process of managing knowledge in given system 
application environment; 

- formalized requirements or conditions for completing the necessary actions of the knowledge 
management process, meeting the deadlines for the delivery of knowledge, the absence of defects in 
the acquired and created knowledge, the distribution and application of useful knowledge. 

To calculate typical risk measures, the analyzed entities are considered as a modelled system of 
simple or complex structure. In the models and methods of system analysis, in relation to such 
modelled systems, data obtained after the occurrence of events, according to the identified 
prerequisites for the occurrence of events, and data collected and accumulated statistics on the 
process and possible conditions for its implementation are used [1-8], [13-14]. 

Depending on the goals of risk prediction, models are presented in the form of  a «Black box» or 
in the form of a complex structure. For separate elements of a complex system or for its rough 
modeling, a «Black box» models  are used. To obtain more accurate results of risk prediction, a 
complex modelled system is decomposed to the level of composite system elements characterized 
by their parameters and operating conditions and combined to describe the integrity of the modelled 
system by the logical conditions "AND" and "OR". At the same time, the integrity of the modelled 
system (or system element) during specified prognostic period means such a state of this system (or 
system element) that during this prognostic period corresponds to the intended purpose of the 
applied model. 

Notes 
1 The logical condition " AND" for two elements connected by this condition is interpreted as follows: the modelled 

system of two sequentially connected elements is in a state of integrity when " AND" the first element, " AND" the second 
element are in a state of integrity. 

2 The logical condition "OR" for two elements connected by this condition is interpreted as follows: a system of two 
elements connected in parallel is in a state of integrity when "OR" the first element, "OR" the second element is in a state of 
integrity (in particular, when the execution of separate actions is duplicated to increase reliability). 
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4. Proposition for formalization 
 
To solve the problems of system analysis, a modelled system can be: a set of output results and/or 
assets, a set of actions of the knowledge management process, united by a purpose in the interested 
system. 

For each of the elements of the modelled system, depending on the goals set, their own system 
analysis tasks can be solved. In general, the modelled system is represented as a «Black box» or as a 
complex system, the elements of which are combined sequentially or in parallel. At the same time, 
each element may be characterized by its own heterogeneous threats and the technologies used to 
control, monitor and recovery the violated integrity – see, for example [1-8], [13-14]. 

For each of the elements and for the modelled system as a whole, a space of elementary states is 
introduced (taking into account the logical relationships of the elements with the conditions " AND", 
"OR"). 

For example, in the application to predicting the risk of violation of information  protection 
requirements, the space of elementary states on the time axis can be formally defined by two basic 
states: 

- "Compliance with the requirements for information protection in the process of knowledge 
management is ensured", if the requirements for information protection are met during entire 
prognostic period, i.e. from the point of view of mathematical modeling, their non-compliance leads 
to damage; 

- "Compliance with the requirements for information protection in the process of knowledge 
management is violated" - otherwise. 

In the application to the prediction of the integral risk of violation of the process performance, 
taking into account the requirements for information protection, the space of elementary states on 
the time axis can be formally defined by the other two basic states:  

- "The reliability of the knowledge management process performance and the fulfillment of the 
requirements for information protection in the system are ensured", if during entire prognostic 
period the reliability of performing certain actions of the process for obtaining output results and 
the fulfillment of certain requirements for information protection are ensured;  

- "The reliability of the system knowledge management process performance and/or the 
fulfillment of the requirements for information protection in the system is violated" – otherwise. 

In general, it is possible to expand or rename the elementary states themselves, the main thing is 
that they form a complete set similar to the sets presented above.  

The use of the risk prediction helps to justify acceptable risks. In fact, for each analyzed object 
there are its own conditions of acceptability in the intended use. The priority is to choose the criterion 
of acceptable risk based on the precedent principle. The essence of the precedent principle is that as 
a norm for information protection, such a value of acceptable risk is established, which was chosen 
as acceptable based on the results of modeling various past events. For the specified prognostic 
period, the calculated risk values that are characteristic of the violations that have taken place are 
determined as unacceptable, and those that are smaller than those that are unacceptable are 
determined as acceptable (these risk values correspond to the precedent absence of violations of 
information protection requirements). 

As measures to counter threats that can reduce the calculated risks when they are applied, more 
frequent (compared to the time of threat development) system diagnostics or control with the 
restoration of normal operation (of the system, process, system element) can act. When using the 
specified limits of acceptable risk, predictions for real cases of violations of the norm "before" and 
"after" the occurrence of violations allow (when using the quantified limits of acceptable risk) to 
perform an analytical rationale of proactive measures to reduce or retain risks within acceptable 
limits and/or reduce costs and / or possible damages under the specified restrictions. The reasoned 
determination of balanced system measures and actions that prevent the occurrence of damage 
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under restrictions on resources and acceptable risks, as well as the assessment and rationale of 
effective short-, medium - and long-term security plans are carried out by solving independent 
optimization tasks using the calculated values of the predicted risks. 
 

5. Measures 
 

In application to modeled system, which can be represented as a «Black box» or a complex logical 
structure, the next measures are proposed: 

𝑅!"#	(𝑇%&"') ─ the risk of unreliability of the knowledge management process performance during 
specified prognostic period 𝑇%&"' without taking into account the requirements for information 
protection; 
𝑹𝐬𝐞𝐜	(𝑻𝒔𝒑𝒆𝒄) ─ the risk of violating the requirements for information protection in the process of 

knowledge management during specified prognostic period 𝑻𝐬𝐩𝐞𝐜.; 
𝑅𝒊𝒏𝒕	(𝑇3456) ─ integral risk of the violation of the knowledge management process performance, 

taking into account the requirements for information protection during specified prognostic period 
𝑇%&"'.  

The integral risk of the violation of the knowledge management process performance depends 
on unreliability of the process performance or on the violation of requirements for information 
protection, or both, with the severity of possible consequences. 
 

6. The procedure of risks prediction 
 

To predict the risks, it is proposed to perform the following steps: 
1) to define the modelled system and set the analyzed objects of risk prediction; 
2) to set the specific goals of risk prediction; 
3) to create a list of possible threats. The decision is made to represent the modelled system in the 

form of a «Black box» or in the form of a complex structure decomposed to composite elements. 
They form the space of elementary events for each element and the modelled system as a whole; 

4) to select calculated measures and suitable mathematical models and methods (including 
methods to increase their adequacy). 
 

7. Calculation methods, examples, interpretations 
 
The proposed methods to rationale system solutions, to reduce risks and/or retain them within 
acceptable limits are presented in combination with examples and the practical interpretations of 
the calculation results concerning some problems of Arctic development. 

To achieve the main goals in the Arctic development for the period up to 2035, numerous 
problems must be systematically solved in the areas of social and economic development, 
development of the infrastructure of the Arctic zone, development of science and technology in the 
economic interests, environmental safety, development of international cooperation, ensuring the 
protection of the population and territories of the Arctic zone from natural and man-made 
emergencies, ensuring information protection. The system solution of the entire set of tasks is based 
on knowledge management, based on the analytical processing of heterogeneous monitoring data 
and providing for the improvement, accumulation and timely application of emerging knowledge. 

Unavoidable uncertainties in the specifics of applications for a given prognostic period are taken 
into account when solving practical problems using mathematical modeling, risk prediction, system 
analysis and optimization at various meta-levels. 

Given the complexity and versatility of the practical tasks being solved for the development of 
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the Arctic region, the creation of one or more KnC is inevitable. In the conditions of real and potential 
threats to the security of critical information infrastructure, information protection in the KnC is of 
priority importance. Without going into the details and specifics of the heterogeneous knowledge to 
be integrated and applied, some practical problems to the use of this methodic approach are 
concerning: 

- to solve the profile tasks of ensuring environmentally safe marine exploration, production and 
transportation of various types of minerals in extreme natural and climatic conditions (profile tasks 
of the 1st type); 

- to solve specialized tasks of ensuring integrated safety of operations on the continental shelf, 
including monitoring and forecasting of extreme situations of natural and man-made nature (profile 
tasks of the 2nd type); 

- to solve the specialized tasks of preventing and eliminating emergency oil spills in ice 
conditions, including the creation of technologies for detecting oil under ice (profile tasks of the 3rd 
type); 

- to solve the profile tasks of developing technologies for integrated hydrometeorological and 
environmental monitoring of natural hazards in the Arctic regions (profile tasks of the 4th type); 

- to solve the profile tasks of developing technologies for remote sensing of the Earth, including 
environmental monitoring, resource estimation and forecasting of the state of the Arctic 
environment (profile tasks of the 5th type). 

The methodic approach is illustrated by the examples of the predictions: 
- the risk of unreliability of the knowledge management process performance without taking into 

account the requirements for information protection; 
- the risk of violating the requirements for information protection; 
- the integral risk of the violation of the knowledge management process performance, taking 

into account the requirements for information protection. 
For certainty from the point of view of system engineering for information protection, two 

options are considered: the creation and operation of five autonomous specialized KnC, each of 
which specializes in solving its own profile tasks (option 1), and the addition of a single KnC 
integrating the capabilities of all autonomous KnC (option 2). Taking into account possible  
consequences, the objectives of risk prediction are formulated as follows. In the conditions of existing 
uncertainty: 

- to quantify the risk of unreliability of the knowledge management process performance without 
taking into account the requirements for information protection; 

- quantify the risk of violating requirements for information  protection (both piecemeal for each 
KnC, and for a complex of all KnC); 

- identify critical conditions in the development of various threats; 
- to quantify the integral risk of violating the reliability of the knowledge management process 

performance, taking into account the requirements for information protection; 
- to determine such a period in which guarantees of non-excess of acceptable risks are maintained. 

Examples 1-3 show an assessment of the risk of unreliability of the knowledge management process 
performance (without taking into account the requirements for information protection). Assuming 
the commensurability of possible consequences, the examples assess the probabilities of unreliability 
of acquiring and creating useful knowledge and the probability of unreliability of the distribution of 
acquired or created useful knowledge and their timely application. 
 
7.1. Example 1 

 
The example shows an assessment of the risks of unreliability of the knowledge acquisition process 
performance. 

55 



 
Andrey Kostogryzov, Roman Avdonin, Andrey Nistratov 
METHODICAL RATIONALE OF SYSTEM SOLUTIONS TO REDUCE 
RISKS AND RETAIN THEM WITHIN ACCEPTABLE LIMITS FOR 
KNOWLEDGE MANAGEMENT PROCESS 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

When assessing the risks of unreliability of the knowledge acquisition process performance, the 
methods of system analysis are adapted in terms of assessment: 

- the risk of incomplete performance of the necessary actions for the supply of acquired 
knowledge; 

- the risk of violation of the delivery dates of acquired knowledge; 
- the risk of an unacceptable defects level in the acquired knowledge (analytical errors, 

descriptions, unsubstantiated conclusions and/or recommendations). 
From the point of view of calculations, the models for assessing the above risks are identical, 

since when assessing each of the risks, the calculated probabilistic measures are compared with the 
possible consequences proper due to non-fulfillment of the conditions for acquiring knowledge. 

The example below shows an estimation of the violation of the reliability of the timely delivery 
of acquired knowledge. The estimation of the incompleteness of performing the necessary actions to 
supply the acquired knowledge and the presence of an unacceptable defect in the acquired 
knowledge (analytical errors, descriptions, unsubstantiated conclusions and/or recommendations) 
is done by analogy. 

The probability 𝑅78	9'𝑇%&"'	9(	of violation of the terms of a single delivery for knowledge of i-th 
type for a given time 𝑇%&"'	9  is calculated by the formula 

                        
where 𝑁%"'	9'𝑇%&"'	9( and 𝑁9(𝑇%&"'	9)	– accordingly, the number of violations and the total number of 
deliveries in a given time 𝑇%&"'	9 to the knowledge of  i-th type statistics. 

The delivery time fulfillment indicator for k-type knowledge is defined as follows 
𝑍7":;	9	(𝑇%&"'	9) =

-
0, 		if	the	conditions	of	delivery	terms	are	met;		

𝑅78	9'𝑇%&"'	9(	according	to	the	formula	(1), if	the	conditions	are	not	met	or	not	specified.
            (2) 

 
The condition for fulfilling the terms of the knowledge delivery of k-th type is defined as the 

condition for not exceeding the maximum acceptable level 𝑅<88.св	9'𝑇%&"'	9(, set for the probability of 
violating the terms of a single delivery. This condition is expressed in the form: 
 𝑅78	9(𝑇%&"'	9) ≤ 𝑅<88.78	9(𝑇%&"'	9). In the expression for the generalized risk the execution rate of the 
delivery terms for the acquisition of knowledge of i-th type 𝑍7":;	9 	(𝑇%&"'	9) is marked as 
𝑍(acq)7":;	9	(𝑇%&"'	9). 

The probability of violation of delivery dates for the entire set of knowledge of various types 
implemented in the process according to statistical data, taking into account the multiplicity of 
deliveries characterized by the input data for each of the types of knowledge, is calculated by the 
formula 

 

𝑅78	(𝑇%&"') = 1 −I𝑀9[1 − 𝑅78	9 (𝑇%&"'	9)] I𝑀9;	
@

9AB

M
@

9AB

 
 

(3) 

where 𝑇%&"'	 – is the specified total delivery time of the entire set of knowledge of various types, 
including all the particular values of 𝑇%&"'	9 taking into account their overlaps,    𝑀9 – is the number 
of deliveries of knowledge of the i – th type taken into account for multiple deliveries, in the 
expression for the generalized risk in relation to the acquisition process , the designation M(acq) i , 
i = 1,…,I(acq) is used. 

In accordance with the tasks set for the development of the Arctic region, it is planned to acquire 
several types i of knowledge. The acquisition of all types of knowledge, with the exception of one, 
takes place without violating the delivery dates, i.e. in this case 𝑍7":;	9	(𝑇%&"'	) =	0. Therefore, the risk 
assessment takes into account only the type of acquired knowledge for which the delivery dates are 
violated.  

𝑅78	9(𝑇%&"'	9) = 𝑁%"'	9(𝑇%&"'	9)/𝑁9(𝑇%&"'	9),                                                (1) 
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Taking into account the statistical data on the development of the Arctic, for certainty, it is 
conditionally assumed that for a given time 𝑻𝐬𝐩𝐞𝐜	𝒊	= 1 year for type i of knowledge, the total number 
of deliveries 𝑁9 = 100, the number of violations of delivery dates 𝑵𝐬𝐞𝐜	𝒊	 = 3, which is 3% of the total 
number of deliveries, and the number of multiple deliveries Mi  = 1. 

The results of the estimation of the violation of the reliability process performance of creating 
useful knowledge are completely identical to this example. 

  
7.2. Example 2 

 
The example illustrates the assessment of the risks of violating the reliability process performance  
of distributing useful knowledge. The methods for calculations see in [13-14]. 

Let's assume that, taking into account statistical data, the frequency of a significant change in the 
usefulness of knowledge about Arctic conditions in the system's knowledge base will be no more 
than one change per 10 years, i.e. 𝛏 = 10 years. The average time for acquiring or creating and placing 
new knowledge in the knowledge base of the system (from the creators or distributors of knowledge) 
will be about three months, i.e. 𝑇C#DEF"8!"	G<%"	 = 3 months, which, translated to the same units of 
measurement, is 0,25 years. Updates from the KnC are delivered to the system consumers on a 
monthly basis, i.e.  𝑞 = 1 month or 0,083 years. In addition, a restriction is imposed on the probability 
of violating the reliability of the distribution of useful knowledge from above: this probability should 
not exceed the maximum allowable level 𝑅𝐚𝐝𝐝.𝐝𝐢𝐬𝐭'𝑻𝐬𝐩𝐞𝐜	( = 0,10. 

Thus, the risk assessment for the discipline of knowledge distribution immediately after its 
acquisition or creation is determined by the formula 

 
𝑅8L%7 = 1 − M

MNOC#DEF"8!"	G<%"		
=1-10/(10+0,25) = 0,024.                                    (4) 

The risk assessment for discipline periodic distribution of knowledge regardless of the dates of 
their acquisition or creation, i.e. regulation (confirming the usefulness of existing stored knowledge 
in the absence of changes) is determined by the formula 

𝑅8L%7 = 1 − M!

P(RNOC#DEF"8!"	G<%"	)
	 R1 − exp T− P

R
UV = 

=1- 102·[1-exp(-0,083/10)]/0,083·(10+0,25)=0,060.                                  (5) 

Since the condition of not exceeding the maximum acceptable level of 
 R8L%7'𝑇%&"'( ≤ R<88.8L%7'𝑇%&"'	(, is met, this indicator can be neglected in further calculations, i.e.  
	ZT3	(𝑇%&"') =	0, the conditions for the distribution of knowledge are met, see formula (6). For the 
period 𝑇%&"'	, for which the input data ξ, Tknowledge	base, 𝐪, is determined, the indicator of the 
reliability of the distribution of useful knowledge, assuming the timeliness of their subsequent 
application, is defined as follows 

𝑍T3	(𝑇%&"') =

-
0, 		if	the	conditions	for	the	distribution	and	application	of	knowledge	are	met;		

𝑅8L%7	'𝑇%&"'(	according	to	formulas		(4)and(5), if	the	conditions	are	not	met	or	not	specified.
														(6) 

 
7.3. Example 3 
 
The example presents an assessment of the generalized risk of the unreliability of the knowledge 
management process performance, which is determined by the formula 

𝑅%&"'	(𝑇%&"'	) = 1	 −	[1 − 𝑍T3	(𝑇%&"'	)] ·  
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· { I 𝑊(𝑎𝑐𝑞)U[1 −	 𝑍(𝑎𝑐𝑞)V6W	U'𝑇%&"'	U(] 	+
X(V6P)

UAB

I 𝑊(𝑐𝑟)U[1 −	 𝑍(𝑐𝑟)V6W	U(𝑇%&"'	U)] +
X(6Y5VW)

UAB

 

+ I 𝑀(𝑎𝑐𝑞)9[1 − 𝑍(𝑎𝑐𝑞)W5YZ	9(𝑇%&"'	9)] + I 𝑀(𝑐𝑟)9[1 − 𝑍(𝑐𝑟)W5YZ	9(𝑇%&"'	9)] +
@(6Y)

9AB

@(V6P)

9AB

+ I 𝐿(𝑎𝑐𝑞)[[1 − 𝑍(𝑎𝑐𝑞)\5][(𝑇%&"'	9) 	+ I 𝐿(𝑐𝑟)[[1 − 𝑍(𝑐𝑟)\5]	[(𝑇%&"'	9)]}
^(6Y)

[AB

^(V6P)

[AB

				

/	[ I 𝑊(𝑎𝑐𝑞)U

X(V6P)

UAB

+ I 𝑀(𝑎𝑐𝑞)9

@(V6P)

9AB

+ I 𝐿(𝑎𝑐𝑞)[ + I 𝑊(𝑐𝑟)U

X(6Y)

UAB

+ I 𝑀(𝑐𝑟)9

@(6Y)

9AB

+ I 𝐿(𝑐𝑟)[],
^(6Y)

[AB

	
^(V6P)

[AB

 

            (7) 

where 𝑻𝐬𝐩𝐞𝐜	 – is the specified total time, including all the partial values 𝑻𝐬𝐩𝐞𝐜	𝒌, 𝑻𝐬𝐩𝐞𝐜	𝒊, 𝑻𝐬𝐩𝐞𝐜	𝒋 

𝑅%&"'(𝑇%&"'	)	= 1-[1·(1-0,03)+1·(1-0,03)+1·(1-0,03)+1·(1-0,03)+1·(1-0,03) +1·(1-0,03)]/(1+1+1+1+1+1) = 
=0,03. 

As a calculation result, the risk of unreliability of the system knowledge management process 
performance in the prognostic period of 1 year will be approximately 0,03. 

 
  7.4. Example 4 
   
The example demonstrates the prediction of the risk of violation of information  protection 
requirements in several autonomous KnC. Elements of the modelled system are elements 1-5, 
formally associated with assets and output results of solving profile problems of the 1st-5th types, 
respectively. 

By definition, the absence of violations of information  protection requirements in the modelled 
system is considered to be ensured during a given prognostic period if there are no violations in all 
autonomous data centers during this period. The prognostic period itself for an separate element 
can be interpreted as referring to the stage of creation (for threats inherent in this stage), and to the 
stage of operation in the future (for potentially possible threats). 

Performing step 3 of this methodic approach (see section 6), many critical threats were identified 
that affect the information protection of each of the structural elements of the modelled system. 
Hypothetical input data for each of the five elements of the modelled system with a brief rationale 
in the comments are presented in Table 1. 

 
Table 1: Hypothetical input data for predicting the risk of violation of information  protection requirements  

Input data Element # Values and comments 

s – the frequency of 
occurrence of sources of 
threats to the violation 
of information 
protection requirements 

1 four times a year, which is commensurate with the occurrence of 
threats associated with subjective factors and errors of intermediate-
qualified IT specialists in solving problems of ensuring 
environmentally safe offshore exploration, production and 
transportation of various types of minerals in extreme natural and 
climatic conditions 

2 twice a year, which is commensurate with the time of failure of 
software and technical equipment to ensure comprehensive safety of 
operations on the continental shelf, including monitoring and 
forecasting of extreme situations of a natural and man-made nature 

3 once a year, which is commensurate with the emergence of threats 
related to the causes of human errors at the decision-making levels for 
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the prevention and elimination of emergency oil spills in ice 
conditions, including the creation of technologies for detecting oil 
under ice 

4 once in two years, which is comparable with the emergence of threats 
from the use of undeclared capabilities of the software technology 
integrated hydrometeorological and environmental monitoring of 
natural hazards in the Arctic regions 

5 once in two years, which is comparable with the emergence of threats 
from the use of undeclared capabilities of the software in the 
technologies of remote sensing, including environmental monitoring, 
resource estimation and forecasting of the Arctic environment 

b – the average time of 
threat development 
from the moment of the 
occurrence of threat 
sources to the violation 
of information 
protection requirements 

1–5 1 day 
(it is assumed that due to the source of threats, they are activated not 
immediately, but with a certain delay of at least a day) 
– this is the time before possible damage after the occurrence of threat 
signs 
 

Тav– the average time 
between the end of the 
previous and the 
beginning of the next 
diagnostics of the 
system's capabilities to 
meet the requirements 
for information 
protection 

1 1 hour 
- it is determined by the regulations for monitoring the integrity of the 
KnC software and assets during shift work in terms of marine 
exploration, production and transportation of various types of 
minerals in extreme natural and climatic conditions 

2 1 hour 
- is determined by the regulations for monitoring the integrity of 
software and assets when monitoring extreme situations of a natural 
and man-made nature 

3 2 hours 
- it is determined by the regulations for monitoring the integrity of the 
KnC software and assets during shift work in terms of preventing and 
eliminating emergency oil spills in ice conditions 

4 1 hour 
- is determined by the regulations for monitoring the integrity of the 
KnC software and assets during complex hydrometeorological and 
environmental monitoring of natural hazards in the Arctic regions 

5 8 hours 
- it is determined by the regulations for monitoring the integrity of the 
KnC software and assets during shift work in terms of remote sensing 
of the Earth, including environmental monitoring, resource estimation 
and forecasting of the state of the Arctic environment 

Тdiag– the average time 
for diagnosing the state 
of assets and the system 
itself 

1–5 30 seconds 
which is commensurate with the duration of automatic integrity 
control of the software and assets of the KnC 

Тrec – the average 
recovery time of the 
required norm of 
information protection 
effectiveness after 
detection of violations 

1–5 5 minutes 
including rebooting the software 
and restoring the KnC data 
 

Тspec– the specified 
duration of the 
prognostic period 

1–5 From 1 month up to 2 years 
(to determine the period during which guarantees are maintained that 
the acceptable risk of violating information protection requirements 
will not be exceeded) 
 

 
The analysis of modeling results showed that in probabilistic terms, the risk of violating the 

requirements for information protection during year will be about  0,222 for the entire complex of 
knowledge centers, see Figure 1, amounting to  0,080 for the 1st element ("bottleneck"), not exceeding 
0,041 for the 2nd-4th elements, and 0,072 for the 5th element ("bottleneck"). If the duration of the 
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prognostic period changes from one to four months, the risk increases from 0.020 to 0.080. For an 
acceptable risk level of 0,050, a period of up to 2.5 months is justified, in which guarantees are 
maintained that the acceptable risk will not be exceeded for the entire complex of KnC, characterized 
by the conditions of the example from Table 1-see Figure 2.     

 

 
 

Figure 1: Assessment of the risk of violation of information protection requirements 
 

 
 

Figure 2: Dependence of the risk for all knowledge centers on the prognostic period of one to four months 
 

The risk levels for threats to the output results of the KnC 1 (related to subjective factors and errors 
of intermediate-qualified IT specialists in solving problems of ensuring environmentally safe 
offshore exploration, production and transportation of various types of minerals in extreme natural 
and climatic conditions - element 1) and threats to the output results of the KnC 2 (related to the use 
of undeclared software capabilities in Earth remote sensing technologies, including environmental 
monitoring, resource estimation and forecasting of the state of the Arctic environment-element 5) 
are determining the overall risk of violating information protection requirements for the year. 
Moreover, the reason that element 1 is a kind of" bottleneck " in the KnC complex is the relatively 
high frequency of occurrence of sources of threats to commit human errors (4 times a year). And for 
element 5, the reason is the relatively long average time between the end of the previous one and 
the beginning of the next diagnostics of the system's capabilities in terms of meeting information 
protection requirements (after 8 hours) – see Table 1. 
 
 

60 



 
Andrey Kostogryzov, Roman Avdonin, Andrey Nistratov 
METHODICAL RATIONALE OF SYSTEM SOLUTIONS TO REDUCE 
RISKS AND RETAIN THEM WITHIN ACCEPTABLE LIMITS FOR 
KNOWLEDGE MANAGEMENT PROCESS 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

  7.5. Example 5 
 
The example demonstrates the prediction of the risk of violation of information  protection 
requirements with the addition of a single KnC that integrates the capabilities of all autonomous 
KnC and performs the functions of a backup center for various types of failures in specialized KnC 
(option 2) – see Figure 5. 
 

 
 

 
Figure 3: The Dependence of risk for all KnC from the prognostic period lasting from 6 to 24 months (for 

case 1) 
 

 
 

Figure 4: Dependence of the risk for all KnC on the prognostic period lasting from 1 to 4 months  
(for case 2 – deliberate attacks) 

 
Two cases are considered: 
- case 1: the frequency of occurrence of threat sources increases to 1 time per month, which is not 

much higher than the total frequency of occurrence of various threat sources for KnC 1 – KnC 5 
according to Table 1; 

- case 2: the frequency of occurrence of threat sources increases to 1 time per day, which is 30 
times higher than the frequency compared to case 1 and is comparable to deliberate computer attacks 
on a single KnC. 

For both cases, the average time between the end of the previous and the beginning of the next 
diagnosis of the system's capabilities to meet the requirements for information protection is 1 hour, 
which is typical for most specialized KnC. 
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The analysis of the simulation results for the complex structure shown in Figure 5 showed the 
following. 

For case 1, in probabilistic terms, the total risk of violating information protection requirements 
during year will be about 0,051 for the entire complex of knowledge centers, i.e. it will decrease by 
more than 4 times compared to Example 4.  This is achieved by reserving the operation of specialized 
knowledge centers with the capabilities of a single KnC. If the duration of the prognostic period 
changes from 6 to 24 months, the risk increases from 0,015 to 0,161. And for an acceptable risk at the 
level of 0,050, a period of up to 11,7 months is justified, in which guarantees are maintained that the 
acceptable risk is not exceeded for the entire complex of KnC characterized by the conditions of case 
1 of Example 4 (see Figure 3). 
For case 2, associated with daily deliberate attacks on a single KnC, the total risk of violating 
information protection requirements during year will be about 0,222 for the entire complex of 
knowledge centers, i.e. the same as for example 5 with a frequency of threat sources 30 times less. If 
the duration of the prognostic period changes from 1 to 4 months, the risk increases from 0,010 to 
0,074. And for acceptable risk level 0,050 justified period to 2,9 months, which retain guarantee not 
to exceed acceptable risk to the whole complex of knowledge, characterized by the conditions of case 
2 of example 4 (see Figure 4). 
 
  7.6. Example 6 
 
Given that the prognostic period 𝑻𝐬𝐩𝐞𝐜	= 1 year, year, according to the results of calculations of 
examples 1─3 takes place 𝑹𝐠𝐞𝐧	(𝑻𝐬𝐩𝐞𝐜)= 0,030, and according to the results of calculations of the 5th 
example (case 2-deliberate attacks on a single KnC) 𝑹𝐬𝐞𝐜	(𝑻𝐬𝐩𝐞𝐜) = 0,051, then 

𝑹𝐢𝐧𝐭		(𝑻𝐬𝐩𝐞𝐜)	 = 1 ─ (1─0,030)·(1─0,051) ≈ 0,080. 

As a result, the integral risk of the violation of the knowledge management process performance 
during year, taking into account the requirements for information protection, will be 0,080. At the 
same time, the risk of violating the requirements for information protection (0,051) is 1,57 times less 
than the generalized risk of unreliability of the knowledge management process performance 
without taking into account the requirements for information protection. 
 

CONCLUSION 
 

Within the framework of the proposed methodical approach, the knowledge management 
process is formalized taking into account the requirements for information protection. The approach 
allows to estimate the impact of various threats (including threats to the violation of information  
protection requirements) on the effectiveness of process implementation. The measures of integral 
risk of the violation of knowledge management process performance, taking into account  
requirements for information protection, particular risks (covering knowledge acquisition, creating 
useful knowledge, distribution of acquired or created useful knowledge), and generalized risk 
taking into account all particular risks are proposed. Recommendations on methods of risk 
prediction are interpreted, taking into account the complexity of the modelled system and measures 
to counter threats in each element. The examples illustrate the proposed methodical rationale of 
system solutions to reduce risks and retain them within acceptable limits with a practical 
interpretation of the results obtained. This methodical approach is implemented on the level of 
national standard GOST R 59333-2021.  

 
  

62 



 
Andrey Kostogryzov, Roman Avdonin, Andrey Nistratov 
METHODICAL RATIONALE OF SYSTEM SOLUTIONS TO REDUCE 
RISKS AND RETAIN THEM WITHIN ACCEPTABLE LIMITS FOR 
KNOWLEDGE MANAGEMENT PROCESS 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

References 
 
 [1] A. Kostogryzov, G.Nistratov and A.Nistratov. Some Applicable Methods to Analyze and 

Optimize System Processes in Quality Management.  Total Quality Management and Six Sigma, 
InTech, 2012: 127-196. DOI: 10.5772/46106 

[2] L. Grigoriev , A. Kostogryzov , V. Krylov , A. Nistratov , G. Nistratov  Prediction and 
optimization of system quality and risks on the base of modelling processes // American Journal 
of Operation Researches. Special Issue. 2013. V.1. P. 217−244. http://www.scirp.org/journal/ajor/ 

[3] A. Kostogryzov, P. Stepanov, A. Nistratov, G. Nistratov, O. Atakishchev and V. Kiselev Risks 
Prediction and Processes Optimization for Complex Systems on the Base of Probabilistic 
Modeling // Proceedings of the 2016 International Conference on Applied Mathematics, 
Simulation and Modelling (AMSM2016), May 28-29, 2016, Beijing, China, pp. 186-192. 
www.dropbox.com/s/a4zw1yds8f4ecc5/AMSM2016%20Full%20Proceedings.pdf?dl=0 

[4] A. Kostogryzov. Risks Prediction for Artificial Intelligence Systems Using Monitoring Data. 2019. 
Vol-2603. P. 29-33. URL: http://ceur-ws.org/Vol-2603/short7.pdf 

[5] V. Artemyev, A. Kostogryzov, J. Rudenko, O. Kurpatov, G. Nistratov, A. Nistratov Probabilistic 
methods of estimating the mean residual time before the next parameters abnormalities for 
monitored critical systems. Proceedings of the 2nd International Conference on System 
Reliability and Safety (ICSRS- 2017), December 20-22, 2017, Milan, Italy, pp. 368-373 

[6] V. Kershenbaum, L. Grigoriev, P. Kanygin, A. Nistratov. Probabilistic modeling in system 
engineering. Probabilistic modeling processes for oil and gas systems. IntechOpen, 2018: 55-79. 

[7] Kostogryzov A., Stepanov P., Nistratov A., Nistratov G., Klimov S., Grigoriev L. (2017). The 
method of rational dispatching a sequence of heterogeneous repair works. Energetica. Vol.63, 
4, 154-162. www.lmaleidyka.lt/ojs/index.php/energetika/index   

[8] A. Kostogryzov, A. Nistratov, G. Nistratov (2020) Analytical Risks Prediction. Rationale of 
System Preventive Measures for Solving Quality and Safety Problems. In: Sukhomlin V., 
Zubareva E. (eds) Modern Information Technology and IT Education. SITITO 2018. 
Communications in Computer and Information Science, vol 1201. Springer, pp.352-364. 
https://www.springer.com/gp/book/9783030468941 

[9] A. Berdyugin, P. Revenkov. Approaches to measuring the risk of cyberattacks in remote banking 
services of Russia. 2019. Vol-2603. P. 23-38. URL: http://ceur-ws.org/Vol-2603/short2.pdf 

[10] N. Korneev, V. Merkulov. Intellectual analysis and basic modeling of complex threats. 2019. Vol-
2603. P. 23-38. URL: http://ceur-ws.org/Vol-2603/paper6.pdf 

[11] A. Kostogryzov. Risks Prediction for Artificial Intelligence Systems Using Monitoring Data. 
2019. Vol-2603. P. 29-33. URL: http://ceur-ws.org/Vol-2603/short7.pdf 

[12] V. Varenitca, A. Markov, V. Savchenko. Recommended Practices for the Analysis of Web 
Application Vulnerabilities. 2019. Vol-2603. P. 75-78. URL: http://ceur-ws.org/Vol-
2603/short16.pdf  

[13] A. Kostogryzov, V. Korolev. Probabilistic methods for cognitive solving some problems of 
artificial intelligence systems. Probability, combinatorics and control. IntechOpen, 2020, pp. 3-
34. URL: https://www.intechopen.com/books/probability-combinatorics-and-control 

[14] A. Kostogryzov, P. Kanygin, A. Nistratov. Probabilistic comparisons of systems operation 
quality for uncertainty conditions. RTA&A  No1(56), 2020, 15:63-73 
http://www.gnedenko.net/RTA/ 

[15] V.A. Nadein, N.A. Makhutov, V.I. Osipov, G.I. Shmal’, P.A. Truskov  Hybrid modelling of 
offshore platforms’ stress-deformed and limit states with taking into account probabilistic 
parameters. Probability, combinatorics and control. IntechOpen, 2020, pp. 73-116. URL: 
https://www.intechopen.com/books/probability-combinatorics-and-control 

63 



 
Andrey Kostogryzov, Roman Avdonin, Andrey Nistratov 
METHODICAL RATIONALE OF SYSTEM SOLUTIONS TO REDUCE 
RISKS AND RETAIN THEM WITHIN ACCEPTABLE LIMITS FOR 
KNOWLEDGE MANAGEMENT PROCESS 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

[16] I. Sinitsyn, A. Shalamov  Probabilistic analysis, modeling and estimation in CALS technologies. 
Probability, combinatorics and control. IntechOpen, 2020, pp. 117-142. URL: 
https://www.intechopen.com/books/probability-combinatorics-and-control 

[17]  D. Neganov., N. Makhutov. Combined calculated, experimental and determinated and 
probable rationale for strength of trunk oil pipelines. Probability, combinatorics and control. 
IntechOpen, 2020, pp. 143-164. URL: https://www.intechopen.com/books/probability-
combinatorics-and-control    

[18] N. Makhutov, M. Gadenin, Yu. Dragunov, S. Evropin, V. Pimenov Probability modeling  taking 
into account nonlinear processes of a deformation and fracture for the equipment of nuclear 
power plants. Probability, combinatorics and control. IntechOpen, 2020, pp. 191-220. URL: 
https://www.intechopen.com/books/probability-combinatorics-and-control 

[19] I. Goncharov, N. Goncharov,  P. Parinov, S. Kochedykov, A. Dushkin  Modelling the 
information-psychological impact in social networks. Probability, combinatorics and control. 
IntechOpen, 2020, pp. 293-308. URL: https://www.intechopen.com/books/probability-
combinatorics-and-control 

[20] V. Borcovskaya and D. Passmore Risk Reduction Strategy and Risk Management on The Basis 
of Quality Assessments, 2020 IOP Conf. Ser.: Mater. Sci. Eng. 869 062051 

[21] E. P. Voronina Comprehensive socio-economic development of Arctic territories of the Russian 
Federation: case of risks in the coordinate plane. 2021 IOP Conf. Ser.: Earth Environ. 
Sci. 625 012012  

[22] M. Ulfah, F. Arina and C. Lutfiah  Analysis and strategy of supply chain risk mitigation using 
fuzzy failure mode and effect analysis (fuzzy fmea) and fuzzy analytical hierarchy process 
(fuzzy ahp) Dyah Lintang Trenggonowati,  2020 IOP Conf. Ser.: Mater. Sci. Eng. 909 012085. 

 

64 



 
Adilakshmi. S & Ravi Shankar. N 
PROJECT CHARACTERISTICS BY DIJKSTRA’S ALGORITHM 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

 
 

Improving Dijkstra’s algorithm for Estimating Project 
Characteristics and Critical Path 

Adilakshmi Siripurapu1, Ravi Shankar Nowpada2, K. Srinivasa Rao3 

• 
Dept. of Basic Science and Humanities, Vignan’s Institute of Information  

Technology (A), Duvvada, Visakhapatnam, AP, India1 

Dept. of Mathematics, Institute of Science, GITAM (Deemed to be University),  
Visakhapatnam, AP, India2  

Dept. of Operations, GITAM school of Business, GITAM (Deemed to be University), 
Visakhapatnam, AP, India3 

 
laxmimaths2008@gmail.com1 

Drravi68@gmail.com2 

skolli2@gitam.edu 
 

Abstract 
 

Developing a project planning structure for all industries is a technological challenge involving 
evaluating several restrictions for each activity’s respective task and its planning tools. Any 
restriction affects the completion time, operating costs, and overall project performance. Programme 
Evaluation Review Technique (PERT) and Critical Path Method (CPM) processes made many 
researchers study the possible ways of finding the critical paths and activities in the network. The 
advancement of the CPM and PERT towards a probabilistic environment is still a long way off. 
However, Artificial intelligence approaches such as the Genetic Algorithm, Dijkstra’s algorithm, 
and others are utilized for network analysis within the project management framework. This study 
is to help the project manager plan schedule for a construction project to determine the expected 
completion time. In this research paper, we describe a method for obtaining the earliest and latest 
times of a critical path using modified Dijkstra’s algorithm with triangular fuzzy numbers. 
Forward pass and backward pass algorithms are designed to find the optimal path for the proposed 
method. Numerical examples are also illustrated for the same. Simulation results are included by 
the use of the “C” program. Finally, a comparison is made with the traditional method PERT.  
 
Keywords: Critical Path, Dijkstra’s Algorithm, Earliest and latest times, modified 
Dijkstra’s algorithm, PERT. 
 

1. Introduction 
 

In the project network development process, the project controller’s objective is to develop a 
primary plan. The critical path method is one of the most significant approaches in network study. 
The concept of the critical path allows the decision-maker to control the project’s cost and 
schedule, and it can improve the quality of the work. This method is commonly used in various 
industries to analyze and improve the efficiency of a project. Many cases have been discussed 
where the activity times are deterministic; the PERT method applies to a probabilistic 
environment. Different methods and various working techniques are applied in project 
management. Every procedure has its own time to complete the task. Gantt chart, network 
diagram, CPM and PERT are a few strategies commonly used to handle projects.   
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            Every activity's length is considered when estimating the longest path in CPM. In PERT, the 
activity's estimated time is assumed. Due to that, PERT handles by taking three-point estimates 
(most likely [m], optimistic [a], and pessimistic [b] and if the activity allocation fits the beta 
distribution. Malcom first proposed a PERT approximation using the Beta distribution in 1959 [7]. 
An efficient critical path analysis algorithm (CHAN) based on the automatic test pattern 
generation (ATPG) approach PODEM was presented by Chang in 1993[1]. Traditionally, the beta 
distribution was used in the PERT. Solomon Sackey et al., 2018 proposed that an altered PERT was 
enlarged and utilized to model scheduling risk. The proposed PERT model was based on suspicion 
of a 95% certainty level. According to the due date and the probability of lag, the project 
completion probability is computed in five perspectives for both approaches. A sample is taken to 
assess the error rate for every example. The average error rate was calculated using the traditional 
PERT technique and the updated PERT method for all cases. The revised PERT version improved 
the average error rate by 2.46%, correlated with 3.31% of the traditional PERT approach. This way 
of considering has confirmed that the revised PERT approach can more precisely assess the 
completion probability better than the traditional PERT. By the way, because the new PERT was 
entirely based on suspicion, it is ambitious to decide with confidence that it is far superior to the 
conventional PERT model [8]. Li et al., 2007; The Monte Carlo simulation studied the real-world 
project's network program. The outcome revealed that the stochastic network program gave 
significant scheduling data better than the conventional network program [4]. Lee, 2005 proposed 
Stochastic Project Scheduling Simulation (SPSS) software approach affects the possibility of 
finishing a project with a deadline set by the software's operator. The SPSS program can simulate 
activity time using several probability distributions and uniform, triangular, and normal 
distributions. SPSS also computes the CI for entire project activities [3]. In general, project network 
simulation is utilized to improve the feasibility and reliability of the PERT study. Cheng et al., 2004 
explained the use of MonteCarlo simulation in PERT to achieve a stochastic period of activity [2].  
A simulation model that generates a 20 histogram for the distribution of the completed activity 
network. CPM/PERT simulation technique that adds discrete event simulation plan technique and 
the critical path determination process. According to the authors, “for each activity, Earliest start 
(𝐸𝑆#!"), Latest start (𝐿𝑆#!"), Earliest finish (𝐸𝐹&!"), Latest finish (𝐸𝐹&!"), and Total float (𝑇𝐹&!") times 
should be included in the CPM analysis.” The 𝐸𝑆#!" and 𝐸𝐹&!" of the project network are computed 
during its forward pass, whereas the 𝐿𝑆#!",𝐿𝐹&!" and 𝑇𝐹&!" are determined throughout its backward 
pass. The 𝑇𝐹&!" is utilized to evaluate the project’s criticality by Lu et al., 2000[5]. Mac Crimmon et 
al., 1964; one drawback of the PERT is that though many pathways must follow to finish a project, 
the project time is reduced and does not exceed the average project time [6]. Shankar et al. 2010 
used modified Dijkstra’s algorithm to estimate project duration [9]. Xiaokang Han et al. proposed 
in 2021 an improved ant colony algorithm to determine the critical path by setting the path 
distance and time as negative, while the transition probability remains unchanged, is proposed 
[10]. 
 
             In 1965, Zadeh introduced [11] the concept of fuzzy set theory. In today’s highly 
competitive world, many problems in fuzzy mathematics have been produced. When the activity 
periods in a project environment are deterministic, many real-life events change faster by utilizing 
the idea of fuzziness. 
 
            In this paper, with the help of the program evaluation review technique (PERT) and critical 
path method (CPM) along with Dijkstra’s algorithm approached with an example to formulate the 
critical path and project duration. The main objective values are taken in fuzzy numbers; we can 
rank the fuzzy number to find the best alternative.  
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2. Methodology 
2.1 Proposal Algorithm 

An altered Dijkstra’s Algorithm determines the maximum time between a start node (referred to as 
the "source node") and further nodes in a network. In this technique, the weights of the edges are 
utilized to determine the path that optimizes the overall distance (weight) within the start node 
and further nodes. Modified Dijkstra’s Algorithm is only suitable for positive weighted graphs 
because the weights of the edges must be added during the procedure to determine the longest 
path. 
           
Basic concepts in an altered Dijkstra’s Algorithm 

• An altered Dijkstra’s Algorithm starts at the node you choose (the source node) and 
analyzes the graph to identify the longest path within that node and all further nodes 
in the network. 

• The model considers the currently known longest path within an individual node 
and the origin node, and it modifies the values if the longest path is identified. 

• The model finds the maximum distance from one event to another event; the node is 
labeled as “visited” and adds to the path. 

• The procedure is continued till all the nodes in the graph are connected to the path. 
In the process, we have a path that adds the source node to all further nodes by 
taking the longest possible path to an individual node. 

• The source node is at zero distance from itself. Initially gives '0' labels to all vertices. 
• Use the infinity sign to indicate the distance from the source node to all other nodes 

for the time being because it has not yet been estimated. 
• We will find the earliest times in modified Dijkstra’s algorithm using the forward 

pass algorithm and the latest times using the backward pass algorithm. 

2.2 Forward pass calculations in Dijkstra’s algorithm 
Step1: In sequence𝑣# = 1, 𝑣$ = 2,…… . . 𝑣% = 𝑛, allocate 𝑛 vertices. 
Step2: Assign permanent label ‘0’ to the primary vertex 𝑣# = 1 and provisional label '0’ to the rest 
of 𝑛 − 1 edges. 
Step3: Every vertex 𝑗 that is not permanently labeled would receive a new provisional label. 

i.e, 𝐸" = max	{𝑜𝑙𝑑𝑙𝑎𝑏𝑒𝑙𝑜𝑓𝑗, >𝑜𝑙𝑑𝑙𝑎𝑏𝑒𝑙𝑜𝑓𝑖 + 𝑡!"B} 
Where 𝑖 is permanently labeled with the new vertex and 𝑡!" is the duration of activity between 
vertices 𝑖 and j, if an edge is not connected to 𝑖 and	𝑗,𝑡!" = ∞. 
Step4: The next vertex turns into the fixed (visited) label. 
Step3 and step4 repeated until 𝑣% = 𝑛 gets a fixed label. The 𝐸"′𝑠 permanently labeled values are 
the earliest times as	𝐸# = 0. 
 
2.3 Backward pass calculations in Dijkstra’s algorithm 
 
Step1: Set 𝑛 vertices to𝑣% = 𝑛, 𝑣%&# = 𝑛 − 1,……𝑣# = 1. 
Step2: Allocate fixed label 𝐿% = 𝐸%to the vertex 𝑣% = 𝑛 and temporary labels to remains 𝑛 − 1 
vertices. 
Step3: Any node j that does not get a constant label gets a new provisional label. 

i.e., 𝐿" =minF𝑜𝑙𝑑𝑙𝑎𝑏𝑒𝑙𝑜𝑓𝑖, >𝑜𝑙𝑑𝑙𝑎𝑏𝑒𝑙𝑜𝑓𝑗 + 𝑡!"BG 
Where 𝑗 is the fixed labeled with the new vertex 𝑡!"is the duration  
of activity among vertices 𝑖 and𝑗 
Step4: as per step1, the next vertex will become a fixed label or permanent label. 
Repeated step3 and step4 until then the initial vertex 𝑣# = 1 gets a fixed label. 
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2.4 The proposal ranking in a Triangular fuzzy number 
 
Let𝐴# = (𝑎, 𝑏, 𝑐)be the Triangular fuzzy number and consider the Triangle centroid as the ranking in 
the Triangular fuzzy number and its diagram expressed in Figure 1. 

 

 
 

Figure 1: Diagram representation of centroid of TFN 
 
The centroid of the Triangle is'()(*

+
. Consider, the centroid of triangle is a new ranking in 

Triangular fuzzy number. 
Therefore, the new ranking in Triangular fuzzy number is; 

ℛ>𝐴#B = '()(*
+

. 

 

3 Numerical Analysis 

Here I collected applications from Network sources presented in Table1. Moreover, a related 
network diagram is presented in Figure 2. 

 

Table1: Application Problem 

Activity Code Predecessor a m b 

1→2 P - 5 6 7 

1→3 Q - 1 3 5 

1→4 R - 1 4 7 
2→5 S P 1 2 3 

3→6 T Q 1 2 9 

4→6 U R 1 5 9 

4→7 V R 2 2 8 

6→7 W T, U 4 4 10 

5→8 X S 2 5 8 
7→8 Y W, V 2 2 8 
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Figure 2: Diagram representation of application problem 

 

3.1 Duration of activities calculated by adopting with TFN 

The duration of activities taken as the Triangular fuzzy number is depicted in Table 2. Moreover, a 
related diagram is represented in Figure 3. 
 

Table 2: Expected time of activities with TFN 

Activity a m b TFN 
1→2 5 6 7 (5,6,7) 

1→3 1 3 5 (1,3,5) 

1→4 1 4 7 (1,4,7) 

2→5 1 2 3 (1,2,3) 

3→6 1 2 9 (1,2,9) 

4→6 1 5 9 (1,5,9) 
4→7 2 2 8 (2,2,8) 

6→7 4 4 10 (4,4,10) 

5→8 2 5 8 (2,5,8) 

7→8 2 2 8 (2,2,8) 

 

 
Figure3: Activities of project network with TFN 
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3.2 Earliest times  

Earliest times of every node in the project network using forward pass algorithm with TFN seen in 
Table 3. 

 

Table 3: Earliest times of every node with a TFN 

Vertex Number 

Vertex number 

 

Earliest  time 

1 2 3 4 5 6 7 8  

(0,0,0) 

 

(0.,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) 𝐸! = (0,0,0) 

(0,0,0)(F) 

 

(5,6,7) (1,3,5) (1,4,7) ∞ ∞ ∞ ∞  

(0,0,0)(F) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5) (1,4,7) ∞ ∞ ∞ ∞ 𝐸" = (5,6,7) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5) (1,4,7) (6,8,10) ∞ ∞ ∞  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7) (6,8,10) ∞ ∞ ∞ 𝐸# = (1,3,5) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7) (6,8,10) (2,5,14) ∞ ∞  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (2,5,14) ∞ ∞ 𝐸$ = (1,4,7) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (2,9,16) (3,6,15) ∞  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10)(F) (2,9,16) (3,6,15) ∞ 𝐸% = (6,8,10) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (F) (2,9,16) (3,6,15) (8,10,15)  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (F) (2,9,16)(F) (3,6,15) (8,10,15) 𝐸& = (2,9,16) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (F) (2,9,16)(F) (6,13,26) (8,10,15)  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10) (F) (2,9,16)(F) (6,13,26)(F) 

 

(8,10,15) 𝐸' = (6,13,26)) 

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) 

 

(6,8,10)(F) 

 

(2,9,16)(F) 

 

(6,13,26)(F) 

 

(8,15,34)  

(0,0,0)(F) 

 

(5,6,7)(F) (1,3,5)(F) (1,4,7)(F) (6,8,10)(F) 

 

(2,9,16)(F) 

 

(6,13,26)(F) 

 

(8,15,34)(F) 

 

 

𝐸(= (8,15,34) 

3.3 Latest times 

The latest times of every node in the project network using backward pass algorithm with 
Triangular fuzzy ranking formula are seen in Table 4. 
 

Table 4: Latest times of every node with a TFN 

Vertex number Latest time 
8 7 6 5 4 3 2 1  

(8,15,34)(F) 

 

(8,15,34) (8,15,34) (8,15,34) (8,15,34) (8,15,34) (8,15,34) (8,15,34) 𝐿( = 𝐸(
= (8,15,34) (8,15,34)(F) 

(F) 

(6,13,26) (8,15,34) (6,13,29) (8,15,34) (8,15,34) (8,15,34) (8,15,34)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(8,15,34) (6,13,29) (8,15,34) (8,15,34) (8,15,34) (8,15,34) 𝐿' = (6,13,26)) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16) (6,13,29) (4,11,18) (8,15,34) (8,15,34) (8,15,34)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29) (4,11,18) (8,15,34) (8,15,34) (8,15,34) 𝐿& = (2,9,16) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29) (1,4,7) (1,7,7) (8,15,34) (8,15,34)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7) (1,7,7) (8,15,34) (8,15,34) 𝐿% = (6,13,29) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7) (1,7,7) (5,11,26) (8,15,34)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7) (5,11,26) (8,15,34) 𝐿$ = (1,4,7) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7) (5,11,12) (0,0,0)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7)(F) 

 

(5,11,12) (0,0,0) 𝐿# = (1,7,7) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7)(F) 

 

(5,11,12) (0,0,0)  

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7)(F) 

 

(5,11,12)(F) 

 

(0,0,0) 𝐿" = (5,11,12) 

(8,15,34)(F) 

 

(6,13,26)(F) 

 

(2,9,16)(F) 

 

(6,13,29)(F) 

 

(1,4,7)(F) 

 

(1,7,7)(F) 

 

(5,11,12)(F) 

 

(0,0,0)(F) 

 

𝐿!=(0,0,0) 

 
From the above two tables, 
 𝐸# = 𝐿# = (0,0,0), 𝐸, = 𝐿, = (1,4,7), 𝐸- = 𝐿- = (2,9,16), 𝐸. = 𝐿. = (6,13,26)𝐸/ = 𝐿/ = (8,15,34). 
As a result, the critical path is 1→4→6→7→8, and the project duration is (8, 15, 34). 

70 



 
Adilakshmi. S & Ravi Shankar. N 
PROJECT CHARACTERISTICS BY DIJKSTRA’S ALGORITHM 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

Now, the TFN (8, 15, 34) is converted into normal time using Triangular fuzzy ranking formula 
'()(*

+
. The defuzzified value of (8, 15, 34) is 19. 

Therefore, the project ends in 19 days. 

4 Traditional methods 

4.1 Program Evaluation Review Technique (PERT) 

Program Evaluation Review Technique (PERT) is a project management method for estimating 
how long it will take to complete a project successfully. There is an approach breakdown structure 
in project management that split a project into minor projects or activities. Every activity has its 
timeframe; it demands requirements and gives a result. Much of the time, these activity times are 
non-deterministic. In specific circumstances, the traditional PERT obtains three-point estimates; 
optimistic, pessimistic, and most likely. It is a simple strategy that uses a beta distribution 
mechanism.  

            The estimation duration for every activity can be predicted by the beta distribution means 
of the following weighted average: 

𝐸𝑇 =
(𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 + 4 ∗ 𝑀𝑜𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑦 + 𝑃𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐)

6  

Here we are calculating activity durations using the mean of probabilistic times and presented 

them in Table 5. The related network diagram is presented in Figure 4. 

 

Table 5: Duration of activities with probabilistic mean 

Activity 𝑎 𝑚 𝑏 ET=𝒂(𝟒𝒎(𝒃
𝟔

 

1→2 5 6 7 6 
1→3 1 3 5 3 
1→4 1 4 7 4 
2→5 1 2 3 2 
3→6 1 2 9 3 
4→6 1 5 9 5 
4→7 2 2 8 3 
6→7 4 4 10 5 
5→8 2 5 8 5 
7→8 2 2 8 3 

 
 

Figure 4: Activity duration with probabilistic time’s network diagram 
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4.2 Procedure to find the Critical path: 
Step 1: Establish a project network G (V, E). 

Step 2: Express every activity time as probabilistic time. 

Step 3: Determine the earliest start time of activity using forward pass calculations. Let the earliest 

time as zero for the initial event,  𝐸&# = 0.  

Then  𝐸"! = 𝑚𝑎𝑥'𝐸"" + �̃�"!+ where i= number of preceding events 

Step 4: Compute the earliest finish time of activity; 

(𝐸𝐹&!") = 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡	𝑠𝑡𝑎𝑟𝑡	𝑡𝑖𝑚𝑒+ 𝑡ℎ𝑒	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝑖. 𝑒.		𝐸𝐹""! = 𝐸𝑆="! + �̃�"! = 𝐸"" + �̃�"! 

Step 5: Estimate the latest finish time of activity using backward pass calculations.  

𝐸"# = 𝐿"#.  So that 𝐿"" = 𝐿𝐹""! = 𝑚𝑖𝑛'𝐿"! − �̃�"!+, 𝑖 = 𝑛 − 1, 𝑛 − 2,…… ,2,1. 

Step 6: Calculate the latest start time of activity >𝐿𝑆#!"B = 𝐿𝐹&!" − �̃�!" 

Step 7: Total float (𝑇𝐹&!") = 𝐿𝐹&!" − 𝐸𝐹&!" 			𝑜𝑟		𝐿𝑆#!" − 𝐸𝑆#!" 

Table 6: Earliest and Latest tomes of project activities with probabilistic mean 
Activity Node Activity duration 𝐸𝑆#!" 𝐸𝐹#12  𝐿𝑆#!" 𝐿𝐹&!" 𝑇𝐹&!" 

1→2 P 6 0 6 4 10 4 
1→3 Q 3 0 3 3 6 3 
1→4 R 4 0 4 0 4 0* 
2→5 S 2 6 8 10 12 4 
3→6 T 3 3 6 6 9 3 
4→6 U 5 4 9 4 9 0* 
4→7 V 3 4 7 11 14 7 
6→7 W 5 8 13 12 17 4 
5→8 X 5 9 14 9 14 0* 
7→8 Y 3 14 17 14 17 0* 

 
The critical activities are 1→4, 4→6, 5→8, 7→8. 
Therefore, the critical path is 1→4→6→7→8, and the project completion time is 17. 

 
5. Results 

Table 7 presents, Critical path and Project duration with Probabilistic and Triangular fuzzy activity 
times, respectively. 

Table 7: Results 

Activity times Critical Path Project Completion time 

Probabilistic times 1→4→6→7→8 17 

Triangular fuzzy number 1→4→6→7→8 19 
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Graph 1 presents results that correlate between Probabilistic and Triangular fuzzy mean. 

 
 

 

Graph 1: Correlates the project completion time with Probabilistic mean and Triangular fuzzy mean 

6. Discussion 
  

This article determines the project's earliest and latest times by Modified Dijkstra's algorithm with 
a triangular fuzzy number and probabilistic times. The network's critical path is identified using 
project activities earliest and latest times. Moreover, the entire project time is calculated. The 
project critical path is the same in both cases, but the project completion time is different. 
Probabilistic mean gives less time compare to fuzzy triangular mean. However, in a non-academic 
example, this number is affected by various circumstances such as the availability of analysts, the 
type of activity. 
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Abstract 

This research presents the maximum likelihood estimation of a three-parameter Gamma distribution 

with application to four types of average rainfall intensities in Nigeria. These data sets are average 

half-yearly, yearly, quarterly and monthly rainfall intensities. The fitted three-parameter Gamma is 

compared to a two-parameter Gamma distribution using empirical distribution function (EDF) 

tests. The tests used are Cramér-von Mises, Anderson-Darling and Kolmogorov-Smirnov statistics. 

Based on the results obtained at 10% significance level both the two-parameter and three-parameter 

Gamma distributions are of good fit to only the average yearly rainfall intensity data. A kernel 

density plot revealed that the average half-yearly, quarterly and monthly rainfall intensity data sets 

are multi-modal in nature hence a reason for both Gamma distributions poor fit to the data sets. 

Also, the PDF, CDF and Q-Q plots are presented which supported the outcome of the analysis. 

Keywords: Gamma distribution, Anderson-Darling, Cramér-von Mises, Kernel 

density, Kolmogorov-Smirnov, Maximum likelihood estimation  

1. Introduction

Classical analysis of statistical data in most fields including meteorology and hydrology has 

assumed that the data being analyzed may be reasonably modeled by distribution with somewhat 

light tailed where the tail of the density function approaches zero like some kind of exponential 

function (Arshad, Rasool & Ahmad, [1]). One of the most difficult problems in rainfall modeling is 

often the fitting of theoretical models to rainfall data (Richard, [10]). According to Hughes [8], the 

primary objective of modeling is frequently to generate a long representative time series of stream 

flow volumes from which water supply schemes can be designed. Wolfram [14] stated that 

Gamma distribution is a general type of statistical distribution that is related to the Beta 

distribution and arises naturally in processes for which the waiting times between Poisson 

distributed events are relevant. According to Alghazali & Alawadi [2], the two-parameter Gamma 

distribution is widely known and used in hydrological analysis. However, Chow et al., [4] stated 

that the two-parameter Gamma distribution has a lower bound at zero, this condition handicaps its 

application to hydrological variables with lower bound larger than zero.  

In the theory of probability and statistics, the gamma distribution is a two-parameter family of 

continuous probability distributions. It has a shape and scale parameters, say α and β respectively. 

If β is an integer, then the distribution represents the sum of β independent exponentially 

distributed random variables, each of which has a mean of α [which is equivalent to a rate 
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parameter of α-1] (Wackerly et al., [12]). It often appear as solution to problems in Statistical 

Physics, for example, the energy density of classical ideal gas or the Wien (Vienna) distribution is 

an approximation to the relative intensity of black radiation as a function of the frequency (Crooks, 

[5]).  The disadvantage of Gamma distribution is that the cumulative distribution function cannot 

be plotted. The 1-parameter gamma distribution is very limited in hydrological analysis due to its 

relative inflexibility in fitting to frequency distributions of hydrologic variation (Aksoy, [5]). 

Gamma distribution is widely used in many fields like reliability, survival analysis, hydrology, 

ecology, etc. (Dikko, et al., [7]) Many variant of the gamma distribution exist and different 

estimation techniques have been used for estimating the gamma distribution parameters. These 

estimation techniques include methods of moment (MOM), percentile method, graphical 

estimation technique, maximum likelihood estimation (MLE), etc, with different modifications of 

the estimating techniques. The objective of this research is to present the estimation of the three 

parameters Gamma distribution using MLE and its application to four average rainfall intensity 

data sets for Nigeria. 

2. Methods

In this section, the Gamma distribution assumptions for its applicability are presented. The 

probability density function (PDF) for the Gamma distribution is presented and its parameter 

estimation is presented using the maximum likelihood estimation technique. Four average rainfall 

intensity data sets which span for 115 years (1901 – 2015) are fitted for this research. The first data 

set is a quarterly data while the second data set used was obtained by collapsing the quarterly data 

to first half (FH) of the year and second half (SH) of the year, that is, average of first and second 

quarters to produce FH and average of third and fourth quarters to produce SH. The yearly rainfall 

intensity was used as the third data set and the monthly rainfall intensity data was used as the 

fourth. Data used was obtained from climate knowledge portal, 

https://climateknowledgeportal.worldbank.org.  

2.1. PDF for A 3-Parameter Gamma Distribution 

According to Aksoy [5], the Gamma distribution function is of three different types, 1-parameter, 

2-parameters and 3-parameters Gamma distributions. If the continuous random variable x fits to

the probability density function of:

11
( ) 0

( )
k xf x x e ; x

k
− −=     (1) 

it is said that the variable x is 1-parameter Gamma distributed, with the shape parameter k. The 

Gamma function )k( in equation (1) is generally expressed as: 

1

0

( ) k xk x e dx


− −=     (2) 

when k = 1, equation (1) becomes a simple exponential distribution function. If x is replaced by 

x   in equation (1) the 2-parameter Gamma distribution (2-PGD) with k being the shape 

parameter and β being the scale parameter is obtained as: 

11
( )

( )

x
k

k
g x;k , x e

k


 

−
−= ; 0x     (3) 

which can easily return to 1-parameter Gamma distribution for β =1. Gamma distribution with two 

parameters k and β denoting the shape and the scale parameters respectively are commonly used 

in hydrological studies (Alghazali & Alawadi, [2]). The shape of the rainfall distribution is 
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regulated by the shape parameter and the scale parameter controls the variation of rainfall 

intensity series which is specified in the same unit as the random variable x (Suhaila, & Jemain, 

[11]). If x is replaced by ( )x  −  in equation (1) the 3-parameter Gamma distribution (3-PGD) 

with k,   and  being the shape, scale and location parameters respectively is obtained as: 

( )
11

( ) ( )
( )

x
k

k
g x, x e

k


 

 

−
−

−= −   ; ( , , k) 0  =    (4) 

2.2. Parameter Estimation with Maximum Likelihood Estimation Technique 

The likelihood function: 

1

( ) ( )
n

i

Lg x, g x, 
=

=    (5) 

Applying the likelihood function of equation (5) to equation (4) we have 
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Taking the logarithm (ln) of equation (6) we get 
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   (7) 

Differentiating equation (7) with respect to   and setting the derivative to zero, we have 
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Multiply both sides of equation (8) by ( ) 21


−
nk  we have 
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1 1
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Differentiating equation (7) with respect to   and setting the derivative to zero, we have 
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(10) 

Multiply both sides of equation (10) by ( )2n −  we have

( )ˆ ˆ 1 k = −  (11) 

Differentiating equation (7) with respect to k and setting the derivative to zero, we have 
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where D in equation (12) is the derivative, this implies 
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where   is the Euler-Mascheroni constant and it is given as 
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  (14) 

Substituting the value of   in equation (14) into equation (13) we have 
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Substituting equation (15) into equation (12) and inserting the estimates of ̂  and ̂  we have 
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   (16) 

Equation (16) does not exist in a closed form hence the estimation of k can only be obtained 

through numerical solution. This can be accomplished using any statistical software. In this 

research, Statistical Analytical System (SAS) version 9.4 is used to fit both the 2-PGD and 3-PGD. 

2.3. Goodness of Fit Test 

The goodness-of-fit tests based on empirical distribution function (EDF) are used in this research 

work. The EDF tests offer advantages over traditional chi-square goodness-of-fit test, including 

improved power and invariance with respect to the histogram midpoints (D'Agostino and 

Stephens, [6]). The empirical distribution function is defined for a set of n independent 

observations X1, ... ,Xn with a common distribution function F(x).  If we Denote the observations 

ordered from smallest to largest as X(1), ... ,X(n). The empirical distribution function, Fn(x), is defined 
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as: 
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Note that Fn(x) is a step function that jump [1/n] in height at each observation, but in the case 

where two observations or more are equal, that is, when there are nj observations at xj, then  Fn(x) 

becomes a step function that jump [nj/n] in height at each observation xj. This function estimates 

the distribution function F(x). At any value x, Fn(x) is the proportion or fraction of observations less 

than or equal to x, while F(x) is the probability of an observation less than or equal to x. EDF 

statistics measure the discrepancy between Fn(x) and F(x) which are used to conclude whether the 

empirical distribution Fn(x) fit the hypothesize distribution F(x). In this research, three EDF tests 

are used in testing the goodness of fit of each distribution fitted to the average monthly, quarterly, 

half-yearly and yearly rainfall intensity data. The EDF are Kolmogorov-Smirnov, Anderson-

Darling and Cramer-von Mises. These GOF tests are presented below as follows. 

2.3.1. Kolmogrov-Smirnov (D) Statistic 

According to Wilks [13], the Kolmogorov-Smirnov (D) Statistic is defined as 

)()( xFxFSupD nx −=  (18) 

The Kolmogorov-Smirnov statistic belongs to the supremum class of empirical distribution 

function (EDF) statistics. This class of statistics is based on the largest vertical difference between 

F(x) and Fn(x). The Kolmogorov-Smirnov statistic is computed as the maximum of D+ and D-, 

where D+ is the largest vertical distance between the EDF and the distribution function when the 

EDF is greater than the distribution function, and D- is the largest vertical distance when the EDF is 

less than the distribution function.  

),max( −+= DDD (19) 

D represents the maximum difference between the empirical and theoretical distributions over all 

real numbers x, and is referred to as the Kolmogorov-Smirnov value. Fn(x) is the empirical 

cumulative probability of observing a value less than or equal to y and 1/np is added for each 

observation (xi) that is greater than zero and less than or equal to y. F(x) is the theoretical 

cumulative probability at x described by the estimated gamma distribution parameters ( , ,k)  . 

Fn(x) and F(x) are given as (Husak et al., [9])      
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A smaller value of D implies a better fit between the observed and theoretical distributions for a 

fixed number of observations, n. 

2.3.2. Anderson-Darling Statistic 

The Anderson-Darling statistic and the Cramér-von Mises statistic belong to the quadratic class of 

EDF statistics. This class of statistics is based on the squared difference ( )2
)()( xFxFn − . Quadratic

statistics have the following general form:  

( )


−
−= )()()()(

2
xdFxxFxFnQ n  (22)
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where, )(x  is the weight function for the squared differences ( )2)()( xFxFn − .

When the weight function   1
)(1)(()(
−

−= xFxFx , then the Anderson-Darling Statistic denoted 

by A2 is defined as: 

( )  
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−
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122 xdFxFxFxFxFnA n  (23) 

The Anderson-Darling statistic (A2) is computed as follows. 
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where, 
)(iU is the ith order Statistic.

2.3.3. Cramer-von Mises Statistic 

Explained the Cramér-von Mises statistic as similar to Anderson-Darling Statistic, but in the case of 

Cramér-von Mises statistic, the weights function 1)( =x . The Cramér-von Mises statistic denoted 

by (W2) is defined by:  

( )
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22 xdFxFxFnW n  (25) 

The Cramér-von Mises Statistic (W2) is computed as: 
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where, 
)(iU is the ith order Statistic.

3. Results

Results from the fitted distributions are presented below. Table 1 presents the empirical 2-PGD 

and 3-PGD mean and standard deviation (Std. Dev) values for the average half-yearly rainfall 

intensity, average yearly rainfall intensity, average quarterly rainfall intensity, and average 

monthly rainfall intensity data sets, that is, AHYRI, AYRI, AQRI, and AMRI respectively. It is 

observed that for all the data sets, the 2-PGD and 3-PGD estimates for the mean is the same as the 

empirical mean estimate. However, both fitted distributions estimates for the standard deviation 

are different from the empirical standard deviation for each data set except for the AYRI data set. 

Therefore, both the 2-PGD and 3-PGD estimated equivalent mean and standard deviation values to 

the that of the empirical mean and standard deviation values of 96.4014 and 7.7945 respectively.  

Table 1: Summary Statistics for the Rainfall Data 

Data 

Type 

Statistic Observed 2-Gamma

Estimate

3-Gamma

Estimate

AHYRI Mean 96.401398 96.4014 96.4014 

Std. Dev 32.162844 32.74474 35.61137 

AYRI Mean 96.401398 96.4014 96.4014 

Std. Dev 7.7944973 7.87561 7.860996 

AQRI Mean 96.401398 96.4014 96.4014 

Std. Dev 78.321223 86.39379 90.5222 

AMRI Mean 96.401398 96.4014 96.4014 

Std. Dev 85.00559 110.8792 113.5311 

The results from the summary statistics clearly give a clue that both the 2-PGD and 3-PGD will fit 

the average yearly rainfall intensity data better. However, such conclusion cannot be for certain  
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until the fitted distributions are subjected to goodness of fit tests described earlier in section 2.3. 

The results for the parameter estimates from the 2-PGD and 3-PGD are presented in Table 2 and 

Figure 1, 2, 3, and 4 shows the histogram plots, the 2-PGD, and 3-PGD curves with the kernel 

density curve as well for the AHRI, AYRI, AQRI, and AMRI data sets.  

Table 2: Maximum Likelihood Parameter Estimates Results 

Data Type Parameter 2-PGD Estimate 3-PGD Estimate

AHYRI 

Location **** 41.0887 

Scale 11.12243 22.92728 

Shape 8.667296 2.412528 

AYRI 

Location **** -10.213

Scale 0.643406 0.579615

Shape 149.8298 183.9402

AQRI 

Location **** 4.125437 

Scale 77.42508 88.80176 

Shape 1.245093 1.039123 

AMRI 

Location **** 0.4245 

Scale 127.5312 134.296 

Shape 0.755904 0.714667 

 Figure 1: Fitted Curve for AHYRI Data set  Figure 2: Fitted Curve for AYRI Data set 

 Figure 3: Fitted Curve for AQRI Data set       Figure 4: Fitted Curve for AMRI Data set 
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From the figures displayed, it can be seen that the two and three parameter Gamma distributions 

fits the AYRI data set (Figure 2) better compared to the AHYRI, AQRI, and AMRI data sets. 

Figure 2 shows a peaked shape with one mode compared to Figure 1, 2, and 3 with two modes, 

three modes and two modes respectively as depicted by the kernel density curve. To ascertain the 

2-PGD and 3-PGD goodness of fit for all data sets, Table 3 presents Cramér-von Mises (W2),

Anderson-Darling (A2), and Kolmogorov-Smirnov (D) statistics results for assessing the fitted

distributions.

Table 3: Criterion for Assessing Goodness of Fit 

Data Type and 

GOF Methods 

Goodness of Fit Estimate (P-Values) 

2-PGD 3-PGD

AHYRI 

D 0.1809663(<0.001) 0.1972426(<0.001) 

W2 2.3407958(<0.001) 2.0138826(<0.001) 

A2 12.7906188(<0.001) 11.0297705(<0.001) 

AYRI 

D 0.06071233(>0.250) 0.05959971(>0.250) 

W2 0.08224762(0.194) 0.07871282(0.217) 

A2 0.54769583(0.161) 0.52514845(0.184) 

AQRI 

D 0.1095454(<0.001) 0.1179290(<0.001) 

W2 1.9423611(<0.001) 1.6980158(<0.001) 

A2 12.1566899(<0.001) 10.5830877(<0.001) 

AMRI 

D 4.18050(<0.001) 4.78650(<0.001) 

W2 6.45624(<0.001) 6.00624(<0.001) 

A2 38.67804(<0.001) 37.57614(<0.001) 

    Bold p-values imply good fit 

From Table 3 above, it is clearly seen that the 2-PGD and 3-PGD are poor fit to Nigeria average 

half-yearly, quarterly, and monthly rainfall intensity data sets. The reason is that D, W2 and A2 

statistic values produced p-values less than 0.01 but they produced p-values greater than 10% 

significance level for average yearly rainfall intensity. Therefore, it is clear from the goodness of fit 

statistics p-values that both the 2-PGD and 3-PGD are good fit to only the average yearly rainfall 

intensity data. To buttress the results discussed thus far, the cumulative density function (CDF), 

quantile estimates, and quantile plots (Q-Q plots) are presented. The CDF plots presented in Figure 

5, 6, 7, 8, 9, 10, 11 and 12 clearly shows that only the 2-PGD and 3-PGD CDF plots for the AYRI 

data has a well fitted S-shape as seen in figure 7 and 8 respectively.  

Figure 5: 2-Parameter Gamma CDF Curve  Figure 6: 3-Parameter Gamma CDF Curve 
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 Figure 7: 2-Parameter Gamma CDF Curve   Figure 8: 3-Parameter Gamma CDF Curve 

 Figure 9: 2-Parameter Gamma CDF Curve    Figure 10: 3-Parameter Gamma CDF Curve 

 Figure 11: 2-Parameter Gamma CDF Curve  Figure 12: 3-Parameter Gamma CDF Curve 

The estimated quantile presented in Table 4 shows that the 2-PGD and 3-PGD estimated quantiles 

are similar to the empirical quantiles for AYRI compared to AHRI, AQRI and AMRI data sets. 
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Table 4: Quantile Estimates from the three Distributions for the four Quarters 

PERCENTAGE OBSERVED 2-Gamma 3-Gamma

AHYRI 

1.0 51.2246 36.7578 46.8728 

5.0 54.7701 49.5577 53.2972 

10.0 59.2066 57.5328 58.4083 

25.0 65.4879 72.7802 70.2148 

50.0 91.8013 92.7203 88.9753 

75.0 126.9564 116.0211 114.5791 

90.0 135.8106 140.0208 144.0947 

95.0 140.9320 155.8089 164.8805 

99.0 147.9636 188.3987 210.4818 

AYRI 

1.0 76.5994 79.0310 78.9703 

5.0 81.2038 83.8231 83.8090 

10.0 86.9932 86.4562 86.4594 

25.0 91.0947 90.9790 90.9992 

50.0 96.7386 96.1870 96.2083 

75.0 101.4315 101.5901 101.5931 

90.0 106.8712 106.6221 106.5916 

95.0 109.5241 109.7110 109.6526 

99.0 111.5782 115.6631 115.5364 

AQRI 

1.0 7.98870 2.14038 5.20545 

5.0 11.63405 8.06373 9.32423 

10.0 13.95009 14.59845 14.54737 

25.0 24.26035 33.88568 31.70857 

50.0 67.92154 72.16883 69.04598 

75.0 156.24420 133.05217 132.00585 

90.0 220.33728 210.27723 214.59713 

95.0 228.02246 267.51252 276.84191 

99.0 245.61700 398.36593 420.96745 

AMRI 

1.0 0.97407 0.25860 0.61226 

5.0 2.58519 2.19311 2.22199 

10.0 3.91610 5.56936 5.22762 

25.0 12.62992 19.93095 18.76462 

50.0 80.51468 58.62833 56.97441 

75.0 171.20598 132.96517 132.42207 

90.0 223.01040 237.61879 240.17013 

95.0 240.39757 319.16261 324.67099 

99.0 266.14557 512.60240 526.04011 

The quantile plots for the 2-PGD and 3-PGD are presented in Figure 13, 14, 15, 16, 17, 18, 19 and 20. 

The 2-PGD and 3-PGD Q-Q plots for the AYRI data set showed almost all points fall on the 

reference straight line. This implies that the quantiles of the theoretical and data distribution agree 

for AYRI data set only. 
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Figure 13: AHYRI 2-P-Gamma Q-Q Plot  Figure 14: AHYRI 3-P-Gamma Q-Q Plot 

Figure 15: AYRI 2-P-Gamma Q-Q Plot Figure 16: AYRI 3-P-Gamma Q-Q Plot 

Figure 17: AQRI 2-P-Gamma Q-Q Plot Figure 18: AQRI 3-P-Gamma Q-Q Plot 
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Figure 19: AMRI 2-P-Gamma Q-Q Plot Figure 20: AMRI 3-P-Gamma Q-Q Plot 

4. Conclusion

In this research, the maximum likelihood parameter estimation of a 3-PGD is presented. Also, its 

application to four different average rainfall intensity data sets was performed and compared to a 

2-PGD. A goodness of fit test was performed using three criterions, that is, Cramér-von Mises (W2),

Anderson-Darling (A2) and Kolmogorov-Smirnov (D) statistics. Based on the results obtained it is

concluded that among the four data sets fitted, the 2-PGD and 3-PGD are good fit to Nigeria yearly

rainfall intensity data set only. The PDF curves with kernel density curves, CDF curves and Q-Q

plots showed supporting evidence as the goodness of fit statistics (W2, A2 and D) results. The

kernel density curves showed that AHYRI, AQRI and AMRI data sets are multi-modal data sets

and it is a major reason both the 2-PGD and 3-PGD fitted the data sets poorly. Hence, distributions

that handle multi-modal data will be more suitable for fitting the AHYRI, AQRI and AMRI data

sets.
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Abstract 
 

The most appropriate procedures in the inventory organization area are inventory arrangements based on 
ABC investigation, a well-known technique for establishing the objects in a different collection, giving their 
status and principles. This research Bi- A mathematical goal to advance the inventory group founded on 
the ABC. The Planned model instantly improves the amenity level, the amount of inventory grouping, and 
the number of due things. An Arithmetical model is available in this study to categorize inventory objects, 
considering significant revenue and rate decrease catalogues. The model aims to maximize the net gain of 
available items. Economic and inventory constraints are also taken into account. The Benders decay and 
Lagrange reduction procedures respond to classical arithmetical stands. The outcomes of the two answers 
are then equated. TOPSIS and numerical examinations estimate the planned answers and choose the best. 
Later, numerous sensitivity studies on the classic were completed, which assists inventory control 
executives in regulating the outcome of inventory administration rates configured for optimum verdict 
production and element grouping. The Arithmetical diagram was run for ten different arithmetic instances, 
and the results of the two suggested explanations were statistically equated using a t-test. As a result, the 
TOPSIS technique was appropriate; the Lagrangean approach was chosen as the more fabulous technique. 
 
Keywords: ABC analysis, Bi-Goal optimization, inventory control, decomposition 
procedures, TOPSIS 

 
1. Introduction 

 
Given the intense business competition in today's manufacturing world, it is vital to repay the 
kindness to inventory control and appropriate regulation of altogether sorts of administrations, 
particularly industrial singles. Many establishments' entire investment has been completed up of their 
inventories in recent centuries. In established and emerging nations, investment properties of 
altogether periods are tall. The ABC study is the utmost frequently utilized technique for preparation  
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and supervising the inventory [1]. The cataloging of stocks founded on the ABC investigation allows 
the establishments to classify their stocks into expressive collections.  

Overall, the ABC technique trails the Pareto law, implying thatlone30% of catalogs make 70% 
of the overall revenue, and the remaining 70% of records yield 30% of revenue [2]. Session A has the 
invention by the maximum worth, and session C has the product with the bottom worth [3]. The 
stated ABC technique has specific difficulties, like the absence of suitable strategies to regulate the 
service level, supervising the relative amongst facility levels and group results, and deserting to 
deliberate the economic restriction in all steps [4]. These difficulties make investigators project an 
established ABC technique. 

This arrangement is emphasized, particularly for the association in evolving and established 
countries, as a significant proportion of their venture is grounded on catalogs. This article plans a 
multiple-criteria decision analysis (MCDA) ABC investigation to exploit the entire clear revenue at 
different planes for a construction business below the economic restriction. Other approaches exist in 
current centuries to categorize ABC multiple-criteria decision analysis (MCDA). In this esteem, it may 
mention the analytic hierarchy process (AHP), non-natural intelligence methods, arithmetical study, 
information envelopment investigation (IEI) [5], emotional Euclidean detachment, standard measure 
matrix classical, collection investigation classical, meta-heuristic procedures, optimization measures, 
ABC-FUZZY organization method. However, they have been utilized in the current study and even 
compared. This arrangement typically too serves inventory and procedure executives to optimize 
several objects instantaneously, counting(a) the amount of catalog grouping, (b) their facility stages, 
and (c) the distribution of individual pieces toward a piece collection below a partial economical. 

 

2. Literature review 
 

2.1. ABC study for the inventory controller of stock 
 

In 1915, Ford Harris from the Westinghouse Foundation gave an unpretentious formulation for 
inventory control [5]. Then, this autonomous formula was verified by some investigators [6, 7]. The 
old-style ABC technique categorizes the objects founded on sole standards (i.e., rate), and numerous 
lessons are absorbed in multi-criteria cataloging [8- 11]. Ng and Ramanathan [12] also [13] deliberated 
the multiple-criteria decision analysis (MCDA) ABC technique toward regulating the account by 
calculating the average price of each component, yearly in getting worth, then head period. [14] too 
offered multiple-criteria decision analysis (MCDA) ABC technique then applied the combined 
standards medium. 

 
Supplementary investigators study the grouping of the ABC- investigation procedure by different 
thoughts toward the account organization's progress. As an initial move, additional rational then 
inclusive pointers for account organization were planned. Furthermore, Douissa and Jabeur [15] 
designed an original ABC investigation classical and utilized it characterized by compensation. 
Accumulation procedure toward organizing the account objects. The outcome established that the 
organization of things shaped the lowermost inventory rate related to additional models. 
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Moreover, Yu [16] connected the group techniques founded on old-style numerous prejudiced 
analyses (MDA). Based on their consequences, AI procedures were specific in the account group, and 
the SVM was more precise among the AI procedures. Furthermore, Gong et al. [17] utilized an 
involuntary knowledge technique (IKT), which involves the TOPSIS method for analyzing the slash 
of individual account items. Similarly, Mehdizadeh [18] planned a combined ABC analysis technique 
for circulation systems of auto replacement fragments with the reflection of the account controller 
procedure. The planned ABC investigation additional the economic morals to strains then classifies 
the replacement fragments found and arranged their effects scheduled supplier presentation. Gong et 
al. [19] utilized the disappointment method result and criticalness investigation (DMRCI) to plan a 
multiple-criteria decision analysis (MCDA) ABC investigation system for replacement fragment 
manufacturing. They found a massive development in ABC investigation and a substantial decrease 
in chief mechanisms percentage. Most of the studies cited the ABC investigation. 

 
2.2. Lagrange and benders procedures in the evaluation 
 
Optimization sums consist of various matrix constructions arranged in the plan of medium chunks 
and their association [20]. The procedures that apply this problematic medium construction are 
frequently additional effective and find the correct response to the sum at the suitable period. 
Overall, the structure of optimization sums often contains compound restrictions or compound 
variables. These restrictions and variables typically replicate the communal usage of sum chunks on 
one or other infrequent bases. Then additional arrangements are utilized to such sums. Indirectly 
explaining sum using decomposition methods, it is compulsory to recognize the sum construction. 
Many investigators have used those analytical procedures, some of which are presented below.  
 
Adaptable get-together lines often occur in businesses fabricating extensive goods. Numerous 
workforces are allocated toward a similar position toward accomplishing multiple errands on 
identical merchandise instantaneously. The effective Arithmetical formulas obtainable can only 
resolve a few minor examples, while greater ones are resolved by empirical approaches that 
organize non-require assurance optimality. Wang et al. [21]’s article introduced an original short-
interest LP construction by substantial equilibrium disruption restrictions. 
 
2.3. Investigation gap 
 
Inventories are a dynamic component for altogether establishments in today's manufacturing world. 
In fresh periods, establishments have met thousands of unlike kinds of accounts, then account 
managing and making has stayed the focus of planning’s in this esteem. Appropriate account 
controller arrangements have developed a substantial contest for altogether establishments, which is 
essential for Investigation in this zone. The absence of proper inventory control schemes generates 
numerous glitches for administrations. Initially, they face inventory-related rates for fields, 
collection, and famines. 
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3. Explanation of the Arithmetical classical 
 
The Arithmetical problem is founded on dominant stock and w constituencies. There is supposed to 
be only one significant stock and numerous divisions with special requests and scar city rates in this 
model. 

 
Table 1: Summary of the literature review 

Reference Segment A Segment B 
 

      ABC investigation 
 

Decomposition procedures 
  

    Goal function 
 

             Criteria 
    

Solution 
techniques 

Lagra
nge 

Benders Compariso
n 

 Single Multi Single Multi     
Hadi-Vencheh 

[19] 
Yes No No Yes Extended 

version 
of  

NG-model 

No No No 

Massart [16] Yes No Yes No - No No No 
Flores and 
Whybark 

[17] 

No No No Yes A simple 
mechanical 
procedure 

No No No 

Kaabi et al. [5] No No No Yes Automatic 
learning 

technique 

No No No 

Douissa & 
Jabeur [13] 

Yes No No  Yes PROFT 
technique 

No No No 
 

Liu et al. [7] Yes No No No Clustering 
examination  

No No No 

Hajbabaie [8] No No No No - No No No 
Mardan et al. 

[4] 
No No No No -  No Yes No 

Jaglarz et al. 
[9] 

No No No No - Yes No No 

Li et al. [11] No        
Zetina et al. 

[25] 
No       - 

Sudhakar et al. 
[23] 

-         

Wang et al. 
[21] 

No No No No  Yes No Yes 

Li and Jia [10] No No No No -  No Yes No 

 
Where  
𝑖 =	Established inventory objects  
𝑗 =Established inventory grouping 
𝑡 =	Establishedtime  
Strictures 
𝑑(",$) =Average of monthly calls for SKU I in time𝑡 
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𝜎" 			=Typical deviation of the once-a-month direction of SKU 𝑖 
ℎ(",$) =	Headperiod of SKU 𝑖 
𝜋(",$	)'		 Un civilized revenue per component of SKUI in time 𝑡 
𝑒(",$	)'	 Inventory field price per component of SKU I in time 𝑡 
𝜃(    = Variable above control rate for inventory objects 𝑗 
M = Amount of inventory objects (SKUs)  
D = Existing in expensive 
𝛽( = Facility level related to inventory objects 𝑗 
𝑍) = Z – value related to the facility level 𝛽 of inventoryobjects 𝑗 
𝑂(",$	) = Set direct rate for SKU 𝑖 from the central stock to traders in time 𝑡 
𝐶𝐿(*,(,$) = Set rate of shortage for SKU I at inventory group 𝑗 in time 𝑡 
 

Decision variables 
𝑉(",$)  =    The inventory level of SKU 𝑖in the dominant stock in time 𝑡 
𝐿𝑎(",(,$)   =   The total of lack SKU𝑖at inventory group 𝑗in time 𝑡 
𝑋(",(,$)  = If SKU𝑖is allocated to group j in time 𝑡,one and otherwise 0 
𝑌(",$)  = If inventory group 𝑗is specific in time𝑡, one and otherwise 0 

𝛿(",(,$) = 𝑑(",$)ℎ(",$) + 𝑧(𝜎"9ℎ(",$)                                                                                                                         (1) 
 

𝑀𝑎𝑥𝑍 =	∑ ∑ ∑ 𝜋(",$	)𝑑(",$)𝛽($(" 𝑋(",(,$) −∑ ∑ 𝜃(𝑌(",$) −∑ ∑ ∑ 𝐶𝐿(",(,$)$(" 𝐿𝑎(",(,$)$(                                             (2)                         

Subject to: 

∑ 𝑋(",(,$)( ≤ 1                                                                                                                                                       (3)                                                                                                                                 

∑ 𝑋(",(,$)( ≤ 𝑀𝑌(",$)                                                                                                                                               (4)                                                                                                                            

𝑉(",$) 	+	∑ 𝐿𝑎(",(,$) =( ∑ 𝑑(",$)ℎ(",$)𝑋(",(,$) +( ∑ 𝑧(𝜎"9ℎ(",$)		𝑋(",(,$) +( 𝑉(",$)+, +∑ 𝐿𝑎(",(,$)+,(                               (5) 

∑ 𝑒(",$	)𝑉(",$) ≤ 𝐷∀𝑡"                                                                                                                                               (6)                                

∑ 𝑉(",$), 𝐿𝑎(",(,$) ≥ 0"                                                                                                                                               (7) 

𝑋(",(,$), 𝑌(",$) ∈ [0,1]                                                                                                                                               (8) 

4. Planned decomposition procedures Head time of SKU 

In several Arithmetical replicas, with the problematic magnitude, the computational difficulty of 
the perfect also grows exponentially so that the particular answers cannot be intended in a sensible 
date [23, 7]. Subsequently, investigators have planned several systems that use a specific method 
to pursue estimated and near-optimal answers. These approaches are usually separated into two 
group’s experiential and meta-heuristic procedures. Disintegration events are among the 
experiential techniques that aim to shorten compound Arithmetical models to attain an estimated 
response in a reasonable time. Frequent requests for these procedures have commanded their 
application in many optimization difficulties. Educations through Yolmeh and Saif [24], Wang et 
al. [25], Naderi et al. [26], and Aydin and Ta¸skin [27] are instances of the request for these 
procedures toward hard restraint complications. 
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This segment presents the explanations for the planned classical. In this respect, situations are 
completed to Lagrange and Bender's disintegration procedures. Then, they are associated with 
choosing the most satisfactory answer to the model. As stated, disintegration explanations are 
envisioned to shorten the Arithmetical model planned in this Investigation. These explanations are 
familiarized in the subsequent subdivisions. 

4.1. Lagrange reduction procedure 
The Lagrange reduction process is one of the advanced approaches that employ the Lagrange 
proposition to explain composite Arithmetical representations to find an estimated solution in a 
reasonable amount of time. This method has been used to solve a variety of optimization 
problems. Diabat et al. [16], Kang and Kim [28], and Ahmadi-Javid and Hoseinpour [29] are 
examples of applications of the Lagrange approach to such challenges. 
𝑀𝑖𝑛	𝑐-𝑥 

Subject to    

𝐴𝑥 ≤ b,𝑥 ∈ 𝑋 
𝑀𝑖𝑛	𝑐-𝑥 + 𝜇-(𝐴𝑥 − 𝑏) 

Subject to   𝑥 ∈ 𝑋 
𝑀𝑎𝑥𝑍 + 𝑢'−∑ ∑ 𝑉(",$)$" −∑ ∑ ∑ 𝐿𝑎(",&,$)$ +∑ ∑ ∑ 𝑑(",$)ℎ(",$)$&" 𝑋(",&,$) +&" ∑ ∑ ∑ 𝑧&𝜎"1ℎ(",$)		𝑋(",&,$)$&" +∑ ∑ 𝑉(",&)'( −$"

∑ ∑ ∑ 𝐿𝑎(",&,$)'($&" 3                                                                          

𝑢!"# = 𝑚𝑎𝑥 &0, )𝑢! + 𝜋! . -−//𝑉(%,')
'%

−///𝐿𝑎(%,),')
'

+///𝑑(%,')ℎ(%,')
')%

𝑋(%,),') +
)%

///𝑧)𝜎%7ℎ(%,')		𝑋(%,),')
')%

+//𝑉(%,))*# −///𝐿𝑎(%,),')*#
')%'%

9:; 

	𝜋! =
𝑣!(𝐵𝑈𝐵! − 𝐿𝐵!)

A−∑ ∑ 𝑉(%,')'% − ∑ ∑ ∑ 𝐿𝑎(%,),')' + ∑ ∑ ∑ 𝑑(%,')ℎ(%,')')% 𝑋(%,),') +)% ∑ ∑ ∑ 𝑧)𝜎%Cℎ(%,')		𝑋(%,),')')% + ∑ ∑ 𝑉(%,))*# − ∑ ∑ ∑ 𝐿𝑎(%,),')*#')%'% D
+ 

 

4.2. Bender’s decomposition algorithm 
 
Benders [30] planned the Benders decomposition algorithm to resolve compound number 
complications.  

𝑀𝑖𝑛	𝑍 = 	−	∑ ∑ ∑ 𝜋(",$	)𝑑(",$)𝛽($(" 𝑋(",(,$) +∑ ∑ 𝜃(𝑌(",$) +∑ ∑ ∑ 𝐶𝐿(",(,$)$(" 𝐿𝑎(",(,$)$(                                         (9) 

Subject to:  1 ≥ ∑ 𝑋(",(,$)( ∀	𝑖, 𝑡		                                                                                                                        (10) 

0 ≥ −𝑀𝑌(",$) ∑ 𝑋(",(,$)" ∀	𝑗, 𝑡                                                                                                                                (11) 

∑ 𝑑(",$)ℎ(",$)𝑋(",(,$) +( ∑ 𝑧(𝜎"9ℎ(",$)		𝑋(",(,$) +( 𝑉(",$)+, +∑ 𝐿𝑎(",(,$)+,(   - 𝑉(",$) 	+	∑ 𝐿𝑎(",(,$) =(  0                      (12) 

∑ 𝑒(",$)𝑉(",$) ≥ −𝐷( ∀	𝑖, 𝑡		                                                                                                                                    (13) 
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5. Comparison of decomposition procedures 
 
This section decides whether to approve the anticipated approach for resolving the current 
Arithmetical model to manage the optimal amount of inventory grouping in stock. There are two 
decomposition processes available: Lagrangean and Benders. The classical is then resolved, and the 
effects are equal. The Arithmetical classic for each technique is applied in 10 different arithmetical 
illustrations in the direct repetition and comparison of these two intended ways. The results of this 
procedure are then equated in all mathematical instances using t-tests using the arithmetical 
presumption investigation. The TOPSIS method is also used to determine the optimal approach. It 
is worth noting that with the GAMS software version 24.1.3 and CPLEX problem solver, all 
arithmetical samples are used to resolve the intended Arithmetical classic. 
 
5.1. Numerical instances 
In this section, the indicators are defined first to approximate the anticipated Arithmetical 
construction and technique of solution. As a result, two indices are determined. They include the 
value of the Goal purposes premeditated by the model with each planned technique and the time 
spent. In addition, the planned technique is equated to generating some mathematical drawings. 
 

Table 2:  The consequences of the application of the classical by dissimilar mathematical instances 
Arithmetical instances Bender's decomposition  Lagrangean reduction  

 OBJ(RS) Time(s) OBJ(RS) Time(s) 
1 3.49040D+7 2.14 3.468116D+7 9.51 
2 2.62670D+7 3.03 2.624825D+7 6.23 
3 4.22314D+7 7.67 3.601867D+7 9.64 
4 4.41611D+7 47.88 4.413372D+7 12,12 
5 1.00500D+7 3.04 1.003803D+7 7.07 
6 3.23075D+7 19.67 3.228605D+7 8.53 
7 1.31380D+7 4.43 1.312534D+7 4.28 
8 2.83043D+7 8.31 2.827428D+7 8.64 
9 3.33035D+7 7.32 3.327178D+7 9.06 
10 3.41170D+7 9.17 3.410455D+7 90 

Average 3.08563D+7 12.27 3.020718D+7 8.31 
 
5.2. Statistical examination of the outcomes 
Some t-tests are utilized to investigate the outcomes of the 2 planned approaches of resolving the 
Arithmetical model and equating them. Specified the 95% confidence equal, the numerical evaluation 
of the resources of the outcomes of the 2proposedapproaches is achieved for individually of the 
definite estimation directories. In individual assessment, the supposition of nothing (H0) is 
equivalent to the unkindness of the consequences of the 2 planned techniques, and the conflicting 
hypothesis (H1) pursues to contest this supposition. This theory examination is stretched for counted 
directories; these resources at 95% self-possession level; nearby is no expressive change among the 
answers of the two planned explanations concerning the Goal role worth power. Similarly, the 
insignificant hypothesis concerning the CPU Period power of the classical is recognized since its P-
value is more advanced than 0.05, which incomes there is no considerable modification among the 
replies of the 2planned key methods about the CPU Period index. 
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Table 3: The outcome of numerical examination for the OBJ function 

OBJ function  N Mean  St. Dev SE Mean  P-Value  

Bender’s breakdown 10 309562500 110663870 24020014 0.783 

Lagrangean reduction 10 302071820 103420821 22044473  

 
Table 4: The outcome of numerical examination for the CPU period 

OBJ function N Mean St.Dev SE Mean P-Value 

Bender’s breakdown 10 12.3 15.7 4.2 0.368 

Lagrangean reduction 10 8.31 1.01 0.56  

 
Table 5: Summary of the old-style ABC examination 

Class  Proportion of 
objects 

The ratio of things 
worth 

Facilities level 
(%) 

The worth of each type 
($) 

A 
8.45 
7.34 

65.82 
54.71 

93 
82 

102038493853.37 
102028382742.26 

B 
19 
18 

24.33 
13.22 

90 
80 

37722210667 
26611100556 

C 61.44 8.24 70 141578166681 
Total 90 90 90 144018521201.26 

 
Table 6: The preparation has got the best facility level and inventory grouping answers 

The group with service level 
(%) 

No. of SKUs 
(%) 

Inventory spending 
($) 

Gross revenue 
($) 

ROI 

99 15(13.72) 524664040.4 231800800 3.33 
95 4(3.52) 606106844.3 226030700 2.63 
90 6(5.38) 681011602.0 2167043000 2.08 
87 2(1.67) 744766781.0 2073800000 1.67 
80 3(2.60) 821125077.1 1980535000 1.31 
75 3(2.60) 1041313306 1747400000 1.56 

70 5(4.45) 659732677.2 1584206000 1.30 
60 15(13.71) 783055104.4 1351071000 1.62 
50 9(8.15) 823782025.1 1118037000 1.25 
40 8(7.23) 906 697 438.5 

 
885801300 0.98 

30 7(6.30) 620761028 652666500 1,05 
 19(17.41) 0 0 -  
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5.3. Regulate the best algorithm using the TOPSIS method 
Founded on the outcomes of the mathematical instances and the statistical judgments, it is not 
conceivable to determine an explanation technique greater than the others in both circumstances. 
Therefore, the Technique for Direct of Favorite by Comparison to Ideal Solution (TOPSIS) method 
selects the most proper technique. The word TOPSIS means partiality founded on resemblance to 
the perfect key. The model recognized by Hwang and Yoon [21] is a unique method for ranking 
possibilities.  
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6. Conclusion  
 
Currently, inventory management and controller constructions are major issues presented by 
developing administrations. This research identified an optimization Diagram to categorize 
inventory groups, regulate their facility stages instantly, and assign objects to those assemblies. This 
strategy improves the inventory group founded on the ABC examination by integrating automatic 
and optimal replies. The Diagram designed in this education differs from existing optimization 
Diagrams in two ways. Initially, the model observes and exploits the company's income rather than 
minimizing inventory rates. It also optimizes the trade-off between inventory rates and payments 
and allocates inventory-to-inventory items. The Arithmetical Diagram used in this article was to 
maximize the residual income from stock items. 
The interpretation occupied boundaries such as low cost and a lack of inventory. Disintegration 
events and their proportionate scrutiny are other elements that distinguish this Investigation from 
other papers on the subject. Two indices, counting the Goal purpose value and CPU while 
approaching the anticipated solution, approach tenaciously. The Arithmetical diagram was then 
running for ten distinct arithmetic occurrences, and the results of the two suggested explanations 
were statistically equated using a t-test. In terms of superiority and response time, the responses 
were fairly close. Choose one of these. As a result, the TOPSIS technique was appropriate, whereas 
the Lagrangean technique was chosen as the more spectacular technique. 
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Abstract 

 In this article, two sided Bayesian interval is proposed for the parameters of Poisson type 
Rayleigh class software reliability growth model. In this work, the failure intensity function, 
mean time to failure function and likelihood function of this model have been derived by 
considering parameter total number of failures i.e.	𝛾0 and scale parameter 𝛾1. The mathematical 
expressions of Bayesian interval for the parameters have been obtained by considering non 
informative priors. The performance of proposed Bayesian interval is studied on the basis of 
average length and coverage probability. Average length and coverage probability is obtained by 
using Monte Carlo simulation technique after generating 1000 random samples. From the 
obtained results, it is concluded that Bayesian interval of parameters perform better for 
appropriate choice of execution time and certain values of parameters.  
 
Keywords: Rayleigh distribution, Non informative prior, Software reliability 
growth model, Bayesian interval, average length, coverage probability.  

1. Introduction 

Software reliability is the quality characteristic of operation system which can measure, predict 
and estimate quality of software system. In last several decades various model have been 
proposed to assess software reliability. Most of them are probabilistic models. Software 
modeling techniques can be divided into two categories: Prediction and estimation models. 
Estimation models determines the current software reliability  by applying statistical  inference 
techniques to failure data  while the prediction models determines future  software reliability  
based upon  available software metrics and measures. The parameters included in software 
reliability models can be estimated by using some basic procedures like maximum likelihood, 
least square estimation and Bayesian point estimation, etc.   
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      The research in this area of software reliability has been started since 1950’s and a large 
number of researchers have done work in this field.  Most of the past research work in software 
reliability modeling has concentrated on the point estimation of the parameters. The 
uncertainty of the estimates by using interval estimation has not been fully discussed. The most 
commonly applied interval estimation technique is based on the central limit theorem 
assuming large sample size. However, in real world testing the number of software failures 
observed is usually not large enough. Whereas Bayesian approaches produce interval estimates 
even in the case of small sample size, by utilizing prior knowledge. 
        This paper considers Poisson type Rayleigh model as per classification scheme of Musa 
and Okumoto [10] Rayleigh distribution has wide application in life time data especially in 
reliability theory and survival analysis. A specific case of Weibull distribution exhibiting aging 
effect with an integer valued shape parameter is known as “Rayleigh distribution.” Dey and 
Dey [3] presented Bayes estimators for the parameter of Rayleigh model on the basis of loss 
function. Also provided Highest Posterior Density (HPD) for the unknown parameter of 
Rayleigh model. Lee et al [8] proposed software reliability growth model (SRGM) and obtained 
confidence interval using Obha’s inflection S shaped model that can assess software developers 
optimal release time of software testing tasks. Rabie and Li [12] has studied Bayesian and E- 
Bayesian approaches under squared error loss function LINEX loss functions and constructed 
confidence interval for maximum likelihood and credible interval. Xie et al [18] estimated 
software reliability using Goel-Okumoto model and obtained confidence interval for failure 
intensity. Wu et al [17] obtained Bayes estimates and credible interval for Rayleigh distribution 
for the parameters and reliability function. Shrestha and Kumar [13] have obtained Bayes 
parameter estimates such as reliability function, hazard function under loss function for lomax 
distribution. Also provides Bayesian credible interval and Highest Posterior Density (HPD) 
interval for the corresponding parameters. Ogura and Yanagimoto [11] proposed a novel 
credible interval of the binomial proportion by improving the Highest Posterior Density (HPD) 
interval using logit transformation. The 100(1-α)% confidence interval through MLE is 
compared with corresponding level of credible interval. The reason for this is that MLE is 
preferred by researchers and Bayesian inference is effective for small sample size. Cunha and 
Rao [2] estimated credible interval and confidence interval through MLE for lognormal 
distribution also compared average length and coverage probability of the calculated interval. 
Fang and Yeh [4] proposed a software reliability estimation process that uses stochastic 
differential equations (SDEs) with fault detection function to construct confidence interval of 
mean value function m(t) of SRGMs. Song et al [16] proposed  a new NHHP software reliability 
model and estimated confidence interval.  
      The association of the paper is such that section 2 presents derivation of failure intensity 
and expected number of failures using Rayleigh distribution. Section 3 presents selection of 
priors and posterior distribution of model. Section 4 presents two sided Bayes interval for the 
parameters γ0 and γ1. Results are discussed in the section 5 while concluding remarks are 
provided in section 6.       

2. Model Formulation 

 Considering that software failure time of a system following Rayleigh distribution with scale 
parameter γ1 and software failures occurred in Poisson manner.  Let 𝑡 be the positive random 
variable having Rayleigh distribution then its probability density function is given by 

         𝑓(𝑡) = {𝑡	𝛾!"#𝑒"
!
"$

#
$!
%
"

								, 𝑡 > 0, 𝛾! > 0																											         (1)                                               
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Assuming that the total number of failures remaining in the program at time t = 0 is a Poisson 
random variable with mean γ0 then the failure intensity λ (t) = γ0 f (t) can be obtained as follows 
(cf Musa et al [9]) 

                   𝜆(𝑡) = 𝛾0𝛾1
−2𝑡𝑒

−
1
2
! 𝑡
𝛾1
"
2

								, 𝑡 > 0, 𝛾1 > 0, 𝛾0 > 0                                                               (2)     

The mean time to failure function i.e. expected number of failures at time 𝑡* using equation (2) 

comes to be  

                      𝜇(𝑡𝑒) = 	𝛾0𝛾1
−2 ∫ 𝑥𝑒

−
1
2
! 𝑥
𝛾1
"
2

𝑑𝑥𝑡𝑒
0  

On simplification it can be written as 

                 𝜇(𝑡𝑒) = 	𝜂0[1 − 𝑒
−1
2
#𝑡𝑒
𝜂1
$
2

]                                                                                               (3) 

Now assuming that me  software failures for a system are experienced at times ti , i = 1,2,……,me  
up to execution time  te (≥ tme) and the likelihood function of parameters 𝛾0 and 𝛾1 can be  
obtained as	𝐿4𝛩, 𝑡6 = 7∏ 𝜆(𝑡-)

.,
-/! : 𝑒𝑥𝑝 𝑒𝑥𝑝	[−𝜇(𝑡*)]		(cf. Singh et al [14]). Using failure intensity 

function given in (2) and mean time to failure function given in (3) the likelihood function is 
obtained as   

𝐿(ϓ0, ϓ!) = ϓ0
.,ϓ!

"#.,7∏ 𝑡-
.,
-/! :	𝑒"

!
"1ϓ!

-"
𝑒	"ϓ.𝑒𝑥𝑝	 >ϓ0	𝑒

"!"3
#,
ϓ!
4
"

?                                               (4) 

3. Choice of priors and Posterior distribution 

     In Bayesian estimation appropriate choice of the prior(s) for the parameter is necessary. 
However Bayesian analyst pointed out that there is no perfect technique from which one can 
conclude that one prior is better than the other. Very often, priors are chosen according to one's 
subjective knowledge and beliefs. However, in case of adequate information about the 
parameter is available one can use informative prior(s) otherwise it is preferable to use non 
informative prior(s).   Bayesian estimation is a method that combines prior information with 
information obtained from sample data. While testing the software, the experimenter have very 
little knowledge relative to the total number of failures present in the software i. e. γ0 and γ1. 

Here insufficient prior information is available about parameters γ0 and γ1, hence non- 
informative priors are considered.  

          Jeffrey's [6] has suggested the use of non-informative priors. Jeffrey's prior is widely used 
because it is proper under slight conditions. It requires likelihood function from which the 
prior is then derived using Jeffrey's rule. More discussion properties of Jeffrey's prior has been 
studied by Chen et al [1].The following non informative prior distributions g (γ0) and g (γ1) are 
considered for parameters γ0   and γ1 which are as follows: 
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  					𝑔	(𝛾0) 	∝ 	 {𝛾0"!								, 𝛾0𝜖	[0,∞)																		      (5) 

and 
𝑔(𝛾!) 	∝ 	 {𝛾!"!								, 𝛾!𝜖	[0,∞)	 (6)                                                                                                          

The joint posterior of ϓ0 and	ϓ!  given 𝑡 (= ti, i=1, 2,……….me) is obtained by using equations 
(4),(5) and (6) is as follows:   

𝜋+𝑡, = 𝐷−1𝛾0
𝑚𝑒−1𝛾1

−2𝑚𝑒−1𝑒−
1
2
𝑇𝛾1
−2
𝑒	−𝛾0𝑒𝑥𝑝	 -𝛾0	𝑒

−
1
2
#𝑡𝑒
𝛾1
$
2

.                      𝑚* < 𝛾0 < ∞	,0 < 𝛾! < ∞    

                                                                                                                                                          (7) 

Where D is normalizing constant  

𝐷 =G
	𝛤(	𝑚* + 𝑗, 	𝑚*)𝛤(2𝑚*)

𝑗!

8

9/!

	(2/𝑆)(#.,) 

                                        Where, 𝑆 = (𝑇 + 𝑗𝑡*#), 𝑇 = ∑ 𝑡-#
.,
-/!  

The marginal posterior distribution of  𝛾0 given 𝑡 is obtained by integrating equation (8) over 

the whole range of 𝛾!i.e. 

   𝜋+𝑡, = 𝐷−1∑ 0			(2/𝑆)
(2𝑚𝑒)𝛤(2𝑚𝑒)

𝑗!
1∞

𝑗=0 2𝛾0
𝑚𝑒+𝑗−1𝑒−𝛾0	3 ,    𝑚* < 𝛾0 < ∞                            (8)                     

Similarly, the marginal posterior distribution of  𝛾! given 𝑡  is as 

𝜋+𝑡, = 𝐷−1∑ 0𝛤(𝑚𝑒+𝑗,𝑚𝑒)
𝑗!

1∞
𝑗=0 0𝛾1

−2𝑚𝑒−1𝑒−
1
2
𝑆𝛾1
−2
1  ,0 < 𝛾! < ∞                                                        (9) 

4. Bayesian interval estimation of parameters γ0 and γ1 

The equal tailed 100(1- α)% Bayes probability interval is given as:   

∫ 𝜋4𝑡6𝑑𝑡ᵞ∗
"8 = 𝛼/2                  and       ∫ 𝜋4𝑡6𝑑𝑡8

G∗ = 𝛼/2 

Where +𝑡,			is the marginal posterior distribution and 𝛾∗  lower limit and 	𝛾∗upper limit of the 

Bayesian interval respectively. For details see Martz and Waller [9], B.K. Kale [7], S. K. Sinha 

[15]. 

Now by integrating equations (8) and (9) w.r.t. 𝛾0 and 𝛾1 respectively 100(1- α)% two sided 

Bayesian interval for the parameter 𝛾0 and 𝛾1 can be obtained as follows: 
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                    𝛾0𝑙4 	   =    𝐷"! ∑ 	(#/J)("6,)K(#.,)
9!

8
9/! 	𝛤(	𝑚* + 𝑗, 𝛾0∗	) 

                     𝛾0𝑢4     =   𝐷"!∑ 	(#/J)("6,)K(#.,)
9!

8
9/! 	𝛤(	𝑚* + 𝑗, 𝛾0∗	)                     

                     𝛾1𝑙4 	  =   𝐷"!∑ 	K(	.,M9,.*	)		
9!

8
9/! 	T#

J
U
(#.,)

𝛤(2𝑚* , 𝑆/2	𝛾!∗	) 

                     𝛾1𝑢4   =   𝐷"!∑ 	K(	.,M9,.*	)		
9!

8
9/! 	T#

J
U
(#.,)

𝛤(2𝑚* , 𝑆/2	𝛾!∗) 

Where, 𝛾0𝑙4 	 and 𝛾0𝑢4 	 is the Bayes lower limit and upper limit of parameter γ0 i.e. total number of 

failures,	𝛾1𝑙4 	and 	𝛾1𝑢4 	 is the Bayes lower limit and upper limit of parameter γ1.  And  𝛤(	𝑚𝑒 +

𝑗, 𝛾0
∗ 	)  and  𝛤(2𝑚𝑒, 𝑆/2	𝛾1

∗) are incomplete gamma functions.              

The details about the incomplete gamma function can be seen from Gradshteyn and Ryzhik [5]. 

5. Discussion 

Table (1) to (8) represents average length and coverage probability of the Bayesian two sided 
interval is obtained for the parameter γ0 i.e. total number of failures and parameter𝛾!. The 
Bayesian interval depends upon the values of execution time i.e. te and me failures experienced 
at times ti, i = 1,2………..,me. Bayesian interval is studied by calculating the average length and 
coverage probability of the simulated interval. To study the performance, a sample size was 
generated from the Rayleigh distribution and it is repeated 1000 times.  Average length and 
coverage probability is calculated for Bayes two sided interval for different execution time te for 
different values of parameters. Monte Carlo simulation is used to study the performance of 
Bayesian interval. Average length and coverage probability have been calculated by assuming 
parameter γ0 (=1(1)5) and			𝛾!(= 0.25(0.25)1.25) using 1000simulations. 

 From tables (1) to (4) it is observed that Bayesian interval's average length decreases as 
𝛾0increases and it is increases as 𝛾! increases for different execution time i.e. te. It can be seen 
that as execution time increases average length also increases. Here assumes that Bayesian 
interval maintains the credible level if the estimated coverage probability is in between the 
range of 0.940 to 0.960 i.e. (1-α)±0.01	where, α = 0.05. It was found that the coverage 
probabilities of the interval decreases as 𝛾0increases and coverage probability increases as 𝛾! 
increases.   

Here, table (5) to (8) represents average length and coverage probability for Bayesian two sided 
interval for the parameter γ1.It can be seen that average length computed for Bayesian interval 
is increases as total number of failures i.e. 𝛾0	increases. And as	𝛾!increases average length also 
increases. It also observes that average length decreases as execution time i.e. te increases. From 
tables it can be seen that coverage probability increases as 𝛾0and  𝛾! increases. When average 
length will be shorter coverage probability will decreases. As execution time te increases 
coverage probability decreases. 
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Table 1: Average length and coverage probability of Bayesian interval 𝛾!&	calculated for different values of 
parameters 𝛾! and   𝛾"when execution time te = 5  

*The values in the parenthesis are coverage probability. 

 
 
 
Table 2: Average length and coverage probability of Bayesian interval 𝛾!&	calculated for different values of 
parameters 𝛾! and   𝛾"when execution time te = 10 

 

  

 

              𝛄0 
   𝛄1                    

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

2.14713 
(0.996) 

2.023915 
(0.996) 

1.574669 
(0.995) 

1.02334 
(0.995) 

0.295229 
(0.994) 

 
0.50 

2.14714 
(0.996) 

2.058673 
(0.996) 

1.604102 
(0.995) 

1.04157 
(0.995) 

0.375861 
(0.994) 

 
0.75 

2.14715 
(0.996) 

2.066402 
(0.996) 

1.621196 
(0.995) 

1.30856 
(0.995) 

0.624627 
(0.994) 

 
1 

2.14723 
(0.996) 

2.078305 
(0.996) 

1.683277 
(0.995) 

1.40131 
(0.995) 

0.674976 
(0.994) 

 
1.25 

2.14768 
(0.997) 

2.081441 
(0.996) 

1.751818 
(0.995) 

1.41164 
(0.995) 

0.718004 
(0.994) 

 

               𝛄0 

    𝛄1                     

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

2. 42186 
 (0.998) 

2.14698  
(0.996) 

2.13883  
(0.996) 

2.051196 
(0.995) 

1.664166 
(0.994) 

 
0.50 

2.46526 
 (0.998) 

2.22720  
(0.996) 

2.147932 
(0.996) 

2.06754  
(0.995) 

1.673916 
(0.994) 

 
0.75 

2.48655 
 (0.998) 

2.247208 
(0.996) 

2.147905 
(0.996) 

2.07153  
(0.995) 

1.67429  
(0.994) 

 
1 

2.48658  
(0.998) 

2.327472 
(0.997) 

2.14932 
 (0.997) 

2.07210  
(0.996) 

1.67455  
(0.994) 

 
1.25 

2.49144  
(0.999) 

2.348076 
(0.998) 

2.15390  
(0.997) 

2.074465 
(0.996) 

1.68610 
 (0.994) 
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Table 3: Average Length and Coverage Probability of Bayesian interval 𝛾!&calculated for different values of 
parameters 𝛾! and   𝛾" when execution time   te = 15 
 
 

              𝛄0      
   𝛄1                    

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

2.43761 
(0.998) 

 

2.24616 
(0.998) 

2.18678 
(0.997) 

2.151995 
(0.997) 

2.08162 
(0.996) 

 
0.50 

2.43786 
(0.998) 

2.26656 
(0.998) 

2.18701 
(0.997) 

2.152415 
(0.997) 

2.082083 
(0.996) 

 
0.75 

2.43791 
(0.998) 

2.271643 
(0.998) 

2.20720 
(0.997) 

2.15321 
(0.997) 

2.083737 
(0.996) 

 
1 

2.44656 
(0.998) 

2.33112 
(0.998) 

2.21472 
(0.998) 

2.153597 
(0.997) 

2.084265 
(0.996) 

 
1.25 

2.48656 
(0.999) 

2.35643 
(0.998) 

2.22476 
(0.998) 

2.15383 
(0.998) 

2.102458 
(0.997) 

*The values in the parenthesis are coverage probability. 

 

 

Table 4: Average Length and Coverage Probability of Bayesian interval 𝛾!&	 calculated for different values of 
parameters 𝛾! and   𝛾" when execution time   te = 20 
 
 
              𝛄0   
    𝛄1                   

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

2.46155 
 (0.998) 

2.25882 
(0.998) 

2.14701 
 (0.996) 

2.14309  
(0.995) 

2.10662 
(0.994) 

 
0.50 

2.46237 
(0.998) 

2.26956 
(0.998) 

2.14701 
 (0.996) 

2.14382 
 (0.995) 

2.10883 
(0.994) 

 
0.75 

2.46256 
 (0.998) 

2.27436 
(0.998) 

2.14720 
 (0.996) 

2.14445 
 (0.995) 

2.11537 
(0.995) 

 
1 

2.46506 
 (0.998) 

2.34452 
(0.998) 

2.147682 
(0.996) 

2.14894 
 (0.995) 

2.12780 
(0.995) 

 
1.25 

2.49164 
 (0.999) 

2.36436 
(0.998) 

2.14807  
(0.996) 

2.14979 
 (0.995) 

2.12858 
(0.995) 

*The values in the parenthesis are coverage probability. 
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Table 5: Average length and coverage probability of Bayesian interval 𝛾"' 	 calculated for different values of 
parameters 𝛾! and 𝛾"when execution time   te = 5 

 *The values in the parenthesis are coverage probability. 

 

 

Table 6: Average length and coverage probability of Bayesian interval 𝛾"' 	calculated for different values of 
parameters 𝛾! and   𝛾"when execution time te = 10 

*The values in the parenthesis are coverage probability. 

  

 

              𝛄0 
   𝛄1                            

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

0.001098 
 (0.995) 

0.003211 
 (0.996) 

0.006615  
(0.997) 

0.009148  
(0.998) 

0.011176 
 (0.998) 

 
0.50 

0.001114 
(0.996) 

0.003322 
 (0.996) 

0.007081 
(0.997) 

0.009530 
(0.998) 

0.012966 
 (0.998) 

 
0.75 

0.001116 
 (0.996) 

0.003406 
 (0.996) 

0.007276 
 (0.997) 

0.010573 
(0.998) 

0.013338 
 (0.998) 

 
1 

0.001116 
 (0.996) 

0.003485  
(0.996) 

0.007954  
(0.998) 

0.013072  
(0.998) 

0.014761 
(0.998) 

 
1.25 

0.001125  
(0.996) 

0.003821 
(0.997) 

0.008098 
(0.998) 

0.013388 
(0.998) 

0.015302  
(0.998) 

          
               𝛄0 

   𝛄1                    

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

0.001071   
(0.995) 

0.001090 
(0.995) 

0.001723  
(0.996) 

0.002980 
(0.996) 

0.002112 
 (0.997) 

 
0.50 

0.001074 
(0.995) 

0.001102  
(0.995) 

0.002021  
(0.996) 

0.00302 
 (0.996) 

0.002406 
(0.997) 

 
0.75 

0.001074 
(0.995) 

0.001102  
(0.995) 

0.002023  
(0.996) 

 0.003133 
 (0.996) 

0.002988  
(0.997) 

 
1 

0.001078  
 (0.995) 

0.001103 
(0.996) 

0.002036  
(0.996) 

0.003106 
(0.996) 

0.003079  
(0.997) 

 
1.25 

0.001079 
(0.995) 

0.001103  
(0.996) 

0.002221 
(0.996) 

0.003374  
(0.996) 

0.003684  
(0.997) 
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Table 7: Average Length and Coverage Probability of Bayesian interval 𝛾"' 	calculated for different values of 
parameters 𝛾! and   𝛾"		when execution time   te = 15 
 

*The values in the parenthesis are coverage probability. 

 

Table 8: Average Length and Coverage Probability of Bayesian interval 𝛾"' 	calculated for different values of 
parameters 𝛾! and   𝛾"  when execution time   te = 20 
 
 

             𝛄0 
   𝛄1                     

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

0.001068 
(0.994) 

0.001079 
(0.995) 

0.001082 
(0.995) 

0.001085 
(0.995) 

 0.001090 
(0.995) 

 
0.50 

0.001068 
(0.994) 

0.001080 
(0.995) 

0.001084 
(0.995) 

0.001088 
(0.995) 

0.001092 
(0.995) 

 
0.75 

 0.001067 
(0.995) 

0.001081 
(0.995) 

0.001085 
(0.995) 

0.001089 
(0.995) 

0.001093 
(0.996) 

 
1 

0.001066 
(0.995) 

0.001083 
(0.995) 

0.001085 
(0.995) 

0.001092 
(0.995) 

0.001094 
(0.996) 

 
1.25 

0.001064 
(0.995) 

 0.001086 
(0.995) 

0.001088 
(0.995) 

0.001093 
(0.996) 

0.001095 
(0.996) 

*The values in the parenthesis are coverage probability. 

 

  

       
           𝛄0 

𝛄1                 
                        

 
1 

 
2 

 
3 

 
4 

 
5 

 
0.25 

0.001069 
(0.995) 

0.001082 
(0.995) 

0.001091 
(0.996) 

0.001114 
(0.996) 

0.001116 
(0.997) 

 
0.50 

0.001071 
(0.995) 

0.001085 
(0.995) 

0.001113 
(0.996) 

0.001115 
(0.996) 

0.001119 
(0.997) 

 
0.75 

0.001072 
(0.995) 

0.001086 
(0.995) 

0.001115 
(0.996) 

0.001115 
(0.996) 

0.001120 
(0.997) 

 
1 

0.001075 
(0.995) 

0.001086 
(0.995) 

0.001116 
(0.996) 

0.001116 
(0.996) 

0.001122 
(0.997) 

 
1.25 

0.001077 
(0.995) 

0.001088 
(0.995) 

0.001119 
(0.996) 

0.001117 
(0.997) 

0.001122 
(0.997) 
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6. Conclusion 

        In this research paper, Bayesian interval has been proposed considering Poisson type 
Rayleigh class software reliability growth model as function with parameters total number of 
failures i.e. 𝛾0 and scale parameter 𝛾!. Bayesian analysis is carried out by considering non 
informative prior. The performance of two sided Bayesian interval is studied using Monte 
Carlo simulation technique. Average length and coverage probability of Bayesian interval is 
calculated for both the parameters 𝛾0 and 𝛾! for different execution time te. From study it is 
concluded that proposed Bayesian interval has shorter average length for both parameters. 
Bayesian interval maintained coverage probability for both the parameters 𝛾0 and 𝛾!  for 
different execution time for different values of parameters. In future, confidence interval will 
be obtained for proposed model and will be compared with Bayesian interval on the basis of 
average length and coverage probability.  
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Abstract

In this article, a new one-parameter discrete distribution called discrete Burr-Hatke exponential distri-
bution is introduced and its mathematical characteristics are thoroughly investigated. The proposed
distribution is capable of modelling over-dispersed, positively skewed, decreasing failure rate, and ran-
domly right-censored data. We have also introduced many statistical properties including moments,
skewness, kurtosis, mean residual life and mean past lifetime, index of dispersion, coefficient of variation,
stress strength parameter, quantile function, and order statistics. Method of maximum likelihood is used
to estimate unknown model’s parameter under complete and censored data. In addition, a technique for
generating randomly right-censored data from the proposed model is provided. To evaluate the behaviour
of the estimator with complete and censored data, two simulation studies are presented. Two complete and
two censored datasets from various disciplines are studied to demonstrate the significance of the suggested
distribution in comparison to the existing discrete probability distributions.

Keywords: Burr-Hatke exponential distribution, Method of maximum likelihood, Discrete distri-
bution, Random censoring, Simulation study

1. Introduction

Many continuous lifetime models have been proposed and investigated in reliability theory.
However, measuring the life of a component on a continuous scale is frequently impossible or
inconvenient. For example, in reliability engineering, the lifetime of an on/off switching device,
in survival analysis, the survival times for those suffering from diseases such as lung cancer or the
period from remission to relapse may be recorded as the number of days/weeks etc. Furthermore,
the count phenomenon arises in a wide range of practical scenarios, including the number of
earthquakes that occur in a calendar year, the number of absences, the number of accidents, the
number of species kinds in ecology, the number of insurance claims, the number of deaths/daily
cases due to the COVID-19 pandemic observed over a specified duration and so on. In all of these
circumstances, it is more appropriate to measure these characteristics on a discrete scale rather
than a continuous analogue.
Although there are several conventional discrete distributions such as the Binomial, Poisson,
Geometric etc and recently developed discrete models to analyse above discussed characteristics.
The research for new discrete distributions that are appropriate under various scenarios is still
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underway. One prominent area of study in this field is the development of discrete distributions
by discretizing suitable continuous probability distributions. Discretization of continuous distri-
bution can be accomplished by a variety of methods. Out of which one of the most widely used
methods is [1]. In this approach, he proposed discrete normal distribution using the survival
function of its continuous counterpart. Chakraborty in [2] named this technique the survival
discretization method. One of the most important advantages of this method is that the produced
discrete distribution has the same functional form of the survival function as its continuous
version. As a result of this feature, many of the reliability characteristics of the distribution remain
unchanged. According to this methodology, for a given continuous random variable (RV) ’Y’ with
survival function (SF) SY(y) = P(Y ≥ y), the random variable X = [Y] = largest integer less than
or equal to Y will have the probability mass function (PMF),

P(X = x) = P(x ≤ Y ≤ x + 1)

= P (Y ≥ x)− P (Y ≥ x + 1)

= SY(x)− SY(x + 1); x = 0, 1, 2, ... (1)

Many scholars have discretized various well-known continuous distributions using this
approach. For instance, [3] investigated the discrete Rayleigh distribution, [4] researched the
discrete Maxwell distribution. In addition, [5] investigated the discrete Burr and discrete Pareto
distribution. Discrete inverse Weibull distribution developed by [6] . Discrete-continuous Burr
III distribution defined by [7]. For more studies on discrete distribution, one can refer to [8], [9],
[10], [11] and the references cited therein. Recently, [12] developed a discrete analogue of the odd
Weibull-G family of distributions: properties, classical and Bayesian estimation with applications
to count data of the number of new coronavirus cases.
In many circumstances, data collection is restricted by constraints such as time or money, making
it hard to obtain the entire dataset. This form of incomplete data is referred to as censored data.
Various censoring mechanisms are available in the literature to examine these datasets. One of
the greatly applicable censorship is random censoring. This scheme consists of studies in which
subjects can be censored at any time during the experiment period. Random censoring can be
seen in clinical trials or medical studies where patients do not finish the course of treatment and
leave before the endpoint. Randomly censored lifetime data are common in many applications
such as medical science, biology, reliability studies, and so on, and must be properly analysed
to make correct inferences and appropriate research conclusions. Random censoring has been
widely investigated in the literature for continuous models see [13]. The censoring technique has
also been studied merely under discrete models, namely [14] and [15]. Recently, [16] developed
discrete inverted Nadarajah-Haghighi distribution and estimated its parameters under complete
and random right-censored censored data.
The majority of existing discrete models were developed to assess count data and, in most cases,
they do not accurately analyse the censored data. These situations motivate us to develop a
more appropriate discrete distribution that is not capable only of analysing count data but also
well enough for modelling censored data. Therefore, in this article, we have proposed a discrete
analogue of the Burr-Hatke exponential model by using approach (1) and named it as discrete
Burr-Hatke exponential (DBHE) distribution. Hence the ultimate objectives of developing the
DBHE model is as follows, a) To construct a discrete model capable of modelling both complete
and censored data, b) To design a discrete model with more flexibility and fewer parameters so that
the form of diverse distributional properties can be easily handled, c) Numerous practical studies,
such as newly developed engineering systems and infant mortality, have shown decreasing failure
rate; consequently, we wish to construct a discrete model with a decreasing failure rate function,
d) To develop a model that can fit positively skewed, leptokurtic and over-dispersed real data,
e) To produce a discrete model that can provide consistently better fits than other well-known
discrete models in the existing statistical literature.
The rest of the article is structured as follows: Section 2 introduces the DBHE distribution. Some
significant distributional and survival features are investigated in Section 3. In Section 4, we use
the maximum likelihood estimation approach to estimate the parameter of the DBHE distribution
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with complete data and also present numerical illustrations based on empirical and real-world
datasets. Section 5 discusses the maximum likelihood estimator (MLE) for the model’s parameter
under randomly right-censored data and it also includes the technique for generating censored
observations from the proposed model. The numerical examples using randomly right-censored
empirical and real data have also been presented in section 5. Section 6 concludes with some final
observations.

2. The DBHE distribution

The Burr–Hatke exponential (BHE) distribution was proposed by [17].The probability density
function (PDF) and SF of the BHE distribution are given as

f (y, θ) =
θ (2 + θy)

(1 + θy)2 exp (−θy) ; y ≥ 0, θ > 0, (2)

S (y, θ) = P (Y > y) =
exp (−θy)
(1 + θy)

; y ≥ 0, θ > 0, (3)

respectively. The BHE distribution is rightly skewed with decreasing hazard rate function (HRF).
This model is very useful to analyse reliability/medical data which have the pattern of decreasing
hazard rate. Since it has been generalized by exponential baseline distribution so it may be
regarded as an alternative to the several one-parameter exponential families of distributions.
Now, using a methodology (1) the PMF of the DBHE model can be obtained as

PX (x, θ) =

(
1

(1 + θx)
− exp(−θ)

(1 + θ + θx)

)
exp (−θx) , x = 0, 1, 2...; θ > 0. (4)

The CDF corresponding to Equation (4) is given by,

FX(x, θ) = 1 − exp (−θ (x + 1))
(1 + θ + θx)

, x = 0, 1, 2, ...; θ > 0. (5)

Figure 1: The PMF plots of the DBHE model for different values of θ.

Figure 1 shows the PMF plots for different values of the model parameter. From Figure 1, we
can conclude that the PMF of the DBHE distribution is unimodal and right-skewed. Also, the
behaviour of the PMF at endpoints are as follows:

∙ lim
x→0

PX(x, θ) = 1 − exp(−θ)
(1+θ)

,

∙ lim
x→∞

PX (x, θ) = lim
θ→0

PX (x, θ) = lim
θ→∞

PX (x, θ) = 0.
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3. Distributional Properties

3.1. Recurrence Relation for Probabilities

To obtain the probability mass on various values of X, we can use the following recursive relation

PX (x + 1, θ) =

(
1

(1 + θ + θx)
− exp (−θ)

(1 + 2θ + θx)

)(
1

(1 + θx)
− exp(−θ)

(1 + θ + θx)

)−1

exp (−θ) PX (x, θ) .

It is observable that {PX (x + 1)}2 < PX (x) PX (x + 1) for all x. As a result, the DBHE distribution
is log-convex. Due to this convexity, the proposed distribution has a non-increasing failure rate
[18].

3.2. Moments, Skewness and Kurtosis

Moments of a probability distribution are an important tool for measuring its different properties
such as mean, variance, skewness, kurtosis, etc. If F (x) is the CDF of a discrete random variable,
then the rth raw moments of this random variable can be obtained by using the following formula:

E(Xr) =
∞

∑
x=0

{(
(x + 1)r − xr) (1 − F (x))

}
.

Using the above expression, the rth raw moment denoted by µ
′
r of the DBHE distribution can be

written as

µ
′
r = E(Xr) = exp (−θ)

∞

∑
x=0

(
(x + 1)r − xr)
(1 + θ + θx)

exp (−θx). (6)

Using the ratio test, we can easily observe that, the expression in Equation (6) is convergent. It
implies the existence of the rth moment of the proposed distribution.
Now, using Equation (6), the first four-row moments of the DBHE distribution are

µ
′
1 = E(X) = exp (−θ)

∞

∑
x=0

exp (−θx)
(1 + θ + θx)

, (7)

µ
′
2 = E(X2) = exp (−θ)

∞

∑
x=0

(2x + 1)
(1 + θ + θx)

exp (−θx) , (8)

µ
′
3 = E(X3) = exp (−θ)

∞

∑
x=0

(
3x2 + 3x + 1

)
(1 + θ + θx)

exp (−θx), (9)

µ
′
4 = E(X4) = exp (−θ)

∞

∑
x=0

(
4x3 + 6x2 + 4x + 1

)
(1 + θ + θx)

exp (−θx). (10)

The variance of the DBHE distribution is given by ,

Var(X) = E
(

X2
)
− E(X)2

=

(
∞

∑
x=0

(2x + 1) exp (−θx)
(1 + θ + θx)

)
−
(

exp (−θ)
∞

∑
x=0

exp (−θx)
(1 + θ + θx)

)2

.

Using above raw moments in (7)-(10), we can easily find the skewness and kurtosis from the
following relations

K =
E(X4)− 4E(X2)E (X) + 6E(X2)(E (X))2 − 3(E (X))4

(Var(X))2 .

Table 1 presents some numerical results of the mean, variance, skewness and kurtosis for the
DBHE distribution for different values of θ.
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Table 1: Mean, Variance, Skewness and kurtosis for different values of θ.

Measure ↓ θ→ 0.1 0.2 0.3 0.5 0.7 0.9 1 1.5 2
Mean 4.6575 1.8326 0.9674 0.3692 0.1701 0.0863 0.0629 0.0149 0.0041
Variance 52.5614 13.4619 5.7640 1.7577 0.7144 0.3336 0.2356 0.0505 0.0130
Skewness 4.8141 5.4455 6.9073 11.9474 20.6287 34.9582 45.2208 156.6311 517.1785
Kurtosis 10.7294 10.8777 12.1065 17.1201 26.0157 40.5689 50.8788 160.0551 504.2940

From Table 1, it is clear that:

1. As the parameter’s value increases, the values of mean and variance of the DBHE distribu-
tion decrease, whereas the values of skewness and kurtosis increase.

2. The proposed model is appropriate for modelling positively skewed and leptokurtic data.

3.3. Index of Dispersion and Coefficient of Variation

The index of dispersion (IOD) is a measure used to determine the possibility of over-dispersion
(under-dispersion) of the model under study. An IOD greater than one indicates over-dispersion,
whereas an IOD lower than one indicates under-dispersion. Equi-dispersion is indicated when
the IOD is equal to one. The expression for IOD of the DBHE distribution is

IOD (X) =
Var(X)

E (X)
=

(
∞
∑

x=0

(2x+1) exp(−θx)
(1+θ+θx)

)
−
(

exp (−θ)
∞
∑

x=0

exp(−θx)
(1+θ+θx)

)2

exp (−θ)
∞
∑

x=0

exp(−θx)
(1+θ+θx)

. (11)

Furthermore, the coefficient of variation (COV) is a measure of data variability. The COV measure
is commonly used to compare the variability of independent samples. The larger the coefficient
of variation (COV), the more erratic the data. If X follows DBHE model, the COV of DBHE may
be represented as

COV (X) =
(Var(X))1/2

E (X)
=

((
exp (−θ)

∞
∑

x=0

(2x+1) exp(−θx)
(1+θ+θx)

)
−
(

exp (−θ)
∞
∑

x=0

exp(−θx)
(1+θ+θx)

)2
)1/2

exp (−θ)
∞
∑

x=0

exp(−θx)
(1+θ+θx)

.

(12)

The numerical values of IOD and COV are shown in Table 2 for a variety of model parameter
values.

Table 2: Index of dispersion and coefficient of variation of DBHE for different values of θ.

Measure ↓ θ→ 0.1 0.2 0.3 0.5 0.7 0.9 1 1.5 2
IOD 11.2853 7.3457 5.9583 4.7613 4.1991 3.8674 3.7481 3.3862 3.2143
COV 1.5566 2.0021 2.4818 3.5913 4.9680 6.6959 7.7212 15.0746 28.1402

From Table 2, it is observable that, when the parameter’s value increases, the IOD decreases
and the COV increases. Since, IOD>1 indicating that the proposed model is appropriate for
modelling over-dispersed data.

3.4. Quantile Function

The point xq is known as the qth quantile of a discrete random variable X if it satisfies P
(
X ≤ xq

)
≥

q and P
(
X > xq

)
> 1 − q that is F

(
xq − 1

)
< q ≤ F

(
xq
)

(See, [19]).
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Using this result, the qth quantile of DBHE distribution can be obtained by

xq =

⌈
1
θ

{
log

(
1(

1 + θxq
) − exp (−θ)(

1 + θ + θxq
))− log q

}⌉
, (13)

where ⌈.⌉ is the ceiling function that returns the smallest integer greater than or equal to its
argument.
A random number (integer) can be easily sampled from the proposed distribution by using
Equation (13) when q be a uniform random number drawn from a Uniform distribution on the
unit interval, i.e. U(0,1). In particular, if we put q = 0.5, we will get the value of the median of the
proposed distribution.

3.5. Order Statistics

Order statistics have several applications in reliability engineering and life testing. Let X1, X2, ..., Xn
be a random sample from DBHE distribution. Also, let X(1) ≤ X(2) ≤ ... ≤ X(n), denote the
corresponding order statistics. Then, the CDF of rth order statistic, say, Z = X(r), is given by

Fr (z, θ) =
n

∑
i=r

(
n
j

)
Fi (z) [1 − F (z, θ)]n−i

=
r

∑
i=1

n−i

∑
k=0

(−1)k
(

n
i

)(
n − i
k

){
1 − exp (−θ (z + 1))

(1 + θ + θz)

}(i+k)
. (14)

The corresponding PMF of rth order statistic is

f r (z) = Fr (z)− Fr (z − 1)

=
r

∑
i=1

n−i

∑
k=0

(−1)k
(

n
i

)(
n − i
k

)[{
1 − exp (−θ (z + 1))

(1 + θ + θz)

}(i+k)
−
{

1 − exp (−θz)
(1 + θz)

}(i+k)
]

.

(15)

Particularly, by putting r = 1 and r = n in Equation (15), we can obtain the PMF of minimum
(

X(1), X(2), ..., X(n)

)
and the PMF of maximum

(
X(1), X(2), ..., X(n)

)
, respectively.

3.6. Survival Characteristics

The Survival function of the proposed distribution is

S (x, θ) = P (X > x) =
exp (−θx)
(1 + θx)

; x = 0, 1, 2, ....

The hazard rate is a reliability characteristic that describes the system’s failure behaviour over
time. The discrete HRF for the DBHE distribution is given by

h (x, θ) = P (X = x|X ≥ x) =
P (X = x)
S (x − 1, θ)

=
(1 + θ + θx − exp (−θ) (1 + θx))

(1 + θ + θx)
; x = 0, 1, 2, ..., (16)

provided that S (x − 1, θ) > 0.

Figure 2 shows the HRF plots of the DBHE distribution for different values of θ. It is noted
that the shape of the HRF is decreasing.
The reverse hazard rate function of the DBHE distribution is given by
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Figure 2: The HRF plots of the DBHE model for different values of θ.

h* (x, θ) = P (X = x|X ≤ x) =
P (X = x)

F (x, θ)
=

(
1

(1+θx) −
exp(−θ)
(1+θ+θx)

)
(

1 − exp(−θ(x+1))
(1+θ+θx)

) exp (−θx) . (17)

The second rate of failure of the proposed model is given by

h** (x, θ) = log
{

S (x − 1)
S (x)

}
= θ + log (1 + θ + θx)− log (1 + θx) . (18)

3.7. Mean Residual and Mean Past Lifetime

The mean residual life (MRL) function, which represents the ageing mechanism, is broadly used
in a wide variety of fields, including reliability engineering, survival analysis, biomedical research,
and among others. In the literature, it is widely established that the MRL function uniquely
characterises the distribution function F since it comprises all of the model’s data. In discrete
setup, the MRL, represented by the symbol m(i), may be defined as follows:

m(i) = E(Y − i|Y ≥ i) =
1

S(i)

∞

∑
j=i+1

S(j); i = 0, 1, 2, ...,

where S (.) is SF. If X has DBHE distribution with parameter θ, then the MRL function of X is

m(i) =
(1 + θi)

exp(−θi)

∞

∑
j=i+1

exp(−θ j)
(1 + θ j)

.

A function is known as the mean past life (MPL) function or expected inactivity time function
(EITF) denoted by m*(i), is used to estimate the amount of time since the failure of X if the system
has failed at some point before ’i’. In a discrete setting, the MPL function can be defined as

m*(i) = E(i − X|X < i) =
1

F(i − 1)

i

∑
k=1

F(k − 1); i = 1, 2, ....

By replacing the CDF (5) in the expression of m*(i), we can easily obtain the MPL for the proposed
model.
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3.8. Stress–Strength Parameter

Stress–strength analysis has been extensively used in reliability modelling. Suppose the random
variable X and Y denotes the strength and stress of a system (both X and Y are in the positive
domain), respectively, then the stress strength reliability R = P [X > Y] can be defined as

R = P [X > Y] =
∞

∑
x=0

PX (x) FY (x),

where PX (x) and FY (x) respectively, denote the PMF and CDF of the independent discrete
random variables X and Y. Let X ∼ DBHE (θ1) and Y ∼ DBHE (θ2), then R of the DBHE is,

R =
∞

∑
x=0

{(
1 − exp (−θ1 (x + 1))

(1 + θ1 + θ1x)

)(
1

(1 + θ2x)
− exp (−θ2)

(1 + θ2 + θ2x)

)
exp (−θ2x)

}
. (19)

Since, it is difficult to obtain the expression of R in explicit form therefore we perform a numerical
analysis of R for different values of θ1 and θ2. The numerical outputs of R are presented in Table
3.

Table 3: The numerical values of R for different combinations of θ1 and θ2.

θ1 ↓ θ2→ 0.05 0.1 0.25 0.5 1 2 5
0.05 0.51381 0.35905 0.18823 0.09638 0.03710 0.00830 0.00020
0.1 0.66849 0.51372 0.30089 0.16324 0.06501 0.01478 0.00036
0.25 0.81902 0.69564 0.46859 0.27722 0.11696 0.02740 0.00067
0.5 0.87830 0.77949 0.56485 0.35267 0.15502 0.03718 0.00092
1 0.90091 0.81440 0.61111 0.39304 0.17724 0.04320 0.00107
2 0.90559 0.82202 0.62219 0.40351 0.18342 0.04496 0.00112
5 0.90593 0.82258 0.62304 0.40435 0.18394 0.04511 0.00112

From this table, we observe that for any fixed value of θ1, R decreases as θ2 increases, whereas
for a fixed value of θ2, as θ1 increases, the value of R also increases.

4. Analysis of complete data under DBHE distribution

In this section, we estimate the unknown parameter of the DBHE distribution using the MLE
method. An algorithm for generating random data is presented. We also present numerical
examples based on empirical and real-world datasets to demonstrate the utility of the proposed
approach for evaluating complete data.

4.1. Maximum Likelihood Estimation with Complete Data

Suppose x = (x1, x2, ...., xn) be a random sample from DBHE distribution then the log-likelihood
function can be written as

log L(x; θ) = −θ
n

∑
i=1

xi+
n

∑
i=1

log
(

1
(1 + θxi)

− exp (−θ)

(1 + θ + θxi)

)
. (20)

By differentiating Equation (22) with respect to the parameter θ, we get the non-linear likelihood
equation as follows

n
∑

i=1

[(
exp(−θ)

(1+θ+θxi)

) (
1+xi

(1+θ+θxi)
+ 1
)
− xi

(1+θxi)
2

] [
1

(1+θxi)
− exp(−θ)

(1+θ+θxi)

]−1
−

n
∑

i=1
xi = 0. (21)

The solution of Equation (21) gives the MLE of θ. However, there is no explicit form for the
solution of Equation (21). Therefore, Equation (21) has to be solved by using iterative methods
such as Newton-Raphson, Nelder-Mead etc.
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4.2. Numerical Illustration Using Simulated Data

In this subsection, we perform a Monte Carlo simulation study to show how well the MLE can
estimate the unknown parameter of the DBHE distribution. Therefore, we conduct a simulation
study with replication number 1,000. The true parameter values are used as θ = 0.05, θ = 0.25,
and θ = 0.5. There is no stated reason for using these parameter values. It may be used
in several different ways. Random samples from the DBHE distribution are generated with
n = 15, 20, 25, ..., 100 sample sizes using Equation (13). The simulation results are interpreted
based on the mean square errors (MSEs) and absolute biases (ABs) where

MSE =
1

1000

1000

∑
j=1

(
θ̂ j − θ

)2
and AB =

1
1000

1000

∑
j=1

∣∣∣θ̂ j − θ
∣∣∣,

here, θ̂ is an estimate of θ.
The simulation results are graphically summarized and displayed in Figure 3.

Figure 3: Plots for MSEs and ABs for different values of θ for complete data.

Figure 3 illustrates that the MSEs of the MLEs tend to zero as n approaches infinity. This
demonstrates the consistency of the estimator. Furthermore, when n increases, the ABs is also
declined to zero.

4.3. Real Data Analysis

In this section, we illustrate the utility of the DBHE distribution by examining two real-world
datasets. Several criteria are used to compare fitted models, including the -logL, the Akaike infor-
mation criterion (AIC), the Bayesian information criterion (BIC), the Hannan Quinn information
criterion (HQIC), and the Chi-square (χ2) statistic with its associated P-value. The descriptive
summaries of the datasets are shown in Table 4. From this table, we can see that the IOD for all
datasets is greater than 1, indicating that the considered datasets can only be modelled by discrete
distributions with overdispersion phenomena. The comparing models to DBHE distribution are
listed in Table 5.

Table 4: Descriptive Statistics of the Datasets.

Data n Mean Variance Skewness Kurtosis IOD COV
Dataset I 100 0.67 1.1526 2.4697 4.532 1.7203 1.6024
Dataset II 400 0.5475 1.1256 9.7478 15.6829 2.0558 1.9378
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Table 5: The competitive models of the DBHE distribution.

Distribution Abbreviation Parameter(s) Author(s)
Geometric Geo θ -
Discrete Lindley DLi λ [20]
Discrete Lindley-Two Parameter DLi-II p, β [21]
Discrete Pareto DPa β [5]
Discrete linear failure rate DLFR λ1,λ2 [22]
Discrete inverse Weibull DIW α,β [6]
Discrete log-logistic DLogL δ,λ [23]
Discrete Nielsen DN p, θ [24]
Negative Binomial NB µ,Θ -
Zero-Inflated Negative Binomial ZINB µ, Θ, ω -
Poisson- Lindley PL θ [25]
Generalized Poisson-Lindley GPL θ, α [26]

Dataset I: The first dataset, consists of the recordings of the total number of carious teeth
among the four deciduous molars in a sample of 100 children 10 and 11 years old [5]. The
expected frequency of the fitted models along with their MLE, standard error (SE), -logL, and
goodness of fit measures are presented in Table 6. Since, the values of -logL, χ2 test statistic,
AIC, BIC, CAIC, and HQIC of DBHE distribution are smallest among those of other considered
models, hence this new distribution appears to be a very suitable model for this dataset. Similarly,
the higher P-value corresponding to χ2 statistic for DBHE distribution show its dominance on
other candidate models in terms of model fitting.

Table 6: The MLE (SEs) and goodness of fit statistics for different models under dataset I.

X
Observed

Frequency
DBHE Geo DLi DLi-II DPa DLFR DIW DLogL

0 64 62.80 59.88 57.13 59.88 69.04 59.9 63.3 62.73
1 17 21.37 24.02 26.88 24.02 15.37 24.01 22.48 22.42
2 10 8.60 9.64 10.45 9.64 6.01 9.63 6.44 7.01
3 6 3.78 3.87 3.71 3.87 3.01 3.86 2.76 2.98
>=4 3 3.45 2.59 1.83 2.59 6.57 2.6 5.02 4.86
Total 100 100 100 100 100 100 100 100 100

MLE (SE)
0.55043
(0.064)

0.59879,
(0.038)

0.274
(0.029)

0.401
(0.269),
0.478
(0.529)

0.184
(0.032)

0.401
(0.056),
1.0
(0.044)

0.633
(0.049),
1.576
(0.251)

0.745
(0.101),
1.768
(0.267)

−log L 112.328 112.474 113.68 112.475 116.83 112.470 116.275 115.470
χ2 1.575 3.347 6.638 3.347 3.225 3.340 3.503 2.783
D.F. 2 2 2 1 2 1 1 1
P-value 0.455 0.188 0.036 0.067 0.199 0.068 0.061 0.095
AIC 226.656 226.947 229.36 228.950 235.66 228.940 236.550 234.940
BIC 229.261 229.552 232.96 234.160 238.27 234.150 241.760 240.150
CAIC 226.697 226.988 229.39 229.073 235.70 229.063 236.673 235.063
HQIC 227.710 228.001 230.41 231.058 236.72 231.048 238.658 237.048

Dataset II: The second dataset represents the number of chromatid aberrations in 24 hours
[28]. The expected frequency of the fitted models along with their MLE, SE, -logL, and goodness
of fit measures are presented in Table 7. On comparison of the values of -logL, χ2 test statistic,
P-value, AIC, BIC, CAIC, and HQIC, we again found that the DBHE distribution is the best model
than the other five models understudy for this dataset.
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Table 7: The MLE (SEs) and Goodness of fit statistics for different models under dataset II.

X
Observed
Frequency

DBHE DN NB ZINB PL GPL

0 268 269.36 270.14 270.18 270.18 257.02 269.24
1 87 80.48 79.40 78.55 78.55 93.39 78.70
2 26 29.28 29.21 29.84 29.84 32.76 30.86
3 9 11.76 11.88 12.22 12.22 11.21 12.55
4 4 5.01 5.11 5.19 5.19 3.77 5.13
5 2 2.22 2.28 2.25 2.25 1.25 2.09
6 1 0.90 1.05 0.99 0.99 0.41 0.85
7 3 0.47 0.93 0.78 0.78 0.13 0.35
Total 400 400 400 400 400 400 400

MLE (SEs)
0.63026
(0.037)

0.5301
(0.0601),
1.1089
(0.2179)

0.5475
(011539),
0.6200
(0.1270)

0.5475
(0.1701),
0.6200
(0.3383),
0.00008
(0.2989)

2.379
(0.169)

1.576
(0.259),
0.473
(0.159)

− log L 399.342 399.410 399.860 399.860 399.857 400.553
χ2 1.781 1.924 2.416 2.416 6.283 2.940
D.F. 3 2 2 1 3 2
P-value 0.619 0.382 0.299 0.120 0.098 0.229
AIC 800.683 802.820 803.720 805.720 801.714 805.106
BIC 804.675 810.803 811.703 817.694 805.706 813.089
CAIC 800.693 802.850 803.750 805.781 801.724 805.136
HQIC 802.264 805.981 806.881 810.462 803.295 808.267

5. Analysis of randomly censored data under DBHE distribution

In this section, we derive the MLE of the unknown parameter of the DBHE distribution for random
rightly-censored data. For the DBHE model, an algorithm for generating random right-censored
data is presented. We also present numerical examples based on empirical and real-world datasets
to show the usefulness of the proposed approach for evaluating random censored data.

5.1. Maximum Likelihood Estimation with Randomly Censored Data

Due to the availability of right-censored observations, the contribution of the ith individual for
the likelihood function based on a random sample (xi, di) of size n is given by

Li = [ f (xi)]
di [S (xi)]

1−di ,

where di is a censoring indicator variable, that is, di = 1 for an observed lifetime and di = 0 for a
censored lifetime (i = 1, 2, 3, ...., n). Assuming the DBHE model, the likelihood function for θ is
given by

L (θ|x, d) =
n

∏
i=1

{(
1

(1 + θxi)
− exp (−θ)

(1 + θ + θxi)

)
exp (−θxi)

}di
{

exp (−θxi)

(1 + θxi)

}1−di

, (22)

where d = (d1, d2, ...., dn). The corresponding log-likelihood function is

log L (θ|x, d) =
n

∑
i=1

di log
{

1
(1 + θxi)

− exp (−θ)

(1 + θ + θxi)

}
+

n

∑
i=1

(di − 1) log (1 + θxi)− θ
n

∑
i=1

xi. (23)
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Taking the first derivative of Equation (23) w.r.t. θ and setting this derivative equal to zero, we
can obtain the likelihood equation for the parameter θ. Although, it is hard to find a closed-form
expression of MLE for the parameter θ using this likelihood equation, therefore, we can use an
appropriate numerical methodology such as the Newton-Raphson iteration method to obtain the
MLE of θ.

5.2. Algorithm to Simulate Random Right-Censored Data

We present a simple approach in this part for generating random right-censored data from the
suggested model. The algorithm is as follows:

Step 1: Fix the values of the parameter θ.

Step 2: Draw n random pseudo from Uni f orm(0, 1) i.e. ui ∼ U(0, 1); i = 1, 2, ..., n.

Step 3: Obtain x/
i = F−1(ui; θ); i = 1, 2, ..., n, where F−1(∙) is defined in Equation (13).

Step 4: Draw n random pseudo from ci ∼ U(0, max(x/
i )); i = 1, 2, ..., n. This is the distribu-

tion that controls the censorship mechanism.

Step 5: If x/
i ≤ ci, then xi = [x/

i ] and di = 1, i = 1, 2, ..., n, else, xi = [ci] and di = 0, i = 1, 2, ..., n.
Hence, pairs of values (x1, d1), (x2, d2), ..., (xn, dn) are obtained as the random right-censored data.

5.3. Numerical Illustration Using Simulated Random Right-Censored Data

This subsection portrays a simulation study to evaluate the performance of the MLE using
randomly right-censored data. The whole study is based on randomly chosen samples from
the DBHE distribution of sizes 20, 25, ...,100. The values of θ are set to 0.05, 0.25, and 0.50. The
procedure described above is used to generate the requisite random right-censored data. All
simulation findings are based on 1000 replications for different settings of parameter values
and sample sizes. Based on these 1000 values, we estimated the MSE and AB of the parameter
estimate, and the resultant graphs are given in Figure 4.

Figure 4: Plots for MSEs and ABs for different values of θ under censored data.

As seen in Figure 4, the MSEs of the MLE approach θ as n approaches infinity. This illustrates the
estimator’s consistency. Additionally, when n increases, the ABs is also tending to zero.
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5.4. Application to Real Data Analysis

Here, we examine two real datasets to illustrate the applicability of the DBHE model to randomly
censored data. The following datasets and their fitting are described as follows:
Dataset III: This dataset is obtained from [29]. The data below are remission times, in weeks, for
a group of 30 patients with leukaemia who received similar treatment.
1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45*, 50*, 57, 60, 71*, 85*, 91.
The observations with asterisks indicate censored times. The MLE (SE) of the θ for the given
dataset is 0.0201 (0.0008). Now, we have been used Kolmogorov-Smirnov (K-S) test to check
whether the given data follows DBHE distribution or not. The calculated value of the K-S test is
0.13333 and P-value is equal to 0.9525. These values announce that the DBHE distribution can be
used to model this data.

Dataset IV: Here, we analyze another real dataset obtained from [29]. The data below show
survival times (in months) of patients with Hodgkin’s disease who were treated with nitrogen
mustards.
1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49*, 16.85, 18.82*, 26.59*, 30.26*, 41.34*.
The asterisks observations represent censored times. For the provided dataset, the MLE (SE) of
the θ is 0.0311 (0.0027). We have also performed the K-S test to see whether the data distribution
fits the DBHE distribution or not, and it is found that the K-S test has a value of 0.2 and a P-value
of 0.9383. So, it can be seen that the DBHE distribution fits the data very well.

6. Conclusions

In this paper, we have proposed discrete Burr-Hatke exponential distribution. It is observed that
with one parameter, this model has great flexibility in terms of fitting as it is capable of modelling
right-skewed, decreasing failure rate, and over-dispersed counts datasets. Some of its fundamental
properties have been discussed in detail. The unknown parameter of the DBHE distribution with
complete and censored data has been estimated by using the maximum likelihood approach.
We have provided an algorithm to generate randomly right-censored data. Additionally, the
performance of the estimator under complete and censored data have been examined through an
extensive simulation study. Finally, the flexibility of the DBHE distribution has been empirically
proven by using four real-life applications consisting of two complete and two censored datasets.
Hence, we can conclude that the proposed model will serve a wide spectrum of applications in
various domains such as medical, reliability, survival analysis, etc.
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Abstract 
 

This study uses percentiles under the exponentiated Rayleigh distribution to build a skip lot sampling plan 
of the SkSP-V type for a life test. A truncated life test may be carried out to determine the minimum sample 
size to guarantee a specific percentage life time of products.  In particular, this paper highlights the 
construction of the Skip lot Sampling Plan of the type SkSP-V by considering the Singe Sampling Plan as 
reference plans for life tests based on percentiles of Exponentiated Rayleigh Distribution. Calculations are 
made for various quality levels to determine the minimum sample size, prescribed ratio, and operational 
characteristic values. The proposed sampling plan, which is appropriate for the manufacturing industries 
for the selection of samples, is also analyzed in terms of its parameters and metrics. The curve is produced 
after tabulating the operating characteristic data of the plan. Illustrations are provided to help you 
comprehend the plan. In addition, it addresses the feasibility of the new strategy. 

 
Keywords: Exponentiated Rayleigh Distribution, Percentiles, Life tests, Single Sampling 
Plan, Double Sampling Plan, SkSP –V. 
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I. Introduction 

 
The word used for statistical quality control (SQC) describes the collection of qualitative statistical 
methods used by Professionals in manufacturing. One of the main industries of Acceptance sampling is 
the regulation of statistical consistency. A sampling of acceptance is a methodology that addresses 
Procedures under which an approval or rejection decision is focused on sample inspection. Acceptance 
sampling plans in statistical quality control are concerned with accepting or rejecting a submitted lot of 
large-size products based on the quality of products inspected through the sample taken from the lot, 
whereas reliability is the “probability of performing without failure a specified function under the given 
condition for a specified period.” Therefore, reliability testing usually involves the simulation of 
conditions under which the item will be used during its lifespan.  

Dodge [5] proposed skip-lot sampling plans based on the principle of continuous sampling plan of 
type CSP-1 for a series of lots or consignments of material. Balamurali and Chi-Hyuck Jun [4] derived the 
new skip-lot sampling plan, which is designated as SkSP-V. It is based on the principles of a continuous 
sampling plan of type CSP-V and derived the cost model for the SkSP-V plan. Huge authors like Epstein 
[6], Sobel and Tischendr [14], Goode and Kao [7], Gupta and Groll [8], Kantam et al. [9,10], Baklizi [2], Tsai 
and Wu [16], Balakrishnan et al. [3], Aslam and Shahbaz [1], Rao et.al.[13], Pradeepa Veerakumari and 
Ponneeswari [11], Pradeepa Veerakumari et.al [12], Suganya and Pradeepa Veerakumari [15] have 
fascinated the methodology of time-truncated  acceptance sampling plans.  

The paper focuses on building an SkSP-V life-test plan with single sampling plan as a percentile-
based comparison plan with Exponential Rayleigh Distribution. Rayleigh Exponential Distribution is 
Important distribution of life testing and analysis of reliability. It has some of the essential structural 
properties and exhibits great mathematical consistency. Most features of the Exponentiated Rayleigh 
distribution are close to those of gamma, Weibull, and exponential distribution. ERD's functions for 
distribution and density are in similar forms. As a result, this is quickly extended to the truncated plans. 
The cumulative function of the ERD distribution is given by, 
    𝐹(𝑡; 𝜏, 𝜃) = *1 − 𝑒!"/$(&/')!.

)
, t >0, 1/τ >0, θ>0              (1) 

Where, τ and θ are the scale and shape parameters respectively. The first derivative of any 
cumulative distribution function is its probability density function. Hence the probability density function 
of ERD can be written as, 

    𝑓(𝑡; 𝜏, 𝜃) = 𝜃*1 − 𝑒!"/$(&/')!.
)!"

0 &
'!
𝑒!"/$(&/')! 	2              (2) 

Pradeepa Veerakumari and Ponneeswari [11] proposed SSP and DSP for life testing based on the 
percentiles of ERD. Subsequently, Pradeepa Veerakumari et.al [12] developed Skip-lot sampling plans for 
life testing based on the percentiles of ERD. 
 

II. Operating procedure for Skip-lot sampling plan of type SkSP-V 
 

The operating procedure for skip-lot sampling plan of type SkSP-V is given by 
• The procedure begins with a normal inspection of samples using a suitable reference sampling 

plan procedure.  
• Under the normal inspection, if i number of successive lots are accepted discontinue normal 

inspection and switch on to skipping inspection. 
• Under skipping inspection, fraction f of lots are randomly selected and inspected based on the 

conditions of the assigned reference plan. Continue the skipping inspection until a sampled and 
inspected lot is nonconforming. 

• Again under skipping inspection if fraction f of the lots are rejected before k consecutively 
sampled lots are accepted, go to the normal inspection step (1) as above. 
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• When k consecutive lots are accepted under skipping inspection then go to normal inspection with 

reduced clearance number x as per step (6) given below. 
• Under normal inspection with clearance number x, lots are inspected one by one in the order of 

being submitted to inspection.  
• When a lot is rejected, immediately return to normal inspection with clearance number i as per (1) 

given above. 
• When x lots are accepted on normal inspection mode, immediately stop the normal inspection and 

switch to skipping inspection as per (3) above. 
• When a lot is rejected, perform screening inspection and substitute all the non-conforming units 

found with conforming units in the rejected lots in the case of non-destructive testing. 
 

III. Operating procedure of SkSP-V with SSP as a reference plan based on percentiles 
of ERD 

 
A random sample of size n is drawn and put Draw a random sample of size and place on test for 

time t0. 
• The numbers of defectives d are counted and a comparison is made with the acceptance number c. 
• If d>c , then reject the lot. 
• If d≤c, then accept the lot. 
• If d>c, is obtained before the specified time t0, terminate the test, and reject the lot. 

 
IV. Operating characteristic function for SkSP-V using Single Sampling Plan 

 
OC function is the most applied technique to measure the efficiency of the sampling plan and from where 
the probability of acceptance is derived. It provides the probability that the lot can be accepted. The OC 
function of SSP for life tests based on the percentiles of ERD is as follows, 
     𝐿(𝑝) = ∑ 6𝑛𝑖9

*
+,- 𝑝+(1 − 𝑝).!+               (3) 

Where 𝑃 = 𝐹(𝑡, 𝛿-) represents the failure probability at time t given a determined 100qth percentile 
of the lifetime 𝑡/- and p depends only on 𝛿- = 𝑡/𝑡/-. The OC values are tabulated in Table 3 of Pradeepa 
Veerakumari [11]. 

The OC   function of SkSP-V for the lot quality p is given by, 

     𝑃0(𝑝) 	= 	
123("!1)2"312#$%(2"!2&)
4"32"$#!2!#53("!1)2"

               (4) 

Then, the Average Sample number is 
     𝐴𝑆𝑁	(𝑝) = 𝐴𝑆𝑁	(𝑅)𝐹                (5) 

Where, R- represents the Average Sample number of the reference plan, P represents the 
probability of acceptance of the reference plan. 
 
4.1. Illustration 
Presume that the lifetime of the electric goods follows ERD. Skip lot sampling plan of type SkSP-V with 
SSP as a reference plan based on the 10th percentile is applied for testing. The parameters for the life testing 
is as follows: θ=2,t=40hrs, t0.1=20hrs, c=0, α=0.05 and β=0.05 then η = 0.871929 from the equation and the 
ratio is found to be t/t0.1 =2.00 by applying the minimum sample size according to the requirements is n=3 
and the corresponding OC values L(p) for the Single Sampling plan for the life tests based on percentiles 
of ERD (n,c, t/t0.1 = 3,0,0.7921) with 𝑃∗ = 0.95 . L(p) is the P-value for SkSP-V with SSP as a reference plan 
for life tests based on the percentiles of ERD. For i=1,k=2, and f=1/3; the probability of acceptance L(p) 
values of SkSP-V with SSP for life tests grounded on percentiles of ERD is derived from Eqn. 4 as, 
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𝑡/𝑡!.#!  1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

 0.0285 0.5350 0.8802 0.9678 0.9909 0.9973 0.9991 0.9997 0.9999 

 
From the illustrations, it is indicated that the actual 10th percentile is almost equal to the required 10th  
percentile (t/t0.1 = 1.00) the producer’s risk is approximately 0.9715 (1-0.0285). Also, the producer’s risk is 
nearly equal to 0.05 or less and the actual producer risk is large or nearly equal to 1.5 times the required 
percentile. The OC curve is provided for the illustration as fig.1. 
  

 
 

Figure 1. OC Curve for i=1,k=2, f=1/3, P*=0.95, d=d0.1 and θ=2 
 
Figure 1 clearly says that the plan attains ARL when the actual lifetime percentile is in close proximity to 2 
times greater than the specified 10th percentile and attains LRL when the actual lifetime percentile is 
roughly equal to the specified lifetime percentile. For the purpose of convenience OC values of the table 
are constructed and tabulated with parameters i=1,k=2, f=1/3, and c=0 in Table 1 
 

Table 1: Gives the OC values for sampling plan (n,c = 2, t/t0.1) for a given P* under ERD when θ=2 

P* 𝑡/𝑡!.#!  
𝑡!.#/𝑡!.#!  

0.7 0.9 1 1.5 2 2.5 3 3.5 4 

0.75 0.7 0.5025 0.9070 0.9814 0.9960 0.9990 0.9997 0.9999 0.9999 0.9999 

0.75 0.9 0.5016 0.9006 0.9791 0.9953 0.9988 0.9997 0.9999 0.9999 0.9999 

0.75 1 0.4870 0.8932 0.9768 0.9946 0.9986 0.9996 0.9999 0.9999 0.9999 

0.75 1.5 0.4907 0.8757 0.9690 0.9919 0.9978 0.9993 0.9998 0.9999 0.9999 

0.75 2 0.3738 0.8070 0.9440 0.9830 0.9947 0.9983 0.9994 0.9998 0.9999 

0.75 2.5 0.3420 0.7623 0.9220 0.9734 0.9908 0.9967 0.9988 0.9995 0.9998 

)( pL

126 



  

Umamaheswari P, Pradeepa Veerakumari K, Suganya S 
PERCENTILES OF EXPONENTIATED RAYLEIGH DISTRIBUTION 

 RT&A, No 4 (71) 
Volume 17, December 2022  

 

0.9 0.7 0.2489 0.8205 0.9614 0.9910 0.9977 0.9994 0.9998 0.9999 0.9999 

0.9 0.9 0.2413 0.8051 0.9559 0.9893 0.9972 0.9992 0.9998 0.9999 0.9999 

0.9 1 0.2434 0.8001 0.9536 0.9885 0.9970 0.9991 0.9997 0.9999 0.9999 

0.9 1.5 0.2135 0.7469 0.9326 0.9810 0.9944 0.9983 0.9994 0.9998 0.9999 

0.9 2 0.2214 0.7167 0.9149 0.9733 0.9914 0.9971 0.9990 0.9996 0.9998 

0.9 2.5 0.1160 0.5668 0.8473 0.9456 0.9801 0.9926 0.9971 0.9989 0.9995 

0.95 0.7 0.1360 0.7467 0.9434 0.9863 0.9965 0.9990 0.9997 0.9999 0.9999 

0.95 0.9 0.1330 0.7284 0.9363 0.9839 0.9957 0.9988 0.9996 0.9999 0.9999 

0.95 1 0.1342 0.7214 0.9331 0.9827 0.9953 0.9986 0.9996 0.9998 0.9999 

0.95 1.5 0.1275 0.6700 0.9094 0.9738 0.9921 0.9975 0.9992 0.9997 0.9999 

0.95 2 0.1204 0.6165 0.8801 0.9613 0.9871 0.9956 0.9984 0.9994 0.9998 

0.95 2.5 0.1160 0.5668 0.8473 0.9456 0.9801 0.9926 0.9971 0.9989 0.9995 

0.99 0.7 0.0294 0.5609 0.8928 0.9723 0.9924 0.9978 0.9993 0.9998 0.9999 

0.99 0.9 0.0285 0.5350 0.8802 0.9678 0.9909 0.9973 0.9991 0.9997 0.9999 

0.99 1 0.0288 0.5248 0.8743 0.9655 0.9901 0.9970 0.9990 0.9997 0.9999 

0.99 1.5 0.0216 0.4274 0.8202 0.9449 0.9824 0.9942 0.9980 0.9993 0.9997 

0.99 2 0.0143 0.3240 0.7441 0.9127 0.9690 0.9887 0.9958 0.9984 0.9993 

0.99 2.5 0.0081 0.2214 0.6406 0.8631 0.9467 0.9787 0.9914 0.9964 0.9985 

 
V. Operating procedure of SkSP-V with DSP as a reference plan based on percentiles of 

ERD 
 
The modus operandi of SkSP-V with DSP as a reference plan based on percentiles of ERD are as follows: 
Step 1: A random sample of size n1 is drawn and put on a life test. 

Step 2:  The number of defectives d1is counted and a comparison is made with the acceptance number c. 
i. If d1>c1, then reject the lot.  
ii. If d1≤ c1, then accept the lot. 
Step 3:  If d1<c2, is obtained before the specified time t0, terminate the test, and reject the lot. 
Step 4: If c1< d1 ≤ r1, take a second sample of size n2 from the remaining lot and put them on test for time 
t0and count the number of non-conformities (d2).  
Step 5:  
If d1+d2 ≤ r1, accept the lot.  
 If d1+d2 > r1, reject the lot. 
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VI. Operating characteristic function for SkSP-V using Double Sampling Plan 

 
OC function is the most applied technique to measure the efficiency of the sampling plan and from where 
the probability of acceptance is derived. It provides the probability that the lot can be accepted. The OC 
function of DSP for life tests based on the percentiles of ERD is as follows, 
 
𝐿(𝑝) = ∑ 6

𝑛"
𝑑"9

*%
7% 𝑝7%(1 − 𝑝).%!7% . ∑ 6

𝑛"
𝑑"9𝑝

7%(1 − 𝑝).%!7%*!
7%3*%$% . ∑ 6

𝑛$
𝑑$9 𝑝

7!(1 − 𝑝).!!7!*!!7!
7!,-              (6) 

 
Where 𝑃 = 𝐹(𝑡, 𝛿-) represents the failure probability at time t given a determined 100qth percentile 

of the lifetime 𝑡/- and p depends only on 𝛿- = 𝑡/𝑡/-. The ASN Value of DSP is calculated from the equation, 
   𝐴𝑆𝑁 = 𝑛"𝑝" + (𝑛" + 𝑛$)(1 − 𝑝") = 𝑛" + 𝑛$(1 − 𝑝")                           (7) 

The OC   function of SkSP-V for the lot quality p is given by, 

   𝑃0(𝑝) 	= 	
123("!1)2"312#$%(2"!2&)
4"32"$#!2!#53("!1)2"

                 (8)
 

Then, the Average Sample number is 
    𝐴𝑆𝑁	(𝑝) = 𝐴𝑆𝑁	(𝑅)𝐹                 (9) 

Where ASN (R) represents the Average Sample number of the reference plan; P represents the 
probability of acceptance of the reference plan. 
 
6.1 Illustration  
 
Presume that the lifetime of the electric goods follows ERD. Skip lot sampling plan of type SkSP-V with 
DSP as a reference plan based on the 10th percentile is applied for testing. The parameters for the life 
testing is as follows θ=2,t=40hrs, t0.1=20hrs, c=0, α=0.05 and β=0.05 then η = 0.871929 from the equation and 
the ratio is found to be t/t0.1 =2.00 by applying the minimum sample size according to the requirements is 
n1=9,n2=11 and the corresponding OC values L(p) for the Double Sampling plan for the life tests based on 
percentiles of ERD 𝑛", 𝑛$, 𝑐", 𝑐$, 𝑡 𝑡-."H = (9,11,0,3,0.9379) with P* = 0.99. L (p) is the P-value for SkSP-V with 
DSP for life tests as a reference plan defined on the percentiles of ERD. For i=1,k=3, and f=1/5; the 
probability that SkSP-V with DSP will consider L(p) values for life tests based on percentiles of ERD is 
found from Eqn; 8 For, 
 

𝑡/𝑡!.#!  1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

L(p) 0.0434 0.3454 0.7235 0.9158 0.9678 0.9957 0.9991 0.9998 0.9999 

 
From the illustrations, it is indicated that the actual 10th percentile is almost equal to the required 10th 
percentile 𝑡/𝑡-."-  the producer’s risk is approximately 0.9566 (1-0.0434). Moreover, the producer’s risk is 
closely equal to 0.05 or less and the actual producer risk is large or nearly equal to 2 times the required 
percentile. The OC curve is provided for the illustration as fig 2. 
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Figure 2.OC Curve for i=1,k=3, f=1/5, P*=0.99, d=d0.1 and θ=2 

 
Figure 2.clearly says that the plan attains ARL when the actual lifetime percentile is in close proximity to 
1.85 times greater than the specified 10th percentile and attains LRL when the actual lifetime percentile is 
approximately equal to the specified lifetime percentile. For the purpose of convenience OC values of the 
table are constructed and tabulated with parameters i=1,k=3, f=1/5 and c1=0,c2 =3 in Table 2. 
 

Table 2 : Gives the OC values for Sampling Plan (n, c1=0, c2=1, t0.1/t00.1) for a given P* under ERD when θ=2 

P* 𝑡/𝑡!.#!  
𝑡!.#/𝑡!.#!  

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

0.75 0.7 0.5047 0.8428 0.9569 0.9880 0.9964 0.9988 0.9995 0.9998 0.9999 

0.75 0.9 0.4943 0.8408 0.9559 0.9874 0.9961 0.9986 0.9995 0.9998 0.9999 

0.75 1 0.4928 0.8411 0.9557 0.9871 0.9959 0.9986 0.9994 0.9998 0.9999 

0.75 1.5 0.4787 0.8325 0.9499 0.9843 0.9947 0.9980 0.9992 0.9996 0.9998 

0.75 2 0.4777 0.8322 0.9468 0.9820 0.9935 0.9975 0.9989 0.9995 0.9998 

0.75 2.5 0.3021 0.7179 0.8951 0.9578 0.9819 0.9918 0.9961 0.9980 0.9989 

0.9 0.7 0.2495 0.6922 0.9070 0.9718 0.9909 0.9968 0.9988 0.9995 0.9998 

0.9 0.9 0.2478 0.6895 0.9051 0.9706 0.9903 0.9966 0.9986 0.9994 0.9997 

0.9 1 0.2493 0.6741 0.8954 0.9667 0.9889 0.9960 0.9985 0.9993 0.9997 

0.9 1.5 0.2379 0.6615 0.8870 0.9617 0.9864 0.9948 0.9979 0.9991 0.9996 

0.9 2 0.2095 0.6615 0.8841 0.9580 0.9838 0.9933 0.9971 0.9986 0.9993 

0.9 2.5 0.1505 0.5815 0.8422 0.9385 0.9746 0.9890 0.9950 0.9976 0.9987 
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0.95 0.7 0.1352 0.5971 0.8770 0.9620 0.9874 0.9954 0.9982 0.9992 0.9996 

0.95 0.9 0.1327 0.6009 0.8781 0.9615 0.9868 0.9951 0.9980 0.9991 0.9996 

0.95 1 0.1330 0.5902 0.8714 0.9587 0.9857 0.9946 0.9978 0.9990 0.9995 

0.95 1.5 0.1206 0.5561 0.8487 0.9476 0.9806 0.9923 0.9967 0.9985 0.9993 

0.95 2 0.0966 0.5297 0.8286 0.9355 0.9738 0.9887 0.9948 0.9975 0.9987 

0.95 2.5 0.1034 0.4777 0.7873 0.9165 0.9657 0.9854 0.9935 0.9969 0.9985 

0.99 0.7 0.0297 0.4122 0.8088 0.9387 0.9783 0.9916 0.9965 0.9984 0.9992 

0.99 0.9 0.0291 0.3965 0.7954 0.9326 0.9756 0.9904 0.9959 0.9981 0.9991 

0.99 1 0.0297 0.3823 0.7832 0.9275 0.9735 0.9895 0.9955 0.9979 0.9990 

0.99 1.5 0.0259 0.3365 0.7393 0.9059 0.9633 0.9847 0.9932 0.9968 0.9984 

0.99 2 0.0265 0.2432 0.6105 0.8397 0.9340 0.9718 0.9874 0.9941 0.9971 

0.99 2.5 0.0210 0.2620 0.6464 0.8533 0.9366 0.9711 0.9862 0.9931 0.9964 

 
VII. Conclusion 

 
In this study, life testing plans based on percentiles of ERD for Skip-lot Sampling plan of type-V with SSP 
and DSP as reference plan are developed. Skip-lot Sampling plan of type-V with SSP and DSP as reference 
plan requires minimum sample size and also has better-operating characteristics values. Thus, results in a 
reduction of inspection cost and better efficiency. The proposed plan can be further extended to other 
sampling plans for instance SkSP and other probability distribution. 
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Abstract 
 

We describe the development of a stochastic model for a computer system with cold standby 
redundancy, priority and failure of service facility. A computer system (called a single unit) means 
the simultaneous working of its hardware and software components. The system has one more unit 
(called computer system) that can be used as and when required at the failure of any of the 
hardware/software components of the initially operative computer system. A single repair facility is 
made available to rectify the faults which occur due to the failure of hardware and software 
components. The failed hardware component undergoes for repair immediately while failed software 
is up-graded. The service facility is subjected to failure during hardware repair. The provision of 
perfect treatment has been made for the failed service facility. The components work as new after 
repair and up-gradation with the same life time distribution.  The priority is given to the software 
up-gradation over the hardware repair. In steady state, the expressions for some important 
reliability measures have been derived using the well known semi-Markov process and regenerative 
point technique. The behavior of some useful reliability characteristics has been observed for 
particular values of the parameters related to failure times, repair and up-gradation times and 
treatment time which follow negative exponential distribution.    
 
Keywords: Computer System, Unit Wise Redundancy, Priority, Failure of Service 
Facility and Stochastic Modelling 
 

I. Introduction 
 

Over the years an overwhelming transformation of the modern society into the 
digitalization World has been observed with the advent of advanced technology and frequent use 
of computer systems. As a result of which we are now in a position to complete the assigned jobs 
within time limits and perfectness. In the modern World of today the use of computer systems 
cannot be ignored completely or partially in order to survive in the competitive markets. On the 
other hand, the burden for the heavy use of computer systems grabs the attention of reliability 
engineers and scientists to identify all possible ways and means to improve the reliability and 
performance of these systems. The researchers in the field of reliability have succeeded somehow 
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in identifying the reliability improvement techniques. The provisions of standby redundancy in 
both parallel and cold standby have been frequently being used by the system developers. The 
other means such as priority in repair disciplines and proper repair facility have also been 
suggested by the researchers while analyzing profit of repairable and non repairable systems. The 
reliability can also be improved by giving priority to repair activities. Many researchers including 
Goel et al. [3], Leung et al. [11] and Malik [13] explained the model with the help of priority 
concept. Kumar and Saini [6] three models are developed under different priority policies. Kumar 
and Yadav [5] described a computer system with priority given to software up-gradation over 
hardware repair. Kumar et al. [7] the reliability of single unit system is calculated subject to arrival 
time of server. Kumar et al. [8] assumed the single server to handle the repair activities of 
computer system. Subramanian and Anantharaman [19] described the reliability analysis of a 
complex redundant system where standby unit is in cold state for a certain amount of time before 
it is allowed to become warm. 

 
In most of the research work authors have analyzed the system models of repairable 

systems under a common assumption that the service facility cannot fail while performing jobs. 
This assumption seems to be unrealistic in case system has some complex failures and the service 
facility is very careless. In that situation the treatment to the failed service facility may be given in 
order to resume the jobs with full efficiency and perfectness. Kuo and Ke [9] compared system 
availability among three configurations with unreliable server and switching failure. Meng et al. 
[14] described a two unit cold standby system with switch failure and equipment maintenance. 
Nandal and Malik [15] evaluated reliability of a single unit system subject to arrival time of the 
server. Singh [18] evaluated the expected profit by taking repair man appearance and 
disappearance for a two unit cold standby system. Sridharan and Mohanavadivu [17] analyzed the 
two unit cold standby redundant system, two types of repairmen (regular and expert). It is also 
proved that component wise redundancy is better than that of unit wise redundancy so far as 
reliability of the system is concerned. Friedman and Tran [2] used the combined 
hardware/software systems. Gupta et al. [4] gave an idea of single server to determine the profit of 
two unit standby system model in which priority unit is in operation and ordinary unit is in cold 
standby. Lai et al. [10] determined the system availability for distributed hardware/software 
system. Mahmoud and Moshref [12] had taken the human error failure with hardware failure for 
cold standby system. Bhardwaj and Singh [1] considered the failure of server in steady state 
behavior of cold standby system. Poonam and Malik [16] analyzed a stochastic parallel system 
with the assumption of failure of service facility. Yadav and Malik [20] analyzed the computer 
system with unit wise cold standby redundancy. 

 
In view of the above facts and observations here we describe the stochastic modeling of a 

computer system with cold standby redundancy (unit wise), priority in repair discipline and 
failure of service facility. A computer system (called a single unit) means the simultaneous 
working of its hardware and software components. The system has one more unit (called 
computer system) that can be used as and when required at the failure of any of the 
hardware/software components of the initially operative computer system. A single repair facility 
is made available to rectify the faults which occur due to the failure of hardware and software 
components. The failed hardware component undergoes for repair immediately while failed 
software is up-graded. The service facility is subjected to failure during hardware repair. The 
provision of perfect treatment has been made for the failed service facility. The components work 
as new after repair and up-gradation with the same life time distribution.  The priority is given to 
the software up-gradation over the hardware repair. In steady state, the expressions for some 
important reliability measures including MTCSF, availability and profit function have been 
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derived using the well known semi-Markov process and regenerative point technique. The 
behavior of some useful reliability characteristics has been observed for particular values of the 
parameters related to failure times, repair and up-gradation times and treatment time which 
follow negative exponential distribution.    

 In section 2, notations and abbreviations are explained. In section 3, assumptions and state 
descriptions are described. In section 4, the reliability measures are calculated. Section 5 
determines the profit analysis. The particular values are given in section 6. Section 7 describes the 
graphical behavior of reliability measures. The numerical example is illustrated in section 8. 
Section 9 comprises of conclusion of the present study. In final, the relevant references are 
incorporated. 

 
II. Assumptions and State Descriptions 

 
1. There is a computer system comprises hardware & software components which function 

independently. 
2. The hardware and software components fail independently. 
3. The system is a cold standby in which one unit (called computer system) is initially 

operative and the other unit (computer system) is kept as spare. 
4. There is a single service facility that repairs the hardware and upgrades the software. 
5. The service facility (server) can fail during hardware repair. 
6. The h/w repairs, s/w up-gradation and treatments are perfect. 
7. The h/w and s/w failures (s/w failure occurs when it fails to furnish the jobs as per the 

instructions) are assumed to be constant. 
8. The distributions for repair, up-gradation and treatment rates are considered as arbitrary. 
9. S0 is an initial state in which one unit (computer system) is in operation and another unit 

(computer system) is in cold standby. 
10. S1 is the operative state in which one unit is in operation and second unit’s failed h/w 

component is under repair. 
11. S2 is the failed state in which one unit’s h/w component is continued under repair from 

state S1 while second unit’s h/w component is waiting for repair. 
12. S3 is the operative state in which one unit is in operation and second unit’s failed s/w 

component is under up-gradation. 
13. S4 is the operative state in which the failed server is under treatment, one unit is in 

operation and second unit’s h/w component is waiting for repair. 
14. S5 is the failed state in which the failed server is under treatment, one unit’s h/w 

component is continued waiting for repair from state S2 while second unit’s h/w 
component is waiting for repair. 

15. S6 is the failed state in which the failed server is under continued treatment from state S4 
while one unit’s h/w component is continued waiting for repair from state S4 and second 
unit’s h/w component is waiting for repair. 

16. S7 is the failed state in which one unit’s h/w component is continued waiting for repair 
from state S5 and second unit’s h/w component is under repair. 

17. S8 is the failed state in which the failed server is under continued treatment from state S4 
while one unit’s h/w component is continued waiting for repair from state S4 and second 
unit’s s/w component is waiting for up-gradation. 

18. S9 is the failed state in which one unit’s h/w component is waiting for repair from while 
second unit’s s/w component is under up-gradation. 

19. S10 is the failed state in which one unit’s s/w component is under continued up-gradation 
from state S3 while second unit’s s/w component is waiting for up-gradation. 

20. S11 is the failed state in which one unit’s s/w component is under up-gradation while h/w 
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component of second unit is continued waiting for repair from state S8. 
21. S12 is the failed state in which one unit’s h/w component is waiting for repair while 

second unit’s s/w component is under continued up-gradation from state S3.  
The state transition diagram shown in the figure 1 as: 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: State Transition Diagram 

a) Notations and Abbreviations  
 

MTCSF Mean Time to Computer System Failure 
SMP Semi-Markov Process 
RPT Regenerative Point Technique 
MST Mean Sojourn Time 
O/Cs The unit is operative/ in cold standby 
a/b Probability of hardware/software failure 
x1/x2/ µ Hardware/software/ server failure rates 
HFUr/HFWr The failed hardware is under/waiting for repair 
HFUR/HFWR The failed hardware is continuously under/waiting for repair from prior state 
SFUg/SFWg The failed software is under/waiting for up-gradation 
SFUG/SFWG The failed software is continuously under/waiting for up-gradation from prior state 
SUt The failed server (service facility) is under treatment 
SUT The failed server (service facility)  is continuously under treatment from prior state 
h(t)/H(t) pdf/cdf of hardware repair time 
u(t)/U(t) pdf/cdf of software repair time 
s(t)/S(t) pdf/cdf of server treatment time 
m(t)/M(t) pdf/cdf of hardware preventive maintenance time 
𝑞!"/𝑄!"           pdf/cdf of first passage time 
𝑚#$          Contribution to MST (µi) in state Si when system transits directly to state Sj 
𝑀!(𝑡)          Probability that the system up initially in regenerative state Si is up at time t without 

           visiting any other regenerative state 
W#

%(t)            Probability that the server is busy in the state Si due to hardware failure up to time 
 ‘t’ without making any transition to any other regenerative state or returning to the 
 same state via one or more non-regenerative states 
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W#
&(t)            Probability that the server is busy in the state Si due to software up-gradation up to 

 time ‘t’ without making any transition to any other regenerative state or returning to 
 the same state via one or more non-regenerative states 
Ⓢ/© Standard notation for Laplace-Stieltjes convolution/Laplace convolution 
*/** Symbol for Laplace Transform (LT)/Laplace Stieltjes Transform (LST) 
P Profit function by considering busy period cost of the server per unit time due to 
 hardware repair/ software up-gradation and treatment cost of the server per unit 
 time 
Z1 System revenue per unit up-time 
Z2/Z3 Busy period cost of the server per unit time due to hardware repair/ software up 
 gradation 
Z4 Treatment cost of the server per unit time 
 
 

III. Reliability Measures of the System 
 

a) Transition Probabilities  
 
The differential transition probabilities for state S0 are given by 

𝑑𝑄!"(𝑡) = 𝑎𝑥"𝑒#(%&!'(&")*𝑑𝑡 , 𝑑𝑄!+(𝑡) = 𝑏𝑥+𝑒#(%&!'(&")*𝑑𝑡 
Taking LST of above equations and using the following results 

𝑝,- =	 lim.→! ∅,-
∗∗(𝑠) = ∅,-∗∗(0) = ∫ d𝑄,-

1
! (𝑡) = ∫ 𝑞,-

1
! (𝑡)dt, we get 

𝑝!" = ∫ 𝑎𝑥"𝑒#(%&!'(&")2
∞
! 𝑑𝑡 = 	 %&!

%&!'(&"
 , 𝑝!+ = ∫ 𝑏𝑥+𝑒#(%&!'(&")2

∞
! 𝑑𝑡 = 	 (&"

%&!'(&"
 

Similarly, the other transition probabilities for remaining states are given by 
𝑝"! = ℎ∗(𝑎𝑥" + 𝑏𝑥+ + µ),𝑝"+ =

%&!
%&!'(&"'µ

{1 − ℎ∗(𝑎𝑥" + 𝑏𝑥+ + µ)}, 𝑝+" = 𝑝3" = ℎ∗(µ) 

𝑝"4 =
µ

%&!'(&"'µ
{1 − ℎ∗(𝑎𝑥" + 𝑏𝑥+ + µ)},𝑝"5 =	

(&"
%&!'(&"'µ

{1 − ℎ∗(𝑎𝑥" + 𝑏𝑥+ + µ)}, 
𝑝+" = 𝑝3" = ℎ∗(µ),  𝑝+6 = 𝑝36 = 1 − ℎ∗(µ),𝑝7! = 𝑢∗(𝑎𝑥" + 𝑏𝑥+),𝑝4" = 𝑠∗(𝑎𝑥" + 𝑏𝑥+) 

𝑝7,"! = 𝑝77."! =
(&"

%&!'(&"
{1 − 𝑢∗(𝑎𝑥" + 𝑏𝑥+)},𝑝7,"+ = 𝑝7"."+ =

%&!
%&!'(&"

{1 − 𝑢∗(𝑎𝑥" + 𝑏𝑥+)}, 𝑝4" =

𝑠∗(𝑎𝑥" + 𝑏𝑥+),𝑝4: =
%&!

%&!'(&"
{1 − 𝑠∗(𝑎𝑥" + 𝑏𝑥+)},𝑝63 = 𝑝;,"" = 𝑝:3 = 𝑠∗(0) 

𝑝4; = 𝑝4".;,"" =
(&"

%&!'(&"
{1 − 𝑠∗(𝑎𝑥" + 𝑏𝑥+)}, 𝑝5" = 𝑝"!,7 = 𝑝""," = 𝑝"+," = 𝑢∗(0), 

𝑝"".+ = 𝑝"+𝑝+", 𝑝4".:3 = 𝑝4:𝑝3", 𝑝"".+(6,3)# = 𝑝"+𝑝+6, 𝑝4".:3(6,3)# = 𝑝4:𝑝36 
From the above transition probabilities, the following relations are obtained as follows: 
𝑝!" + 𝑝!7 = 𝑝"! + 𝑝"+ + 𝑝"4 + 𝑝"5 = 𝑝+" + 𝑝+6 = 𝑝7! + 𝑝7,"! + 𝑝7,"+ = 𝑝4" + 𝑝4: + 𝑝4; = 1, 𝑝3" + 𝑝36 =

𝑝63 = 𝑝:3 = 𝑝;,"" = 𝑝5," = 𝑝"!,7 = 𝑝""," = 𝑝"+," = 𝑝7! + 𝑝77."! + 𝑝7"."+ = 1, 
𝑝"! + 𝑝"4 + 𝑝"".+ + 𝑝"".+(6,3)# + 𝑝"5 = 𝑝4" + 𝑝4".:3 + 𝑝4".:3(6,3)# + 𝑝4".;,"" = 1 

 
 

b) Mean Sojourn Times 
 
The expected time taken by the system in a particular state before transiting to any other state is 
known as mean sojourn time or mean survival time in the state. If 𝑇, be the sojourn time in the 
state i, then the mean sojourn time in the state i is 
The MST (𝜇,) in state Si are calculated by the following relations 

𝑚,- = A− <
<=
𝑄,-∗∗(𝑠)A=>!

= −𝑄,-∗∗?(0)  and  𝜇, = ∑ 𝑚,--  where 𝑄,-∗∗(𝑠) = ∫ e#.2d𝑄,-
1
! (𝑡).  

Thus, we have 
𝜇! =	𝑚!" +𝑚!7, 𝜇" =	𝑚"! +𝑚"+ +𝑚"4 +𝑚"5,𝜇7′ =	𝑚7! +𝑚77."! +𝑚7"."+, 

𝜇7 =	𝑚7! +𝑚7,"! +𝑚7,"+, 𝜇4 =	𝑚4" +𝑚4: +𝑚4;,  𝜇5 =	𝑚5", 
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𝜇"′ =	𝑚"! +𝑚"".+ +𝑚"".+(6,3)# +𝑚"4 +𝑚"5,𝜇4′ = 𝑚4" +𝑚4".:3 +𝑚4".:3(6,3)# +𝑚4".;,"" 
  

 
c) Reliability and MTCSF 
 
Let ∅,(𝑡) be the c.d.f. of first passage time from regenerative state Si to a failed state. 
Regarding the failed state as absorbing state, we have following recursive relations for∅,(𝑡): 

∅,(𝑡) = ∑ 𝑄,-(𝑡)®∅-(𝑡)- +∑ 𝑄,@(𝑡)@                             (1) 
where Sj is an un-failed regenerative state to which the given regenerative state Si can transit 
and Sk is a failed state to which the state Si can transit directly. Thus, the following equations 
are obtained by using (1) as: 

∅!(𝑡) = 	𝑄!"(𝑡)Ⓢ∅"(𝑡) + 𝑄!7(𝑡)Ⓢ∅7(𝑡) 
∅"(𝑡) = 	𝑄"!(𝑡)Ⓢ∅!(𝑡) + 𝑄"+(𝑡) + 𝑄"4(𝑡)Ⓢ∅4(𝑡) + 𝑄"5(𝑡) 

∅7(𝑡) = 	𝑄7!(𝑡)Ⓢ∅!(𝑡) + 𝑄7,"!(𝑡) + 𝑄7,"+(𝑡) 
∅4(𝑡) = 	𝑄4"(𝑡)Ⓢ∅"(𝑡) + 𝑄4:(𝑡) + 𝑄4;(𝑡) 

Taking LST of above equations, we get 
∅!∗∗(𝑠) = 𝑄!"∗∗(𝑠)∅"∗∗(𝑠) + 𝑄!7∗∗(𝑠)∅7∗∗(𝑠) 

∅"∗∗(𝑠) = 𝑄"!∗∗(𝑠)∅!∗∗(𝑠) + 𝑄"+∗∗(𝑠) + 𝑄"4∗∗(𝑠)∅4∗∗(𝑠) + 𝑄"5∗∗(𝑠) 
∅7∗∗(𝑠) = 𝑄7!∗∗ (𝑠)∅!∗∗(𝑠) + 𝑄7,"!∗∗ (𝑠) + 𝑄7,"+∗∗ (𝑠) 
∅4∗∗(𝑠) = 𝑄4"∗∗(𝑠)∅"∗∗(𝑠) + 𝑄4:∗∗(𝑠) + 𝑄4;∗∗(𝑠) 

By using Cramer Rule, ∅!∗∗(𝑠) is calculated as 

∅!∗∗(𝑠) =
Δ"
Δ  

Where    Δ" = E

1 −𝑄!"∗∗(𝑠) −𝑄!7∗∗(𝑠)
−𝑄"!∗∗(𝑠) 1 0
−𝑄7!∗∗(𝑠)

0
0

−𝑄4"∗∗(𝑠)
1
0

0
−𝑄"4∗∗(𝑠)

0
1

E  

and 

Δ = EE

0 −𝑄!"∗∗(𝑠) −𝑄!7∗∗(𝑠)
𝑄"+∗∗(𝑠) + 𝑄"5∗∗(𝑠) 1 0
𝑄7,"!∗∗ (𝑠) + 𝑄7,"+∗∗ (𝑠)
𝑄4:∗∗(𝑠) + 𝑄4;∗∗(𝑠)

0
−𝑄4"∗∗(𝑠)

1
0

0
−𝑄"4∗∗(𝑠)

0
1

EE 

 
Now, we have    	𝑅∗(𝑠) = 	 "#∅$

∗∗(=)
=

 
The reliability of the computer system model can be obtained by 

𝑅(𝑡) = 𝐿#"[𝑅∗(𝑠)] 
The MTCSF is given by 
𝑀𝑇𝐶𝑆𝐹 =	 lim

=→!
𝑅∗(𝑠) = 𝑅∗(0) = B!

C!
, where 𝑁" = (1 − 𝑝"4𝑝4")(𝑝!7𝜇7 + 𝜇!) + 𝑝!"(𝑝"4𝜇4 + 𝜇") and 𝐷" =
(1 − 𝑝"4𝑝4")(1 − 𝑝!7𝑝7!) − 𝑝!"𝑝"! 

 
d) Steady State Availability  
 
Let 𝐴,(𝑡) be the probability that the system is in up-state at epoch ‘t’ given that the computer 
system entered regenerative state 𝑆, at 𝑡 = 0. The recursive relations for 𝐴,(𝑡) are given as 

𝐴,(𝑡) = 𝑀,(𝑡) + ∑ 𝑞,-
(D)(𝑡)©𝐴-(𝑡)-                                                            (2) 

where Sj is any successive regenerative state to which the regenerative state Si can transit 
through n transitions. Thus, the following equations are obtained by using (2) as: 

𝐴!(𝑡) = 	𝑀!(𝑡) + 𝑞!"(𝑡)©𝐴"(𝑡) + 𝑞!7(𝑡)©𝐴7(𝑡) 
𝐴"(𝑡) = 	𝑀"(𝑡) + 𝑞"!(𝑡)©𝐴!(𝑡) + Q𝑞"".+(𝑡) + 𝑞"".+(6,3)#(𝑡)R©𝐴"(𝑡) + 𝑞"4(𝑡)©𝐴4(𝑡)+𝑞"5(𝑡)©𝐴5(𝑡) 

𝐴7(𝑡) = 	𝑀7(𝑡) + 𝑞7!(𝑡)©𝐴!(𝑡) + 𝑞7"."+(𝑡)©𝐴"(𝑡) + 𝑞77."!(𝑡)©𝐴7(𝑡) 
𝐴4(𝑡) = 𝑀4(𝑡) + Q𝑞4"(𝑡) + 𝑞4".:3(𝑡) + 𝑞4".:3(6,3)#(𝑡) + 𝑞4".;,""(𝑡)R©𝐴"(𝑡) 

𝐴5(𝑡) = 	𝑞5"(𝑡)©𝐴"(𝑡) 
Where, 
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 𝑀!(𝑡) = 𝑒#(%&!'(&")*, 𝑀"(𝑡) = 𝑒#(%&!'(&"'µ)*𝐻T(𝑡), 𝑀7(𝑡) = 𝑒#(%&!'(&")*𝑈T(𝑡), 𝑀4(𝑡) = 𝑒#(%&!'(&")*�̅�(𝑡) 
 
Taking LT of above equations and solving for 𝐴!∗(𝑠), the steady state availability is calculated by 

𝐴!(∞) = 	 lim=→!𝑠𝐴!
∗(𝑠) =

𝑁+
𝐷+

 

Where    𝑁+ = (𝑝"4𝜇4 + 𝜇")W1 − 𝑝7,"! − 𝑝!7𝑝7!X + 𝑝"![𝜇!W1 − 𝑝7,"!X + 𝜇7𝑝!7] 
𝐷+ = (𝑝"4𝜇4′ + 𝜇"′ + 𝑝"5𝜇5)W1 − 𝑝7,"! − 𝑝!7𝑝7!X + 𝑝"!Q𝜇!W1 − 𝑝7,"!X + 𝜇7′ 𝑝!7R 

 and 
𝜇, = 𝑀,

∗(0), 𝑖 = 1,2,3,4 
 

e) Busy Period of the Repairman Due to Repairs 
 
Let 𝐵,E(𝑡) be the probability that server is busy in repairing the unit at epoch ‘t’ given that 
the system entered state Si at 𝑡 = 0. The recursive relations for 𝐵,E(𝑡) are given as: 

𝐵,E(𝑡) = 𝑊,
E(𝑡) + ∑ 𝑞,-

(D)(𝑡)©𝐵-F(𝑡)-                                               (3) 
where Sj is any successive regenerative state to which the regenerative state Si can transit 
through n transitions. Thus, the following equations are obtained by using (3) as: 
 
i)Repair of Hardware 

𝐵!F(𝑡) = 𝑞!"(𝑡)©𝐵"F(𝑡)+𝑞!7(𝑡)©𝐵7F(𝑡) 
𝐵"F(𝑡) = 𝑊"

F(𝑡) + 𝑞"!(𝑡)©𝐵!F(𝑡)+Q𝑞"".+(𝑡) + 𝑞"".+(6,3)#(𝑡)R©𝐵"F(𝑡) + 𝑞"4(𝑡)©𝐵4F(𝑡) + 𝑞"5(𝑡)©𝐵5F(𝑡) 
𝐵7F(𝑡) = 𝑞7!(𝑡)©𝐵!F(𝑡)+𝑞7"."+(𝑡)©𝐵"F(𝑡) + 𝑞77."!(𝑡)©𝐵7F(𝑡) 

𝐵4F(𝑡) = Q𝑞4"(𝑡) + 𝑞4".:3(𝑡) + 𝑞4".:3(6,3)#(𝑡) + 𝑞4".;,""(𝑡)R©𝐵"F(𝑡) 
𝐵5F(𝑡) = 𝑞5"(𝑡)©𝐵"F(𝑡) 

Where, 𝑊"
F(𝑡) = [𝑒#(%&!'(&"'µ)* + W𝑎𝑥"𝑒#(%&!'(&"'µ)*©µ𝑒#µ*©𝑠(𝑡)©1X + W𝑎𝑥"𝑒#(%&!'(&"'µ)*©1X]𝐻T(𝑡) 

Taking LT of above equations and solving for 𝐵!F
∗(𝑠), then busy period of server due to h/w repair 

is given by 
𝐵!F(∞) = lim

=→!
𝑠𝐵!F

∗(𝑠) = B&
C"

, where 𝑁7 = W1 − 𝑝7,"! − 𝑝!7𝑝7!X𝑊"
F∗(0) and  

𝐷+ = (𝑝"4𝜇4′ + 𝜇"′ + 𝑝"5𝜇5)W1 − 𝑝7,"! − 𝑝!7𝑝7!X + 𝑝"!Q𝜇!W1 − 𝑝7,"!X + 𝜇7′ 𝑝!7R  
 

ii)Software Up-gradation 
 

𝐵!G(𝑡) = 𝑞!"(𝑡)©𝐵"G(𝑡)+𝑞!7(𝑡)©𝐵7G(𝑡) 
𝐵"G(𝑡) = 𝑞"!(𝑡)©𝐵!G(𝑡)+Q𝑞"".+(𝑡) + 𝑞"".+(6,3)#(𝑡)R©𝐵"G(𝑡) + 𝑞"4(𝑡)©𝐵4G(𝑡) + 𝑞"5(𝑡)©𝐵5G(𝑡) 

𝐵7G(𝑡) = 𝑊7
G(𝑡) + 𝑞7!(𝑡)©𝐵!G(𝑡)+𝑞7"."+(𝑡)©𝐵"G(𝑡) + 𝑞77."!(𝑡)©𝐵7G(𝑡) 

𝐵4G(𝑡) = Q𝑞4"(𝑡) + 𝑞4".:3(𝑡) + 𝑞4".:3(6,3)#(𝑡) + 𝑞4".;,""(𝑡)R©𝐵"G(𝑡) 
𝐵5G(𝑡) = 𝑊5

G(𝑡) + 𝑞5"(𝑡)©𝐵"G(𝑡) 
Where, 𝑊7

G(𝑡) = [𝑒#(%&!'(&")* + W𝑎𝑥"𝑒#(%&!'(&")*©1X + W𝑏𝑥+𝑒#(%&!'(&")*©1X]𝑈T(𝑡) and 𝑊5
G = 𝑈T(𝑡) 

Taking LT of above equations and solving for 𝐵!G
∗(𝑠) (same as 4.3), busy period of server due to 

s/w up-gradation is given by 
𝐵!G(∞) = lim

=→!
𝑠𝐵!G

∗(𝑠) = B'
C"

, where 𝑁4 = 𝑊7
G∗(0)𝑝!7𝑝"! +𝑊5

G∗(0)𝑝"5W1 − 𝑝7,"! − 𝑝!7𝑝7!X and  

𝐷+ = (𝑝"4𝜇4′ + 𝜇"′ + 𝑝"5𝜇5)W1 − 𝑝7,"! − 𝑝!7𝑝7!X + 𝑝"!Q𝜇!W1 − 𝑝7,"!X + 𝜇7′ 𝑝!7R 
 
f) Expected Number of Server Treatment  
 
Let 𝑇,E(𝑡) be the expected number of repairs of the unit by the server in (0, t] such that the system 
entered regenerative state𝑖 at t = 0. The recursive relation for𝑇,E(𝑡)  are given as: 

𝑇,E(𝑡) = ∑ 𝑄,,-
(D)(𝑡)ⓈQ𝛿- + 𝑇,E(𝑡)R-                                                                  (4) 

Where 𝑗 is any regenerative state to which the given regenerative state 𝑖 transits and 𝛿- = 1 if 𝑗 is 
the regenerative state where the server does job afresh, otherwise, 𝛿- = 0. Thus, the following 
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equations are obtained by using (4) as: 
𝑇!(𝑡) = 𝑄!"(𝑡)Ⓢ𝑇"(𝑡) + 𝑄!7(𝑡)Ⓢ𝑇7(𝑡) 

𝑇"(𝑡) = 𝑄"!(𝑡)Ⓢ𝑇!(𝑡) + Q𝑄"".+(𝑡) + 𝑄"".+(6,3)#(𝑡)RⓈ𝑇"(𝑡) + 𝑄"4(𝑡)Ⓢ𝑇4(𝑡) + 𝑄"5(𝑡)Ⓢ𝑇5(𝑡) 
𝑇7(𝑡) = 𝑄7!(𝑡)Ⓢ𝑇!(𝑡) + 𝑄7"."+(𝑡)Ⓢ𝑇"(𝑡) + 𝑄77."!(𝑡)Ⓢ𝑇7(𝑡) 

𝑇4(𝑡) = [𝑄4"(𝑡) + 𝑄4".:3(𝑡) + 𝑄4".:3(6,3)#(𝑡) + 𝑄4".;,""(𝑡)]Ⓢ[1 + 𝑇"(𝑡)] 
𝑇5(𝑡) = 𝑄5"(𝑡)Ⓢ𝑇"(𝑡) 

Taking LST of above relation and solving for 𝑇!∗∗(𝑠) (same as 4.3). The expected no. of the server 
treatments is given by 

𝑇!(∞) = lim
=→!

𝑠𝑇!∗∗(𝑠) =
B(
C"

 where 𝑁6 = W1 − 𝑝7,"! − 𝑝!7𝑝7!X(𝑝"+𝑝+6 + 𝑝"4) and 

𝐷+ = (𝑝"4𝜇4′ + 𝜇"′ + 𝑝"5𝜇5)W1 − 𝑝7,"! − 𝑝!7𝑝7!X + 𝑝"!Q𝜇!W1 − 𝑝7,"!X + 𝜇7′ 𝑝!7R  
 

IV. Profit Analysis 
 

The profit function in time ‘t’ of the computer system is given by 
P (t) = Expected revenue in (0, t] – expected total cost in (0, t] 
In steady state, the profit of the computer system model can be obtained by the following formula: 

𝑃 = 𝑍"𝐴!(∞) − 𝑍+𝐵!F(∞) − 𝑍7𝐵!G(∞) − 𝑍4𝑇!(∞)     (5) 
 

V. Particular Cases 
 

Let us assume	ℎ(𝑡) = 𝛼𝑒#H*, 𝑢(𝑡) = 𝛽𝑒#I* and 𝑠(𝑡) = 𝛾𝑒#J*  then reliability measures are 
determined as follows: 

𝑝"! =	
H

%&!'(&"'K'H
 ,𝑝"+ =	

%&!
%&!'(&"'K'H

, 𝑝"4 =	
K

%&!'(&"'K'H
, 𝑝"5 =	

(&"
%&!'(&"'K'H

, 

𝑝+6 =	
K

K'H
, 𝑝7! =	

I
%&!'(&"'I

,	𝑝7,"! =	
(&"

%&!'(&"'I
,  𝑝4" =	

J
%&!'(&"'J

, 𝜇! =
"

%&!'(&"
, 

𝜇" =
"

%&!'(&"'K'H
, 𝜇7 =

"
%&!'(&"'I

, 𝜇4 =
"

%&!'(&"'J
, 𝜇"? =

JH'%&!(K'J)
JH(%&!'(&"'K'H)

 , 

𝜇7? =
"
I
= 𝑊7

G∗(0) = 𝑊5
G∗(0), 𝑊"

F∗(0) = (K'H)(H'J)(H'%&!)'KJ%&!
H(%&!'(&"'K'H)(K'H)(H'J)

, 

𝜇4? =
𝛽𝛼(𝑎𝑥" + 𝑏𝑥+ + 𝛾) + 𝛾𝛼 + 𝛽𝑎𝑥"(µ + 𝛾)

𝛽𝛾𝛼(𝑎𝑥" + 𝑏𝑥+ + 𝛾)
 

𝑀𝑇𝑆𝐹 = B!
C!

, 𝐴!(∞) =
B"
C"

 , 𝐵!F(∞) =
B&
C"

, 𝐵!G(∞) =
B'
C"

, 𝑇!(∞) =
B(
C"

 

where 
𝑁" =

{(%&!'(&"'K'H)(%&!'(&"'J)#JK}{%&!'+(&"'I}'%&!(%&!'(&"'K'J)(%&!'(&"'I)
(%&!'(&"'K'H)(%&!'(&"'J)(%&!'(&")(%&!'(&"'I)

  

𝐷" =
{(%&!'(&"'K'H)(%&!'(&"'J)#JK}{(%&!'(&")(%&!'(&"'I)#(&"I}

#%&!H(%&!'(&"'J)(%&!'(&"'I)
(%&!'(&"'K'H)(%&!'(&"'J)(%&!'(&")(%&!'(&"'I)

  

𝑁𝟐 =
(%&!'(&"'K'J)'H(%&!'(&"'J)

(%&!'(&"'K'H)(%&!'(&"'J)(%&!'(&")
  

𝐷+ =
%&!(%&!'(&"'I)[(%&!'(&"'J){HIJ'I%&!(K'J)'HIK'HJ(&"}'HJK'IK%&!(K'J)]

'H"J(%&!'(&"'J){I(%&!'(&"'I)'(&"(%&!'(&")}
HIJ(%&!'(&"'K'H)(%&!'(&"'J)(%&!'(&")(%&!'(&"'I)

  

𝑁7 =
%&!{(K'H)(J'H)(H'%&!)'JK%&!}

H(%&!'(&"'K'H)(%&!'(&")(K'H)(J'H)
, 

𝑁4 =
(&"(H'%&!)

I(%&!'(&"'K'H)(%&!'(&")
, 

𝑁6 =
µ𝑎𝑥"(𝛼 + 𝑎𝑥" + µ)

(𝑎𝑥" + 𝑏𝑥+ + µ + 𝛼)(𝑎𝑥" + 𝑏𝑥+)(µ + 𝛼)
 

 
VI. Graphical Presentation 

 
The graphical representation of MTCSF, availability and profit function has been shown in figures 
2, 3 and 4 respectively to check their behavior with respect to the values of the parameters 
associated with failure and repair rates. From Figure 2, it is observed that the MTCSF of the system 
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decreases when failure rate of hardware and software is increased from 0.01 to 0.1. Also, MTCSF 
increases with an increase in hardware repair rate, software up-gradation rate and treatment rate 
of the server. 

 
Figure 2: MTCSF Vs Hardware Failure Rate (X1) 

 
From Figure 3, it is clearly seen that the availability of the system decreases rapidly with increase 
of failure rate of hardware and software. Also, availability of the system increases with an increase 
of hardware repair, software up-gradation and treatment rate of the server. 

 
Figure 3: Availability Vs Hardware Failure Rate (X1) 

 
From Figure 4, it is observed that the profit decreases when failure rate of the hardware and 
software increases. Also, the profit of the system is increases with an increase of hardware repair 
rate, software up-gradation rate and treatment rate of the server. 

 
Figure 4: Profit Vs Hardware Failure Rate (X1) 140 
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VII. Conclusion 
 

The present study mainly focuses on MTCSF, availability and profit analysis of a computer system 
with unit wise redundancy and failure of service facility. The preference is given to the software 
up-gradation over hardware repair. The graphical behavior of some important measures such as 
MTCSF, availability and profit has been observed w.r.t. hardware failure rate (x1) and for the fixed 
values of server failure rate, repair rates of components and server’s treatment rate as shown in the 
respective figures (Fig.2, Fig.3 and Fig.4). From these figures, it is concluded that  MTCSF (Fig.2), 
availability (Fig.3) and profit (Fig.4) decrease with increase in hardware failure rate (x1) & software 
failure rate (x2) and increase with increase of hardware repair rate (α) and software up-gradation 
rate (β) and treatment rate (ϒ) of server. It is also examined that the provision of priority to 
software up-gradation of one unit over the hardware repair of other unit can only be helpful in 
increasing the profit of the system model provided the software up-gradation rate is increased. 
 

VIII. Illustration 
 

 
Suppose the department office has two computers for furnishing day to day assigned jobs.  The 
official starts the jobs initially at a single computer (unit) and the other computer system is kept as 
spare in order to makes its use as and when required at any type of problems which occur in the 
initial operative computer system. The computer can have problems in both hardware and 
software like damage of RAM, defects in CPU and short-circuit in the monitor as the hardware 
problems while software can fail to follow the instructions due to malware in the system and 
failure of drivers. In that situation it becomes necessary to take the help of another computer 
system in order to complete the assigned jobs in time. In order to secure the data from any kind of 
malware attack the priority to up-grade the software is required instead of repair of any type of 
hardware faults. On the other hand, it is not necessary that the service facility can be made 
available immediately to rectify the faults and in that case we can consider the failure of the service 
facility.  On the basis of the experience and practices the present study is illustrated on a computer 
system by considering the ideas of unit wise redundancy, priority to software up-gradation and 
failure of the service facility. The reliability characteristics such as MTCSF, availability and profit 
have been obtained by taking the hypothetical values for the parameters as: 
 

Here, x" = 0.04, x+ = 0.007,µ = 0.001,α = 2,β	 = 5,ϒ = 10, a = 0.6	and	b = 0.4 , 
Z" 	= 	7000, Z+ 	= 	1000, Z7 	= 	800, Z4 = 	500. 

We have 
MTCSF	 = 	3046.581, Availability	 = 	0.999848	and	Profit	 = 	6986.86 
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Abstract

An infinite server Markovian queueing system with randomly occurring breakdowns and non
zero exponentially distributed repair time is proposed. Upon arrival, a catastrophes deactivate
all the servers and system is under catastrophic failure. Immediately, a repair process is started
and after successful repair the system is ready to serve the newly arrived customers. Continued
fraction techniques have been used to obtain the time dependent probabilities of the studied
model. The stationary probability distribution for the number of customers in the system is also
derived. Some important stationary as well as transient moments are also determined. Further,
The availability and reliability of the system under consideration are investigated. Finally, some
graphical results are presented to visualize the model practically.

Keywords: M/M/∞ Queue, Server Breakdown, Transient Analysis,Steady State Solution, Conflu-
ent Hypergeometric Function, Reliability and Availability.

1. Introduction

Here, we consider a classical M/M/∞ queueing model subjected to randomly occurring breakdowns
(catastrophes). Upon arrival, a catastrophes deactivate all the servers and system is under disasters
breakdown. Immediately a repair process is started and after successful repair the system is again
restart their functioning and provide service to a newly arrived customer. We analyze this model
and provide steady state and time dependent solution.
During the last four decades the interest in catastrophic queueing model has been increased by a
rapid phase. Therefore queueing models in the presence of catastrophes has been analyzed by many
researchers.(see e.g., [1],[2],[3], [12],[17],[19],[21][22]). Occurrence of catastrophes destroys all present
customers and also breakdown the servers. Some authors assumes that whenever catastrophes
occurs, it flush out all present customers and immediately the server is ready for service for a newly
arrived customer(see e.g. [1], [3],[8], [9]). And some assumes that the server or system may take a
non zero repair time for their re-functioning whenever it is affected by a catastrophic failure(see e.g.
[4], [18], [21], [25]).
Infinite servers queueing models are also analyzed by many researchers with the possibility of catas-
trophes. Gursoy et al. [15] analyzed an infinite server queue with randomly occurring interruption
and provide steady state solution . Giorno et al. [26] have discussed the various properties of a
bilateral birth-death process, affected by randomly occurring catastrophes. Linton and Purdue[6]
have obtained the stationary and transient distribution of the probabilities for an M/G/∞ queue
with catastrophes. Yechiali [25] considered an M/M/∞ queues with catastrophes and studied the
impatient behavior of customers when server is down. The transient solution of an infinite servers
Markovian queue subjected to catastrophes has been obtained by Krishna Kumar et al. [5] and
Gulab Singh Bura [8].
In this work, we present an M/M/∞ queuing system with catastrophes, Server breakdown and
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non-zero repair time. Although,the operating model has been already analyzed by Sophia and
Murali [23]. Then, objective of this paper is to illustrate a different approach and provide some
additional important measures of the system under consideration.
The M/M/∞ queueing system with repairable servers finds its application in telecommunication
field. Our system under consideration is a University campus which provide free Wi-Fi service to
their students. Within the campus, each mobile is considered as one queueing server. Whenever a
breakdown occur i.e. (connectivity loss or signal failure), all the servers gets deactivated and none
of them works until that breakdown is repaired. So, an M/M/∞ queue with system failure and
repair is a suitable approximation.

The paper is arranged in the following way. Next section describe the formulation of the model.
The transient solution of the model have been obtained in section 3. Under section 4, we have
obtained some moments of the model in transient form. Section 5, gives the time independent
solution of the model. In Section 6, we have discussed about the availability and reliability of the
system. Section 7 presents some graphical illustrations to observe the system performance with the
effect of various parameters. Conclusion is given in the last Section.

2. MATHEMATICAL MODEL

An infinite servers Markovian queueing system with server breakdown and repair is in operation.
Arrivals occur one by one in a Poisson stream with mean rate 𝜆. Service times are exponentially
distributed with parameter 𝜃. The system may fails due the disastrous breakdown occurs at a
Poisson rate 𝛾. Whenever a catastrophes occur all the servers are deactivated and the system is
under disasters breakdown. Immediately a repair process is started and the repair time distribution
is exponential with rate 𝜂. After successful repair the system again restart their functioning and
provide service to a newly arrived customer. Also, it is assumed that, no customer is allowed to
enter in to the system during the repair process of failed servers. Let the random variable 𝐶(𝑡)

represents the number of customers present in the system at time t and 𝑃𝑛(𝑡) denotes its probability.

3. TRANSIENT ANALYSIS UNDER MARKOVIAN SETUP

This section provides the probability mass function of the random variable 𝐶(𝑡). For this, the
differential-difference equations are given as:

𝐹 ′(𝑡) = 𝛾(1− 𝐹 (𝑡)− 𝑃0(𝑡))− 𝜂𝐹 (𝑡) (1)
𝑃 ′
0(𝑡) = 𝜃𝑃1(𝑡) + 𝜂𝐹 (𝑡)− 𝜆𝑃0(𝑡) (2)

𝑃 ′
𝑛(𝑡) = (𝑛+ 1)𝜃𝑃𝑛+1(𝑡) + 𝜆𝑃𝑛−1(𝑡)− (𝜆+ 𝑛𝜃 + 𝛾)𝑃𝑛(𝑡), 𝑛 = 1, 2, 3, ... (3)

Initially, at 𝑡 = 0,

𝑃𝑛(0) =

{︂
1 if 𝑛 = 0;

0 if 𝑛 ̸= 0.
(4)

Taking Laplace transform of Eq.(1),Eq.(2),Eq.(3) and by the use of Eq.(4), we have

(𝑠+ 𝛾 + 𝜂)𝐹 *(𝑠) = 𝛾(
1

𝑠
− 𝑃 *

0 (𝑠)) (5)

(𝑠+ 𝜆)𝑃 *
0 (𝑠) = 1 + 𝜃𝑃 *

1 (𝑠) + 𝜂𝐹 *(𝑠) (6)

(𝑠+ 𝜆+ 𝑛𝜃 + 𝛾)𝑃 *
𝑛(𝑠) = (𝑛+ 1)𝜃𝑃 *

𝑛+1(𝑠) + 𝜆𝑃 *
𝑛−1(𝑠), (7)

After some manipulation, Eq.(7), gives an expression

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜆
𝜃

𝑠+𝜆+𝛾
𝜃 + 𝑛)− (𝑛+ 1)

𝑃*
𝑛+1(𝑠)

𝑃*
𝑛(𝑠)
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𝜆

𝜃

𝑃 *
𝑛−1(𝑠)

𝑃 *
𝑛(𝑠)

=

(︂
𝑠+ 𝜆+ 𝛾

𝜃
+ 𝑛

)︂
−

(𝑛+ 1)𝜆𝜃(︁
𝑠+𝜆+𝛾

𝜃 + 𝑛+ 1
)︁
−

(𝑛+ 2)𝜆𝜃(︁
𝑠+𝜆+𝛾

𝜃 + 𝑛+ 2
)︁
− · · ·

(8)

Now using the identity given by Lorentzen and Waadeland [13]

1𝐹1(𝑞 + 1; 𝑟 + 1; 𝑧)

1𝐹1(𝑞; 𝑟; 𝑧)
=

𝑟

𝑟 − 𝑧+

(𝑞 + 1)𝑧

𝑟 − 𝑧 + 1+

(𝑞 + 2)𝑧

𝑟 − 𝑧 + 2+
...

rewritten as
1𝐹1(𝑞; 𝑟; 𝑧)

1𝐹1(𝑞 + 1; 𝑟 + 1; 𝑧)
=

𝑟 − 𝑧

𝑟+

(𝑞 + 1)𝑧

𝑟 − 𝑧 + 1+

(𝑞 + 2)𝑧

𝑟 − 𝑧 + 2+
..., (9)

by using Eq.(9) in Eq.(8), we have

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜆

𝜃
1𝐹1(𝑞 + 1; 𝑟 + 1, 𝑧)(︀
𝑠+𝛾
𝜃 + 𝑛

)︀
1𝐹1(𝑞; 𝑟; 𝑧)

, (10)

therefore for 𝑛 ≥ 1,we have

𝑃 *
𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1;−𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1;−𝜆

𝜃 )
𝑃 *
0 (𝑠), (11)

𝑃 *
𝑛(𝑠) = 𝜁*𝑛(𝑠)𝑃

*
0 (𝑠), (12)

where

𝜁*𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1;−𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1;−𝜆

𝜃 )
, (13)

It is well known that

𝐹 *(𝑠) +
∞∑︁

𝑛=0

𝑃 *
𝑛(𝑠) =

1

𝑠
, (14)

by the use of Eq.(12) and Eq.(5), we get

𝑃 *
0 (𝑠) = (1 +

𝜂

𝑠
)

[︃
(𝑠+ 𝜆+ 𝜂)− 𝜃𝜁*1 (𝑠) + 𝜂

∞∑︁
𝑛=1

𝜁*𝑛(𝑠)

]︃−1

(15)

after simplification Eq.(15) reduces to

𝑃 *
0 (𝑠) = (1 +

𝜂

𝑠
)

∞∑︁
𝑗=𝑜

(−1)𝑗

(𝑠+ 𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁
*
𝑘(𝑠)

]︃𝑗

(16)

on inversion, we get

𝑃0(𝑡) =
∞∑︁
𝑗=0

(−1)𝑗
∫︁ 𝑡

0

𝑒−(𝜆+𝜂)(𝑡−𝑢)(𝑡− 𝑢)𝑗

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁𝑘(𝑢)

]︃*𝐽

𝑑𝑢

+𝜂

∞∑︁
𝑗=0

(−1)𝑗
∫︁ 𝑡

0

𝑒−(𝜆+𝜂)𝑥𝑥
𝑗

𝑗!

[︃ ∞∑︁
𝑘=1

(𝜂 − 𝛿𝑘𝜃)𝜁𝑘(𝑥)

]︃*𝐽

𝑑𝑥 (17)

Now for 𝑃𝑛(𝑡), consider Eq.(12), which on inversion, gives

𝑃𝑛(𝑡) = 𝜁𝑛(𝑡) * 𝑃0(𝑡), (18)

where the symbol * denotes the convolution and 𝑃0(𝑡) given in Eq.(17).
Next we derive the expression for 𝜁𝑛(𝑡), where 𝜁𝑛(𝑡) represents the inverse Laplace transform of
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𝜁*𝑛(𝑠).
From Eq.(13)

𝜁*𝑛(𝑠) =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝑠+𝛾
𝜃 + 1; −𝜆

𝜃 )
.

We known that

1𝐹1(𝑛+ 1;
𝑠+ 𝛾

𝜃
+ 𝑛+ 1;

−𝜆

𝜃
) =

∞∑︁
𝑘=0

(𝑛+ 1)𝑘
(︀−𝜆

𝜃

)︀𝑘
( 𝑠+𝛾

𝜃 + 𝑛+ 1)𝑘𝑘!

where (𝑏)𝑘 represents the Pochhammor symbol, i.e.

(𝑏)𝑘 =

{︂
1 if 𝑘 = 0;

𝑏(𝑏+ 1)(𝑏+ 2)...(𝑏+ 𝑘 + 1) if 𝑘 = 1, 2, 3, ....

Therefore
1𝐹1(𝑛+ 1; 𝑠+𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀ =
∞∑︁
𝑘=0

(︀
𝑛+𝑘
𝑘

)︀ (︀
−𝜆

𝜃

)︀𝑘∏︀𝑛+𝑘
𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀
Applying partial fraction expansion, the above equation can be written as

1𝐹1(𝑛+ 1; 𝑠+𝛾
𝜃 + 𝑛+ 1; −𝜆

𝜃 )∏︀𝑛
𝑗=1

(︀
𝑠+𝛾
𝜃 + 𝑗

)︀ =𝜃

∞∑︁
𝑘=0

(︂
𝑛+ 𝑘

𝑘

)︂(︂
−𝜆

𝜃

)︂𝑘

𝑛+𝑘∑︁
𝑗=1

(−1)𝑗−1

(𝑗 − 1)! (𝑛+ 𝑘 − 𝑗)! (𝑠+ 𝛾 + 𝑗𝜃)
. (19)

Also

1𝐹1

(︂
1;

𝑠+ 𝛾

𝜃
+ 1;

−𝜆

𝜃

)︂
=

∞∑︁
𝑘=0

(−𝜆)
𝑘
𝑑*𝑘(𝑠),

where
𝑑*𝑘(𝑠) =

1∏︀𝑘
𝑗=1 (𝑠+ 𝛾 + 𝑗𝜃)

𝑎𝑛𝑑 𝑑*0(𝑠) = 1.

1

1𝐹1(1;
𝑠+𝛾
𝜃 + 1; −𝜆

𝜃 )
=

∞∑︁
𝑘=0

(𝜆)𝑘𝑒*𝑘(𝑠), (20)

where 𝑒*0(𝑠) = 1, and for k=1,2,3,...

𝑒*𝑘(𝑠) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝑑*1(𝑠) 1 . . .

𝑑*2(𝑠) 𝑑*1(𝑠) 1 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) 𝑑*𝑘−3(𝑠) . . . 𝑑*1(𝑠) 1

𝑑*𝑘(𝑠) 𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) . . . 𝑑*2(𝑠) 𝑑*1(𝑠)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

=

𝑘∑︁
𝑙=1

(−1)𝑙−1𝑒*𝑘−𝑙(𝑠)𝑑
*
𝑙 (𝑠).

By substituting Eq.(19) and Eq.(20) in Eq.(13), we get

𝜁*𝑛(𝑠) = (𝜆)𝑛
∞∑︁
𝑖=0

(−𝜆)𝑖
(︂
𝑛+ 𝑖

𝑖

)︂
𝑑*𝑛+𝑖(𝑠)

∞∑︁
𝑘=0

(𝜆)𝑘𝑒*𝑘(𝑠).
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On inversion, we obtain

𝜁𝑛(𝑡) = (𝜆)𝑛
∞∑︁
𝑖=0

(−𝜆)𝑖
(︂
𝑛+ 𝑖

𝑖

)︂
𝑑𝑛+𝑖(𝑡)

∞∑︁
𝑘=0

(𝜆)𝑘𝑒𝑘(𝑡), (21)

where

𝑑𝑘(𝑡) =
1

(𝜃)𝑘−1

𝑘∑︁
𝑗=1

(−1)𝑗−1

(𝑘 − 𝑗)! (𝑗 − 1)!
𝑒(−𝑗𝜃+𝛾)𝑡, 𝑘 = 1, 2, 3, ...,

𝑒𝑘(𝑡) =
𝑘∑︁

𝑗=1

(−1)𝑗−1𝑑𝑗(𝑡) * 𝑒𝑘−𝑗(𝑡), 𝑘 = 2, 3, 4, ...; 𝑒1(𝑡) = 𝑑1(𝑡)

Now from Eq(5) , we have

𝐹 *(𝑠) =
𝛾

𝑠+ 𝛾 + 𝜂

(︂
1

𝑠
− 𝑃 *

0 (𝑠)

)︂
On inversion,

𝐹 (𝑡) = 𝛾

∫︁ 𝑡

0

(1− 𝑃0(𝑧))𝑒
−(𝛾+𝜂)(𝑡−𝑧)𝑑𝑧 (22)

4. TIME DEPENDENT MOMENTS

4.1. MEAN

Let A(t) denote the mean value of the random variable C(t),therefore

𝐴(𝑡) = 𝐸(𝐶(𝑡)) =

∞∑︁
𝑛=1

𝑛𝑃𝑛(𝑡) (23)

Initially, at t=0, Eq(23) gives
𝐴(0) = 0,

which implies

𝐴′(𝑡) =

∞∑︁
𝑛=1

𝑛𝑃 ′
𝑛(𝑡), (24)

where 𝐴′(𝑡) denotes the derivative of 𝐴(𝑡). Application of Eq.(3) in Eq.(24),after some calculation
gives

𝐴′(𝑡) = −(𝜃 + 𝛾)𝐴(𝑡) + 𝜆 (25)

which is a linear differential equation in 𝐴(𝑡), whose solution gives

𝐴(𝑡) =
𝜆

𝜃 + 𝛾
[1− 𝑒−(𝜃+𝛾)𝑡] (26)

4.2. VARIANCE

An average is not sufficient to understand completely the distribution of the random variable
𝐶(𝑡)).Hence, variance is also needed for better understanding. Let 𝑉 𝑎𝑟(𝐶(𝑡)) represents the
variance of the random variable 𝐶(𝑡), then

𝑉 𝑎𝑟(𝐶(𝑡)) = 𝐸[𝐶(𝑡)− 𝐸(𝐶(𝑡))]2

Which may be written as
𝑉 𝑎𝑟(𝐶(𝑡)) = 𝑐(𝑡)− [𝐴(𝑡)]2, (27)

and

𝑐(𝑡) = 𝐸(𝐶2(𝑡)) =
∞∑︁

𝑛=1

𝑛2𝑃𝑛(𝑡),
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with
𝑐(0) = 0,

and

𝑐′(𝑡) =
∞∑︁

𝑛=1

𝑛2𝑃 ′
𝑛(𝑡) (28)

Substitution of 𝑃 ′
𝑛(𝑡) in Eq.(28), after some calculation results in the form of a linear differential

equation in 𝑐(𝑡) i.e.
𝑐′(𝑡) = −(2𝜃 + 𝜂)𝑐(𝑡) + (2𝜆+ 𝜃)𝐴(𝑡) + 𝜆 (29)

which after integration gives

𝑐(𝑡) =
(2𝜆+ 𝜃)𝜆(𝜃 − 𝑒−(2𝜃+𝛾)𝑡(3𝜃 + 𝛾) + 𝑒−(𝜃+𝛾)𝑡(2𝜃 + 𝛾))

(2𝜃 + 𝛾)𝜃(𝜃 + 𝛾)

+
𝜆

(2𝜃 + 𝛾)
[1− 𝑒−(2𝜃+𝛾)𝑡]. (30)

subsitutation of Eq.(30) in Eq.(27), gives the expression of 𝑉 𝑎𝑟(𝐶(𝑡)).

5. STEADY STATE SOLUTION

Here, we derive an expression for the stationary probabilities of the operating model

Theorem 5.1. Stationary probabilities of the system under consideration are given as

𝐹 =
𝛾

𝛾 + 𝜂
(1− 𝜂𝜌1)

𝑃𝑛 = 𝜂𝜌𝑛𝜌1

𝑃0 = 𝜂𝜌1

where

𝜌𝑛 =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝛾
𝜃 + 1; −𝜆

𝜃 )
.

and

𝜌1 =
∞∑︁
𝑗=𝑜

(−1)𝑗

(𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑛=1

(𝜂 − 𝛿𝑛𝜃)𝜌𝑛

]︃𝑗

Proof. Multiplying by 𝑠 on both side of Eq.(16) and taking limit as 𝑠 → 0, and using
lim𝑠→0 𝑠𝑃

*
0 (𝑠) = 𝑃0, we get

𝑃0 = 𝜂𝜌1 (31)
where

𝜌1 =
∞∑︁
𝑗=𝑜

(−1)𝑗

(𝜆+ 𝜂)𝑗+1

[︃ ∞∑︁
𝑛=1

(𝜂 − 𝛿𝑛𝜃)𝜌𝑛

]︃𝑗

For 𝑛 = 1, 2, ...,
Multiplying by 𝑠 on both side of Eq.(12) and taking limit as 𝑠 → 0, and using lim𝑠→0 𝑠𝑃

*
𝑛(𝑠) = 𝑃𝑛,

we get
𝑃𝑛 = 𝜂𝜌𝑛𝜌1, (32)

where

𝜌𝑛 =

(︂
𝜆

𝜃

)︂𝑛
1𝐹1(𝑛+ 1; 𝛾

𝜃 + 𝑛+ 1; −𝜆
𝜃 )∏︀𝑛

𝑗=1

(︀
𝛾
𝜃 + 𝑗

)︀
1𝐹1(1;

𝛾
𝜃 + 1; −𝜆

𝜃 )
.

The failure distribution is obtained by multiplying 𝑠 on both sides of Eq(5) and using Tauberian
theorem after taking the limit as 𝑠 → 0, we get

𝐹 =
𝛾

𝛾 + 𝜂
(1− 𝜂𝜌1) (33)

� It is observed that the stationary solution exist only if 𝜌1 < 1.
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5.1. Mean and Variance

Taking limit as 𝑡 → ∞ in Eq.(26) and in Eq.(27) after putting the values of 𝑐(𝑡)𝑎𝑛𝑑𝐴(𝑡), we get
directly an expression for steady state mean and variance i.e.

𝐴 =
𝜆

(𝜃 + 𝛾)
(34)

𝑉 𝑎𝑟(𝐶) =
1

2𝜃 + 𝛾

[︀
(2𝜆+ 𝜃)𝐴+ 𝜆− (2𝜃 + 𝛾)𝐴2

]︀
(35)

6. RELIABILITY AND AVAILABILITY ANALYSIS

The probability that a system perform well without any failure for a given period of time is known
as its reliability. In this section, we derive an expression for availability and reliability of the
system. Let 𝐴𝑣(𝑡) be the probability that a repairable system is available at a given point of time t.
Therefore, from Eq(22), the availability of the system is obtained as

𝐴𝑣(𝑡) = 1− 𝐹 (𝑡)

=
1

(𝜂 + 𝛾)
(𝛾 + 𝜂𝑒−(𝛾+𝜂)𝑡) + 𝛾

∫︁ 𝑡

0

𝑃0(𝑥)𝑒
−(𝜂+𝛾)(𝑡−𝑥)𝑑𝑥, (36)

where 𝑃0(𝑡) is given by Eq(17).
Next, we obtain an expression for the average availability of the system i.e.

𝐴𝑣(𝑡)* =
1

𝑡

∫︁ 𝑡

0

𝐴𝑣(𝑦)𝑑𝑦

=
1

(𝜂 + 𝛾)

(︂
𝛾 +

𝜂

(𝜂 + 𝛾)𝑡
[1− 𝑒−(𝜂+𝛾)𝑡]

)︂
+

𝛾

(𝜂 + 𝛾)𝑡

∫︁ 𝑡

0

𝑃0(𝑦)[1− 𝑒−(𝜂+𝛾)(𝑡−𝑦)]𝑑𝑦, (37)

If 𝜂 = 0, then we get from Eq(22)

𝐹 (𝑡) = 1− 𝑒−𝛾𝑡 − 𝛾

∫︁ 𝑡

0

𝑃0(𝑥)𝑒
−𝛾(𝑡−𝑥)𝑑𝑥

Therefore 𝑅(𝑡), the system reliability is obtained as

𝑅(𝑡) = 1− 𝐹 (𝑡)

= 𝑒−𝛾𝑡

(︂
1 + 𝛾

∫︁ 𝑡

0

𝑒𝛾𝑥𝑃0(𝑥)𝑑𝑥

)︂
(38)

7. NUMERICAL ANALYSIS

Here, some graphical results are presented to study the behavior of the probability 𝑃0 and 𝐸(𝐶)

with various parameters i.e. arrival rate 𝜆, catastrophic rate 𝛾 and service rate 𝜃.
In fig.(1 to 2) we have plotted the probability 𝑃0 as a function of (𝜆, 𝛾) and (𝜃, 𝛾) respectively. We

observe that the value of 𝑃0 is decreasing with increasing value of 𝜆 and increasing with increasing
value of 𝜃. Also, in both the figures 𝑃0 increases with increasing 𝛾 i.e. the probability of an empty
system increases with the increase in catastrophic rate. Fig.(3 and 4), illustrates that the expected
number of customers decreases with the increasing service and catastrophic rates and increases
with the corresponding increase in arrival rate.
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Figure 1: 𝑃0 as a function of 𝜆 for 𝜃 = 10
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Figure 2: 𝑃0 as a function of 𝜃 for 𝜆 = 1
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Figure 3: 𝐸(𝐶) as a function of 𝜆 for 𝜃 = 10
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Figure 4: 𝐸(𝐶) as a function of 𝜃 for 𝜆 = 1
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8. CONCLUSION

In this paper, we have considered an infinite servers Markovian queueing system with catastrophes
and repairable servers. The transient and stationary probabilities are obtained analytically. The
system availability and reliability are two important characteristics for those queueing system which
are failed and repaired. Therefore, these two measures are also investigated for the system. Some
graphical results are also added to visualize the model in practical situations.
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Abstract 
 

The transportation problems have much utilization in logistics and supply chains for minimizing 
costs. In real life circumstances, the limitations of transportation models may not be known 
absolutely because of unmanageable elements. In the several research papers the transportation 
costs, availability and demands of the commodity are shown as general fuzzy numbers and L-R flat 
fuzzy numbers for minimizing the transportation cost using different algorithms. But in this article, 
proposed the fuzzy costs, supply, and demands of the commodity at origins and destinations are 
taken as L-R type hexagonal fuzzy numbers for obtaining the optimal solution of unbalanced and 
balanced fuzzy transportation model by using ranking function to get minimum transportation cost. 
Here in, the numerical examples are also included. It is very simple to express and execute in real 
world transportation problem for decision maker. 
Keywords: L-R HFN’s, ranking function, Transportation problem, balanced 
transportation problem and unbalanced transportation problem. 

 
1. Introduction 

 
The transportation is the demand of proliferation. All societies are arriving closely not only by 
ability, tradition and custom but demand and inventory of goods and equipments are transferred 
from warehouses to retailers through identical vehicles. In actual life, the shipping problem and its 
optimal solution techniques are used to huge circumstances of practical fields, trades and 
manufacturing implementations but the constraints are ambiguous and imprecise. To accomplish 
the aim, the quantity of available supplies and the amount demanded must be known. The 
transportation models have vast utilizations in logistics and supply chain for minimize the cost. A 
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fuzzy transportation problem contains fuzzy costs, supply and demand of the shipping 
algorithms. These are all characterized by L-R hexagonal fuzzy numbers. The main concept of the 
transportation problem is to obtain the optimal solution of the transportation model to minimize 
the transportation cost of a commodity for gratifying the demand at destinations using the supply 
at origins. Several literatures are discussed about the transportation problem to reduce the fully 
fuzzy transportation cost.  
             The modern process for obtaining fuzzy transportation problem in which the costs, 
availabilities and demands for the commodity are taken as non negative L-R flat fuzzy numbers by 
using standard transportation simplex algorithm in [1] and also the results are compare with other 
existing methods. A novel algorithm is introduced for finding fuzzy transportation problems in [2] 
by considered that the inventor is unpredictable about the accurate amount of the transportation 
costs, supply and demands of the commodity are taken as general fuzzy numbers using modern 
ranking function. A modern algorithm is introduced for finding the special cases of transportation 
problem in [3] by considering that the decision maker has doubt about the exact values of shipping 
cost. In the transportation problem the constraints are taken as general fuzzy numbers. The 
advanced method called as Mehar’s method for finding fully fuzzy linear programming problems 
are presented in [4] in which the constraints are taken as L-R flat fuzzy numbers and the numerical 
example is also given. The permanent of both inter valued and triangular number fuzzy matrices 
are defined with examples and few properties, propositions to the permanent of inter valued and 
triangular number fuzzy matrices are proved in [5]. A new method for solving optimal solution of 
fully fuzzy linear programming problem is proposed in [6] by utilize the ranking technique with 
hexagonal fuzzy numbers. The permanent of square L-R hexagonal fuzzy matrix by using various 
techniques from partial derivatives and derived some properties and constant matrix of the 
permanent of non square L-R hexagonal fuzzy numbers are investigated in [7]. A fuzzy inventor 
model with allowable shortage with new L-R hexagonal fuzzy numbers are considered in [8] for 
obtaining the fuzzy optimal cost and optimal order amount in which the constraints are described 
by L-R hexagonal fuzzy numbers. The mathematical computation in novel arithmetic operations 
on 𝛼 - cut of hexagonal fuzzy numbers, ranking function and their properties are proposed in [9]. 
Novel procedures of matrix inversion method with the hexagonal fuzzy number matrices for 
finding fuzzy linear system of equations are established in [10]. [11] has proposed the permanent 
of a square matrix from Ryser’s formula or standard definition. It was calculated two formulas by 
using in several approaches. One is related to symmetric tensors another one is algebraic method. 
[12] have compared the optimal solution for reducing the minimum transportation cost of 
balanced and unbalanced fuzzy transportation problems which is solved by using ranking 
technique with hexagonal fuzzy numbers. The advanced ranking technique based on the 
hexagonal fuzzy numbers using centroid of the triangle and rectangle is proposed in [13]. In this 
method hexagonal fuzzy numbers transferred to crisp number. The constant type-2 triangular 
fuzzy matrices are proposed in [14]. It is extension of type-2 fuzzy sets whose membership 
function define in [0,1]. In this, the properties and the examples of constant type-2 triangular fuzzy 
matrices are verified with the help of type-2 fuzzy sets. Two identities for the estimation of 
permanents like the formulas of Binet and Minc and of Ryser are obtained in [15]. It is used to 
reduce in an easy approach. The notion of triangular fuzzy matrices are defined and their new 
properties, special cases like pure and fuzzy triangular, symmetric, skew-symmetric, singular, 
semi singular etc. using the elementary operations and main properties of triangular fuzzy 
matrices are given in [16]. [17] have proposed a new ranking technique for determining the fuzzy 
transportation model, in which the constraints are taken as trapezoidal fuzzy numbers. These 
numbers represents the costs, supply and demands for the product. A fuzzy linear programming 
with hexagonal fuzzy numbers by using simplex method is investigated in [18] for finding the 
optimal solution and compare with existing algorithms. The concept of the determinant of the 
permanent of a square matrix is introduced in [19]. In this, it is concentrated on graphs and 
theorem for the determinant. Also various auxiliary facts are proved. 
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                    In view of this article, a novel approach for obtaining the balanced and sun balanced 
fuzzy transportation problem using ranking system. The fuzzy transportation problem considering 
that the decision maker is undetermined about the accurate values of shipping cost only even so 
unpredictability about the supply and demands of the product are not there. In proposed method 
shipping costs, supply and demands are taken as L-R hexagonal fuzzy numbers. For illustration of 
proposed method a numerical example has been given. 
The structure of this article organized as follows: 2.Preliminaries: A few fundamental definitions, 
arithmetic operators and Ranking function of L-R hexagonal fuzzy numbers are presented 3. 
Formulation of transportation model is discussed 4. Proposed method is explained 5. Illustration of 
the numerical examples are presented 6.Explained the conclusions. 

 
2. Preliminaries 

 

Definition 1: [8] A fuzzy number   is said to be hexagonal fuzzy 

numbers (HFN’s). Which are belongs to real numbers and its membership function is as follows 

 

Definition 2: [8] A fuzzy number is said to be L-R hexagonal fuzzy 

number. Where  are belongs to real numbers satisfying 

 and its membership function is given by 

 

  Here  and  are the points with membership value of 1 is known as the flat region of mean 

value and  are the four different left and right shapes of   respectively. 

Definition 3: [8] An L-R hexagonal fuzzy number is called as symmetric, if the addition of both its 

shapes are equal, i.e; if  and it is denoted as  

Definition 4: [7] Arithmetic operations on L-R hexagonal fuzzy numbers 

      Let  and  are two L-R hexagonal 
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fuzzy numbers. Then  

(i) Addition:   

(ii) Subtraction:                  

(iii) Multiplication:  

                                                 Where  

(iv) Division:

   

 

                                    If  Where  

(v) Scalar Multiplication: If  is scalar, then  is defined as  

                                                    

Definition 5: [7] If  maps every numbers to real line  represented the set of all 
hexagonal fuzzy numbers. If   be any linear ranking function, then we write the ranking 
function is given below 

 

Definition 6: [7] An L-R hexagonal fuzzy number is called Zero L-R hexagonal fuzzy number 

if . It is denoted as  

Definition 7: [7] If  then is called Zero equivalent L-R hexagonal fuzzy number 

and is denoted as   

Definition 8: [7] An L-R hexagonal fuzzy number  is called unit L-R hexagonal fuzzy number 

if  . It is denoted as  

Definition 9: [7] If  then is called unit- equivalent L-R hexagonal fuzzy number 

and it is denoted as  
 

3. Formulation of Fuzzy Transportation Model 

In traditional transportation problem, it is considered that the decision maker is confident about 
the correct data of shipping cost, availability and demand of the production.  In real life 
utilizations, few constraints in the shipping algorithms may not be known exactly because 
uncertain elements. For instance, in real world problems are the following positions may appear:  
Consider a product is to be shipped first time at destination and skilled have no idea about the 
shipping cost then there exist unpredictability about the shipping cost. For finding transportation 
algorithms the costs, supply and demands of the commodity are taken as L-R hexagonal fuzzy 
numbers. The shipping problem, in which a decision maker has a doubt about the exact values of 
shipping cost from ith source to jth destination, even so the decision maker confident about the 
supply and demand of the commodity can be mathematically given as below 
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          Subject to     

                                 

                                   

where 𝑝! is the total availability of the commodity at ith origin, 𝑞" is the total demand of the 
commodity at jth destination, 𝑐!"is an approximate cost for shipping one unit amount of the 
commodity from ith origin to jth destination and 𝑡!"is the number of units of the commodity that 
must be shipped from the ith origin to jth destination or decision variables. 
           If ∑ 𝑝!#

!$% = ∑ 𝑞"&
"$%

 
called balance fuzzy transportation problem and if it is not equal then it is 

unbalanced fuzzy transportation problem. 
 

4. Proposed methodology 
 
There are so many procedures in the several research papers [1, 2, 4, 3, 17] for obtaining initial 
basic feasible solution[IBFS] and fuzzy optimal solution of balanced fuzzy transportation problem 
by using various algorithms or different ranking functions with general fuzzy numbers or L-R flat 
fuzzy numbers. But in the few articles [6, 12, 18] are finding only optimal solution by using several 
methods and ranking function with general hexagonal fuzzy numbers. 
                    In this article, proposed a new algorithm for solving IBFS and fuzzy optimal solution of 
balanced and unbalanced transportation problem by using ranking function, in which the 
transportation costs, supply and demands are represented by L-R hexagonal fuzzy numbers in 
place of general hexagonal fuzzy numbers. The procedure and the numerical examples are 
presented below. 
The process is given below for obtaining initial basic feasible solution and optimal solution. 
Step: 1 General Hexagonal fuzzy numbers transformed to L-R type hexagonal fuzzy numbers. 
Step: 2 Check the transportation table is balanced or unbalanced. 
Step: 3 If the table is balanced transportation table then continue the following steps. If the table is 
unbalanced transportation table then it is converted to balanced transportation table after that 
continue the below steps. 
Step: 4 Construct a transportation table using ranking technique with L-R type hexagonal fuzzy 
numbers. 
Step: 5 Obtain initial basic feasible solution using various following algorithms. 
4.1 Generalized fuzzy north-west corner method: 
The steps to finding initial basic feasible solution using GFNWCM. 
Case 1: Start the allotment from the left hand side of the top most corner (North West corner) wing 
in the transportation matrix and construct a allotment based on availability and demand. 
Case 2: After attain the availability or requirements for that row or column respectively, then 
delete that row or column and prepare a next table. 
Case 3: Continue this way until the all allotments of North West corner is completed. 
Case 4: Write all allotments of each cell and compute the IBFS. 
4.2 Generalized fuzzy Least cost method: 
The process is obtaining for IBFS using GFLCM. 
Case 1: Select a least cost of the complete transportation table and allot the smallest supply and 
demand. 
Case 2: Delete that row or column whose supply and demands are completed and construct 
another table. 
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Case 3: Repeat this process until all allotments are fulfilled. 
Case 4:  After all allocations are fulfilled then write the allocations and calculate IBFS. 
4.3 Generalized fuzzy Vogel’s approximation method: 
The steps are finding IBFS using GVAM. 
Case 1: Check out the each row and column variance of the fuzzy transportation table. 
Case 2: Choose the row or column with largest variation in the fuzzy transportation table and 
allocate a penalty in second smallest cost wing. 
Case 3: Delete that row or column whose supply and demands are allocated i.e. all allotment cells 
with least cost connected with specified largest row or column variance. Next prepare a new 
transportation table. 
Case 4: Maintain this process until all penalties are over in the entire table then take all the 
allotments in the matrix. 
Case5: Obtain the IBFS or least transportation cost. 
Step: 4 find the optimal solution of the transportation problem using modified distribution 
method. This method gives the lowest cost to the fuzzy transportation problem. 
4.4 Generalized fuzzy modified distribution method: 
The way to find the optimal solution using GFMODI. 
Case 1:  Determine the IBFS using 4.1, 4.2 or 4.3 methods. 
Case 2: Determine the values of dual variables using . 

Case 3: Find the penalty costs using . 

Case 4: Examine the sign of every penalty. If the penalties of all the vacant cells are either positive 
or zero then the optimum solution of the given problem is obtained. If the penalty has negative 
then the optimum solution is not gained. So go to further process for shipping costs are possible. 
Case 5: Choose the vacant cell with the lowest negative penalty as the cell to be together with 
immediate solution. 
Case 6: Draw a closed path for the vacant cell pick out in the preceding step. Mark that the right 
angle rotate in this path is allowed only at settled cells at the actual vacant wing. 
Case 7: Mark another plus and minus sign at the vacant cells on the corner points of the closed 
path with a plus sign at the cell being analyzed. 
Case 8: Solve the large number of units that must be transported to the vacant cell. The least point 
with a negative sign on the closed path denoted as the number of units that can be transported to 
the existing wing. 
Case 9: Add this amount to all the cells on the corner points of the closed loop is noted with 
positive signs and subtract it from those cells marked with negative signs. In this way, a vacancy 
cell changed to a settled cell. 
Case 10:  Repeat this way until fuzzy optimum solution is determined for reducing the least fuzzy 
transportation cost. 
 
UNBALANCED FUZZY TRANSPORTATION PROBLEM CONVERT IN TO BALANCED FUZZY 
TRANSPORTATION PROBLEM AS GIVEN:  
An Unbalanced fuzzy transportation problem transformed in to Basic fuzzy transportation 
problem by established a temporary source or a temporary destination which will gives for the 
hugely availability or the prerequisite cost of shipping a unit from this temporary source or 
destination to any other area is represented by zero. After transforming the unbalanced fuzzy 
transportation problem to balanced fuzzy transportation problem, take up the regular process for 
finding the balanced fuzzy transportation problem. A numerical example for the unbalanced fuzzy 
transportation problem is presented.  
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5. Numerical Example 
 

In this segment, two examples are given using proposed method for solving fuzzy transportation 
problem with L-R hexagonal fuzzy numbers using ranking system. 
Example 1: The table 1 occupies general hexagonal fuzzy numbers of transportation costs of the 
product from several origins to several destinations. 
 

Table  1: Hexagonal fuzzy numbers of fuzzy transportation costs 
 

     Supply 

 1 4,16,18, 
12,16,20 

0,1,2, 
-1,1,3 

7,8,9, 
6,8,9 

11,13,15, 
10,13,16 

2,4,6, 
1,4,7 

 8,11,14, 
7,11,15 

3,4,5, 
2,4,6 

5,7,9, 
4,7,10 

8,10,12, 
6,10,14 

5,6,7, 
4,6,8 

 6,8,10, 
5,8,11 

13,15,17, 
12,15,18 

7,9,11, 
6,9,12 

1,2,3, 
0,2,4 

7,8,9, 
5,8,11 

Demand 3,4,5, 
2,4,6 

3,5,7, 
1,5,9 

10,12,14, 
8,12,16 

6,7,8 
5,7,9 

 

L-R type hexagonal fuzzy numbers for solving fuzzy transportation costs are presented in table-2. 
 

Table 2: L-R hexagonal fuzzy numbers of transportation costs 
     Supply 

 18,12,2, 
2,4,4 

2,-1,1, 
1,2,2 

9,6,1, 
1,2,2 

15,10,2, 
2,3,3 

6,1,2, 
2,3,3 

 14,7,3, 
3,4,4 

5,2,1, 
1,2,2 

9,4,2, 
2,3,3 

12,6,2, 
2,4,4 

7,4,1, 
1,2,2 

 10,5,2, 
2,3,3 

17,12,2, 
2,3,3 

11,6,2, 
2,3,3 

3,0,1 
1,2,2 

9,5,1, 
1,3,3 

Demand 5,2,1, 
1,2,2 

7,1,2, 
2,4,4 

14,8,2, 
2,4,4 

8,5,1, 
1,2,2 

 

Table 2 represents unbalanced transportation table. So it is changed to balanced transportation 
problem introducing dummy origin represented in Table – 3. 

 
Table  3: The balanced Fuzzy Transportation costs with L-R hexagonal fuzzy numbers 

     Supply 

 18,12,2, 
2,4,4 

2,-1,1, 
1,2,2 

9,6,1, 
1,2,2 

15,10,2, 
2,3,3 

6,1,2, 
2,3,3 

 14,7,3, 
3,4,4 

5,2,1, 
1,2,2 

9,4,2, 
2,3,3 

12,6,2, 
2,4,4 

7,4,1, 
1,2,2 

 10,5,2, 
2,3,3 

17,12,2, 
2,3,3 

11,6,2, 
2,3,3 

3,0,1 
1,2,2 

9,5,1, 
1,3,3 

 
0,0,0 
0,0,0 

0,0,0, 
0,0,0 

0,0,0 
0,0,0 

0,0,0 
0,0,0 

12,6,2, 
2,4,4 

Demand 5,2,1, 
1,2,2 

7,1,2, 
2,4,4 

14,8,2, 
2,4,4 

8,5,1, 
1,2,2 

 

is determined for the fuzzy costs in table - 3using the formula 

6.  After implementing the ranking function, the L-R hexagonal Fuzzy transportation problem is 
shown in Table 4. 
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Table 4: After Fuzzy ranking Fuzzy transportation table 
     Supply 

 15.7 0.8 7.8 12.8 3.8 

 10.8 3.8 6.8 9.2 5.8 

 7.8 14.8 8.8 1.8 7.7 

 
0 0 0 0 9.7 

Demand 3.8 4.7 11.7 6.8  
             

The various methods used for IBFS and the optimal solution of the fuzzy minimum transportation 
cost are presented in Table 5. 
 

Table 5: The optimal solution of the transportation problem 
Methods used for IBFS IBFS for minimum 

transportation cost 
Number of iterations of 
fuzzy MODI method for 

finding the fuzzy 
optimal solution by 
using finding IBFS 

The total Fuzzy optimal 
cost 

GFNWCM 
 

159 5 61.4 

GFLCM 
 

93.4 4 61.4 

GFVAM 62.4 2 61.4 

 
Example 2: The table 6 contains general hexagonal fuzzy numbers of transportation costs of the 
product from various origins to various destinations. 
 

Table 6: Hexagonal fuzzy numbers of fuzzy transportation costs 
     Supply 

 3,7,11; 
15,19,24 

13,18,23; 
28,33,40 

6,13,20; 
28,36,45 

15,20,25; 
31,38,45 

7,9,11; 
13,16,20 

 16,19,24; 
29,34,39 

3,5,7; 
9,10,12 

5,7,10; 
13,17,21 

20,23,26; 
30,35,40 

6,8,11; 
14,19,25 

 11,14,17; 
21,25,30 

7,9,11; 
14,18,22 

2,3,4; 
6,7,9 

5,7,8; 
11,14,17 

9,11,13; 
15,18,20 

Demand 3,4,5; 
6,8,10 

3,5,7; 
9,12,15 

6,7,9; 
11,13,16 

10,12,14; 
16,20,24 

 

  
From table 6, the fuzzy transportation costs are changed to LR- type hexagonal fuzzy numbers of 
fuzzy transportation costs are given in Table 7. 

 
Table 7: L-R hexagonal fuzzy numbers of transportation costs 

 
     Supply 

 11,15,4; 
4,4,5 

23,28,5; 
5,5,7 

20,28,7; 
7,8,9 

25,31,5; 
5,7,7 

11,13,2; 
2,3,4 

 24,29,5; 
3,5,5 

7,9,2; 
2,1,2 

10,13,3; 
2,4,4 

26,30,3; 
3,5,5 

11,14,3; 
2,5,6 

 17,21,3; 
3,4,5 

11,14,2; 
2,4,4 

4,6,1; 
1,1,2 

8,11,1; 
2,3,3 

13,15,2; 
2,3,2 

1D 2D 3D 4D

1O
2O
3O

4O

1D 2D 3D 4D

1O

2O

3O

1D 2D 3D 4D

1O

2O

3O
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Demand 5,6,1; 
1,2,2 

7,9,2; 
2,3,3 

9,11,2; 
1,2,3 

14,16,2; 
2,4,4 

 

Table 7 represents balanced transportation table. So using the ranking function ( ) is 
determined for the fuzzy costs in table 7. 

 
After applying the ranking function, the L-R hexagonal Fuzzy transportation problem is shown in 
Table 8. 

 
Table 8: After Fuzzy ranking Fuzzy transportation table 

     Supply 

 13.17 25.83 24.5 28.67 12.5 

 26.83 7.83 12 28.67 13.5 

 19.5 13.17 5.17 10 14.17 

Demand 5.83 8.33 10.33 15.67  
The several methods are used for IBFS and the optimal solution of the fuzzy minimum 
transportation cost is presented in Table 9. 

 
Table 9: The optimal solution of the transportation problem 

Methods used for IBFS IBFS for minimum 
transportation cost 

Number of iterations of 
fuzzy MODI method for 
finding the fuzzy 
optimal solution by 
using finding IBFS  

The total Fuzzy optimal 
cost 

GFNWCM 
 

6 03.67 4 506.36 

GFLCM 
 

577.40 2 506.36 

GFVAM 509 2 506.36 

 
6. Conclusion 

 
In view of this work, a new method is introduced to gain IBFS and optimum solution of balanced 
and unbalanced fuzzy transportation model in which the constraints like transportation costs, 
supply and demand of the product are taken as L-R hexagonal fuzzy numbers. In this, the 
comparison of UBFTP and BFTP give the optimal transportation cost on LR- hexagonal fuzzy 
numbers are working to get the fuzzy optimal solutions. We observed that UBFTP get less 
transportation cost than BFTP. A numerical example shows that the proposed work produce the 
quality results which are genuine and general in fuzzy environment. It can be also used for other 
algorithms appearing in real world circumstances. 
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Abstract 
 

The assignment problem (AP) is a decision-making problem that is used in production planning, 
industrial organizations, the economy and so on. As the single objective AP is no longer sufficient to 
handle today's optimization problems, bi-objective AP (BOAP) is considered. This research article 
introduces BOAP in neutrosophic environment. The neutrosophic BOAP (NBOAP) is formulated 
by adding the elements of cost matrices with single-valued trapezoidal neutrosophic numbers 
(SVTrNNs). A new method namely, fixing point approach (FPA) is proposed in this paper. The aim 
of this study is not only to determine the set of efficient solutions but also to find the optimal 
compromise solution for NBOAP using FPA. The proposed approach is elucidated with a numerical 
example and its solutions are plotted in a graph using MATLAB, which demonstrates its efficiency 
and optimality in practical aspects. This approach is more profitable for decision makers (DMs) and 
more efficient than other existing approaches because it provides the best optimal compromise solution 
in a neutrosophic environment. 
 
Keywords: Bi-objective neutrosophic assignment problem, Hungarian method 
(HM), Fixing point approach, Ideal solution, Efficient solution, Optimal 
compromise solution. 
 
 

1. Introduction 
 
AP is one of the most fundamental combinatorial optimization problems which is widely enforced 
in both mechanized and repair systems and it is one of the most anticipated optimization problems 
in administration discipline. Many researchers have employed a variety of ways such as HM, linear 
programming, neural networks, and evolutionary algorithms to solve the AP. As the name suggests, 
the BOAP consists of two objectives and in solving it, the individual is assigned with a single task in 
order to optimize the outcomes. Hamou and Mohamed [1] developed the method to construct the 
set of efficient solutions to MOAP. Sobana and Anuradha [2] primarily focused on determining the 
set of all solutions to bi-objective interval AP. Przybylski et al. [3] adopted the two-phase technique 
to solve the BOAP. Bufardi [4] investigated the efficiency of feasible solutions for multi-criteria AP. 
Adiche et al. [5] developed a hybrid strategy to develop an efficient solution to MOAP. Son et al. [6] 
developed a compromise programming approach to MOAP. Tilva and Dhodiya [7] modified the 
algorithm in exponential membership functions for solving MOAP. In some conventional 
approaches, the parameters are usually defined in an uncertain manner due to the inability of the 
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DMs to assign accurate values to parameters as they have no idea of the actual value of the 
parameters. Zadeh [8] introduced the fuzzy sets (FS) which is determined by its membership 
functions to handle the problems involving imprecise information. Kar et al. [9] developed three 
different approaches for solving fuzzy BOAP. Pramanik and Biswas [10] analyzed a MOAP with 
uncertain price, time and ineffectiveness using priority-based fuzzy goal programming technique. 
Vinoliah et al. [11] proposed a unique approach for the solution of generalised fuzzy AP. Raj et al. 
[12] investigated an approach involving modified best candidate for solving pentagonal fuzzy AP. 
In such cases, the results or decisions based on the given data do not seem to be satisfactory. 
Intuitionistic fuzzy sets (IFS), determined by their membership and non-membership functions and  
useful in dealing with situations involving uncertainty information were introduced by Atanassov 
[13]. In such cases, generalisation of the FS eventually failed to deal with difficulties involving 
imprecise or inconsistent data. To overcome this, Smarandache [14] introduced neutrosophic sets 
(NS) which is an extension of FS and IFS. The neutrosophic set is determined by the membership, 
the non-membership and the indeterminacy functions which are independent of one another. The 
BOAP is examined in a neutrosophical framework to address the truth, indeterminacy and falsity of 
the data which were caused by issues such as the uncertain magnitude of the problem, imprecise 
data and inefficient forecasting. Wang et al. [15] introduced the concept of single-valued 
neutrosophic sets (SVNS) in many real-life situations. A methodology for solving decision-making 
problems with SVNNs was presented by Deli and Subas [16]. Khalifa [17] proposed a method for 
solving the MOAP in a neutrosophic environment based on the weighting tchebycheff programme. 
Khalifa and Pavan kumar [18] developed a neutrosophic AP using the interval-valued trapezoidal 
neutrosophic number. Bera and Mahapatra [19] proposed a solution methodology for solving AP 
with neutrosophic costs. Harnpornchai and Wonggattaleekam [20] proposed a neutrosophic set-
based relative AP. Risk-Allah et al. [21] developed the neutrosophic compromise programming 
approach to solve the multi-objective transportation model under neutrosophic environment. 
         In the literature, many researchers have proposed various methods to solve NBOAP where the 
solutions are in deterministic form. To fill this gap, we have proposed FPA to determine the set of 
all efficient solutions and optimal compromise solution for NBOAP in neutrosophic quantities. In 
traditional BOAP, the DM is supposed to know the precise values of the coefficients of the variables 
in the objective functions, resources and activities of the product. In real world situations, the precise 
knowledge of all the parameters of the BOAP may not be possible due to uncontrollable situations. 
Solution methods based on neutrosophic theory generally have the advantages of not requiring prior 
prediction of regularities or posterior frequency distributions, as well as that they can handle with 
unpredictable information based on the subjective judgment of the DM. In general, most of the 
existing techniques provide only deterministic solution to the optimization problems under 
neutrosophic environment. Practically, the DM may not have specific, reliable and detailed 
information regarding these solutions. This motivates us to solve NBOAP under neutrosophic 
environment. In this paper, the parameters of both objectives for NBOAP are considered as 
SVTrNNs. The neutrosophic number provides an ideal approach to a decision-making process 
dealing with the uncertainty of truth, falsity, and an indeterminant state of information. Without 
converting the given problem into deterministic form, the proposed approach provides the set of all 
possible solutions for NBOAP. The set of all efficient solutions and a neutrosophic optimal 
compromise solution can be chosen from the obtained possible solutions of NBOAP. This approach 
enables the DMs to choose a solution that suits their economic situations and satisfying their goals. 
          This research article is formulated as follows: In Section 2, basic concepts and preliminaries are 
presented. In Section 3, assumptions and notations of the proposed NBOAP models are listed.  
Section 4 proposes solution approach for obtaining neutrosophic optimal compromise solution. 
Mathematical illustration and graphical interpretations are shown in Section 5. Section 6 illustrates 
a comparison of the solution method with other existing methods. Section 7 summarizes the 
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conclusions and directions for future research. 
 

2. Preliminaries and Essential Definitions 
 
Some basic definitions related to NS, SVNS and SVTrNNs applied throughout this paper are 
introduced briefly in this section. 
 
Definition 2.1 Neutrosophic set [14] 
       Let X be a universe. A NS A over X is defined by 

where  are called 

the truth, indeterminacy and falsity membership function of the element to the set with 
 

 
Definition 2.2 Single-valued neutrosophic sets [15] 
       A SVNS of a non-empty set X is defined as follows: 

where  

for each  and  

 
Definition 2.3 Single-valued trapezoidal neutrosophic number [16] 
       Let and  such that Then a SVTrNN, 

 is a special NS on , whose truth membership, indeterminacy 

membership and falsity membership functions are given below: 
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where  denote the maximum truth, minimum indeterminacy, and minimum falsity 

membership degrees respectively. A SVTrNN  may be expressed as 

an ill-defined quantity of p, which is approximately equal to . 

 
Definition 2.4 Arithmetic operations on SVTrNNs [16] 
      Let  and  be two 

SVTrNNs. The arithmetic operations on and are  
 

1.  

2.  

3.                                                                                     

4.                                                                    

5.  

6.  

 
Definition 2.5 Efficient solution 
       A feasible solution  is said to be an efficient solution to the problem if there exists no other 

feasible such that and  (or) 

 and . Otherwise, it is called non-efficient 

solution to the problem. 
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Definition 2.6 Optimal compromise solution 
        An optimal compromise solution  is an efficient solution which is 

closest to the ideal solution  where  is an optimal solution to 

the first objective problem with all constraints and  is an optimal solution of the second 

objective problem with all constraints.  
 

3. Description and formulation of NBOAP 
 

For defining a mathematical model, assumption, indices, formulation and related theorem are 
presented in this section. 
 
3.1. Assumption 
 
Let there be n activities to be completed by n resources whose costs are determined by their specific 
task. There must be only one to one relation between the activity and the resource. 
 
3.2. Indices 
 
i: Resources.  
j: Activities. 
 
3.3. Formulation 
 
In real life, the goal of every DM is to achieve numerous targets at the same time when the products 
are assigned under neutrosophic environment. This has motivated the researchers to develop 
NBOAP. In NBOAP, the quantity  is to be assigned from resources  to 

activities   with cost where can be shipping cost, shipping time, 

deterioration cost, consumption of energy or minimizing the risk while shipping goods, etc. The two 

objectives and  are related to shipping cost and deterioration cost during shipping. The 
single-valued trapezoidal NBOAP (A) can be represented mathematically as follows: 
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3.4. Parameter 
 

denotes the first objective single valued trapezoidal 

neutrosophic shipping cost associated with ith resource to jth activity. 

denotes the second objective single valued trapezoidal 

neutrosophic deterioration cost associated with ith resource to jth activity. 

 =  denotes the single valued trapezoidal neutrosophic variable 

assuming 0 or 1 depending upon the entire assignment of jth activity fulfilled from ith resource.” 
 
3.5. Theorem   
 

Let  be an optimal solution to (A1) where  

 

                                                   Subject to (1), (2) and (3) 

and  be an optimal solution to (A2) where  

 

                                                  Subject to (1), (2) and (3) 

Then , obtained from  (or) is an efficient solution to 

the problem (A). 
Proof: 
     Let the problem (A1) be a square matrix of order ‘n’. 

     Since, is an optimal solution of (A1), 

  is a feasible solution of (A2). 

     Clearly,   is an efficient solution to the problem (A) which 

is trivial. 
     Let the allocated cell with maximum in (A2) be chosen. Here  is placed where the ith row 

and the jth column intersect. 
     Deleting the ith row and jth column of (A2), we obtain a sub-matrix of order (n-1). Let 

 be the solution to the sub-matrix obtained using the HM. 

     Repeat the procedure for the remaining allocated cells and obtain the solutions to the problem 
(A). 
     The procedure can be repeated for all the remaining cells in decreasing order of their magnitude 
to obtain all the efficient solutions to the problem (A). 

By Definition 5,  is an efficient solution to the problem (A). 

In the same way, an efficient solution to the problem (A) from the optimal solution 

of (A2) can be obtained. 

Hence the theorem. 
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4. Solution approach 
 
As to solve bi-objective problems under neutrosophic environment, it is necessary to find the optimal 
compromise solution. Here we have proposed an approach to find the efficient solutions which lead 
to optimal compromise solution. The following steps are given to proceed with the proposed 
approach: 
 
Step 1 Consider the given problem (A) with A1 as first objective neutrosophic AP (FNAP) and A2 as 
second objective neutrosophic AP (SNAP). 
Step 2 Determine an optimal solution of A1 and A2 by HM. 
Step 3 Consider the optimal solution of A1 as a feasible solution of A2 which is an efficient solution 
to the problem (A). 
Step 4 Select the allocated cell with the highest cost of problem (A2) and delete its corresponding 
row and column. Determine the solution for the resultant sub-matrix using HM. 
Step 5 Repeat Step 4 and obtain all the solutions for the remaining cells. The same process can be 
repeated to all the cells in decreasing order of their magnitude. 
Step 6 Consider the optimal solution of A2 as a feasible solution of A1 which is an efficient solution 
to the problem (A). 
Step 7 Steps 4 and 5 for A1 are repeated. 
Step 8 Combining all the solutions of A obtained using the optimal solutions of A1 and A2, the set of 
all efficient solutions and optimal compromise solution to the problem (A) can be worked out. 
 

5. Application of MMA in NBOAP 
 
Now we interpret the proposed approach to determine the application for the BOAP under 
neutrosophic environment. A numerical illustration predicts the shipping cost and deterioration cost 
of the cargoes in cargo ships. The following subsection discusses the procedure for obtaining the 
application with FPA. 
 
5.1 Numerical illustration 
 
Let three cargo ships be used for shipping goods from one port to another. Any ship can be chosen 
at random for each journey. Let us assume that there are two objectives to be considered: (i) the total 
shipping cost of the cargoes must be minimized; and (ii) the total deterioration cost of the cargoes 
must be minimized. The shipping cost and deterioration cost of the cargoes are represented as 
SVTrNNs as shown in Table 1. 
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                      where  = (14,17,21,28;0.8,0.2,0.6);  = (12,20,25,29;0.9,0.3,0.2); 

           = (13,18,20,24;0.6,0.4,0.5); = (22,25,30,34;0.8,0.2,0.4); 

            = (20,25,30,35;0.8,0.4,0.2);  = (12,18,21,24;0.7,0.4,0.5); 

            = (15,18,23,30;0.9,0.2,0.3);  = (15,17,19,24;0.7,0.2,0.3); 

             = (11,16,25,28;0.8,0.3,0.2);  = (28,32,35,40;0.9,0.3,0.2); 

             = (14,15,24,26;0.9,0.1,0.1);  = (17,18,22,26;0.8,0.2,0.3); 

             = (11,17,22,25;0.6,0.5,0.4);  = (23,27,30,31;0.9,0.3,0.4); 

             = (12,14,24,30;0.8,0.6,0.2);  = (12,19,24,25;0.8,0.5,0.4); 

            = (14,16,21,23;0.7,0.5,0.3);  = (13,18,23,25;0.9,0.2,0.2) 
 
Now, A1 and A2 of the problem A are shown in Table 2. 
 

Table 2 
      A1 A2 

 P1 P2 P3 P1 P2 P3 
SH1 (14,17,21,28; 

0.8,0.2,0.6) 
(13,18,20,24; 
0.6,0.4,0.5) 

(20,25,30,35; 
0.8,0.4,0.2) 

(12,20,25,29; 
0.9,0.3,0.2) 

(22,25,30,34; 
0.8,0.2,0.4) 

(12,18,21,24; 
0.7,0.4,0.5) 

SH2 (15,18,23,30; 
0.9,0.2,0.3) 

(11,16,25,28; 
0.8,0.3,0.2) 

(14,15,24,26; 
0.9,0.1,0.1) 

(15,17,19,24; 
0.7,0.2,0.3) 

(28,32,35,40; 
0.9,0.3,0.2) 

(17,18,22,26; 
0.8,0.2,0.3) 

SH3 (11,17,22,25; 
0.6,0.5,0.4) 

(12,14,24,30; 
0.8,0.6,0.2) 

(14,16,21,23; 
0.7,0.5,0.3) 

(23,27,30,31; 
0.9,0.3,0.4) 

(12,19,24,25; 
0.8,0.5,0.4) 

(13,18,23,25; 
0.9,0.2,0.2) 

 
Using HM, the optimal allotment of A1 and A2 are highlighted in Table 3. 
 

Table 3 
              A1   A2 

 P1 P2 P3 P1 P2 P3 
SH1 (14,17,21,28; 

0.8,0.2,0.6) 
(13,18,20,24; 
0.6,0.4,0.5) 

(20,25,30,35; 
0.8,0.4,0.2) 

(12,20,25,29; 
0.9,0.3,0.2) 

(22,25,30,34; 
0.8,0.2,0.4) 

(12,18,21,24; 
0.7,0.4,0.5) 

SH2 (15,18,23,30; 
0.9,0.2,0.3) 

(11,16,25,28; 
0.8,0.3,0.2) 

(14,15,24,26; 
0.9,0.1,0.1) 

(15,17,19,24; 
0.7,0.2,0.3) 

(28,32,35,40; 
0.9,0.3,0.2) 

(17,18,22,26; 
0.8,0.2,0.3) 

SH3 (11,17,22,25; 
0.6,0.5,0.4) 

(12,14,24,30; 
0.8,0.6,0.2) 

(14,16,21,23; 
0.7,0.5,0.3) 

(23,27,30,31; 
0.9,0.3,0.4) 

(12,19,24,25; 
0.8,0.5,0.4) 

(13,18,23,25; 
0.9,0.2,0.2) 

 
The optimal allotment and the optimal shipping cost of A1 are SH1→P2, SH2→P3 and SH3→ P1 and 
(38,50,66,75;0.6,0.5,0.5) respectively. The optimal allotment and the optimal deterioration cost of A2 
are SH1→P3, SH2→P1 and SH3→ P2 and (39,54,64,73;0.7,0.5,0.5) respectively.  
Now as in Step 3, consider the optimal solution of A1 as a feasible solution of A2 as shown in Table 
4. 

Table 4 
P1 P2 P3 

SH1 (12,20,25,29;0.9,0.3,0.2) (22,25,30,34;0.8,0.2,0.4) (12,18,21,24;0.7,0.4,0.5) 

SH2 (15,17,19,24;0.7,0.2,0.3) (28,32,35,40;0.9,0.3,0.2) (17,18,22,26;0.8,0.2,0.3) 
SH3 (23,27,30,31;0.9,0.3,0.4) (12,19,24,25;0.8,0.5,0.4) (13,18,23,25;0.9,0.2,0.2) 
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Thus ((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3.0.4)) is the bi-objective value of NBOAP for the 
feasible allotment SH1→P2, SH2→P3 and SH3→ P1 
Using Step 4, the solution for the resultant sub-matrix obtained using HM is shown in Table 5. 
 

 Table 5 
P2 P3 

SH1 (22,25,30,34;0.8,0.2,0.4) (12,18,21,24;0.7,0.4,0.5) 
SH2 (28,32,35,40;0.9,0.3,0.2) (17,18,22,26;0.8,0.2,0.3) 

 
Thus ((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3.0.4)) is the bi-objective value of NBOAP for the 
feasible allotment SH1→P2, SH2→P3 and SH3→ P1. 
Since all the highest cost cells for A1 to A2 are fixed, we terminate the process. Therefore, the set of 
all possible solutions S1 from A1 to A2 are given in Table 6. 
 

Table 6 

S.No Optimal allotments Possible solutions (S1) 
1. SH1→P2, SH2→P1, SH3→ P3 ((42,52,64,77;0.6,0.5,0.5), (50,60,72,83;0.7,0.2,0.4)) 
2. SH1→P1, SH2→P3, SH3→ P2 ((40,46,69,84;0.8,0.6,0.6), (41,57,71,80;0.8,0.5,0.4)) 
3. SH1→P3, SH2→P1, SH3→ P2 ((47,57,77,95;0.8,0.6,0.3), (39,54,64,73;0.7,0.5,0.5)) 
4. SH1→P2, SH2→P3, SH3→ P1           ((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3.0.4)) 

 
Similarly, by using Steps 6 and 7, we obtain the set of all possible solutions S2 from A2 to A1 as given 
in Table 7. 
 

Table 7 
S.No. Optimal allotments Possible solutions (S2) 

1. SH1→P3, SH2→P2, SH3→ P1 ((42,58,77,88;0.6,0.5,0.4), (63,77,86,95;0.7,0.4,0.5)) 
2. SH1→P1, SH2→P2, SH3→ P3 ((39,49,67,79;0.7,0.5,0.6), (53,70,83,94;0.9,0.3,0.2)) 
3. SH1→P2, SH2→P3, SH3→ P1 ((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3,0.4)) 
4. SH1→P2, SH2→P1, SH3→ P3 ((42,52,64,77;0.6,0.5,0.5), (50,60,72,83;0.7,0.2,0.4)) 

    5. SH1→P1, SH2→P3, SH3→ P2 ((40,46,69,84;0.8,0.6,0.6), (41,57,71,80;0.8,0.5,0.4)) 
 
Now, using Step 8, combine the set of all possible solutions S to the problem (A) obtained from A1 
to A2 and from A2 to A1 as given in Table 8. 
 

Table 8 
S.No. Optimal allotments Possible solutions (S=S1∪S2) 

1. SH1→P2, SH2→P1, SH3→ P3 ((42,52,64,77;0.6,0.5,0.5), (50,60,72,83;0.7,0.2,0.4)) 
2. SH1→P1, SH2→P3, SH3→ P2 ((40,46,69,84;0.8,0.6,0.6), (41,57,71,80;0.8,0.5,0.4)) 
3. SH1→P3, SH2→P1, SH3→ P2 ((47,57,77,95;0.8,0.6,0.3), (39,54,64,73;0.7,0.5,0.5)) 
4. SH1→P2, SH2→P3, SH3→ P1 ((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3.0.4)) 
5. SH1→P3, SH2→P2, SH3→ P1 ((42,58,77,88;0.6,0.5,0.4), (63,77,86,95;0.7,0.4,0.5)) 
6. SH1→P1, SH2→P2, SH3→ P3 ((39,49,67,79;0.7,0.5,0.6), (53,70,83,94;0.9,0.3,0.2)) 

 
From Table 8, we obtain the set of all efficient solutions and the optimal compromise solution which 
is closest to the ideal solution. The obtained ideal, efficient and optimal compromise solutions are 
plotted in a graph using the MATLAB which are shown in Figure 1.  
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Figure 1: Graphical representation of all solutions obtained by FPA 

 
6.Comparative study and discussions 

 
We compare the above example with the existing methods from the literature to prove the efficiency 
of our approach. Using the method of Risk-Allah et al. [21] we obtain the ideal solution as 
((38,50,66,75;0.6,0.5,0.5), (39,54,64,73;0.7,0.5,0.5)) and optimal compromise solution as 
((38,50,66,75;0.6,0.5,0.5), (62,70,82,91;0.8,0.3.0.4)) and using the method of Khalifa [17], we obtain the 
optimal compromise solution as ((47,57,77,95;0.8,0.6,0.3), (39,54,64,73;0.7,0.5,0.5)). Using our 
proposed approach, we obtain the ideal solution as ((38,50,66,75;0.6,0.5,0.5), (39,54,64,73;0.7,0.5,0.5)), 
efficient solutions as ((42,52,64,77;0.6,0.5,0.5), (50,60,72,83;0.7,0.2,0.4)); 
((40,46,69,84;0.8,0.6,0.6),(41,57,71,80;0.8,0.5,0.4));((47,57,77,95;0.8,0.6,0.3),(39,54,64,73;0.7,0.5,0.5));((38
,50,66,75;0.6,0.5,0.5),(62,70,82,91;0.8,0.3.0.4));((42,58,77,88;0.6,0.5,0.4),(63,77,86,95;0.7,0.4,0.5));((39,49,
67,79;0.7,0.5,0.6), (53,70,83,94;0.9,0.3,0.2)) and optimal compromise solution as 
((40,46,69,84;0.8,0.6,0.6), (41,57,71,80;0.8,0.5,0.4)). 
        In this comparative study, we find out that our proposed approach provides the set of all 
efficient solutions and the best optimal compromise solution of the given problem as compared to 
the other two approaches which are clearly shown in Table 9 and Figure 2. 
 

Table 9: Comparisons between the proposed approach with other existing approaches 
 

Methods Ideal solution Efficient solutions Optimal compromise solution 

FPA ü ü ü 

Rizk-Allah et al. [21] ü - ü 
Khalifa [17] - - ü 
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Figure 2: Comparison between proposed and existing approaches 

 
7.Conclusions and future scopes 

 
In this research article, the parameters of the model are expressed as SVTrNNs which improve the 
capacity of DM to make more realistic decisions. The main advantage of our approach is that the 
efficient solutions and the optimal compromise solution we obtain are neutrosophic quantities rather 
than deterministic values and they provide greater flexibility to the DM. Our proposed approach 
provides the best optimal compromise solution to the given problem as compared to the other two 
approaches which are shown in graph. When the DM deals with a range of logistical issues, the set 
of all efficient solutions obtained by our proposed approach can serve as a valuable tool. Though 
our approach analyses the solutions of NBOAP in the best way, there may be some limitations in 
predicting the solutions of qualitative and complex data due to the computational complexity in 
handling higher dimensional problems, they can be resolved using evolutionary algorithms. In the 
future research, one may incorporate this concept in neutrosophic bi-objective fractional assignment 
problem. The solution approach presented in this article can be aptly used by the DM when dealing 
with type-2 fuzzy parameters. Furthermore, in areas such as management science, finance, 
etc. wherever the assignment problems arise in neutrosophic environment, this solution approach 
will be a great resource. 
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Abstract 
 

One of the various optimization methods that addresses optimization under uncertainty is fuzzy 
linear programming. This model can be used when there is ambiguity in the situation because it is 
not precisely specified or when the problem does not require an exact value. With fuzzy linear 
programming, there is a range of grey between the two extremes as opposed to binary models, where 
an event may only be either black or white. As a result, it broadens the range of potential 
applications because most scenarios involve a spectrum of values rather than a bipolar state. In this 
article, a new FLP-based method is developed using a single MF, called modified logistics MF. The 
modified MF logistics and its modifications taking into account the characteristics of the parameter 
are from the analysis process. This MF was tested for useful performance by modeling using FLP. 
The developed version of FLP provides confidence in the existing IPPP application. This approach 
to resolving the IPPP can get feedback from the decision maker, the implementer and the analyst. In 
this case, this process can be called FLP interaction. FS self-assembly for MPS problems can be 
developed to find satisfactory solutions. The decision maker, researcher and practitioner can apply 
their knowledge and experience to get the best results.  

 
Keywords: Fuzzy Linear Programming, Degree of Satisfaction, Production Planning, 
Fuzzy PF, Vagueness. 

 
Abbreviations 
FLP : fuzzy linear programming  
MF : membership function  
IPPP : industrial production planning problem 
FS : fuzzy system  
NL : non linear  
NLMF : nonlinear membership function  
IP : industrial Problem  
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FP : Fuzzy parameter  
MPS : mix product selection 
LP  : Linear Programming   

1. Introduction 
 
In previous studies a logistical MF model is developed to overcome the difficulty of using linear 
MF to solve complex decision making problems. However, it is expected that a new type of logistic 
MF based on certain NL resources can be obtained and its variability in changing the pattern of 
real-life problems can be explored. Such patterns of NL logistic MF are reflected in this work with 
its paradoxical changes in real life problems. The first step in testing such an MF system and its 
transformation is to apply it to a digital model that illustrates the problem of real decision making. 
A novel approach for fuzzy linear programming has been created recently employing a particular 
membership function called the modified logistic membership function. The modified logistic 
membership function is first developed, then an analytical technique is used to determine its 
adaptability to unclear parameters. Fuzzy linear programming is used to examine the usefulness of 
this membership function using an example to provide context. Applying FLP's established 
technique to actual industrial production planning problems now seems confident. The analyst, 
the implementer, and the decision-maker may all receive input from this method of solving the 
industrial production planning problem. This method can therefore be referred to as an IFLP 
(Interactive FLP). To discover a satisfying solution to the mix product selection problem, it is 
possible to create a self-organizing fuzzy system. To get the optimum result, the decision-maker, 
the analyst, and the implementer can pool their expertise and experience. Another study shows, 
for example, the benefits of MF. Their work is based on exponential LF. His demonstrated example 
can be accepted to test and compare our newly developed NLMF [1-3], such an attempt to 
compare this example with the results achieved in this work.  
The test based on good intellectual ability should be performed with the newly developed MF to 
demonstrate that it fits the determination. This IP should be developed by creating multiple 
products with high FP as well as multiple uncertainties on productivity, product demand, 
availability and service time. Since it integrates operations and strategies, ties operations with 
strategies, and is essential to enterprise resource planning and organizational integration, 
aggregate production planning (APP) is regarded as a crucial stage in production systems. An 
efficient APP should boost the quality of service offered to the clients while simultaneously 
minimizing production and inventory expenses. Some cost and demand characteristics can't 
always be accurately assessed when maintaining an application. Numerous engineering 
applications use fuzzy logic to manage erroneous data. This gave the problem of aggregate 
production planning in an environment with uncertain data a mathematical programming 
foundation. Fuzzy linear programming is used to solve the APP issue when background 
information about the APP problem is given. An example is shown to illustrate how the model 
works for various -cut values. A researcher used different types of PI to ensure that its approach 
used traditional optimization techniques. Complex real-world intelligence tools should be used to 
test the newly developed MF to ensure it is relevant and decision-making. To test the new MF and 
the problems shown above, a software platform is required. This platform not only accepts FPs, 
but also needs to streamline FLP to provide the necessary data for the decision maker. The 
software, MATLAB, and LP Toolbox are well-suited for resolving such FLP problems, mainly as 
well as many FPs and unnecessary restrictions. In this study, the author used MATLAB and LP 
Toolkit to solve the real IP problem of the MPS problem [4-6]. 
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2. Methodology of MF 
 
According to some previous studies, the trapezoidal MF will experience difficulties such as 
damage when resolving FLP problems. To solve the damage problem, we should use NL LF as a 
hyperbolic tangent with asymptotes at 1and 0 [7-8].  In this case, we use LF for NLMF as given by: 
Minimize  

 
 

(2.1) 

Where C and D are scalar constants and,  is FP considering DOV, where  indicates 
sharp. The difference is higher when you approach the same. Configuration (2.1) will be the same 
as shown in Figure 1 when . 
The reason we use this function is that MF logistic is similar to hyperbolic tangent function in 
previous studies, but more flexible than hyperbolic tangent. It is also known that trapezoidal MF 
corresponds to LF. Therefore, LF is considered an appropriate function to demonstrate the level of 
unfounded objective. This work is invaluable in decision-making and implementation by decision-
maker and designer. LF, (2.1) is a non-monotonic activity, to be used as fuzzy MF. This is very 
important because, due to the unpredictable environment, DOV represents the acquisition of 
change [9-12].  We can show that MF does not increase as: 

 
 

(2.2) 

Where  and  are all above zero, .Furthermore, it can be shown that (2.1) has 

asymptotes in  and  with the appropriate values of  [13-14]. This means 
 

and .  
 
 

This can be expressed as follows: 
From (2.2) 

 
 
 

Therefore, using the L-hospital’s rule, we obtained:  

  
(2.3) 

As  the situation is not very vague so . 
From (2.2) we have:  

, when                
  

(2.4) 

In addition to the above, LF (2.2) has a vertical tangent at . Where . This can be 
demonstrated by defining tangent as: 

 
 
 

 

 
(2.5) 

( )
1 y

Cg y
Deb

=
+

0 1b< < 0b =

0 1b< <

( )1

y

y

dg CD e
dy De

b

b

b
= -

+

,C D y 0dg
dy

£

( ) 0g y = ( ) 1g y = ,C D

lim 0
y

dg
dy®¥

=
0

lim 0
y

dg
dy®

=

lim
y

dg
dy®¥

¥
= -

¥

( )
lim 0

2 1 yy

dg C
dy Deb

b
®¥

= =
+

0y® 0b ®

( )2
lim lim 0

1y y

dg CD
dy D

b
®¥ ®¥

= - =
+

0b ®

0y y= 0( ) 0.5g y =

( ) ( )0 0

0
lim
i

g y i g y
i

¥
®

+ -
= -

( ) ( ) ( ) 000 0

0 0

11lim lim
yy i

i i

C C
g y i g y DeDe

i i

bb +

® ®

-+ - ++=

178 



 
Mahesh M. Janolkar, Kirankumar L. Bondar, Pandit U.Chopade 
FUZZY LINEAR PROGRAMMING APPROACH FOR SOLVING 
PRODUCTION PLANNING PROBLEM 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

 
 
 
 
 

So, by using L-hospital’s rule:  

 

 
 

 
 

(2.6) 

To make and , by  (2.1) 

 
 

(2.7) 

  
(2.8) 

Now we use (2.7) as well as (2.8) in (2.6), 

 , when        

		                 

 
(2.9) 

This shows that the vertical tangent is . 

It can also be shown that the LF has an inflection point at , such as . Where 

 is the second derivative of compared to . In addition, it can be shown that 

 at , where  is the third derivative of compared to  [15-17]. 
The above argument about vertical, asymptotic, and rotational tangent leads to the conclusion that 
the recommended LF is variable [18-19]. An MF of this type, unlike linear work, presents real-life 
problems. From the above description of LF characteristics, the current MF is fully described for 
FLP problems in the following statistics. NLMF is quickly identified for the FLP problem in the 
next section. 

 
2.1 Logistic MF 

MF logistics for FLP problems are defined as:    

               

 
 

(2..1.1) 

Where is MF value of same parameter  and .  

The size y is considered a member of the fuzzy set associated with it;  and  respectively are 

the minimum values as well as the maximum values of FP . are variable and 
determines the type of MF. The greater the benefit of this, the greater it’s DOV.  
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2.2 S-Curve MF 

S-curve MF is a special case of LF with certain values of and. These principles will be 
identified. This LF as given by (2.1.1) is expressed as MF in S form by some studies [20-21]. 
Here, we define the S-curve MF as follows: 

               

 
 
 

(2.2.1) 

Where θ is the MF level. (2.2.1) is similar to (2.1.1) except that MF is adjusted to 0.001 ≤ θ(y) ≤ 0.999. 
This size is chosen because in the manufacturing process it is not always necessary 100% of the 
required material. At the same time, the operating capacity will not be below 0%. So there is a gap 
between  and  with 0.001 ≤ θ (y) ≤ 0.999. This concept of near (y) is used in this article to 

solve the output processing problem of the nonlinear MPS problem. We rotate the y-axis as  

and  to find the values of C, D and β. A study has made such an increase in its scientific 
work [22]. The values of C, D and β are derived from (2.2.1) as: 
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By using (2.2.2) into (2.2.3) we have:  
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Rearranging (2.2.4) we have:  
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Since  and  are based on , we need another condition to obtain the values of . 
Let, 
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and hence:  
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By using (2.2.2) and (2.2.5) into (2.2.7) we have: 
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By solving (2.2.8):  
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By solving (2.2.9):  
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Since  has to be positive, (2.2.10) gives  and from (2.2.2) and (2.2.5),  and
 respectively. 

 

2.3 MF of the TC of the Matrix 𝑏"!" 

The MF for the TC is given by: 

               

 
 
 
 

(2.3.1) 

Where is the degree of adhesion of TC .  and  are individually very low and very high 

for TCs. 
 

2.4 Fuzzy TC of the Matrix 𝑏!"∗ . 

The MF for  is given by 

               
 

By rearranging exponential term, we have the following:  

               

 

By taking log on the both sides we have:  

               
 

Hence we have:  

               
 

(2.4.1) 

Since is the fuzzy TC in (2.4.1), It is denoted by . Therefore 

               
 

(2.4.2) 

3. A New Mathematical Model for FLP Problem 
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Subject to:  

               
 

(3.1) 

where  

and (3.1)  is a numerical target,  is TCs,  is the decision change and  is the default 

hardware change. (2.4.2) and (3.1) combine to form FLP and (3.2). 
Also, 

               
 
 

Subject to:  

               
 

(3.2) 

where  ;    ;    

4. Account on Fuzzy MPS Problem 
 
There are 8 products that can be made by mixing 8 different components and using 9 different 
configurations. There are also 10 restrictions of the marketing department such as MPS, the 
requirements of the main product line, as well as the minimum and maximum scope of demand 
for each product. All the requirements in these circumstances are unclear. It is important to use 
some DOS to get the maximum benefit from using FLP integration. 
 

4.1 Calculation of w* 

Using the LP method, we will be able to address the above-mentioned FLP types as well as the 
solution of the nonlinear size for the constraints and objective functions that can be achieved. The 
results obtained in Tables 4.1 and 4.2 are summarized. From Table 4.1 we can see that the values 
increase the performance. Some previous studies compared this idea as appropriate to represent 
DOS to describe OF as PF [23-24]. His counsel is becoming more real. PF has a value of 319939 to 
0.999. We describe this as 99.9% DOS. As a result, a w * of 207963 has 0.1% DOS. The possible 
solution is at θ = 0.5 (i.e. 50% DOS) with a value of w * as 247000.  

Table 4.1: OS with S-curve MF for 𝜃 = 14.120. 

DOS (θ) Optimum Values (w*) 
0.001000 207963 
0.022502 216398 
0.121470 224527 
0.142474 225177 
0.224478 225592 
0.283608 230332 
0.348042 232317 
0.414188 234535 
0.456242 245439 
0.510467 247826 
0.524670 268147 
0.542077 273526 
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0.558422 288537 
0.778327 291170 
0.783527 292077 
0.838137 303324 
0.859673 305543 
0.914147 307862 
0.925365 314989 
0.935917 319187 
0.999000 319939 

 

Table 4.2: Distribution of w* against θ and β 

w* DOV (β) 
DOS (θ) 17 13 9 5 1 
0.001 195324 195453 196602 196801 197807 
0.250 240136 244800 274791 281523 315592 
0.500 267608 287858 289857 295578 316135 
0.750 266755 292940 306754 312935 318880 
0.999 316185 317208 318635 318733 318931 

 

4.2 Objective Values of Various 𝛽 

Table 4.1 shows the variability of OV w * compared to DOS θ for the value of DOV . It 
will be useful for the decision-maker to see such differences for a number of principles. 
Membership value in the analysis above represents DOS and w * is PF. We can conclude that as the 
DOV increases, the value of the individual increases. This event actually happens with real life 
problems in an unpredictable environment. 
The ideal solution in a nonlinear environment is . Thus, the results for 50% of the DOS  
( ) for and the corresponding values for w * are shown in Table 4.2. We can see 
in Table 4.2 that for and for that increase, w * decreases. We can conclude that when DOV 
and TC conversion increase, w * decreases for a single DOS. The data in Table 4.2 are the result of 
IFLP analysis for (3.1). This information is very useful for the decision maker to make a definite 
decision about its implementation after the dissertation [25-27]. 
 

4.3 Distribution of w* against 𝜃 and 𝛽 

The relationship between w *, θ is provided in Table 4.2. This table is very useful for the decision 
maker to find out the value and any benefits offered in DOS θ. From Table 4.2 we can see that OV 
does not depend on DOV and DOS. It cannot be concluded that for the higher value of DOS, the 
value of value will be higher. This is not true. But at 99.9% DOS, the profit margin will be the 
highest even at the highest DOV costs. From the diagonal values in Table 4.2, we can conclude that 
the VO increases at a lower value ( ). Then the w * value is reduced to 

. Finally, the value of w * increases by . These results indicate 
that the correct resolution (DOS) does not guarantee high value (OV). This means that a person 
will be satisfied with some DOS when it comes to decision making and the environment.  

5. Conclusion and Future Work 
 
The industrial application of FLP interaction is analyzed by modified S-curve MF using real-time 
data collected from chocolate manufacturers. The problem of non-compliant MPS has been 

14.120b =

0.5q =
0.5q = 3 19b£ £

0.5q =

0.001 0.250q£ £
0.500 0.750q£ £ 0.750 1q£ £
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described. Eight cases were identified that could be based on non-FP in the FP system. The 
required size of each is listed. Value and quality were calculated using the FLP method. Because 
there are so many decisions to make, the tools to define the solution and the high level of 
profitability and high DOS are outlined. It should be borne in mind that higher profits will not 
necessarily lead to higher DOS. FS self-assembly for MPS problems can be developed to find 
satisfactory solutions. The decision maker, researcher and practitioner can apply their knowledge 
and experience to get the best results. 
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Abstract

In machine learning, support vector machines (SVM) are supervised learning models with associated
learning algorithms that analyze data for classification and regression analysis. SVM is one of the most
robust prediction method based on statistical learning frameworks. Regression is a statistical method that
attempts to determine the strength and character of the relationship between dependent and independent
variables. This paper explores the idea of support vector Regression. The most commonly used classical
procedure is Least Squares, which is less efficient and very sensitive when the data contains outliers.
To overcome this limitations, alternative robust regression procedures exist such as LMS regression,
S-estimator, MM-estimator and Support Vector Regression (SVR). In this study, the comparisons have
made for the classical regression procedure and the robust regression procedures. In that, various measures
of errors are much efficient when we work with robust regression procedures. In this paper, an attempt
has been made to review the existing theory and methods of SVR.

Keywords: Linear regression, Robust regression, kernels, Support Vector Regression

1. Introduction

Support vector regression is a feature of support vector machines. It’s worth mentioning that
the support vector machine (SVM) is a concept that may be utilized to analyze both regression
and classification data [4] and [12]. Support vector classification is the name given to the support
vector machine when it is used for classification, while support vector regression is the name
given to it when it is used for regression [5]. SVM is a new machine learning technique based on
the statistical learning theory proposed by Vapnik and Wolfe dual programming theory. SVM has
a robust mathematical theory base, well-generalized ability, and global optimum, as compared to
other learning algorithms, and is widely used in pattern recognition and functional regression as
a result are seen in [9].

Support vector machine (SVM) has been first introduced by Vapnik. There are two main
categories for support vector machines: support vector classification (SVC) and support vector
regression (SVR). SVM is a learning system using a high dimensional feature space. It yields
prediction functions that are expanded on a subset of support vectors. SVM can generalize
complicated gray level structures with only a very few support vectors and thus provides a new
mechanism for image compression. A version of a SVM for regression has been proposed in
1997 by Vapnik, Steven Golowich, and Alex Smola [11]. This method is called support vector
regression (SVR).

The support vector machine is a more advanced version of the support vector classifier,
resulting from the use of kernels to enlarge the feature space in a specified fashion [1] and [6].
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The feature space is expanded in this technique to allow a non-linear boundary between the
classes. The kernel technique is a computationally efficient way to put such a notion into action
[2]. Support vector regression allows us to specify how much error in our model is acceptable,
and it will identify an appropriate line (or hyperplane in higher dimensions) to fit the data. See,
[3] and [10].

The manuscript of this paper is laid out as follows. The concept of regression procedures is
defined in Section 2. This session also covers the LS, LMS, S, MM, and SVR methodologies utilized
in this article for examining these ideas. Support vector regression types and various kernel
functions are also covered. Section 3 summarizes results of the numerical study of comparative
analysis under various kernels along with regression procedures. Section 4 ends with a summary
and conclusion.

2. REGRESSION PROCEDURES

The conventional regression procedure, namely, Least Squares Method (LS), the robust proce-
dures, Least Median Squares Method (LMS), S-Estimator (S), and MM-Estimator (MM), and
Support Vector Regression (SVR) are briefly discussed in this section.

2.1. Least Squares Method (LS)

A fundamental statistical method for determining a regression line or the best-fit line for a given
pattern is the least-squares approach. An equation with specified parameters are described in this
procedure. This method is considered a typical strategy in regression analysis for approximating
sets of equations with more equations than unknowns. The least squares method determines the
best results by minimizing the sum of squares of deviations or errors in each equation’s result.
Least-square method is the curve that best fits a set of observations with a minimum sum of
squared residuals or errors. The exercise of minimizing these residuals would be the trial and
error fitting of a line "through" the Cartesian coordinates representing these values. One way to
proceed with the Least Squares Method is to solve using matrix multiplication.
he least squares method can more formally be described. Given a dataset of points (x1, y1),
(x2, y2), ..., (xn, yn) and derive the matrices:

X =


1 x1
1 x2
. .
. .
1 xn

 , y =


y1
y2
.
.

yn

 , A =

[
b
m

]
, E


e1
e2
.
.

en

 (1)

Then set up the matrix equation,
Y = XA + E (2)

where matrix Y contains the yn values, matrix X contains a row of 1™s and along with the xn
values, matrix A consists of the Y-intercept and slope, and matrix E is the errors. Then solve for
A,

A = (XTX)−1XTY (3)

This is the matrix equation ultimately used for the least squares method of solving a linear system.

2.2. Least Median Squares Method (LMS)

Rousseeuw was the first to introduce the method of Least Median Squares in 1984 [7]. The least
median of squares approach estimates the parameters by solving the nonlinear minimization
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problem. To put it another way, the estimator must produce the minimum number for the median
of squared residuals computed throughout the entire data set. It turns out that this strategy is
extremely resistant to false matches and outliers caused by poor localization, implying that it is
unaffected by outliers or other violations of the typical normal model’s assumptions. The LMS
regression was developed to optimise the median of the squares of residuals. The LMS estimate
can be obtained as the solution of the following optimization problem.
Let xi

T = (xi1, xi2, , xip), i=1,2,¦.,n and

y = (y1, y2, , yn)
T (4)

be given real vectors.
It is assumed that n

p ≥ p and the (nxp) matrix, X= [xij] is offull rank to avoid degenerate cases

θ = (θ1, θ2, , θp)
T (5)

be a vector of regression parameters. The optimization problem that arises out of the LMS method
is to estimate θ∗ providing

min
θmed(yi − xi

Tθ)2 (6)

LMS is designed to have a high breakdown point, which is commonly defined as the minimum
percentage of "contaminated" data required to change an estimate by a given amount. The LMS
breakdown point is 50%, while the comparable LS breakdown point is zero.

2.3. S-Estimator (S)

Rousseeuw and Yohai (1984) proposed the S-estimator, which minimises a scale estimator [8].
S-estimators combine the flexibility and asymptotic features of M-estimators to provide a simple
high-breakdown regression estimator. Because they are based on scale estimators, the name
S-estimators was chosen. The S-estimator minimizes an estimator of scale, which is given by

β̂n = argminα̂n(β) (7)

The estimator of scale may be defined by a function ρ, For any sample r1, r2, , rn of real numbers,
we define the scale estimate s(r1, r2, , rn) as the solution of

1
n∑ n

i=1ρ
ri
s
= k (8)

where k is the expectation value of ρ for a standard normal distribution. Let (x1, y1), , (xn, yn)
be a sample of regression data with p-dimensional xi. For each vector θ, obtain the residuals
(r1(θ),r2(θ),¦,rn(θ)) by solving the above equation and hence the estimator of scale may be defined
by a function . Further the function ρ must satisfy the conditions, such as symmetric, continuously
differentiable and ρ(0)=0 and also there exists c > 0 such that ρ is strictly increasing on [c, ∞]..
Thus, the S-estimator θ̂ is defined by

θ̂ = min
θs(r1(θ), r2(θ), ..rn(θ) (9)

and the final scale estimator σ̂ is then

σ̂ = s(r1(θ̂), ..., rn(θ̂)) (10)

In least Squares, least absolute deviation estimation, and even generalized M-estimators, outly-
ing observations sometimes strongly influence the estimation result, making an important and
interesting relationship existing in the majority of observations. The S-estimators are a class of
estimators that overcome this difficulty by smoothly down-weighting outliers in fitting regression
functions to data.
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2.4. MM-Estimator (MM)

Such estimators are interesting as they combine high efficiency and high breakdown point in
a simple and intuitive way. Typically one starts first with a highly-robust regression estimator,
typically an S-estimator. Then one can use the scale based upon this preliminary fit along with a
better-tuned ρ function to obtain a more efficient M-estimator of the regression parameter. An
MM-estimator of α then defined as any solution of an M-type equation where

n

∑
i=1

ρ1
′
[
yi − ∑k

j=0 xijβj

SMM
]xij = 0 (11)

Such estimators are interesting as they combine high efficiency and high breakdown point in
a simple and intuitive way. Typically one starts first with a highly-robust regression estimator,
typically an S-estimator. Then one can use the scale based upon this preliminary fit along with a
better-tuned ρ function to obtain a more efficient M-estimator of the regression parameter. An
MM-estimator of α then defined as any solution of an M-type equation where

ψM M(y, x : α) = uMM(XT
−1

∑
s
(y − xα)) (12)

2.5. Support Vector Regression (SVR)

Support Vector Regression is a method for estimating a function that maps from an input item
to a real integer. SVR has the same qualities as the classifying SVM, as well as the margin
maximization and kernel technique for non-linear mapping.
A dataset for regression is represented as follows,

D = (x1, y1), (x2, y2), ...., (xm, ym) (13)

where xi is a n-dimensional vector, y is the real number for each xi. The SVR function F(xi)
makes a mapping from an input vector xi to the target yi and takes the form.

F(x) = w.x − b (14)

where w is the weight vector and b is the bias. The goal is to estimate the parameters (w and b) of
the function that give the best fit of the data. An SVR function F(x) approximates all pairs (xi, yi)
while maintaining the differences between estimated values and real values under precision.
Unlike LS, SVR’s goal is to minimise the coefficients, specifically the L2 norm of the coefficient
vector rather than the squared error. In SVR, we can adjust epsilon to achieve the model’s desired
accuracy. SVR is an advanced regression technique that makes use of the concept of hyperplane
to perform well with large datasets. Simple regression strives to lower error rates, whereas SVR
aims to fit the error with a specific threshold.

2.5.1 Kernel function in Support Vector Regression

SVM can be used as a classification machine, as a regression machine, or for novelty detection.
Kernel functions, a group of mathematical functions play a significate role for getting better
accuracy in SVM. The function of a kernel is to require data as input and transform it into the
desired form. Different kernel functions are used by different SVM algorithms. There are several
types of these functions, including linear, nonlinear, polynomial, radial basis function (RBF), and
sigmoid. The most preferred kind of kernel function is RBF. Because it’s localized and has a finite
response along the complete x-axis. The kernel functions return the scalar product between two
points in an exceedingly suitable feature space. The most widely used kernel functions are briefly
furnished as follows.
Linear kernel, which is the most basic sort of kernel and is usually one dimensional. When there
are a lot of features, it proves to be the best function. For text-classification tasks, the linear kernel
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Table 1: Computed error measures under conventional, robust and support vector regression

SVR

Errors LS LMS S MM
Linear Polynomial Radial Sigmoid

γ ϵ γ ϵ γ ϵ γ ϵ

MDAE 0.47 0.26 0.31 0.47 0.57 0.44 0.40 0.38 0.30 0.23 0.48 0.48
(0.23) (0.22) (0.24) (0.23) (0.24) (0.23) (0.31) (0.29) (0.23) (0.22) (0.49) (0.43)

MSE 0.30 2.20 1.60 0.30 0.30 0.31 0.20 0.25 0.10 0.12 1.96 2.10
(0.09) (0.10) (0.09) (0.09) (0.09) (0.09) (0.12) (0.12) (0.09) (0.09) (0.44) (0.68)

RMSE 0.55 1.48 1.26 0.55 0.55 0.56 0.50 0.50 0.40 0.35 1.40 1.45
(0.30) (0.32) (0.31) (0.30) (0.30) (0.30) (0.35) (0.35) (0.30) (0.30) (0.66) (0.83)

(.) without outliers

is usually favoured because most of these problems can be linearly split. Linear kernel functions,
denoted by u

′
v, are faster than other functions.

The polynomial kernel, which is a more generalised form of the linear kernel, is the second kernel.
It is not as preferred as other kernel functions as it is less efficient and accurate. Polynomial
Kernel function is denoted by (γu

′
v + coe f 0)degree.

The radial basis function kernel, which is one of the most popular and widely utilized in SVM.
It’s typically used with non-linear data. When there is no prior knowledge of data, it aids in
proper separation. The gamma value ranges from 0 to 1. Radial basis Kernel function is denoted
by e((−γ|u−v2)).
The sigmoid kernel is mostly preferred for neural networks. This kernel function is similar to
a two-layer perceptron model of the neural network, which works as an activation function for
neurons. Sigmoid Kernel function is denoted by tanh(γu

′
v + coe f 0).

The nu- SVR and eps-SVR has been taken for comparing the performance of various kernel based
SVR. In nu-SVR, the parameter γ is used to determine the proportion of the number of support
vectors desire to keep in solution with respect to the total number of samples in the dataset. Also
the parameter ϵ is introduced into the optimization problem formulation and it is estimated
automatically. But in eps-SVR, there is no control on how many data vectors from the dataset
become support vectors, it could be a few, it could be many. Nonetheless, the total control of how
much error will allow the model to have, and anything beyond the specified ϵ will be penalized
in proportion to C, which is the regularization parameter.

3. NUMERICAL STUDY

A real data is used to demonstrate the performance of various approaches by computing various
measures of errors values. The dataset used in the numerical analysis is StarsCYG, which is
available in a package namely, robustbase in R. The data describes the Hertzsprung-Russell
diagram of the star cluster CYG OB1, which contains 47 stars in the direction of Cygnus, the
predictor variable, the logarithm of the effective temperature at the star’s surface (log.Te), and the
response variable, the logarithm of the star’s light intensity (log.light).
The experimental study has been carried out to study the performance of various procedures,
such as Least Squares (LS), Least Median Squares (LMS), S-Estimator (S), MM-estimator (MM),
and Support Vector Regression (SVR) with various kernels by computing error measures for the
dataset under with/without outliers and thus obtained results are summarized in the table 1.
(.) without outliers

The result reveals that, robust procedures provide better results when compared with the
conventional least square approach. Further, it is observed that γ− and ϵ− type radial kernel
based SVR outperforms over other kernels.
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4. CONCLUSION

Regression analysis is one of the supervised learning techniques in the context of statistical
learning. This paper explores the conventional, robust and support vector based regression
procedures. In the context of support vector regression, the study has been carried out under
the most widely used kernels. The efficiency of these algorithms have been studied under a
real study, with and without outliers. The results indicate that the robust regression procedures
more efficient than the traditional regression procedure under with and without outliers. Further,
the study reveals that SVR delivers much superior outcomes when compared with the others.
In the context of kernels, the γ and ϵ based radial kernel has the maximum efficiency when
compared to other kernels, regardless of whether or not the data contains outliers. The study
can be extended by incorporating the robust kernel in support vector regression for better accuracy.
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Abstract

An ice-cream plant’s workings are analyzed in the summer and winter seasons of the paper. The
ice-cream unit along with the other three units i.e., flavoring, freezing and combined flavouring and
freezing units are always operational in summers, due to the high demand, while in winters the combined
flavoring and freezing unit is kept in cold standby as a backup in case there is a demand for ice-cream.
In this work, the semi-Markov process and the regenerative point technique have been used to analyze
the system. Numerical analysis has been conducted using MATLAB. A variety of measures have been
developed to evaluate the effectiveness of a system. The Code Blocks have been used in interpreting the
graph in the specific case presented. All evaluation is based on the milk production data collected by the
plant. Improvements to the system performance will lead to increased profits. Similar techniques can be
applied to other systems.

Keywords: Seasonal functioning, semi-Markov process, Regenerative point technique, profit.

1. Introduction

The primary goal of any industry is to upgrade production through technological interventions
and so, is the goal of the dairy industry i.e to improve their production operations to attain
competitiveness. Physical models for predicting ice cream’s thermal properties were developed
by [1]. Analysis of reliability modeling for 2-out-of-3 redundant system was done by [2]. Profit
analysis of a two unit standby oil delivering system where priority is given to partially failed
unit over the completely failed unit for repair was analyzed by [3]. Reliability models for the
fertilzer industry were pioneered by [4], [5]. Availability optimization of ice cream making unit of
milk plant was discussed by [6]. Optimized scheduling, production planning and RAM study
of an ice-cream plant was given by [7], [12] respectively. Reliability and profit where stand by
units functions to accommodate the required demand was analyzed by [8] for system evaluation.
Availability analysis of a skim milk powder and profit analysis of a butter-oil production in
dairy industry was discussed by [9] respectively. Profit analysis of a system where operation is
affected by temperature was discussed by [10]. Description of the four subsystems of the butter-oil
production process- the melting vats, the boilers, the clarifier and the settling tanks was given by
[11]. The probability of a three-unit induced draft fan system with one standby unit in a working
condition was given by [13]. Modeling of two-Unit cold standby system was discussed by [14].
On the basis of progressively censored first-failure data, a problem of estimating parameters for
an exponential distribution class and hazard rate functions is studied by [15].
But, none of them have discussed the working of an ice-cream plant. So, in this paper functioning
of an ice-cream plant is discussed. The production of functional ice-cream plant consists of one
main unit and three units grouped in parallel but in series with the unit 1. The main unit (unit 1)
consists of heating, emulsifying, pasteurization, homogenization and ageing. Unit 2 is flavoring
unit, unit 3 is freezing unit and unit 4 is combined flavoring and freezing. In summers, due to

RT&A, No 4 (71) 
Volume 17, December 2022 

192 

mailto:drish2796@gmail.com.com


high demand the whole system is operative whereas in winters, the system goes to cold standby
state and undergoes maintenance. It only operates when the demand occurs. In that case the
units 2, 3 along with the unit 1 operates and the unit 4 is in cold standby state and operates on
the failure of either of the units 2, 3 or on the failure of both. The system goes to a failed state a)
on the failure of the unit 1 or b) on the failure of unit 2 with unit 4 or c) on the failure of unit 3
with unit 4.
Semi-Markov process and regenerative point technique is used to obtain measures of system
effectiveness in steady state that include MTSF, availability of the system, busy period of repairman
for repair and maintenance, expected number of repair and maintenances, profit of the system.

2. Methods

The stages of methodlogy carried out is given below:

1. In the beginning, industry data on failure rates and maintenance was collected over a
five-year period.

2. A comprehensive understanding of how the unit operates is the second step. Through that,
reliability models are generated.

3. MATLAB is used to obtain reliability measures using semi-Markov processes and regenera-
tive point techniques that include:

• Transition probabilities and mean sojourn time in steady state

• MTSF of the system.

• Long term availability for the system.

• Bus period analysis of the repairman.

• Expected number of repairs.

• Additionally, the system’s profit potential is analyzed graphically.

4. In the following step, graphical analysis is performed by using excel and code blocks on a
particular example of exponential distribution.

5. Furthermore, reliability can be improved by identifying key machines and faults, making
better decisions, and formulating better strategies.

3. Annotations and Symbols

Table 1

Notations of the model

Notations Descriptions
λ Failure rate of unit 1.
λ1 Failure rate of unit 2.
λ2 Failure rate of unit 3.
λ3 Failure rate of unit 4.
λ4 Maintenance rate of the unit.
α, β Rate of going to winters and summers respectively.
θ Repair rate of unit 1.
θ1 Repair rate of unit 2.
θ2 Repair rate of unit 3.
θ3 Repair rate of unit 4.
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Notations of the model

Notations Descriptions
θ4 Repair rate after maintenance.
G(t), g(t) c.d.f and p.d.f of repair time of unit 1.
G1(t), g1(t) c.d.f and p.d.f of the repair time of unit 2.
G2(t), g2(t) c.d.f and p.d.f of the repair time of unit 3.
G3(t), g3(t) c.d.f and p.d.f of the repair time of unit .
G4(t), g4(t) c.d.f and p.d.f of the maintenance time.
? Symbol for convolution.
s Laplace Stieltjes Treansform.
Ml(t) Probability that the system is in up state at time t.
Wl(t) Probability that the system is busy for repair at time t.
Al(t) Availability of the system at time t.
Bl(t) Busy period for repair/maintenance the system at time t.
Vl(t) Expected number of repairs/maintenances.

Descrpition

States Description and symbols of the model

Sj These are the states when the system is operative, j=0,15,17,18.
S4, S5, S6 These are the states when the system works in a reduced capacity.
S2 This is the cold stanby state.
Si These are the failed states, i=3,7,8,9,10,11,12,13,14,16,19,20,21,22.
S, W Symbols for summer and winter respectively.
o(u1,2,3,4) The units are in operating state.
o(u1,4) Units 1 and 4 are in operating state.
o(u1,2,3) Units 1,2,3 are in operating state.
csu4 Unit 4 is in cold standby state.
fric Ice-cream unit is under repair due to failure in unit 1.
umic Ice-cream unit is under repair.
fRu4 Unit 4 is under continuous repair.
fru2,fru3,fru4 Units 2,3,4 are under repair respectively.
fwru2,fwru3 Units 2,3 are waiting for repair.

4. Model Descriptions and Assumptions

Reliability analysis is done of the working of an ice-crream plant w.r.t. seasons. At an initial stage
the system is operative, in summers since the demand is high all the units are operative whereas
in winters the system is in cold standby state and only operates when there is some demand.The
system consists of four units, unit 1 is the main unit of the system where the process starts after
that it moves to unit 2 i.e., the flavouring unit and after that unit 3 i.e., the freezing unit. Unit 4
is combined freezing and flavouring unit. In summers, the system operates at reduced capacity
when any of the units 2,3,4 fails. The system goes to failed state on the failure of unit 1; unit 2, 4
and unit 3, 4.
Following are the assumptions of the system:

• The system is operating initially.

• A distribution of exponential failure times is assumed for all failure times.

• Unit 1 and unit 4 receive the most priority for repair.
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• States always restores the system to its original functionality after every repair.

Figure 1: State Transition Diagram

5. System Effectiveness Measures

In this model the states S0, S1, S15, S17, s18 are the operating states. States S4, S5, S6 are the states
operating in a reduced capacity. S2 is a cold standby state, rest are the failed states.

5.1. Mean time to system failure (MTSF)

System effectiveness measures have been achieved using semi-Markov processes and regenerative
point techniques. A mean time to failure (MTSF) is determined for the system when considering
the failed state as an absorbent state. In terms of probabilistic arguments, we can get the following
recursive relation for φl(t):

φl(t) = ∑n Qln(t)sφn(t) + ∑e Qle(t)
where Sn indicates an un-failed regenerative state into which the given regenerative state Slcan
transit and Se indicates a failed state into which the state Sl can transit directly. By applying the
Laplace-Stieltjes Transform (L.S.T.) to the relationships given by the above equation and solving
them for φ∗∗0 (t), we are able to calculate:

φ∗∗0 (t) = N(s)
D(s)

The mean time to system failure (MTSF), when the system started at the beginning of state S0 is:
MTSF=

∫ ∞
0 R(t)dt = lims→0 R∗(s) Using L’ Hospital rule and putting the value of φ∗∗0 (s) we get

MTSF = T0 = lims→0 =
1−φ∗∗0 (s)

s = N
D

where
N=µ0(p13 + p14 p47 + p14 p48 + p15 p59 + p15 p5,10 + p16 p6,11 + p16 p6,12 + p16 p6,13 − p13 p15,2 p2,15 −
p13 p15,17 p17,15 − p13 p15,18 p18,15 − p14 p47 p15,2 p2,15 − p14 p48 p15,2 p2,15 − p15 p59 p15,2 p2,15 −
p15 p15,2 p2,15 p5,10 − p16 p15,2 p2,15 p6,11 − p16 p15,2 p2,15 p6,12 − p16 p15,2 p2,15 p6,13 − p14 p47 p15,17 p17,15 −
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p14 p48 p15,17 p17,15 − p15 p59 p15,17 p17,15 − p14 p47 p15,18 p18,15 − p14 p48 p15,18 p18,15 −
p15 p59 p15,18 p18,15 − p15 p5,10 p15,17 p17,15 − p15 p5,10 p15,18 p18,15 − p16 p6,11 p15,17 p17,15 −
p16 p6,12 p15,17 p17,15 − p16 p6,13 p15,17 p17,15 − p16 p6,11 p15,18 p18,15 − p16 p6,12 p15,18 p18,15 −
p16 p6,13 p15,18 p18,15) + µ1(p01 − p01 p15,2 p2,15 − p01 p15,17 p17,15 − p01 p15,18 p18,15) + µ2(p02 −
p02 p14 p41 − p02 p15 p51 − p02 p16 p61 − p02 p15,17 p17,15 − p02 p15,18 p18,15 + p02 p14 p41 p15,17 p17,15 +
p02 p15 p51 p15,17 p17,15 + p02 p16 p61 p15,17 p17,15 + p02 p14 p41 p15,18 p18,15 + p02 p15 p51 p15,18 p18,15 +
p02 p16 p61 p15,18 p18,15) + µ4(p01 p14 − p01 p14 p15,2 p2,15 − p01 p14 p15,17 p17,15 − p01 p14 p15,18 p18,15) +
µ5(p01 p15 − p01 p15 p15,2 p2,15 − p01 p15 p15,17 p17,15 − p01 p15 p15,18 p18,15) + µ6(p01 p16 −
p01 p16 p15,2 p2,15 − p01 p16 p15,17 p17,15 − p01 p16 p15,18 p18,15) + µ15(p02 p2,15 − p02 p14 p41 p2,15 −
p02 p15 p51 p2,15 − p02 p16 p61 p2,15) + µ17(p02 p2,15 p15,17 − p02 p14 p41 p2,15 p15,17 −
p02 p15 p51 p2,15 p15,17 − p02 p16 p61 p2,15 p15,17) + µ18(p02 p2,15 p15,18 − p02 p14 p41 p2,15 p15,18 −
p02 p15 p51 p2,15 p15,18 − p02 p16 p61 p2,15 p15,18)
D=p14 p41 p15,2 p2,15 − p16 p51 − p16 p61 − p15,2 p2,15 − p15,17 p17,15 − p15,18 p18,15 − p14 p41 +
p16 p51 p15,2 p2,15 + p16 p61 p15,2 p2,15 + p14 p41 p15,17 p17,15 + p16 p51 p15,17 p17,15 + p16 p61 p15,17 p17,15 +
p14 p41 p15,18 p18,15 + p16 p51 p15,18 p18,15 + p16 p61 p15,18 p18,15 + 1

6. Cost Measures

6.1. Long Term Availability of the System in Summers at Full Capacity

Using the theory of regeneration process, using Al(t) where l = 0, 1 as the probability that the
system will be in upstate at instant t given that it is in state i at t=0, we can find that this value
will satisfy the following recursive relations:

Al(t) = Ml(t) + ∑n qln(t) ? An(t)
In this case, Sn can represent any state to which Sl can transit. Ml(t) is the probability that the
system will be accessible at time t before visiting any other state.
M0 = e−(α+β)t, M1 = e−(λ+λ1+λ2)t

Taking Laplace transform of equations and solving for A0 we obtain:
A∗0(s) =

N1(s)
D1(s)

Steady state availability is given by:
A0 = lims→0 sA∗0(s) =

N1
D1

where
N1 =
µ0 +µ1 p01−µ0 p13−µ0 p47−µ0 p48−µ0 p59−µ0 p5,10−µ0 p6,11−µ1 p01 p47−µ1 p01 p48−µ0 p14 p41 +
µ0 p13 p47 + µ0 p13 p48 − µ1 p01 p59 − µ0 p15 p51 + µ0 p13 p59 − µ0 p16 p61 + µ0 p47 p59 + µ0 p48 p59 −
µ1 p01 p5,10 + µ0 p13 p5,10 + µ0 p47 p5,10 + µ0 p48 p5,10 − µ1 p01 p6,11 + µ0 p13 p6,11 + µ0 p47 p6,11 +
µ0 p48 p6,11 + µ0 p59 p6,11 + µ0 p5,10 p6,11 + µ1 p01 p47 p59 + µ1 p01 p48 p59 + µ0 p15 p47 p51 + µ0 p14 p41 p59 +
µ0 p15 p48 p51 − µ0 p13 p47 p59 − µ0 p13 p48 p59 − µ0 p16 p41 p64 + µ0 p16 p47 p61 + µ0 p16 p48 p61 −
µ0 p16 p51 p65 + µ0 p16 p59 p61 + µ1 p01 p47 p5,10 + µ1 p01 p48 p5,10 + µ0 p14 p41 p5,10 − µ0 p13 p47 p5,10 −
µ0 p13 p48 p5,10 + µ0 p16 p61 p5,10 + µ1 p01 p47 p6,11 + µ1 p01 p48 p6,11 + µ0 p14 p41 p6,11 − µ0 p13 p47 p6,11 −
µ0 p13 p48 p6,11 + µ1 p01 p59 p6,11 + µ0 p15 p51 p6,11 − µ0 p13 p59 p6,11 − µ0 p47 p59 p6,11 − µ0 p48 p59 p6,11 +
µ1 p01 p5,10 p6,11 − µ0 p13 p5,10 p6,11 − µ0 p47 p5,10 p6,11 − µ0 p48 p5,10 p6,11 + µ0 p16 p47 p51 p65 +
µ0 p16 p41 p59 p64 + µ0 p16 p48 p51 p65 − µ0 p16 p47 p59 p61 − µ0 p16 p48 p59 p61 + µ0 p16 p41 p64 p5,10 −
µ0 p16 p47 p61 p5,10 − µ0 p16 p48 p61 p5,10 − µ1 p01 p47 p59 p6,11 − µ1 p01 p48 p59 p6,11 − µ0 p15 p47 p51 p6,11 −
µ0 p14 p41 p59 p6,11 − µ0 p15 p48 p51 p6,11 + µ0 p13 p47 p59 p6,11 + µ0 p13 p48 p59 p6,11 − µ1 p01 p47 p5,10 p6,11 −
µ1 p01 p48 p5,10 p6,11 − µ0 p14 p41 p5,10 p6,11 + µ0 p13 p47 p5,10 p6,11 + µ0 p13 p48 p5,10 p6,11
D1 = (µ3 p13 + µ1)(p51 − p47 p51 − p48 p51 − p51 p6,11 + p47 p51 p6,11 + p48 p51 p6,11) + (µ4 + µ7 p47 +
µ8 p48)(p14 + p16 p64 − p14 p59 − p14 p5,10 − p14 p6,11 − p16 p59 p64 − p16 p64 p5,10 + p14 p59 p6,11 +
p14 p5,10 p6,11) + (µ5 + µ9 p59 + µ10 p5,10)(p15 + p16 p65− p15 p47 − p15 p48 − p15 p6,11 − p16 p47 p65−
p16 p48 p65 + p15 p47 p6,11 + p15 p48 p6,11) + (k + µ11 p6,11)(p16 − p16 p47 − p16 p48 − p16 p59 −
p16 p5,10 + p16 p47 p59 + p16 p48 p59 + p16 p47 p5,10 + p16 p48 p5,10)......(1)
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6.2. Long Term Availability of the System in Summers at Half Capacity

Using the theory of regeneration process, using Al(t) where l = 4,5,6 as the probability that the
system will be in upstate at instant t given that it is in state i at t=0, we can find that this value
will satisfy the following recursive relations:

Al(t) = Ml(t) + ∑n qln(t) ? An(t)
In this case, Sn can represent any state to which Sl can transit. Ml(t) is the probability that the
system will be accessible at time t before visiting any other state.
M4 = e−(λ+λ3)t ¯G1(t), M5 = e−(λ+λ3)t ¯G2(t), M6 = e−(λ+λ1+λ2)t ¯G3(t)
Taking Laplace transform of equations and solving for A0 we obtain:

A∗0(s) =
N2(s)
D1(s)

Steady state availability is given by:
A0 = lims→0 sA∗0(s) =

N2
D1

where
N2 = −p01(µ5 p15 p47 − µ5 p15 − kp16 − µ4 p14 + µ5 p15 p48 + kp16 p47 + kp16 p48 + µ4 p14 p59 +
kp16 p59 − µ4 p16 p64 − µ5 p16 p65 + µ4 p14 p5,10 + kp16 p5,10 + µ4 p14 p6,11 + µ5 p15 p6,11 − kp16 p47 p59 −
kp16 p48 p59 + µ5 p16 p47 p65 + µ5 p16 p48 p65 + µ4 p16 p59 p64 − kp16 p47 p5,10 − kp16 p48 p5,10 +
µ4 p16 p64 p5,10 − µ5 p15 p47 p6,11 − µ5 p15 p48 p6,11 − µ4 p14 p59 p6,11 − µ4 p14 p5,10 p6,11)
D1 is already defined in equation (1).

6.3. Busy Period Analysis for Repair in Summers

Using the theory of regeneration process, using Bl(t) where l = 4,5,6,7,8,9,10,11 as the probability
that the system is under repair at an instant t given that it is in state i at t=0, we can find that this
value will satisfy the following recursive relations:

Bl(t) = Wl(t) + ∑n qln(t) ? Bn(t)
In this case, Sn can represent any state to which Sl can transit. Wl(t) is the probability that the
system will be busy for repair at time t before visiting any other state.
W3 = W7 = W9 = W11 = ¯G(t), W4 = e−(λ+λ3) ¯G1(t), W5 = e−(λ+λ3) ¯G2(t), W6 =
e−(λ+λ1+λ2) ¯G3(t) + (λ1e−(λ+λ1+λ2) ? 1) ¯G3(t) + (λ2e−(λ+λ1+λ2) ? 1) ¯G3(t), W8 = W10 = W12 =
W13 = ¯G3(t)
Taking Laplace transform of equations and solving for B0 we obtain:

B∗0 (s) =
N3(s)
D1(s)

Steady state availability is given by:
B0 = lims→0 sB∗0 (s) =

N3
D1

where
N3 =
−p01(p13 p47µ3− p14µ4− p15µ5− p16k− p14 p47µ7− p14 p48µ8− p15 p59µ9− p16 p64µ4− p16 p65µ5−
p15 p5,10µ10 − p16 p6,11µ11 − p16 p47 p64µ7 − p16 p48 p64µ8 − p13µ3 + p15 p47µ5 + p16 p47k + p13 p48µ3 −
p16 p59 p65µ9 + p15 p48µ5 + p16 p48k + p13 p59µ3 + p14 p59µ4 + p16 p59k− p16 p65 p5,10µ10 + p13 p5,10µ3 +
p14 p5,10µ4 + p16 p5,10k + p13 p6,11µ3 + p14 p6,11µ4 + p15 p6,11µ5 + p15 p47 p59µ9 + p16 p47 p65µ5 +
p15 p48 p59µ9 + p16 p48 p65µ5 + p14 p47 p59µ7 + p14 p48 p59µ8 + p16 p59 p64µ4 + p15 p47 p5,10µ10 +
p15 p48 p5,10µ10 + p14 p47 p5,10µ7 + p14 p48 p5,10µ8 + p16 p64 p5,10µ4 + p16 p47 p6,11µ11 + p16 p48 p6,11µ11 +
p16 p59 p6,11µ11 + p14 p47 p6,11µ7 + p14 p48 p6,11µ8 + p15 p59 p6,11µ9 + p16 p5,10 p6,11µ11 +
p15 p5,10 p6,11µ10 + p16 p47 p59 p65µ9 + p16 p48 p59 p65µ9 + p16 p47 p59 p64µ7 + p16 p48 p59 p64µ8 −
p13 p47 p59µ3 − p16 p47 p59k− p13 p48 p59µ3 − p16 p48 p59k + p16 p47 p65 p5,10µ10 + p16 p48 p65 p5,10µ10 +
p16 p47 p64 p5,10µ7 + p16 p48 p64 p5,10µ8 − p13 p47 p5,10µ3 − p16 p47 p5,10k− p13 p48 p5,10µ3 −
p16 p48 p5,10k− p13 p47 p6,11µ3 − p15 p47 p6,11µ5 − p13 p48 p6,11µ3 − p15 p48 p6,11µ5 − p13 p59 p6,11µ3 −
p14 p59 p6,11µ4 − p13 p5,10 p6,11µ3 − p14 p5,10 p6,11µ4 − p16 p47 p59 p6,11µ11 − p16 p48 p59 p6,11µ11 −
p15 p47 p59 p6,11µ9 − p15 p48 p59 p6,11µ9 − p14 p47 p59 p6,11µ7 − p14 p48 p59 p6,11µ8 − p16 p47 p5,10 p6,11µ11 −
p15 p47 p5,10 p6,11µ10 − p16 p48 p5,10 p6,11µ11 − p15 p48 p5,10 p6,11µ10 − p14 p47 p5,10 p6,11µ7 −
p14 p48 p5,10 p6,11µ8 + p13 p47 p59 p6,11µ3 + p13 p48 p59 p6,11µ3 + p13 p47 p5,10 p6,11µ3 + p13 p48 p5,10 p6,11µ3)
D1 is already defined in equation (1).
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6.4. Expected Number of Repairs in Summers

Leting Vl(t) be the expected number of repairs in 0 < l ≤ t such that it is given the system
entered the state Sl at t=0, we get

Vl(t) = ∑n Qln(t)[hl + vl(t)]; l=4,5,6,7,8,9,10,11

hl =

{
1, when state Sl is the regenerative state
0, otherwise

Taking LST of equations, we get:
V∗∗0 (s) = N4

D1
The equation describing the number of repairs per unit time in steady state

V0 = lims→0 sv∗∗0 (s) = N4
D1

where
N4 = −p01(p13 p47 − p14 p41 − p15 p51 − p16 p61 − p14 p47 − p14 p48 − p15 p59 − p16 p64 p41 −
p16 p65 p51 − p15 p5,10 − p16 p6,11 − p16 p47 p64 − p16 p48 p64 − p13 + p15 p47 p51 + p16 p47 p61 + p13 p48 −
p16 p59 p65 + p15 p48 p51 + p16 p48 p61 + p13 p59 + p14 p59 p41 + p16 p59 p61 − p16 p65 p5,10 + p13 p5,10 +
p14 p5,10 p41 + p16 p5,10 p61 + p13 p6,11 + p14 p6,11 p41 + p15 p6,11 p51 + p15 p47 p59 + p16 p47 p65 p51 +
p15 p48 p59 + p16 p48 p65 p51 + p14 p47 p59 + p14 p48 p59 + p16 p59 p64 p41 + p15 p47 p5,10 + p15 p48 p5,10 +
p14 p47 p5,10 + p14 p48 p5,10 + p16 p64 p5,10 p41 + p16 p47 p6,11 + p16 p48 p6,11 + p16 p59 p6,11 + p14 p47 p6,11 +
p14 p48 p6,11 + p15 p59 p6,11 + p16 p5,10 p6,11 + p15 p5,10 p6,11 + p16 p47 p59 p65 + p16 p48 p59 p65 +
p16 p47 p59 p64 + p16 p48 p59 p64 − p13 p47 p59 − p16 p47 p59 p61 − p13 p48 p59 − p16 p48 p59 p61 +
p16 p47 p65 p5,10 + p16 p48 p65 p5,10 + p16 p47 p64 p5,10 + p16 p48 p64 p5,10 − p13 p47 p5,10 − p16 p47 p5,10 p61 −
p13 p48 p5,10 − p16 p48 p5,10 p61 − p13 p47 p6,11 − p15 p47 p6,11 p51 − p13 p48 p6,11 − p15 p48 p6,11 p51 −
p13 p59 p6,11 − p14 p59 p6,11 p41 − p13 p5,10 p6,11 − p14 p5,10 p6,11 p41 − p16 p47 p59 p6,11 − p16 p48 p59 p6,11 −
p15 p47 p59 p6,11 − p15 p48 p59 p6,11 − p14 p47 p59 p6,11 − p14 p48 p59 p6,11 − p16 p47 p5,10 p6,11 −
p15 p47 p5,10 p6,11 − p16 p48 p5,10 p6,11 − p15 p48 p5,10 p6,11 − p14 p47 p5,10 p6,11 − p14 p48 p5,10 p6,11 +
p13 p47 p59 p6,11 + p13 p48 p59 p6,11 + p13 p47 p5,10 p6,11 + p13 p48 p5,10 p6,11)
D1 is already defined in equation (1).

6.5. Availability of the System in Winters

The availability Aw
0 of the system in winters is:

Aw
0 = lims→0(sA∗w0 ) = N5

D2
where
M0 = e−(α+β), M15 = e−(γ+λ+λ1+λ2)t, M17 = e−(λ+λ3)t ¯G2(t), M18 = e−(λ+λ3)t ¯G3(t)
N5 = µ0 + µ15 p02 p2,15 − µ0 p2,14 − µ0 p15,2 p2,15 − µ0 p15,16 − µ0 p15,17 p17,15 − µ0 p15,18 p18,15 −
µ0 p17,19 − µ0 p17,20 − µ0 p18,21 − µ0 p18,22 + µ17 p02 p2,15 p15,17 + µ18 p02 p2,15 p15,18 + µ0 p2,14 p15,16 +
µ0 p2,14 p15,17 p17,15 + µ0 p2,14 p15,18 p18,15 − µ15 p02 p2,15 p17,19 − µ15 p02 p2,15 p17,20 + µ0 p2,14 p17,19 +
µ0 p15,2 p2,15 p17,19 + µ0 p2,14 p17,20 + µ0 p15,2 p2,15 p17,20 − µ15 p02 p2,15 p18,21 − µ15 p02 p2,15 p18,22 +
µ0 p2,14 p18,21 + µ0 p15,2 p2,15 p18,21 + µ0 p2,14 p18,22 + µ0 p15,2 p2,15 p18,22 + µ0 p15,16 p17,19 +
µ0 p15,16 p17,20 + µ0 p15,18 p17,19 p18,15 + µ0 p15,16 p18,21 + µ0 p15,18 p17,20 p18,15 + µ0 p15,16 p18,22 +
µ0 p15,17 p17,15 p18,21 + µ0 p15,17 p17,15 p18,22 + µ0 p17,19 p18,21 + µ0 p17,19 p18,22 + µ0 p17,20 p18,21 +
µ0 p17,20 p18,22 − µ18 p02 p2,15 p15,18 p17,19 − µ18 p02 p2,15 p15,18 p17,20 − µ17 p02 p2,15 p15,17 p18,21 −
µ17 p02 p2,15 p15,17 p18,22 − µ0 p2,14 p15,16 p17,19 − µ0 p2,14 p15,16 p17,20 − µ0 p2,14 p15,18 p17,19 p18,15 −
µ0 p2,14 p15,16 p18,21 − µ0 p2,14 p15,18 p17,20 p18,15 − µ0 p2,14 p15,16 p18,22 − µ0 p2,14 p15,17 p17,15 p18,21 −
µ0 p2,14 p15,17 p17,15 p18,22 + µ15 p02 p2,15 p17,19 p18,21 + µ15 p02 p2,15 p17,19 p18,22 +
µ15 p02 p2,15 p17,20 p18,21 − µ0 p2,14 p17,19 p18,21 − µ0 p15,2 p2,15 p17,19 p18,21 + µ15 p02 p2,15 p17,20 p18,22 −
µ0 p2,14 p17,19 p18,22 − µ0 p2,14 p17,20 p18,21 − µ0 p15,2 p2,15 p17,19 p18,22 − µ0 p15,2 p2,15 p17,20 p18,21 −
µ0 p2,14 p17,20 p18,22 − µ0 p15,2 p2,15 p17,20 p18,22 − µ0 p15,16 p17,19 p18,21 − µ0 p15,16 p17,19 p18,22 −
µ0 p15,16 p17,20 p18,21 − µ0 p15,16 p17,20 p18,22 + µ0 p2,14 p15,16 p17,19 p18,21 + µ0 p2,14 p15,16 p17,19 p18,22 +
µ0 p2,14 p15,16 p17,20 p18,21 + µ0 p2,14 p15,16 p17,20 p18,22
D2 = (µ14 p2,14 + µ2)(p15,2 − p15,2 p17,19 − p15,2 p17,20 − p15,2 p18,21 − p15,2 p18,22 + p15,2 p17,19 p18,21 +
p15,2 p17,19 p18,22 + p15,2 p17,20 p18,21 + p15,2 p17,20 p18,22) + (µ15 + µ16 p15,16)(p17,15 − p2,14 p17,15 −
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p17,15 p18,21 − p17,15 p18,22 + p2,14 p17,15 p18,21 + p2,14 p17,15 p18,22) + (µ17 + µ19 p17,19 +
µ20 p17,20)(p15,17 − p2,14 p15,17 − p15,17 p18,21 − p15,17 p18,22 + p2,14 p15,17 p18,21 + p2,14 p15,17 p18,22) +
(µ18 + µ21 p18,21 + µ22 p18,22)(p15,18 − p2,14 p15,18 − p15,18 p17,19 − p15,18 p17,20 + p2,14 p15,18 p17,19 +
p2,14 p15,18 p17,20).......(2).

6.6. Busy Period for Repair in Winters

The busy period for repair BwR
0 of the system in winters is:

BwR
0 = lims→0(sB∗wR

0 ) = N6
D2

where
W17 = e−(λ+λ3) ¯G2(t), W18 = e−(λ+λ3) ¯G3(t), W19 = W21 = ¯G(t), W20 = W22 = ¯G3(t)
N6 = −p02(p2,15 p15,16 p17,19µ16 − p2,15 p15,17µ17 − p2,15 p15,18µ18 − p2,15 p15,17 p17,19µ19 −
p2,15 p15,17 p17,20µ20 − p2,15 p15,18 p18,21µ21 − p2,15 p15,18 p18,22µ22 − p2,15 p15,16µ16 +
p2,15 p15,18 p17,19µ18 + p2,15 p15,16 p17,20µ16 + p2,15 p15,18 p17,20µ18 + p2,15 p15,16 p18,21µ16 +
p2,15 p15,17 p18,21µ17 + p2,15 p15,16 p18,22µ16 + p2,15 p15,17 p18,22µ17 + p2,15 p15,18 p17,19 p18,21µ21 +
p2,15 p15,18 p17,19 p18,22µ22 + p2,15 p15,18 p17,20 p18,21µ21 + p2,15 p15,18 p17,20 p18,22µ22 +
p2,15 p15,17 p17,19 p18,21µ19 + p2,15 p15,17 p17,20 p18,21µ20 + p2,15 p15,17 p17,19 p18,22µ19 +
p2,15 p15,17 p17,20 p18,22µ20 − p2,15 p15,16 p17,19 p18,21µ16 − p2,15 p15,16 p17,19 p18,22µ16 −
p2,15 p15,16 p17,20 p18,21µ16 − p2,15 p15,16 p17,20 p18,22µ16)
D2 is already defined in equation (2).

6.7. Busy Period for Maintenance in Winters

The busy period for maintenance BwM
0 of the system in winters is:

BwM
0 = lims→0(sB∗wM

0 ) = N7
D2

where
W14 = ¯G4(t)
N7 = p02 p2,14µ14(p15,16 p17,19 − p15,17 p17,15 − p15,18 p18,15 − p17,19 − p17,20 − p18,21 − p18,22 −
p15,16 + p15,16 p17,20 + p15,18 p17,19 p18,15 + p15,16 p18,21 + p15,18 p17,20 p18,15 + p15,16 p18,22 +
p15,17 p17,15 p18,21 + p15,17 p17,15 p18,22 + p17,19 p18,21 + p17,19 p18,22 + p17,20 p18,21 + p17,20 p18,22 −
p15,16 p17,19 p18,21 − p15,16 p17,19 p18,22 − p15,16 p17,20 p18,21 − p15,16 p17,20 p18,22 + 1)
D2 is already defined in equation (2).

6.7.1. Expected Number of Repairs in Winters

The expected number of repair VwR
0 of the system in winters is:
VwR

0 = lims→0(sV∗wR
0 ) = N8

D2
where
N8 = −p02(p2,15 p15,16 p17,19 − p2,15 p15,17 p17,15 − p2,15 p15,18 p18,15 − p2,15 p15,17 p17,19 −
p2,15 p15,17 p17,20 − p2,15 p15,18 p18,21 − p2,15 p15,18 p18,22 − p2,15 p15,16 + p2,15 p15,18 p17,19 p18,15 +
p2,15 p15,16 p17,20 + p2,15 p15,18 p17,20 p18,15 + p2,15 p15,16 p18,21 + p2,15 p15,17 p18,21 p17,15 +
p2,15 p15,16 p18,22 + p2,15 p15,17 p18,22 p17,15 + p2,15 p15,18 p17,19 p18,21 + p2,15 p15,18 p17,19 p18,22 +
p2,15 p15,18 p17,20 p18,21 + p2,15 p15,18 p17,20 p18,22 + p2,15 p15,17 p17,19 p18,21 + p2,15 p15,17 p17,20 p18,21 +
p2,15 p15,17 p17,19 p18,22 + p2,15 p15,17 p17,20 p18,22 − p2,15 p15,16 p17,19 p18,21 − p2,15 p15,16 p17,19 p18,22 −
p2,15 p15,16 p17,20 p18,21 − p2,15 p15,16 p17,20 p18,22)
D2 is already defined in equation (2).

6.7.2. Expected Number of Maintenances in Winters

The expected number of maintenances VwM
0 of the system in winters is:

VwM
0 = lims→0(sV∗wM

0 ) = N9
D2

where

Upasana Sharma, Drishti
WORKING OF AN ICE-CREAM PLANT SEASONALLY

RT&A, No 4 (71) 
Volume 17, December 2022 

199 



N9 = p02 p2,14(p15,16 p17,19 − p15,17 p17,15 − p15,18 p18,15 − p17,19 − p17,20 − p18,21 − p18,22 − p15,16 +
p15,16 p17,20 + p15,18 p17,19 p18,15 + p15,16 p18,21 + p15,18 p17,20 p18,15 + p15,16 p18,22 + p15,17 p17,15 p18,21 +
p15,17 p17,15 p18,22 + p17,19 p18,21 + p17,19 p18,22 + p17,20 p18,21 + p17,20 p18,22 − p15,16 p17,19 p18,21 −
p15,16 p17,19 p18,22 − p15,16 p17,20 p18,21 − p15,16 p17,20 p18,22 + 1)
D2 is already defined in equation (2).

7. Transition Probabilities and Mean Sojourn Time

p01 = β
α+β , p02 = α

α+β , p13 = λ
λ+λ1+λ2+λ3

, p
14= λ1

λ+λ1+λ2+λ3

, p15 = λ2
λ+λ1+λ2+λ3

, p16 =

λ3
λ+λ1+λ2+λ3

, p2,14 = λ4
λ4+γ , p2,15 = γ

λ4+γ , p41 = g∗1(λ + λ3), p47 = λ
λ+λ3

(1− g∗1(λ + λ3)), p48 =
λ3

λ+λ3
(1− g∗1(λ + λ3)), p51 = g∗2(λ + λ3), p59 = λ

λ+λ3
(1− g∗2(λ + λ3)), p5,10 =

λ3
λ+λ3

(1− g∗2(λ + λ3)), p61 = g∗3(λ + λ1 + λ2), p6,11 = λ
λ+λ1+λ2

(1− g∗3(λ + λ1 + λ2)), p6,12 =

p(12)
64 = λ1

λ+λ1+λ2
(1− g∗3(λ + λ1 + λ2)), p6,13 = p(13)

65 = λ2
λ+λ1+λ2

(1− g∗3(λ + λ1 + λ2)), p15,2 =
δ

δ+λ+λ1+λ2
, p15,17 = λ2

δ+λ+λ1+λ2
, p15,18 = λ1

δ+λ+λ1+λ2
, p17,15 = g∗2(λ + λ3), p17,19 =

λ
λ+λ3

(1− g∗2(λ + λ3)), p17,20 = λ3
λ+λ3

(1− g∗2(λ + λ3)), p18,15 = g∗1(λ + λ3), p18,21 =
λ

λ+λ3
(1− g∗1(λ + λ3)), p18,22 = λ3

λ+λ3
(1− g∗1(λ + λ3))

mean sojourn times are as follows:
µ0 = 1

α+β , µ1 = 1
λ+λ1+λ2+λ3

, µ2 = 1
δ+λ4

, µ4 = 1
λ+λ3

(1− g∗1(λ + λ3)), µ5 =
1

λ+λ3
(1− g∗2(λ + λ3)), µ6 = 1

λ+λ1+λ2
(1− g∗3(λ + λ1 + λ2)), µ15 = 1

δ+λ+λ1+λ2
, µ17 =

1
λ+λ3

(1− g∗2(λ + λ3)), µ18 = 1
λ+λ3

(1− g∗1(λ + λ3))
If time is measured from the epoch of entry into state Sn, the unconditional mean transit time of
the system from any state Sl is:

mln=
∫ ∞

0 tdQln(t) = −q∗ln
′(0)

where,
m01 + m02 = µ0, m13 + m14 + m15 = µ1, m2,14 + m2,15 = µ2, m41 + m47 + m48 =

µ4, m51 + m59 + m5,10 = µ5, m61 + m6,11 + m6,12 + m6,13 = µ6, m61 + m6,11 + m(12)
64 + m(13)

65 =
K, m15,2 + m15,16 + m15,17 + m15,18 = µ15, m17,15 + m17,19 + m17,20 = µ17, m18,15 + m18,21 + m18,22 =
µ18

K = λ
(λ+λ1+λ2)2 +

λ1+λ2
λ+λ1+λ2

∫ ∞
0 tg3(t)dt + 1

λ+λ1+λ2

∫ ∞
0 e−(λ+λ1+λ2)g3(t)dt−

λ1+λ2
(λ+λ1+λ2)2

∫ ∞
0 e−(λ+λ1+λ2)g3(t)dt

From the above transition probabilites it is verified that:
p01 + p02 = 1, p13 + p14 + p15 = 1, p2,14 + p2,15 = 1, p41 + p47 + p48 = 1, p51 + p59 + p5,10 =

1, p61 + p6,11 + p6,12 + p6,13 = 1, p61 + p6,11 + p(12)
64 + p(13)

65 = 1, p15,2 + p15,16 + p15,17 + p15,18 =
1, p17,15 + p17,19 + p17,20 = 1, p18,15 + p18,21 + p18,22 = 1

8. Profit analysis

The profit incurred to the system is:
P = A0C0 + A1

0C1 + Aw
0 C2 − (B0C3 + BWR

0 C4 + BWM
0 C5 + V0C6 + VWR

0 C7 + VWM
0 C8)

Where
C0, C1 are the revenues generated in summers when the system operates at full and half capacity
respectively. C2 is the revenue generated in winters.
C3, C4 is the cost per unit time when the repairman in busy for reapir in summers and winters
respectively.C5 is the cost per unit time when the repairman is busy for maintenance.
C6, C7 cost per repair in summers and winters respectively.C8 cost per maintenance.
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Figure 2: Values computed from the data collected

Figure 3: Values computed from the data collected

9. Graphical Analysis and Conclusion using Particular Case

Let us assume an exponential distribution for all the repair rates such that
g(t) = θe−θ(t), g1(t) = θ1e−θ1(t), g2(t) = θ2e−θ2(t), g3(t) = θ3e−θ3(t), g4(t) = θ4e−θ4(t)

p01 = β
α+β , p02 = α

α+β , p13 = λ
λ+λ1+λ2+λ3

, p
14= λ1

λ+λ1+λ2+λ3

, p15 = λ2
λ+λ1+λ2+λ3

, p16 =

λ3
λ+λ1+λ2+λ3

, p2,14 = λ4
λ4+γ , p2,15 = γ

λ4+γ , p41 = θ1
θ1+λ+λ3

, p47 = λ
θ1+λ+λ3

, p48 = λ3
θ1+λ+λ3

, p51 =
θ2

θ2+λ+λ3
, p59 = λ

θ2+λ+λ3
, p5,10 = λ3

θ2+λ+λ3
, p61 = θ3

θ3+λ+λ1+λ2
, p6,11 = λ

θ3+λ+λ1+λ2
, p6,12 = p(12)

64 =
λ1

θ3+λ+λ1+λ2
, p6,13 = p(13)

65 = λ2
θ3+λ+λ1+λ2

, p15,2 = δ
δ+λ+λ1+λ2

, p15,17 = λ2
δ+λ+λ1+λ2

, p15,18 =
λ1

δ+λ+λ1+λ2
, p17,15 = θ2

θ2+λ+λ3
, p17,19 = λ

θ2+λ+λ3
, p17,20 = λ3

θ2+λ+λ3
, p18,15 = θ1

θ1+λ+λ3
, p18,21 =

λ
θ2+λ+λ3

, p18,22 = λ3
θ2+λ+λ3

, µ0 = 1
α+β , µ1 = 1

λ+λ1+λ2+λ3
, µ2 = 1

δ+λ4
, µ4 = 1

λ+λ3
(1− g∗1(λ +

λ3)), µ5 = 1
λ+λ3+θ2

, µ6 = 1
λ+λ1+λ2+θ3

µ15 = 1
δ+λ+λ1+λ2

, µ17 = 1
λ+λ3+θ2

, µ18 = 1
λ+λ3+θ1

Figure 4: MTSF v/s Failure rate
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Figure 5: Profit v/s Failure rate

Figure 6: Profit v/s Cost

Figures 4, 5 are the MTSF and profit graphs showing a similar trend against the failure rate λ1
varying failure rate λ.
It shows that as the failure rate λ or λ1 increases the MTSF and profit decreases.
cut off points for figure 6 are as follows:

Table 2: Cut-off Points
Cost C3Rs. Revenue per up timeRs.

50000 19736.6955
70000 33564.2752

In table 2 the cut-off points have been shown and from figure 6 it is also clear that with increase
in the cost C1 the profit of the system increases. A number of research papers have been reviewed
in this review that have contributed greatly to the field of reliability engineering over the years.
The authors have conducted a substantial literature review with an aim of providing reliability
engineers and industry leaders with recommendations on improving system reliability. As a final
point, we see a wide range of potential uses for the new methods, techniques, and models. The
system analysis was performed using a semi-Markov process and regenerative point technique.
Code Blocks and Excel are used for graphical analysis, while MATLAB is used for calculation.In
conclusion, researchers should consider cost factors as well as reliability factors in order to attain
maximum reliability at a minimal cost in the future.
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Abstract 
 

TP has many applications and applications and applications to reduce costs. A good algorithm has 
been developed to adjust the TP in the context of all given parameters, namely the supply, demand 
and TC team one, well. However, in real applications, there are many different situations due to 
uncertainty. It is therefore important to study PT in an uncertain environment. In this paper, an 
updated procedure is proposed to fix FTP where all parameters represents the non-triangular FN. 
The first is to use a non-trivial assembly to convert FTP to an LP with FC and net resistance. The 
second is to use a new vending system to turn the problem-solving lab into a three-wire lab. The value 
of a well-updated system is assessed compared to existing systems from an application model. The 
results obtained show that the updated method proposed in this study is simpler and more efficient 
than some existing methods commonly used in literature. 
 
Keywords: Fuzzy Transportation Problem, Fuzzy Numbers, Solid Transportation 
Problems, Linear Programming Problem. 

Abbreviations 
Transportation Problem   : TP 
Transportation Cost    : TC 
Fuzzy Transportation Problem  : FTP 
Fuzzy Number    : FN 
Linear Programming   : LP 
Fuzzy Cost     :  FC 
Linear Programming Problem   : LPP 
Fuzzy Linear Programming  : FLP 
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Membership Function   : MF 
Objective Function   :  OF 
Solid Transportation Problem  : STP 
Fuzzy Variables    : FV 
Goal Programming   : GP 
Optimal Solution    : OS 
Initial Basic Feasible Solution  : IBFS 
Fuzzy Supply     : FS 
Fuzzy Demand     :  FD 
Fuzzy Quantity    : FQ  
Objective Value    : OV 
 

1. Introduction 

TP is an important LPP installed network that appears in many situations and should receive a lot 
of attention in documentation. The main idea of this problem is to find the minimum TC of the 
product to meet the requirements in the destination by using the resources at the beginning. TP can 
be used for a variety of situations such as planning, production, investment, plant location, product 
management, project management and many more [26]. In general, TP is handled assuming TC and 
the price and rejection values are directly related, i.e. around the network. However, in most cases, 
the decision maker has no information about the TP rate. As [35] explained, the following factors 
may affect the state of fuzziness in TPs: (a) the decision-maker lacks sufficient information about the 
TC unit of the transport function and therefore the TC does not n ', (b) there may be some kind of 
misconception about the demand for a new product on the market, (c) there may be uncertainty 
about the availability of the product from the source or importer due to time constraints. Also, in the 
fast, there are many different conditions due to uncertainty, such as changing weather conditions, 
oil prices, and traffic conditions. It is therefore important to study TP in an uncertain environment. 
Since TP is actually LPP, the easiest way is to add the current FLP format to FTP [4, 19, 22, 25, 33, 39, 
44, 49]. However, some of the existing systems provide only a clever solution that represents 
agreement in the case of nonlinear data [3, 28-29, 32, 36].  
FTP studies are also available, [27] demonstrated that the solution obtained by FLP always worked 
and developed in the previous studies, FLP in several of the best ways to fix TP. [13] developed an 
algorithm to adjust TPs where supply and demand are solid foundations with linear or triangular 
MF. [46] used FSs to fix the TP and the required by the parametric program. Their approach provides 
a solution that meets the highest objectives and objectives at the same time. [34] discussed the TP 
type and FC rate and turned the problem into a TP bicriterion on OF net. Their system provides only 
a good solution based on a good solution of the changed problems. [5] proposed a free STP of 
trapezoidal FN representing transportation cost, requirement and authority. They put together a 
parametric system to find a non-trivial solution. [21] devised a method based on the extension 
principle to obtain unnecessary OV via FTP as well as FC and FS rates as well as the required 
number. The LP system requires several objectives to solve the FTP problem. Liu incorporated a 
similar mechanism to regulate nonlinear STP [12]. [42] showed two ways to reduce the FTP cost of 
supply chain and the required are trapezoidal FNs. They used a parametric method to find a non-
invasive solution with the aim of reducing the TC concentration in both systems. [50] studied STP 
bicriterion in the stochastic parameter and built three mathematical models for the problem, 
including the expected GP value, the unpredictable GP block, and the GP-based space. [37] proposed 
a STP of a specific load in an unfamiliar environment, where immediate and unpaid prices, supply 
standards and requirements, as well as transportation capacity were FV. [18] demonstrated a non-
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invasive GP approach to solving the generation / transfer configuration problem embedded in a 
number of unimportant objectives in an uncertain environment. [14] devised a new GP-based system 
to streamline FTP and FC. [23] proposed several ways to fix TP in a non-invasive network. [17] used 
algorithm cells to solve TPs in random numbers. [43] produced FTP, using trapezoidal FNs and 
developed a modified fuzzy distribution system to achieve the OS in FN format. [24] introduced a 
new algorithm, a zero-sum algorithm for finding seamless FTP operating systems with critical 
parameters. [30] devised a strategy for reducing TC as well as travel time when demand, supply and 
TC per minute are available in FN. [40] developed a new FLPP-based system to find the FTP OS. 
They developed a new system based on the quality function to fix FTP on the TC, product supply 
and demand are fully represented by trapezoidal [38]. After that, [11] introduced a similar algorithm 
to fix the same type of FTP assuming that the decision maker was unsure of the correct TC values 
but there was nothing wrong with that involved in products and demand. [20] introduced a simpler 
algorithm to solve an FTP problem that was simpler and easier to understand than the method 
suggested in [45]. In addition, a new mechanism was developed to locate a non-invasive OS that had 
no transport problems on the new trapezoidal FN representation of [48]. [1] devised a systematic 
approach to fix all types of FTP, both increasing or decreasing OF. [15] proposed a new complex 
strategy for the consideration and choice of investing in intelligent travel systems. A unique set of 
many STPs with nonsense penalties, sources, requirements and liability was developed and 
implemented by [31]. FLP-based messaging systems for FS, request, and travel capabilities have been 
included in this report. [6] developed a fuzzy version of the Vogel method and MODI to achieve a 
non-invasive IBFS and a viable solution that could be done, one by one, without translating them 
into classic TP. Furthermore, [52] developed algorithms to find the OS of FTP, where supply, 
demand and price are all FN. Their algorithm provides the decision maker a better solution 
compared to current systems. [16] used examples to show that their system will not always lead to 
a useless OS. [41] discussed the psychological analysis of FTP. [7] demonstrated an ingenious GP 
approach to resolving TP with multiple objectives and intermediate costs. Furthermore, [10] 
compared two working TPs with 2 fuzzy parameters where unit TCs, the specific charge and the 
first problem in TC units, charge , supply and demand and the second problem are type FV 2. [9] 
focused on the generation of PTS OS in a nonlinear environment, which assumes that all parameters 
are type 2 FV due to lack of transparency. 
In this study, the following contributions were made by developing a new destruction method to 
mimic and modify FTPs: (a) Unlike some current methods, it is assumed that the arrival, desire and 
group TC values are negative triangular FNs. (b) The shortcomings of the existing FTP method are 
briefly discussed. (c) How to manage FTP is divided into two main parts. The first is to convert FTP 
to LPP with FC blocking on the net. The second is to develop a new sales strategy to convert the 
resulting LPP into three TP net. (d) The computational compression of the required method is greatly 
reduced compared to some conventional methods commonly used in literature. 

2. Preliminaries 

In this section, we examine some important concepts related to the fuzzy set concept, which will be 
used in other scripts [2]. 
First Definition: A FN is a convex normalized fuzzy set v * of real row R; the MF who goes on and 
on. 

Second Definition: FN is said to be FN triangular if its MF is given as follows: 
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(A1) 

  FN  can also mean . In this case, the point (v) d of the 

triangle FN v * gives the highest point	𝜽𝒗∗(𝒚), i.e., 𝜽𝒗∗(𝒗𝒅) = 1, this is also called v * triangular FN 
core. Furthermore, (v)l and (v)v are individually spaced supporting the bottom and top of the 
triangular FN v *. All FN settings are defined as triangular TF (R). 

Third Definition: It is said that FN triangular is the positive FN triangular if 

. All these FN triangular curves are defined as all TF (R) *. 

Forth Definition: It is said that the two triangular FNs  and  are 

equal, v * = u *,  if only and . 

Fifth Definition: Let  and be two negative triangular FNs in l ∈ 

R. Then the mathematical function is given in v * and u * by: 
 

 

 

 

3. FTP 

In a typical TP, the decision maker is thought to have accurate information about the magnitude of 
the problem. In real-world applications, TC standards, product supply and demand may not be fully 
understood due to uncontrolled events. To deal with such situations, a fuzzy program is put on 
paper to fix TP. FTP, by a decision maker who is unsure of the exact principles of TC, supply and 
demand, can be developed [51] as follows: 

 

Subject to:  

 

 

 (A2) 

where, n = total number of points, o = total number of places, = FS of product and jth origin,  = 

FD of product and place kth where,  = fuzzy TC per minute product from jth from kth point and 

 = FQ of the product to be transferred from jth point from kth to reduce the total TC concentration. 

Sixth Definition: Eq.A2 is considered a balanced FTP, if: 

 

Elsewhere, it is known as unbalanced FTP. 
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First Remark: Without a general hiccup, we think the Eq.A2 is balanced one. 
Second Remark: Since the negative number of products in the negative TC is insignificant, it is 
assumed that all parts of the FTP are not negative triangular FNs. About 2 words, take it as , , 

 and  and all represent it = ( ) m, ( ) d, ( ) v, = ( ) m, ( ) d, ( ) v. ,  = ( ) m, 

( ) d, ( ) v and  = ( ) m, ( ) d, ( ) v, one. So from description 5, Eq.A2 can be interpreted 

as follows: 

 

Subject to Constraints:  
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Similarly, with respect to definition 4, Eq.A3 can be rewritten as follows: 
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 (A3.8) 

 (A3.9) 

Also, for the Eq.A2 equilibrium inhibitors, they use Forth Definition. In the next section, new ways 
to overcome these weaknesses are suggested. 

4. Newly Developed Approach  

It is useful to point out that we can think of Eq.A3.0 as LPP has several objectives having OF:  

 

based on the operating space of Eq.A.3.0. Also, blockchain (Eq.A3.7), (Eq.A3.8) and (Eq.A3.9) in 
Eq.A3.0 (and Eq.A2 and Eq.A3) are guaranteed only in the system d exploitation must have been a 
negative triangular FN. This means that without these constraints, the potential gap of Eq.A3.0 is 
separated by a series of changes ( ) m, ( ) d and ( ) v. Therefore, we remove these barriers from 

the scope of the A3.0 scale and solve the underlying problem that makes these barriers satisfactory. 
This confirms that the OS was obtained as a negative FN triangular. Regarding the above discussion, 
we first find out the operating system of this net problem: 
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As we have seen, the problem (Eq.A4) is pure TP that can be solved using standard travel simplex 
algorithm. The OS of this issue is a left-hander of the non-essential OS of Eq.A4.2. Note that the 
Eq.A4.3 bandwidth guarantees an unobtrusive OS of the Eq.A2 as a negative FN. Now assuming 
that (y) m = ( ) on × 1 is the OS of the problem (Eq.A4), we solve the following problem to enter 

the OS of Eq. A2: 
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Note that the barrier (Eq.A5.3) ensures that the fuzzy OS of the Eq.A2 is not lower than its left. 
Furthermore, it is clear that Eq.A5 is a limited TP that can be corrected using the method provided 

by [24]. Finally, assuming that   on × 1 are the OS of the problem (Eq.A5), we solve the 

following problem to get the exact point of the fuzzy OS of the Eq .A2: 

 
(A6) 

Subject to Constraints:  

 
(A6.1) 

 
(A6.2) 

 (A6.3) 

As we have seen, this problem is also limited TP can be solved by using the method given in [8]. 
Moreover, the barrier (Eq.A6.3) supports that the correct position of the fuzzy OS of Eq.A2 is greater 
than or equal to its center. Therefore, the OS of the problem of Eq.A4, Eq.A5 and Eq.A6 ensure that 
the base OS of Eq.A2 is a triangular FN that is not negative. In summary, if (y) m, (y) d and (y) v are 
SO of network problems Eq.A4, Eq.A5 and Eq.A6, respectively, then y = (y) m, (y) d, (y) v would be 
the base OS of Eq.A2. Finally, the optimal value of the Eq.A2 problem is obtained by adding y and 
d × y as follows: 

 

 

5. Merits of Newly Proposed Method 

In this section, the benefits of an expected FTP processing method are defined. 
� Not only will the required system to implement FTP and TC representing FN be implemented 

in the principle of donations and requests as existing numbers, but it can also be used to 
configure FTP on all FN-enabled devices. 

� The OS looks like a negative FN, that is, there are no negative components either in the FQ 
product or in the non-core TC. 

� Using different methods such as northwest corner system, minimum price system and Vogel 
fuzzy approximation system to find the IBFS of the problem (Eq.A4), (Eq.A5) and (Eq.A6) lead 
to the same total CT. 

� The main advantage of the proposed method is that solving the Eq.A2 problem (Eq.A4), (Eq.A5) 
and (Eq.A6) is relatively large compared to the problem (Eq.A3. 0) by a. mathematical 
considerations, regarding the number of barriers to change. There is a direct relationship 
between the conventional complexity of LPP and the number of barriers to change. In particular, 
since the memory size required to place the backup in the simplex algorithm is square of the 
number of constraints, reducing the number of constraints of the LP type is very important from 
a mathematical point of view. Thus, the reduction in the number of inhibitions and the 
variability of the LP type leads to a reduction in the complexity of the LP type modified by 
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simplex algorithms and key methods such as Khachian's ellipsoid algorithm and projective 
algorithms. 

Compare the resistance and variability of the problem (Eq.A4), (Eq.A5) and (Eq.A6) the problem 
(Eq.A3.0). Problem (Eq.A4) has no barrier (n + o) and no change, while problem (Eq.A3.0) has 3 (n + 
o) +2 no barrier and 3 no change. This indicates that the problem (Eq.A4) has 2 (n + o + no) barriers 
and 2 less change than the problem (Eq.A3.0), so the use of the problem (Eq.A4) is strong the 
economy in terms of the problem (Eq. .A3.0) is based on mathematical concepts. There is a similar 
comparison between the resistance and exchange rate (Eq.A5) and (Eq.A6) and (Eq.A3.0). It is 
noteworthy that the constraints (Eq.A5.3) and (Eq.A6.3) agree that the variance ( )d and ( )v are 

limited. The simplex bounded system also uses these blockchains in the same way as the simplex 
bounded block ( )m≥0. This means that these barriers do not increase the number of barriers 

immediately. Therefore, regarding the above discussion, we recommend using problem (Eq.A4), 
(Eq.A5), and (Eq.A6) instead of problem (Eq.A3.0) to solve Eq.A2 from a mathematical point of view. 

6. Applications of Newly Proposed Method 

In this section, the model application is analyzed using the recommended method and evaluating 
the obtained results. 
First Example: One company has two sources P1 and P2, as well as three E1, E2 and E3 sources; TC 
fuzzy for quantity of products from  source to where is  where, 

 

The FS of the product in the first and second stages are (80, 100, 130) and (50, 70, 100), respectively. 
FD of the product in the first place, second and third are (40, 50, 60), (30, 40, 50) and (70, 90, 120), 
respectively. The company wants to determine the FQ of the product that needs to be shipped from 
any start to anywhere so that the total TC value is minimal. This problem can be solved with the 
following FTP: 
 

 

Subject to Constraints: 

 

 

 
(A7) 

Total FS = (125, 165, 225) = total FD so FTP is appropriate. Regarding the problem (Eq.A6), this 
problem can be translated into the following FTP: 

 

 

 

Subject to Constraints:  
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( ) ( ) ( )11 12 13 21 22 23 11 2180,100,130 , 50,70,100 , 40,50,70 ,y y y y y y y y´ ´ = ´ ´ = ´ =

( ) ( ) ( )12 22 13 23 11 12 13 21 22 2330,40,50 , 65,85,115 , ,  ,  ,  ,  ,  .y y y y y y y y y y TF R´ = ´ = Î

( ) ( ) ( ) ( ) ( ) ( )11 12 13 21 22 23 20 60 90 70 85 35 ,Min y m y m y m y m y m y m+ + + + +

( ) ( ) ( ) ( ) ( ) ( )11 12 13 21 22 2330 70 100 80 95 45 ,y d y d y d y d y d y d+ + + + +

( ) ( ) ( ) ( ) ( ) ( )11 12 13 21 22 2340 90 110 90  115 55y v y v y v y v y v y v+ + + + +
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(A8) 

In this case, regarding the problem (Eq.A4), we will first fix the following TP net to get the left side 
of Eq.A7: 

 

Subject to Constraints:  
 

 

 

 

 
(A9

) 

Fix TP (Eq.A9) using the standard transportation simplex algorithm that delivers the best OS and 
OV:  

          (A10) 

Now based on the OS (Eq.A10) and related to the problem (Eq.A5), we are setting up a limited LPP 
to access the free OS space of FTP (Eq.A7): 

 

Subject to Constraints:  

 

 

 

 
 

(A11) 

Classical TP can be corrected using the method provided above. OS and OV (Eq.A11) problems are 
found as follows: 

                  (A12) 

Also, regarding OS (Eq.A12) and Troubleshooting (Eq.A6), we solve the following bounded LPP to 
find the true fuzzy OS core of Eq.A7: 
 

 

Subject to Constraints:  
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( ) ( ) ( ) ( )12 22 13 2340, 85,y d y d y d y d+ = + =
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( ) ( ) ( ) ( ) ( ) ( )11 12 13 21 22 23130, 100,y v y v y v y v y v y v+ + = + + =
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 (A13) 

OS and OV (Eq.A11) problems are found as follows: 

             (A14) 

Finally, based on OS (Eq.A10), (Eq.A12) and (Eq.A14), the OS and OV of Eq.A7 are offered as follows: 

 

 

 

 

 

 (A15) 

 
The minimum TC minimum can be converted to the default OS. Using the required method, the 
minimum nonlinear TC is w = (5030,7930,12930) which can be translated as follows: 
� The minimum TC total is 5030 minutes. 
� The maximum possible TC is 7930 minutes. 
� The minimum travel time is 12930 minutes. 

This result indicates that the minimum TC minimum will be more than 5030 minutes and less than 
12930 minutes and the maximum chance is that the minimum TC total is 7930 minutes. It can be seen 
that there is no negative aspect of the OS that fuzzy got in the fuzzy TC collection, as you consider 
the existing system, if we apply the general distribution system fuzzy switch to find the OS without 
issue. An Eq.A6 with the help of IFBFS, obtained based on generalized fuzzy northwest corner 
system, then we get the following fuzzy OS and there is a negative part in the FQ of the product  

which should be changed by originally from third place and therefore no physical meaning. 
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Also, the levels  and fuzzy OS (Eq.A15) and (Eq.A16) are equal, i.e. R (-40, 20, 70) = R (20, 20, 20) 

= 20, where obviously. (-40, 20, 70) ≠ (20, 20, 20) and this indicates another setback of the method, 
which used the degree function to adjust the FTP. Finally, to get the base OS of Eq.A7 based on the 
problem (Eq.A3.0), we will fix the following LPPs as follows: 
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Subject to Constraints of Problem (Eq.A8).                
The classic LPP provides an unparalleled OS of Eq.A7 that is compatible with the rare OS (Eq.A15) 
obtained on the basis of the system we recommended. However, there are two main reasons why 
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we consider the proposed method as follows: 
� The classical LPP (Eq.A17) applied to fix FTP (Eq.A7) is not a modified LPP, while the problem 

(Eq.A9), (Eq.A11) and (Eq.A13) fix FTP (Eq. .A7) as classic TPs. To fix TPs, a tabular method is 
preferred over the LP method [11] so it may be recommended to use the expected method 
instead of the current method to fix FTPs. 

� The primitive LPP (Eq.A17) applied to fix FTP (Eq.A7) has 27 obstacles and 18 variables, while 
the problem (Eq.A9) has 5 obstacles and 6 variables. There is a similar comparison between rates 
of prevention and change problems (Eq.A11) and (Eq.A13) and (Eq.A17). Therefore, using the 
problem (Eq.A9), (Eq.A11) and (Eq.A13) to fix FTP (Eq.A7) is a big deal compared to the problem 
(Eq.A17) based on the assumption of math. , about the number of restrictions and changes. In 
summary, it is better to use the methods we have recommended than the existing methods to 
resolve FTP from a conventional view. 

7. Conclusion 

A large number of TPs at different levels of sophistication have been documented in the paper. 
However, some of these models have a small global application because common TPs take net data 
for TC, requesting and query values. Unlike conventional TPs, we analyzed inaccurate data on real 
TP and developed a simpler method and corrected these weaknesses in the form described. In the 
FTP discussed in this study, non-negative triangular FNs represent all aspects of the problem. In this 
article, we are trying to create some important LPPs to fix FTP, which have fewer restrictions and 
changes compared to other existing LPPs. In particular, the proposed method can be useful in large-
scale applications. Since the proposed system is based on the ancient travel simplex algorithm, it is 
easy to learn and apply the required system to get a real-time FTP operating system in the 
application world. One of the advantages of the recommended methods is that the fuzzy OS 
acquired and the best advantage are the negative triangular FNs. Finally, we believe that there are 
many more studies that need to be further explored. Some of these points are discussed below: 
� The recommended method works well in fixing FTP because all invalid parameters are 

represented as triangular FNs. The consolidation of this system to find the free OS of TP and 
trapezoidal FN will be an interesting research project in the future. 

� STP assesses supply, demand and transportation to meet transportation needs effectively. 
Therefore, research on the topic to create the process required to obtain non-trivial OV from 
nonlinear STP when price, supply and required quantities in non-triangular FNs travel capacity 
are negative, as leave it at another checkpoint. 
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Abstract

In this article, minimax estimation of the scale parameter λ of the inverse Rayleigh distribution is
performed under symmetric (QLF) and asymmetric (SLELF and GELF) loss functions by applying the
Lehmann’s theorem (1950). An extended Jeffrey’s prior and gamma prior are assumed to derive the
minimax estimators under each of the considered loss functions. An extensive simulation study is carried
out to compare the performance of the minimax estimators with the maximum likelihood (MLE), which is
traditionally used as a classical estimator, on the basis of biases and mean squared errors (MSE). The
obtained results suggest that under the assumption of extended Jeffrey’s prior, minimax estimators with
positive c values are superior as compared to the MLE. Moreover, it is found that in most of the cases,
minimax estimator under quadratic loss function (QLF) performs satisfactory on the assumption of
gamma prior.

Keywords: Minimax estimator, squared log error loss function, quadratic loss function, general
entropy loss function, extended Jeffrey’s prior, risk function

1. Introduction

Minimax estimation is a Bayesian estimation approach in statistical inference, which was intro-
duced by Wald [1] relating to the concept of Game theory. It brings different dimensions to
statistical estimation and improves the point estimation process. In recent years, a vast amount
of research works have been devoted to study the minimax estimators of some well known
distributions. Roy et al. [4] developed the minimax estimation of the scale parameter of the
Weibull distribution using Quadratic and MLINEX loss functions. The minimax estimator of
the scale parameter of Rayleigh distribution under Quadratic loss function was investigated in
[5]. Li [3] discussed the Minimax estimation of the parameter of Maxwell distribution under
different loss functions considering non-informative quasi-prior density. The problem of finding
the minimax estimator of the scale parameter in a class of lifetime distributions under different
loss functions are discussed in [2].

The fundamental differences between the classical and minimax estimation approach is that in
classical estimation the parameter is assumed to be a fixed point, whereas in minimax estimation
the parameter of interest is considered to be a random variable. The most important element in
the minimax approach is the specification of a distribution function on the parameter space, which
is called prior distribution. In addition to the prior distribution the assumed loss functions also
have a significant impact on the minimax estimator for a given model. Recently, in literature the
inverted version of a standard probability distribution got a lot of attention by many researchers
including [6], [7], [8]. In this study, our concern is to derive the minimax estimator of the unknown
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scale parameter λ of the inverse Rayleigh distribution having the following probability density
function

f (x; λ) =
2λ

x3 exp
[
−
(

λ

x2

)]
; x > 0, λ > 0. (1)

For modeling lifetime data, inverse Rayleigh (IR) distribution, which is a special case of inverse
Weibull (IW) distribution has many applications in reliability studies. Voda [9] discussed some
statistical properties of IR distribution like maximum likelihood estimator, confidence intervals
etc. Bayes estimators for the parameter of inverse Rayleigh distribution under squared error and
zero one loss functions based on lower record values are studied by Soliman et al. [10]. Bayesian
estimation of the parameter and reliability function of an inverse Rayleigh distribution under
symmetric and asymmetric linear exponential loss functions using a non-informative prior has
been done in [11].

The aim of this article is to make a comparison between the maximum likelihood estimator
(MLE) and minimax estimators of the scale parameter of inverse Rayleigh distribution under
three different loss functions. These are quadratic loss function, which is symmetric in nature
and another two are asymmetric loss functions, namely, squared log error and general entropy
loss functions. As a prior knowledge of the unknown scale parameter λ, we consider both non-
informative and informative prior. In case of non-informative prior, our choice is the extended
Jeffrey’s prior which is also a generalization of the Jeffrey’s prior and for informative prior, gamma
prior is chosen which is also conjugate in structure. The Bayes estimates of λ as well as the risk
functions are derived under the mentioned loss functions and further by applying Lehmann’s
theorem, it is shown that the obtained estimators are also the minimax estimators.

The rest of the article is structured in following manner. In section 2, maximum likelihood
estimator for the scale parameter λ is derived. In section 3, we discuss about the prior and
posterior distributions of λ by considering both the non informative and informative prior
respectively. Bayes estimators under quadratic loss (QLF), squared log error loss (SLELF) and
general entropy loss (GELF) functions for the scale parameter of the inverse Rayleigh distribution
are developed in section 4. In section 5, minimax estimators under different loss functions are
discussed. Extensive simulation study for different parameter choices are performed and results
are presented in section 6. Finally in section 7, the conclusion of the paper is provided.

2. Maximum Likelihood Estimation

Several desirable properties for a good estimator such as consistency, asymptotic efficiency,
invariance property etc. are satisfied by the Maximum likelihood estimator. This makes the MLE
one of the most frequently used techniques for parameter estimation. Let x1, x2, · · · , xn be a
random sample of size n from the density function (1). Then the likelihood function is given by

L (xi; λ) = (2λ)n
n

∏
i=1

1
x3

i
e
−λ ∑n

i=1
1

x2
i . (2)

Taking logarithm, the log-likelihood function becomes

ln L (xi; λ) = n ln 2 + n ln λ +
n

∑
i=1

ln

(
1
x3

i

)
− λ

n

∑
i=1

1
x2

i
.

Now, by differentiating the above equation with respect to λ and equating it with zero, we
obtain the MLE of λ as,

λ̂MLE =
n

∑n
i=1

1
x2

i

. (3)

3. Prior and Posterior density function of Scale parameter λ

Specification of a prior distribution over the parameter space is a substantial part for deriving
the posterior probability distribution under the Bayesian paradigm. The posterior distribution is
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defined as proportional to the likelihood function for the data multiplied by the prior information
for the parameter(s), which is useful for future inferences and prediction. In literature, there is
no specification about the choice of prior from which one can conclude the superiority of one
prior over the others. Generally, selection of prior(s) is based on ones subjective knowledge and
beliefs. However, it is preferable to use informative prior when sufficient information about the
parameter(s) of interest is available, otherwise it is better to use non-informative prior [12]. Here
we consider both type of prior distributions for estimating the unknown scale parameter λ.

3.1. Posterior distribution under the assumption of extended Jeffrey’s prior

The extended Jeffrey’s prior was proposed by Al-Kutobi [13] and given as

Π(λ) ∝ [I(λ)]c ; c ∈ R+

where, I(λ) = −nE
(

∂2ln f (x;λ)
∂λ2

)
is the Fisher’s information matrix. From the probability model

(1) we found I(λ) = n
λ2 and therefore, the extended Jeffrey’s prior becomes

Π1(λ) ∝
( n

λ2

)c
. (4)

The prior distribution (4) and the likelihood function (2) are combined to get the posterior
distribution of λ and it is given by

Π1 (λ|X¯
) =

(
∑n

i=1
1
x2

i

)n−2c+1

Γ(n − 2c + 1)
λn−2ce

−λ ∑n
i=1

1
x2

i .

Therefore, the distribution of λ|X
¯

can be written as G
(

n − 2c + 1, ∑n
i=1

1
x2

i

)
.

Remark 1. Extended Jeffrey’s prior is the generalized version of many non informative priors.
We get Jeffrey’s prior if we replace c with 1

2 . Also it reduces to Hartigan’s prior when c = 3
2 .

3.2. Posterior distribution under the assumption of Gamma prior

The gamma distribution with known hyperparameters α and p, is considered here as an informa-
tive prior for the parameter λ. For the inverse Rayleigh distribution, gamma prior also becomes
the conjugate prior as the posterior distribution belongs to the gamma family.

For, λ ∼ Gamma(α, p) the prior density becomes

Π2(λ) =
pα

Γα
λα−1e−pλ; λ > 0, α > 0, p > 0. (5)

Now, combining the prior distribution (5) and the likelihood function (2) the posterior distribution
of λ takes the form

Π2 (λ|X¯
) =

λn+α−1e
−λ

[
∑n

i=1
1

x2
i
+p
]

∫ ∞
0 λn+α−1e

−λ[∑n
i=1

1
x2

i
+p]

dλ

=

(
∑n

i=1
1
x2

i
+ p

)n+α

Γ(n + α)
λn+α−1e

−λ

[
∑n

i=1
1

x2
i
+p
]
.

Therefore, the distribution of λ|X
¯

can be written as G
(

n + α, ∑n
i=1

1
x2

i
+ p

)
.
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4. Bayes Estimation of Scale parameter λ under different Loss functions

The selection of an appropriate loss function L(λ, λ̂) in Bayesian Inference is a major aspect
for the estimation of unknown parameter. Most of the research works on point estimation and
prediction considered the underlying loss function as squared error due to its elegant statistical
properties and mathematical simplicity. The reason being that it is symmetric in nature and
assigns equal importance to the overestimation and underestimation of the parameter. In many
practical situations when the loss is not symmetric, use of squared error loss function (SELF)
is inappropriate. Basu and Ebrahimi [14] pointed out that overestimation and underestimation
have different consequences. Thus, in order to make the statistical inference more practical and
applicable we often use asymmetric loss function. In this present study, we consider both the
symmetric and asymmetric loss functions to derive the Bayes estimate of λ.

4.1. Estimation under Quadratic loss function

Here we consider the quadratic loss function (QLF) for obtaining the Bayes estimate under the
assumption of both non informative and informative prior simultaneously. It is well known that,
SELF is useful for estimation of location parameter but in case of scale parameter a modified
form of this loss, known as QLF is preferable and it is defined as follows [15]

L1(λ, λ̂) =

(
λ̂ − λ

λ

)2

,

which is a non-negative, symmetric and continuous loss function.
The risk function under QLF is denoted by RQLF

(
λ, λ̂

)
and is defined as

RQLF
(
λ, λ̂

)
= E

[
L1(λ, λ̂)

]
= 1 − 2λ̂E

(
λ−1|X

¯

)
+ λ̂2E

(
λ−2|X

¯

)
. (6)

By differentiating the above risk function with respect to λ̂ and equating it to zero, we will get
the Bayes estimate for which the risk would be minimized. Hence under QLF the Bayes estimate
of λ takes the form as

λ̂QLF =
E
(
λ−1|X

¯

)
E (λ−2|X

¯
)

. (7)

Now, based on the extended Jeffrey’s prior we have

E
(

λ−1|X
¯

)
=

1
n − 2c

(
n

∑
i=1

1
x2

i

)
and

E
(

λ−2|X
¯

)
=

Γ (n − 2c − 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)2

.

Therefore, by putting these values in (7), we obtain the Bayes estimate of λ under QLF based on
Extended Jeffrey’s prior as

λ̂QLF1 =
(n − 2c) Γ (n − 2c)

(n − 2c) Γ (n − 2c − 1)
1(

∑n
i=1

1
x2

i

) =
Γ (n − 2c)

Γ (n − 2c − 1)
1(

∑n
i=1

1
x2

i

) . (8)

Similarly, based on the assumption of gamma prior we have

E
(

λ−1|X
¯

)
=

Γ (n + α − 1)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)
and
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E
(

λ−2|X
¯

)
=

Γ (n + α − 2)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)2

.

After putting these values in (7), we find the Bayes estimate of λ under QLF based on gamma
prior as

λ̂QLF2 =
Γ (n + α − 2 + 1)

Γ (n + α − 2)
1(

∑n
i=1

1
x2

i
+ p

) =
(n + α − 2)(
∑n

i=1
1
x2

i
+ p

) . (9)

4.2. Estimation under Squared log error loss function

In order to obtain the Bayes estimate of λ, we consider the squared log error loss function (SLELF)
which is proposed by Brown [16] and defined as

L2
(
λ, λ̂

)
=
(
lnλ̂ − lnλ

)2
=

(
ln

λ̂

λ

)2

,

where both λ̂ and λ are positive. This is a balanced loss function with lim L2
(
λ, λ̂

)
→ ∞ as

λ̂ → 0 or ∞. A balanced loss function considers both estimation error and goodness of fit, while
an unbalanced loss function only considers estimation error [18]. This loss is asymmetric and
convex [17]. It is convex when λ̂

λ ≤ e, and concave otherwise, but its risk function is minimum
with respect to λ̂SLELF.

The risk function under SLELF is denoted by RSLELF
(
λ, λ̂

)
and expressed as

RSLELF
(
λ, λ̂

)
= E

[
L2
(
λ, λ̂

)]
=
(
lnλ̂
)2 − 2lnλ̂E [lnλ|X

¯
] + E

[
(lnλ)2 |X

¯

]
. (10)

Now, by differentiating the risk function with respect to λ̂ and equating it to zero, we will be able
to find the Bayes estimate for which the above risk is minimized. Hence under SLELF, we obtain
the Bayes estimate of λ which have the following expression

λ̂SLELF = exp [E (lnλ|X
¯
)] . (11)

So, we calculate [E (lnλ|X
¯
)] by using the posterior density derived under both the extended

Jeffrey’s prior and gamma prior respectively.
Hence, under the assumption of the extended Jeffrey’s prior

E (lnλ|X
¯
) = Ψ (n − 2c + 1)− ln

(
n

∑
i=1

1
x2

i

)
, (12)

E
(
(lnλ)2|X

¯

)
=

Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− 2Ψ (n − 2c + 1) ln

(
n

∑
i=1

1
x2

i

)
+

{
ln

(
n

∑
i=1

1
x2

i

)}2

(13)

where, Ψ (n − 2c + 1) = Γ′(n−2c+1)
Γ(n−2c+1) , is a digamma function.

Similarly, under the gamma prior, expressions are

E (lnλ|X
¯
) = Ψ (n + α)− ln

(
n

∑
i=1

1
x2

i
+ p

)
, (14)

E
(
(lnλ)2|X

¯

)
=

Γ′′ (n + α)

Γ (n + α)
− 2Ψ (n + α) ln

(
n

∑
i=1

1
x2

i
+ p

)
+

{
ln

(
n

∑
i=1

1
x2

i
+ p

)}2

(15)
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where, Ψ (n + α) =
Γ′(n+α)
Γ(n+α)

, is a digamma function.

Therefore, to obtain the Bayes estimate of the parameter λ under SLELF based on both prior
assumptions, we substitute the expressions (12) and (14) respectively in (11). After simplification,
we get,

λ̂SLELF1 =
eΨ(n−2c+1)

∑n
i=1

1
x2

i

and (16)

λ̂SLELF2 =
eΨ(n+α)

∑n
i=1

1
x2

i
+ p

. (17)

4.3. Estimation under General entropy loss function

Another well known asymmetric loss function is general entropy loss function (GELF) proposed
by Calabria and Pulcini [19]. Many authors like [20], [21] referred this loss as the modified linear
exponential (MLINEX) loss function and defined as

L3
(
λ, λ̂

)
= ω

[(
λ̂

λ

)γ

− γ ln

(
λ̂

λ

)
− 1

]
; ω > 0, γ ̸= 0.

The constant γ, involved in the loss function is the shape parameter and indicates the deviation
from symmetry. It is clear that if the value of the shape parameter γ = 1, this loss reduces
to the entropy loss function which is also used by several authors like [22], [23] etc. Dey [11]

mentioned that if we replace
(
λ̂ − λ

)
in place of ln

(
λ̂
λ

)
i.e. lnλ̂ − lnλ, linear exponential (LINEX)

loss function has been obtained, which is proposed by Zellner [24].
Now by considering GELF, the expression of the risk function denoted as RGELF

(
λ, λ̂

)
is given

below

RGELF
(
λ, λ̂

)
= E

[
L3
(
λ, λ̂

)]
= ωλ̂γE

(
λ−γ|X

¯

)
− ω γ lnλ̂ + ω γ E (lnλ|X

¯
)− ω. (18)

So, for minimizing the risk function we differentiate the above equation with respect to λ̂ and
equate it to zero. After simplification, we have

λ̂GELF =
[
E
(
λ−γ|X

¯

)]− 1
γ . (19)

Now, we solve the above expression by considering extended Jeffrey’s prior and gamma prior
simultaneously. Therefore, under the extended Jeffrey’s prior

E
(
λ−γ|X

¯

)
=

Γ (n − 2c − γ + 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)γ

and under the gamma prior

E
(
λ−γ|X

¯

)
=

Γ (n + α − γ)

Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)γ

.

After substituting the values of E (λ−γ|X
¯
) in (19), we have the following Bayes estimators under

both non-informative and informative prior respectively,

λ̂GELF1 =

[
Γ(n − 2c − γ + 1)

Γ(n − 2c + 1)

]− 1
γ

 1

∑n
i=1

1
x2

i

 , (20)
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λ̂GELF2 =

[
Γ(n + α − γ)

Γ (n + α)

]− 1
γ

 1(
∑n

i=1
1
x2

i
+ p

)
 . (21)

5. Minimax Estimators

In this section, we derive the minimax estimators of the scale parameter λ under symmetric (QLF)
and asymmetric (SLELF and GELF) loss functions. Bayes estimators are derived primarily and
then minimax etimators are obtained by applying the Lehmann’s theorem, which can be described
as follows.

Theorem 1. Suppose, τ = {Fθ ; θ ∈ Θ} be a family of distribution functions and D is a class
of estimators of θ. Let, d∗ ∈ D is a Bayes estimator against a prior distribution ξ∗(θ) on the
parameter space Θ and the risk function R (d∗, θ) = constant on Θ; then d∗ is a minimax estimator
of θ.

The motivation behind this study is to check whether the risk functions developed in 4 are
constant or not for the corresponding Bayes estimators. If the risk functions are constant then
according to the Lehmann’s theorem, the respective Bayes estimators are minimax estimators.

First of all, to verify the above Lehmann’s theorem we consider the quadratic loss function.
The risk function (6) is derived after considering the Bayes estimators (8) and (9) for both the
non-informative and informative prior respectively. So, the risk function RQLF

(
λ, λ̂

)
for the

estimators λ̂QLF1 and λ̂QLF2 becomes

RQLF
(
λ, λ̂QLF1

)
=1 − 2λ̂QLF1 E

(
λ−1|X

¯

)
+ λ̂2

QLF1
E
(

λ−2|X
¯

)
= 1 − 2

 Γ (n − 2c)
Γ (n − 2c − 1)

1

∑n
i=1

1
x2

i

1
n − 2c

n

∑
i=1

1
x2

i

+

(
Γ (n − 2c)

Γ (n − 2c − 1)

)2 1(
∑n

i=1
1
x2

i

)2
Γ (n − 2c − 1)
Γ (n − 2c + 1)

(
n

∑
i=1

1
x2

i

)2

=1 − 2
(

n − 2c − 1
n − 2c

)
+

n − 2c − 1
n − 2c

=
1

n − 2c
; which is a constant and

RQLF
(
λ, λ̂QLF2

)
=1 − 2λ̂QLF2 E

(
λ−1|X

¯

)
+ λ̂2

QLF2
E
(

λ−2|X
¯

)

= 1 − 2


n + α − 2(

∑n
i=1

1
x2

i
+ p

) Γ (n + α − 1)
Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)+
(n + α − 2)2(
∑n

i=1
1
x2

i
+ p

)2
Γ (n + α − 2)

Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)2

=1 − 2
(

n + α − 2
n + α − 1

)
+

n + α − 2
n + α − 1

=
1

n + α − 1
; which is also constant.

Therefore, as per the Lehmann’s theorem, λ̂QLF1 and λ̂QLF2 are the minimax estimators of the
scale parameter λ under the quadratic loss function for extended Jeffrey’s prior and gamma prior
respectively.
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Next for SLELF, we use the Bayes estimators (16) and (17) in (10) to obtain the risk functions
corresponding to the Bayes estimators λ̂SLELF1 and λ̂SLELF2 under the non-informative and
informative priors respectively.

RSLELF
(
λ, λ̂SLELF1

)
=
(
ln λ̂SLELF1

)2 − 2 ln λ̂SLELF1 E [lnλ|X
¯
] + E

[
(lnλ)2 |X

¯

]
=

(
Ψ(n − 2c + 1)− ln

n

∑
1=1

1
x2

i

)2

− 2

(
Ψ(n − 2c + 1)− ln

n

∑
i=1

1
x2

i

)(
Ψ(n − 2c + 1)− ln

n

∑
i=1

1
x2

i

)

+
Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− 2Ψ (n − 2c + 1) ln

(
n

∑
i=1

1
x2

i

)
+

(
ln

n

∑
i=1

1
x2

i

)2

=
Γ′′ (n − 2c + 1)
Γ (n − 2c + 1)

− (Ψ (n − 2c + 1))2 ; which is a constant and

RSLELF
(
λ, λ̂SLELF2

)
=
(
ln λ̂SLELF2

)2 − 2 ln λ̂SLELF2 E [lnλ|X
¯
] + E

[
(lnλ)2 |X

¯

]
=−

(
Γ′(n + α)

Γ(n + α)

)2

+ 2Ψ (n + α) ln

(
n

∑
i=1

1
x2

i
+ p

)
−
[

ln

(
n

∑
i=1

1
x2

i
+ p

)]2

+
Γ′′ (n + α)

Γ (n + α)

− 2Ψ(n + α)ln

(
n

∑
i=1

1
x2

i
+ p

)
+

[
ln

(
n

∑
i=1

1
x2

i
+ p

)]2

=
Γ′′ (n + α)

Γ (n + α)
− (Ψ(n + α))2 ; which is also constant.

Therefore, according to the Lehmann’s theorem the Bayes estimators λ̂SLELF1 and λ̂SLELF2 are
the minimax estimators under SLELF.

Finally, we calculate the risk functions RGELF
(
λ, λ̂

)
for the Bayes estimators λ̂GELF1 and λ̂GELF2

respectively, as

RGELF
(
λ, λ̂GELF1

)
=ωλ̂

γ
GELF1

E
(
λ−γ|X

¯

)
− ω γ lnλ̂GELF1 + ω γ E (lnλ|X

¯
)− ω

=ω
Γ (n − 2c + 1)

Γ (n − 2c − γ + 1)
(

∑n
i=1

1
x2

i

)γ

Γ (n − 2c − γ + 1)
(

∑n
i=1

1
x2

i

)γ

Γ (n − 2c + 1)
− ωγ

[
− 1

γ
ln

Γ (n − 2c − γ + 1)
Γ (n − 2c + 1)

−ln

(
n

∑
i=1

1
x2

i

)]
+ ωγ

[
Ψ(n − 2c + 1)− ln

(
n

∑
i=1

1
x2

i

)]
− ω

=ω ln
Γ(n − 2c − γ + 1)

Γ(n − 2c + 1)
+ ω γΨ (n − 2c + 1) ; which is a constant and

RGELF
(
λ, λ̂GELF2

)
=ωλ̂

γ
GELF2

E
(
λ−γ|X

¯

)
− ω γ lnλ̂GELF2 + ω γ E (lnλ|X

¯
)− ω

=ω
Γ(n + α)

Γ(n + α − γ)

 1

∑n
i=1

1
x2

i
+ p

γ

Γ (n + α − γ)

Γ (n + α)

(
n

∑
i=1

1
x2

i
+ p

)γ

− ωγ

[
− 1

γ
ln

Γ (n + α − γ)

Γ (n + α)

−ln

(
n

∑
i=1

1
x2

i
+ p

)]
+ ωγ

[
Ψ(n + α)− ln

(
n

∑
i=1

1
x2

i
+ p

)]
− ω
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=ω − ωγ

[
− 1

γ
ln

Γ (n + α − γ)

Γ (n + α)
− ln

(
n

∑
i=1

1
x2

i
+ p

)]
+ ωγ

[
Ψ(n + α)− ln

(
n

∑
i=1

1
x2

i
+ p

)]
− ω

=ω ln
Γ(n + α − γ)

Γ(n + α)
+ ωγΨ(n + α); which is also constant.

Therefore, according to the Lehmann’s theorem, both the Bayes estimators λ̂GELF1 and λ̂GELF2

are the minimax estimators of λ under the extended Jeffrey’s prior and gamma prior respectively.
So, the minimax estimators under various loss functions are derived and we compare their
performances numerically in the next section.

6. Simulation Study

In this section, the numerical comparisons between the minimax estimators and the maximum
likelihood estimator have been conducted through an extensive Monte Carlo simulation study.
The performance of the estimators is evaluated on the basis of biases and mean squared errors
(MSE) criteria. The initial choices of the scale parameter are taken as λ = 0.75 and 1. We generate
random samples of sizes n = 10, 25, 50, 75, 100 from (1) by using inverse transformation method
and replicate the process for K = 10, 000 times. Based on these replicated samples, the bias and
MSE of the estimators will be calculated by using the following formula,

Table 1: Estimated values, Bias and MSE of different estimators under extended Jeffrey’s when λ = 0.75.

sample c=-1 c=0.5 c=1 c=1.5
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 0.833 0.916 1.042 1.000 0.667 0.792 0.75 0.583 0.709 0.667 0.500 0.625 0.583
10 Bias 0.083 0.166 0.292 0.250 -0.083 0.042 0.00 -0.167 -0.041 -0.083 -0.250 -0.125 -0.167

MSE 0.093 0.132 0.220 0.187 0.062 0.080 0.07 0.070 0.064 0.062 0.094 0.064 0.070

Estimate 0.779 0.810 0.857 0.841 0.717 0.764 0.748 0.686 0.732 0.717 0.654 0.701 0.686
25 Bias 0.029 0.060 0.107 0.091 -0.033 0.014 -0.002 -0.064 -0.018 -0.033 -0.096 -0.049 -0.064

MSE 0.027 0.032 0.043 0.039 0.023 0.025 0.024 0.024 0.023 0.023 0.027 0.023 0.024

Estimate 0.763 0.778 0.801 0.794 0.733 0.756 0.748 0.717 0.740 0.733 0.702 0.725 0.717
50 Bias 0.013 0.028 0.051 0.044 -0.017 0.006 -0.002 -0.033 -0.010 -0.017 -0.048 -0.025 -0.033

MSE 0.012 0.013 0.016 0.015 0.011 0.012 0.012 0.012 0.011 0.011 0.013 0.012 0.012

Estimate 0.758 0.768 0.783 0.778 0.738 0.753 0.748 0.727 0.743 0.738 0.717 0.733 0.727
75 Bias 0.008 0.018 0.033 0.028 -0.012 0.003 -0.002 -0.023 -0.007 -0.012 -0.033 -0.017 -0.023

MSE 0.008 0.008 0.010 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Estimate 0.756 0.764 0.775 0.771 0.741 0.752 0.748 0.733 0.745 0.741 0.726 0.737 0.733
100 Bias 0.006 0.014 0.025 0.021 -0.009 0.002 -0.002 -0.017 -0.005 -0.009 -0.024 -0.013 -0.017

MSE 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Bias (λ̂) = 1
K ∑K

i=1
(
λ̂i − λ

)
and MSE (λ̂) = 1

K ∑K
i=1
(
λ̂i − λ

)2
.

In case of classical estimation, λ̂MLE can be easily obtained for K times from the expression (3)
for each of the chosen λ with different sample sizes. In Bayesian setup, to obtain the minimax
estimators of λ, we consider three different loss functions QLF, SLELF and GELF respectively. For
GELF, the value of the shape parameter is fixed at γ = 1. Now, under the assumption of extended
Jeffrey’s prior, we choose different values of c, such as, c = ±1, 0.5, 1.5. It is to be noted that, when
c = 0.5, then the extended Jeffrey’s prior is simplified as Jeffrey’s prior and for c = 1.5, it reduces
to Hartigan’s prior. Also, in this empirical study, the choices of hyper parameters are taken as
(α, p) = (0.5, 0.5), (0.5, 5.0), (1.0, 0.25) and (5.0, 5.0) under the assumption of gamma prior. For
every combinations of (α, p), we calculate the minimax estimators of λ under the three various
loss functions. Finally, the average minimax and MLE estimators with their corresponding biases
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Figure 1: MSEs of MLE and minimax estimators under extended Jeffrey’s prior with different values of c when
λ = 0.75

and MSE values are summarized in Tables 1 - 2 and 3 - 4 under the extended Jefferey’s prior and
gamma prior respectively.

In certain cases, a graphical representation of data is a superior representation of information.
The aim is to graphically display comparable findings in order to provide a comprehensive
evaluation of the estimators based on their biases and MSEs obtained in subsequent tables. The
MSE values are plotted in vertical axis against the increasing order of sample sizes in horizontal
axis. Here, for instances we only provide the graph for λ = 0.75 under different conditions
both for the extended Jeffrey’s and gamma prior. The observations obtained from the simulation
results are listed below.

1. When c = −1, then it is clearly seen that the MLE is appeared to be better than all the
minimax estimators under three loss functions.
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Figure 2: MSEs of MLE and minimax estimators under gamma prior with different values of hyperparameters when
λ = 0.75

2. Under Jeffrey’s prior (c = 0.5), minimax estimator under QLF has the smallest MSE value.

3. When c = 1, minimax estimator under GELF performs better than the other estimators.

4. Under Hartigan’s prior (c = 1.5), minimax estimator under the SLELF has the smallest MSE
compared to the others estimators. Also, both the MSE of MLE and the minimax estimator
under QLF are coincided.

5. It is found from Tables 1 and 2 that Hartigan’s prior and Jeffrey’s prior are identical when
sample size n > 50.

6. Under gamma prior, it is observe that in most of the cases the minimax estimator under
QLF performs better than the other estimators.
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Table 2: Estimated values, Bias and MSE of different estimators under extended Jeffrey’s prior when λ = 1.

sample c=-1 c=0.5 c=1 c=1.5
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 1.111 1.222 1.389 1.333 0.889 1.056 1.000 0.778 0.945 0.889 0.667 0.834 0.778
10 Bias 0.111 0.222 0.389 0.333 -0.111 0.056 0.000 -0.222 -0.055 -0.111 -0.333 -0.166 -0.222

MSE 0.166 0.236 0.392 0.333 0.111 0.142 0.125 0.125 0.114 0.111 0.167 0.114 0.125

Estimate 1.039 1.080 1.143 1.122 0.956 1.018 0.997 0.914 0.977 0.956 0.873 0.935 0.914
25 Bias 0.039 0.080 0.143 0.122 -0.044 0.018 -0.003 -0.086 -0.023 -0.044 -0.127 -0.065 -0.086

MSE 0.048 0.056 0.076 0.069 0.041 0.045 0.042 0.043 0.041 0.041 0.049 0.042 0.043

Estimate 1.018 1.038 1.068 1.058 0.977 1.007 0.997 0.956 0.987 0.977 0.936 0.967 0.956
50 Bias 0.018 0.038 0.068 0.058 -0.023 0.007 -0.003 -0.044 -0.013 -0.023 -0.064 -0.033 -0.044

MSE 0.022 0.024 0.028 0.027 0.020 0.021 0.021 0.021 0.020 0.020 0.022 0.021 0.021

Estimate 1.010 1.024 1.044 1.037 0.983 1.004 0.997 0.970 0.990 0.983 0.956 0.977 0.970
75 Bias 0.010 0.024 0.044 0.037 -0.017 0.004 -0.003 -0.030 -0.010 -0.017 -0.044 -0.023 -0.030

MSE 0.014 0.015 0.017 0.016 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.014 0.014

Estimate 1.008 1.018 1.033 1.028 0.988 1.003 0.998 0.978 0.993 0.988 0.968 0.983 0.978
100 Bias 0.008 0.018 0.033 0.028 -0.012 0.003 -0.002 -0.022 -0.007 -0.012 -0.032 -0.017 -0.022

MSE 0.010 0.011 0.012 0.012 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.010

Table 3: Estimated values, Bias and MSE of different estimators under gamma prior when λ = 0.75.

sample (0.5, 0.5) (0.5, 5.0) (1.0, 0.25) (5.0, 5.0)
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 0.833 0.677 0.796 0.756 0.488 0.575 0.546 0.733 0.855 0.814 0.747 0.833 0.804
10 Bias 0.083 -0.073 0.046 0.006 -0.262 -0.175 -0.204 -0.017 0.105 0.064 -0.003 0.083 0.054

MSE 0.093 0.056 0.073 0.064 0.081 0.049 0.058 0.064 0.097 0.082 0.030 0.044 0.038

Estimate 0.779 0.721 0.767 0.751 0.631 0.671 0.657 0.742 0.788 0.773 0.751 0.792 0.778
25 Bias 0.029 -0.029 0.017 0.001 -0.119 -0.079 -0.093 -0.008 0.038 0.023 0.001 0.042 0.028

MSE 0.027 0.022 0.025 0.023 0.027 0.020 0.022 0.023 0.028 0.026 0.018 0.021 0.020

Estimate 0.763 0.735 0.757 0.750 0.687 0.708 0.701 0.745 0.768 0.760 0.751 0.772 0.765
50 Bias 0.013 -0.015 0.007 0.000 -0.063 -0.042 -0.049 -0.005 0.018 0.010 0.001 0.022 0.015

MSE 0.012 0.011 0.012 0.012 0.012 0.011 0.011 0.011 0.012 0.012 0.010 0.011 0.011

Estimate 0.758 0.739 0.754 0.749 0.706 0.721 0.716 0.746 0.761 0.756 0.750 0.764 0.759
75 Bias 0.008 -0.011 0.004 -0.001 -0.044 -0.029 -0.034 -0.004 0.011 0.006 0.000 0.014 0.009

MSE 0.008 0.008 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.007

Estimate 0.756 0.742 0.753 0.749 0.717 0.728 0.725 0.747 0.758 0.755 0.750 0.761 0.757
100 Bias 0.006 -0.008 0.003 -0.001 -0.033 -0.022 -0.025 -0.003 0.008 0.005 0.000 0.011 0.007

MSE 0.006 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.006 0.006 0.005 0.006 0.005

7. The minimax estimator under gamma prior has less MSE value as compared with the
extended Jeffrey’s prior.

8. Bias of λ̂ decreases with an increasing sample sizes for all the estimators.

9. Bias and MSE of all the estimators of λ increases with the value of true scale parameter
increases.

10. In all the cases MSE of the estimators reduced with the increase in sample size which verifies
the consistency of all the estimators. Further, for large size of sample, they all converge to
an almost same MSE value.
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Table 4: Estimated values, Bias and MSE of different estimators under gamma prior when λ = 1.

sample (0.5, 0.5) (0.5, 5.0) (1.0, 0.25) (5.0, 5.0)
sizes(n) criteria λ̂MLE λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF λ̂QLF λ̂SLELF λ̂GELF

Estimate 1.111 0.889 1.046 0.994 0.592 0.696 0.661 0.97 1.132 1.077 0.905 1.010 0.975
10 Bias 0.111 -0.111 0.046 -0.006 -0.408 -0.304 -0.339 -0.03 0.132 0.077 -0.095 0.010 -0.025

MSE 0.166 0.097 0.120 0.106 0.182 0.114 0.134 0.110 0.165 0.140 0.045 0.045 0.043

Estimate 1.039 0.956 1.017 0.996 0.804 0.855 0.838 0.987 1.048 1.028 0.958 1.009 0.992
25 Bias 0.039 -0.044 0.017 -0.004 -0.196 -0.145 -0.162 -0.013 0.048 0.028 -0.042 0.009 -0.008

MSE 0.048 0.039 0.042 0.041 0.057 0.042 0.046 0.041 0.048 0.045 0.028 0.029 0.028

Estimate 1.018 0.977 1.007 0.997 0.894 0.922 0.913 0.992 1.022 1.012 0.977 1.005 0.996
50 Bias 0.018 -0.023 0.007 -0.003 -0.106 -0.078 -0.087 -0.008 0.022 0.012 -0.023 0.005 -0.004

MSE 0.022 0.020 0.021 0.020 0.025 0.020 0.022 0.020 0.022 0.021 0.017 0.017 0.017

Estimate 1.010 0.983 1.004 0.997 0.927 0.946 0.940 0.993 1.014 1.007 7 0.984 1.003 0.996
75 Bias 0.010 -0.017 0.004 -0.003 -0.073 -0.054 -0.060 -0.007 0.014 0.007 -0.016 0.003 -0.004

MSE 0.014 0.013 0.014 0.014 0.016 0.014 0.014 0.014 0.014 0.014 0.012 0.012 0.012

Estimate 1.008 0.988 1.003 0.998 0.945 0.959 0.954 0.995 1.010 1.005 0.988 1.002 0.998
100 Bias 0.008 -0.012 0.003 -0.002 -0.055 -0.041 -0.046 -0.005 0.010 0.005 -0.012 0.002 -0.002

MSE 0.010 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009

7. Conclusion

In this article, an attempt has been made towards a comparison between the minimax estimators
and the maximum likelihood estimator of the scale parameter λ of the inverse Rayleigh distri-
bution. In order to obtain the minimax estimator of λ, we consider extended Jeffrey’s prior and
gamma prior under the symmetric (QLF) and asymmetric (SLELF and GELF) loss functions. An
extensive simulation process is performed to investigate the performance of the MLE as well
as minimax estimators in terms of bias and MSE values. From the simulation results it can
be observed that in large sample cases the MLE and minimax estimators under different loss
functions have approximately same MSE values.

In case of extended Jeffrey’s prior, when the value of c is negative (i.e. c = −1), the maximum
likelihood estimator (MLE) appears to be better than minimax estimators under all the considered
loss functions. However, when c has positive values, then the minimax estimators are more
efficient than the classical estimator MLE.

While comparing the MLE with the minimax estimators under gamma prior, it has been ob-
serve that the minimax estimators are appeared to be better for all the choices of hyperparameters.
It is also remarked that the minimax estimators under gamma prior have less MSE as compared
to the extended Jeffrey’s prior. Therefore, choosing an informative prior is always superior to that
of the non-informative prior. Finally, an increasing order of sample size results in a noticeable
decrease in MSEs for all choices of parameter values which established that all the estimators are
consistent.
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Abstract

The continuous Bernoulli distribution is a recently introduced one-parameter distribution with support
[0, 1], finding numerous applications in applied statistics. The idea of this article is to propose a natural
extension of this distribution by adding a shape parameter through a power transformation. We introduce
the power continuous Bernoulli distribution, aiming to extend the modeling scope of the continuous
Bernoulli distribution. Basics of its mathematical properties are derived, such as the shapes of the related
functions, the determination of various moment measures, and an evaluation of the overall amount of its
randomness via the Rényi entropy. A statistical analysis of the distribution is then performed, showing
how it can be applied when dealing with data. Estimates of the parameters are discussed through the
maximum likelihood method. A Monte Carlo simulation study investigates the asymptotic behavior of
these estimates. The flexibility of the power continuous Bernoulli distribution in real-life data fitting
is analyzed using two data sets. Also, fair competitors are considered to highlight the accuracy of this
distribution. At all stages, numerous graphics and tables illustrate the findings.

Keywords: Continuous Bernoulli distribution; moments; quantiles; entropy; data fitting.

1. Introduction

In order to understand the mathematical foundation of the study, let us first present the so-called
continuous Bernoulli distribution as introduced in [19].

Definition 1. The continuous Bernoulli distribution with parameter λ ∈ [0, 1], also denoted as
CB(λ), is defined by the following probability density function (pdf):

f (x; λ) =


1, λ =

1
2

and x ∈ [0, 1],

cλλx(1− λ)1−x, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

(1)

where cλ is the following constant:

cλ =
2 arctanh(1− 2λ)

1− 2λ
. (2)

Here, arctanh(x) denotes the inverse hyperbolic tangent defined by arctanh(x) = (1/2) ln[(1 +
x)/(1− x)] (as a minor remark, the following expressions are equivalent: 2 arctanh(1− 2λ) =
ln(1− λ)− ln(λ) = ln(1/λ− 1)).
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Alternatively, the CB(λ) distribution can be defined by its cumulative distribution function
(cdf), which is given by

F(x; λ) =



0, x < 0,

x, λ =
1
2

and x ∈ [0, 1],

λx(1− λ)1−x + λ− 1
2λ− 1

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

1, x > 1.

(3)

Thus, the CB(λ) distribution, like the power distribution, is a one-parameter continuous
distribution with support of [0, 1]. It is useful in a variety of fields, including probability theory,
statistics, with an emphasis on machine learning. In particular, it is good at simulating the pixel
intensities of natural images in deep learning and computer vision, especially when putting up
variational autoencoders. We advise the reader to [19] and [13] for more information on these
topics.

More broadly, bounded support distributions have proven useful in modeling real-world data,
particularly in scenarios where the data are measured in percentages and proportions. So when
the observations take on value within the unit interval [0, 1]. In recent decades, the beta and
Kumaraswamy distributions have gained more popularity in this regard. However, there are
situations where these classical distributions provide poor fit in data analysis. This has become a
quest for many researchers to develop alternative bounded distributions with better flexibility
in real-life data fitting. With this in mind, [12] introduced the log-Lindley distribution, [21]
developed the unit-logistic distribution, [1] created the log-Xgamma distribution, [20] proposed
the unit-Gompertz distribution, [23] developed the Kumaraswamy unit-Gompertz distribution,
[16] examined the unit-Burr XII distribution, [15] introduced the unit-Chen distribution, [26]
developed the transmuted Marshall-Olkin extended Topp-Leone distribution, [6] proposed the
log-XLindley distribution, [2] studied the unit-Rayleigh distribution, etc. The CB(λ) distribution
belongs to the list.

In this paper, by including a shape parameter, we hope to increase the flexibility of the CB(λ)
distribution for a variety of applications. In other words, for a random variable X following the
CB(λ) distribution, we consider the distribution of the power random variable Y = X1/α, where
α > 0. In this way, we introduce the power continuous Bernoulli distribution with parameters α
and λ, PCB(α, λ) distribution for short. The used power scheme is somewhat classic in statistics,
and allows to flexibilize various “rigid distributions”. We may mention the Weibull distribution,
which is the power version of the exponential distribution, the power Lindley distribution by [9],
which is the power version of the Lindley distribution (see [18]), etc. Recent examples include
the power beta distribution by [5], the power Lomax distribution by [28], the power Ailamujia
distribution by [14], etc.

In fact, at the time of writing, no extensions of the CB(λ) distribution exist, and the PCB(α, λ)
distribution is a strong contender for being useful from both theoretical and applied perspectives.
After a detailed presentation, we investigate its main features, such as the related probability
functions, moments of various kinds, and entropy (Rényi entropy). Then, we examine the practice
on the statistical side. We estimate the PCB(α, λ) distribution parameters, i.e., α and λ, by the
maximum likelihood (ML) method. A Monte Carlo simulation study is then conducted to validate
the asymptotic behavior of these estimates. We present significant applications of the PCB(α, λ)
distribution in a data fitting context, with the use of two real-life data sets: one containing trade
share data, and the other containing tensile strength of polyester fibers. In addition, several
distributions are considered for fair comparison in terms of efficiency in fitting. Illustrations, via
tables and graphics, are given to support the findings. We have thus laid the foundation for the
use of the PCB(α, λ) distribution for statistical purposes.

The organization of the paper is as follows: Section 2 describes the PCB(α, λ) distribution,
including its underlying functions of interest. A moment analysis is performed in Section 3. The
entropy is studied in Section 4. Parameter estimation, simulation study and real-life data fitting
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are developed in Section 5. A conclusion is given in Section 6.

2. Power continuous Bernoulli distribution

The PCB(α, λ) distribution is defined below through its related probabilistic functions.

Definition 2. Based on its stochastic definition and the functions (1) and (3), the PCB(α, λ)
distribution with α > 0 and λ ∈ [0, 1] is defined by the following cdf:

F(x; α, λ) = F(xα; λ)

=



0, x < 0

xα, λ =
1
2

and x ∈ [0, 1],

λxα
(1− λ)1−xα

+ λ− 1
2λ− 1

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

1, x > 1,

(4)

or, equivalently, by the following pdf:

f (x; α, λ) = αxα−1 f (xα; λ)

=


αxα−1, λ =

1
2

and x ∈ [0, 1],

cλαxα−1λxα
(1− λ)1−xα

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

(5)

where cλ is the constant defined in (2).

Basically, by taking α = 1 into (4) and (5), we obtain the cdf and pdf of the CB(λ) distribution,
as described in (3) and (1), respectively.

It is important to note that the PCB(α, λ) distribution has one mode in the case λ ∈ (1/2, 1),
and it is given by the following mathematical formula: x = [(α− 1)/(2α arctanh(1− 2λ))]1/α. In
this case, the PCB(α, λ) distribution is unimodal, and the mode differs from 0 if, and only if,
α ∈ [0, 1), i.e., α 6= 1. So by considering the power version of the CB(λ) distribution, we introduce
a unimodality property that can be used quite efficiently for statistical aims, including data fitting
purposes.

Figure 1 presents the plots for f (x; α, λ) in order to illustrate the effect of the parameter α on
its possible shapes.

(a) (b)

Figure 1: Pdf plots of the PCB(α, λ) distribution at different choices of the parameter settings: (a) (α, λ) ∈
{(3, 0.2), (4, 0.3), (0.5, 0.1), (0.1, 0.4), (9, 0.6)} and (b) (α, λ) ∈ {(5, 0.1), (3.5, 0.1), (0.2, 0.3), (1.5, 0.1)}
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Clearly, we observe that the pdf of the PCB(α, λ) distribution accommodates decreasing
(reversed-J) or increasing, left-skewed, right-skewed and symmetric shapes.

As a complementary function to the pdf, the hazard rate function (hrf) of the PCB(α, λ)
distribution is given as

h(x; α, λ) =
f (x; α, λ)

1− F(x; α, λ)

=


αxα−1

1− xα
, λ =

1
2

and x ∈ [0, 1],

c∗λαxα−1λxα
(1− λ)1−xα

λ− λxα(1− λ)1−xα , λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

where c∗λ = (2λ− 1)cλ = −2 arctanh(1− 2λ). The graphical representation of this function is
displayed in Figure 2.

Figure 2: Hrf plots of the PCB(α, λ) distribution at different choices of the parameter settings: (α, λ) ∈
{(5, 0.1), (0.1, 0.9), (0.6, 0.7), (2, 0.9)}

Figure 2 indicates that the PCB(α, λ) distribution exhibits increasing and bathtub-shaped
hazard properties. These are demanded properties for data analysis purposes with values in
[0, 1].

As the inverse function of the cdf, the quantile function (qf) of the PCB(α, λ) distribution is
given as

Q(x; α, λ) = F−1(x; α, λ)

=


x1/α, λ =

1
2

and x ∈ [0, 1],{
ln[(2λ− 1)x + 1− λ]− ln(1− λ)

ln(λ)− ln(1− λ)

}1/α

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1].

(6)

By inserting x = 1/2 in (6), we obtain the median of the PCB(α, λ) distribution, which is given
by

M =


2−1/α, λ =

1
2

,{
ln(2) + ln(1− λ)

2 arctanh(1− 2λ)

}1/α

, λ ∈ (0, 1)/
{

1
2

}
.

Traditionally, the qf and random values from the uniform distribution over [0, 1] can be used to
generate random values from a random variable Y following the PCB(α, λ) distribution. Table 1
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shows some quantiles from the PCB(α, λ) distribution using the expression in (6) as illustrative
numerical examples.

Table 1: Some values of the qf of the PCB(α, λ) distribution.

x α = 0.5, λ = 0.3 α = 0.5, λ = 0.8 α = 1, λ = 0.3 α = 1, λ = 0.8
0.05 0.0012 0.0102 0.0342 0.1008
0.1 0.0048 0.0358 0.0694 0.1893
0.2 0.0205 0.1149 0.1432 0.3390
0.3 0.0493 0.2144 0.2219 0.4630
0.4 0.0938 0.3235 0.3063 0.5688
0.5 0.1577 0.4369 0.3971 0.6610
0.6 0.2455 0.5516 0.4955 0.7427
0.7 0.3635 0.6661 0.6029 0.8161
0.8 0.5199 0.7793 0.7210 0.8828
0.9 0.7264 0.8907 0.8523 0.9438

The quantile values of the PCB(α, λ) distribution fall into [0, 1] for different parameter values.
On the other hand, based on the qf, advanced quantile modeling can be performed. For more

information, see [10].

3. Moments

The moment measures of the PCB(α, λ) distribution are of interest to describe it in an in-depth
manner in terms of central, dispersion, and form parameters, and reveal some statistical features.

The following proposition is about the mathematical expressions of the moments of a random
variable following the PCB(α, λ) distribution.

Proposition 1. Let Y be a random variable following the PCB(α, λ) distribution and m be an
integer. Then the m-th moment (or raw moment) of Y is given by

Mm = E(Ym)

=



α

α + m
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1 γ−
[m

α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1 γ+

[m
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

,

where

γ−(x, u) =
∫ u

0
tx−1e−tdt, γ+(x, u) =

∫ u

0
tx−1etdt. (7)

Proof. For the case λ = 1/2, we have

Mm =
∫ +∞

−∞
xm f (x; α, λ)dx = α

∫ 1

0
xmxα−1dx =

α

α + m
.

For the case λ ∈ (0, 1)/ {1/2}, by introducing a random variable X with the CB(λ) distribution,
we have

Mm = E(Xm/α) =
∫ +∞

−∞
xm/α f (x; λ)dx = cλ

∫ 1

0
xm/αλx(1− λ)1−xdx.

Since m/α is not necessarily an integer, let us distinguish the case λ ∈ (0, 1/2) and the case
λ ∈ (1/2, 1).
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• In the case λ ∈ (0, 1/2), by applying the change of variable y = 2 arctanh(1− 2λ)x ≥ 0, we
obtain

Mm = cλ

∫ 1

0
xm/αex ln(λ)+(1−x) ln(1−λ)dx = (1− λ)cλ

∫ 1

0
xm/αe−x[2 arctanh(1−2λ)]dx

=
(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1

∫ 2 arctanh(1−2λ)

0
ym/αe−ydy

=
(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1 γ−
[m

α
+ 1, 2 arctanh(1− 2λ)

]
.

• In the case λ ∈ (1/2, 1), we must take into account a sign detail; by applying the change of
variable y = −2 arctanh(1− 2λ)x ≥ 0, we obtain

Mm = cλ

∫ 1

0
xm/αex ln(λ)+(1−x) ln(1−λ)dx = (1− λ)cλ

∫ 1

0
xm/αe−x[2 arctanh(1−2λ)]dx

=
(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1

∫ −2 arctanh(1−2λ)

0
ym/αeydy

=
(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1 γ+

[m
α
+ 1,−2 arctanh(1− 2λ)

]
.

The desired expressions are obtained, ending the proof. �

It is worth noting that the integral function γ−(x, u) corresponds to the lower incomplete
gamma function, which is implemented in most of the mathematical software.

In the case α = 1, m/α is an integer, and we have

Mm =


1

m + 1
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]m+1 γ− [m + 1, 2 arctanh(1− 2λ)] , λ ∈ (0, 1) /
{

1
2

}
,

giving the m-th moment related to the CB(α, λ) distribution, which missing in the list of properties
in [19]. In this particular case, by using the expression γ−(2, u) = 1− (1 + u)e−u, we refind the
mean of Y as precised in [19, Equation (8)]:

M1 =



1
2

, λ =
1
2

,
(1− λ)cλ

[2 arctanh(1− 2λ)]2
γ− [2, 2 arctanh(1− 2λ)]

=
λ

2λ− 1
+

1
2 arctanh(1− 2λ)

, λ ∈ (0, 1) /
{

1
2

}
.

More generally, based on the expression of the moments established in Proposition 1, we can
easily derive the mean of a random variable Y following the PCB(α, λ) distribution; it is given as

M1 =



α

α + 1
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]1/α+1 γ−

[
1
α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]1/α+1 γ+

[
1
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

,

as well the moment of order 2 of Y:

M2 =



α

α + 2
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]2/α+1 γ−

[
2
α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]2/α+1 γ+

[
2
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

.
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The variance of Y follows from the standard formula: σ2 = M2 −M2
1. The m-th central

moment of Y is given by

M∗m = E[(Y−M1)
m] =

m

∑
k=0

(
m
k

)
(−1)m−kMkM

m−k
1 .

Based on these central moments, the skewness and kurtosis coefficients of Y are, respectively,
given by

S =
M∗3
σ3 , K =

M∗4
σ4 .

Numerical computation of the mean, variance, measures of skewness and kurtosis for the
PCB(α, λ) distribution are shown in Table 2.

Table 2: Theoretical moment measures of the PCB(α, λ) distribution

α λ M1 σ2 S K
0.5 0.1 0.1755 0.0528 1.6646 5.0278

0.4 0.3001 0.0837 0.8087 2.4314
0.9 0.5152 0.0923 -0.1377 1.7674

1.0 0.1 0.3301 0.0665 0.7430 2.5785
0.4 0.4663 0.0827 0.1417 1.8116
0.9 0.6699 0.0664 -0.7388 2.5633

2.0 0.1 0.5234 0.0562 0.0559 2.0882
0.4 0.6394 0.0575 -0.4382 2.2506
0.9 0.7962 0.0360 -1.3390 4.3644

From Table 2, we conclude that the PCB(α, λ) distribution can be left- and right-skewed, as
negative and positive values for S are observed, and it has all kurtosis states, as K varies around
the limit value of 3.
Complement: Alternative measures of skewness and kurtosis are the ones based on the qf of
the distribution as proposed by [7] and [22], respectively. The Galton skewness and the Moors
kurtosis are, respectively, defined as

SG =
Q(6/8; α, λ)− 2Q(4/8; α, λ) + Q(2/8; α, λ)

Q(6/8; α, λ)−Q(2/8; α, λ)

and

KM =
Q(7/8; α, λ)−Q(5/8; α, λ) + Q(3/8; α, λ)−Q(1/8; α, λ)

Q(6/8; α, λ)−Q(2/8; α, λ)
.

In order to complete the previous numerical work, Figure 3 presents the nature of the Galton
skewness and Moors kurtosis of the PCB(α, λ) distribution.

(a) (b)

Figure 3: Plots of (a) the Galton skewness and (b) Moors kurtosis for the PCB(α, λ) distribution with α ∈ [0, 2] and
λ ∈ [0, 1]
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From Figure 3, we can observe that the Galton skewness seems monotonic according to α and
λ, with possible negative and positive values. On the other hand, the Moors kurtosis is more
complex, being non-monotonic in α. This illustrates the versatility of the PCB(α, λ) distribution
on these form aspects.

4. Entropy

The amount of randomness in the PCB(α, λ) distribution is now the object of all the attention. In
order to accomplish this, we recall that the Rényi entropy of a random variable X with pdf f (x)
is given by

Rθ =
1

1− θ
ln
[∫ +∞

−∞
f (x)θdx

]
,

with θ > 0 and θ 6= 1. The following proposition is about the mathematical expression of the
Rényi entropy of a random variable Y following the PCB(α, λ) distribution.

Proposition 2. Let θ > 0 with θ 6= 1, and Y be a random variable following the PCB(α, λ)
distribution. Then the Rényi entropy of Y is given by

Rθ =



1
1− θ

ln
(

αθ

θ(α− 1) + 1

)
, λ =

1
2

,

1
1− θ

ln
{

(1− λ)θ cθ
λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]}
, λ ∈

(
0,

1
2

)
,

1
1− θ

ln
{

(1− λ)θ cθ
λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]}
, λ ∈

(
1
2

, 1
)

,

where γ−(x, u) and γ+(x, u) are defined as in (7).

Proof. For the case λ = 1/2, we have∫ +∞

−∞
f (x; α, λ)θdx = αθ

∫ 1

0
xθ(α−1)dx =

αθ

θ(α− 1) + 1
.

Hence,

Rθ =
1

1− θ
ln
(

αθ

θ(α− 1) + 1

)
.

For the case λ ∈ (0, 1)/ {1/2}, by applying the change of variable y = xα, we have∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ
∫ 1

0
xθ(α−1)λθxα

(1− λ)θ(1−xα)dx

= cθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αλθy(1− λ)θ(1−y)dy.

Let us now distinguish the case λ ∈ (0, 1/2) and the case λ ∈ (1/2, 1).

• In the case λ ∈ (0, 1/2), by applying the change of variable t = 2θ arctanh(1− 2λ)y ≥ 0, we
obtain∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ−1
∫ 1

0
y(θ−1)(α−1)/αeθy ln(λ)+θ(1−y) ln(1−λ)dy

= (1− λ)θcθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αe−y[2θ arctanh(1−2λ)]dy

=
(1− λ)θcθ

λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1

∫ 2θ arctanh(1−2λ)

0
t(θ−1)(α−1)/αe−tdt

=
(1− λ)θcθ

λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]
.

Hence,

Rθ =
1

1− θ
ln
{

(1− λ)θ cθ
λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]}
.
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• In the case λ ∈ (1/2, 1), by applying the change of variable t = −2θ arctanh(1− 2λ)y ≥ 0,
we obtain∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ−1
∫ 1

0
y(θ−1)(α−1)/αeθy ln(λ)+θ(1−y) ln(1−λ)dy

= (1− λ)θcθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αe−y[2θ arctanh(1−2λ)]dy

=
(1− λ)θcθ

λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1

∫ −2θ arctanh(1−2λ)

0
t(θ−1)(α−1)/αetdt

=
(1− λ)θcθ

λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]
.

Hence,

Rθ =
1

1− θ
ln
{

(1− λ)θ cθ
λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]}
.

We end the proof by compiling the above expressions. �

Table 3 shows some numerical values of the Rényi entropy of the PCB(α, λ) distribution.

Table 3: Numerical results of the Rényi entropy of the PCB(α, λ) distribution

γ α = 1, λ = 0.3 α = 1, λ = 0.8 α = 2, λ = 0.3 α = 2, λ = 0.8
0.01 -0.0003 -0.0008 -0.0019 -0.0061
0.03 -0.0009 -0.0024 -0.0057 -0.0813
0.5 -0.0148 -0.0390 -0.0712 -0.2523
0.7 -0.0207 -0.0542 -0.0901 -0.3290
2.0 -0.0574 -0.1443 -0.1604 -0.6414
4.0 -0.1069 -0.2468 -0.2056 -0.8486
7.0 -0.1624 -0.3379 -0.2360 -0.9827
9.0 -0.1892 -0.3756 -0.2474 -1.0320

Consequently, from Table 3, some useful properties of the Rényi entropy provided in [11] are
applicable here. In particular, (i) for any θ1 < θ2, we have Rθ2 ≤ Rθ1 , (ii) the Rényi entropy can
be negative.

5. Statistical applications

This section is devoted to the applicability of the PCB(α, λ) distribution.

5.1. Estimation

In the setting of the PCB(α, λ) distribution, we aim to estimate the unknown parameters α and λ
based on data that can be conceptually fitted with this distribution. To accomplish this, we can
use the ML method, described as follows: Let y1, . . . , yn represent n independent observations
from a random variable Y following the PCB(α, λ) distribution. Then, based on the pdf indicated
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in (5), the likelihood function is specified by

L(α, λ; y1, . . . , yn) =
n

∏
i=1

f (yi; α, λ)

=


αn

[
n

∏
i=1

yi

]α−1

, λ =
1
2

,

cn
λαn

[
n

∏
i=1

yi

]α−1

λ∑n
i=1 yα

i (1− λ)n−∑n
i=1 yα

i , λ ∈ (0, 1)/
{

1
2

}
.

The ML estimates (MLEs) of α and λ are given by

(α̂, λ̂) = argmax(α,λ) L(α, λ; y1, . . . , yn).

Alternatively, they are defined by

(α̂, λ̂) = argmax(α,λ) `(α, λ; y1, . . . , yn),

where `(α, λ; y1, . . . , yn) refers to the log-likelihood function given by
`(α, λ; y1, . . . , yn) = ln [L(α, λ; y1, . . . , yn)]

=


n ln(α) + (α− 1)

n

∑
i=1

ln(yi), λ =
1
2

,

n ln(cλ) + n ln(α) + (α− 1)
n

∑
i=1

ln(yi) + ln(λ)
n

∑
i=1

yα
i + ln(1− λ)

[
n−

n

∑
i=1

yα
i

]
, λ ∈ (0, 1)/

{
1
2

}
.

They can be obtained by solving the following non-linear equations with respect to α and λ:

∂`(α, λ; y1, . . . , yn)

∂α
= 0,

∂`(α, λ; y1, . . . , yn)

∂λ
= 0.

The standard errors of α̂ and λ̂ can be approximated, and they are denoted in the next as
se(α̂) and se(λ̂), respectively. The advantage of the ML method is that it guarantees interesting
properties for the MLEs, such as asymptotic unbiasedness and normality. More information on
these properties can be found in [4]. Based on the MLEs, we can estimate all the underlying
functions of the PCB(α, λ) distribution. In particular, an estimate of the cdf F(x; α, λ) is given by
F̂(x) = F(x; α̂, λ̂) and an estimate of the pdf f (x; α, λ) is given by f̂ (x) = f (x; α̂, λ̂).

5.2. Simulation study

In this portion, we investigate the asymptotic behavior of the MLEs of α and λ using Monte Carlo
simulation. Random samples from the PCB(α, λ) distribution were generated using (6). The
simulation is repeated N = 2000 times for different sample sizes n ∈ {20, 50, 100, 200, 500} and
different choices of the parameter values (α = 0.3, λ = 0.1), (α = 0.5, λ = 0.3) and (α = 0.8, λ =
0.6). The performance of the MLEs is examined using various statistical criteria presented below.
For φ ∈ {α, λ}, we consider

1. the average bias (Bias) defined by
1
N

N

∑
i=1

(φ̂i − φ), where the index i refers to the i-th

experiment among the N,

2. the root mean square error (RMSE) defined by

√
1
N

N

∑
i=1

(φ̂i − φ)2,

3. the coverage probability (CP) of the 95% confidence interval defined by

1
N

N

∑
i=1

I
(
φ̂i − u∗ se(φ̂i) < φ < φ̂i + u∗ se(φ̂i)

)
,

RT&A, No 4 (71) 
Volume 17, December 2022 

241 



C. Chesneau, F.C. Opone
THE POWER CONTINUOUS BERNOULLI DISTRIBUTION

where I(.) is the indicator function, se(φi) is the standard error related to φ̂i and u∗ = 1.959964.
Table 4 presents the simulation results based on these criteria.

Table 4: Simulation results for the unknown parameters estimates of PCB(α, λ) distribution

Bias RMSE CP
Parameters n α λ α λ α λ

25 0.0189 0.0234 0.0807 0.1314 0.9420 0.8065
α = 0.3 50 0.0056 0.0156 0.0520 0.0934 0.9455 0.8425
λ = 0.1 100 0.0042 0.0062 0.0358 0.0565 0.9570 0.9000

200 0.0028 0.0028 0.0255 0.0406 0.9450 0.9060
500 0.0006 0.0014 0.0155 0.0250 0.9520 0.9395

25 0.0528 -0.0061 0.1736 0.2073 0.9440 0.8120
α = 0.5 50 0.0228 -0.0040 0.1139 0.1608 0.9545 0.8675
λ = 0.3 100 0.0095 0.0075 0.0819 0.1251 0.9470 0.9150

200 0.0037 0.0040 0.0554 0.0902 0.9515 0.9300
500 0.0029 -0.0002 0.0341 0.0569 0.9575 0.9405

25 0.1847 -0.1243 0.3970 0.2635 0.9485 0.8380
α = 0.8 50 0.0959 -0.0711 0.2636 0.2073 0.9420 0.8835
λ = 0.6 100 0.0460 -0.0380 0.1832 0.1628 0.9445 0.9090

200 0.0189 -0.0155 0.1276 0.1221 0.9620 0.9285
500 0.0065 -0.0051 0.0827 0.0818 0.9540 0.9365

From Table 4, we notice that the RMSE of both MLEs decreases as the sample size n increases.
While α̂ is a positively biased parameter estimate, λ̂ can be both positively and negatively biased.
Furthermore, the CP of both MLEs approaches 0.95, and the CP of λ increases as the sample size
n increases.

5.3. Real-life data fitting

Among other purposes, the PCB(α, λ) distribution can be used for fitting data with values into
[0, 1]. We thus illustrate this application by considering two real-life data sets, and compare
their fit with the ones obtained from some existing distributions with support of [0, 1]. More
specifically, we consider the following recently developed unit distributions, including the beta
and Kumaraswamy distributions.

1. Marshall-Olkin extended Kumaraswamy distribution (MOEKD) introduced by [8], and
defined with the following pdf:

f (x; α, a, b) =
αabxa−1 (1− xa)b−1[

1− ᾱ (1− xa)b
]2 , x ∈ [0, 1], where ᾱ = 1− α, with α, a, b > 0.

2. Marshall-Olkin extended Topp-Leone distribution (MOETLD) introduced by [25], and
specified by the following pdf:

f (x; α, λ) =
2αλ(1− x)

[
1− (1− x)2]λ−1[

1− ᾱ
(

1− [1− (1− x)2]
λ
)]2 , x ∈ [0, 1], with α, λ > 0.

3. Unit-Gompertz distribution (UGD) introduced by [20], and defined with the following pdf:
f (x; a, b) = abx−a−1e−b(x−a−1), x ∈ (0, 1], with a, b > 0.

4. Unit-Burr XII distribution (UBXIID) introduced by [16], and defined with the following pdf:
f (x; α, β) = αβx−1(− ln(x))β−1 (1 + (− ln(x))β

)−α−1 , x ∈ (0, 1], with α, β > 0.
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5. Kumaraswamy distribution introduced by [17], and characterized by the following pdf:
f (x; a, b) = abxa−1(1− xa)b, x ∈ (0, 1], with a, b > 0.

6. Beta distribution reported in [24], and defined with the following pdf:

f (x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1), where Γ(x) refers to the standard gamma

function, with α, β > 0.

7. Continuous Bernoulli distribution (CBD) reported in [30], and defined with the pdf given in
(1).

For clarity in exposition, we finally mention that the PCB(α, λ) distribution will sometimes
be denoted as PCBD in the figures and tables to come.

Data set 1: The first data set consists of trade share data from [3]. The trade share data are as
follows: 0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045, 0.22145839, 0.299405932,
0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679, 0.337879002, 0.339706242, 0.352317631,
0.358856708, 0.393250912, 0.41760394, 0.425837249, 0.43557933, 0.442142904, 0.444374621, 0.450546652,
0.4557693, 0.46834656, 0.473254889, 0.484600782, 0.488949597, 0.509590268, 0.517664552, 0.527773321,
0.534684658, 0.543337107, 0.544243515, 0.550812602, 0.552722335, 0.56064254, 0.56074965, 0.567130983,
0.575274825, 0.582814276, 0.603035331, 0.605031252, 0.613616884, 0.626079738, 0.639484167, 0.646913528,
0.651203632, 0.681555152, 0.699432909, 0.704819918, 0.729232311, 0.742971599, 0.745497823, 0.779847085,
0.798375845, 0.814710021, 0.822956383, 0.830238342, 0.834204197, and 0.979355395. The data set is
approximately symmetric with a skewness value of 0.0059. Details of this data set can be accessed
in [29].
Data set 2: The second data set relates to 30 measurements of the tensile strength of polyester
fibers reported in [20]. It was first reported in [27]. The data are as follows: 0.023, 0.032, 0.054,
0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395,
0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, and 0.926. The data set is
right-skewed with a skewness value of 0.5193.
Figure 4 presents the boxplot for the two data sets, showing some of their quantile characteristics.

(a) (b)

Figure 4: Boxplot for (a) data set 1 and (b) data set 2

Figure 4 further supports the claim that data set 1 is approximately symmetric while data set
2 is right-skewed. Observe also that there are no outliers in the two data sets.

The distribution comparison will be based on the distribution parameter estimates, log-
likelihood (LogL), Akaike information criterion (AIC), and Kolmogorov-Smirnov test statistic
(K-S), along with the corresponding p-value. Tables 5 and 6 present the summary statistics for
data sets 1 and 2, respectively.
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Table 5: Summary statistics for data set 1

Models Estimates LogL AIC K-S p-value
PCBD α = 2.8491 15.1002 -26.2005 0.0565 0.9837

λ = 0.0094
α = 0.3011

MOEKD a = 3.0586 14.3183 -22.6367 0.0582 0.9783
b = 1.9513

MOETLD α = 0.6630 14.3606 -24.7211 0.0568 0.9831
λ = 3.3521

Beta α = 2.7940 13.9561 -23.9121 0.1162 0.3546
β = 2.6038

UGD a = 0.6162 10.8759 -17.7518 0.1098 0.4235
b = 1.0921

UBXIID α = 2.1247 14.1186 -24.2371 0.0578 0.9804
β = 2.2237

Kumaraswamy a = 2.3297 13.6251 -23.2503 0.0689 0.9142
b = 2.7630

CBD λ = 0.5424 0.0734 1.8532 0.1834 0.0287

Table 6: Summary statistics for data set 2

Models Estimates LogL AIC K-S p-value
PCBD α = 1.1240 3.4469 -2.8938 0.0578 0.9998

λ = 0.1069
α = 0.4363

MOEKD a = 1.1874 3.6043 -1.2088 0.0627 0.9992
b = 1.2582

MOETLD α = 1.0929 2.9136 -1.8272 0.0672 0.9978
λ = 1.0628

Beta α = 0.9666 3.3051 -2.6101 0.1646 0.3515
β = 1.6203

UGD a = 1.0373 3.9488 -3.8976 0.0734 0.9932
b = 0.4213

UBXIID α = 1.0331 1.0390 1.9220 0.0993 0.9007
β = 1.8465

Kumaraswamy a = 0.9627 3.3110 -2.6221 0.0649 0.9987
b = 1.6084

CBD λ = 0.1565 3.3118 -4.6236 0.0594 0.9997

5.4. Discussion of the results

In the model selection concept, the model that best fits the data set is traceable to the one having
the maximized LogL, least value in terms of AIC and K-S with the highest p-value. A close look
at Tables 5 and 6 reveals that the PCB(α, λ) distribution outperforms the competitors in fitting
the two data sets under study. In particular, all the comparison criteria in Table 5 are in favor of
the PCB(α, λ) distribution. Whereas, in Table 6, we observe that LogL as a criterion supports the
Marshall-Olkin extended Kumaraswamy and unit-Gompertz distributions over the PCB(α, λ)
distribution, while the AIC supports the unit-Gompertz and continuous Bernoulli distributions
over the PCB(α, λ) distribution. However, the PCB(α, λ) distribution outperforms all of the
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competitors in terms of the K-S statistic and its corresponding p-value. Figures 5,6,7 and 8 show
additional evidence of its flexibility over the competitors.

Especially, Figure 5 displays the estimated pdf and cdf fits of the distributions for data set 1.

Figure 5: Estimated pdf and cdf fits of the distributions for data set 1

We observe that the estimated pdf fit of the PCB(α, λ) distribution perfectly captures the
shape of the unimodal histogram, and the estimated cdf fit approaches well the curvature of the
empirical cdf.

In Figure 6 the probability-probability (P-P) plots of the distributions for data set 1 are shown.

Figure 6: P-P plost of the distributions for data set 1
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Visually, the P-P line of the PCB(α, λ) distribution better adjusts the associated scatter plot
than the others.

Figure 7 is analogous to Figure 5 but for data set 2.

Figure 7: Estimated pdf and cdf fits of the distributions for data set 2

In Figure 7, the estimated pdf fit of the PCB(α, λ) distribution captures well the decreasing
shape of the histogram, and the estimated cdf fit approaches correctly the concave trend of the
empirical cdf.

Figure 8 is analogous to Figure 6 but for data set 2.

Figure 8: P-P plots of the distributions for data set 2
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In Figure 8, the P-P line of the PCB(α, λ) distribution is quite acceptable in terms of fitting, as
for some other competitors.

In summary, from these figures, it is clear that the fit accuracy of the PCB(α, λ) distribution is
excellent, making it a golden distribution to analyze the considered data sets.

6. Conclusion

We proposed a natural extension of the novel continuous Bernoulli distribution by adding a shape
parameter through power transformation. The so-called power continuous Bernoulli distribution
is aimed at extending the modeling scope of the continuous Bernoulli distribution. Some of
its mathematical properties were derived (moments, quantiles, entropy, etc.). A parametric
estimation exercise has been given through the maximum likelihood method, and the asymptotic
behavior of the parameter estimates was investigated through a Monte Carlo simulation study.
Finally, we illustrate the flexibility of the power continuous Bernoulli distribution in real-life data
fitting using two real data sets. The potential for probability and statistics applications, such as
regression modeling and machine learning applications, is enormous, and this study provides
the first steps in that direction.
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Abstract 
 

 
In this article it is mainly focused on discussion about estimation of stress-strength reliability under 
equi-correlated multivariate setup. It is seen in some situations that the components of a system are 
equi-correlated. Generally, the form of the equi-correlation structure within the components of a 
system is known for a given situation, however parameters that are involved in the equi-correlation 
structure always unknown. In this article, we propose a procedure to compute and estimate the stress-
strength reliability R= Pr(𝒂!𝒙 >	𝒃!𝒚) when 𝒙	and 𝒚 are distributed non-independently  equi-
correlated multivariate normal distribution, where 𝒂 and 𝒃 are two known vectors. Here we have 
proposed the method of moments estimator to estimate these unknown parameters. Actually, we want 
to find out overall strength is larger than overall stress. In order to do that we take 𝒂!𝒙 and 𝒃!𝒚 as 
their representatives e.g. principal components of the respective vectors do the job approximately. An 
asymptotic distribution used to obtain confidence intervals for the stress-strength reliability. The 
performance of these intervals checked through the simulation study. Finally, we provide a real data 
analysis. 

 
Keywords: Equi-correaled; Principal Component, Method of Moments Estimator 
(MOM); Asymptotic. 
 
 

1. Introduction 

The strength-stress model measured by R=Pr(X>Y), the lifetime of a component has a random 
strength X and it’s subjected to random stress Y. In stress-strength model, at any time, the system 
fails if and only if, the stress is greater than its strength. First introduced to this model by Birnbaum 
[1] and then developed by Birnbaum and McCarty [2]. There has been a huge number of works as 
regards estimation of the reliability R= P(X>Y) in the field of stress-strength models. It has several 
applications particularly in engineering ideas, like structures, deterioration of rocket motors, static 
fatigue of ceramic parts, fatigue failure of craft structures, and also in mechanical, civil engineering. 
The R=Pr(X>Y) has been formulated for the huge majority of the popular statistical distributions 
when X and Y are independent random variables belonging to the same univariate family and also 
(X,Y) follows the bivariate distribution with dependence between X and Y. This form of R has been 
established for the bulk of popular statistical distributions, including Normal, uniform, exponential, 
gamma, beta, extreme value, Weibull, Laplace, logistic and the Pareto distributions…etc [3-7]. This 
model may be applied in clinical trial to comparing two treatment effects, it may be more useful to 
draw conclusions regarding the unit's free measure, rather than comparing the means [8]. Simonoff, 
Hochberg and Reiser [9] also used this model to find the effect of the treatment, if Y is the response 
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for a control group, and X refers to a treatment group.  
A numerical procedure obtained by Birnbaum and McCarty [2] based on the asymptotic 

distribution to find the sample size needed for setting up an upper confidence bound with the 
defined width and confidence coefficient. Sen [10] obtained the non-parametric confidence bounds 
for P(X<Y) based on independent samples. Govindarazulu [11] obtained two-sided confidence limits 
for R when X and Y are independent and also dependent normal variates. Church and Harris [12] 
obtained confidence intervals for R in case of independent normal varieties. 

All these above existing works were done under the univariate or bivariate setup, Gupta 
and Gupta [13] first introduced the concept of estimating stress-strength reliability under 
multivariate normal setup. They considered the forms of R= Pr(𝒂!𝒙 >	𝒃!𝒚), when (𝒙"!#$,	𝒚""#$) 
follows multivariate normal distribution with non-independent vector between 𝒙"!#$ and 𝒚""#$, 𝒂! 
and 𝒃! are two known vectors. This problem arises when a system in the energy is supplied to the 
system by 𝑝$ sources and is consumed through 𝑝% sources and the sources of energy supplied and 
consumed are linearly related with known vector 𝒂! and 𝒃!. Under this set up Gupta and Gupta [13] 
considered only special cases of 𝒂!	 and 𝒃! and compared the MVUE and MLE estimates of R using 
given mean vector and dispersion matrix. Reiser and Farragi [14] derived the lower confidence 
bounds for R=P(𝒂!𝒙∗ > 𝒃!𝒚∗) and solved it iteratively and also derived an approximate lower 
confidence bounds for R. Enis and Geisser [15] have demonstrated that, how to obtain the exact 
confidence bounds for R. 

In many instances, it is seen that the components of a system are equi-correlated. Generally, the 
form of the equi-correlation structure is known for a given situation within the components of a 
system, however parameters that are involved in the equi-correlation structure are always unknown. 
Thus, we compute the stress strength reliability analytically for the special case of equi-correlated 
multivariate normal setup. We consider the principal component analysis to estimate the 𝒂! and 
𝒃!	where as Gupta and Gupta [13] considered only spatial cases of 𝒂!	and 𝒃! and we present 
estimation of R using method of moment (MOM) estimates of the parameters for equi-correlated 
multivariate normal setup in Section 2.1. Determine the asymptotic distribution of 𝛿* in Section 2.2. 
Finally, Simulation studies and data analysis are carried out in Section 3 for performance of MOM 
of R in teams of mean squared errors (MSE), relative bias (RB) and mean absolute error (MAE).  
 

2. Estimation of stress-strength reliability (R) 

Let,	𝒙"!#$ and 	𝒚""#$  be two random vector such that the distribution of +
𝒙
𝒚,	~	𝑁"$'"%(µ, ∑) 
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Now, we are interested to find out the overall strain vector is more than overall stress vector 

and a gross idea of doing this is to find that in terms of their principal components 𝒂!𝒙 and 𝒃!𝒚. 
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Then, we want to find the approximate reliability in terms of 𝒂!𝒙	and	𝒃!𝐲. Then, R= Pr(𝒂!𝒙 > 𝒃!𝒚) = 
Pr(𝒂!𝒙 − 𝒃!𝐲 > 0).  
 
Now, the distribution of 𝑢 = 𝒂!𝒙 − 𝒃!𝒚  follows 𝑁Q𝜇2,𝜎2%S, 

where,  𝜇2=𝐸	(𝒂!𝒙 − 𝒃!𝒚) = µ𝟏𝒂!𝟏𝐩𝟏#𝟏 − µ𝟐𝒃
!𝟏𝒑𝟐𝒙𝟏  

and 𝜎2% = 𝑉𝑎𝑟(𝒂!𝒙 − 𝒃!𝒚) = 𝒂!∑𝟏𝟏𝒂 − 𝟐𝒂!∑𝟏𝟐	𝒃 +	𝒃!∑𝟐𝟐	𝒃		 

So, R= Pr(𝒂!𝒙 − 𝒃!𝒚 > 	0) = Pr(𝑢 > 	0)  

        = ∫ $
√%67&

8
9 exp ]− $
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The overall representation of the two sets or vectors are related to vectors 𝒂 and 𝒃, such that 
they are approximated by 𝒂′𝒙 and 𝒃′𝒚 as in principal component analysis. Principal component 
analysis explaining the variance-Covariance structure ∑𝟏𝟏	&	∑𝟐𝟐 of a set of variables 𝒙 and 𝒚 through 
a linear combination (𝒂!	&	𝒃!)	 of these variables, i.e, explain maximum variability. It is noted that, 
the first principal component has the largest possible variance (that is, accounts for as much of the 
variability in the data as possible), and each succeeding component in turn has the highest variance 
possible under the constraint that it is orthogonal to the preceding components.  

Let, the estimate of 𝒂! by 𝒆𝟏!  normalized eigenvector of ∑𝟏𝟏	corresponding to eigen value 
𝝀𝟏	and 𝒃! by 𝒍𝟏!  normalized eigenvector of 	∑𝟐𝟐 corresponding to eigen value 𝝀𝟏. 
Thus, we have 𝒆𝟏! =	
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   = 𝜎%Q2 + (𝑝$ − 1)𝜌$ + (𝑝% − 1)𝜌% − 2e𝑝$𝑝%𝜌-S 
Then, from equation (1) 

R= Pr(𝒂!𝒙 >	𝒃!𝒚) = Φ i √"!:!/√"":"
7;(%'("!/$)1!'(""/$)1"/%√"!""1))

j = Φ(𝛿)     (2) 

where Φ = Distribution function of univariate standard normal distribution.  
 

Now to estimate the R, we need to estimate the parameters of 𝜇$, 𝜇%, 𝜌$,𝜌%, 𝜌-	and 𝜎%	 in equation 
(2). Thus, we obtain the method of moments estimator (MOM) of these unknow parameters to 
estimate 𝛿, denoted by 𝛿* and obtain its asymptotic distribution.  

 

2.1.Method of Moments Estimation 
Suppose, 𝑚$, 𝑚%, … . ,𝑚< are the sample moments of the random sample of +
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Then the moment estimators (MOM) of 𝜇$, 𝜇%, 𝜌$,𝜌%, 𝜌-	and 𝜎%	are define as  
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2.2. Asymptotic distribution of  𝛿" 

In this Section, we obtain the asymptotic distribution of 𝛿* using delta method [17]. Using this we 
may determine the confidence intervals. 
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A?$
𝑥BC𝑥EC6

⎠

⎞ 

=
2

𝑛%𝑝$𝑝%(𝑝$ − 1)
𝐶𝑜𝑣 xn

""

>?$
n

@

A?$
𝑦BC,n

"!

>?$
n

"!

D?$
>HD

n
@

A?$
𝑥BC𝑥ECy 

		= 2𝜇$𝜎%𝜌- 
 

𝐶𝑜𝑣(𝑚%, 𝑚<) = 𝐶𝑜𝑣

⎝

⎛ 1
𝑝%
n

""

>?$
4
1
𝑛n

@

A?$
𝑦BC6 ,

2
𝑝%(𝑝% − 1)

n
""

>?$
n

""

D?$
>HD

4
1
𝑛n

@

A?$
𝑦BC𝑦EC6

⎠

⎞ 

=
2

𝑛%𝑝%%(𝑝% − 1)
𝐶𝑜𝑣xn

""

>?$
n

@

A?$
𝑦BC,n

""

>?$
n

""

D?$
>HD

n
@

A?$
𝑦BC𝑦ECy 

=
2𝜇%𝜎%

𝑝%
[𝜌%(𝑝% − 1) + 1] 

 

𝐶𝑜𝑣(𝑚%, 𝑚I) = 𝐶𝑜𝑣 u
1
𝑝%
n

""

>?$
4
1
𝑛n

@

A?$
𝑦BC6 ,

1
𝑝$𝑝%

n
"!

>?$
n

""

D?$
4
1
𝑛n

@

A?$
𝑥BC𝑦EC6v 

=
1

𝑛%𝑝$𝑝%%
𝐶𝑜𝑣 zn

""

>?$
n

@

A?$
𝑦BC,n

"!

>?$
n

""

D?$
n

@

A?$
𝑥BC𝑦EC{ 

=
1
𝑝%
[𝜇%𝜎%𝜌- + 𝜇%𝜎% + (𝑝% − 1)(𝜇%𝜎%𝜌- + 𝜇%𝜎%𝜌%)] 

 

𝐶𝑜𝑣(𝑚-, 𝑚F) = 𝐶𝑜𝑣 u
1
𝑝$
n

"!

>?$
4
1
𝑛n

@

A?$
𝑥BC%6 ,

1
𝑝%
n

""

D?$
4
1
𝑛n

@

A?$
𝑦EC%6v												 

=
1

𝑛%𝑝$𝑝%
𝐶𝑜𝑣 zn

"!

>?$
n

@

A?$
𝑥BC% ,n

""

D?$
n

@

A?$
𝑦EC%{		 

= 4𝜇$𝜇%𝜎%𝜌- + 2𝜎F𝜌-% 
 

𝐶𝑜𝑣(𝑚-, 𝑚G) = 𝐶𝑜𝑣

⎝

⎛ 1
𝑝$
n

"!

>?$
4
1
𝑛n

@

A?$
𝑥BC%6 ,

2
𝑝$(𝑝$ − 1)

n
"!

>?$
n

"!

D?$
>HD

4
1
𝑛n

@

A?$
𝑥BC𝑥EC6

⎠

⎞ 

=
2

𝑛%𝑝$%(𝑝$ − 1)
𝐶𝑜𝑣xn

"!

>?$
n

@

A?$
𝑥BC% ,n

"!

>?$
n

"!

D?$
>HD

n
@

A?$
𝑥BC𝑥ECy 

=
1
𝑝$
[4(𝜇$%𝜎𝜌$ + 𝜇$%𝜎% + 𝜎F𝜌$) + 4𝜇$%𝜎%𝜌$ + 2𝜎F𝜌$%] 
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𝐶𝑜𝑣(𝑚-, 𝑚<) = 𝐶𝑜𝑣

⎝

⎛ 1
𝑝$
n

"!

>?$
4
1
𝑛n

@

A?$
𝑥BC%6 ,

2
𝑝%(𝑝% − 1)

n
""

>?$
n

""

D?$
>HD

4
1
𝑛n

@

A?$
𝑦BC𝑦EC6

⎠

⎞ 

=
2

𝑛%𝑝$𝑝%(𝑝% − 1)
𝐶𝑜𝑣 xn

"!

>?$
n

@

A?$
𝑥BC% ,n

""

>?$
n

""

D?$
>HD

n
@

A?$
𝑦BC𝑦ECy 

= 4𝜇$𝜇%𝜎%𝜌- + 2𝜎F𝜌-% 
 

𝐶𝑜𝑣(𝑚-, 𝑚I) = 𝐶𝑜𝑣 u
1
𝑝$
n

"!

>?$
4
1
𝑛n

@

A?$
𝑥BC%6 ,

1
𝑝$𝑝%

n
"!

>?$
n

""

D?$
4
1
𝑛n

@

A?$
𝑥BC𝑦EC6v 

=
1

𝑛%𝑝$%𝑝%
𝐶𝑜𝑣 zn

"!

>?$
n

@

A?$
𝑥BC% ,n

"!

>?$
n

""

D?$
n

@

A?$
𝑥BC𝑦EC{ 

=
2
𝑝$
[(𝜇$%𝜎%𝜌- + 𝜇$𝜇%𝜎% + 𝜎F𝜌-) +	(𝑝$ − 1)(𝜇$%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌$ + 𝜎F𝜌$𝜌-)] 

 

𝐶𝑜𝑣(𝑚F, 𝑚G) = 𝐶𝑜𝑣

⎝

⎛ 1
𝑝%
n

""

>?$
4
1
𝑛n

@

A?$
𝑦EC%6 ,

2
𝑝$(𝑝$ − 1)

n
"!

>?$
n

"!

D?$
>HD

4
1
𝑛n

@

A?$
𝑥BC𝑥EC6

⎠

⎞			 

=
2

𝑛%𝑝$𝑝%(𝑝$ − 1)
Covxn

""

>?$
n

@

A?$
𝑦EC% ,n

"!

>?$
n

"!

D?$
>HD

n
@

A?$
𝑥BC𝑥ECy		 

= 4𝜇$𝜇%𝜎%𝜌- + 2𝜎F𝜌-% 
 

𝐶𝑜𝑣(𝑚F, 𝑚<) = 𝐶𝑜𝑣

⎝

⎛ 1
𝑝%
n

""

>?$
4
1
𝑛n

@

A?$
𝑦EC%6 ,

2
𝑝%(𝑝% − 1)

n
""

>?$
n

""

D?$
>HD

4
1
𝑛n

@

A?$
𝑦BC𝑦EC6

⎠

⎞ 

=
2

𝑛%𝑝%%(𝑝% − 1)
Covxn

""

>?$
n

@

A?$
𝑦EC% ,n

""

>?$
n

""

D?$
>HD

n
@

A?$
𝑦BC𝑦ECy 

=
1
𝑝%
[4(𝜇%%𝜎𝜌% + 𝜇%%𝜎% + 𝜎F𝜌%) + 4𝜇%%𝜎%𝜌% + 2𝜎F𝜌%%] 

 

𝐶𝑜𝑣(𝑚F, 𝑚I) = 𝐶𝑜𝑣 u
1
𝑝%
n

""

>?$
4
1
𝑛n

@

A?$
𝑦EC%6 ,

1
𝑝$𝑝%

n
"!

>?$
n

""

D?$
4
1
𝑛n

@

A?$
𝑥BC𝑦EC6v 

=
1

𝑛%𝑝$𝑝%%
𝐶𝑜𝑣 zn

""

>?$
n

@

A?$
𝑦EC% ,n

"!

>?$
n

""

D?$
n

@

A?$
𝑥BC𝑦EC{ 

=
2
𝑝%
[(𝜇%%𝜎%𝜌- + 𝜇$𝜇%𝜎% + 𝜎F𝜌-) +		(𝑝% − 1)(𝜇%%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌% + 𝜎F𝜌%𝜌-)] 

𝐶𝑜𝑣(𝑚G, 𝑚<) = 

𝐶𝑜𝑣

⎝

⎛ 2
𝑝$(𝑝$ − 1)

n
"!

>?$
n

"!

D?$
>HD

4
1
𝑛n

@

A?$
𝑥BC𝑥EC6 ,

2
𝑝%(𝑝% − 1)

n
""

>?$
n

""

D?$
>HD

4
1
𝑛n

@

A?$
𝑦BC𝑦EC6

⎠

⎞ 

=
4

𝑛%𝑝$𝑝%(𝑝$ − 1)(𝑝% − 1)
𝐶𝑜𝑣 xn

"!

>?$
n

"!

D?$
>HD

n
@

A?$
𝑥BC𝑥EC,n

""

>?$
n

""

D?$
>HD

n
@

A?$
𝑦BC𝑦ECy 

= 4𝜇$𝜇%𝜎%𝜌- + 2𝜎F𝜌-% 
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𝐶𝑜𝑣(𝑚G, 𝑚I) = 𝐶𝑜𝑣

⎝

⎛ 2
𝑝$(𝑝$ − 1)

n
"!

>?$
n

"!

D?$
>HD

4
1
𝑛n

@

A?$
𝑥BC𝑥EC6 ,

1
𝑝$𝑝%

n
"!

>?$
n

""

D?$
4
1
𝑛n

@

A?$
𝑥BC𝑦EC6

⎠

⎞ 

=
2

𝑛%𝑝$%(𝑝$ − 1)𝑝%
𝐶𝑜𝑣 xn

"!

>?$
n

"!

D?$
>HD

n
@

A?$
𝑥BC𝑥EC,n

"!

>?$
n

""

D?$
n

@

A?$
𝑥BC𝑦ECy 

=
2
𝑝$
[(2𝜇$%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌$ + 𝜇$𝜇%𝜎% + 𝜎F𝜌- + 𝜎F𝜌$𝜌-) + 

(𝑝$ − 2)(𝜇$%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌$ + 𝜎F𝜌$𝜌-)] 
 

𝐶𝑜𝑣(𝑚<, 𝑚I) = 𝐶𝑜𝑣

⎝

⎛ 2
𝑝%(𝑝% − 1)

n
""

>?$
n

""

D?$
>HD

4
1
𝑛n

@

A?$
𝑦BC𝑦EC6 ,

1
𝑝$𝑝%

n
"!

>?$
n

""

D?$
4
1
𝑛n

@

A?$
𝑥BC𝑦EC6

⎠

⎞ 

=
2

𝑛%𝑝$𝑝%%(𝑝% − 1)
𝐶𝑜𝑣 xn

""

>?$
n

""

D?$
>HD

n
@

A?$
𝑦BC𝑦EC,n

"!

>?$
n

""

D?$
n

@

A?$
𝑥BC𝑦ECy 

= %
""
[(2𝜇%%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌% + 𝜇$𝜇%𝜎% + 𝜎F𝜌- + 𝜎F𝜌%𝜌-) +   

  (𝑝% − 2)(𝜇%%𝜎%𝜌- + 𝜇$𝜇%𝜎%𝜌% + 𝜎F𝜌%𝜌-)] 
 
Thus we find, 

𝑔
~

/Q𝛿*S = 4
∂𝑔
∂𝑚$

,
∂𝑔
∂𝑚%

,
∂𝑔
∂𝑚-

,
∂𝑔
∂𝑚F

,
∂𝑔
∂𝑚G

,
∂𝑔
∂𝑚<

,
∂𝑔
∂𝑚I

6
M
~
?:
~

 

where, 

4
∂𝑔
∂𝑚$

6
M!?:!

=
𝑝$𝜇$Qe𝑝$𝜇$ −e𝑝%𝜇%S

+𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 

4
∂𝑔
∂𝑚%

6
M"?:"

=
𝑝%𝜇%Qe𝑝$𝜇$ −e𝑝%𝜇%S

+𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 

4
∂𝑔
∂𝑚-

6
M)?X:!"'7"Y

=
−e𝑝$𝜇$ +e𝑝%𝜇%

2 +𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 

4
∂𝑔
∂𝑚F

6
M*?X:""'7"Y

=
−e𝑝$𝜇$ +e𝑝%𝜇%

2 +𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 

4
∂𝑔
∂𝑚G

6
M-?X:!"'7"1!Y

=
−(−1 + 𝑝$)Qe𝑝$𝜇$ − e𝑝%𝜇%S

2 +𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 

4
∂𝑔
∂𝑚<

6
M.?X:""'7"1"Y

=
(−1 + 𝑝%)Q−e𝑝$𝜇$ +e𝑝%𝜇%S

2 +𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-
%
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4
∂𝑔
∂𝑚I

6
M1?X:!:"'7"1)Y

=
e𝑝$𝑝%Qe𝑝$𝜇$ −e𝑝%𝜇%S

+𝜎%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S,
-/% 

 
Using the delta method, we have 

√𝑛Q𝛿* − 𝛿S →
Q
𝑁(0, 𝜎Z%)                                                       

or,    	𝛿* →
Q
𝑁 +𝛿, 73

"

@
,	

     
where, 											𝜎Z% = 𝑔

~

/Q𝛿*S	Σ∗𝑔
~
Q𝛿*S 

= ((𝜎-𝑝$F𝑝%𝜌$%(𝜇$% + 2𝜎%𝜌$) − 2𝑝%%𝜇%%𝜌$((2 + 4𝜎)𝜇$% + 3𝜎-𝜌$) + 
𝜎-e𝑝$𝑝%𝜇%(−1 + 𝜌$)(−2 + 𝜌$ − (−1 + 𝑝%)𝜌%)) − 

2𝜎-𝑝$
I %⁄ 𝑝%

- %⁄ 𝜌$%(𝜇$𝜇% + 2𝜎%𝜌-) + 𝑝$𝑝%(−4(1 + 2𝜎)𝜇$F𝜌$ + 
2𝜇$%𝜌$(2(1 + 3𝜎)𝑝%𝜇%% − 3𝜎-𝜌$) + 𝜎-𝑝%-𝜌%%(𝜇%% + 2𝜎%𝜌%) − 
4𝜎e𝑝$𝑝%𝜇$𝜇%(𝑝%%𝜇%%𝜌% − 𝜎%(−1 + 𝜌$)(−2 + 𝜌$ + 𝜌%) + 

𝑝%(−𝜇%%(−1 + 𝜌%) + 𝜎%(−1 + 𝜌$)𝜌%)) − 
2(2(1 + 2𝜎)𝜇%F𝜌% + 𝜎-𝜇%%(−4e𝑝$𝑝% − 2e𝑝$𝑝%𝜌$ 
(−1 + 𝜌%) + 6e𝑝$𝑝%𝜌% + (3 − 2e𝑝$𝑝%)𝜌%%) + 

𝜎G(−2 + 𝜌$ + 𝜌%)%(−2 + 𝜌$ + 𝜌% + 4e𝑝$𝑝%𝜌-)) − 
2𝜎𝑝%%(𝜎%𝜇%%𝜌%(−2 + 𝜌$ − 2(−1 +e𝑝$𝑝%)𝜌%) + 𝜇%F(−1 + 𝜌$ − 2 
(−1 + e𝑝$𝑝%)𝜌%) + 𝜎F𝜌%%(−6 + 3𝜌$ + 3𝜌% + 4e𝑝$𝑝%𝜌-)) + 

𝑝%(4𝜇%F(𝜎e𝑝$𝑝% + (1 − 𝜎(−3 + e𝑝$𝑝%))𝜌%) + 
𝜎-𝜇%%(4 + 9𝜌$% + 4(−1 + 3e𝑝$𝑝%)𝜌% + (9 − 8e𝑝$𝑝%) 

𝜌%% + 𝜌$(−4 + (2 − 4e𝑝$𝑝%)𝜌%)) + 
2𝜎G𝜌%(−2 + 𝜌$ + 𝜌%)(−6 + 3𝜌$ + 3𝜌% + 8e𝑝$𝑝%𝜌-))) − 
2𝑝$

- %⁄ e𝑝%(−2𝜇$𝜇%(−2𝜎-e𝑝$𝑝% − 𝜎-e𝑝$𝑝%𝜌$(−1 + 𝜌%) + 
(3𝜎-e𝑝$𝑝% + (2 + 4𝜎)𝜇%%)𝜌% − 𝜎-(−3 +e𝑝$𝑝%)𝜌%%) + 
𝜎-𝑝%-𝜌%%(𝜇$𝜇% + 2𝜎%𝜌-) + 𝑝%(4(1 + 3𝜎)𝜇$-𝜇%𝜌$ + 

4𝜎e𝑝$𝑝%𝜇$%𝜇%%(−1 + 𝜌%) − 2𝜎-e𝑝$𝑝%𝜇%%𝜌$(−3 + 2𝜌$ + 𝜌%) + 
𝜇$𝜇%(4𝜇%%(𝜎e𝑝$𝑝% + (1 − 𝜎(−3 +e𝑝$𝑝%))𝜌%) + 𝜎- 
(4 + 9𝜌$% + (−4 + 6e𝑝$𝑝%)𝜌% + (9 − 4e𝑝$𝑝%)𝜌%% − 

2𝜌$(2 + (−1 + e𝑝$𝑝%)𝜌%))) + 
2𝜎G(−2 + 𝜌$ + 𝜌%)𝜌-(−2 + 𝜌$ + 𝜌% + 4e𝑝$𝑝%𝜌-)) − 

2𝜎𝑝%%(2e𝑝$𝑝%𝜇$%𝜇%%𝜌% + 𝜇$𝜇%(𝜎%𝜌%(−2 + 𝜌$ − 
(−2 +e𝑝$𝑝%)𝜌%) + 𝜇%%(−1 + 𝜌$ − 2(−1 + e𝑝$𝑝%)𝜌%)) + 

2𝜎F𝜌%𝜌-Q−2 + 𝜌$ + 𝜌% + 2e𝑝$𝑝%𝜌-S − 𝜎%𝜇%% 
(−2𝜌- + 𝜌$(e𝑝$𝑝%𝜌% + 2𝜌-)))) + 

𝜎𝑝$-𝑝%(−2𝜇$F(−1 + 2𝜌$ + 𝜌% − 𝑝%𝜌%) + 4𝑝%𝜇$-𝜇%𝜌- + 
4𝜎%𝜇$𝜇%𝜌$Qe𝑝$𝑝%𝜌$ − 2𝑝%𝜌-S + 

𝜇$%(−4𝜎%𝜌$% + 2𝜌$(−𝜎%(−2 + 𝜌%) + 𝑝%(𝜇%% + 𝜎%𝜌%)) − 
4𝜎%𝑝%𝜌-%) + 𝜎%𝜌$(−6𝜎%𝜌$% + 8𝜎%𝑝%𝜌-% + 

𝜌$(𝑝%(𝜇%% + 6𝜎%𝜌%) − 2𝜎%(−6 + 3𝜌% + 4e𝑝$𝑝%𝜌-)))) − 
4𝜎𝑝$

G %⁄ e𝑝%(−𝜎%e𝑝$𝑝%𝜇$𝜇%𝜌$(−1 + 𝜌%) + 
𝑝%(−𝜇$-𝜇%(−1 + 2𝜌$ + 𝜌%) + 

𝜎%𝜇$𝜇%Q−2𝜌$% + 𝜌$Q2 + Q−1 +e𝑝$𝑝%S𝜌%S + 2(−1 + 𝜌%)𝜌-S + 
𝜎%𝜌$(e𝑝$𝑝%𝜇%%𝜌$ − 2𝜎%𝜌-(−2 + 𝜌$ + 𝜌% + 2e𝑝$𝑝%𝜌-))) + 
𝑝%%(𝜇$-𝜇%𝜌% + 2𝜇$%𝜇%%𝜌- + 2𝜎%𝜌-(−𝜇%%𝜌$ + 𝜎%(𝜌$𝜌% + 2𝜌-%)) + 

𝜇$𝜇%(𝜇%%𝜌$ + 𝜎%(𝜌$𝜌% − 2𝜌-(𝜌% + 𝜌-))))) + 
𝑝$%(−2𝜇$%𝜌%((2 + 4𝜎)𝜇%% + 3𝜎-𝜌%) + 𝑝%(4(1 + 3𝜎)𝜇$F𝜌$ + 

4𝜎e𝑝$𝑝%𝜇$-𝜇%(−1 + 𝜌%) − 4𝜎-e𝑝$𝑝%𝜇$𝜇%𝜌$ 
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(−3 + 2𝜌$ + 𝜌%) + 𝜇$%(4𝜇%%(𝜎e𝑝$𝑝% + (1 + 3𝜎 − 𝜎e𝑝$𝑝%) 
𝜌%) + 𝜎-(4 + 9𝜌$% + 2𝜌$(−2 + 𝜌%) − 4𝜌% + 9𝜌%%)) + 
2𝜎-𝜌$(−2e𝑝$𝑝%𝜇%%(−1 + 𝜌%) + 𝜎%(−2 + 𝜌$ + 𝜌%) 
(−6 + 3𝜌$ + 3𝜌% + 8e𝑝$𝑝%𝜌-))) + 𝜎𝑝%-(2𝜇%F𝜌$ + 
4𝜇$𝜇%-𝜌- + 𝜎%𝜌%(𝜇$%𝜌% + 2𝜎%(3𝜌$𝜌% + 4𝜌-%)) + 
2𝜇%%(𝜇$%𝜌% + 𝜎%(𝜌$𝜌% − 2𝜌-(2𝜌% + 𝜌-)))) − 

2𝜎𝑝%%(2e𝑝$𝑝%𝜇$-𝜇%𝜌% + 𝜇$%(𝜎%𝜌%(−2 + 𝜌$ + 2𝜌%) + 
𝜇%%(−2 + 3𝜌$ + (3 − 2e𝑝$𝑝%)𝜌%)) + 

𝜎%𝜇%%Q2𝜌$% + 𝜌$Q−2 + Q1 − 2e𝑝$𝑝%S𝜌%S − 4(−1 + 𝜌%)𝜌-S − 
2𝜎%𝜇$𝜇% +−2𝜌- + 𝜌$Qe𝑝$𝑝%𝜌% + 2𝜌-S, + 

2𝜎F(3𝜌$%𝜌% + 2(−2 + 𝜌%)𝜌-% + 𝜌$ 
(3𝜌%% + 2𝜌-% + 𝜌%(−6 + 4e𝑝$𝑝%𝜌-))))))/ 

(2𝑛𝜎G𝑝$𝑝%Q2 + (−1 + 𝑝$)𝜌$ + (−1 + 𝑝%)𝜌% − 2e𝑝$𝑝%𝜌-S
-
)) 

 
 
 
2.3. Asymptotic Confidence Intervals for R 
 
Based on the asymptotic distribution of 𝛿*, we obtain the asymptotic confidence interval of R. Here, 

the estimate of  𝑅 by 𝑅} = ΦQ𝛿*S , i.e. 𝛿* = Φ/$(𝑅) and we have 𝛿* →
Q
𝑁 +𝛿, 73

"

@
, as 𝑛 → ∞. In order to 

determine the two sided confidence Intervals, we find out the two numbers 𝐿$and 𝐿% (𝐿$ < 𝐿%), such 
that, for a given 𝛼, we have 

𝑃(𝐿$ ⩽ Φ(𝛿) ⩽ 𝐿%) = 1 − 𝛼 
 
or,           𝑃(Φ/$(𝐿$) ⩽ 𝛿 ⩽ Φ/$(𝐿%)) = 1 − 𝛼   (3) 
 
Then, an asymptotic (1-α) level confidence Intervals for 𝛿  is given by 
 

𝑃z−𝑧\ %⁄ ⩽ √𝑛Q𝛿* − 𝛿S
𝜎Z

⩽ 𝑧\ %⁄ { = 1 − 𝛼 

 
or,            𝑃 +−

]4 "⁄ 73
√@

⩽ Q𝛿* − 𝛿S ⩽ ]4 "⁄ 73
√@

, = 1 − 𝛼 
 
or,             𝑃 +𝛿* −

]4 "⁄ 73
√@

⩽ 𝛿 ⩽ 𝛿* + ]4 "⁄ 73
√@

, = 1 − 𝛼 
 
We can replace 𝜎Zby 𝜎rZ to obtain asymptotic confidence Intervals for 𝛿. Thus, we can write 
 
   𝑃 +𝛿* −

]4 "⁄ 7J3
√@

⩽ 𝛿 ⩽ 𝛿* + ]4 "⁄ 7J3
√@

, = 1 − 𝛼     (4) 
 
Comparing (3) and (4), we have  𝐿$and 𝐿%respectively as  
 

Φ/$(𝐿$) = 𝛿* −
𝑧\ %⁄ 𝜎rZ
√𝑛

 

 
or,                  𝐿$ = Φ+𝛿* −

]4 "⁄ 7J3
√@

, 
 
and,                  𝐿% = Φ+𝛿* +

]4 "⁄ 7J3
√@

, 
 
Then, an asymptotic (1-α) level confidence Intervals for R is represented by 
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(𝐿$, 𝐿%) = 	 ]Φ4𝛿* −
𝑧\ %⁄ 𝜎rZ
√𝑛

6		 , Φ 4𝛿* +
𝑧\ %⁄ 𝜎rZ
√𝑛

6^ 

 
where, 𝑧\/% upper critical value for the standard normal distribution. 
 
Thus, an asymptotic (1-α) confidence lower bound for R as  
 

𝐿^ = Φ4𝛿* −
𝑧\𝜎rZ
√𝑛

6 

 
3. Simulation study and Data analysis 

3.1. Simulation study  
Now, we compute convergence and performance of MOM estimator, we considered different 
scenarios, each corresponding to a different combination of distributional parameters with different 
reliabilities for 𝑝$=10 and 𝑝%=10, reported in Table 1. We set the six parameters in order to get a high 
value (>0.5) for the reliability, since one typically looks for high reliability for the study component 
or system in real practice. Through these scenarios we cover the large range of reliability, since the 
range of R from 0.5825 to 0.9736.  
For this above purpose we compute the following measures:     
(i) Sample mean of 𝑅} using MOM 

(ii) Mean square error (MSE) of 𝑅} : 𝐸Q𝑅} − 𝑅S% 

(iii) Mean Relative Bias (RB) of 𝑅} : _(
à)/`
`

 

(iv) Mean absolute error (MAE) of 𝑅}: 𝐸(�𝑅} − 𝑅�)  
 
It is difficult to obtain the analytical form of the equation (1) for various ‘R’. So, we figure out 

these by using simulation study. Hence, we generate the random samples of size n from 
+
𝒙
𝒚,	~	𝑁"$'"%(µ, ∑) for different scenarios. For each of sample drown of size n, we compute the R 

using MOM by taking 500 replications each time and also compute the above measures. Here we 
consider the different sample sizes (n) as 10, 30, 50 and 100. For this purpose, here, R programming 
language is used. The simulation results are reported in Table 2. It is noted that, the MSE, RB and 
MAE of 𝑅} are reduces as the sample size increases decrease as expected and when n=100, 𝑅} achieved 
the true value of R under each scenario. Thus, the result seems to be supportive for R in larger 
sample. Also, the performance of the R using MOM is quite satisfactory in terms of MSE, RB and 
MAE for small sample sizes. Hence, it is satisfying the consistency property of the MOM of R.  

We take the components as 𝑝$=14, 𝑝%=12 and set the parameters are 𝜇$=4, 𝜇%=3.5, 𝜌$=0.8, 𝜌%=0.6, 
𝜌-=0.7, 𝜎%	=4 in order to verify the asymptotic distribution of 𝛿* as follows normal distribution, 
described in section 2.2. Then, we have 𝛿*~𝑁(1.538, 0.0196) and generate n=500 samples using this 
as theoretical quantiles. For each of sample drown of size n=500, we compute the 𝛿* using MOM by 
taking 500 replications each time is treated as sample quantiles. Figure 1, Q-Q plot [18] and Shapiro-
Wilk normality test [19] (result as W = 0.99686, p-value = 0.4469) provided satisfactory result that the 
𝛿* follows asymptotic normal distribution. 

The results of the simulation study for the confidence intervals as lower (𝐿$) limit, upper 
(𝐿%) limit and lower bound (𝐿^) are recorded in Table 3. Table 1 and 2, represent the asymptotic and 
bootstrap confidence belt at 90%, 95% and 99% levels. It has been observed that for a small sample 
size, the estimate of R is getting high and also confidence intervals in case of asymptotic. The results 
get better as the sample sizes increase and the reliability R gets closer to true value. The overall band 
of asymptotic confidence is going to sink as the sample sizes increase and it has consistent variation.  
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Table 1: Parameters for the equi-correlated set-up 

Scenario Parameters and values 
𝝁𝟏 𝝁𝟐 𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝈𝟐	 𝑹 

1 1.5 1 0.2 0.2 0.1 16 0.5825 
2 2.5 1.5 0.3 0.2 0.1 16 0.6453 
3 3 2 0.3 0.2 0.2 16 0.6915 
4 4 2.5 0.5 0.4 0.3 16 0.7209 
5 4 2.5 0.5 0.4 0.3 8 0.7962 
6 4 2.5 0.6 0.4 0.4 8 0.8335 
7 4 2.5 0.6 0.5 0.5 8 0.8881 
8 4 2.5 0.7 0.6 0.5 4 0.8912 
9 4 2.5 0.8 0.6 0.6 4 0.9293 
10 4 2.5 0.8 0.7 0.7 4 0.9736 

 
Table 2: Simulation results: Coverage Probability, MSE, RB and MAE 

Scenario 
Sample 

Size 
Sample Mean 

(𝑹,) 
MSE RB MAE 

1 10 0.5840 0.0177 0.0025 0.1064 
30 0.5833 0.0054 0.0013 0.0576 
50 0.5831 0.0034 0.0010 0.0467 
100 0.5828 0.0017 0.0006 0.0328 

2 10 0.6491 0.0154 0.0060 0.1002 
30 0.6456 0.0048 0.0005 0.0537 
50 0.6455 0.0029 0.0004 0.0431 
100 0.6454 0.0015 0.0001 0.0315 

3 10 0.6918 0.0171 0.0006 0.1034 
30 0.6918 0.0052 0.0005 0.0582 
50 0.6917 0.0027 0.0004 0.0423 
100 0.6917 0.0015 0.0003 0.0309 

4 10 0.7238 0.0161 0.0040 0.1024 
30 0.7222 0.0046 0.0017 0.0538 
50 0.7209 0.0026 -0.0001 0.0409 
100 0.7206 0.0013 -0.0004 0.0295 

5 10 0.7977 0.0110 0.0018 0.0856 
30 0.7973 0.0033 0.0014 0.0457 
50 0.7969 0.0022 0.0008 0.0385 
100 0.7965 0.0012 0.0004 0.0271 

6 10 0.8376 0.0091 0.0048 0.0776 
30 0.8347 0.0033 0.0014 0.0457 
50 0.8341 0.0020 0.0007 0.0356 
100 0.8336 0.0009 0.0001 0.0245 

7 10 0.8903 0.0057 0.0024 0.0603 
30 0.8895 0.0019 0.0016 0.0354 
50 0.8888 0.0014 0.0008 0.0298 
100 0.8884 0.0006 0.0003 0.0192 

8 10 0.8934 0.0057 0.0025 0.0622 
30 0.8926 0.0020 0.0016 0.0355 
50 0.8918 0.0013 0.0007 0.0284 
100 0.8917 0.0006 0.0005 0.0205 
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Scenario 
Sample 

Size 
Sample Mean 

(𝑹,) 
MSE RB MAE 

9 10 0.9310 0.0031 0.0018 0.0434 
30 0.9304 0.0013 0.0012 0.0278 
50 0.9298 0.0008 0.0005 0.0224 
100 0.9296 0.0004 0.0003 0.0159 

10 10 0.9740 0.0008 0.0004 0.0213 
30 0.9737 0.0003 0.0001 0.0139 
50 0.9736 0.0002 0.0000 0.0119 
100 0.9735 0.0001 -0.0001 0.0085 

 

 
Figure 1: Normal Q-Q Plot 

 
Table 3: Asymptotic Confidence Intervals   

Scen- 
ario 

Sample 
Size 

𝑹¢ 90% 95% 99% 
L U LB L U LB L U LB 

1 10 0.5884 0.5167 0.6572 0.5326 0.5028 0.6699 0.5167 0.4757 0.6942 0.4867 
30 0.5842 0.5624 0.6058 0.5672 0.5582 0.6099 0.5624 0.5499 0.6179 0.5533 
50 0.5838 0.5706 0.5969 0.5735 0.5681 0.5994 0.5706 0.5631 0.6042 0.5651 
100 0.5830 0.5762 0.5897 0.5777 0.5749 0.5910 0.5762 0.5724 0.5935 0.5734 

2 10 0.7109 0.6465 0.7692 0.6612 0.6336 0.7796 0.6465 0.6079 0.7991 0.6184 
30 0.6978 0.6712 0.7235 0.6771 0.6659 0.7283 0.6712 0.6557 0.7375 0.6598 
50 0.6876 0.6744 0.7005 0.6774 0.6719 0.7029 0.6744 0.6669 0.7077 0.6689 
100 0.6444 0.6371 0.6516 0.6387 0.6357 0.6530 0.6371 0.6330 0.6557 0.6341 

3 10 0.7583 0.6551 0.8420 0.6793 0.6335 0.8555 0.6551 0.5902 0.8797 0.6079 
30 0.7235 0.6925 0.7530 0.6995 0.6863 0.7584 0.6925 0.6742 0.7688 0.6792 
50 0.7135 0.6859 0.7400 0.6921 0.6805 0.7449 0.6859 0.6698 0.7543 0.6741 
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Scen- 
ario 

Sample 
Size 

𝑹¢ 90% 95% 99% 
L U LB L U LB L U LB 

100 0.6954 0.6853 0.7054 0.6875 0.6833 0.7073 0.6853 0.6795 0.7110 0.6810 
4 10 0.8041 0.6534 0.9063 0.6903 0.6202 0.9202 0.6534 0.5530 0.9429 0.5805 

30 0.7571 0.7004 0.8074 0.7134 0.6889 0.8162 0.7004 0.6659 0.8328 0.6753 
50 0.7420 0.7226 0.7606 0.7269 0.7188 0.7641 0.7226 0.7113 0.7709 0.7143 
100 0.7243 0.7140 0.7344 0.7163 0.7121 0.7363 0.7140 0.7081 0.7400 0.7097 

5 10 0.8613 0.7002 0.9502 0.7418 0.6619 0.9603 0.7002 0.5823 0.9753 0.6151 
30 0.8570 0.7952 0.9048 0.8101 0.7818 0.9124 0.7952 0.7542 0.9260 0.7656 
50 0.8352 0.8057 0.8616 0.8125 0.7997 0.8663 0.8057 0.7877 0.8751 0.7926 
100 0.7996 0.7854 0.8133 0.7886 0.7826 0.8158 0.7854 0.7771 0.8208 0.7793 

6 10 0.8800 0.7306 0.9586 0.7699 0.6940 0.9673 0.7306 0.6170 0.9799 0.6490 
30 0.8613 0.7941 0.9117 0.8104 0.7793 0.9195 0.7941 0.7488 0.9334 0.7614 
50 0.8506 0.8098 0.8852 0.8193 0.8012 0.8911 0.8098 0.7839 0.9020 0.7910 
100 0.8340 0.8111 0.8551 0.8163 0.8064 0.8589 0.8111 0.7972 0.8662 0.8010 

7 10 0.9310 0.5747 0.9973 0.6824 0.4762 0.9988 0.5747 0.2930 0.9998 0.3639 
30 0.9253 0.7169 0.9896 0.7780 0.6581 0.9934 0.7169 0.5327 0.9975 0.5846 
50 0.9079 0.8218 0.9586 0.8442 0.8008 0.9650 0.8218 0.7557 0.9752 0.7746 
100 0.8839 0.8527 0.9101 0.8601 0.8462 0.9145 0.8527 0.8328 0.9228 0.8383 

8 10 0.9146 0.6030 0.9934 0.6935 0.5194 0.9964 0.6030 0.3570 0.9991 0.4214 
30 0.8957 0.7818 0.9587 0.8117 0.7538 0.9662 0.7818 0.6940 0.9776 0.7190 
50 0.8939 0.8218 0.9421 0.8399 0.8051 0.9490 0.8218 0.7699 0.9605 0.7846 
100 0.8937 0.8723 0.9124 0.8772 0.8678 0.9157 0.8723 0.8589 0.9218 0.8626 

9 10 0.9602 0.7672 0.9973 0.8304 0.7032 0.9985 0.7672 0.5597 0.9996 0.6200 
30 0.9486 0.7554 0.9949 0.8157 0.6954 0.9970 0.7554 0.5633 0.9990 0.6186 
50 0.9451 0.8894 0.9759 0.9043 0.8751 0.9797 0.8894 0.8438 0.9857 0.8571 
100 0.9306 0.9004 0.9532 0.9078 0.8936 0.9568 0.9004 0.8795 0.9631 0.8853 

10 10 0.9893 0.0092 1.0000 0.0922 0.0006 1.0000 0.0092 0.0000 1.0000 0.0000 
30 0.9821 0.6637 0.9999 0.7862 0.5403 1.0000 0.6637 0.2991 1.0000 0.3926 
50 0.9770 0.8131 0.9990 0.8715 0.7509 0.9995 0.8131 0.6038 0.9999 0.6668 
100 0.9768 0.9252 0.9945 0.9409 0.9091 0.9960 0.9252 0.8705 0.9979 0.8873 

 
3.2. Data Analysis 
In this section, we apply the above methods to find out values of the estimators as �̂�$, �̂�%, 𝜌r$, 𝜌r%, 𝜌r-, 
𝜎r%and 𝑅} from a given data set. The secondary data set of “Wave Energy Converters Data Set” is 
taken from the UCI Machine Learning site. The data set can be downloaded at 
https://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters. This data set consists of positions 
and absorbed power outputs of wave energy converters (WECs) in four real wave scenarios from 
the southern coast of Australia (Sydney, Adelaide, Perth and Tasmania). From this date set we take 
only two place of data set as Adelaide and Perth. We consider the eleven variables names as WECs 
absorbed power from each data set, which are consistent with the positive correlation among the 
variables. Then, we find out the stress strength reliability of absorbed power between the Adelaide 
and Perth respectively. Here we select the number of variables as 𝑝$=11, 𝑝%=11 and the MOM 
estimates as �̂�$ =88175.2, �̂�%=87244.27, 𝜌r$=0.06567, 𝜌r%=0.05251, 𝜌r-=-0.04049, 𝜎r% =107224128 and 
𝑅}=0.55872. Jennrich test [20] used to examine the differences between correlation matrices of elevens 
variables of Adelaide and Perth data sets. The result shows that, the sample and estimated 
correlations by MOM are equal, reported in Table 4 and 5. This means that there is an equi-
correlation between variables of the above data sets. The mean vectors of each data set reported in 
Table 6 and all are mostly equal. The performance of MOM quite good for sample size. The 
confidence intervals result on “Wave Energy Converters Data Set” shows in Table 7. The asymptotic 
confidence intervals in terms of lower limit, upper limits and lower bound are almost same and also 
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band at different levels, but confidence interval and band of bootstrap is lesser then asymptotic 
confidence intervals values. 
 
Table 4. Correlation Matrix and Estimated Correlation Matrix of Adelaide data set 

Correlation  Matrix 
Variable V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 
V1 1 0.022 0.009 0.044 0.051 0.022 0.018 0.12 0.07 0.115 0.07 
V2 0.022 1 0.017 0.032 0.019 0.069 0.013 0.049 0.0004 0.07 0.039 
V3 0.009 0.017 1 0.048 0.047 0.047 0.082 0.07 0.062 0.091 0.056 
V4 0.044 0.032 0.048 1 0.052 0.067 0.06 0.041 0.059 0.085 0.098 
V5 0.051 0.019 0.047 0.052 1 0.05 0.101 0.101 0.118 0.092 0.045 
V6 0.022 0.069 0.047 0.067 0.05 1 0.063 0.068 0.078 0.098 0.026 
V7 0.018 0.013 0.082 0.06 0.101 0.063 1 0.093 0.14 0.125 0.065 
V8 0.12 0.049 0.07 0.041 0.101 0.068 0.093 1 0.071 0.145 0.052 
V9 0.07 0.0004 0.062 0.059 0.118 0.078 0.14 0.071 1 0.071 0.092 
V10 0.115 0.07 0.091 0.085 0.092 0.098 0.125 0.145 0.071 1 0.12 
V11 0.07 0.039 0.056 0.098 0.045 0.026 0.065 0.052 0.092 0.12 1 

Estimated Correlation  Matrix using MOM 
V1 1 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 
V2 0.066 1 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 
V3 0.066 0.066 1 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 
V4 0.066 0.066 0.066 1 0.066 0.066 0.066 0.066 0.066 0.066 0.066 
V5 0.066 0.066 0.066 0.066 1 0.066 0.066 0.066 0.066 0.066 0.066 
V6 0.066 0.066 0.066 0.066 0.066 1 0.066 0.066 0.066 0.066 0.066 
V7 0.066 0.066 0.066 0.066 0.066 0.066 1 0.066 0.066 0.066 0.066 
V8 0.066 0.066 0.066 0.066 0.066 0.066 0.066 1 0.066 0.066 0.066 
V9 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 1 0.066 0.066 
V10 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 1 0.066 
V11 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 1 

Jennrich test:  χ2= 30.1314, p-value= 0.9974615 (H0: all the correlations are equal) 
 
Table 5. Correlation Matrix and Estimated Correlation Matrix of Perth data set 

Correlation  Matrix 
Variable V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 
V1 1 0.052 0.063 0.121 0.113 0.03 0.023 0.117 0.003 0.075 0.109 
V2 0.052 1 0.048 0.037 0.031 0.05 0.018 0.065 0 0.018 0.052 
V3 0.063 0.048 1 0.11 0.05 0.032 0.04 0.034 0.048 0.029 0.044 
V4 0.121 0.037 0.11 1 0.086 0.048 0.029 0.096 0.019 0.068 0.038 
V5 0.113 0.031 0.05 0.086 1 0.022 0.002 0.118 0.003 0.128 0.049 
V6 0.03 0.05 0.032 0.048 0.022 1 0.024 0.045 0.029 0.041 0.061 
V7 0.023 0.018 0.04 0.029 0.002 0.024 1 0.026 0.088 0.068 0.09 
V8 0.117 0.065 0.034 0.096 0.118 0.045 0.026 1 0.008 0.069 0.114 
V9 0.003 0 0.048 0.019 0.003 0.029 0.088 0.008 1 0.011 0.029 
V10 0.075 0.018 0.029 0.068 0.128 0.041 0.068 0.069 0.011 1 0.077 
V11 0.109 0.052 0.044 0.038 0.049 0.061 0.09 0.114 0.029 0.077 1 

Estimated Correlation  Matrix using MOM 
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V1 1 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 
V2 0.053 1 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 
V3 0.053 0.053 1 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 
V4 0.053 0.053 0.053 1 0.053 0.053 0.053 0.053 0.053 0.053 0.053 
V5 0.053 0.053 0.053 0.053 1 0.053 0.053 0.053 0.053 0.053 0.053 
V6 0.053 0.053 0.053 0.053 0.053 1 0.053 0.053 0.053 0.053 0.053 
V7 0.053 0.053 0.053 0.053 0.053 0.053 1 0.053 0.053 0.053 0.053 
V8 0.053 0.053 0.053 0.053 0.053 0.053 0.053 1 0.053 0.053 0.053 
V9 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 1 0.053 0.053 
V10 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 1 0.053 
V11 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 1 

Jennrich test:  χ2= 30.1976, p-value= 0.9973857 (H0: all the correlations are equal) 
 
Table 6. Mean Vector of data sets 

Data 
Set 

Mean Vector 
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

Adela
ide 

87821
.85 

87785
.72 

88185
.84 

87680
.8 

88436
.53 

87564
.24 

88660
.64 

88424
.98 

87703
.94 

89191
.15 

88471
.47 

Perth 
88115

.64 
86299

.28 
87054

.98 
87490

.71 
87172

.86 
87227

.25 
87479

.91 
87259

.51 
86110

.12 
88026

.43 
87450

.23 
 
Table 7: Confidence Intervals for tests of the “Wave Energy Converters Data Set” 

Confidence 
Intervals 

90% 95% 99% 
L U LB L U LB L U LB 

Asymptotic 0.5567 0.5587 0.5577 0.5566 0.5588 0.5587 0.5565 0.5589 0.5588 
Bootstrap 0.5563 0.5612 0.5568 0.5558 0.5617 0.5563 0.5549 0.5626 0.5553 

 

4. Conclusions 
In this article, we proposed a method to estimate the stress–strength reliability and all unknown 
parameters under the equi-corelated multivariate normal setup. We provide MOM method to 
estimate these unknown parameters and use them to estimate of 𝛿 and R. We also obtain the 
asymptotic distribution of estimated 𝛿. The simulation results indicate that performance than MOM 
in terms of MSE, RB and MAE for different choices of the parameters. Simulation studies illustrate 
that, the MSE, RB and MAE of this estimator reduce as the sample size increases and they almost 
achieved the true value of R. Also, the simulation studies illustrate that the proposed method has 
the best coverage probability and also produces the shortest band of confidence intervals. The stress-
strength reliability of the given data set is 𝑅}=0.55872. The performance of method of moments 
estimator (MOM) of R is consistent for different sample size and quite good for small sample size. 
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Abstract

The system in industries is greatly impacted by failure. Eliminating these defects is therefore essential for
enhancing system performance. This study aims to assess the range of repair/replacement facilities in
the GDC (Gravity Die Casting) system at the Piston Foundry Plant. Two sub-units are connected to
one main unit, which makes up the GDC system. Any component failure results in system failure. In
this situation, the system will first attempt to be repaired, and if that is unsuccessful, it will be replaced.
To operate effectively, the primary unit needs to be built of aluminium alloy (Al). Lack of raw materials
is what leads to a system failing.Using semi-Markov processes and the regenerating point method, the
aforementioned measurements were computed numerically and graphically. The results of this study
are unusual since no prior research has concentrated on the GDC system repair/replacement facilities
at piston foundries. The conclusions, according to the discussion, are very helpful for businesses who
manufacture pistons and utilise the GDC system.

Keywords: GDC, repair, replacement, semi-Markov process, regenerating point technique.

1. Introduction

A system is made up of a variety of parts that function in concert to create a whole. Finally, the
system’s operation is influenced by how well each component performs. A component-based
system can be in both an operational and a failing state. Failures have an impact on the system’s
use and dependability. As a result, many systems, such as those that control hydraulic, computer,
and electric power supplies, nuclear power plants, aviation engines, vehicle engines, and so on,
now demand reliability as a component. For systems that function in the dependability domain,
researchers have significantly contributed to the creation of reliability models. There have been
several research on backup systems, including: Srinivasan [10] gave an examination of warm
standby system dependability for a repair facility. The stochastic standby system behaviour
with repair time was handled by Kumar et al. [4]. Sharma and Kaur [8] conducted a cost-
benefit analysis of a compressor standby system. A power plant system’s cold standby unit was
stochastically modelled by Sharma and Sharma[9].

Some authors provided an overview of the different reliability modelling methodologies used
in die casting systems such as: High Pressure Grain structure and segregation in die casting of
magnesium and aluminium alloys Characteristics mentioned by Laukli [5]. High pressure die
cast AlSi9Cu3 (Fe) alloys are provided by Timelli [11] using constitutive and stochastic models to
anticipate the impact of casting flaws on the mechanical properties. Die Casting Process Modeling
and Optimization for ZAMAK Alloy given by Sharma [7]. Existing epistemic uncertainty in
die-casting is modelled for reliability and optimised by Yourui et al.[12]. Sensitivity study for
the casting method provided by Kumar [3]. An Early Investigation of a Lightweight provided
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by Muller et al. [6] Die Casting Die Using a Modular Design Approach. High pressure die
casting machine reliability analysis of two unit standby system offered by Bhatia and Sharma
[1]. The Casting Process Optimization Case Study: A Review of the Reliability Techniques
used by Chaudhari and Vasudevan [2]. According to the discussion above, every researcher
has addressed reliability analysis of the die casting method used in piston foundries. Research
findings pertaining to the GDC system in piston foundries have not been discovered. There are a
variety of systems in piston foundry operations that must be analysed using real data at various
rates and costs. Our efforts are closing this gap by gathering genuine data from a company
called Federal-Mogul Powertrain, India Limited, which is based in Bahadurgarh, Punjab, near
Patiala. Federal-Mogul is the world’s leading maker of world-class pistons, piston rings and
cylinder linears, with products for two-and three -wheelers, vehicles and tractors, among other
applications.

We create a Reliability model for the Gravity Die Casting (GDC) system at the piston foundry
using the ideas presented above as our inspiration. This model includes the ability for repair and
replacement. The goal of this study is to evaluate the range of repair and replacement capabilities
offered by the GDC (Gravity Die Casting) system at the Piston Foundry Plant. One primary unit
and two supporting units make up the GDC system. The system as a whole fails if even one of
the constituent components fails. In this instance, the system will be fixed, and if repair is not
possible, it will be replaced. The primary component needs to be made of aluminum alloy for it
to work effectively (Al). Lack of raw materials might cause a system to fail.

There are a few assumptions that must be made for the model:
• The system works initially at state S0.
• All failures/repairs /replacement times are exponential distribution.
• In the states, the system is restored to working order after each repair/replacement.
• The unit is brought online as quickly as possible.
• Visit of repairman is immediate upon failure.

2. Methods

The following tools and procedures were utilised to accomplish this study:
In order to overcome the difficulties, semi-Markov processes and regenerating point techniques

are used. System availability, mean time to system failure, busy period for repairs/replacements,
and expected number of repairs/replacements are only a few of the data that have been collected
about system efficiency. Also made are the profits. For a particular case, graphical assessments
are produced using the programming languages C++, Python, and MS Excel.

3. Notations and States for the Model

λ → Failure rate of the main unit i.e. DC.

λ1 → Failure rate of the sub-unit one.

λ2 → Failure rate of the sub-unit two.

p → Probability that raw material is Available.

q → Probability that raw material is Non-Available.

a → Probability that repair is feasible.

b → Probability that replacement is feasible.

β → Rate of metal treatment.

O → Operative unit.

DC → Main unit of the system i.e. DC.
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O(DC) → Main unit of the system is in operating state.

SU1, SU2 → Sub-unit one and sub-unit two of the system.

O(SU1) → Sub unit one is in operating state.

O(SU2) → Sub unit two is in operating state.

Al → Aluminum alloy.

Av(Al) → Aluminum alloy is Available.

NA(Al) → Aluminum alloy is Non- Available .

CS(DC) → Main unit is in cold standby state.

CS(SU1) → Sub unit one is in cold standby state.

CS(SU2) → Sub unit two is in cold standby state.

F(t), f (t) → c.d.f. and p.d.f. of availablility of the raw material.

G(t), g(t) → c.d.f. and p.d.f of time to repair/replacement of the main unit.

G1(t), g1(t) → c.d.f. and p.d.f of time to repair/replacement of the sub-unit one.

G2(t), g2(t) → c.d.f. and p.d.f of time to repair/replacement of the sub-unit two.

Fr(DC) → Main unit is under repair.

Fr(SU1), Fr(SU2) → Sub-unit one and Sub-unit two are under repair.

Frp(DC) → Main unit is under replacement.

Frp(SU1), Frp(SU2) → Sub-unit one and Sub-unit two are under replacement. (1)

4. The System’s Reliability Measures

4.1. Transition Probabilities

The transition diagram in Fig.1 depicts the system’s many states.

Figure 1: State Transition Diagram

The epochs of entry into states S0, S1, S2, S3, S4, and S5 are regenerative states; the remaining
states are non-regenerative stages. States S0 and S1 are operating states, while states S2, S3, S4,
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S5, S6, S7, and S8 are failed states. The following sources provide the transition probabilities:

dQ01(t) = pβe−βtdt dQ02(t) = qβe−βtdt

dQ13(t) = λae−(λ+λ1+λ2)atdt dQ14(t) = λ1ae−(λ+λ1+λ2)atdt

dQ15(t) = λ2ae−(λ+λ1+λ2)atdt dQ36(t) = λbe−λbt ¯G(t)dt

dQ(6)
31 (t) = [λbe−λbt©1]g(t)dt dQ31(t) = g(t)e−λbtdt

dQ41(t) = g1(t)e−λ1btdt dQ47(t) = λ1be−λ1bt ¯G1(t)dt

dQ(7)
41 (t) = [λ1be−λ1bt©1]g1(t)dt dQ51(t) = g2(t)e−λ2btdt

dQ58(t) = λ2be−λ2bt ¯G2(t)dt dQ(8)
51 (t) = [λ2be−λ2bt©1]g2(t)dt

dQ20(t) = f (t)dt dQ61(t) = g(t)dt

dQ71(t) = g1(t)dt dQ81(t) = g2(t)dt (2)

The non-zero elements pij can be represented as below:

pij = Qij(∞) =
∫ ∞

0
qijdt (3)

As we get

p01 = p p02 = q

p13 =
λa

(λ + λ1 + λ2)a
p14 =

λ1a
(λ + λ1 + λ2)a

p15 =
λ2a

(λ + λ1 + λ2)a
p31 = g∗(λb)

p36 = p(6)31 =
λb[1 − g∗(λb)]

λb
p41 = g∗1(λ1b)

p47 = p(7)41 =
λ1b[1 − g∗1(λ1b)]

λ1b
p51 = g∗2(λ2b)

p58 = p(8)51 =
λ2b[1 − g∗2(λ2b)]

λ2b
p20 = f ∗(0)

p61 = g∗(0) p71 = g∗1(0)

p81 = g∗2(0) (4)

It is also verified that:

p01 + p02 = 1 p13 + p14 + p15 = 1

p31 + p36 = 1 p31 + p(6)31 = 1

p41 + p47 = 1 p41 + p(7)41 = 1

p51 + p58 = 1 p51 + p(8)51 = 1

p20 = p61 = p71 = p81 = 1 (5)

The unconditional mean time taken by the system to transit for any regenerative state ‘j’when it
(time) is counted from the epoch of entrance into state ‘i’is mathematically state as:

mij =
∫ ∞

0
tdQij(t) = −q∗ij(0) (6)
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it is also verified that

m01 + m02 = µ0 m13 + m14 + m15 = µ1

m31 + m36 = µ3 m31 + m(6)
31 = K

m41 + m47 = µ4 m41 + m(7)
41 = K1

m51 + m58 = µ5 m51 + m(8)
51 = K2

m20 = µ2 m61 = µ6

m71 = µ7 m81 = µ8 (7)

where

m01 =
∫ ∞

0
tpβe−(β)tdt m02 =

∫ ∞

0
tqβe−(β)tdt

m13 =
∫ ∞

0
tλae−(λ+λ1+λ2)atdt m14 =

∫ ∞

0
λ1ate−(λ+λ1+λ2)atdt

m15 =
∫ ∞

0
λ2ate−(λ+λ1+λ2)atdt m31 =

∫ ∞

0
g(t)te−(λb)tdt

m36 =
∫ ∞

0
λbte−(λb)t ¯G(t)dt m(6)

31 =
∫ ∞

0
t[λbe−(λb)t©1]g(t)dt

m41 =
∫ ∞

0
g1(t)te−(λ1b)tdt m47 =

∫ ∞

0
λ1bte−(λ1b)t ¯G1(t)dt

m(7)
41 =

∫ ∞

0
t[λ1be−(λ1b)t©1]g1(t)dt m51 =

∫ ∞

0
g2(t)te−(λ2b)tdt

m58 =
∫ ∞

0
λ2bte−(λ2b)t ¯G2(t)dt m(8)

51 =
∫ ∞

0
t[λ2be−(λ2b)t©1]g2(t)dt

m20 =
∫ ∞

0
t f (t)dt m61 =

∫ ∞

0
tg(t)dt

m71 =
∫ ∞

0
tg1(t)dt m81 =

∫ ∞

0
tg2(t)dt

K =
∫ ∞

0
¯G(t)dt K1 =

∫ ∞

0
¯G1(t)dt

K2 =
∫ ∞

0
¯G2(t)dt (8)

The mean sojourn time (µi) in the regenerative state ‘i’is defined as time of stay in that state
before transition to any other state :

µ0 =
1
β

µ1 =
1

λ + λ1 + λ2

µ3 =
1 − g∗(λb)

λb
µ4 =

1 − g∗1(λ1b)
λ1b

µ5 =
1 − g∗2(λ2b)

λ2b
µ2 = − f ∗(0)

µ6 = −g∗(0) µ7 = −g∗1(0)

µ8 = −g∗2(0) (9)

5. Reliability Analysis

5.1. Mean Time To System Failure

To determine the mean time to system failure (MTSF) of the system, we regard the failed states
of system absorbing. By probabilities arguments; we obtain the following recursive relation for
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ϕi(t):

ϕ0(t) = Q01(t)Ⓢϕ1(t) + Q02(t)

ϕ1(t) = Q13(t) + Q14(t) + Q15(t) (10)

Taking Laplace Stieltje Transforms(L.S.T) of these relations in equations(10) and solving for ϕ∗∗
o (s)

we obtain

ϕ∗∗
o (s) =

N(s)
D(s)

(11)

where

N(s) = Q∗∗
01 (s)[Q

∗∗
13 (s) + Q∗∗

14 (s) + Q∗∗
15 (s)] + Q∗∗

02 (s)

D(s) = 1 (12)

Now the mean time to system failure (MTSF) , when the system started at the beginning of state
S0 is

T = lim
s−→0

1 − ϕ∗∗
o (s)

s
(13)

Using L’ Hospital rule and putting the value of ϕ∗∗
o (s) from equation(13), we have

T0 =
N
D

(14)

where

N = µ0 + µ1[p01]

D = 1 (15)

5.2. Availability Analysis

Let Ai(t) be the probability that the system is in up state at instant t given that the system entered
regenerative state i at t=0. The availability Ai(t) is to satisfy the following recursive relations:

A0(t) = M0(t) + q01(t)©A1(t) + q02(t)©A2(t)

A1(t) = M1(t) + q13(t)©A3(t) + q14(t)©A4(t) + q15(t)©A5(t)

A2(t) = q20(t)©A0(t)

A3(t) = q31(t)©A1(t) + q(6)31 (t)©A1(t)

A4(t) = q41(t)©A1(t) + q(7)41 (t)©A1(t)

A5(t) = q51(t)©A1(t) + q(8)51 (t)©A1(t) (16)

where

M0(t) = e−βt M1(t) = e−(λ+λ1+λ2)t (17)

Taking Laplace Transformation of the above equation(17) and letting s−→ 0, we get

M∗
0(0) = µ0 M∗

1(0) = µ1 (18)

Taking Laplace transform of the above equations(16) and solving them for

A∗
0(s) =

N1(s)
D1(s)

(19)
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where

N1(s) = M∗
0(s)[1 − q∗13(s)(q

∗
31(s) + q(6)∗31 (s))− q∗14(s)(q

∗
41(s) + q(7)∗41 (s))− q∗15(s)

(q∗51(s) + q(8)∗51 (s))] + M∗
1(s)q

∗
01(s) (20)

D1(s) = 1 − q∗13(s)(q
∗
31(s) + q(6)∗31 (s))− q∗14(s)(q

∗
41(s) + q(7)∗41 (s))− q∗15(s)(q

∗
51(s) + q(8)∗51 (s))

− q∗02(s)q
∗
20(s)[1 − q∗13(s)(q

∗
31(s) + q(6)∗31 (s))− q∗14(s)(q

∗
41(s) + q(7)∗41 (s))

− q∗15(s)(q
∗
51(s) + q(8)∗51 (s))] (21)

In steady state, system availability is given as

A0 = lim
s−→0

sA∗
0(s) =

N1

D1
(22)

where

N1 = µ1[p01] (23)

D1 = µ1[p01] + K[p01 p13] + K1[p01 p14] + K2[p01 p15] (24)

5.3. Busy Period Analysis for the Repairman

Let BRi(t) be the probability that the repairman is busy at time t given that the system entered
regenerative state i at i=0. The recursive relation for BRi(t) are as follows:

BR0(t) = q01(t)©BR1(t) + q02(t)©BR2(t)

BR1(t) = q13(t)©BR3(t) + q14(t)©BR4(t) + q15(t)©BR5(t)

BR2(t) = W2(t) + q20(t)©BR0(t)

BR3(t) = W3(t) + q31(t)©BR1(t)

BR4(t) = W4(t) + q41(t)©BR1(t)

BR5(t) = W5(t) + q51(t)©BR1(t) (25)

where

W2(t) = ¯F(t) W3(t) = ¯G(t)

W4(t) = ¯G1(t) W5(t) = ¯G2(t) (26)

Taking Laplace Transformation of the above equation(26) and letting s−→ 0, we get

W∗
2 (0) = µ2 W∗

3 (0) = K W∗
4 (0) = K1

W∗
5 (0) = K2

Taking Laplace transform of the above equations(25) and solving them for

BR∗
0(s) =

N2(s)
D1(s)

where

N2(s) = W∗
3 (s)q

∗
01(s)q

∗
13(s) + W∗

4 (s)q
∗
01(s)q

∗
14(s) + W∗

5 (s)q
∗
01(s)q

∗
15(s) + W∗

2 (s)q
∗
02(s)

[1 − q∗13(s)q
∗
31(s)− q∗14(s)q

∗
41(s)− q∗15(s)q

∗
51(s)]

The value of D1(s) is already defined in equation(21).
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System total fraction of the time when it is under repair in steady state is given by

BR0 = lim
s−→0

sBR∗
0(s) =

N2

D1
(27)

where

N2 = µ2 p02[1 − p13 p31 − p14 p41 − p15 p51] + K[p01 p13] + K1[p01 p14] + K2[p01 p15]

The value of D1 is already defined in equation(24).

5.4. Busy Period Analysis for the Replacement

Let BRPi(t) be the probability that the repairman is busy at time t given that the system entered
regenerative state i at i=0. The recursive relation for BRPi(t) are as follows:

BRP0(t) = q01(t)©BRP1(t) + q02(t)©BRP2(t)

BRP1(t) = q13(t)©BRP3(t) + q14(t)©BRP4(t) + q15(t)©BRP5(t)

BRP2(t) = q20(t)©BRP0(t)

BRP3(t) = W3(t) + q(6)31 (t)©BRP1(t)

BRP4(t) = W4(t) + q(7)41 (t)©BRP1(t)

BRP5(t) = W5(t) + q(8)51 (t)©BRP1(t) (28)

where

W3(t) = ¯G(t) W4(t) = ¯G1(t) W5(t) = ¯G2(t) (29)

Taking Laplace Transformation of the above equation(29) and letting s−→ 0, we get

W∗
3 (0) = K W∗

4 (0) = K1 W∗
5 (0) = K2 (30)

Taking Laplace transform of the above equations(28) and solving them for

BRP∗
0 (s) =

N3(s)
D1(s)

(31)

where

N3(s) = W∗
3 (s)q

∗
01(s)q

∗
13(s) + W∗

4 (s)q
∗
01(s)q

∗
14(s) + W∗

5 (s)q
∗
01(s)q

∗
15(s) + q∗02(s)

[1 − q∗13(s)q
(6)∗
31 (s)− q∗14(s)q

(7)∗
41 (s)− q∗15(s)q

(8)∗
51 (s)] (32)

The value of D1(s) is already defined in equation(21).
System total fraction of the time when it is under repair in steady state is given by

BRP0 = lim
s−→0

sBRP∗
0 (s) =

N3

D1
(33)

where

N3 = p02[1 − p13 p(6)31 − p14 p(7)41 − p15 p(8)51 ] + K[p01 p13] + K1[p01 p14] + K2[p01 p15] (34)

The value of D1 is already defined in equation(24).
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5.5. Expected Number of Repairs

Let ERi(t) be the expected no. of repairs in (0,t] given that the system entered regenerative state i
at i=0. The recursive relations for ERi(t) are as follows:

ER0(t) = Q01(t)ⓈER1(t) + Q02(t)ⓈER2(t)

ER1(t) = Q13(t)ⓈER3(t) + Q14(t)ⓈER4(t) + Q15(t)ⓈER5(t)

ER2(t) = Q20(t)Ⓢ[1 + ER0(t)]

ER3(t) = Q31(t)Ⓢ[1 + ER1(t)]

ER4(t) = Q41(t)Ⓢ[1 + ER1(t)]

ER5(t) = Q51(t)Ⓢ[1 + ER1(t)] (35)

Taking L.S.T.of above relations and obtain the value of ER∗∗
0 (s), we get

ER∗∗
0 (s) =

N4(s)
D1(s)

where

N4(s) = Q∗∗
01 (s)[Q

∗∗
13 (s)Q

∗∗
31 (s) + Q∗∗

14 (s)Q
∗∗
41 (s) + Q∗∗

15 (s)Q
∗∗
51 (s)] + Q∗∗

02 (s)Q
∗∗
20 (s)[1 − Q∗∗

13 (s)Q
∗∗
31 (s)

− Q∗∗
14 (s)Q

∗∗
41 (s)− Q∗∗

15 (s)Q
∗∗
51 (s)]

The value of D1(s) is already defined in equation(21).
For system steady state, the number of repairs per unit time is given by

ER0 = lim
s−→0

sER∗∗
0 (s) =

N4

D1
(36)

where

N4 = p01[p13 p31 + p[14]p41 + p15 p51] + p02[1 − p13 p31 − p14 p41 − p15 p51]

The value of D1 is already defined in equation(24).

5.6. Expected Number of Replacements

Let ERPi(t) be the expected no. of replacements in (0,t] given that the system entered regenerative
state i at i=0. The recursive relations for ERPi(t) are as follows:

ERP0(t) = Q01(t)ⓈERP1(t) + Q02(t)ⓈERP2(t)

ERP1(t) = Q13(t)ⓈERP3(t) + Q14(t)ⓈERP4(t) + Q15(t)ⓈERP5(t)

ERP2(t) = Q20(t)ⓈERP0(t)

ERP3(t) = Q(6)
31 (t)Ⓢ[1 + ERP1(t)]

ERP4(t) = Q(7)
41 (t)Ⓢ[1 + ERP1(t)]

ERP5(t) = Q(8)
51 (t)Ⓢ[1 + ERP1(t)] (37)

Taking L.S.T.of above relations and obtain the value of ERP∗∗
0 (s), we get

ERP∗∗
0 (s) =

N5(s)
D1(s)

where

N5(s) = Q∗∗
01 (s)[Q

∗∗
13 (s)Q

(6)∗∗
31 (s) + Q∗∗

14 (s)Q
(7)∗∗
41 (s) + Q∗∗

15 (s)Q
(8)∗∗
51 (s)]
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The value of D1(s) is already defined in equation(21).
For system steady state, the number of replacements per unit time is given by

ERP0 = lim
s−→0

sERP∗∗
0 (s) =

N5

D1
(38)

where

N5 = p01[p13 p(6)31 + p14 p(7)41 + p15 p(8)51 ]

The value of D1 is already defined in equation(24).

6. Profit Analysis

Profit incurred to the system model in steady state is given by

P = Z0 A0 − Z1BR0 − Z2BRP0 − Z3ER0 − Z4ERP0 (39)

where
P = Profit Analysis.
Z0 = Revenue per unit up time.
Z1 = Cost per unit up time for which the repairman is busy for repair.
Z2 = Cost per unit up time for which the repairman is busy for replacement.
Z3 = Cost per repair.
Z4 = Cost per replacement.

7. Particular Cases

For the particular case, the failure rates and repair rates are exponentially distributed as follows:

f (t) = γe−γt g(t) = αe−αt

g1(t) = α1e−α1t g2(t) = α2e−α2t

As we get,

p01 = p p02 = q

p13 =
λ

(λ + λ1 + λ2)
p14 =

λ1

(λ + λ1 + λ2)

p15 =
λ2

(λ + λ1 + λ2)
p31 =

α

λ + α

p36 = p(6)31 =
λ

λ + α
p41 =

α1

λ1 + α1

p47 = p(7)41 =
λ1

λ1 + α1
p51 =

α2

λ2 + α2

p58 = p(8)51 =
λ2

λ2 + α2
p20 = p61 = p71 = p81 = 1

µ0 =
1
β

µ1 =
1

(λ + λ1 + λ2)

µ2 =
1
γ

µ3 =
1

λ + α
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µ4 =
1

λ1 + α1
µ5 =

1
λ2 + α5

µ6 = K =
1
α

µ7 = K1 =
1
α1

µ8 = K2 =
1
α2

(40)

To study the reliability and profit analysis of the GDC systems, We have visited the piston
foundry of a firm named Federal-Mogul Powertrain and contacted the concerned persons and
obtain the information regarding the failures/repairs and replacements. Based on the facts
received i.e.,

Table 1: Information Gathered

Description Notation Rate(/hr)

Failure Rate of Main unit λ 0.001391281/hr
Failure Rate of Sub-unit one λ1 0.001390573/hr
Failure Rate of Sub-unit two λ2 0.001420852/hr
Repair/Replacement Rate of Main unit α 0.193686798/hr
Repair/Replacement Rate of Sub-unit one α1 0.206397204/hr
Repair/Replacement Rate of Sub-unit two α2 0.201849607/hr

The remaining values are assumed and are listed in Table 2:

Table 2: Assumed Values

Description Notation Rate(/hr)

Rate of Metal Treatment β 1.1762493/hr
Rate of raw material is available γ 0.1158713/hr
Probability that raw material is available p 0.75
Probability that raw material is non-available q 0.25
Probability that repair is feasible a 0.75
Probability that replacement is feasible b 0.25
Revenue per unit uptime of the system(per month) Z0 Rs.8, 85, 000
Cost per unit uptime, when repairman is busy for repair(per month) Z1 Rs.12, 466
Cost per unit uptime, when repairman is busy for replacement(per month) Z2 Rs.19, 480
Cost per repair(per month) Z3 Rs.18, 350
Cost per replacement(per month) Z4 Rs.25, 650

Various measures of system effectiveness are shown in Table 3:

Table 3: Results

Description Notation Rate(/hr)

Mean Time to System Failure T0 179.0661/hrs
Availability of the system A0 0.994787
Busy period of Repairman BR0 0.020706
Busy period of Replacement BRP0 0.002816
Expected no. of Repairs ER0 0.004181
Expected no. of Replacements ERP0 0.000056
Profit P Rs.8, 80, 328.59
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8. Graphical Representation

Graphical study has been made for the MTSF, Profit with respect to failure rate of sub-unit
one(λ1), revenue per unit uptime of the system(Z0) for different values of cost of repairman for
busy in doing repair(Z1).

Figure 2: MTSF v/s Failure Rate

Figure 3: Profit v/s Failure Rate
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Figure 4: Profit v/s Revenue

9. Discussion

Discussion for the FAILURE RATE v/s MTSF and PROFIT v/s FAILURE RATE in the (Table 4)

Table 4: Results

Variation Effect

λ/λ1 increasing (↑) MTSF decreases (↓)
λ/λ1 increasing (↑) Profit decreases (↓)

As shown in above table, the behaviour of MTSF and Profit w.r.t. rate of failure of Main unit
for the different values of the rate of failure of sub-unit one. It clear from the table that MTSF and
Profit gets decreased with increase in values of rate of failure of Main unit i.e. λ. Also MTSF and
Profit decreases as failure rate of sub-unit one i.e. λ1 increases.

Discussion for the PROFIT v/s REVENUE in the (Table 5) as below:

Table 5: Results

Variation Effect

Z0 increasing (↑) Profit increases (↑)
Z1 = 12, 466; Profit >=< according as z0 when Z0 is >=< INR 428
Z1 = 19, 466; Profit >=< according as z0 when it Z0 >=< INR 582
Z1 = 25, 466; Profit >=< according as z0 when it Z0 >=< INR 722

Above table depicts the behaviour of the profit w.r.t. revenue per unit uptime of the system
(Z0) for different values of cost of repairman is busy under repair (Z1). The graph exhibits
that there is inclination in the trend of profit increases with increases in the values of Z0. Also,
following conclusion can be drawn from the discussion for Profit v/s Revenue :

For Z1 = 12, 466, the profit is positive or zero or negative according as Z0 is >=< INR 428.
Hence, for this case the revenue per unit up time should be fixed, equal or greater than INR 428.

Similarly, discussion for other values of Z1.
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10. Conclusion

It’s vital to use the outcomes of the mathematical metrics to enhance the reliability model (Table 3).
To better comprehend the significant genuine influencing factors, these results must be employed.
This study’s findings are ground-breaking since no prior research has emphasised the critical
function that GDC system repair and replacement facilities play at piston plants. The analysis’s
conclusions are very intriguing, and employing the GDC system by piston manufacturing
companies is advantageous, according to the argument. Similar to how it is used in other
domains, system designers can apply the proposed strategy in their own. Utilize the acquired
equations to assess the applicability of various mechanism-type systems.
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Abstract 

This paper aims to compare some bridge systems with multiple types of components in stochastic, 
hazard rate, and likelihood ratio order. Such systems are generally used in the designing and 
production industries. These systems are supported by a buffer store that balances the fluctuation in 
two production lines during the production process. The survival signature tool and distortion 
function technique are employed to compare the performance of four different bridge systems. 
Survival signature and henceforth survival function is computed for each considered system. The 
findings of comparisons are facilitated with the help of tables and figures. The comparison of large 
size coherent systems based on the structure-function approach is quite challenging. As this study is 
based on survival signature, so it is not so complex and has future scope.  
 
Keywords: survival signature; bridge system; survival function; distortion 
function. 
 

1. Introduction 
 
In today’s competitive and technology-driven world, it has become consequential to develop safe, 
reliable and long-lasting systems. The accurate reliability assessment of components and systems is 
crucial, and hence the branch of reliability engineering is in very much demand. In reliability theory, 
the stochastic comparison of systems is an imperative concept and has been explored by many 
researchers. It is quite challenging to compare complex systems, and most realistic cases generally 
have complex structures. Birnbaum et al. [2] and Barlow and Proschan [1] compared the same order 
coherent systems based on component lifetime using the structure-function approach. But these 
methods involve analytical complexities while comparing complex manufacturing systems. 
Recently, system signature and survival signature have emerged as advanced and promising tools 
in reliability analysis. These tools have suitable applications in studying system reliability and 
comparing various coherent systems. 

A system having monotonic structure function with each of its components being relevant is 
known as coherent system. Samaniego [12] introduced the concept of system signature for the 
systems having independent and identically distributed (iid) components, with common 
distribution function F. For such coherent systems, Samaniego [12] derived an explicit expression of 
the failure rate in terms of components’ failure rate and F. The IFR closure theorem for 𝑘-out-of-𝑛 
system is also discussed by researcher. Kochar et al. [6] further derived the expression of system 
signature for k-out-of-n systems with component-wise and system-wise redundancy. Samaniego 

282 



 
Garima Chopra, Deepak Kumar 
COMPARISON OF BRIDGE SYSTEMS  
WITH MULTIPLE TYPES OF COMPONENTS 

 
RT&A, No 4 (71) 

Volume 17, December 2022 

 

 

[11] extended the concept of signature for preservation, characterisation, and system reliability. The 
applications of network reliability and economical reliability to systems having shared components 
are also presented. Navarro et al. [9] defined a joint signature for coherent systems with shared 
components. They discussed the sufficient condition for bivariate stochastic ordering between the 
joint lifetimes of two pairs of the systems. 

Coolen and Coolen-Maturi [3] extended the concept of system signature to systems with 
multiple types of components, and they coined the new term ‘survival signature’. The survival 
function of the coherent systems having iid and exchangeable components is evaluated using the 
survival signature tool. Coolen et al. [4] further adopted this technique and developed non 
parametric predictive inference for studying the reliability of systems. Krpelık et al. [8] introduced 
the formula for computing system survival signatures by means of merging survival signatures of 
multiple subsystems. They also introduced a decomposition method that allows decoupling the 
dependencies among subsystems. Huang et al. [5] analysed the reliability of the phased mission 
systems having identical components in each phase using survival signature. 

Several authors have worked on the stochastic comparison of coherent systems. Kochar et al. 
[6] compared various systems on the basis of stochastic, hazard rate, and likelihood ordering using 
the notion of system signature. Authors derived an important theorem on hazard rate ordering of 
the system based on its components’ hazard rate ordering. Coolen and Coolen-Maturi [3] compared 
some coherent systems with iid and non-iid components based on a novel technique of survival 
signature. Koutras et al. [7] stochastically compared two systems having exchangeable components. 
They further provided a necessary and sufficient condition for examining hazard rate ordering and 
reverse hazard rate ordering. Samaniego and Navarro [13] presented the methodology to compare 
some systems having heterogeneous components in different modes (stochastic, hazard rate, and 
likelihood ratio ordering) using survival signature and distortion function. 

The bridge systems are broadly used in system designing in addition to the series and the 
parallel systems. Such systems are found in the production process in various industries. The 
production system having two parallel production lines connected by a buffer store to balance their 
productivity variation is investigated as a bridge structure system [10]. The analytical evaluation of 
the lifetime of the bridge system is too dense. Therefore, the comparison among such systems 
becomes more complicated. The present study compares the lifetimes of the bridge systems having 
multiple types of components at different positions. The survival signature technique is used to 
compare these complex systems. This paper investigates some bridge systems having two/three 
types of components shown in Figure 1, Figure 2, and Figure 3. The comparative analysis of 
considered systems is done using the survival signature approach [13].  

 
2. Definitions and Notations 

 
The present section includes prevalent concepts, definitions, and theorems. For ‘𝑚’ components 
system, the state vector 𝑥 = (𝑥!, 𝑥", … . 𝑥#) ∈ {0,1}#, where  
 

𝑥$ = 01, 𝑤ℎ𝑒𝑛	𝑖%&	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑜𝑓	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑠	𝑤𝑜𝑟𝑘𝑖𝑛𝑔
0,			𝑤ℎ𝑒𝑛	𝑖%&𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑜𝑓	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑠	𝑛𝑜𝑡	𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 

 
for all 𝑖 = 1, 2, 3, . . , 𝑚. Thus, the set {0,1}# represents all the possible state vectors of 𝑚-order binary 
coherent system. Barlow and Proschan [1] defined the structure function 𝜙 mapped from the set 
{0,1}# to {0,1} as follows 
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   𝜙(𝑥!, 𝑥", . . , 𝑥#) = B
	1, 𝑖𝑓	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑤𝑜𝑟𝑘𝑠
0, 𝑖𝑓	𝑠𝑦𝑠𝑡𝑒𝑚𝑠	𝑓𝑎𝑖𝑙𝑠.         

                        
As compared to structure function, system signature [12] is less general but more significant. For the 
coherent system of order ‘𝑚’, the system signature is a probability vector such that some 𝑖%& 
component causes system failure. Mathematically, the 𝑖%& element ‘𝑠$’, of the system signature	𝑠 =
(𝑠!, 𝑠", . . , 𝑠#) is expressed as  
 
    𝑠$ = 	𝑃	(𝑇 = 𝑋$:#) = 	

#!
#!
	   

    
where 𝑇 denotes the lifetime of the system, 𝑋$:#	represents the ith order statistic of the failure time of 
the m-components and 𝑚$ is number of those orderings corresponding to which system fails on 
failure of ith component. It is evident that ∀	𝑖, 𝑠$ ≥ 0 and ∑ 𝑠$ = 1#

$)! .  
For a coherent system with m iid components having a continuous lifetime distribution, the 

survival signature Φ(𝑙) for 𝑙 = 0,1, 2, … ,𝑚 is defined as the probability of functioning of system, 
provided that its exactly l components are working [3]. Mathematically, the survival signature of 
coherent system is given by  

 

    Φ(𝑙) =
∑ +	(.)"#$%

|1%|
= L𝑚𝑙 M

2!
∑ 𝜙(𝑥).31%   

  
where 𝑠4 is the set of all such state vectors whose exactly l components (𝑥$) are 1 and remaining are 
0. The system reliability 𝐹O5(𝑡) in terms of survival signature for 𝑖𝑖𝑑 components is  
 
                                    𝐹O5(𝑡) = 𝑃	(𝑇 > 𝑡) = 	∑ Φ(𝑙) L

𝑚
𝑙 M [𝐹(𝑡)]

#24	[𝐹O(𝑡)]4#
4)6             

             
where 𝐹(𝑡), 𝐹O(𝑡) be the distribution and survival function respectively of components. 

Coolen and Coolen-Maturi [3] considered the coherent system of order m, with 𝐾 > 1 types of 
independent components. All the components of certain type are assumed to be identically 
distributed. Considering 𝑚7 components of type k, the survival signature Φ(𝑙!, 𝑙", … . , 𝑙8) is given by  

 

Φ(𝑙!, 𝑙", … . , 𝑙8) 	= UVL
𝑚7
𝑙7 M

2!
8

7)!

W X 𝜙(𝑥)
.31%&,%(,…,%*

 

 
where 𝑙7 (𝑘 = 1,2, … , 𝐾) is the number of functioning units of type k. In the above expression, 𝑥 is a 
state vector given by 𝑥 = (𝑥!, 𝑥", … . , 𝑥8), where 𝑥7 = (𝑥!7 , 𝑥"7 , … , 𝑥#*

7 ). In case 𝑙7 (𝑘 = 1,2,… , 𝐾) units 
of type k are working, then the vector  𝑥7 has precisely its 𝑙7	components (𝑥$7) as 1 and remaining 
are 0. The set of all such state vectors is denoted by 𝑠4&,4(,…,4*. The reliability function 𝐹O5(𝑡)	of such 
systems in terms of survival signature as given by Coolen and Coolen-Maturi [3] is 
 

𝐹O5(𝑡) = 𝑃(𝑇 > 𝑡) = X …. X UΦ(𝑙!, 𝑙", … . , 𝑙8)VL
𝑚$
𝑙$ M

8

$)!

		𝐹$(𝑡)#!24!𝐹O$(𝑡)4!W
#*

4+)6	

#&

4&)6	

	 

 
where 𝐹$(𝑡), 𝐹O$(𝑡) be the distribution and survival function of the 𝑖%& component.  
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Some results on stochastic order properties which appeared in [14] are discussed below. Let 
𝑇!, 𝑇"	be the random variables with the distribution functions 𝐹!(𝑡), 𝐹"(𝑡)	and reliability 
functions	𝐹!Z (𝑡),	𝐹"OOO(𝑡) respectively, then 
• 𝑇! is smaller than 𝑇" in usual stochastic order, i.e.  𝑇! ≤;5 𝑇" if 𝐹!Z (𝑡) ≤ 𝐹"OOO(𝑡)for all 𝑡; 
• 𝑇! is smaller than 𝑇" in the hazard rate order, i.e. 𝑇! ≤<= 𝑇" if 𝐹"OOO(𝑡)/𝐹!Z (𝑡) is increasing in 𝑡; 
• 𝑇! is smaller than 𝑇" in the likelihood ratio order, i.e. 𝑇! ≤>= 𝑇" if 𝑓"(𝑡)/𝑓!(𝑡) is increasing in             

𝑡; where 𝑓!(𝑡) and 𝑓"(𝑡) are probability density functions (pdfs) of 𝑇! and 𝑇"	respectively.   
Samaniego and Navarro [13] also derived a result for the comparison of two systems having 

𝑚7 independent type k components with distribution function 𝐹7 for 𝑘	 ∈ {	1,2, . . , 𝑟}. The following 
theorem appeared as Theorem 2.1. in Samaniego and Navarro [13] . 
 
Theorem 1. If 𝑇!, 𝑇" be the lifetimes and Φ!, Φ" be survival signatures of two systems A and B 
respectively and if for all vectors	(𝑙!, … , 𝑙?), with 𝑙7 = 0,… ,𝑚7	𝑎𝑛𝑑	𝑘 = 1,… . , 𝑟, the inequality 
    Φ!(𝑙!, … . , 𝑙?) ≤ 	Φ"(𝑙!, … , 𝑙?)                               
holds, then it follows that 𝑇! ≤;5 𝑇" for all distribution functions 𝐹!, … , 𝐹?.  

Samaniego and Navarro [13] further proved a theorem, which aids in the comparison of two 
systems having different orders. For such comparisons, some irrelevant components are considered 
and added to the systems. The following proved result appeared as Theorem 3.1 in Samaniego and 
Navarro [13] . 
 
Theorem 2. Let Φ be the survival signature of m-order coherent system, having r types of 
components and suppose it has to be compared with some system of order m+1.  An irrelevant 
component of type-k is added to m-order coherent system, and let Φ∗ be the survival signature of 
resulting new m+1 order system. Considering 𝑚A components of type 𝑗, Samaniego and Navarro [13] 
established following relations for survival signatures Φ and Φ∗ 
(i) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, 𝑘 + 1,… , 𝑟, 

𝛷∗(𝑙!, … 𝑙72!, 0, 𝑙7B!, … , 𝑙?) = 	𝛷(𝑙!, … 𝑙72!, 0, 𝑙7B!, … , 𝑙?)	
(ii) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, … , 𝑟, 𝑎𝑛𝑑	𝑓𝑜𝑟		1 ≤ 𝑙7 ≤ 𝑚7 ,	

𝛷∗(𝑙!, … 𝑙72!, 𝑙7 , … , 𝑙?) 																																																																																																																																													

= 	 a
𝑙7

𝑚7 + 1
b 	𝛷(𝑙!, … 𝑙72!, 𝑙7 − 1,… , 𝑙?) 	+	a

𝑚7 − 𝑙7 + 1
𝑚7 + 1

b 	𝛷(𝑙!, … 𝑙72!, 𝑙7 , … , 𝑙?) 

(iii) 𝐹𝑜𝑟	0 ≤ 𝑙A ≤ 𝑚A , 𝑗	 = 	1,2, , . . , 𝑘 − 1, 𝑘, 𝑘 + 1… , 𝑟,	
𝛷∗(𝑙!, … 𝑙72!, 𝑚7 + 1, 𝑙7B!, … , 𝑙?) = 	𝛷(𝑙!, … 𝑙72!, 𝑚7 , 𝑙7B!, … , 𝑙?). 

 
Samaniego and Navarro [13] also adopted a generalized distorted distribution technique for 
comparing two systems. They employed a dual distortion function, 𝑄O(𝑢!, 𝑢", … , 𝑢?) and distortion 
function 𝑄(𝑢!, 𝑢", … , 𝑢?) in this technique. These functions satisfy the following properties: 
(i) 𝑄O(𝑢!, 𝑢", … , 𝑢?) is a continuous increasing function   
(ii) 𝑄O(𝑢!, 𝑢", … , 𝑢?) = 0 if 𝑢$ = 0	∀	𝑖 ∈ {1,2, . . , 𝑟}  
(iii)  𝑄O(𝑢!, 𝑢", … , 𝑢?) = 1	if 𝑢$ = 1	∀	𝑖 ∈ {1,2, . . , 𝑟}. 
(iv) 𝑄(𝑢!, 𝑢", … , 𝑢?) = 1 − 𝑄O(1 − 𝑢!, 1 − 𝑢", … ,1 − 𝑢?) 
The survival function 𝐹O5(𝑡)  of coherent system having r types of components can be expressed as-  

𝐹O5(𝑡) = 	𝑄O(𝐹O!(𝑡), 𝐹O"(𝑡), … , 𝐹O?(𝑡)), 
where 𝐹CZ  is the reliability function of components of type l. The lifetimes 𝑇! and 𝑇" of the two coherent 
systems with r types of components can be compared using the distortion function as discussed 
below. The following proved result appeared as Theorem 4.1. in Samaniego and Navarro [13]. 
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Theorem 3. Let 𝐹!, 𝐹", … , 𝐹? be the distribution functions of the components of type 1, type 2,…, type 
r respectively.  Samaniego and Navarro [13] proved that if 	𝑄O! and 𝑄O" be the dual distortion functions 
of two considered systems, then   
(i) 𝑇! ≤;5 𝑇" holds for all 𝐹!, . . . , 𝐹? if and only if 𝑄O! ≤ 𝑄O" in (0,1)?; 
(ii) 𝑇! ≤<= 𝑇" holds for all 𝐹!, . . . , 𝐹? if and only if 𝑄O"/𝑄O!is decreasing in (0,1)?; 
(iii) 𝑇! ≤>= 𝑇" holds for all 𝐹!, . . . , 𝐹?, if the distributions of 𝑇! and 𝑇" are absolutely continuous,  

and if 𝛾(𝑢!, 𝑢", … , 𝑢? , 𝑣", … , 𝑣?) is decreasing in 𝑢!, 𝑢", … , 𝑢? and increasing (decreasing) in 𝑣? 
in (0,1)? × (0,∞)?2! and 𝐹! ≤>= 𝐹$ 	(≥>=) for i = 2,… , 𝑟 where 

𝛾(𝑢!, 𝑢", … , 𝑢? , 𝑣", … , 𝑣?) =
D&EF((G&,G(,…,G,)B∑ H!

,
!-( D!EF((G&,G(,…,G,)

D&EF&(G&,G(,…,G,)B∑ H!,
!-( D!EF&(G&,G(,…,G,)

, 

																	𝐷$𝑄OA denotes the partial derivatives of 𝑄OA about 𝑖%& component for 𝑖 ∈ {1,… , 𝑟} and 𝑗	 ∈ {1,2} 
and  𝑢? denotes components’ reliability function of type 𝑟 and 𝑣? denotes the ratio of pdfs 
of components of type 𝑟 to the type 1.                 

                                           
3. Analysis and Discussion 

 
The purpose of this article is to compare the bridge systems having multiple types of components. 
The survival signature tool is used to compare the considered systems in three different senses 
(stochastic, hazard rate, and likelihood ratio ordering). The bridge system as shown in Figure 1 has 
two units	𝑥!!, 𝑥"! of type 1 and three components namely 𝑥!", 𝑥"", 𝑥I" of type 2. The second 
considered system as shown in Figure 2 has again two components of type 1 and three components 
type 2, but at different positions. The bridge system (Figure 3) having three types of components is 
also investigated in this study.  

 
                  Figure 1: System A (five-component bridge system) 

 

 
 

Figure 2: System B (five-component bridge system with changed positions of components) 

 
 

                 Figure 3: System C (five-component bridge system containing three types of components) 
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3.1. Comparison of two bridge systems with two types of components at 
different positions 
 
Theorem 4. Consider two bridge systems of order five with two types of components at different 
positions. Let 𝑇!, 𝑇"  be the lifetimes of bridge systems A and B (Figure 1 and Figure 2) respectively. 
Then, 𝑇! is smaller than  𝑇" in usual stochastic order i.e.,  𝑇! ≤;5 𝑇". 

Proof. Let Φ!(𝑙!, 𝑙") and Φ"(𝑙!, 𝑙") be the survival signatures of the systems A and B respectively. 
These systems have two and three components of type 1 and type 2 respectively. The general 
expression of the survival signature Φ(𝑙!, 𝑙")	for considered systems is as follows 

 

    Φ(𝑙!, 𝑙") = a2𝑙!
b
2!
a3𝑙"
b
2!
∑ 𝜙(𝑥).31%&,%(

 

 
where 𝑠4&,4( is set of all state vectors of the system. 
 

Table 1: Survival signature 𝛷! of the system A 
 
 
 
 

 
Table 2: Survival signature 𝛷" of the system B 

 
 
 
 
 
As discussed in Theorem 1, the survival signatures Φ!(𝑙!, 𝑙")	and	Φ"(𝑙!, 𝑙") given in Table 1 and Table 
2 are non-comparable because Φ!(0,2) < Φ"(0,2)	 and Φ!(1,2) > Φ!(1,2). Thus, the domination of 
survival signature is not possible for the considered systems. To compare these systems, we need to 
do further analysis. Let 𝐹O5&(𝑡),	𝐹O5((𝑡) be the survival functions of the bridge systems A and B with 
components distribution function 𝐹!(𝑡) and 𝐹"(𝑡). The difference between survival function 𝐹O5((𝑡) 
and 𝐹O5&(𝑡) is given by 
𝐹O5((𝑡) − 𝐹O5&(𝑡) = ∑ ∑ (Φ"	(𝑙!, 𝑙") − Φ!(𝑙!, 𝑙")I

4()6	
"
4&)6	 ) L"4&M L

I
4(
M		𝐹!(𝑡)"24&𝐹O!(𝑡)4& 	𝐹"(𝑡)I24(𝐹O"(𝑡)4( .        (1) 

 

 
Figure 4: The difference function 𝐷(𝑥!, 𝑥")	. 

Φ!(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙I = 3 
𝑙! =0 0 0 0 0 
𝑙! = 1 0 1/3 1 1 
𝑙! =2 0 2/3 1 1 

Φ"(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙I = 3 
𝑙! = 0 0 0 1/3 1 
𝑙! = 1 0 0 2/3 1 
𝑙! = 2 1 1 1 1 
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To simplify the system’s comparison, we consider the variable 𝐹O!(𝑡) = 1 − 𝐹!(𝑡) as 𝑥! and 𝐹O"(t) =
1 − 𝐹"(𝑡) as 𝑥". So, the pair (𝑥!, 𝑥") belongs to unit square as 𝑡 ∈ [0,∞). The above difference in 
Equation (1), is taken as 𝐷(𝑥!, 𝑥") and can be represented as- 
 
𝐷(𝑥!, 𝑥") = 𝑥!"(1 − 𝑥")I − 2𝑥!𝑥"(1 − 𝑥!)𝑥"(1 − 𝑥")" + 𝑥!"𝑥"(1 − 𝑥")" + 𝑥""(1 − 𝑥!)"(1 − 𝑥") −

2𝑥!𝑥""(1 − 𝑥!)(1 − 𝑥") + 𝑥"I(1 − 𝑥!)" . 
 

The difference function 𝐷(𝑥!, 𝑥")	illustrated in Figure 4 has clearly non-negative values for each 
value of 𝑥! and 𝑥". i.e., 𝐷(𝑥!, 𝑥") ≥ 0, ∀	𝑥!, 𝑥" ∈ [0,1]. This implies that 𝐹O5((𝑡) ≥ 𝐹O5&(𝑡). Hence the 
lifetime 𝑇! is smaller than lifetime 𝑇" in usual stochastic order i.e., 𝑇! ≤;5 𝑇"	holds for all 𝐹O!(𝑡), 𝐹O"(𝑡).  
 
3.2. Comparison of bridge systems using distortion functions 
 
In this part, the systems A and B are compared as per stochastic, hazard rate and likelihood ratio 
ordering, by using their distortion functions. 
 
Theorem 5. Let 𝑇!, 𝑇" be the lifetimes of the bridge systems A and B (Figure 1 and Figure 2) 
respectively. These systems have two types of components with the distribution functions 
𝐹!(𝑡), 𝐹"(𝑡) and reliability function 𝐹O!(𝑡), 𝐹O"(𝑡). The lifetime of system A is smaller than the lifetime 
of system B in usual stochastic order but not in hazard rate and likelihood ratio order. 

Proof. Let 𝑄O! and 𝑄O" be dual distortion functions of systems A and B respectively. We have, 
 
𝑄O"(𝑥!, 𝑥") − 𝑄O!(𝑥!, 𝑥")

= (1 − 𝑥")I𝑥!" − 2𝑥!𝑥"(1 − 𝑥")"(1 − 𝑥!) + 𝑥!"𝑥"(1 − 𝑥")" + (1 − 𝑥!)"𝑥""(1 − 𝑥")
− 2𝑥!𝑥""(1 − 𝑥!)(1 − 𝑥") + 𝑥"I(1 − 𝑥!)". 

 
Figure 4 indicates that 𝑄O"(𝑥!, 𝑥") ≥ 𝑄O!(𝑥!, 𝑥") ∀	𝑥!, 𝑥" ∈ [0,1]. Using Theorem 3, we can say that the 
system lifetime 𝑇! is smaller than system lifetime 𝑇" in usual stochastic order. i.e., 𝑇! ≤;5 𝑇" hold for 
all 𝐹O!(𝑡), 𝐹O"(𝑡). 

Let 𝑅 be the ratio of 𝑄O" to 𝑄O! i.e.,  

𝑅(𝑥!, 𝑥") =
𝑄O"
𝑄O!

 

 
Figure 5 exhibits that the ratio 𝑅(𝑥!, 𝑥") is neither increasing nor decreasing in 𝑥!, 𝑥" in (0,1)2. Data 
presented in Table 3 confirms the same. Using Theorem 3, we can say the system lifetime 𝑇! is not 
smaller than system lifetime 𝑇" in hazard rate order i.e., 𝑇! ≰<= 𝑇". Figure 6, further shows that these 
two bridge systems are not hazard rate ordered when the components of type-1 and type-2 follow 
exponential and Weibull distribution respectively. 

 
Table 3: The ratio 𝑅(𝑥!, 𝑥") 

      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 	0.59944 	0.69933 

	0.00010 1.000 499.908 999.330 1498.767 1998.220 2497.687 2997.169 3496.667 
	0.09999 458.761 1.000 1.235 1.635 2.086 2.566 3.068 3.588 
	0.19988 861.762 1.220 1.000 1.076 1.236 1.436 1.663 1.912 
	0.29977 1239.023 1.567 1.073 1.000 1.039 1.129 1.251 1.397 
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0.39966 1611.871 1.939 1.216 1.037 1.000 1.024 1.085 1.172 
	0.49955 1998.480 2.331 1.390 1.121 1.023 1.000 1.017 1.063 
	0.59944 2417.177 2.754 1.588 1.231 1.081 1.017 1.000 1.013 
	0.69933 2889.461 3.225 1.812 1.365 1.162 1.061 1.013 1.000 

 
To compare the hazard rate ordering of system A and component of type 1, the ratio 𝑅.&

! (𝑥!, 𝑥") is 
computed. We get 
 

𝑅.&
! =

𝑄O!(𝑥!, 𝑥")
𝑥!

= 2𝑥"(1 − 𝑥")"(1 − 𝑥!) + 6𝑥""(1 − 𝑥!)(1 − 𝑥") + 2𝑥"I(1 − 𝑥!) + 2𝑥!𝑥"(1 − 𝑥")"

+ 3𝑥!𝑥""(1 − 𝑥") + 𝑥!𝑥"I. 
 
Figure 7 indicates that the ratio 𝑅.&

! (𝑥!, 𝑥") increases with increase in 𝑥", but it decreases with increase 
in 𝑥! in (0,1)". Therefore, the lifetimes of system A and type 1 components are not comparable in the 
hazard rate order, i.e., 𝑇! ≰<= 𝑋! where 𝑋! indicates the type 1 component’s lifetime. Similarly, for 
hazard rate order comparison of system A and the type 2 components, the ratio 𝑅.(

!  is evaluated. We 
obtain 
 

𝑅.(
! =

𝑄O!(𝑥!, 𝑥")
𝑥"

= 2𝑥!(1 − 𝑥")"(1 − 𝑥!) + 6𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥") + 2𝑥!𝑥""(1 − 𝑥!) + 2𝑥!"(1 − 𝑥")"

+ 3𝑥!"𝑥"(1 − 𝑥") + 𝑥!"𝑥"". 
 

Here, the ratio 𝑅.(
! (𝑥!, 𝑥") decreases with increase in 𝑥!, but it neither increases nor decreases with 

increase in 𝑥" in (0,1)2. Therefore, 𝑇! ≰<= 𝑋", where 𝑋" is type 2 component’s lifetime. In the same 
manner, system B is compared with type 1 and type 2 components in hazard rate order by evaluating 
the ratios 𝑅.&

"  and 𝑅.(
"  respectively. We have 

 

𝑅.&
" =

𝑄O"(𝑥!, 𝑥")
𝑥!

=
𝑥""

𝑥!
(1 − 𝑥")(1 − 𝑥!)" +

𝑥"I

𝑥!
(1 − 𝑥!)" + 4(1 − 𝑥!)𝑥""(1 − 𝑥") + 2𝑥"I(1 − 𝑥!)

+ 𝑥!(1 − 𝑥")I + 3𝑥!𝑥"(1 − 𝑥")" + 3𝑥!(1 − 𝑥")𝑥"" + 𝑥!𝑥"I 
 
and 
 

𝑅.(
" =	

𝑄O"(𝑥!, 𝑥")
𝑥"

= 𝑥"(1 − 𝑥")(1 − 𝑥!)" + (1 − 𝑥!)"𝑥"" + 4𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥") + 2𝑥!𝑥""(1 − 𝑥!)

+
𝑥!"(1 − 𝑥")I

𝑥"
+ 3𝑥!"(1 − 𝑥")" + 3𝑥!"𝑥"(1 − 𝑥") + 𝑥!"𝑥"". 
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Figure 5: The Graphical interpretation of the function 𝑅(𝑥!, 𝑥") 

 
 
Here, the ratio 𝑅.&

" (𝑥!, 𝑥") increases with 𝑥" but it is not monotonic in 𝑥! in (0,1)2. Thus,		𝑇" ≰<= 𝑋!. 
The ratio	𝑅.(

" (𝑥!, 𝑥") increases with increase in 𝑥! but decreases with increase in 𝑥" in (0,1)2. 
Therefore,		𝑇" ≰<= 𝑋". 
 

 
Figure 6: Hazard rate functions of the bridge systems (A (dash), B (dot)) and their components (dark lines). Type 1 and 

Type 2 components follow exponential and Weibull distribution (𝑎 = 2, 𝑏 = 1) respectively for 𝑡 > 0 
 

Let 𝑋!, 	𝑋" be the lifetimes of the components of type 1 and type 2 with respective pdfs 𝑓!(𝑡), 
𝑓"(𝑡). The components of Type 1 and type-2 are assumed to be exponentially (mean = 1) and Weibull 
(𝑎 = 2, 𝑏 = 1) distributed respectively. The ratio J((%)

J&(%)
 is increasing in 𝑡 as shown in Figure 8. Hence, 

we get that	𝑋!  is smaller than 𝑋" in likelihood ratio ordering i.e., 𝑋! ≤>= 𝑋". For likelihood ratio 
ordering comparison of systems A and B, as per Theorem 3, we have function ΥL𝑥!, 𝑥",

J((%)
J&(%)

M as- 

 

Υa𝑥!, 𝑥",
𝑓"(𝑡)
𝑓!(𝑡)

b =

𝑣(2𝑥""(𝑥! − 1)" − 2𝑥!𝑥""(𝑥! − 1) − 2𝑥"(𝑥" − 1)(𝑥! − 1)" + 8𝑥!𝑥"(𝑥! − 1)(𝑥" − 1))
−2𝑥!(𝑥" − 1)I + 6𝑥!𝑥"(𝑥" − 1)" − 2𝑥!𝑥""(𝑥" − 1) + 2𝑥""(𝑥! − 1)(𝑥" − 1)

𝑣(2𝑥!"(𝑥" − 1)" − 2𝑥!"𝑥"(𝑥" − 1) − 2𝑥!(𝑥! − 1)(𝑥" − 1)" + 8𝑥!𝑥"(𝑥! − 1)(𝑥" − 1))
−2𝑥"I(𝑥! − 1) + 2𝑥!𝑥"(𝑥" − 1)" − 2𝑥"(𝑥! − 1)(𝑥" − 1)" + 6𝑥""(𝑥! − 1)(𝑥" − 1)

 

 
where J((%)

J&(%)
= 𝑣.  
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Figure 7:  The Ratio 𝑅#!

! , 𝑅#!
" , 𝑅#"

! , 𝑅#"
"  

 

 
 

Figure 8: Likelihood ratio ordering of the components of type 1 and type 2 
 
Table 4 indicates that the function Υ(𝑥!, 𝑥", 0.0001) is increasing in 𝑥! for the particular value of 𝑥". 
But we can see the function is neither increasing nor decreasing in 𝑥" for any particular values of 𝑥!. 
In Table 5, the function Υ(𝑥!, 0.09999, 𝑣) is increasing in 𝑥! for the particular values of 𝑣. Table 5 
further shows that the function is increasing in 𝑣 for 𝑥! = 0.0001, but it is decreasing in 𝑣 for 𝑥! =
	0.09999, 0.19998, 0.29977. Hence, we get that the function ΥL𝑥!, 𝑥",

J((%)
J&(%)

M is increasing in 𝑥 but not 

monotonic in J((%)
J&(%)

 in set (0,1)" × (0,∞). Therefore, these considered bridge systems are not likelihood 

ratio ordered. i.e., 𝑇! ≰>= 𝑇".   
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Table 4: The function 𝛶(𝑥!, 𝑥", 0.0001)  
      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 	0.59944 	0.69933 

	0.00010 1.000	 908.936	 1665.738	 2306.254	 2855.383	 3331.387	 3747.970 4115.610 
	0.09999 0.083	 1.000 1.965 2.985 4.062 5.203 6.412 7.697 
	0.19988 0.138	 0.549 1.000 1.497 2.049 2.664 3.355 4.135 
	0.29977 0.173	 0.414 0.687 1.000 1.361 1.783 2.283 2.885 
0.39966 0.193	 0.349 0.530 0.744 1.000 1.312 1.701 2.199 
	0.49955 0.200	 0.304 0.428 0.579 0.764 1.000 1.307 1.725 
	0.59944 0.193	 0.264 0.349 0.454 0.587 0.762 1.000 1.343 
	0.69933 0.173	 0.219 0.276 0.346 0.438 0.561 0.735 1.000 

 
Table 5: The function 𝛶(𝑥!, 0.09999, 𝑣) 

      𝑥! → 
𝑥" ↓  

	0.00010 	0.09999 	0.19988 	0.29977 	0.39966 	0.49955 0.59944 0.69933 

	0.00010 0.083	 1.000	 1.965	 2.985	 4.062	 5.203	 6.412 7.697 
	0.09999 0.175	 1.000 1.715 2.349 2.923 3.451 3.945 4.413 
	0.19988 0.266	 1.000 1.540 1.963 2.312 2.611 2.876 3.116 
	0.29977 0.358	 1.000 1.410 1.704 1.932 2.119 2.279 2.422 
0.39966 0.449	 1.000 1.311 1.519 1.672 1.795 1.898 1.989 
	0.49955 0.541	 1.000 1.232 1.379 1.484 1.565 1.634 1.694 
	0.59944 0.633	 1.000 1.168 1.270 1.340 1.395 1.440 1.479 
	0.69933 0.724	 1.000 1.115 1.182 1.228 1.263 1.291 1.316 

 
3.3.  Comparison of two bridge systems with different number of components 
 
Theorem 6. Suppose 𝑇!, 𝑇K be the lifetimes of the bridge systems A and D shown in Figure 1 and 
Figure 9 respectively. The system D has six components, where type 1 components are 𝑥!!, 𝑥"! and 
𝑥I!  and type 2 components are 𝑥!", 𝑥"" and 𝑥I". Then the lifetime 𝑇K is smaller than 𝑇! in usual 
stochastic order. i.e., 𝑇K ≤;5 𝑇!. 

Proof. Let ΦK(𝑙!, 𝑙")  be the survival signature	of the system D. The survival signature Φ!(𝑙!, 𝑙") 
of system A is already discussed and given in Table 1. An independent irrelevant component of type 
𝑘 = 1 is added to system A, and let us suppose that Φ!

∗(𝑙!, 𝑙") be the survival signature of new 
resulting system of order 6. Using Theorem 2, we have 
(i) 𝐹𝑜𝑟	0 ≤ 𝑙" ≤ 𝑚" 

Φ!
∗(0, 𝑙") = Φ!(0, 𝑙") 

(ii) For 1 ≤ 𝑙! ≤ 𝑚! and 0 ≤ 𝑙" ≤ 𝑚" 	

Φ!
∗(𝑙!, 𝑙") = a

𝑙!
𝑚! + 1

bΦ!(𝑙! − 1, 𝑙") + a
𝑚! − 𝑙! + 1
𝑚! + 1

bΦ!(𝑙!, 𝑙")	

(iii) For 	0 ≤ 𝑙" ≤ 𝑚"	 
Φ!
∗(𝑚! + 1, 𝑙") = 	Φ!(𝑚!, 𝑙"). 
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Figure 9: System D (six-component bridge system) 

 
Tables 6 and 7 indicate that the survival signature Φ!

∗ 	is greater than ΦK for all values of 𝑙!, 𝑙" i.e., 
Φ!
∗(𝑙!, 𝑙") ≥ ΦK(𝑙!, 𝑙") ∀ 𝑙!, 𝑙" ∈ {0,1,2,3}. Thus, the lifetime 𝑇K is smaller than 𝑇! in usual stochastic 

order, i.e., 𝑇K ≤;5 𝑇!. 
 

Table 6: Survival signature 𝛷!∗ of the bridge system A with irrelevant component of type-1 
 

 
 
 

Table 7: Survival signature	𝛷$ of the bridge system D 
 

 
 
 
 
 
 
3.4.  Comparison of lifetimes of two bridge systems with two and three types of 
components 
 
Theorem 7. Consider two bridge systems A and C, shown in Figures 1 and 3. Let 𝑇! and 𝑇I be the 
respective lifetimes of systems A and C. Type 1, type 2 and type 3 components are assumed to be iid 
with reliability functions 𝐹O!, 𝐹O" and  𝐹OI respectively. Then 𝑇! ≤;5 𝑇I if 𝐹O"(𝑡) ≤ 𝐹OI(𝑡). 

Proof. Let Φ!(𝑙!, 𝑙") and ΦI(𝑙!, 𝑙", 𝑙I) be the survival signature of bridge systems A and C 
respectively. Here, system C contains two components of type 1, two components of type 2, and one 
component of type 3. The survival signature ΦI(𝑙!, 𝑙", 𝑙I) can be written as ΦI(𝑙!, 𝑙", 𝑙I) =

a2𝑙!
b
2!
a2𝑙"
b
2!
a1𝑙I
b
2!
∑ 𝜙(𝑥),.31%&,%(,%.

 and is given in Table 8. For comparison of bridge systems A and 

C, we have added an irrelevant component of type 3 (𝑘 = 3) to system A. Using Theorem 2, we have 
survival signature Φ!

∗(𝑙!, 𝑙", 𝑙I)  of resulting 6-components system as: 
(i) For 0 ≤ 𝑙A ≤ 𝑚A; 	𝑗 = 1,2 

Φ!
∗(𝑙!, 𝑙", 0) = Φ(𝑙!, 𝑙", 0) 

(ii) For 0 ≤ 𝑙A ≤ 𝑚A ; 𝑗 = 1,2 
Φ!
∗(𝑙!, 𝑙", 𝑚I + 1) = Φ(𝑙!, 𝑙", 𝑚I). 

 
 

 

𝑥21  

𝑥31  

𝑥12  

𝑥22  

𝑥32  

𝑥11  

Φ!
∗(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙" = 3 
𝑙! = 0 0 0 0 0 
𝑙! = 1 0 2/9 2/3 2/3 
𝑙! = 2 0 4/9 1 1 
𝑙! = 3 0 2/3 1 1 

ΦK(𝑙!, 𝑙") 𝑙" = 0 𝑙" = 1 𝑙" = 2 𝑙" = 3 
	𝑙! = 0 0 0 0 0 
	𝑙! = 1 0 0 0 0 
𝑙! = 2 0 2/9 2/3 2/3 
𝑙! = 3 0 2/3 1 1 
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Similarly, we have added one component of type 2 (𝑘 = 2) which is irrelevant in nature to system 
C. Using Theorem 2, the survival signature ΦI

∗   of the resultant 6-components system is given by 
(i) For 0 ≤ 𝑙A ≤ 𝑚A; 	𝑗 = 1,3 

ΦI
∗(𝑙!, 0, 𝑙I) = ΦI(𝑙!, 0, 𝑙I) 

(ii) For 0 ≤ 𝑙A ≤ 𝑚A ;	𝑗 = 1,3 and 1 ≤ 𝑙" ≤ 𝑚" 

ΦI
∗(𝑙!, 𝑙", 𝑙I) =

𝑙"
3 ΦI(𝑙!, 𝑙" − 1, 𝑙I) +

3 − 𝑙"
3 ΦI(𝑙!, 𝑙", 𝑙I) 

(iii)  For 0 ≤ 𝑙A ≤ 𝑚A ;	𝑗 = 1,3 
ΦI
∗(𝑙!, 𝑚" + 1, 𝑙I) = ΦI(𝑙!, 𝑚", 𝑙I). 

 
Table 8: The survival signature 𝛷%(𝑙!, 𝑙", 𝑙%)	of the system C  
𝑙! 𝑙" 𝑙I ΦI(𝑙!, 𝑙", 𝑙I) 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
0 2 0 0 
0 2 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1/2 
1 1 1 1 
1 2 0 1 
1 2 1 1 
2 0 0 0 
2 0 1 0 
2 1 0 1 
2 1 1 1 
2 2 0 1 
2 2 1 1 

 
Table 9 shows that the survival signatures Φ!

∗ and ΦI
∗  are identical for all the combinations of 𝑙!, 𝑙", 𝑙I 

except two cases. The survival signature Φ!
∗ and ΦI

∗  are not dominated in any sense since Φ!
∗(1,1,1) <

ΦI
∗(1,1,1) but  Φ!

∗(1,2,0) > ΦI
∗(1,2,0). So, the comparison of systems A and C needs further analysis. 

Let 𝐹O5&(𝑡), 𝐹O5.(𝑡)	be the respective reliability functions of systems A and C. We have    

𝐹O5.(𝑡) − 𝐹O5&(𝑡) = X X X[(ΦI
∗ 	(𝑙!, 𝑙", 𝑙I)

!

4.)6

I

4()6	

"

4&)6	

−	Φ!
∗(𝑙!, 𝑙", 𝑙I)] a

2
𝑙!
b a
3
𝑙"
b a
1
𝑙I
b	𝐹!(𝑡)"24&𝐹O!(𝑡)4&𝐹"(𝑡)I24(𝐹O"(𝑡)4(𝐹I(𝑡)!24.𝐹OI(𝑡)4. 

 
Using survival signature given in Table 9, we get 
 

                            𝐹O5.(𝑡) − 𝐹O5&(𝑡) = −2	𝐹!(𝑡)𝐹O!(𝑡)𝐹"(𝑡)𝐹O"(𝑡)"𝐹I(𝑡) + 2	𝐹!(𝑡)𝐹O!(𝑡)𝐹"(𝑡)"𝐹O"(𝑡)𝐹OI(𝑡)                          
(2) 
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Table 9: The survival signature  𝛷!∗ and 𝛷%∗ of systems after adding an irrelevant component of type-3 and type-2 
respectively to system A and system C 

𝑙! 𝑙" 𝑙I Φ!
∗(𝑙!, 𝑙", 𝑙I) ΦI

∗(𝑙!, 𝑙", 𝑙I) 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 1 0 0 
0 2 0 0 0 
0 2 1 0 0 
0 3 0 0 0 
0 3 1 0 0 
1 0 0 0 0 
1 0 1 0 0 
1 1 0 1/3 1/3 
1 1 1 1/3 2/3 
1 2 0 1 2/3 
1 2 1 1 1 
1 3 0 1 1 
1 3 1 1 1 
2 0 0 0 0 
2 0 1 0 0 
2 1 0 2/3 2/3 
2 1 1 2/3 2/3 
2 2 0 1 1 
2 2 1 1 1 
2 3 0 1 1 
2 3 1 1 1 

 
To simplify the comparison process, we have taken variable 𝐹O!(𝑡) =1 − 𝐹!(𝑡) as 𝑥!, 𝐹O"(𝑡) =1 − 𝐹"(𝑡) 
as 𝑥" and 𝐹OI(𝑡) =1 − 𝐹I(𝑡) as 𝑥I. The 3-tuple (𝑥!, 𝑥", 𝑥I) lies in the unit cube as 𝑡 varies from 0 to ∞. 
For 𝑡 ∈ [0,∞), the difference 𝐹O5.(𝑡) − 𝐹O5&(𝑡) given in Equation (2) can be written as the multivariable 
function 𝐷(𝑥!, 𝑥", 𝑥I) as 
 

𝐷(𝑥!, 𝑥", 𝑥I) = −2𝑥!(1 − 𝑥!)(1 − 𝑥")(1 − 𝑥I)𝑦" + 2𝑥!𝑥"𝑥I(1 − 𝑥!)(1 − 𝑥")" 
= 2𝑥!𝑥"(1 − 𝑥!)(1 − 𝑥")(𝑥I − 𝑥"). 

 
If 𝑥" ≤ 𝑥I or 𝑥I = 1 then 𝐷(𝑥!, 𝑥", 𝑥I) ≥ 0. In addition, 𝐷(𝑥!, 𝑥", 𝑥I) = 0	𝑖𝑓	𝑥!, 𝑥" = 1	𝑜𝑟	𝑥" = 𝑥I. This 
implies that the system's lifetime 𝑇! is smaller than 𝑇I in usual stochastic order if the components 
lifetime of type 2 is less than the component lifetime of type 3. i.e., 𝑇! ≤;5 𝑇I if 𝐹O"(𝑡) ≤ 𝐹OI(𝑡) . 

 
4. Conclusion 

 
The bridge structures are generally used in the design and production industry. The comparative 
study of such systems is crucial to ensure system productivity and to distinguish the system that 
performs well. Comparing bridge systems having iid and multiple types of components without 
knowing their component’s distribution is very challenging. In this paper, we have seen that the 
lifetime of bridge system A is smaller than the lifetime of bridge system B in usual stochastic order.  
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However, the lifetimes of these systems (Figure 1 and Figure 2) are not found to be hazard rate and 
likelihood ratio ordered. Further, coherent systems A (five order) and D (six order) are compared 
stochastically by adding irrelevant components. It is found that the lifetime of system D is smaller 
than A in usual stochastic order. For stochastic comparison of lifetimes of bridge systems A and C, 
a result has been derived by imposing some conditions on the survival function of its components. 
This study compares bridge systems by considering different cases with the aid of survival 
signature. There is further scope to analyse the reliability characteristics and compare the 
combination of higher-order multi-state bridge systems with different types of components. 
 
Conflict of Interest Declaration: The authors have no conflicts of interest to declare.  
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Abstract

In this present piece of work, we have considered a lifetime distribution based on trigonometric
function called SSE(ε)-distribution and discuss its various properties which have not been added
previously by host as well as any other authors. This distribution is useful and a good contribution in
research under trigonometric function. We are deriving some more useful properties such as moments,
conditional moments, mean deviation about mean, mean deviation about median, order statistics etc.
Estimation of parameter has been done for both classical and Bayesian paradigms under Type-II censored
sample. Simulation study has also been carried out to know the progress of the estimators in the sense of
having smallest risk (over the sample space) at the long-run use.

Keywords: SSE(ε)-distribution, Type-II censoring, Bayes estimator, MLE, Gauss-Laguerre method,
risk function

1. Introduction

In statistical literature, there are several lifetime distributions available, for example exponential,
gamma, Weibull, Lindley distribution etc. In past studies, calculations can only be handled when
the expressions corresponding to various properties obtained in the nice closed form and when
this was not achieved then rarely preferred. But in this modern era due to the advancement of
computational facilities this problem have been resolved almost. Mostly, algebraic and exponential
functions have been used to develop the new transformation and sometimes authors see gap in
trigonometric, inverse and logarithmic type transformations. Keeping this in mind, the considered
transformation is the good contribution in support of filling such gap. As we aware that the use
of a single model is not found suitable in every aspect, therefore to adopt a suitable baseline
model is also a quite tedious job. Study explores that exponential distribution is preferably
used as a lifetime distribution but the extensive use of it is restrictive in the sense of its constant
hazard rate. For simplicity and flexibility, we are also using here exponential distribution as a
baseline distribution In these days, many authors are introducing transformation techniques to
get a new lifetime distribution with the help of available baseline distributions some of which are
popular as power transformation proposed by [6], sine square distribution by [1], [20] introduced
quadratic rank transmutation map (QRTM), sinofarm distribution by [23], DUS transformation
proposed by [10], minimum-guarantee distribution proposed by [11], CS transformation by [3],
new Sine-G family based on [13] proposed by [16], new extension of Lindley distribution given
by [17], PCM transformation by [12] and many more. In such continuation, [13] have proposed a
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new transformation known as SS-transformation by using sine function which is given by

F(x) = sin
(π

2
G(x)

)
(1)

Where G(x) is the baseline’s cumulative distribution function (cdf) and the accompanying
probability density function (pdf) are

f (x) =
π

2
g(x) cos

(π

2
G(x)

)
(2)

They have utilized baseline distribution as exponential distribution and named as SS exponential
(SSE(ε))-distribution and having the following form of its pdf is

f (x) =
π

2
ε× e−εx sin

(π

2
e−εx

)
; (x, ε) > 0 (3)

and its cdf in compact form is

F(x) = cos
(π

2
e−εx

)
; (x, ε) > 0 (4)

The reported compact forms of reliability function and hazard rate function respectively are

R(x) = 1− cos
(π

2
e−εx

)
(5)

and
h(x) =

π

2
ε× e−εx cot

(π

2
e−εx

)
(6)

Figures 1, 2 and 3 presents the shape of pdf, cdf and hazard rate function of SSE(ε)-distribution.
And Figure 3, claims that the nature of hazard rate function of the SSE(ε)-distribution is increasing
which is different from baseline distribution.
The article is constructed as follows, introductory part have been shown in Section (1), statistical
properties discussed in Section (2), estimation of parameter presented in Section (3), comparison
of estimators in Section (4) and concluding remarks regarding the work quoted in Section (5).

Figure 1: Plots of pdf of SSE(ε)-distribution for various choices of parameter ε.
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Figure 2: Plots of cdf of SSE(ε)-distribution for various choices of parameter ε.

Figure 3: Plots of hazard rate function of SSE(ε)-distribution for various choices of parameter ε.
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2. Statistical Properties

In this section, we are discussing some statistical properties of SSE(ε)-distribution which have not
derived yet namely mean deviation about mean, mean deviation about median, order statistics
etc. Firstly, we have discussed two lemma which are-

Statement (Lemma-1)

ξ1(ε, r, ζ) =
∫ ∞

0
xre−ζx × sin

(π

2
e−εx

)
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!
×
(π

2

)2k+1
[

r!
((2k + 1)ε + ζ)r+1

]

Proof:

ξ1(ε, r, ζ) =
∫ ∞

0
xre−ζx sin

(π

2
e−εx

)
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
[∫ ∞

0
xre−((2k+1)ε+ζ)xdx

]
=

∞

∑
k=0

(−1)2k+1

(2k + 1)!
×
(π

2

)2k+1
[

r!
((2k + 1)ε + ζ)r+1

]
The rth order moment about origin of SSE(ε)-distribution have already obtained by [13]. Here,
we obtain the same by using lemma 1 and is

E(Xr) =
π

2
ε× ξ1(ε, r, ε) (7)

on putting r = 1, 2, 3, 4 in (7), we get the first four raw moments of SSE(ε)-distribution and are

E(X) =
π

2
ε× ξ1(ε, 1, ε) ; E(X2) =

π

2
ε× ξ1(ε, 2, ε)

E(X3) =
π

2
ε× ξ1(ε, 3, ε) ; E(X4) =

π

2
ε× ξ1(ε, 4, ε)

And, first four central moments are calculated by the following relations,

µ2 =µ′2 − µ′21

µ3 =µ′3 − 3µ′2µ′1 + 2µ′31

µ4 =µ′4 − 4µ′3µ′1 + 6µ′2µ′21 − 3µ′41

On using above relations of central moments, we can obtain the measures of skewness and
kurtosis, viz., β1, γ1 and β2, γ2 respectively by the following expressions

β1 =
µ2

3

µ3
2

=⇒ γ1 =
√

β1 =
µ3

µ3/2
2

β2 =
µ4
µ2

2
=⇒ γ2 = β2 − 3 =

µ4
µ2

2
− 3

Statement (Lemma-2)

ξ2(ε, r, ζ, t) =
∫ ∞

t
xre−ζx ×

[
sin
(π

2
e−εx

)]
dx

=
∞

∑
k=0

r

∑
l=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
[

r!× e−((2k+1)ε+ζ)t × (((2k + 1)ε + ζ)t)l

l!((2k + 1)ε + ζ)r+1

]

Proof:

ξ2(ε, r, ζ, t) =
∫ ∞

t
xre−ζx

[
sin
(π

2
e−εx

)]
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
∫ ∞

t
xre−((2k+1)ε+ζ)xdx

=
∞

∑
k=0

r

∑
l=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
[

r!× e−((2k+1)ε+ζ)t × [((2k + 1)ε + ζ)t]l

l! [(2k + 1)ε + ζ]r+1

]
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2.1. Conditional Moments

The conditional moment of rth order is represented by E(Xr|X > r) then by using lemma 2, we
get

E(Xr|X > x) =
π

2
× ε× ξ2(ε, r, ε, x)[

1− cos
(

π
2 e−εx

)] (8)

2.2. Quantile Function

Using (4), we get the quantile function of order p (Q(p)) is

cos
(π

2
e−εQ(p)

)
= p =⇒ e−εQ(p) =

2
π

cos−1(p)

Therefore,

Q(p) = −1
ε

ln
(

2
π

cos−1(p)
)

(9)

2.3. Median

On putting p = 1
2 in equation (9) we will easily get the median of SSE(ε)-distribution and if Md

be the median of SSE(ε)-distribution then the expression is

Md = −1
ε

ln
(

2
3

)
(10)

which is same expression as obtained by [13].

Table 1: Mean, median, variance, skewness and kurtosis of SSE(ε)-distribution for different values of ε.

ε Mean Median Variance Skewness(γ1) Kurtosis(γ2)
0.2 0.25814 2.02733 0.25695 4.13316 19.53054
0.7 0.25379 0.57924 0.16079 2.73800 6.85106
1 0.23603 0.40547 0.11153 2.53429 5.44002
2 0.17377 0.20273 0.04342 2.28171 3.84498
5 0.09108 0.08109 0.00919 2.12107 2.91886
10 0.05023 0.04055 0.00253 2.06265 2.60720
15 0.03446 0.02703 0.00118 2.04642 2.45738

Table 1 shows that the mean, median, variance, skewness (γ1) and kurtosis (γ2) of the SSE(ε)-
distribution with pdf (3) for different choices of parameter ε. The values of mean, median and
variance of SSE(ε)-distribution are decreases as values of parameter ε increases this shows that
mean, median and variance of the SSE(ε)-distribution inversely related to parameter ε. Since,
γ1 > 0 and γ2 > 0 so the nature of SSE(ε)-distribution has positively skewed and leptokurtic
distribution for considered choices of parameter.

2.4. Mean deviation about mean and median

The mean deviation (MD) about mean is another measure of dispersion and is defined as,

φ1(x) =
∫ ∞

0
|x− µ| f (x)dx

where µ is the mean of SSE(ε)-distribution, then

φ1(x) =
∫ µ

0
(µ− x) f (x)dx +

∫ ∞

µ
(x− µ) f (x)dx

=⇒ φ1(x) = 2µ× F(µ)− 2µ + 2
[∫ ∞

µ
x f (x)dx

]
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where notations have their usual meanings then by using lemma 2, we get∫ ∞

µ
x f (x)dx =

π

2
ε× ξ2(ε, 1, ε, µ)

Therefore,
φ1(x) = 2µ× F(µ)− 2µ + πε× ξ2(ε, 1, ε, µ) (11)

In the similar way, MD about median is

φ2(x) =
∫ ∞

0
|x−M| f (x)dx =

∫ M

0
(M− x) f (x)dx +

[∫ ∞

M
(x−M) f (x)dx

]
= −µ + 2

∫ ∞

M
x f (x)dx

Now, by lemma 2, we have ∫ ∞

M
x f (x)dx =

π

2
ε× ξ2(ε, 1, ε, M)

Finally,
φ2(x) = −µ + πε× ξ2(ε, 1, ε, M) (12)

2.5. Order Statistics

Let us take random sample of size n from the SSE(ε)-distribution say, {X1, X2, . . . , Xn} and
associated order statistics is X(1) < X(2) < ... < X(r), then pdf of rth order statistics is

fr(x) =
n!

(r− 1)!(n− r)!
× Fr−1(x)× f (x)× [1− F(x)]n−r

=⇒ fr(x) =
n!

(r− 1)!(n− r)!
×

n−r

∑
i=0

(−1)i
(

n− r
i

)
Fr+i+1(x)× f (x) (13)

Now, using (3) and (4) in 13), we have

fr(x) =
n!

(r− 1)!(n− r)!
× π

4
ε

n−r

∑
i=0

(−1)i
(

n− r
i

)
× sin

(
πe−εx) [cos

(π

2
e−εx

)]r+i
(14)

and corresponding cdf of rth order statistics is

Fr(x) =
n

∑
i=r

(
n
i

)
Fi(x)× [1− F(x)]n−i =

n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)jFi+j(x) (15)

Using equation (4) in (15), we obtain the expression of cdf of rth order statistic of SSE(ε)-
distribution as follows

Fr(x) =
n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)j

{
cos

(π

2
e−εx

)}i+j
(16)

3. Estimation of Parameter

In this section, we have discussed the estimation of parameter ε of SSE(ε)-distribution for Type-II
censored data under both Classical and Bayesian paradigms. It is observed that, it is not possible
to obtain the failure times of all the test units placed on a life testing experiment because of
the associated costs such as cost of per unit is high or limitations on experimental time etc.
Therefore, such situations are handled by removal of test units before the actual failure occurs
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and are termed as censoring scheme. Since, the removal of these units can be done in various
possible ways, these are further known as various type of censoring scheme. The two widely
used censoring schemes are Type-I and Type-II censoring schemes. Here, we consider Type-II
censoring only. Let x(1), x(2), . . . , x(r) be r-ordered Type-II right censored random observations
obtained from n units placed on a life testing experiment where each unit has its lifetime and
follows SSE(ε)-distribution having pdf (3) with largest (n− r) lifetimes have been censored, then
the likelihood function is given by [4] is

LC(ε|X) =
n!

(n− r)!

r

∏
i=1

f (x(i); ε)
(

1− F(x(r); ε)
)n−r

(17)

Several authors have been done their work in this direction, [18] have been discussed Bayesian
estimation of parameter under Type-II censored data, [9] worked on classical and Bayesian
estimation of reliability estimation of Maxwell distribution under Type-II censored data, [22] have
discussed the Bayesian estimation of exponentiated gamma parameter and reliability function
under Type-II censored data for asymmetric loss function, [7] presents the statistical evidences
of Type-II censored data, [19] have been derived the Bayesian estimation techniques of system
reliability for Weibull distribution under Type-II censored data, [8] discussed the comparison
between same Bayesian estimation methods for the parameter of exponential distribution based
on Type-II censored data. [5] have been discussed the estimation procedure for new lifetime
models under classical and Bayesian set-up in the presence of Type-II censored sample. [2]
studied the various properties of Pareto distribution using Type-II hybrid censored sample data.

3.1. Classical Estimation

Using (17), the likelihood function of the SSE(ε)-distribution under Type-II censoring scheme is

LC(ε|X) =
n!

(n− r)!
εre−ε ∑r

i=1 x(i)
r

∏
i=1

sin
(π

2
e−εx(i)

) [
1− cos

(π

2
e−εx(r)

)]n−r
(18)

and taking logarithm on both sides of (18), we get

ln LC = ln
n!

(n− r)!
+ r ln ε + ε

r

∑
i=1

x(i) +
r

∑
i=1

ln
[
sin
(π

2
e−εx(i)

)]
+ (n− r) ln

[
1− cos

(π

2
e−εx(r)

)]
(19)

On differentiating (19) w.r.to ε and equate the resultant to zero, we get

d ln LC
dε

=
r
ε
+

r

∑
i=1

x(i) −
π

2

r

∑
i=1

x(i)e
−εx(i)

[
cot
(π

2
e−εx(i)

)]
+ (n− r)

π

2
×

x(r)e
−εx(r) sin

(
π
2 e−εx(r)

)
1− cos

(
π
2 e−εx(r)

)
 = 0

(20)

The above equation cannot be solved analytically. So, we use numerical approximation technique
through R software to solve them numerically in terms of ε i.e. ε̂MC which maximizes the equation
(18).

3.2. Bayesian Estimation

In Bayesian paradigm, posterior probability is an effect of two components prior probability and
likelihood function, and calculated from the statistical model for the observed data. The prior
distribution of the parameters is assumed before the data observed. There are different kinds of
prior distribution of parameters defined as proper and improper priors. Another way to define
the priors based on available advanced information is known as informative and non-informative
priors.
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Here, we use informative prior as a Gamma(a, b) prior for ε of SSE(ε)-distribution and having
the following form

π(a, b) =
ba

Γa
εa−1e−bε ; ε > 0, a, b > 0 (21)

where, hyper-parameters are a and b. If two information’s which are independent in nature on
ε (say prior mean and prior variance are known) are provided, they can be obtained, for more
details see [21], [14], [15]. The mean and variance of the prior distribution (21) are a

b and a
b2

respectively. Thus, we take M = a
b and V = a

b2 giving b = M
V and a = M2

V . The informative
gamma prior behaves like non-informative prior if hyper-parameters changes i.e. if we fixed prior
mean and taking large prior variance.
The posterior density of ε given the sample observations X is given below

ψC(ε|X) =
LC(ε|X)× π(a, b)∫ ∞

0 LC(ε|X)× π(a, b)dε
(22)

By using equation (21) and (18) in (22), posterior density of ε given X under Type-II censoring is

ψC(ε|X) =

εr+a−1e−ε(∑r
i=1 x(i)+b)

{
∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
}

∫ ∞
0 εr+a−1e−ε(∑r

i=1 x(i)+b)
{

∏r
i=1 sin

(
π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
}

dε

(23)

The expressions for considered loss functions namely squared error loss function (SELF) and
general entropy loss function (GELF) having the following forms

LS(ε̂SC, ε) = (ε̂SC − ε)2 (24)

LG(ε̂GC, ε) =

(
ε̂GC

ε

)c
− c ln

(
ε̂GC

ε

)
− 1 (25)

If ε̂GC is a Bayes estimator of ε for Type-II censoring under GELF then, we get

ε̂GC =


∫ ∞

0 εr+a−c−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε∫ ∞

0 εr+a−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε


− 1

c

(26)

Putting c = −1 in equation (26), we get the Bayes estimator ε̂SC of ε for Type-II censoring, we get

ε̂SC =


∫ ∞

0 εr+ae−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε∫ ∞

0 εr+a−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε

 (27)

The above equations (26) and (27) are not solvable analytically. Therefore, we propose some
numerical approximation technique to get the solution. Basically, we have used here Gauss-
Laguerre quadrature formula to obtain the solution.

4. Comparison of Estimators

In this section, we compare the performance of the considered estimators (ε̂MC, ε̂SC, ε̂GC) of
parameter ε of SSE(ε)-distribution in the presence of Type-II censoring scheme in terms of lowest
risks (expected loss over Ω) under GELF. It is clear that, the expressions of risk function are not
obtained in implicit form. So, we use Gauss-Laguerre quadrature formula to obtain the estimators
(ε̂SC and ε̂GC) of parameter ε for computing the risks under Type-II censored data. To know
the performance of estimator in long run use, we simulate 20,000 samples for different sample
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size n and different effective sample size r (for Type-II censoring) from SSE(ε)-distribution with
different choices of values of parameter (ε = 1.5, 2.0, 3.0) and loss parameter c = ±2.

Tables 2, 3 and 4 represents the risks for the variations in hyper-parameters (variation in prior
variance (V = 0.5, 1.0, 2.0, 5.0, 80) for fixed prior mean (M = 1.0, 2.0, 3.0)) when true value of
the parameter ε = 2 for sample size n = 30 with different censoring schemes r = 12, 18, 24 and
30.

Tables 5 and 6 shows the variation in n and r with minimum prior variance (high confidence
level V = 0.5) and prior mean (M = 2.0) for the true value of ε = 1.5 and 3, respectively.

Tables 2, 3 and 4 presents the simulated risks under GELF for variation in prior variance (high
to low confidence level) with fixed prior mean (M). We see that the risks under GELF for the
Bayes estimators of ε under SELF and GELF are increases as values of prior variance increases
(high to low confidence level) and if prior mean increases then the risks under GELF decreases for
the Bayes estimators under SELF and GELF for Type-II censored samples. Bayes estimator under
GELF ε̂GC outperforms MLEs (ε̂MC) and SELF (ε̂SC) under Type-II censored sample when under
estimation is more serious as compared to over estimation (c = −2) and when over estimation is
more serious as compared to under estimation (c = +2), then Bayes estimator under SELF (ε̂SC)
outperforms MLEs (ε̂MC) and GELF (ε̂GC) under Type-II censored sample. It is also noted that
when prior variance is large (low confidence level i.e. very weak information about the parameter
ε) then classical estimator MLEs (ε̂MC) performs better than the Bayes estimators under SELF
(ε̂SC) and GELF (ε̂GC).

Tables 5 and 6 shows that the variation in sample size n and corresponding different Type-II
censoring schemes r for the true values of parameter ε = 1.5 and 3. Table 5 provides simulated
risks of the Bayes estimators (ε̂SC) of ε under SELF outperforms MLEs (ε̂MC) and Bayes estimators
of ε under GELF (ε̂GC) in both cases under estimation is more serious than over estimation and
vice-versa. While Table 6 provides Bayes estimator under GELF (ε̂GC) outperforms the Bayes
estimator under SELF (ε̂SC) and MLE (ε̂MC) for the situation when under estimation is more
serious than over estimation but in reverse case, Bayes estimator under SELF (ε̂SC) outperforms
MLEs (ε̂MC) and Bayes estimator under GELF (ε̂GC) for the true value of parameter ε = 3. It is
also observed that the risks of all estimators of ε for Type-II censored sample decreases with
increase in the value of n and r for all considered values of the parameter ε.
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Table 2: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30, r(r = 12, 18, 24),
ε = 2.0, M = 1 and c = ±2.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.13386 0.11519 0.20147 0.09545 0.13667
0.5 18 0.09915 0.09065 0.08189 0.12088 0.07236 0.07057

24 0.07407 0.06885 0.06373 0.08397 0.05817 0.05724
30 0.05938 0.05558 0.05214 0.06572 0.04751 0.04789
12 0.15180 0.13616 0.11989 0.20147 0.12083 0.13550

1 18 0.09915 0.08988 0.08482 0.12088 0.08641 0.08943
24 0.07407 0.06883 0.06587 0.08397 0.06675 0.06850
30 0.05938 0.05605 0.05410 0.06572 0.05494 0.05612
12 0.15180 0.14083 0.13321 0.20147 0.15280 0.16792

2 18 0.09915 0.09324 0.08994 0.12088 0.09933 0.10516
24 0.07407 0.06992 0.06806 0.08397 0.07367 0.07693
30 0.05938 0.05718 0.05594 0.06572 0.05952 0.06165
12 0.15180 0.14373 0.13906 0.20147 0.17322 0.17442

10 18 0.09915 0.09650 0.09440 0.12088 0.10864 0.11646
24 0.07407 0.07278 0.07155 0.08397 0.07953 0.08381
30 0.05938 0.05919 0.05836 0.06572 0.06330 0.06606
12 0.15180 0.15085 0.14829 0.20147 0.18860 0.19630

80 18 0.09915 0.09847 0.09735 0.12088 0.11827 0.12777
24 0.07407 0.07445 0.07382 0.08397 0.08530 0.09051
30 0.05938 0.06022 0.05979 0.06572 0.06677 0.07010

Table 3: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30, r(r = 12, 18, 24),
ε = 2.0, M = 2 and c = ±2.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.05785 0.05776 0.20147 0.06075 0.06133
0.5 18 0.09915 0.05112 0.05095 0.12088 0.05416 0.05772

24 0.07407 0.04445 0.04421 0.08397 0.04712 0.04948
30 0.05938 0.03881 0.03858 0.06572 0.04070 0.04237
12 0.15180 0.08699 0.08659 0.20147 0.09806 0.09889

1 18 0.09915 0.06802 0.06764 0.12088 0.07527 0.08079
24 0.07407 0.05566 0.05534 0.08397 0.06073 0.06412
30 0.05938 0.04725 0.04700 0.06572 0.05079 0.05314
12 0.15180 0.11490 0.11311 0.20147 0.13630 0.14083

2 18 0.09915 0.08291 0.08192 0.12088 0.09455 0.10148
24 0.07407 0.06399 0.06330 0.08397 0.07033 0.07421
30 0.05938 0.05327 0.05274 0.06572 0.05719 0.05974
12 0.15180 0.13415 0.13238 0.20147 0.17091 0.17531

5 18 0.09915 0.09104 0.09008 0.12088 0.10704 0.11543
24 0.07407 0.06982 0.06916 0.08397 0.07840 0.08300
30 0.05938 0.05707 0.05665 0.06572 0.06254 0.06558
12 0.15180 0.15018 0.14771 0.20147 0.19933 0.19672

80 18 0.09915 0.09963 0.09857 0.12088 0.11883 0.12845
24 0.07407 0.07551 0.07482 0.08397 0.08598 0.09119
30 0.05938 0.06064 0.06018 0.06572 0.06703 0.07033
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Table 4: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30 and r(r = 12, 18, 24),
ε = 2.0, M = 3 and c = ±2.

V schemes r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.11285 0.12353 0.20147 0.18003 0.18618
0.5 18 0.09915 0.08463 0.09185 0.12088 0.12879 0.14174

24 0.07407 0.06730 0.07252 0.08397 0.09833 0.10731
30 0.05938 0.05613 0.06017 0.06572 0.07954 0.08627
12 0.15180 0.10204 0.11257 0.20147 0.16348 0.16861

1 18 0.09915 0.07569 0.08181 0.12088 0.11215 0.12486
24 0.07407 0.06083 0.06489 0.08397 0.08519 0.09338
30 0.05938 0.05096 0.05389 0.06572 0.06833 0.07411
12 0.15180 0.10845 0.11640 0.20147 0.16802 0.16768

2 18 0.09915 0.07780 0.08184 0.12088 0.10803 0.11971
24 0.07407 0.06115 0.06362 0.08397 0.07953 0.08651
30 0.05938 0.05096 0.05263 0.06572 0.06339 0.06810
12 0.15180 0.12592 0.12934 0.20147 0.17881 0.17903

5 18 0.09915 0.08871 0.09023 0.12088 0.11345 0.12417
24 0.07407 0.06864 0.06947 0.08397 0.08334 0.08942
30 0.05938 0.05580 0.05640 0.06572 0.06568 0.06971
12 0.15180 0.14540 0.14786 0.20147 0.18968 0.19429

80 18 0.09915 0.09905 0.09951 0.12088 0.12069 0.13089
24 0.07407 0.07306 0.07313 0.08397 0.08471 0.09015
30 0.05938 0.05921 0.05997 0.06572 0.06597 0.06942

Table 5: Risks of the estimators of ε under GELF when V = 0.5, M = 2 and c = ±2 for true value of ε = 1.5.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

6 0.30733 0.11180 0.12843 0.58496 0.17749 0.19775
15 9 0.20172 0.09625 0.10710 0.30346 0.14726 0.17215

12 0.14916 0.08295 0.09059 0.20110 0.12254 0.14004
15 0.12036 0.07335 0.07906 0.15104 0.10453 0.11761
8 0.22597 0.09958 0.11208 0.35915 0.15420 0.15351

20 12 0.14976 0.08279 0.09040 0.20231 0.12191 0.13939
16 0.11135 0.06989 0.07502 0.13774 0.09803 0.10978
20 0.09013 0.06117 0.06495 0.10558 0.08244 0.09104
12 0.15112 0.08386 0.09189 0.20662 0.12435 0.12456

30 18 0.09839 0.06540 0.06998 0.11985 0.09049 0.10073
24 0.07255 0.05290 0.05584 0.08325 0.06937 0.07586
30 0.05884 0.04529 0.04738 0.06545 0.05727 0.06186
24 0.07548 0.05425 0.05723 0.08712 0.07144 0.07669

60 36 0.04909 0.03924 0.04075 0.05379 0.04825 0.05158
48 0.03676 0.03096 0.03186 0.03932 0.03655 0.03855
60 0.02966 0.02581 0.02643 0.03120 0.02961 0.03098
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Table 6: Risks of the estimators of ε under GELF when V = 0.5, M = 2 and c = ±2 for true value of ε = 3.0.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

6 0.30882 0.18838 0.14822 0.57630 0.11627 0.20923
15 9 0.20002 0.14235 0.11626 0.29734 0.09092 0.07627

12 0.14878 0.11418 0.09590 0.19835 0.07558 0.06526
15 0.12139 0.09769 0.08385 0.14948 0.06649 0.05869
8 0.22674 0.15471 0.12462 0.35157 0.09761 0.16869

20 12 0.14766 0.11417 0.09571 0.19338 0.07540 0.06492
16 0.11053 0.09059 0.07813 0.13388 0.06245 0.05537
20 0.08972 0.07659 0.06737 0.10351 0.05458 0.04936
12 0.15287 0.11776 0.09863 0.20241 0.07752 0.12301

30 18 0.09955 0.08390 0.07307 0.11933 0.05891 0.05277
24 0.07382 0.06505 0.05808 0.08374 0.04801 0.04407
30 0.05927 0.05340 0.04848 0.06563 0.04099 0.03822
24 0.07358 0.06458 0.05742 0.08556 0.04785 0.06514

60 36 0.04797 0.04366 0.04011 0.05294 0.03478 0.03278
48 0.03608 0.03355 0.03141 0.03875 0.02795 0.02676
60 0.02952 0.02785 0.02637 0.03116 0.02385 0.02303
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5. Conclusion

In this paper, we have been consider a lifetime distribution by using sine function which has
proposed by [13]. We have also discussed some statistical properties of the considered distribution
such as conditional moments, mean deviation about mean, mean deviation about median and
derived expressions of the pdf and cdf of rth order statistics. Mean, median and variance are
inversely related to the parameter ε of SSE(ε)-distribution and the distribution has positively
skewed and leptokurtic nature. We have developed classical and Bayesian estimation procedure
for estimation of parameter ε under Type-II censored data. And also check the workout of the
estimators at the long-run by performing simulation study. The Bayes estimator under SELF (ε̂SC)
outperforms MLE (ε̂MC) and Bayes estimator under GELF (ε̂GC) for the true value of parameter
ε = 1.5 whatever the seriousness i.e. over estimation is more serious than under estimation and
reversely. In all other considered cases, Bayes estimator under GELF (ε̂GC) outperforms MLE
(ε̂MC) and Bayes estimator under SELF (ε̂SC) when under estimation is more serious than over
estimation but in reverse case Bayes estimator under SELF (ε̂SC) outperform MLE (ε̂MC) and
Bayes estimator under GELF (ε̂GC). Finally, we see that risks under GELF decreases as sample
informations (n & r) increases.
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Abstract

In this article, a new transformation technique based on the cumulative distribution function is proposed,
the proposed transformation technique is very useful to generate a class of lifetime distribution. The
various statistical properties of the proposed transformation method are studied. Further, the proposed
technique is illustrated by considering exponential distribution as a baseline distribution. Various
statistical properties such as survival and hazard rate, moments, mean deviation about mean and median,
order statistics, moment generating function (MGF), Bonferroni’s, and Lorenz curves, entropy, stress-
strength reliability have been discussed. Different classical estimation methods are used to estimate
the unknown parameters. Finally, two real data sets are considered to justify the use of the proposed
distribution in real scenario.

Keywords: Transformation technique, statistical properties, classical method of estimation, and
application.

1. Introduction

In lifetime analysis, various transformation techniques are used to propose the new probability
distribution by adding an additional parameter to the baseline probability distribution. The signif-
icance of these probability distributions is categorized according to their use and appropriateness
of different hazard rates viz. increasing, decreasing, constant, bathtub, and upside-down bathtub
(UBT). Modeling of the real-life data set is based on the nature of the hazard rate function. For
example, the exponential distribution is the most suitable choice whenever data exhibits the
pattern of constant hazard rate. However, underlying data exhibits a non-constant hazard rate
then other generalized lifetime distributions such as Weibull, Gamma, Extended Exponential,
Generalized Exponential, Lindley distributions, and many others are frequently used to desirable
data. To know more about monotone and non-monotone hazard rates, see [17], [32], [4], [5], [14],
and [8], etc.

In statistical literature, various method has been suggested by the several authors to generate
a new flexible model, viz. [26], [24], [19], and [30]. The beta generated model is used by [15]
who uses the beta distribution to develop the beta generated distributions. [11] propose the
Kumarswamy-G family of distributions.[12] propose a new class of distribution by adding two
more parameters. [2] introduce a new method for generating families of distributions called the
T-X family. Recently, the quantile function is used to generate the T-X family of distributions
by [1]. For another development in the family of distributions see, [18], [23], [20], and [25], etc.
These methods are most popular to propose flexible and appropriate models. Here notable thing
is that all the methods of transformation discussed above introduce one additional parameter.
Unquestionably, the addition of an extra parameter increases the flexibility but at the same time,
it also increases complexity in further statistical inference.
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Motivated by the above-mentioned literature, this article aims to propose a new transformation
technique to generate the class of distributions. The proposed transformation is illustrated with
an exponential baseline model and named a new two-parameter lifetime model. The proposed
model through this transformation will be considered as an alternative to the Gamma, Weibull,
and Extension of Exponential distributions by using the transformation method.

Let G(x) is the cumulative distribution function (CDF) of any baseline distribution, then the CDF
of new distribution is proposed by,

F (x) =
G(x)

G (x) + (1 + G(x))α f or x ∈ R and α ≥ 0 (1)

Clearly, F(x) is the distribution function as it satisfy the condition to be a CDF.

(i) lim
x→ −∞

F (x) = 0 (ii) lim
x→ ∞

F (x) = 1 (iii) F
′
(x) = f (x)

where f (x) and g(x) are the probability distribution function (PDF) of proposed and baseline
distribution function respectively.

(iv) It is well known that 0 ≤ G (x) ≤ 1, which implies that 0 ≤ F (x) ≤ 1.
(v) Clearly, F (x) is a continuous function.

Now, the associated probability distribution function (PDF) f (x) for (1) is,

f (x) =
g (x) {(1 − G (x) + αG (x))}

{
(1 − G (x))(α−1)

}
{

G (x) + (1 − G (x))α}2 (2)

The survival and hazard rates are:

S (x)=
(1−G(x))α

G(x) + (1−G(x))α (3)

h (x)=
g (x) {1−G (x)+αG (x)}

(1−G(x))G(x) + (1−G(x))α+1 (4)

To illustrate the above transformation, let us assume exponential distribution as the base line
distribution. The PDF of the exponential distribution is given by,

g (x)=

{
λe−λx f or x≥0, λ> 0
0 otherwise

(5)

and the associated CDF is:

G (x)= 1−e−λx f or x≥0, λ> 0 (6)

here, λ is rate parameter of exponential distribution.

Then by transformation (1), the CDF of the new flexible distribution is,

F (x)=
1−e−λx

1−e−λx+e−λαx f or x ≥ 0, α ≥ 0, λ > 0 (7)
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The PDF, survival and hazard rate function of proposed distribution are given as:

f (x)=
λe−λαx (α+e−λx−αe−λx)(

1−e−λx+e−λαx
)2 f or x ≥ 0, α ≥ 0, λ > 0 (8)

S (x)=
e−λαx(

1−e−λx
)

+e−λαx (9)

and

h (x)=
λ
[
α+e−λx−αe−λx][

1−e−λx+e−λαx
] (10)

respectively.

The principal objective of this paper is to propose a new transformation method and derive its
various statistical properties. Specifically, we substitute (6) into (1) to get the CDF of the proposed
distribution and the corresponding PDF is obtained by substituting (5) and (6) into (2). Our
motivation to construct a new model is: (i) it is applicable for modeling increasing, decreasing,
and constant hazard shape which provides a good fit for real data sets; (ii) In our proposed model
if we put α = 1 then our proposed model reduced to baseline model; (iii) The proposed model can
be considered as a good alternative model for fitting the positive data with a longer tail and (iv)
The proposed model provides a better fit than some well-known lifetime models to real data sets.
As, the proposed model is an alternative to Weibull, Gamma, and Extended Exponential, thus the
proposed model might be a good choice for the researcher. Also, we have considered different
methods of estimation to estimate the unknown value of the parameter. To check the applicability,
AIC and BIC’s are also constructed for the parameters of the proposed model. A simulation study
has been performed to appraise the performance of the proposed estimation methods. Further,
we have considered two real data set to illustrate the superiority of the proposed model and study.
The plots of pdf and hazard rate function of new flexible two-parameter lifetime distribution for
various values of α and λ are shown in Figure 1(a) and 1(b) respectively. From the Figure 1(b),
the proposed distribution has an increasing, decreasing, and constant hazard rate.

(a) (b)

Figure 1: (a) PDF of proposed distribution. (b) Hazard function of proposed distribution.
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The content of the rest of the paper is organized as follows: In section 2, we have discussed
some statistical properties such as raw moments, moment generating function (MGF), mean
deviations, Bonferroni and Lorenz curves, Rényi entropy, s- entropy, cumulative residual entropy,
order statistics and reliability. In section 3, different method of estimation of the proposed
distribution is studied. Simulation studies are carried out, in section 4, to compare the behaviour
and performance of the different estimators. In section 5, the proposed model is fitted with some
competing models using two real data sets and finally, the conclusions are summarised in section
6.

2. Statistical properties of new flexible two parameter lifetime

distribution

In this section, we have discussed various statistical properties of our proposed new two parameter
lifetime distribution like moments, moment generating function (MGF), mean deviation about
mean and median, order statistics, reliability, Renyi entropy and Shannon entropy.

2.1. Raw Moments:

The rth moment about origin of the distribution with PDF (8) is obtained by,

µ
′
r=E (Xr)=

∫ ∞

0
xr f (x)dx=

∫ ∞

0
xr λe−λαx (α+e−λx−αe−λx)(

1−e−λx+e−λαx
)2 dx

After simplification the above integral, we get,

µ
′
r=

∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

[
αΓ (r+1)

λr(α+i−j+αj)r+1 +
(1−α) Γ (r+1)

λr(1+α+i−j+αj)r+1

]
(11)

The respective four moments about origin can be obtained by putting r = 1, 2, 3, and 4. For r = 1
we get mean (µ) of the distribution and is given by the following expression,

µ=
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

[
α

λ(α+i−j+αj)2 +
(1−α)

λ(1+α+i−j+αj)2

]

For, r = 2, 3, and 4 we can compute µ
′
2, µ

′
3, and µ

′
4 by putting these values in equation number

(11). The variance of the proposed model can be obtained using the expression,

V (X) = E
(

X2
)
− (E (X))2

Similarly, we can find other moment based, skewness, and the kurtosis of the distribution.

2.2. Moment generating function (MGF):

The moment generating function (MGF) for the proposed distribution with PDF (8) is given by;

MX (t)=
∫ ∞

0

etxλe−λαx [α+e−λx−αe−λx][
1−e−λx+e−λαx

]2 dx
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After simplification,

=α
∞

∑
r=0

∞

∑
J=0

J

∑
i=0

(−1)i
(

J
i

)
(J+1)

(t−αλ)r

r!
Γ (r+1)

λr(J−i+iα)r+1 +

λ (1−α)
∞

∑
m=0

∞

∑
n=0

n

∑
k=0

(−1)k (n+1)
(

n
k

)
(t−λ−αλ)m

m!
Γ (m+1)

((n−k+kα)λ)m+1 (12)

2.3. Mean Deviation (MD)

The mean deviation is the mean of the deviations. It can be calculated from the mean, median,
and mode. It shows how far all the observations from the middle, on average are. The mean
deviation about mean and mean deviation about median is defined as,

δ1 (x)=
∫ ∞

0
|µ−x| f (x) dx

and,

δ2(x) =
∫ ∞

0
|x−M| f (x)dx

Respectively, here µ = E(X) is the mean and M = median(X) is the median of the distribution.
After simplification the mean deviation about mean and the mean deviation about median are
given as;

δ1 (x)= 2µF (µ)−2µ+2
∫ ∞

µ
x f (x) dx (13)

Now, the integral is computed as,

∫ ∞

µ
x f (x) dx=

∫ ∞

µ
x

λe−λαx [α+e−λx−αe−λx](
1−e−λx+e−λαx

)2 dx

=
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1) ×

[
λα
∫ ∞

µ
xe−(α+i−j+αj)λxdx+λ(1−α)

∫ ∞

µ
xe−(1+α+i−j+αj)λxdx

]
By the definition of complementary incomplete gamma function and for any integer n,

Γ (n, x)=
∫ ∞

x tn−1e−tdt
Γ (n, ax)=

∫ ∞
x tn−1e−atdt

Γ (n, x)=
∫ ∞

x
tn−1e−tdt= (n−1) !e−x

n−1

∑
k=0

xk

k!
= (n−1) !e−xen−1 (x)

here, en(x) is the exponential sum function. The above expression can be expressed as;

=
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)×

[
αe−(α+i−j+αj)λµ

(α+i−j+αj)2λ
(1 + (α+i−j+αj)λµ)

+
(1−α))e−(1+α+i−j+αj)λµ

(1+α+i−j+αj)2λ
(1 + (α+i−j+αj)λµ)

]
(14)
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By using equation (13) and (14), the mean deviation δ1 (x) about mean is;

δ1 (x)=2µ F (µ)−2µ+2
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

[
αe−(α+i−j+αj)λµ

(α+i−j+αj)2λ
(1+ (α+i−j+αj) λµ)

+
(1−α) e−(1+α+i−j+αj)λµ

(1+α+i−j+αj)2λ
(1 + (1+α+i−j+αj)λµ)

]
(15)

Similarly, the mean deviation δ2(x) about median is given by,

δ2(x) = −µ+2
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

[
αe−(α+i−j+αj)λµ

(α+i−j+αj)2λ
(1+ (α+i−j+αj) λµ)

+
(1−α) e−(1+α+i−j+αj)λµ

(1+α+i−j+αj)2λ
(1+ (1+α+i−j+αj) λµ)

]
(16)

2.4. Bonferroni and Lorenz curves

The Bonferroni [7] and Lorenz curves [21] is used to measure the inequality in the distribution of
quantity in the area of economics as in term of income and wealth. The Bonferroni and Lorenz
curves have various applications not only in the area of economics to study income and poverty
but also in other areas like demography, medicine, insurance and reliability. Lorenz curves cannot
be defined if the mean of the distribution is zero or infinite. The Bonferroni and Lorenz curves
are given by,

B (P)=
1

Pµ

∫ q

0
x f (x)dx (17)

and
L (x) =

1
µ

∫ q

0
x f (x)dx (18)

where µ = E(x) and q = F−1 (p) respectively. Now, the integral quantity in RHS is simplified as;

∫ ∞

q
x f (x) dx =

∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)×

[
αe−(α+i−j+αj)λq

(α+i−j+αj)2λ
(1 + (α+i−j+αj)λq)

+
(1−α))e−(1+α+i−j+αj)λq

(1+α+i−j+αj)2λ
(1 + (α+i−j+αj)λq)

]
Hence, the Bonferroni and Lorenz curves for the new distribution are obtained as;

B(P) =
1
P
− 1

Pµ

[
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

{
αe−(α+i−j+αj)λq

(α+i−j+αj)2λ
(1 + (α+i−j+αj)λq)

+
(1−α)e−(1+α+i−j+αj)λq

(1+α+i−j+αj)2λ
(1 + (1+α+i−j+αj)λq)

}]
(19)

and

L (p) = 1− 1
µ

[
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i+1)

{
αe−(α+i−j+αj)λq

(α+i−j+αj)2λ
(1 + (α+i−j+αj)λq)
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+
(1−α)e−(1+α+i−j+αj)λq

(1+α+i−j+αj)2λ
(1 + (1+α+i−j+αj)λq)

}]
(20)

respectively.

2.5. Renyi entropy

Rényi entropy [28] is a most popular measure of average amount of uncertainty of a random
variable X. If X is a random variable with probability distribution function f (x) then the Rényi
entropy is defined as

JR (γ)=
1

1−γ
log
{∫

f γ (x) dx
}

(21)

where, γ> 0 and γ ̸=1. Now, from equation (8) we get,

∫ ∞

0
f γ (x) dx=

∫ ∞

0

{
λe−λαx [α+e−λx−αe−λx]

(1−e−λx+e−λαx)2

}γ

dx

= λγαγ+l−j
∞

∑
i=0

∞

∑
j=0

i

∑
k=0

j

∑
l=0

(−1)j+k+l
(
−2γ

i

)(
γ

J

)(
i
k

)(
j
l

)
1

(γα + i − k + αk + j)λ

By putting the above value in the equation (21) we get,

JR(γ) =
γ

1 − γ
logλ +

(
γ + l − j

1 − γ

)
logα

+
1

1 − γ
log

[
∞

∑
i=0

∞

∑
j=0

i

∑
k=0

j

∑
l=0

(−1)j+k+l
(
−2γ

i

)(
γ

J

)(
i
k

)(
j
l

)
1

(γα + i − k + αk + j)λ

]
(22)

2.6. s-Entropy

Shannon entropy was proposed by [29], and is a particular case of Rényi entropy as γ → 1. It can
be defined as E [−log f (X)] .

log f (X) = logλ − αλx + logα +
∞

∑
n=1

(−1)n+1

αnn

(
e−λx − αe−λx

)n
+ 2

∞

∑
m=1

(
e−λx − e−λαx)m

m

After using the result based on series expansion of log(1 + x) and log(1 − x) in the above
expression, the expression for Shannon entropy is given by,

E [−log f (X)] = −logλ + λαE (X)− logα −
∞

∑
n=1

n

∑
l=0

(−1)n+l+1

αnn

(n
l

)
E
(

e−λnx
)

− 2
∞

∑
m=1

m

∑
s=0

(−1)s

m

(m
s

)
E
(

e−λmx+λsx−λαsx
)

(23)

The equation number (23) can be computed with the help of following results;

E
(

e−λnx
)

=
∞

∑
i=0

i

∑
j=0

(−1)j
(

i
j

)
(i + 1)

[
λα

(n + α + i − j + αj) λ
+

λ (1 − α)

(n + α + 1 + i − j + αj) λ

]
(24)
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and

E
(

e−λmx+λsx−λαsx
)

=
∞

∑
k=0

k

∑
t=0

(−1)t
(

k
t

)
(k + 1)×[

α

(m − s + αs + k + α − t + αt)
+

1 − α

(m − s + αs + α + 1 + k − t + αt)

]
(25)

respectively.
Corr: 1. The cumulative residual entropy [27] defined as,

JC = −
∫

Pr (X > x) log (Pr (X > x) ) dx

= −
∫ ∞

0

e−λαx(
1 − e−λx + e−λαx

) (−λαx − log
(

1 − e−λx + e−λαx
))

dx

=
∞

∑
i=0

i

∑
j=0

(−1)i
(

i
j

)[
λα

((α + i − j + αj) λ)2 −
∞

∑
k=0

k

∑
i=0

(−1)l

k

(
k
l

)
1

(α + i − j + αj + k − l + αl)

]

2.7. Order Statistics

Suppose that X1, X2, . . . . . . . .Xn is a random sample of size n from the proposed continuous prob-
ability distribution function (PDF), f (x) . Let X1:n < X2:n < · · · < Xn:n denote the corresponding
order statistics. We know that the probability density function of rth order statistics Xr:n , say
fr(x), where the population PDF and CDF are f (X) and F(x) respectively, is given as follows,

fr (x)=
n!

(r−1) ! (n−r) !

n−r

∑
i=0

(−1)i
(

n − r
i

)
Fr+i−1 (x) f (x) (26)

Consequently, using the equation (7) and (8) in (26) we get,

fr (x)=
n!

(r−1) ! (n−r) !

n−r

∑
i=0

(−1)i
(

n − r
i

) [
1 − e−λx

1 − e−λx + e−λαx

]r+i−1

×
[

λe−λαx (α + e−λx − αe−λx)
(1 − e−λx + e−λαx)2

]
(27)

and corresponding rth order statistics of CDF Fr(x) is,

Fr (x) =
n

∑
j=r

n−j

∑
m=0

(
n
j

)(
n − j

m

)
(−1)mFj+m (x) (28)

Hence from the equation (7), equation (28) can be written as,

Fr (x) =
n

∑
j=r

n−j

∑
m=0

(−1)m
(

n
j

)(
n − j

m

)(
1 − e−λx

1 − e−λx + e−λαx

)j−m

(29)

2.8. Reliability

In this section, we have discussed about reliability of a component. In the context of reliability,
the stress-strength model explains the life of a component which has a random strength X that
is subjected to random stress Y. The component will fail if the stress applied to it exceeds the
strength and the component will work properly whenever X > Y. So, P[X > Y] is a measure of
component reliability. It has various number of applications in many areas such as in science,
engineering etc. In the field of stress-strength model there has been number of works as regarded
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estimation of reliability R when X and Y are independent random variable belonging to the same
univariate family of distribution.
Here, we derive the reliability R when X and Y are independent random variables from the
proposed distribution with parameter (α1, λ1) and (α2, λ2) respectively. So, the reliability R is
defined as bellow,

R=P (X>Y)=
∫ ∞

0
fX (x, α1, λ1) FY(x, α2, λ2)dx

=
∞

∑
i=0

∞

∑
k=0

i

∑
j=0

k

∑
l=0

(−1)j+l
(

i
j

)(
k
l

)
(i+1)

[
λ1α1

{
1

(α1+i−j+α1 j) λ1+ (k−l+α2l) λ2

− 1
(α1+i−j+α1 j) λ1+ (k−l+α2l+1) λ2

}
+ λ1 (1−α1)

×
{

1
(1+α1+i−j+α1 j) λ1+ (k−l+α2l) λ2

− 1
(1+α1+i−j+α1 j) λ1+ (k−l+α2l+1) λ2

}]
(30)

3. Methods of estimation

In this section, we will discuss different method of estimation namely, maximum likelihood
estimation (MLE), maximum product spacing estimation (MPS), least square estimation (LSE)
and weighted least square estimation (WLSE), Cramer-von-Mises estimation (CVME), Anderson
Darling estimation (ADE) to estimate the unknown parameter of the considered model.

3.1. Maximum likelihood estimation (MLE)

Let x1, x2, . . . . . . . . . xn be the random samples of size n from the proposed distribution. Then the
log-likelihood function of the proposed distribution is given as,

logL = nlog λ − αλ
n

∑
i=1

xi +
n

∑
i=1

log
(

α + e−λxi − αe−λxi
)
− 2

n

∑
i=1

log
(

1−e−λxi +e−λαxi
)

(31)

Now, differentiating equation (31) with respect to parameters α and λ we get,

∂logL
∂α

= − λ
n

∑
i=1

xi +
n

∑
i=1

1 − e−λxi(
α + e−λxi − αe−λxi

) + 2
n

∑
i=1

λxie−λαxi(
1−e−λxi +e−λαxi

) (32)

and
∂logL

∂λ
=

n
λ
− α

n

∑
i=1

xi +
n

∑
i

(α − 1) xie−λxi(
α + e−λxi − αe−λxi

) − 2
n

∑
i=1

xie−λxi − αxie−λαxi(
1−e−λxi +e−λαxi

) (33)

Now, putting the equation (32) and (33) equal to zero, we have two non-liner likelihood equations.
After solving these equations, we get MLEs α̂ and λ̂ of parameters α and λ. These equations are
not in closed form consequently it cannot be solved analytically. Therefore, Newton-Raphson
method is used to get the MLE’s of the parameters α and λ.
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3.2. Maximum Product Spacing Estimation (MPSE)

This method is one of the most popular method of estimation and it was developed by [9]. Let
x(1) < x(2) < · · · < x(n) be the ordered sample of size n and we define spacing as,

Di =
∫ x(i)

x(i−1)

f (x, α, λ)dx ; i = 1, 2, 3 . . . . . . . . . (n + 1)

= F
(

x(i), α, λ
)
− F

(
x(i−1), α, λ

)
Where, initial conditions are F

(
x(0)α, λ

)
= 0, F

(
x(n+1)α, λ

)
and sum of all the spacing will be

zero.
We are taking the observation from the proposed distribution, now from the equation (7) the D′

is
are defined as,

Di =
1 − e−λx(i)

1−e−λx(i) +e−λαx(i)
− 1 − e−λx(i−1)

1−e−λx(i−1)+e−λαx(i−1)
; f or all i = 1, 2, . . . .n (34)

For, i = 2, 3, . . . .n. The MPS estimator α̂mps and λ̂mps of α and λ are obtained by maximising the
geometric mean of the differences,

G =

(
n+1

∏
i=1

Di

)1/(n+1)

after taking logarithm of G we get,

logG =
(

1
n + 1

) n+1

∑
i=1

logDi (35)

substituting the value of Di from the equation (34) in equation (35) we get,

logG =
(

1
n + 1

) n+1

∑
i=1

log

[
1 − e−λx(i)

1−e−λx(i) +e−λαx(i)
− 1 − e−λx(i−1)

1−e−λx(i−1)+e−λαx(i−1)

]
(36)

It may be noted that from the equation (36) we can get the derivatives ∂logL
∂α , ∂logL

∂λ and set it equal
to zero, the equation, thus obtained, cannot solved analytically, therefore, the same numerical
technique may be used to obtain the solution.

3.3. Least Squares Estimation (LSE)

This method is most popular method [31]. Let x(1) < x(2) . . . · · · < x(n) be ordered sample of size
n from proposed distribution. LSEs α̂ls and λ̂ls of parameters α and λ are obtained by minimizing

Z (α, λ) =
n

∑
i=1

(
F
(
x(i), α, λ

)
− E [F (xi)]

)2

where, E [F (xi)] = i
n+1 ; i = 1, 2, . . . . . . (n + 1)

then,

Z (α, λ) =
n

∑
i=1

(
1 − e−λx(i)

1−e−λx(i)+e−λαx(i)
− i

n + 1

)2

(37)

In order to minimize Z (α, λ)given in (37), we differentiate equation (37) with respect to α and λ
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and equating to zero, which results of the following equations,

∂Z (α, λ)

∂ (α)
=

n

∑
i=1

F
′
α

(
x(i), α, λ

) (
F
(
x(i), α, λ

)
− i

n + 1

)
= 0 (38)

∂Z (α, λ)

∂ (λ)
=

n

∑
i=1

F
′
λ

(
x(i), α, λ

) (
F
(
x(i), α, λ

)
− i

n + 1

)
= 0 (39)

The above two non-linear equations cannot be solved analytically, therefore, numerical technique
is used for solution.

3.4. Weighted Least Squares Estimation (WLSE)

The estimation procedure to obtain the estimates of the parameters through WLSE is quite
similar to the LSE with a slight change that it minimizes the weighted sum of squared deviation
between true and expected CDF at observed ordered sample points, where weights are inversely
proportional to the var

[
F
(
x(i)
)]

. Thus, WLSE is obtained by minimizing

W(α, λ) =
n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F
(
x(i), α, λ

)
− i

n + 1

]2

W(α, λ) =
n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
1 − e−λx(i)

1−e−λx(i)+e−λαx(i)
− i

n + 1

]2

(40)

To get the WLSE estimates α̂WLS and λ̂WLS of parameters α and λ, differentiate equation (40) with
respect to α and λ and equating to zero, which results of the following equations

∂W(α, λ)
∂α

=
n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

F
′
α

(
x(i), α, λ

) [
F
(
x(i), α, λ

)
− i

n + 1

]2
= 0 (41)

∂W(α, λ)
∂λ

=
n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

F
′
λ

(
x(i), α, λ

) [
F
(
x(i), α, λ

)
− i

n + 1

]2
= 0 (42)

Again, equation (41) and (42) cannot be solved analytically, therefore, numerical technique is used
to secure the solution.

3.5. Cramer-von-Mises Estimation (CVME)

This method of estimation is proposed by [22], the method is the minimum distance method
based on the difference between empirical and cumulative distribution functions. See, [10, 13] for
more detail about this method. The CVM estimator of the parameters are obtained by minimizing

C (α, λ) =
1

12n
+

n

∑
i=1

(
F
(

x(i), α, λ
)
− 2i − 1

2n

)2
(43)

To get the CVM estimates α̂CVM and λ̂CVM of parameters α and λ, differentiate equation (43)
with respect to α and λ and equating to zero, which results of the following equations

∂C(α, λ)
∂α

=
n

∑
i=1

F
′
α

(
x(i), α, λ

)(
F
(

x(i), α, λ
)
− 2i − 1

2n

)
(44)

∂C(α, λ)
∂λ

=
n

∑
i=1

F
′
λ

(
x(i), α, λ

)(
F
(

x(i), α, λ
)
− 2i − 1

2n

)
(45)
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Again, equation (44) and (45) cannot be solved analytically, therefore, same numerical technique
is used to obtain the solution.

3.6. Anderson-Darling Method of Estimation (ADE)

This method is based on the minimization criteria of Anderson-Darling statistic [3] . The ADE
estimate can be obtained by minimizing the following equation,

A (α, λ) = −n − 1
n

n

∑
i=1

(2i − 1)
[
log
(

F
(

x(i), α, λ
))

+ log
(

F
(

x(n+1−i), α, λ
))]

(46)

where, F
(
x(n+1−i), α, λ

)
= 1 − F

(
x(i), α, λ

)
. Therefore, the AD estimates α̂ADE and λ̂ADE of the

parameters α and λ can be obtained as the solutions of the partial differentiation based on
equation (46) using same iterative procedure.

4. Simulation Study

In this section, the Monte Carlo simulation study has been performed to assess the performance
of the different estimators obtained via different method of estimation viz., MLE, MPS, LSE,
WLSE, CVME, and ADE.

In order to perform simulation, the random sample for the for the different variation of
the sample size, and parameters. In particular, n = 10, 20, . . . , 100 and α = (0.75, 1, 1.5, 2.5),
λ = 0.5 are chosen. The estimators obtained via considered methods are not assumed any explicit
mathematical form and not yield closed form solution, therefore N-R method is used to secure
estimates of the parameters. The average estimate, MSE of the parameters using the above
methods reported in Table 1-4 based on N = 5000 replication using the following formula.
Average estimates:

α̂AE =
1
N

N

∑
i=1

α̂i , λ̂AE =
1
N

N

∑
i=1

λ̂i

Mean square error:

α̂MSE =
1
N

N

∑
i=1

(αi − α̂)2 , λ̂MSE =
1
N

N

∑
i=1

(
λi − λ̂

)2

From Table 1,2,3 and 4 it has been overserved that the MSE of the parameter decreases as the
sample size increases, which ensures the consistency of the proposed estimators. It is important
to mention that ML and MPS methods are based on likelihood and others are based on a distance
measure. Further, if we fixed λ = 0.5 and varied α = (0.5, 1.0, 1.5, 2.0, 4.0) the Table 1 and 2 show
that, in likelihood-based methods for shape parameter α and scale parameter λ, MPS and MLE
perform well respectively. Furthermore, in the considered distance measure there is no trend for
the shape parameter however there is a specific trend for the scale parameter viz.

CVME < ADE < WLSE < LSE

Next, if we fixed α = 0.5 and varied λ = (0.5, 1.0, 1.5, 2.0, 4.0) the Table 3 and 4 show that in
likelihood-based methods MPS is better than MLE for shape parameter α and MLE is better
than MPS for scale parameter λ. Further, in the considered distance measure there is the same
conclusion as in the previous case. Also, we have calculated coverage probability and average
length of 95% confidence interval. The MSEs of point estimates and average lengths of interval
estimates decreases with increasing sample sizes.
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5. Real data application

In this section, the applicability of the proposed flexible extension has been discussed based
on two survival data sets. The data set-I is taken from [6] which represents the survival times
(in days) of 72 guinea pigs infected with virulent tubercle bacilli. The second data set has been
obtained from [16] which consists of survival times, in week, of 33 patients suffering from acute
Myelogenous Leukaemia. The summary of both data sets is given in Table 5.
Further, to show the superiority of the proposed model, the following well-known lifetime models
are taken.

1. Extension of exponential distribution with pdf

f (x) = αλ(1 + λx)α−1e(1−(1+λx)α) ; x > 0, α > 0, λ > 0

2. Weibull distribution with pdf

f (x) =
α

λα
xα−1e−(

x
λ )

α

; x ≥ 0, α > 0, λ > 0

3. Gamma distribution with pdf

f (x) =
λα

Γ (α)
xα−1e−λx ; x > 0, α > 0, λ > 0

where, α is shape and λ is the scale parameter.
The superiority of the proposed extension with the above considered families of the distribution
are shown with the help of model criterion tools. Hence, the criterion like p-value, Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), and Kolmogorov-Smirnov (KS)
test are taken.
To compare the models, Table 6-7, contains the values of the parameters estimated by the
maximum likelihood, AIC, BIC, and KS statistics with the p-value for fitted data sets. From the
K-S test statistics or associated p-value, it may be seen that the proposed model provides better fit
than Weibull, Gamma, and Extension of Exponential models. Also, a similar result is concluded
on the basis of negative of Log-likelihood which is higher than other three. Also based on the
relative model selection criteria it is observed that the proposed model has smaller AIC and BIC
in comparison to other thee considered models. Hence, the proposed mode is more suitable for
considered real phenomena.

Further, the plots of the empirical cumulative distribution function (ECDF) and the fitted CDF
for the considered two data set are shown in Figure 2. From Figure 2, it is concluded that the
proposed model fits better to considered real data in comparison to other competitive models.
Hence it may be taken as the alternative to the several lifetime models.

Table 5: Summary of the considered data sets.

Data Min. Q1 Median Mean Q3 SD Skewness Kurtosis Max.

I 0.080 1.080 1.560 1.837 2.303 1.215 1.754 7.151 7.000
II 1.00 4.00 22.00 40.88 65.00 46.703 1.164 3.122 156.00

6. Conclusion

In this article, we have introduced a new transformation technique to generate the class of lifetime
distributions. Further, the purposed transformation technique is illustrated via exponential distri-
bution as baseline distribution and named a new flexible two-parameter lifetime distribution. The
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Table 6: MLE, AIC, BIC and KS statistics with the p-value for the data set-I.

ML Estimates KS-Test

Distributions α̂ λ̂ -LogL Statistics p-value AIC BIC

Proposed 8.2801 0.1257 102.4141 0.09658 0.5127 208.8283 213.3816
Weibull 1.6172 2.0558 104.0168 0.11346 0.3121 212.0336 216.5869
Gamma 2.4379 1.3273 102.9648 0.10372 0.4207 209.9296 214.4829
EE 5.0262 0.0731 109.6485 0.19617 0.0078 223.2970 227.8504

Table 7: MLE, AIC, BIC and KS statistics with the p-value for the data set-II.

ML Estimates KS-Test

Distributions α̂ λ̂ -LogL Statistics p-value AIC BIC

Proposed 0.2659 0.0763 151.7045 0.10004 0.8959 307.4091 310.4021
Weibull 0.7764 35.3613 153.5868 0.13668 0.5684 311.1737 314.1667
Gamma 0.6877 0.0168 153.6737 0.13900 0.5466 311.3473 314.3403
EE 0.4897 0.0998 153.7430 0.13920 0.5440 311.4860 314.4790

(a) (b)

Figure 2: (a) ECDF and fitted CDF plot of proposed distribution for data 1. (b) ECDF and fitted CDF plot of proposed
distribution for data 2.

proposed distribution has an increasing, decreasing, and constant hazard nature see Figure 1(b).
Next, the different distributional properties are derived viz. mean, moments, moment generating
function (MGF), mean deviation about mean and median, Bonferroni and Lorenz curves, Renyi
entropy, s-entropy, cumulative residual entropy, rth order statistics, and reliability. The unknown
parameter of the proposed model is estimated by different methods of estimation namely MLE,
MPS, LSE, WLSE, CVME, and ADE. To compare the performances of different estimators obtained
via different estimation methods Monte Carlo simulation study has been performed in Table 1,2,3
and 4. The superiority of the present study and model has been illustrated by constructing two
real data sets. From the Table 6,7 and Figure 2, It is observed that the proposed new flexible
two-parameter lifetime distribution provides better fits to the considered data sets among the
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most popular distributions viz., Weibull, Gamma, and extension of exponential distribution.
Therefore, we may conclude that the proposed model might be considered an alternative to other
considered models.
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Abstract 
 

In this paper, we discussed an issue in fuzzy transportation problem, which involves fuzzy costs, 
fuzzy supply, and fuzzy product needs. The goal of this article is to convey the item from point of 
origin to point of destination at the least possible cost. For fuzzy transportation problems with 
balance and unbalance types, the proposed technique provides a superior optimal. Transportation 
costs, supply, and demand are represented by generalized triangular fuzzy numbers using this 
proposed named Row - Column Maxima Method (RCMM). A numerical example of a fuzzy 
transportation problem is illustrated and the solution is compared with the outcomes of other 
approaches. This method reduces iterations and which help to understand and implement easily in 
real life applications. 
 

Keywords: Fuzzy set, Fuzzy Number, Triangular fuzzy number, Fuzzy Transportation problem, 
RCM- Method, Fuzzy optimal solution. 

 
 

1. Introduction 
 
In 1941, Hitchcock had his initial idea regarding the transportation problem. In 1965, L.A. Zadeh 
[17] created fuzzy set theory and successfully applied it to a variety of fields. There is a need to 
send products from various origins (Factories) to various destinations in a variety of real-world 
situations (warehouses). The decision maker's goal is to figure out how much product to order. 
Many distribution challenges in today's actual world, such as in business or industrial settings are 
imprecise in nature due to parameter variances. However, due to some unavoidable 
circumstances, all of these elements of the transportation problem may not be precisely understood 
in real time. In 1978, the fuzzy decision-making method was introduced.  Zimmermann developed 
a variety of fuzzy optimization algorithms for TP and FTP [18]. Hitchcock [5] was the first to come 
up with the basic transportation problem. To handle the totally fuzzy transportation problem, 
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Dhanaseker et al. [4] presented the Hungarian-Modi technique.  Muthuperumal et al. [9] offered an 
algorithmic solution to the problem of unbalanced triangular fuzzy transportation. Senthil Kumar 
et al. [13] suggested the Harmonic Mean Way as a new method for solving the Generalized Fuzzy 
Transportation problem. A new strategy for finding an optimal solution to Generalized Fuzzy 
Transportation Problems was proposed by Srinivasaro Thota and Raja [16].  Fuzzy Transportation 
Problem By Using Triangular Fuzzy Numbers With Ranking Using Area Of Trapezium, Rectangle, 
And Centroid At Different Levels Of -Cut was discussed by Ambadas Deshmukh et al[1]. 
Balasubramanian et al. [2], [3] explored utilizing a ranking function to solve the Fuzzy 
Transportation Problem.  Srinivasan et al. [14] established a method for handling fully fuzzy 
transportation problems in which the materials are transformed, and this method is 
straightforward to evaluate and can rank many forms of triangular fuzzy numbers. This study by 
Ladji Kane et al. [8] addressed a Simplified approach for Solving Transportation Problems with 
Triangular Fuzzy Numbers in Fuzzy Environments.  Purushoth kumar et al. [10] proposed 
employing the diagonal optimum method to address fully fuzzy transportation problems. Indira 
Singuluri et al. [6] proposed their strategies to address a novel transportation approach to solving 
type-2 triangular intuitionistic fuzzy transportation problems. 
     In this study, we offer a new method for solving the fuzzy transportation problem called the 
RCM method, which assumes supply, demand, and unit transportation cost as triangular fuzzy 
integers. It provides a minimal value when compared to other approaches such as the NWCM 
[North-West Corner Method], LCM [Least Cost Method], VAM [Vogel’s Approximation Method], 
and RMM [Row Minima Method]. Finally, an example is provided to aid in the comprehension of 
the method. 
     The remainder of this work is arranged in the following manner. Present the fundamental 
definitions and mathematical constructions of transportation problems in section 2. Present a new 
algorithm to handle the fully fuzzy transportation problem in section 3. The proposed approach is 
illustrated numerically in Section 4. The conclusion and future study is presented in section 5. 

 
 

2. Preliminaries 
 
Definition 2.1[17]   
     Let U is a collection of elements indicated by 𝑢 then a fuzzy set 𝒫 is a set of ordered pairs in U: 
𝒫 = %&𝑢, 	µ𝒫(𝑢),|	𝑢 ∈ U/, where the membership function or grade of membership of 𝑢	in	𝒫 is 
µ𝒫(𝑢):U⟶ [0,1]. 
 
Definition 2.2[4]  
   P is a fuzzy set of real numbers that is defined on the universal set of real numbers. If R's 
membership function satisfies the following properties, R is said to be a fuzzy number. 

1.  𝜇𝒫(𝑢) is a piecewise continuous  

2. 𝒫 is convex. µ𝒫(𝛿𝑢" + (1 − 𝛿)𝑢#) ≥ min&µ𝒫(𝑢"), 	µ𝒫(𝑢#), , ∀𝑢", 	𝑢# ∈ ℛ & ∀𝛿 ∈ [0, 	1]. 

3. 𝒫 is Normal. 

 
 Definition 2.3[4]  
   If the membership function 𝒫:ℛ → [0,1] of a fuzzy number P on R satisfies the following 
characteristics, it is said to be a triangular fuzzy number (TFN) or linear fuzzy number.  
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𝒫(𝑢) =

⎩
⎪
⎨

⎪
⎧
𝑢 − 𝑝!
𝑝" − 𝑝!

, for	𝑝! ≤ 𝑢 ≤ 𝑝"
1								,								𝑢 = 𝑝"				

𝑝# − 𝑢
𝑝# − 𝑝"

, for	𝑝" ≤ 𝑢 ≤ 𝑝#

0, 	elsewhere

 

  
 
2.4 Arithmetic Operation on Fuzzy Numbers [4]: 
     The operations that can be performed on triangular fuzzy numbers are as follows: Then, if	𝒫 =
(𝑝", 𝑝#, 𝑝$) and 𝒬 = (𝑞", 𝑞#, 𝑞$).   

(i) Addition: 𝒫 + 𝒬 = (𝑝" + 𝑞", 𝑝# + 𝑞#, 𝑝$ + 𝑞$). 
(ii) Subtraction: 𝒫 − 𝒬 = (𝑝" − 𝑞$, 𝑝# − 𝑞#,𝑝$ − 𝑞").  
(iii) Multiplication: 𝒫 × 𝒬 = (𝑝"𝑞", 𝑝#, 𝑝$𝑞$). 

 
2.5 MATHEMATICAL CONSTRUCTION [9]: 

A fuzzy transportation problem can be expressed mathematically as follows: 
Minimize (Total cost)  𝒵 = ∑ 𝒸%& ∑ 𝓍%&'

&("
)
%("  

Subject to the constraints 
∑ 𝓍%&'
&(" = 𝓈% , 						𝑖 = 1,2, ……… ,𝑚(Fuzzy Supply constraints) 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛(Fuzzy Demand constraints) 

𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚 and 𝑗 = 1,2, ……… , 𝑛 
Where m: Total number of sources, n: Total number of destinations 

 
Notations: 

𝓈%: The product's fuzzy availability at 𝑖*+ the source. 
𝒹&: The product's fuzzy demand at 𝑗*+ destination. 
𝒸%&: The fuzzy transportation cost of transporting one unit of commodity from 𝑖*+source to 
𝑗*+	destinations. 
𝓍%&: To minimize total fuzzy transportation, a fuzzy quantity is delivered from 𝑖*+source to 
𝑗*+destination (or fuzzy decision variables). 
∑ ∑ 𝒸%&𝓍%&'

&("
)
%(" : The fuzzy cost of transporting one unit of the product from 𝑖*+source to the 𝑗*+ 

destination. 
∑ 𝓈%)
%(" : 	The product's total fuzzy availability 

∑ 𝒹&'
&(" : The product's total fuzzy demand 

 

 Destination 1 Destination 2 … Destination n Supply 

Source 1 𝒸""𝓍"" 𝒸"#𝓍"# … 𝒸"'𝓍"' 𝓈" 

Source 2 𝒸#"𝓍#" 𝒸##𝓍## … 𝒸#'𝓍#' 𝓈# 

…
 

…
 

...
 

…
 

…
 

…
 

Source m 𝒸)"𝓍)" 𝒸)#𝓍)# … 𝒸)'𝓍)' 𝓈) 

Demand 𝒹" 𝒹# … 𝒹' R𝓈%

)

%("

=R𝒹&

'

&("
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2.6 Balanced and unbalanced FTP [11]:  
 
Balanced fuzzy transportation problem: The total fuzzy supply is equal to total fuzzy demand 

i. e. 	R𝓈%

)

%("

=R𝒹&

'

&("

 

Unbalanced fuzzy transportation problem:  
     The total fuzzy supply is not equal to total fuzzy demand 

i. e. 	R𝓈%

)

%("

≠R𝒹&

'

&("

 

 
2.7 To Modify Unbalanced FTP to Balanced FTP: An Unbalanced FTP may occur in two different 
forms: (i) Excess of availability, (ii) Shortage in availability. 
     We now discuss these two cases by considering the usual m- sources, n- destinations FTP with 
the condition that ∑ 𝓈%)

%(" ≠ ∑ 𝒹&'
&("  

Case1: (Excess of Availability, i.e.	∑ 𝓼𝒊 ≥ ∑𝓭𝒋) 
The general FTP may be stated as follows: 

Minimize (Total cost)  𝒵 = ∑ ∑ 𝓍%&𝒸%&'
&("

)
%("  

Subject to the constraints 
∑ 𝓍%&'
&(" ≤ 𝓈% , 						𝑖 = 1,2, ……… ,𝑚(Fuzzy Supply constraints) 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛(Fuzzy Demand constraints) 

and 𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚 and 𝑗 = 1,2, ……… , 𝑛 
The problem will possess a fuzzy feasible solution if ∑𝓈% ≥ ∑𝒹& . In the first constraints, the 
introduction of slack variable 𝓍%,'/"(𝑖 = 1,2, ……… ,𝑚) gives 

⟹R𝓍%& + 𝓍%,'/"

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

⟹RYR𝓍%& + 𝓍%,'/"

'

&("

Z
)

%("

=R𝓈%

)

%("

 

⟹R[R𝓍%&

)

%("

\
'

&("

+R𝓍%,'/"

)

%("

=R𝓈%

)

%("

 

⟹∑ 𝓭𝒋'
&(" +∑ 𝓍%,'/")

%(" = ∑ 𝓈%)
%("    (∵ ∑ 𝓍%&)

%(" = 𝒹& 
⟹∑ 𝓍%,'/")

%(" = ∑ 𝓈%)
%(" −∑ 𝓭𝒋'

&(" = Excess of Availability 
If this excess availability is denoted by 𝒹'/", the modified FTP, can be reformulated as: 

Minimize   𝒵 = ∑ ∑ 𝓍%&𝒸%&'/"
&("

)
%(" ,  

Subject to the constraints 

R𝓍%& + 𝓍%,'/"

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

∑ 𝓍%&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 + 1 and 𝓍%& ≥ 0, for all i and j 

and 𝑐%,'/" = 0, 	for		𝑖 = 1,2, ……… ,𝑚 and ∑ 𝓈%)
%(" = ∑ 𝒹&'/"

&("  
This is clearly the balanced FTP and thus can be easily solved by fuzzy transportation 
algorithm. 

 
Working Rule:If ∑ 𝓈% ≥ ∑𝒹& , avoid using a fake row or column when converting to balance. Let see 

𝜔 = ∑ 𝓈%)
%(" − ∑ 𝒹&'

&(" .  The difference	𝜔 added to the demand (𝒹", 𝒹#, 𝒹$) minimum. 
Reconstruct the provided Fuzzy transportation table using (𝒹" +𝜔", 𝒹# +𝜔#, 𝒹$ +𝜔$). 
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Case2: (Shortage in Availability, i.e.	∑𝓼𝒊 ≤ ∑𝓭𝒋) 
In this case, the general FTP becomes: 

Minimize  𝒵 = ∑ ∑ 𝓍%&𝒸%&'
&("

)
%("  

Subject to the constraints 

R𝓍%&

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 

R𝓍%&

)

%("

≤ 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 

and 𝓍%& ≥ 0, 						𝑖 = 1,2, ……… ,𝑚; 𝑗 = 1,2, ……… , 𝑛 
Now, introducing the slack variable 𝓍)/",&(𝑗 = 1,2, ……… , 𝑛) in the second constraint, we get 

⟹R𝓍%& + 𝓍)/",&

)

%("

= 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 

⟹R[R𝓍%& + 𝓍)/",&

)

%("

\
'

&("

=R𝒹&

'

&("

 

⟹RYR𝓍%&

'

&("

Z
)

%("

+R𝓍)/",&

'

&("

=R𝒹&

'

&("

 

⟹∑ 𝓈%)
%(" +∑ 𝓍)/",&'

&(" = ∑ 𝒹&'
&("    (∵ ∑ 𝓍%&'

&(" = 𝓈% 
⟹∑ 𝓍)/",&'

&(" = ∑ 𝒹& −∑ 𝓈%)
%("

'
&(" = Shortage in availability 𝓈)/", say 

 Thus the modified FTP, in this case becomes: 
Minimize   𝒵 = ∑ ∑ 𝓍%&𝒸%&'

&("
)/"
%(" , 

Subject to the constraints 

R𝓍%&

'

&("

= 𝓈% , 						𝑖 = 1,2, ……… ,𝑚 + 1 

∑ 𝓍%& + 𝓍)/",&)
%(" = 𝒹& , 						𝑗 = 1,2, ……… , 𝑛 and 𝓍%& ≥ 0, for all i and j 

where 𝑐)/",& = 0, 	for		𝑗 = 1,2, ……… , 𝑛 and ∑ 𝓈%)/"
%(" = ∑ 𝒹&'

&("  
This is clearly the balanced FTP and thus can be easily solved by fuzzy transportation 
algorithm. 

 
Working Rule: If ∑ 𝓈%)

%(" ≤ ∑ 𝒹&'
&(" , avoid using a fake row or column when converting to balance. 

Let see 𝜔 = ∑ 𝒹&)
%(" − ∑ 𝓈%'

&(" .  The difference	𝜔 added to the supply (𝓈", 𝓈#, 𝓈$) minimum. 
Reconstruct the provided Fuzzy transportation table using (𝓈" +𝜔", 𝓈# +𝜔#, 𝓈$ +𝜔$). 

 
2.8 Fuzzy Feasible Solution [9]:  

      A fuzzy feasible solution is any set of fuzzy non negative allocations 𝑥%&(𝑥%& ≥ 0) that fulfills 
(in the sense equivalent) the row and column requirements. 

 
2.9 Fuzzy Basic Feasible Solution [9]: 

    If the number of positive allocations is exactly equal to (𝑚 + 𝑛 − 1), a fuzzy feasible solution 
to a fuzzy transportation problem with m origins and n destinations is said to be fuzzy basic 
feasible solution. 

 
2.10 Fuzzy Optimal Solution [9]:  

      If the entire fuzzy transportation cost is minimized, a fuzzy feasible solution is said to be 
fuzzy optimum. 

 
Theorem 2.11 [11]: (Existence of Fuzzy feasible solution) 
     A necessary and sufficient condition for the existence of feasible solution of a fuzzy 
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transportation problem is ∑ 𝓈%)
%(" = ∑ 𝒹&'

&("  (𝑖 = 1,2, ……… ,𝑚; 𝑗 = 1,2, ……… , 𝑛). 
Proof: The condition is necessary: Let there exist a feasible solution to the fuzzy transportation 
problem.  Then, 

∑ ∑ 𝓍%&'
&("

)
%(" = ∑ 𝓈%)

%(" ,                                        (1) 
∑ ∑ 𝓍%&)

%("
'
&(" = ∑ 𝒹&'

&(" ,  (2) 
From equation (1) and (2), we get 

⟺∑ 𝓈%)
%(" = ∑ 𝒹&'

&(" . 
 
The condition is sufficient: Let ∑ 𝓈%)

%(" = ∑ 𝒹&'
&(" = 𝒦 (say). 

If 𝜇% ≠ 0 be any real number such that 𝓍%& = 𝜇%𝒹&∀	𝑖, 𝑗, then 𝜇%is given by 

R𝑥%&

'

&("

=R𝜇%𝒹&

'

&("

= 𝜇%R𝒹&

'

&("

= 𝒦𝜇% 

⟹ 𝜇% =
"
𝒦
∑ 𝑥%&'
&(" = 𝓈!

𝒦
 (∵ ∑ 𝑥%&'

&(" = 𝓈%) 

Thus, 𝓍%& = 𝜇%𝒹& =
𝓈!𝒹"
𝒦
≥ 0, since 𝓈% > 0, 𝒹& > 0	∀	𝑖, 𝑗.  Hence a Fuzzy feasible solution exists. 

. 
3. Proposed algorithm 

 
In this paper, we proposed Row-Column maxima method [RCMM] to find optimum solution and 
this result compared with NWCM, LCM, RMM, VAM methods. 
 
Step 1: Check to see if the given FTP is balanced or not.  
Case1: If	 ∑ 𝓈%)

%(" = ∑ 𝒹&'
&(" . then go to step 3. 

Case2: If ∑ 𝓈%)
%(" ≠ ∑ 𝒹&'

&(" , possible, avoid using a fake row or column when converting to 
balanced. Let see (𝑖)𝜔 = ∑ 𝓈%)

%(" −∑ 𝒹&'
&(" 𝑖𝑓 ∑ 𝒹&'

&(" < ∑ 𝓈%)
%("   or  

            (𝑖𝑖)𝜔 = ∑ 𝒹&)
%(" −∑ 𝓈%'

&(" 𝑖𝑓 ∑ 𝓈%)
%(" < ∑ 𝒹&'

&(" . 
Step 2: The difference	𝜔 will be divided into three parts (𝜔", 𝜔#, 𝜔$) such that 	𝜔 = ∑ 	𝜔%$

%("  and 
added to the supply (𝓈", 𝓈#, 𝓈$) or demand (𝒹", 𝒹#, 𝒹$) minimum. Reconstruct the 
provided Fuzzy transportation table using (𝓈" +𝜔", 𝓈# +𝜔#, 𝓈$ +𝜔$)/(𝒹" +𝜔", 𝒹# +
𝜔#, 𝒹$ +𝜔$). 

Step 3: For each row, find the difference between the first and second maximum values and use 
that value instead of the first maximum value. 

Step 4: After completing step 3, calculate the difference between the 1st and 2nd maximum values 
and use that value to replace the 1st maximum value in each column. 

Step 5: Choose the fuzzy cost's minimum value in either a row or a column. Then determine the 
minimum supply and demand value and assign it. 

Step 6: After step 5, delete the row/column in which supply/demand has reached its limit. 
Step 7: Steps 5 – 6 should be repeated until (m + n-1) cells have been allotted. 
Step 8: Calculate the minimum Fuzzy Transportation Cost. That is,  
             Total Cost= ∑ 𝒸%& ∑ 𝓍%&'

&("
)
%(" . 

 
4. Numerical Example 

 
A manufacturing company produces diesel engines in 10 cities 𝐶",𝐶#, 𝐶$,𝐶3,	𝐶4,	𝐶5,	𝐶6,	𝐶7,	𝐶8,	𝐶"9 
and they are purchased by ten trucking companies 𝑇", 𝑇#,	𝑇$,	𝑇3,	𝑇4,	𝑇5,	𝑇6,	𝑇7,	𝑇8,	𝑇"9. The table 
below indicates how many engines are required by 𝑇", 𝑇#,	𝑇$,	𝑇3,	𝑇4,	𝑇5,	𝑇6,	𝑇7,	𝑇8,	𝑇"9. It also 
displays the cost of transportation per engine from origin to destination. The corporation wants to 
maintain the total transportation cost to a minimum. 
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Table 1: Triangular Fuzzy Transportation Problem 
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (11,12,13) (2,3,4) (7,8,9) (5,6,7) (12,14,16) (1,4,7) (7,8,9) (15,20,25) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (14,16,18) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (14,15,16) (2,3,4) (8,9,10) (4,8,16) (9,10,11) (14,16,18) (25,30,35) 

𝑪𝟒 (9,10,11) (2,5,7) (2,3,4) (3,5,7) (10,15,20) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (14,16,18) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (14,16,18) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (13,15,17) (70,75,80) 

𝑪𝟕 (5,6,7) (12,14,16) (13,15,17) (5,6,7) (0,1,2) (11,13,15) (14,16,18) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (16,18,20) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (14,15,16) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (11,12,13) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (14,15,16) (11,12,13) (14,16,18) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Applying the proposed algorithm [RCMM]: 
Step 1: 

  ∑ 𝓈%)
%(" = (500,550,600) and ∑ 𝒹& = (500,550,600)'

&(" . 
  ⟹∑ 𝓈%)

%(" = ∑ 𝒹&'
&("  (Total supply = Total demand). 

 Since the given Fuzzy Transportation Problem is balanced.  So go to step 3, 
Step 3: 

In first row, First maximum value = (12,14,16) 
Second maximum value = (11,12,13) 
The difference between 1st and 2nd maximum value 
 i.e., (12,14,16) − (11,12,13) = (−1,2,5) 
Then replace the subtracted value instead of the first maximum value 
 i.e., (12,14,16) = (−1,2,5) 
Similarly, apply step 3 other 2nd, 3rd up to 10th row, then we get table 2. 

 
Table 2: Row-wise Difference Table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (11,12,13) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (15,20,25) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (14,15,16) (2,3,4) (8,9,10) (4,8,16) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (9,10,11) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (13,15,17) (70,75,80) 

𝑪𝟕 (5,6,7) (12,14,16) (13,15,17) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (14,15,16) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (14,15,16) (11,12,13) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 4: In table 2, apply the step 4 of proposed algorithm 

In first column, First maximum value = (9,10,11), Second maximum value = (8,9,10) 
The difference between 1st and 2nd maximum value = (9,10,11) − (8,9,10) = (−1,1,3) 
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Then replace the subtracted value instead of the first maximum value. [(9,10,11) = (−1,1,3)] 
Similarly, apply step 4 other 2nd, 3rd up to 10th column, then we get table 3. 

 
Table 3: Column-wise difference table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (-2,1,4) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) 
(15,20,25) 
- (5,10,15) 
= (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 5: Follow step 5 of the outlined procedure in table 4 to assign the initial allocation. 

 
Table 4: First allocation table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) 
(5,10,15) 
(-2,1,4) 

(2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) 
(15,20,25) 
- (5,10,15) 
= (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,2,3) 
(1,3,5) 

 
(3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (5,6,7) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (5,10,15) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
Step 6: Using step 6 of the proposed method, remove 𝑇3 from table 4, and then the new reduction 

indicated in table 5, and again execute steps 5 to 6 for the second allocation shown in table 6. 
 
 
 
 

338 



 
A. Kokila, G. Deepa 

FUZZY TRANSPORTATION PROBLEM BY IMPLEMENTING 
THE ROW-COLUMN MAXIMA METHOD 

 
RT&A, No 4 (71) 

Volume 17, December 2022 
 

 

 
 

Table 5: New Reduced Table 

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (0,3,6) (12,13,14) (5,7,9) (0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (50,55,60) (70,75,80) (90,95,100) (85,90,95) (65,70,75) (55,60,65)  

 
 
 
 

Table 6: Second allocation table 
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 Supply 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (2,3,4) (7,8,9) (5,6,7) (-1,2,5) (1,4,7) (7,8,9) (0,10,20) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (0,3,6) (12,13,14) (5,7,9) 
(5,10,15) 

(0,1,2) (2,4,6) (6,7,8) (5,10,15) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) (-2,1,4) (25,30,35) 

𝑪𝟒 (-1,1,3) (2,5,7) (2,3,4) (-2,4,10) (5,6,7) (7,8,9) (1,3,5) (3,6,9) (10,11,12) (40,45,50) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (3,6,7) (10,12,14) (1,4,7) (0,4,8) (1,2,3) (8,9,10) (90,95,100) 

𝑪𝟔 (6,7,8) (12,13,14) (-3,1,5) (1,3,5) (3,5,7) (6,8,10) (2,4,6) (7,8,9) (1,4,7) (70,75,80) 

𝑪𝟕 (5,6,7) (-2,1,4) (-2,2,6) (0,1,2) (11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) (50,55,60) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (3,6,9) (4,5,6) (10,11,12) (3,6,9) (3,5,7) (4,6,8) (65,70,75) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,2,3) (2,4,6) (3,5,7) (5,6,7) (8,9,10) (4,5,6) (85,90,95) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (4,6,8) (-1,2,5) (-1,1,3) (-2,1,4) (0,2,4) (2,3,4) (55,60,65) 

Demand (15,20,25) (40,45,50) (25,30,35) (50,55,60) (70,75,80) (90,95,100) 
(85,90,95) 
-(5,10,15) 

=(70,80,90) 
(65,70,75) (55,60,65)  

 
 
 
Step 7: Using Steps 5 to 6 of the proposed technique once again, all allocations are made as 
indicated in Table 7. 
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Table 7: Final allocations of fuzzy transportation table  
 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 

𝑪𝟏 (3,5,7) (4,6,8) (3,6,9) (5,10,15) 
(-2,1,4) 

(2,3,4) (7,8,9) (5,6,7) (0,10,20) 
(-1,2,5) 

(1,4,7) (7,8,9) 

𝑪𝟐 (2,5,8) (5,7,9) (4,5,6) (7,8,9) (0,3,6) (12,13,14) (5,7,9) 
(5,10,15) 

(0,1,2) 
(2,4,6) (6,7,8) 

𝑪𝟑 (5,6,7) (4,6,8) (11,13,15) (3,6,9) (6,9,12) (2,3,4) (8,9,10) (-5,2,13) (9,10,11) 
(25,30,35) 

(-2,1,4) 

𝑪𝟒 
(15,20,25) 

(-1,1,3) 
(2,5,7) (2,3,4) (3,5,7) (-2,4,10) (5,6,7) (7,8,9) (15,25,35) 

(1,3,5) 
(3,6,9) (10,11,12) 

𝑪𝟓 (8,9,10) (2,4,6) (8,10,12) (6,8,10) (3,6,7) (10,12,14) 
(15,25,35) 

(1,4,7) 
(0,4,8) 

(65,70,75) 
(1,2,3) 

(8,9,10) 

𝑪𝟔 (6,7,8) (12,13,14) 
(25,30,35) 

(-3,1,5) (1,2,3) (1,3,5) (3,5,7) (6,8,10) 
(35,45,55) 

(2,4,6) (7,8,9) (1,4,7) 

𝑪𝟕 (5,6,7) (40,45,50) 
(-2,1,4) 

(-2,2,6) (5,6,7) (0,10,20) 
(0,1,2) 

(11,13,15) (-3,1,5) (2,4,6) (7,9,11) (3,5,7) 

𝑪𝟖 (0,3,6) (1,3,5) (7,8,9) (8,10,12) (3,6,9) 
(5,30,55) 

(4,5,6) 
(-10,10,30) 
(10,11,12) 

(-40,0,40) 
(3,6,9) 

(3,5,7) 
(20,30,40) 

(4,6,8) 

𝑪𝟗 (4,6,8) (1,2,3) (2,4,6) (1,3,5) 
(30,45,60) 

(1,2,3) 
(25,45,65) 

(2,4,6) 
(3,5,7) (5,6,7) (8,9,10) (4,5,6) 

𝑪𝟏𝟎 (7,8,9) (5,7,9) (6,8,10) (9,11,13) (4,6,8) (-1,2,5) 
(55,60,65) 

(-1,1,3) (-2,1,4) (0,2,4) (2,3,4) 

 
     As a result, (𝑚 + 𝑛 − 1) = (10 + 10 − 1 = 19,  cells are assigned and we have a feasible solution. 
Then find the minimum fuzzy transportation cost. 
 
Step 8: Calculate the minimum Fuzzy Transportation Cost. Total cost 𝑍 = ∑ 𝒞%& ∑ 𝒳%&

'
&("

)
%(" . 

⟹Z = (5,10,15) (-2,1,4) + (0,10,20) (-1,2,5) + (5,10,15) (0,1,2) + (25,30,35) (-2,1,4) + (15,20,25) (-1,1,3) + 
(15,25,35) (1,3,5) + (15,25,35) (1,4,7) + (65,70,75) (1,2,3) + (25,30,35)  (-3,1,5) + (35,45,55) 
(2,4,6) + (40,45,50) (-2,1,4) + (0,10,20) (0,1,2) + (5,30,55) (4,5,6) + (-10,10,30) (10,11,12) + (-
40,0,40) (3,6,9) + (20,30,40) (4,6,8) + (30,45,60) (1,2,3) + (25,45,65) (2,4,6) + (55,60,65) (-1,1,3) 

 Z = (-160, 1440, 3930) 
 
4.1 Result and discussion:  
      
The fuzzy transportation cost Z of the given FTP is a TFN as given below: 

Z = (-160, 1440, 3930).  
The result can be explained (Refer to Fig. 2) as follows:  
 

 

 
 
The least amount of the minimum total transportation cost is -160.  
The most possible amount of the minimum total transportation cost is 1440.   
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The greatest amount of the minimum total transportation cost is 3930. i.e., the minimum total 
transportation cost will always be greater than -160 and less than 1440, and highest chances are 
that the minimum total transportation cost will be 3930.  
The above result was verified by MATLAB. 

 

  
   

Table 8: Comparative results of NWCM, LCM, RMM, VAM and proposed method (RCMM) for example 1 

Numerical 
example NWCM LCM RMM VAM 

Proposed 
method 

(RCMM) 
1 (-570,4050,11080) (445,2160,4755) (455,2110,4775) (-70,1760,4260) (-160,1440,3930) 

 
  The comparative results in table 8 are also depicted using bar graphs and the results are given in 
the Figure 5.  
 

 
4.2 Comparison of results: The numerical examples 2, 3, 4, 5, 6 are taken from the referred 
journals 1, 8, 9, 10, 14 respectively, and it is verified with our proposed method and the existing 
methods NWCM, LCM, RMM, VAM. 
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Table 9: Comparative results of NWCM, LCM, RMM, VAM and proposed method (RCMM) for example 2 to 6 

Numerical 
examples 

NWCM LCM RMM VAM Proposed method RCMM 

2[Ref:1] (68,176,316) (62,150,258) (62,150,258) (52,149,274) (62, 150, 258) (-2,83,208) 

3[Ref:8] (1850,6609,12882) (1790,6609,12998) (1900,8292,19080) (1850,6609,12882) (3532, 6609, 9852) (-462,3249,8798) 

4[Ref:9] (40,1230.3560) (-120,1210,3860) (140,1250,3220) (120,1210,3140) (270,1210,2750) (-1140,500,3760) 

5[Ref:10] (125,1000,2950) (-175,850,2925) (-275,950,3450) (-25,850,2625) (-75,850,2750) (-175,350,2425) 

6[Ref:14] (-270,4285,10470) (160,2455,5470) (-330,2290,6500) (-25,2220,5455) (1825,2455,3085) (-340,1025,4180) 

 
5. Conclusion and future study 

 
Our proposed method uses the comparison table to find the best initial feasible solution to the 
balanced and unbalanced fuzzy transportation problems. We compared our strategy to others and 
discovered that ours is the most effective. This technique considers the entire fuzzy cost of each 
origin and destination for allotment, allowing for a reduction in iterations to provide the best basic 
feasible solution to FTP. In addition, the proposed method is used to achieve the best solution for 
an unbalanced TP by converting it to a balanced TP without the need of a dummy 
source/destination, saving time and space. The proposed method is simple to implement and can 
be used to solve a variety of fuzzy transportation problems, including minimizing the total 
transportation costs.  In the future, this technique might be expanded to fuzzy multiple objective 
transportation problems and used to solve real-world transportation problems using fuzzy 
numbers. 
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Abstract

In the present work, we are going to propose a new transformation called Beta transformation. The
new model includes the exponential distribution as a special case and it is known as Beta transformed
exponential(BTE) distribution. We have been obtained its various statistical properties such as moments,
moment generating function, median, hazard rate function, entropies, and order statistics. Parameters of
BTE distribution are estimated by the method of maximum likelihood, Cramer-von-Mises and method
of least square. Monte Carlo simulation is performed in order to investigate the performance of these
estimates. Finally, two data sets have been analyzed to show how the proposed model works in practice.

Keywords: Cramer-von-Mises method, Exponential distribution, Hazard rate function, Method
of maximum likelihood, , Method of least squares.

1. Introduction

The development of new methods of expanding the existing distributions is quite rich in the
literature of distribution theory. There are several methods to propose new distributions by the
use of some baseline distribution in statistical literature. This has been done through different
approaches.
In Statistical literature no. of transformations are available to produce new cumulative distribution
function (cdf) corresponding to a given cdf. Suppose, we have a cdf F(x), then the associated
proposed cdf will be Gi(x).

• The most popular among them is the power transformation initiated by Gupta et al. (1998)
having the form

G1(x) = [F(x)]α; α > 0

• Quadratic rank transformation map (QRTM) proposed by Shaw and Buckley (2007) having
the form

G2(x) = (1 + λ)F(x)− λF2(x); | λ |≤ 1

• DUS transformation proposed by Kumar et al. (2015) having the form

G3(x) =
eF(x) − 1

e − 1
; e = exp(1)

• SS-transformation proposed by Kumar et al. (2015) having the form

G4(x) = sin(
π

2
F(x))
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• Minimum Guarantee (MG)-distribution proposed by Kumar et al. (2017) having the form

G5(x) = e1− 1
F(x)

• Log-transformation proposed by Maurya et al. (2016) and having the form

G6(x) = 1 − ln(2 − F(x))
ln 2

• Transformation based on the generalization of Kumar et al. (2015) called GDUS transforma-
tion proposed by Maurya et al. (2017) having the form

G7(x) =
eFα(x) − 1

e − 1
; α > 0

• New transformation initiated by Kyurkchiev (2017) to develop a sigmoid family of functions
for Verhulst Logistic function is

G9(x) =
2F(x)

1 + F(x)

• New trigonometry based transformation called PCM proposed by Kumar et al. (2021) and
having the form

G10(x) = tan(
π

4
F(x))

The lifetime of a system can be modeled with statistical distributions that can be used in
modeling lifetime data; among them, the most popular are gamma and weibull distributions. The
proposed model contains several lifetime distributions as its special cases that are very flexible
and able to accommodate different types of data sets since the probability density function and
hazard rate can take on different forms such as increasing, decreasing, and constant shapes, and
the potentiality of this model has been tested statistically by using it to model some real life data
set.
In this article, We have decided to propose a new transformation known as beta transformation
for x ∈ ℜ is given below

G(x) =

{
β

β−1 [1 − β−F(x)] if β > 0, β ̸= 1

F(x) if β = 1
(1)

Where, G(x) and F(x) are the cdfs of the proposed transformation and baseline distribution.
On differentiating (1) w.r.t. x, we get the probabilty density function (pdf) g(x) and is given by

g(x) =

{
β log β
β−1 f (x)β−F(x) if β > 0, β ̸= 1

f (x) if β = 1
(2)

For β ̸= 1, g(x) is a weighted version of f (x), where the weight function

w(x) = β−F(x),

and g(x) can be written as

g(x) =
f (x)w(x)

c
.

where constant c = E(w(X)),
Here c = β−1

β log β .

RT&A, No 4 (71) 
Volume 17, December 2022 

345 



Fasna K
A METHOD FOR GENERATING LIFETIME MODELS

The survival reliability function(sf) S(x) and the hazard rate function(hrf) h(x) are obtained as

S(x) =

 β1−F(x)−1
β−1 if β ̸= 1

1 − F(x) if β = 1
(3)

and

h(x) =

 f (x) log ββ1−F(x)

β1−F(x)−1
if β ̸= 1

f (x)
S(x) if β = 1

(4)

Lifetime models are used to explain the life of a system or device. These models are used in
reliability, engineering, biological field, insurance, etc. The motivations for introducing our
beta transformation model is that it is efficient to analyze lifetime data and very easy method
of inducting an additional parameter to a family of distributions functions. It improve the
characteristics, bring more flexibility to the given family and provide better fits than the other
models having the same or higher number of parameters. The proposed method is very interesting
with a closed form for the cdf and capable of modeling heavy tailed data sets.
The aim of this article is to introduce a transformation that yields new distributions by using
a given baseline distribution. It contains only one new parameter other than the parameters
involved in the baseline distribution. To illustrate the usefulness of this new transformation, We
choose exponential as the baseline distributions in the present work.
The rest of this work is as follows. In Section 2, We introduce a special sub-case of (1), called a
beta transformed exponential(BTE) distribution by considering exponential model as a parent
distribution. Some mathematical properties are derived in Section 3. Certain characterizations of
the proposed distribution are provided in Section 4. Estimation of parameter has been carried out
in Section 5, Simulation study have been discussed in Section 5. Illustrate the flexibility of models
using two real-life data sets discussed in Section 7. Finally, the article is concluded in Section 8.

2. Beta transformed exponential distribution

In this section, a sub model of the beta transformed family, called the beta transformed exponential
(BTE) distribution is introduced. Let G(x; θ) be cdf of the exponential random variable given by
G(x; θ) = 1 − e−θx; x, θ > 0. Using this in equation(1), then the cdf of the BTE for x > 0 with the
shape and scale parameters as β > 0 and θ > 0 has the following form

G(x) =

{
β

β−1 [1 − βe−θx−1
] if β ̸= 1

1 − e−θx if β = 1
(5)

The pdf g(x) is given by

g(x) =

{
θ log β
β−1 e−θxβe−θx

if β ̸= 1

θe−θx if β = 1
(6)

The survival reliability function S(x) and the hazard rate function(hrf) h(x) are obtained as

S(x) =

 βe−θx−1
β−1 if β ̸= 1

e−θx if β = 1
(7)

and

h(x) =


θ log β

βe−θx−1
e−θxβe−θx

if β ̸= 1

θ if β = 1
(8)

We have the following results for a general distribution function F(x).
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Table 1: Behavior of the hazard functions of the three distributions.

Parameter Gamma Weibull BTE
β = 1 θ θ θ
β > 1 Increasing from Increasing from Decreasing from

0 toθ 0 to ∞ βθ log β
β−1 to θ

β < 1 Decreasing from Decreasing from Increasing from
∞ toθ ∞ to 0 βθ log β

β−1 to θ

• If f (x) is a decreasing function, and β ≥ 1, then g(x) is a decreasing function.

• If f (x) is a decreasing function, and f (x) is log-convex, then for β ≥ 1, the hazard rate
function h(x) is a decreasing function.

It can be easily seen that f (x; β, θ) is a unimodal function with mode at (log(logβ))
θ .

Here note that,
limx→0 h(x) = βθ log β

β−1 ,and
limx→∞ h(x) = θ.
We have the following cases:

• When β < 1, h(x) is an increasing function increases from βθ log β
β−1 to θ

• When β > 1, h(x) is an decreasing function decreases from βθ log β
β−1 to θ

• When β = 1, h(x) is a constant function.

By taking the second derivative of f (x; β, θ), it easily follows that the pdf of BTE(β, θ) is log-
convex if β > 1 and log-concave if β < 1;
Table 1 provides the comparison of the hazard function of the BTE distribution with the corre-
sponding hazard functions of Weibull and Gamma distributions. In all these cases the shape and
scale parameters are assumed to be β and θ, respectively. It is clear from Table 1 that the hazard
function of the BTE distribution is a decreasing or an increasing function depending on the shape
parameter similarly as the Gamma and Weibull distributions, the ranges are quite different.

Figure 1 and 2 provides the plots of the pdf and hrf of the model for different values of β
when θ = 1

BTE distribution for β > 1, β log β
β−1 is a decreasing function from 1 to 0, as β varies from 1 to ∞.

If X ∼ BTE(β, θ), then BTE distribution has the following mixture representation:

X =

{
X1 with probability if log β

β−1

X2 with probability if 1 − log β
β−1 ,

(9)

where X1 and X2 have the following pdfs:

fX1(x) = θe−θx; x > 0 (10)

fX2(x) =
log β

β − 1 − log β
θe−θx(βe−θx − 1); x > 0, (11)

respectively. From (9), as β approaches 1, X behaves like an exponential distribution, and as β
increases, it behaves like X2.
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Figure 1: plot of pdf of distribution

3. The basic mathematical properties

This section provides some mathematical properties of proposed distribution.

3.1. Quantile function

The qth quantile xq of the BTE random variable is given by

xq = −1
θ

log

1 +
log(1 − q(β−1)

β )

log β

 . (12)

3.2. Moments

In this subsection, we intend to derive the moments and the moment generating function of the
BTE distribution. Let X follow (6), then, the rth moment of X is derived as

µ
′
r =

∫ ∞

−∞
xr f (x; β, θ)dx, (13)

using(6)in(13), we get

µ
′
r =

r!
θr(β − 1)

∞

∑
k=1

(ln β)k

k!kn (14)

Furthermore, a general expression for the moment generating function (mgf) of the BTE random
variable X is given by

MX(t) =
θ

(β − 1)

∞

∑
k=0

(ln β)k+1

k!

[
1

θ + θk − t

]
; t < θ (15)

3.3. Sample Generation

The method to generate a sample is the inverse CDF transformation method. If X is U(0, 1) with
CDF F(x), then by the transformation, we generate the sample from the equation G(x) = U
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Figure 2: plot of hrf of distribution

implies x = G−1(U) of BTE distribution

x = −1
θ

log

1 +
log(1 − U(β−1)

β )

log β

 . (16)

3.4. Order Statistics

Order statistics are used in applied fields of statistics such as reliability and lifetime testing.
Let X1, X2, ..., Xn be a random sample from BTE(β, θ) . Also, let X(1), X(2), ..., X(n), denote the
corresponding order statistics. Then the pdf and cdf of kth order statistics, are given by

fX(x) =
n!

(k − 1)!(n − k)!
[F(x)]k−1 [1 − F(x)]n−k f (x)

=
n!

(k − 1)!(n − k)!
θ log β

β − 1
e−θxβe−θx

[
β

β − 1
[1 − β−F(x)]]k−1

[
1 − [

β

β − 1
[1 − β−F(x)]]

]n−k
(17)

and

FX(x) =
n

∑
j=k

(
n
j

)
[F(x)]j[1 − F(x)]n−j

=
n

∑
j=k

(
n
j

) [
β

β − 1
[1 − β−F(x)]

]j

[
1 − [

β

β − 1
[1 − β−F(x)]]

]n−j
(18)

respectively.
The pdf of the minimum and maximum of order statistics are obtained by putting X = X1 and
X = Xn respectively in equation (6).
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3.5. Entropy

The entropy of a random variable measures the variation of the uncertainity. A large value of
entropy indicates the greater uncertainty in the data. The concept of entropy is important in
different areas such as physics, probability and statistics, communication theory, and economics,
etc. Several measures of entropy have been studied and compared in the literature.
If X is an absolute continuous random variable with REX(ρ) for ρ > 0 and ρ ̸= 1, is defined as

REX(ρ) =
1

1 − ρ
log
[∫ ∞

−∞
f (x)ρdx

]
(19)

From equation(19), we get

REX(ρ) =
ρ

1 − ρ
log
(

θ log β

β − 1

)
+

1
1 − ρ

log

(
∞

∑
k=0

ln(β)k

k!ρ(k + 1)

)
. (20)

4. Characterization of Beta transformed exponential distribution

In this section, we present certain characterizations of the BTE distribution based on a simple
relationship between two truncated moments. This characterization result employs a theorem
due to Glanzel (1987), which stated as follows:

Theorem 1. Let (Ω,F, P) be a given probability space and let H = [a, b] be an interval for some
a < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions defined on H
such that

E[q2(X)|X ≥ x] = E[q1(X)|X ≥ x]η(x), xϵH,

is defined with some real function η. Assume that q1, q2 are continuous functions, η has
continuous derivative and F is twice continuously differentiable and strictly monotone function
on the set H. Finally, assume that the equation ηq1 = q2 has no real solution in the interior of H.
Then F is uniquely determined by the functions q1, q2 and η, particularly

F(x) =
∫ x

a
C | η

′
(µ)

η(µ)q1(u)− q2(u)
| exp(−s(u))du,

where the function s is a solution of the differential equation s
′
= η

′
q1

ηq1−q2
and C is a constant,

chosen to make
∫

H dF = 1.

Proposition 1. Let X : Ω → (0, ∞) be a continuous random variable and let q1(x) = β−e−θx
and

q2(x) = q1(x)e−θx for x > 0. The random variable X has pdf (6) if and only if the function η
defined in Theorem 1 has the form

η(x) =
θ + 1

θ
e−x, x > 0

Proof. Let X be a random variable with pdf (6), then
(1 − F(x))E[q1(X) | X ≥ x] = log β

β−1 e−θx, x > 0
and
(1 − F(x))E[q2(X) | X ≥ x] = θ log β

β−1
e−x(θ+1)

θ+1 , x > 0
and finally

η(x)q1(x)− q2(x) = q1e−x

θ > 0, f orx > 0.
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Conversely, if η is given as above, then

s′(x) =
η
′
(x)q1(x)

ηq1(x)− q2(x)
= −(1 + θ), x > 0

and hence
s(x) = −(1 + θ)x, x > 0, or e−s(x) = e(1+θ)x, x > 0. Now, in view of Theorem 1, X has density(6).

■

Corollary 1. Let X : Ω → (0, ∞) be a continuous random variable and let q1(x) be as in
Proposition 1. The pdf of X is (6) if and only if there exist functions q2 and η defined in Theorem
1 satisfying the differential equation

η
′
(x)q1(x)

ηq1(x)− q2(x)
= −(1 + θ), x > 0

Remark 1. The general solution of the differential equation in Corollary 1 is

η(x) = e−(1+θ)x
[∫

(1 + θ)[q1(x)]−1q2(x)e(1+θ)xdx + D
]

where D is a constant. Note that a set of functions satisfying the above differential equation is
given in Proposition 1 with D = 0. However, it should be also noted that there are other triplets
(q1, q2, η) satisfying the conditions of Theorem 1.

5. Estimation and simulation

In this section, we use the method of maximum likelihood, method of Cramer-von-Mises and
ordinary least square method for estimation of parameters of BTE distributions.

5.1. Method of Maximum Likelihood Estimation

This is an extensively used method initiated by C.F. Gauss and elaborative study initiated by Prof.
R. A. Fisher to obtain the estimator of the unknown parameter of the distribution. If X1, X2..., Xn
be a set of random observations from the population BTE(β, θ) distribution having pdf g(x; β, θ),
then its log likelihood function will be as follows

log L = n log θ + n log
(

log β

β − 1

)
− θ

n

∑
i=1

xi +
n

∑
i=1

e−θxi log(β). (21)

The likelihood equations are,

∂ log L
∂β

=
n(β − 1 − β log β)

β(β − 1) log β
+

1
β

e−θxi = 0, (22)

and

∂ log L
∂θ

=
n
θ
−

n

∑
i=1

xi +
n

∑
i=1

xie−θxi = 0. (23)

The MLE of β and θ can be obtained by solving this nonlinear system of equations. It is
usually more convenient to use nonlinear optimization algorithms such as the Newton-Raphson
algorithm.
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5.2. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators are based on minimizing the distance be-
tween the theoretical and empirical cumulative distribution functions. Macdonald(1971) provided
empirical evidence that the bias of these estimators is smaller than the bias of other minimum
distance estimators. The Cramer-von-Mises estimators, β̂CME and θ̂CME are the values of β and θ
minimizing

C(β, θ) =
1

12n
+

n

∑
i=1

[
F(ti | β, θ)− 2i − 1

2n

]2
.

Differentiating the above equation partially, with respect to the parameters β and θ respectively
and equating them to zero, we get the normal equations. Since the normal equations are non-
linear, we can use iterative method to obtain the solution.

5.3. Method of Least-Square Estimation

The least square estimators were proposed by Swain et al. (1988) to estimate the parameters
of Beta distributions. Here, we apply the same technique for the BTE distribution. The least
square estimators of the unknown parameters β and θ of BTE distribution can be obtained by
minimizing

n

∑
i=1

[
F(ti | β, θ)− i

n + 1

]2
.

with respect to unknown parameters β and θ.

5.4. Simulation study

We conduct Monte Carlo simulation studies to compare the performance of the estimators
discussed in the previous sections and the process is repeated 1000 times. We evaluate the
performance of the estimators based on bias and mean squared error. Methods are compared for
sample sizes n = 500, 700 and 1000.
For each estimate we calculate the mean-squared error. The statistics are obtained using the
following formulae.
MSE(β̂) = 1

n ∑n
i=1(β̂ − β)2 MSE(θ̂) = 1

n ∑n
i=1(θ̂ − θ)2

The estimates, and the mean square errors (MSE) of the parameter estimates for the Maximum
likelihood estimation procedure, method of Cramer-von-Mises and method of least squares are
presented in Tables 1-3.
From Tables , we note that the maximum likelihood method performs well for estimating the
model parameters. Also, as the sample size increases, the MSEs of the average estimates of
maximum likelihood estimates decrease as expected.
The following observations can be drawn from the Tables 1-3.
1. All the estimators show the property of consistency, i.e. the MSE decreases as the sample size
increases.
2. The MSE of β̂ decreases with an increasing n for all the method of estimations.
3. The MSE of θ̂ decreases with an increasing n for all the method of estimations.
4. The MSE of β̂ and θ̂ generally increases with an increasing beta and theta for any given n in all
methods of estimation.
5. In terms of MSE, all the methods of estimation produce smaller MSE for β̂ compared to that of
θ̂.
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Table 2: Simulation result for β = 0.5 and θ = 0.1.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5173
0.1004

5.247×10−5

0.0209

0.5087
0.1004

7.3129×10−5

0.0244

0.5245
0.1021

7.4119×10−5

0.0311

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5171
0.1000

3.702×10−5

0.0150

0.5222
0.1003

7.0427×10−5

0.0220

0.5306
0.0994

5.4085×10−5

0.0260

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5013
0.1004

2.495×10−5

0.0093

0.5062
0.1005

4.0516×10−5

0.0129

0.5845
0.0972

3.9591×10−5

0.0187

Table 3: Simulation result for β = 0.9 and θ = 0.5.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9315
0.5044
0.0019
0.0943

0.9527
0.5049
0.0029
0.1899

0.9941
0.4966
0.0025
0.1144

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9196
0.5018
0.0013
0.0664

0.9489
0.5044
0.0025
0.1047

0.9046
0.5011
0.0016
0.0556

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9260
0.5004
0.0009
0.0436

0.9310
0.4948
0.0014
0.0503

0.9120
0.5034
0.0014
0.0484

6. Applications

In this section, we consider two real life data sets to illustrate the importance of the proposed
distribution. The model parameters are estimated by the method of maximum likelihood and
compare the fit of the BTE distribution with the following distributions: KuE,EW,W and E
models.
(a) Kumaraswamy Exponential (KuE) distribution having pdf

f (x; θ, β, c) = θβce−cx(1 − ecx)θ−1[1 − (1 − e−cx)θ ]β−1; x > 0, θ, β, c > 0. (24)

(b) Exponentiated Weibull (EW) distribution having pdf

f (x; θ, β, c) = θβθcxθ−1e−(βx)θ(1 − e−(βx)θ
)c−1; x > 0, θ, β, c > 0. (25)

(c)Weibull (W) distribution having pdf

f (x; θ, β) = βθβxβ−1e(−θx)β
; x > 0, θ, β > 0. (26)
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Table 4: Simulation result for β = 1.5 and θ = 1.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5861
1.004

0.0101
0.3336

1.7673
0.9999
0.0235
0.9141

1.6562
1.0142
0.0218
0.8282

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5470
1.005

0.0075
0.2346

1.5931
1.0114
0.0128
0.4939

1.5058
1.0263
0.0174
0.2132

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5278
1.003

0.0048
0.1388

1.5810
0.9929
0.0052
0.1505

1.5941
1.0107
0.0152
0.3750

Table 5: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
0.30 17.50 40.00 46.33 60.00 154.00

(d) Exponential (E) distribution having pdf

f (x; θ) = θe−θx; x > 0, θ > 0 (27)

The values of the log-likelihood functions− ln(L), AIC(Akaike Information Criterion), AICC(Akaike
Information Criterion with correction) and BIC(Bayesian Information Criterion) are calculated for
the five distributions in order to verify which distribution fits better to data. The better distri-
bution corresponds to smaller − ln(L), AIC, AICC and BIC values. Here, AIC = −2 ln(L) + 2k,
AICC = −2 ln(L) + ( 2kn

n−k−1 ) and BIC = −2 ln(L) + k ln(n); where L is the likelihood function
evaluated at the maximum likelihood estimates, k is the number of parameters and n is the
sample size. The K-S distance Dn = supx|F(x)− Fn(x)|,where,Fn(x) is the empirical distribution.
Kolmogorov-Smirnov (K-S) statistic is computed to compare the fitted models.
The required computations are carried out in the R-language introduced by R Development Core
Team (2019).

6.1. Data set 1

The first real data set represents the survival times of 121 patients with breast cancer obtained
from a large hospital in a period from 1929 to 1938 taken from Lee (1992). The data are:
(0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8,
15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6,
24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0,
40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0,
51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,
69.0, 78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,
126.0, 127.0, 129.0, 129.0, 139.0, 154.0). The data is skewed-to-the right with skewness =1.0432 and
kurtosis =0.4021
The descriptive statistics of the above data set are given in Table 4. The values in Table 5 shows
that the BTE distribution leads to a better fit to the other four models.

Figure 3, shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the data set 1.
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Table 6: Maximum likelihood parameter estimates and goodness of fit for various models fitted for the Data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

BTE β̂ = 0.131
θ̂ = 0.033

-579.155 1162.309 1162.411 1167.901 0.0534 0.8802

KuE
θ̂ = 1.651
β̂ = 0.098
ĉ = 0.231

-583.314 1172.63 1172.83 1181.02 0.1152 0.0803

EW
θ̂ = 1.393
β̂ = 0.017
ĉ = 0.798

-579.879 1165.76 1165.96 1174.15 0.0664 0.6606

W β̂ = 1.306
θ̂ = 0.019

-580.024 1164.05 1164.15 1169.64 0.0588 0.7967

E θ̂ = 0.022 -585.128 1172.26 1172.29 1175.05 0.1206 0.0594

(a) Fitted pdf plots of Data set 1 (b) Empirical and the fitted cumulative distribution functions
for the data set 1

Figure 3. Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set 1.

6.2. Data set 2

Here we consider the data set of the life of fatigue of Kelvar 373/epoxy that are subject to constant
pressure at the 90% stress level until all had failed. The data sets are taken from Andrews and
Herzberg (1985). The data are:
(0.0251, 0.6751, 1.0483, 1.4880, 1.8808, 2.2460, 3.4846, 0.0886, 0.6753, 1.0596, 1.5728, 1.8878, 2.2878,
3.7433, 0.0891, 0.7696, 1.0773, 1.5733, 1.8881, 2.3203, 3.7455, 0.2501, 0.8375, 1.1733 1.7083, 1.9316,
2.3470, 3.9143, 0.3113, 0.8391, 1.2570, 1.7263, 1.9558, 2.3513, 4.8073, 0.3451, 0.8425, 1.2766, 1.7460,
2.0048, 2.4951, 5.4005, 0.4763, 0.8645, 1.2985, 1.7630, 2.0408, 2.5260, 5.4435, 0.5650, 0.8851, 1.3211,
1.7746, 2.0903, 2.9941, 5.5295, 0.5671, 0.9113, 1.3503, 1.8275, 2.1093, 3.0256, 6.5541, 0.6566, 0.9120,
1.3551, 1.8375, 2.1330, 3.2678, 9.0960, 0.6748, 0.9836, 1.4595, 1.8503, 2.2100, 3.4045). The data is
skewed-to-the right with skewness =1.9794 and kurtosis =5.160
The descriptive statistics of the above data set are given in Table 6. The values in Table 7 shows
that the BTE distribution leads to a better fit to the other four models.

Figure 4, shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the data set 2.

Table 7: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
0.025 0.905 1.736 1.959 2.296 9.096
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Table 8: Maximum likelihood parameter estimates and goodness of fit for various models fitted for the Data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

BTE β̂ = 0.070
θ̂ = 0.873

-121.410 246.820 246.984 251.481 0.099 0.4167

EW
θ̂ = 1.101
β̂ = 0.609
ĉ = 1.443

-122.166 250.332 250.665 257.324 0.0992 0.4160

W β̂ = 1.326
θ̂ = 0.469

-122.526 249.052 249.219 253.714 0.1098 0.2968

E θ̂ = 0.510 -127.114 256.228 256.282 258.559 0.5120 0.0266

(c) Fitted pdf plots of Data set 2 (d) Empirical and the fitted cumulative distribution functions
for the data set 2

Figure 4. Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set 2.

7. Concluding remarks

In this paper,we have proposed beta transformation in order to get a transformed distribution of
some available baseline distribution. Beta transformation of exp(θ) distribution has been consid-
ered to check its application to the real problem called the Beta transformed (BTE) distribution.
In the present work, we have provide expressions for the quantiles,moments,moment generating
function,hazard rates,entropies and order statistics. The model parameters are estimated by
maximum likelihood, Cramer-von Mises and least squares method. We have performed an
extensive simulation study to compare these methods. We have compared estimators with respect
to mean-squared error. The simulation results show that maximum likelihood estimators is the
best performing estimator in terms of MSE. The next best performing estimator is the least square
estimator followed by the Cramer-von Mises estimator.
Two real data sets are analyzed to show the importance and flexibility of this distribution.
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Abstract

An integral PID control sliding surface with first order filter is proposed in this paper to the systems
with single-input single-output (SISO). In this The developed sliding mode controller results well,
even though there are differences in the model of the system via parametric uncertainty. To verify its
applicability to disturbances, the presented work validates the controller performance with the application
of an external load. An integral and filtered type sliding surface has advantages in terms of the stability of
the systems. The proposed controller properties of stability and robustness are proven by the Lyapunov’s
stability theorem. By the adoption of switching gain with predetermined parameters of system, the
chattering problem phenomenon is greatly minimized. Therefore, the proposed controller in this work
is appropriate for extended use in real world systems. In this method proposed control is verified using
simulation examples and results for its performance. It will be compared to a similar controller shown in
the previous literature work.

Keywords: Integral sliding mode control, Robustness, Stability, Uncertain systems

1. Introduction

Most real-world applications involve non-linear systems, but for analytical and control purposes
these are approximated by linear systems. The control for systems composed of the specifications
of parameter inaccuracy, that is, the structured uncertainty of the system, the neglected dynamics
of unstructured uncertainty, and the generally approximated time delay impose serious challenges
to controller design. [1]. The nonlinear controller design techniques, like feedback linearization
and sliding mode control are proved to be promising and applicable in control issues includes
only an approximate linear description of the system [2, 3]. The sliding mode control (SMC),
recommended in initial phase of the early 1950s, validated with ability to handle framework
uncertainties and outside disturbances with greater strength [4]-[6]. The dynamic behaviour of
system can be modified with the system specifications by the suitable selection of switching of
oscillatory function with the SMC method.

In literature, one of the major application of sliding mode control is to limit the effects of
external disturbance present in th uncertain systems. control, as presented in the international
literature developed earlier in Russia [5]. There are so many sliding mode theories are available
in the literature. In the initial study, the focus is on conventional or traditional sliding modes.
Traditional SMCs use approximate system models to provide a systematic design procedure
[7].Therefore, they are widely used in industries with applications including power electronic
converters, position or speed control and robotics, space technology applications, and power
converters [8]. Conventional SMCs are popular because of their robustness to modelling errors and
their insensitivity to external disturbances and parameter changes [9]. However, in many practical
applications, the problem in the control action of vibrations known as chattering occurs because
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of the SMC design. Chattering is a high-frequency (theoretically infinite frequency) switching
in control input because of the unmodeled system dynamics. The high frequency oscillations in
control signal called chattering occurs due to discontinuous control term is dangerous, specially,
in the systems with mechanical parts. The chattering causes undesired overuse of the actuators
and final control elements and also results in system instability [10]. The advances in digital
control technology has impacted attention of highly robust controller such as SMCs because it
can be easily implemented in digital systems such personal computer or can be implemented in
discrete domain [11]- [12]. However, if SMC is designed in discrete mode, the discrete control
law of discontinuous or switching term, not only induces chattering phenomenon but it drives
the system to be unstable due to infinite sampling rate, and the sampling rate due to infinity
may be distant. This can be answered by making the discontinuous term value very small [11].
In literature, for state regulation [13, 14, 15, 25] or for set-point tracking [16, 17, 7, 11, 27] either
continuous or discrete SMCs are designed . In literature, it is common that, the concerned
researchers have developed a continuous-time sliding mode controller (CSMC) or discrete time
sliding mode controller (DSMC)that tracks the setting value considering specific application
[33]. Among them, Tannuri et al. [19] and Lee et al. [20] reviewed the positioning control
system application, and Orr et al. [21] and Lu et al. [22] has prepared a CSMC for spacecraft
applications. tn the Mihoub et al. [23] work furnished, a DSMC with the phase variable state
model of second order, for tracking of semi-batch reactors. Eker’s research mainly focuses on use
of traditional SMC or second order SMC for the speed control application of electromechanical
system [16, 17, 26]. Recent contribution by Furat and Eker in development of second order
integral SMC for the speed control of electromechanical system through experimental application
[24] for the reduction of chattering including robustness to disturbances and uncertainties. In
this work, a simple SMC algorithm based on the PID with a first-order filter sliding surface
was developed. This developed algorithm is used to tune a general system with second order
behaviour. Considering the basic second order model (or an identified second order model), an
equivalent or continuous controller is designed with the help of sliding surface parameters and
model parameters. It is easy to synthesize and implement a new simple sliding-mode controller
with the help of filter parameter λ and PID parameters like Kp, Ki, Kd which can consider for
plant uncertainties. In meeting the sliding condition of controller of the closed loop system, the
system behaviour and the robust stability are investigated. The scheme presented in this paper
is further extended to systems capable of handling the inverse response process. The control
application for the FOPDT framework is additionally included as a unique case in a similar
manner. The usefulness and applicability of the method proposed is being carefully studied and
assessed through several general processes.It also includes performance comparison with few
current sliding mode control methods as reliable evaluation criteria.

In the real system instead, the controllers are used in a continuous time domain, as we use
microprocessors or computer systems in general. Recently, among the researchers involved in
introducing continuous SMC to a discrete time SMC. In the literature, it was discovered that
much of the work had been completed in a different way for the design of a continuous SMC.
The limitations of the Continuous SMC is some extent removed using the DTSMC approach[33]
The paper is organized as follows, the section II includes the description of electromechanical
system with mathematical model while section III focuses on the integral sliding surface. Further
part of the paper is organized in following manner. The nest section describes the system for
transformation of the system with lower order and higher order into the general second order
system models. section III introduces the design of sliding surface and derives overall control law,
whereas section IV provides a typical examples for continuous and discrete SMC. The typical
controllers are compared to the proposed controller to test its control capabilities and usefulness
in a closed loop. Section V presents conclusions and future directions for work.
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2. Description of Systems

In general case, second order system is represented as

Y(s)
U(s)

=
Kω2

n
s2 + 2ζωns + ω2

n
=

Cn

s2 + Ans + Bn
(1)

where, ζ is damping factor, ωn is natural frequency of oscillation of system, and K is gain of
system. Then the given system is required to translate in second order system given by the above
Eq. 1. Let us discuss the case of system with low order and in subsequent subsection the case of
higher order systems be also considered.

2.1. First order plus delay time systems

The first order plus delay time (FOPDT) model of a system is considered as

Y(s)
U(s)

=
ke−tds

τs + 1
(2)

where, the term τ represents time constant, td represents time delay, and k represents steady-state
gain. As the time delays become too small in comparison with time constant τ, then a system
model may become modified by approximation as [7]:

Y(s)
U(s)

=
k

(τs + 1)(tds + 1)
=

Cn

s2 + Ans + Bn
(3)

Here in above case, the Taylor series approximation in case of time delay e−tds = 1/(tds + 1) is
used. As this is common in the control theory to use Taylor series approximation for the delay
time during the design of control system [5].

2.2. Higher order plus delay time systems

Now transfer function model of higher order plus delay time system is considered as,

G1
P(s) =

b0

sq + a1
1sq−1 + a1

2sq−2 + ... + a1
q

e−tds, (4)

where, a1
j (j = 1, 2, · · · , q) are constant coefficients of the polynomial. The delay time term e−tds

is replaced by the first order Taylor approximation with 1/(1 + tds). After approximation, the
transfer function in equation (4) can be written as

Gp(s) =
b

sn + a1sn−1 + a2sn−2 + ... + an
, (5)

where aj (j = 0, 1, 2, · · · , n) represents the constant coefficients. The conversion of any high order
system model by first order plus dead time model by approximation is a regular practice. As
a matter of fact, all the qualities of higher order process are included in the FOPDT model, but
it is sufficient to provide an explanation to the effective dead time, overall time constant, and
process gain of system of this type [28]. There are three unknown parameters are needed to
create a reasonable FOPDT model to be approximate, namely τ, td and k should be determined
steady-state gain. Let the transfer function of lower model is denoted by

l(s) =
Y(s)
U(s)

=
ke−tds

τs + 1
, (6)
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and for higher order it is denoted by h(s) = Gp(s). In the literature, the higher order and lower
order models at certain places tried to fit the Nyquist plots, but it was unsuccessful [29].

l(0) = h(0) (7)

|l(jωc)| = |h(jωc)|
∠l(jωc) = ∠h(jωc)

where, ωc represents phase crossover frequency. As a result, the FOPDT model parameters may
be determined with the help of [28],

k = h(0) (8)

τ =

√
( h(0)
|h(jωc | )

2 − 1

ωc

td =
π − tan−1(τωc)

ωc

Now from Eq. 3 by getting the above three values of constant parameters, it is easy to obtain the
specified structure.

3. Sliding Mode Control Approaches

3.1. Continuous SMC

For continuous SMC, the sliding surface for PID controller with first order filter is defined by:

σ(t) =
[

Kp +
Ki
s
+ sKd

]n−1
Ψ(E(s)) (9)

where Ψ(E(s)) is the Laplace domain tracking error filter, Ψ(E(s)) = 1/(λs + 1)E(s) and ‘n′

is the order of system. In this, terms Kp, Ki Kd and λ are the parameters used for tuning the
controller, these supports in defining the sliding surface σ(t) and determined by designer. The
sliding surface can be used to determine the how well the system perform. Designing a control
law has the purpose of guaranteeing the output of plant response y(t) equal to the set value of
reference r(t) for the remaining time, which means the value of error and derivatives of all errors
must be equal to zero. In SMC law, the main purpose is to reduce the error signal e(t) to move
towards the defined sliding surface also it must stay along with it towards origin. By putting the
value of Ψ(E(s)) = 1/(λs + 1)E(s) in Eq. (9), results in

σ(t) =
1

λs + 1
KpE(s) +

Ki
s(λs + 1)

E(s) +
1

λs + 1
KdsE(s) (10)

. The transfer function of model is second order, means the term n = 2.
The tracking error, in mathematical way may be represented by the equation

e(t) = r(t)− y(t) (11)

. where, reference input is represented by r(t), e(t) represents error signal, and plant output is
represented by y(t). The Second Derivative of above Eq. 11 is

ë(t) = r̈(t)− ÿ(t) (12)

Generally, from Eq. 3, ÿ(t) = −Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t)).
Substituting value of ÿ(t) = −Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t)) into the Eq. 12, therefore

ë(t) = r̈(t)− [−Anẏ(t)− Bny(t) + Cnu(t) + D(t, u(t))] (13)

RT&A, No 4 (71) 
Volume 17, December 2022 

361 



V. S. Biradar, G. M. Malwatkar
SOSMC for robust performance of system

ë(t) = r̈(t) + Anẏ(t) + Bny(t)− Cnu(t)− D(t, u(t)) (14)

The sliding surface second-order derivative which is taken from Eq. 10 is determined with
multiplication on both side of equation by ’s(λs + 1)’. Hence, Eq. 10 may get modified as

s(λs + 1)σ(t) = sKpE(s) + KiE(s) + s2KdE(s) (15)

. By modifying above Eq. 15 in the time domain and represented as

σ̈(t) =
Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ

ë(t)−
˙σ(t)
λ

(16)

. In view of the Eq. 13, we know that, ë(t) = r̈(t) + Anẏ(t) + Bny(t)− Cnu(t)− D(t, u(t)). Put
this in 16, now it is written as,

σ̈(t) =
Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (17)

−Cnu(t)− D(t, u(t))]−
˙σ(t)
λ

. When condition σ(t)=σ̇(t) and σ̈(t) = 0 with u(t) = ueq(t) is determined, then controller
algorithm designed in the form of second-order SMC is primarily established by the equivalent
control concept. The control of a system at its nominal parameters is achieved by equivalent
control, if D(t, u(t)) = 0, given by the steps :
Step 1
As σ̈(t) = 0, put in Eq. 17

Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (18)

−Cnu(t)]−
˙σ(t)
λ

= 0,

. Step 2
Replace u by ueq in Eq. 18

Kp

λ
ė(t) +

Ki
λ

e(t) +
Kd
λ
[r̈(t) + Anẏ(t) + Bny(t) (19)

−Cnueq(t)]−
˙σ(t)
λ

= 0.

Step 3
Obtain ueq from above Eq. 19

ueq(t) =
1

KdCn
(Kp ė(t) + Kie(t) + Kd r̈(t) + Kd Anẏ(t) (20)

+KdBny(t)) +
1

KdCn
(−

Kp

λ
e−

t
λ e(t)− Kie(t) + Kie−

t
λ e(t)

−Kd
λ

e−
t
λ ė(t)).

The above value is named equivalent controller. The form of input control to the conventional
SMC is:

u(t) = ueq(t) + usw(t) (21)

Now we take the switching control, here three switching controls are taken as represented by

usw(t) = kswr2(t)ẽ(t)sgn
( ks f

ẽ(t)
σ̇(t)

)
+

1
KdCn

sgn(σ(t)) (22)
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where the term ksw is a positive gain employed for reduction of high frequency oscillations known
as chattering, by preserving the tracking efficiency, and considering that r(t) 6= 0 the setpoint and
ẽ(t) is the corrected error given by:

ẽ(t) = ε1sgn(e(t)) i f |e(t)| ≤ ε1 (23)

and
ẽ(t) = e(t)) i f |e(t)| ≥ ε1 (24)

where, ε1 is a number with small positive value used for avoiding the situation of zero division.
At the time os starting, when t = 0, the amount of error present in the switching control gain is
maximum, so the switching control law provides the maximum control signal. As time approaches
infinity, the error value tends to zero. This means that limt→∞usw(t) ∼= 0. Depending on the
uncertainty of a given time or the error due to external disturbance of the load, the amount of
switching control increases and converges to the setpoint more quickly. As the sliding surface
represents a functional variable of error signal, condition σ(t) = σ̇(t) = 0 is determined by slight
variations near zero, if the error value tends to zero.

3.2. Discrete SMC

The design of the DSMC required to satisfy the stability condition for the reaching phase and
sliding phase as same like the continuous SMC given in the section (III). The concept of the
reaching condition [25] ,

s(t) ˙s(t) ≤ 0, i.e. (25)

| s(k + 1) |<| s(k) |

apply the Lyapunov stability criteria for ideal condition of sliding mode [32]

˙ν(t) < 0, (26)

where

ν(t)(t) =
1
2

s2(t) (27)

which may be written in discrete time as

ν(t)(k + 1)− ν(t)(k) < 0, (28)

where

ν(t)(k) =
1
2

s2(k) (29)

Let us consider the continuous time model of the system represented in the discrete-time model
as represented by:

x(k + 1) = Ax(k) + Bu(k) + δ(k)

y(k) = Cx(k) (30)

By defining a state error vector with the equation

e(k) = x(k)− y(k) (31)

where e(k) is the error signal, and x (k) = <n is the vector of state variables, u (k) ∈ < is the
vector input control signal and y (k) ∈ < is the scalar output signal of the system. A, B and C are
representing constant value matrices with proper dimensions. The DSMC approach involved in
designing the controller have the following steps:
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• Determination of a switching function s(x) in such a way that the sliding mode on switching
surface s(x) = 0 becomes stable.

• Determination of a control law

u(k) =

{
1, when s(k) > 0
−1, when s(k) ≤ 0

(32)

4. Simulation Examples

Example 1: Simulation of sliding mode control is conducted for a brushless DC motor. Results
show the successfulness of the controller. The controller is differentiated with existing sliding
mode controllers present in literature. For simulation the MathworksTM MATLAB 2019a is used.
This paper uses a flat BLDC motor of Maxon’s EC 45 with diameter of Φ 45 mm, 30 Watt from
Maxon motors [30]. Mathematical models use the parameters that are obtained from the Motor’s
datasheet as well as othr relevant information. For LDC motors, the mathematical model uses the
parameters available in the datasheet [30].

G(s) =
1/Kg

τmτes2 + τms + 1

where Kg, τm and τe are the constants and required to be determined.
The term τe is determined using the relation

τe =
L

3R
=

0.560× 10−3

3× 1.10
.

Thus,

τe = 151.56× 10−6

The term τm is determined using the relation

τm =
3Rφ J
KgKt

= 0.0171

where Ke is

Ke =
3Rφ J
τmKt

= 0.0763

Hence, the DC motor model is represented by transfer function form is

G(s) =
13.11

155.56× 0.0171× 10−6s2 + 0.0171s + 1

or

G(s) =
82620

s2 + 269.7s + 6302
=

Cn

1 + An + Bn
.

The various parameters defined for the controller of proposed here and Furat & Eker [24] are
taken as: ksw=200; ksf=0.025; Kp=12; Ki=0.001; Kd=0.0024; with λ = 0.9; as filter parameter for
suggested method. Fig. 1,Fig. 2 and Fig. 3 respectively reveals the output, input and sliding
surface responses of the suggested SMC and other considered controllers. Looking at the output
response, Furat & Eker provided controller and the controllers implemented here showed speedy
and reasonably acceptable response, instead the slow response given by Camacho-2000 and
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Figure 1: Output Responses
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Figure 2: Input Responses
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Figure 3: Error Responses

Camacho-2007. The suggested response by Camacho-2000 shows high overshoot and unsuitable
for applications of electromechanical systems in speed control of the DC motor. The proposed
controller provides the smooth response and the stable sliding surface.

At the time t = 0.05s, to check the stability and behaviour of all controllers, the output
disturbance d = 0.2r is inserted in the system. The controller responses of the controllers are
shown in Fig. 4. From the Fig. 4 shows that, controllers provided by Camacho-2000 and Camacho-
2007 are not suitable due to poor performance. The controller proposed in this paper provides
comparable and preferable performance characteristics.

Example 2: The repeated pole systems are well studied in the literature and are used for
design of controller in higher order systems [29].

Gp(s) =
1

(s + 1)5

Using the technique given in section II, the FOPDT parameters of the system are k = 1, τ = 3.7540
and td = 2.6566. The second order model with Taylor approxiamtion for delay time is,

Y(s)
U(s)

=
0.1003

s2 + 0.6428s + 0.1003

4.1. Simulation example of DSMC

Consider the higher order transfer function given in Example 2 reduced in to the third order
approximation and represented in state space form [29]

Gp(s) =
1

(s + 1)5
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Figure 4: Output Responses under 20% external disturbance

An equation in state space can be derived by matched pole-zero method with selected sampling
interval of T[s] = 0.1s and may be given as

A =

 −1.5630 −1.0140 −0.2375
1.0000 0 0

0 1.0000 0

 , B =

 1
0
0

 ,

C =

 0.0896
−0.1608
0.2406


and D=[0].
The parameters used for the prevalent controller Khandekar et.al. , Weibing Gao et.al. & our
previous work [31, 32, 33] are: In simulation of [31] switching gain alpha = 0.4, Kt = 1 and
the controller gain matrix ct = [-5.3630 -1.1215 -0.3097]. In simulation of [32] switching gain
alpha = 0.8, Kt = 0.8 and the controller gain matrix ct = [-3.3630 -0.1215 -0.3097]. In simulation
of [33] switching gain alpha = 0.6, Kt = 0.8 and the controller gain matrix ct = [-1.3630 -0.1215
-0.3097]. The performances of DSMC [33] and other controllers are shown in Fig. 5 and Fig. 6
respectively in relation to the output responses and input responses. From these figures, it is
observed that the output responses of the controller given by DSMC in [33] controllers gives fast
and satisfactory response. It is also observed that the responses are more oscillatory for DSMC of
prevalent controllers.

5. Conclusion

According to the results, the integral SMC performs better than the conventional SMC and
PID controller in terms of output response. The output response of the integral SMC had no
overshoot,faster rise time, and a faster settling time in magnitude. Traditional SMC and PID
controllers are unable achieve needs of precise control requirements, resulting in large percentage
overshoots and settling times are required for system. The second order integral SMC gives
superior performance compared to the conventional SMC or traditional PID controller like
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Figure 5: System output.
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Figure 6: Control signals
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reducing the overshoot exist in speed, also minimising the rise time and settling time of the
system response. Based on the results of simulation, second order integral SMC compared to both
conventional SMC techniques gives improved results under nominal parameter or system with
uncertainties in the parameters. However, the results obtained for the nominal parameters are
better than the results obtained for the system under parametric uncertainties. The conventional
SMC simulation results are preferable when the system is at its nominal parameters,but are not
acceptable for systems with parametric uncertainty. The second order integral SMC is suitable
for systems with uncertain parameters that cannot ne estimated or measured. In case of external
disturbance the proposed controller will be useful. Selecting the right sliding surface is critical in
the approach to SMC design, also selecting a sliding sirface can significantly reduce the chattering
phenomenon, but with an extra work it can be eliminated. The results can be compared to other
second order Integral sliding surfaces or by using different control laws. The control approach
used in this work is restricted to second order integral SMC, conventional SMC and PID controller,
but other control approaches such as higher order SMC, predictive SMC can also be implemented.
This work may be further moved forward for the systems with higher than 10% parametric
variation with uncertainty in the modification of the control law. This discussed study may be
further worked with the applications in real time by designing an experimental setup and DC
drive interfacing accessories.
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Abstract 

 
Sentiment Analysis is the process of examining the individual’s emotions. In tweet sentiment analysis, 
opinions in messages are categorized into positive, negative and neutral categories. A clustering-based 
classification approach is used to increase the accuracy level and enhance the performance in sentiment 
classification. The input dataset comprises of Hindi-English code-mixed text data. Initially, the input text 
data is pre-processed with different pre-processing techniques such as stop word removal, tokenization, 
Stemming, lemmatization. This effectively pre-processes the data and makes it appropriate for further 
processing. Afterwards, effective features such as Count Vectors, Modified term frequency-inverse document 
frequency (MTF-IDF), Feature hashing, Glove feature and Word2vector features are extracted for enhancing 
the classification performance. Afterwards, Sentiment word embedding-based agglomerative (SWEA) 
clustering is presented for effective sentiment feature clustering. Finally, a hybrid Bidirectional long short-
term memory-convolutional neural network (Hybrid BLSTM-CNN) is used to accurately classify tweet 
sentiments into positive, negative, and neutral. Here, modified horse herd optimization (MHHO) approach is 
used for weight optimization in Hybrid BLSTM-CNN. This optimization approach further enhances the 
performance of classification. The dataset used for the implementation is a Hindi-English mixed dataset. The 
experimental result significantly improves the different existing approaches in terms of accuracy, precision, 
recall, and F-measure.  
 
Keywords: Sentiment Analysis, Hindi-English, Twitter, code-mixed text data, modified 
horse herd optimization 

 
1. Introduction 

 
Over the last two decades and the increase in the population, social media users have also 
increased tremendously [1]. Thelanguages are mixed in several forms of communication due to 
different cultures. People started to communicate online to share and express their thoughtson 
social network websites like Twitter, YouTube, and Facebook. These media are a better platform to 
interact with each other [2]. Most of the words are used generally in one language, and the 
translation in another language is not very popular. Hence, when the person utilizes those words 
in a text, they are like the most fashionable language [3]. This makes a sentence in two different 
languages and arranges a grammar part of one language.The text in social media isfamiliar with 
many linguistic variations. In multilingual countries like India, commonly people combine the 
English and Hindi languages with their native language [4]. The method of switching sentences 
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between the many languages is known as code-mixing, also called code switching [5]. It is 
amodification phenomenon among many languages, generally two, within a single sentence [6].  

Sentiment Analysis (SA) in mixed languagehas gained popularity due to the increasing 
number of non-English speaking users [7]. SA can offer precise insight from product reviews to 
capture trending themes to design business models. Today, most institutions depend on SA of 
social media text to monitor the performance of their products and fetch feedback [8]. SA is used in 
product reviews and applications like reputation management, social media monitoring, and 
brand monitoring [9].In addition, people post their suggestions, opinion and results in a huge 
amount of text information accessible for analysis. Humans can understand the paragraph written 
in a language they know and identify the paragraph as positive, negative, or neutral feelings [10]. 
However, the computer doesn’t know the languages around the world, and it cannot interpret 
them. SA overcomes this limitation of the computer by Natural Programming Language (NLP) for 
recognizing the word and classifying them [11]. A mixed language tweet has many unseen 
complexities to NLP tasks like language identification, semantic processing, machine translation 
and Parts-of-Speech (POS) tagging.Hence it is important to develop a technology for mixed 
language text [12, 13]. 

Based on the report of KPMG Group in India, users of the Indian language can expand up to 
537 million in 2022 [14]. People states their opinion on changing subjects varies from sports to 
politics and movies [15]. In addition, people express their suggestions in mixed languages like 
English-Urdu, English-Hindi, English-Tamil, and English-Bengali [16]. Hindi is a national 
language of India, which is majorly spoken in different states. Due to many Hindi speaking people 
contributes majorly in several social media about various social activities [17]. The formation of the 
Hindi language utilized in social networks is mixed with English and accessible in roman scripts 
[18].Some of the existing sentiment analysis approaches are Naive Bayes, convolutional neural 
network (CNN) [19], decision tree (DT), support vector machines (SVM), recurrent neural network 
(RNN), and RF (random forests) [20].  

Motivation: The phenomenon of mixed language can learn by analyzing different 
applications. SA is circumstantial text analysis, finding the social sentiment for better 
understanding the source. SA on mixed language helps to understand the sentiment of sentences 
and phrases. Multilingualism is the potential of people to communicate efficiently in many 
languages. There are three categories of SA approaches: Machine learning (ML), Lexicon based and 
Deep learning (DL). The Lexicon-based models depend on the predefined rules for determining 
the sentence from the text. An ML technique utilizes semantic mining for identifying sentiments. 
ML techniques are semi-supervised, supervised and unsupervised. ML techniques require hand-
crafted features extraction, which is time consuming, needs expertise and is expensive. DL models 
are more efficient in learning features automatically from text and achieve better results. The most 
commonly used methods in NLP tasks are Recurrent Neural Network (RNN), Convolutional 
Neural Network (Convnet), and Long Short-Term Memory Network (LSTM). The text 
representation and the good classification approach are necessary to improveclassification 
performance. The major contributions of the presented methodology are described as, 

• To effectively pre-process the Hindi mixed English tweets, different pre-processing 
approaches like stop word removal, tokenization, stemming, and lemmatization are 
utilized. 

• To extract the most important features from the pre-processed data, count vectors, MTF-
IDF, Feature hashing, Glove feature and Word2vector features are extracted. The effective 
feature extraction process is a necessary one for accurate sentiment prediction. 

• A Sentiment word embedding-based agglomerative clustering approach is presented to 
cluster the sentiment features effectively. This clustering process further improves the 
performance of sentiment prediction.  
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• To accurately classify the sentiments as positive, negative and neutral, a hybrid BLSTM-

CNN framework is presented. Here, the modified horse herd optimization approach 
improves this classification network performance. This MHHO approach is used for 
updating the optimized weights in the hybrid BLSTM-CNN framework. Finally, the 
performance of the sentiment analysis is well improved using these combinations of 
approaches. 
 

2. Related Work 
 
Jhanwar and Das [21] proposed an ensemble method for SA of Hi-En mixed data using DL models. 
In this work, LSTM and Multinomial Naive Bayes (MNB) were utilized for identifying the Hi-En 
sentiments. The ensemble model integrated the LSTM and keywords polarity from a probabilistic 
method for identifying sentiments in inconsistent and sparse mixed data. Both models were 
averaged and weighted based on the accuracy. The experimental outcomes proved the system’s 
performance compared with other DL models. 

Sasidhar et al. [22] used the DL model CNN-BLSTMto identify the emotions expressed via Hi-
En mixed languages in many social media sites. To evaluate the detection method, 12,000 CM 
sentences from various sources have many emotions. A bilingual model was used for generating 
the vector, and the DL model was used for classification. This model provided higher performance 
with an accuracy of 83.1%. 

Singh et al. [23] presented a unique language and POS tagged database of CM Hi-En tweets. It 
was based on five happenings in India that led to many twitter activities. The database used in this 
model has two factors: it was longer than the prior annotated database and was like real-world 
tweets. Then the POS was trained on this database to show how this database can be utilized. This 
model has attained a better performance with an F-measure value of 88.6%, but the model has 
overfitting issue despite the usage of regularization. 

Singh and Lefever, [24] proposed two stages for the SA task for Hi-En sentiments. In the first 
stage, baseline methods and monolingual embedding were initialized. Then, in a second stage, 
cross lingual embedding’s for Hi-En were constructed. The transfer learning-based classifieris 
trained on En sentiment and implemented on code-mixed information.The task comprises three 
sentiments, and the experimental outcomes proved that this model improved the results in fully 
supervised and can utilize as a baseline for a distant base.  

Garg and Kamlesh Sharma, [25] presented the model of creating a corpus for Hi-En 
sentiments. The method utilized for annotating the corpus into 5 categories. The inner agreement 
measure was computed for positive and negative tweets. This model provided a standard corpus 
for code switching in Hi-En. The words utilized for sarcasm and slang were also discussed in this 
work. This model overcame spelling which was inconsistent and misspelt words.  

Nagamanjula and Pethalakshmi, [26] developed an innovative model using a logistic adaptive 
network that depends on a neuro fuzzy inference system (LAN2FIS) to classify sentiments on 
Twitter data. Here, features were chosen by using the bi-objective optimization scheme. The 
sentiment analysis using this approach provided enhanced performance. But the analysis was 
performed only in public reviews. A bigger data set is a necessity to improve the accuracy 
performance. The performance of the approach can be improved by utilizing a better combination 
of approaches.  

Naresh and Venkata Krishna, [27] presented a proficient sentiment analysis methodology 
utilizing the machine learning approach. Here, optimization was utilized to enhance the 
performance ofthe machine learning technique. At first, input data was taken and pre-processed. 
Next, the optimized data was attained through the feature extraction process. The trained feature 
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data was utilized to categorize the sentiment classes through the machine learning classifier in the 
final stage. The attained accuracy of this approach was 89.47%. The examination performance of 
the methodology can be improved by using the deep learning approaches in future.  

Kanika Garg and Lobiyal, [28] developed a methodology for evaluating the feature values 
through KL (Kullback-Leibler) divergence methodology. The features were used for finding the 
membership values with the neuro fuzzy and fuzzy logic methodology. The obtained accuracy of 
the methodology was 89.93%. In future work, an effective feature selection and classification 
approach was suggested to improve the performance.  
 

3. Proposed Methodology 
 
This work presents an effective sentiment analysis in Hindi-English mixed twitter texts. Initially, 
the input twitters in the combination of Hindi and English texts are collected using the Twitter 
data set. Afterwards, input texts are effectively pre-processed using different pre-processing 
techniques like tokenization, stop word removal, lemmatization and stemming. Then, effective 
combinations of features like count vectors, feature hashing, Glove feature vectors and modified 
TF-IDF are extracted from the pre-processed data. Subsequently, the extracted sentiment features 
are clustered using the presented SWEA clustering approach. Finally, the hybrid BLSTM-CNN 
approach accurately predicts sentiments into negative, positive, and neutral classes. Here, the 
performance of sentiment prediction is improved by updating the optimized weights through the 
modified horse herd optimization approach. The schematic diagram of the presented methodology 
is depicted in figure 1. 
 

 
 

Figure 1: Schematic diagram of the presented methodology 
 

The SA process has four stages: (a) Pre-processing is the first stage to clean and prepare data 
for sentiment analysis. It reduces computational process and feature space, enhancing the system’s 
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accuracy. (b) Feature extraction is a second stage to extract the important features for the analysis. 
(c) Clustering is the third stage to group the data points and (d) Sentiment prediction is the fourth 
stage to classify the sentiments of data into positive, negative or neutral.   

 
3.1 Pre-processing 
 
Pre-processing is an important process for SA since textual information has unstructured and 
noisy data. The Pre-processing step is applied to the dataset to improve the quality and classify the 
text. This step is used to clean the dataset from noise like spelling error correction, disambiguation 
of ambiguous abbreviations and reduction of repetitive characters. Hence in these cases, pre-
processing techniques like stop word removal, tokenization, Stemming and lemmatization can 
enhance the dataset’s quality. 
 
3.1.1 Tokenization 
 
It is complex for machines to understand the context and semantics of a paragraph and sentences. 
Initially, the tokenization process breaks sentences into punctuations and words called 
tokenization. For tokenizing the words, Natural Language Toolkit (NLTK) is used. 
Example: Input data- “I am playing” 

Output data- (I) (am) (playing) 
 
3.1.2 Stop word removal 
 
In the text data processing, the words which have high existence in the documents are called stop 
words like “is”, “am”, “and”, “the”. These words are helpful in sentence formation but do not 
provide any importance in language processing. Applying these words on lexical resources has 
less emotional meaning and doesn’t affect a sentimental score. Hence these words are filtered from 
the tweets. The example representation of stop word removal is provided below.  
Example: Input data- I am playing  

Output data- Playing 
 
3.1.3 Stemming 
 
It is the process of converting the tenses of words to their basic form. This stemming process 
avoids the processing time of words. The example of the stemming process is described as, 
Example: “Playing” to “play”,“Arguing” to “Argue”, “Fishing” to “Fish”, “noises” to “noise”.  
 
3.1.4 Lemmatization 
 
This is the process of integrating two or three words into one word. This finds the Word 
morphology and removes the end of the word.  
 
Example: “Matched” to “Match”, “taught” to “teach”  
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3.2 Text Feature extraction 
  
The most important features like count vectors, MTF-IDF, Feature hashing, Glove feature and 
Word2vector features are extracted from the pre-processed data. The effective feature extraction 
process is a necessary one for accurate sentiment prediction. The presented feature extraction 
techniques are described in the subsequent sub-sections.  
 
3.2.1 Count Vectors 
 
Count vectors feature just count the number of word occurrences in a document. Afterwards, the 
count value is utilized as a weight in the feature vector. This feature extraction process counts the 
words and outputs in integers. The count feature vector is similar to the TF-IDF feature. In TF-IDF 
feature extraction, a score of the words are computed, and in the case of count vectors, floats are 
computed from the words. The count vectors are illustrated in the subsequent example shown in 
table 1.  
Example data: {“Good”, “Boy”, “Play”, “Well”, “Top”, “Good”, “Student”, “School”} 
 

Table 1: Example illustration of output Count Vectors 

Data Good Boy Play Well Top Student School 

Count 
vectors 

2 1 1 1 1 1 1 

 
3.2.2 Feature hashing 
 
This is the process of changing separate tokens into their corresponding integers. This process 
generates the dictionary of words. After the process completion of dictionary generation, the 
words in the dictionary are transformed into respective hash values. This hash value 
representation is utilized to find the feature is already utilized in the process or not. In this feature 
hashing, the model results in the group of columns for every text data in rows and one column for 
every hashed feature.  

The feature hashing is equivalent to one hot encoding process and results in the hashes to 
mention each text word. Example illustration is provided in table 2.  

 
Table 2: Example of feature hashing 

 
Word Hash1 Hash2 
Blue 0 0 
Black 0 1 
Red 1 0 
Pink 1 1 

 
 

The main objective of using feature hashing is to decrease the size of features. This can be 
used to mention the texts in variable length to the feature vectors in equivalent numeric size and 
attains the reduced size of features.  
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3.2.3 Word2Vec feature 
 
In the Word2Vec feature extraction model, the input is word data, and the output data is vector 
data. This makes the words into their corresponding numeric form. A similar form of words has 
the same embedding. This word2vec feature extraction process combines a continuous bag of 
words (CBoW) and the skip-gram process. Here, CBoW provides the occurrence probability of 
words. This makes the output target vector for the words in embedding. The word2vec feature 
extraction model is represented in figure 2. 

The continuous bag of words is utilized for finding the target text, and the skip-gram process 
finds the target context data from the predicted words.  
 
 

 
Figure 2: Word2Vec feature extraction model 

 
3.2.4 Modified TF-IDF (MTF-IDF) 
 
This feature extraction approach is utilized to find the importance of particular words in a 
document. Here, the term frequency of a particular word is computed by the number of times that 
the particular word occurred in the document to the whole number of words in that same 
document. This is utilized to remove unnecessary words like “a”, “an”, “the” in the document. The 
modified form of the TF-IDF feature is computed here to advance the feature extraction process. At 
first, the term frequency is computed through the subsequent condition (1). 

                                                                                                                                             (1) 

Here, signifies the extracted term frequency feature vector,  signifies the number of 

the word  occurs in the document , and the denominator portion in condition (1) describes the 
addition of word occurrences of the document. The inverse document frequency is computed 
through the subsequent condition (2), 

                                                                                                                                    (2) 
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Here, signifies the IDF feature vector,  signifies the total amount of documents in the 
dataset and  signifies the feature vector of documents. The TF-IDF feature extraction process is 
enhanced by updating the weight calculated using the term frequency. The improved form of 
feature vector based on the weight of term frequency is computed by the subsequent condition (3).  

                                                                                                                                            

(3) 

Here, signifies the term frequency of words in each tweet,  signifies the weight of the 

word frequency, and signifies the feature vector computed by the condition (3) and. The 
higher weight words are considered as a important word. This weight factor is updated in the TF-
IDF feature extraction process to attain the modified TF-IDF feature. This computed weight factor 
is updated in the subsequent condition (4),  

                                                                                                            (4) 

Here, signifies the updated weight factor computed by the condition (3), the first term in 
condition (4) describes the term frequency and the next term describes the IDF. Based on this MTF-
IDF feature extraction using the condition (4), improved form of feature vectors is attained.   

Significance of MTF-IDF: The word frequency of each tweet data are considered for the 
calculation of weight and it is updated in the condition (4). The average word frequency of words 
is computed through the condition (3). The condition (3) computed the word frequency weights 
and it is also updated in condition (4) to improve the process of feature extraction. This weight 
parameter is used to predict the relevancy of word related to the category. This updated feature 
extraction process improves the decision on classification and increases the output accuracy. This 
way of feature extraction makes easier the process of sentiment classification. In existing TF-IDF, 
only the term frequency and IDF of tweets only considered. This general TF-IDF provides the 
feature vector counts of all the words in the considered data. But, the improved form of TF-IDF 
provides the optimal feature vector to the existing to further improve the process of classification. 
The updated weights improve the TF-IDF feature extraction and it enhances the further 
classification performance. This feature extraction process effectively supports the accurate 
sentiment classification as positive, neutral and negative.  
 
3.2.5 Glove feature vectors for words representation 
 
This model is the representation of the text of the global word vector. The idea used in this feature 
extraction process is a word by word estimation of the counting matrix. The correlation among the 
random words is determined by finding the ratio between their occurrence probabilities. The 
relation of co-occurrence is described in the subsequent conditions (5), 

                                                                                                                                     (5) 
Here,  represents the glove feature and represents the counting matrix. This creates the 

counting matrix for words between tweets ( ) to the random words ( ). This condition creates 
the transposable feature matrix based on its transpose ( ). Moreover, the additive shift is utilized 
in this process as described by condition (6), 

                                                                                                                                    
(6) 

Here, this logarithmic condition (6) maintains the sparsity of  and avoids the divergences 
when calculating the co-occurrence matrix. 
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3.3 Sentiment word embedding based agglomerative (SWEA) clustering 
 
Sentiment word embedding based agglomerative clustering is a hierarchical based clustering 
approach. It is otherwise called bottom-up clustering. In this clustering, every data point is 
considered a separate cluster is, known as a leaf. At first, the input data points are clustered 
arbitrarily. Afterwards, the distance among two pair clusters are computed and, based on the 
shortest distance of the data points in the clusters, are grouped further. This process is repeated 
until getting the one optimal form of cluster. The process of clustering formation is stopped when 
reaching one optimal cluster known as root. The Euclidean distance between the considered data 
points are calculated and described in the subsequent condition (7),  

                                                                                                                                     
(7) 

Here,  and  represents the two data points,  represents the Euclidean distance. A 

distance matrix is generated according to the estimated distance between data points. Afterwards,a 
connection between the clusters is computed through the linkage criteria. This linkage criterion 
computes the shortest distance among the data points in the clusters. It is computed by the 
subsequent condition (8), 

                                     

                                                                                            (8) 
Here,  represents the linkage criterion among the data points , 

represents the Euclidean distance amongst data points. This criterion is utilized to merge the 
clusters. Furthermore, the distance matrix is updated after this merging. This process is continued 
until reaching one optimal form of cluster. This process of clustering provides the tree based model 
for clustering. Here, the word to vector model is utilized for word embeddings. Every 
neighbouring word is semantically correlated in the word embedding-based clustering process. 
This clustering process considers that the centroid of the clusters is associated with the 
neighbouring data point with the minimum local density. The local density of the data points are 
computed by the subsequent condition (9), 

                                                                                                                              (9) 

Here,  represents the distance among data points,  represents the cut-off distance 

and  is represented in condition (10), 

                                                                                                                      
(10) 

The local density measure  is equivalent to the total quantity of data points that are closest 
to the data point  than . Moreover,  is computed by the subsequent condition (11), 

                                                                                                    (11) 

The Word embedding based clusters are formed as per the illustrations of and . The 
maximum value of and  is considered as a cluster centre. The flow diagram of SWEA 
clustering is depicted in figure 3. 
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According to the steps provided in figure 3, sentiment features are clustered. This process 

clusters the features effectively and is given as an input to the hybrid BLSTM-CNN framework.  
 

 
 

Figure 3: Flow diagram of SWEA clustering 
 

3.4 Hybrid BLSTM-CNN 
 
In the presented approach, hybrid BLSTM-CNN is utilized to get the entire context information to 
predict the accurate output. Combining BLSTM and the CNN layers can provide important 
information to the output layer through deep learning. Here, the CNN is utilized in the hybrid 
form is to attain enhanced performance. Here, the weights are updated optimally to increase the 
performance of classification. The presented hybrid framework comprises CNN layers and the 
BLSTM layers. The schematic diagram of hybrid BLSTM-CNN is depicted in figure 4. 

 
 

Figure 4: Structure of hybrid BLSTM-CNN 
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3.4.1 Weight optimization 
 
The main motivation of using a modified horse herd optimization algorithm for optimizing the 
weight is the hierarchical organization of horse herds. The optimization approach is modified here 
by updating the weight factor in condition (10).In the hierarchical organization, horse A is more 
dominant than horse B. Similarly, horse B is more dominant than horse C. The optimized weights 
are attained through the presented optimization approach. The weight of the presented hybrid 
framework is described by the subsequent condition (12). 

                                                                                                         (12)
 

The first priority weight of the optimization technique is used to update the hybrid BLSTM-
CNN. Here, the hierarchical order is attained through the fitness estimation of horse herds. The 
number of horses ( ) and function are considered as per the corresponding conditions.  

                                                                                                                                    (13) 

                                                                                                                                     
(14) 

Here,  represents the horse herd. The fitness of the horse herd is computed by the 
subsequent condition (13). If , where and  then 

                                                                                                                                               (15) 

If , where  and  then 

                                                                                                                              
(16) 

Similarly, the prioritized orders of every horse in the herd are estimated through the 
subsequent condition (17), 

                                                                                                                                            

(17) 
Here,  signifies the prioritized order of the horses. Afterwards, the weighted average 

value is estimated for each horse position in the herd, considered a centre of the horse herd. The 
centre evaluation of each horse herd through this process is computed in the condition (18), 

                                                                                                                                         (18) 

Here,  represents the centre of the horse herd. The distance between the location of the 
horse and the herd centre is computed by the condition (19),  

                                                                                                                 
(19) 

Here,  signifies the evaluated distance between the horse location and herd centre.Then, the 
velocity function is updated if one particular horse is fitted to the group of horse herd through the 
condition (20), 

                                                                                                 (20) 

Here,  signifies the weight factor. This factor is updated in the optimization approach 
instead of arbitrary numbers in0 and 1. Here, signifies the current iteration and  signifies 
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the newest iteration. The weight factor updated in condition (20) is computed by the condition 
(21), 

                                 

                                                                                                         (21) 
Here, represents the current iteration, represents the exponential term, and signifies 

the maximum of iteration. The horse memory matrix ( ) comprisesa number of rows equal to the 
horse memory pool ( ) and has the  columns. 

                                                                                                          (22)  

The memory matrix is updated by the subsequent condition described as, 
                                                                                                                   (23) 

Here,  signifies the normal distribution and  signifies the standard deviation. 
Subsequently, the global best position is attained in maximum iteration . This optimization 
process is significant for updating the optimal weight in thehybrid BLSTM-CNN framework. The 
attained global best positions ( ) are considered optimal weight to update the hybrid BLSTM-
CNN framework. 

 
3.4.2 Layers in hybrid CNN-LSTM 
 
The presented framework comprises CNN and BLSTM layers described in the subsequent sub-
sections.  
• Convolutional layer 
This layer performsthe convolution operation on the input data of the deep learning classifier. The 
operation of the convolution layer is represented in the subsequent condition (22), 

                                                                                   (24) 

Here, represents the input matrix, represents the 2-dimensional filter of size  and 
represents the output of a 2D feature map. 

• Pooling layer 
This layer is otherwise known as a down sampling layer. In this layer, the dimensionality of the 
features is reduced for the output of the convolutional layer. Here, the biggest feature value is 
taken for the average pooling operation.  
• BLSTM layer 
The bidirectional LSTM layer is utilized to obtain a high level of features. The bidirectional LSTM 
is the advanced feature learning of LSTM. This BLSTM layer performs deep learning features in 
both forward and backward processes. The concatenation of BLSTM layer feature learning is 
described in the subsequent condition (25) 

                                                                                                                                           (25) 

Here,  signifies the forward pass outputs and  signifies the backward pass outputs. The 
forward and backward process outputs are combined in this condition. The output of the final 
bidirectional LSTM layer is connected with the fully connected layer. 
• Fully connected layer 
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The feature matrix attained from the previous layer is flattened and given as an input to this layer. 
It acts as an interface between the layers with features deep learning to the output decision. This 
layer is updated with the softmax activation function.  
Softmax: This softmax activation function is utilized to predict the output class probability values 
accurately. This is computed by the subsequent condition (26), 

                                                                                                                                                    (26) 

Here,  represents the system output. According to this process, sentiment on Hindi-English 
mixed twitter text is predicted and classified into positive, negative and neutral.  

 
4. Results and Discussion 

 
This section provides the experimental results of the presented methodology in an effective 
sentiment classification on Hindi-English code mixed twitter data. The presented methodology is 
implemented in the PYTHON working platform. In order to achieve better results, the SWEA 
clustering approach and Hybrid BLSTM-CNN framework are presented. The performance of the 
developed approach is examined with the different existing methodologies to prove the 
effectiveness of the developed approach.  
 
4.1 Dataset description: Hindi-English code-mixed twitter dataset 
 
The dataset consists of English-Hindi mixed social media contents. Here, Twitter data is gathered 
in this database. This dataset contains the twitter data in both Hindi and English language mixed 
form. The total number of tweets in the dataset is 10500 with 5249 user location. The available total 
10500 numbers of tweets is in the Hindi-English code mixed language.  
 
4.2 Performance metrics 
  
In this section, different performance evaluations are provided to analyze the effectiveness of the 
presented methodology. Various performance metrics like accuracy, precision, recall, F-measure, 
and Error rate are described in the subsequent subsections,  
 
4.2.1 Accuracy 
 
This performance measure evaluates the overall accurateness of the sentiment classification.This 
performance measure evaluates the proportion of accurately predicted classes among the total 
number of classes. It is computed through the subsequent condition (27), 

                                                                                                          
(27) 

Here,  signifies the accuracy,  signifies the true positive, signifies the true 

negative, signifies the false positive, and signifies the false negative.  
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4.2.2 Precision 
 
This performance evaluation characterizes the ratio of accurately predicted tweet classfor the 
particular sentiment to the total amount of classified tweets in that sentiment. It is computed 
through the subsequent condition (28), 

                                                                                                                                     
(28) 

Here,  signifies the precision performance.  
 

4.2.3 Recall 
 
This performance metric computes the proportion of accurately categorized tweets of given 
sentiment to the total quantity of tweets that are actually under that sentiment category. It is 
evaluated through the subsequent condition (29), 

                           
                                                                                                 

(29) 

Here,  signifies the recall performance.  
 

4.2.4 F-measure 
 
The F-measure performance is evaluated by incorporating both precision and recall performances. 
The F-measure performance is computed through the expressed condition (30), 

                                                                                                                                   
(30) 

 
4.2.5 Error rate 
 
The error rate performance is computed based on the ratio of difference among the actual value 
and the predicted value. To illustrate the accuracy of the classifier, the error rate is computed. This 
performance measure is computed through the subsequent condition (31), 

               

                                                                                                                              
(31) 

Here,  signifies the error rate,  signifies the predicted data and  signifies the actual 
data.  

 
4.3 Performance Analysis 
 
In this section, the performance of the presented approach is examined with different existing 
methodologies. The accuracy performance comparison with different existing approaches is 
mentioned in table 3. Table 3 provides the accuracy performance comparison. This proved that the 
presented approach attains enhanced accuracy performance (97.2%) than the existing KL-NF (Kull 
back-LeiblerNeuro fuzzy) (89.93%) [28], SVM (support vector machine) (88.13%), Multi-class SVM 
(70.1%), LAN2FIS (logistic adaptive network depends on Neuro-fuzzy inference system) (89%), 
KNN (K-nearest neighbour) (67%), KNN+SVM (76%), DT (decision tree) (80%), SMO (sequential 
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minimal optimization) +DT (89.47%) methodologies [27]. Moreover, the graphical representation of 
the accuracy performance comparison is provided in figure 5. 

In figure 5, accuracy performance is compared with the different existing methodologies. 
From this illustration, the presented approach attains higher accuracy performance (97.2%) than 
the existing KL-NF (89.93) [28], SVM (88.13%), Multi-class SVM (70.1%), LAN2FIS (89%) [26], KNN 
(67%), KNN+SVM (76%), DT (80%), SMO+DT (89.47%) [27]. This proved that the presented 
approach provides a significant improvement in regards to accuracy than the existing approaches. 
The performance comparison on precision is mentioned in table 4. 
 

Table 3: Performance on accuracy 

Methodology Accuracy (%) 
KL-NF 89.93 
SVM 88.13 

Multi-class SVM 70.1 

LAN2FIS 89 
KNN 67 
KNN+SVM 76 
DT 80 
SMO+DT 89.47 
Proposed 97.2 

 
In table 4, the presented methodology performance on precision is portrayed. This 

representation depicts that the performance of the presented approach is attaining improved 
performance in precision (96.8%). The existing methodologies are attained only lesser precision 
values than the presented approach. Furthermore, the performance examination on precision is 
depicted in figure 6. 
 

 
 

Figure 5: Comparison examination on accuracy 
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Table 4: Performance comparison on precision 

Methodology Precision (%) 

KL-NF 93.67 

SVM 84.15 

Multi-class SVM 69.7 

LAN2FIS 88.12 

KNN 70.5 

KNN+SVM 68.45 
DT 81.4 

SMO+DT 91.6 

Proposed 96.8 

 
 

 
 

Figure 6: Comparison examination on precision 
 

In figure 6, the precision performance is compared with the already existing approaches. The 
presented approach attains improved precision performance than the existing methodologies. The 
precision performance of the presented approach is 96.8%, which is higher than the existing 
approaches like KL-NF (93.67%) [28], SVM (84.15%), Multi-class SVM (69.7%), LAN2FIS (88.12%), 
KNN (70.5%), KNN+SVM (68.45%), DT (81.4%), SMO+DT (91.6%) [27]. Then, the comparative 
analysis on recall performance is provided in table 5. 
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Table 5: Comparison analysis on recall 

Methodology Recall (%) 

KL-NF 93.01 

SVM 89.76 

Multi-class SVM 70.1 

LAN2FIS 89.96 

KNN 69.3 

KNN+SVM 68.14 

DT 81.4 

SMO+DT 89.5 

Proposed 96.5 

 
In table 5, recall performance analysis is compared. This demonstrates that the presented 

approach providesenhanced recall (96.5%) than the various existing techniques. This further 
proved the effectiveness of the presented approach in accurate sentiment classification on Hindi 
English mixed tweets. Moreover, the performance comparison on recall is portrayed in figure 7.  

 

 
Figure 7: Comparison examination on recall 

 
In figure 7, the performance comparison on recall is depicted. This proved that the developed 

approach attaining improved performance in regards to recall than the existing methodologies. 
The recall performance of the presented approach is 96.5%, which is significantly higher than the 
existing approaches like LAN2FIS (89.96%) [26], KL-NF (93.01%) [28], SVM (89.76%), KNN (69.3%), 
Multi-class SVM (70.1%), KNN+SVM (68.14%), SMO+DT (89.5%), DT (81.4%) [27]. Moreover, the 
comparison analysis of precision, F-measure and recall performances with varying feature 
extractions is given in table 6. 
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Table 6: Performance comparison based on feature extraction 

Techniques Recall (%) Precision (%) F-measure (%) 

Key word extraction with 
TF-IDF 

72.85 59.28 65.37 

Key word extraction with 
WF-TF-IDF 

85.57 69.47 76.68 

Proposed with MTF-IDF 96.5 96.8 97 

 
Table 7: Performance examination on Error rate 

Methodology 
Error rate 
(%) 

SVM 17.81 
Multi-class 
SVM 

29.12 

LAN2FIS 11 
Proposed 4.2 

 
In table 6, the performance comparison is provided by varying feature extractions. This 

proved that the presented approach provides improved performance with MTF-IDF feature 
extractionthan the existing TF-IDF and weight frequency based TF-IDF (WF-TF-IDF) [29]. The 
Comparison analysis on error rate is mentioned in table 7.  

Table 7 compares the error rate results to the existing schemes. Here, the presented approach 
attains a lesser error value (4.2%) than the existing approaches like SVM (17.81%), Multi-class SVM 
(29.12%), and LAN2FIS (11%) [26]. Lesser error value increases the accuracy level of the developed 
approach in accurate sentiment classification. Furthermore, the performance comparison on error 
rate is depicted in figure 8.  

 

 
Figure 8: Performance examination on the Error rate 

 
Figure 8 compares the error rate shown in sentiment classification using different approaches. 

The presented approach attains a lesser error rate, and it proves the efficiency of the presented 
approach in sentiment classification. The error rate of the presented approach is (4.2%), which is 
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significantly lesser than the different existing classifier approaches like SVM (17.81%), Multi-class 
SVM (29.12%), and LAN2FIS (11%) [26]. This demonstrates that the presented approach attains 
improved performance than the existing methodologies.Then the F-measure performance 
comparison is provided in table 8. 

  
Table 8: Comparison analysis on F-measure 

Methodology F-measure (%) 

KL-NF 93.33 

SVM 88.63 

Multi-class SVM 69.9 

LAN2FIS 89.03 

KNN 67.9 

KNN+SVM 77.56 

DT 80.95 

SMO+DT 96.3 

Proposed 97.0 

 
Table 8 compares the F-measure performance of the presented methodology with the 

different existing approaches. The F-measure of the presented approach is 97.0%, which is very 
much higher than the existing approaches. These performance evaluations are increasing the 
efficiency of the presented approach in sentiment classification. Furthermore, the performance 
comparisonon F-measure is depicted in figure 9.  

 

 
Figure 9: Performance examination on F-measure 

 
Figure 9 compares the F-Measure performance with the existing approaches. The attained F-

measure performance of the presented approach is 97.0%, which is significantly enhanced than the 
different existing methodologies like KL-NF (93.33) [28], SVM (88.63%), Multi-class SVM (69.9%), 
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LAN2FIS (89.03%) [26], KNN (67.9%), KNN+SVM (77.56%), DT (80.95%), SMO+DT (96.3%) [27]. 
Performancecomparisons are proved the effectiveness of the presented framework in sentiment 
classification.  

 
5. Conclusion 

 
This paper presented an effective classification of sentiments in Hindi-English mixed twitter data. 
At first, the input twitter data is pre-processed with Stemming, stop word removal, tokenization, 
and lemmatization processes. Subsequently, effective features like Glove feature, count vectors, 
Feature hashing, Modified term frequency-inverse document frequency, and Word2vector features 
are extracted for improved sentiment analysis. Then the extracted features are clustered by 
utilizing sentiment word embedding based agglomerative clustering. Lastly, a hybrid Bidirectional 
long short term memory-convolutional neural network (Hybrid BLSTM-CNN) is utilized for 
accurately categorizing the tweet sentiments into positive, negative and neutral. Here, the 
modified horse herd optimization (MHHO) approach is utilized to update the optimized weights 
in Hybrid BLSTM-CNN. The presented methodology effectively predicts the sentiments in Twitter 
data. The experimental results of the presented Hybrid BLSTM-CNN framework in sentiment 
analysis provided improved performance than the different existing approaches in regards to 
accuracy (97.2%), precision (96.8), Error rate (4.2%), recall (96.5%), and F-measure (97.0%).  
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Abstract

In this article, classical and Bayes interval estimation procedures have been discussed for the reliability
characteristics, namely mean time to system failure, reliability function, and hazard function for the
power Lindley model and its special case. In the classical part, maximum likelihood estimation, maximum
product spacing estimation are discussed to estimate the reliability characteristics. Since the computation
of the exact confidence intervals for the reliability characteristics is not directly possible, then, using the
large sample theory, the asymptotic confidence interval is constructed using the above-mentioned classical
estimation methods. Further, the bootstrap (standard-boot, percentile-boot, students t-boot) confidence
intervals are also obtained. Next, Bayes estimators are derived with a gamma prior using squared
error loss function and linex loss function. The Bayes credible intervals for the same characteristics are
constructed using simulated posterior samples. The obtained estimators are evaluated by the Monte Carlo
simulation study in terms of mean square error, average width, and coverage probabilities. A real-life
example has also been illustrated for the application purpose.

Keywords: Point estimation, Interval estimation of RC, MCMC method.
2000 AMS Classification: 60E05, 62M09, 62F15.
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AIC : Akaike information criterion
ACIs : Asymptotic confidence intervals
BCIs : Bootstrap confidence intervals
BIC : Bayesian information criterion
CDF : Cumulative distribution function
CIs : Confidence intervals
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DFR : Decreasing failure rate
HF : Hazard function
HPD : Highest posterior density
IFR : Increasing failure rate
KS : Kolmogrov Smirnov
LD : Lindley distribution
LLF : Linex loss function

MCMC : Markov Chain Monte Carlo method
MTSF : Mean time to system failure
MLE : Maximum likelihood estimation
MPSE : Maximum product spacing estimation
p-boot : Percentile bootstrap
PLD : Power Lindley distribution
PDF : Probability density distribution
RC : Reliability characteristics
RF : Reliability function
SELF : Squared error loss function
s-boot : Standard bootstrap
t-boot : Student’s t-bootstrap
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1. Introduction

The study of the reliability characteristics, MTSF and RF, HF having great importance to study
the aging pattern of any lifetime phenomenon. The aging pattern of lifetime products are varying
in nature and hence modeled by suitable probability distribution. In this context, exponential
distribution is the most exploited model to describe the inherent characteristics of the data.
Although, its uses are restricted to the constant failure rate data. Alternatively, one parameter LD
is also a good choice to analyze several survival/reliability data. The latter model received more
consideration of several researchers because LD having IFR. LD was proposed by [14] as a counter
example of fiducial statistics. The LD has been extensively used by several researchers to draw the
inferences for the parameters using complete and censored information. For reference, the readers
may be see in [1], [10], [13], [17] & [18] and the cited references therein. Let a random variable Y
follow LD with parameter β, then the variable X = Y1/α has the PLD. PLD was proposed by [9].
The PDF, CDF of PLD are, respectively, given by;

f (x, α, β) =
αβ2

(1 + β)
(1 + xα)xα−1e−βxα

; x ≥ 0, α, β > 0 (1)

F(x, α, β) = 1 −
(

1 +
β

1 + β
xα

)
e−βxα

(2)

where, x ∈ R+, α(> 0) is the shape parameter and β(> 0) is the scale parameter. The parameter
α involves the additional flexibility in terms of hazard rate as it has IFR for α > 1 and DFR for
α < 1. PLD has been extensively used for estimation and prediction purpose and possesses all
similar property as LD for α = 1.

The theory of classical point estimation is based on the MLE because it assumes all optimum
property such as consistency, sufficiency, efficiency, etc but sometimes it leads absurd result,
especially for J-shaped distribution or unbounded range of distribution. Therefore, in such
cases the MPSE might be better alternative. Moreover, the MLE required joint density function
and MPSE required product spacing function. Whereas, the Bayes point estimation theory
combines prior information and sample information supplied by likelihood function. Hence,
Bayes paradigm involves the updating form of likelihood function. An important element, in
Bayes estimation theory, is the loss function. The most popular one is SELF, which can be easily
justified on grounds of minimum variance-unbiased estimation theory. However, the weakness of
this loss function is that it is symmetric and provides an equal weight to the overestimation and
underestimation of the same magnitude. But, in some real-life situation, specially in reliability
analysis overestimation can lead to more severe or less severe consequences than underestimation,
or vice versa. Thus, the use of asymmetric loss function is recommended. Also, use of symmetric
loss function may be inappropriate as has been recognized by [4] and [22]. Thus, a number of
asymmetric loss functions are available in literature, and one of the most widely used asymmetric
loss function is the Linex loss function, originally proposed by [22] and popularized by [23]
which has been found to be appropriate in the situation where overestimation is more serious
than underestimation or vice-versa. Let, θ̂ be the estimate of the parameter θ and ∆ = (θ̂ − θ)
defines the deviation between estimated and true value of θ. The linex loss function (LLF) may be
expressed as;

L(∆) ∝
(

eψ∆ − ψ∆ − 1
)

; ψ ̸= 0 (3)

where ψ is the loss parameter which reflects the direction and degree of asymmetry. The loss
parameter ψ allows different shapes of this loss function. If ψ > 0, then the linex loss function is
quite asymmetric about zero with overestimation being more costly than underestimation and
vice-versa. For ψ closes to zero, then this loss function is approximately squared error loss and
therefore almost symmetric. Several authors have used this loss function in various estimation
and prediction problems.
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The focus of this paper is to consider the classical and Bayesian interval estimation of the MTSF,
RF and HF for the PLD and its special case LD, and to develop a guideline for choosing the best
estimation method that gives better estimates and CIs for RC, which would be of deep interest to
applied statisticians/engineers. In classical estimation MLE and MPSE have been discussed for
the estimation of the reliability characteristics. The Bayes estimators are derived under gamma
informative prior using SELF and LLF. It is observed that the posterior expectation are turned in
implicit form. Therefore, MCMC technique has been used to obtain the Bayes estimates based on
posterior samples. Besides, ACIs using MLE and MPSE and Bayes credible/HPD are discussed.
Further, different BCIs namely, standard bootstrap (s-boot), percentile bootstrap (p-boot) and
student t-bootstrap (t-boot) of the reliability characteristics are proposed. To the best of our
knowledge, no attempt has been made to study the aforementioned estimators, as well as CIs
based on reliability characteristics for the PLD. The present work aims to fill this gap.

Evaluation of the different confidence intervals for the parameters as well RC associated with
any lifetime distribution have great advantages in different fields e.g. engineering, industry,
clinical trial study to predict the possible values of the lower and upper bound to achieve
some standard benchmark. For example, in reliability theory several applications may be
found in measuring stress level applied on a particular system. Minimum/maximum value
of the stress level beyond the certain range of stress-level affects the working mode of the
system/equipment. Further, the same may be seen in case of power supply in any electronic
device, the minimum/maximum power supply beyond the specified limits leads the fail to
functioning the electric circuit. Similarly, in industry, the experimenter may be interested to
predict the quality of goods between certain limits. If the quality of lots lies in that interval
then the practitioner may be interested to send/accept the lot in market otherwise reject the
lot. Acceptance/rejection of the lot may lead certain level of confidence coefficient. Further, in
context of the survival analysis, cancer patients are treated with drug with specified limit of
doses, if a particular patient does not receive certain amount of drug/doses would causes the
death of the patient. Motivated with this fact and variety of application of the confidence interval,
several confidence intervals estimation for the RC have been proposed and studied for LD and
PLD. Since, exact classical CIs for the considered characteristics can not be obtained because of
unavailability of exact pivotal quantity, therefore, the asymptotic and bootstrap approaches have
been employed to overcome the same difficulties. The similar difficulty has been encountered
with the construction of Bayes interval. Therefore, the approximate Bayes interval has been
constructed for RC based on generated posterior samples. The underlying RC for PLD are listed
as follows;

• MTSF: The mean time to system failure is the simply mean of the PLD is given by;

µ =
(α + αβ + 1) Γ

(
1
α

)
α2β

1
α (1 + β)

(4)

• RF: It is the probability that the system performs beyond the certain time t, for PLD it is
given as

R(t) =
(

1 +
β

1 + β
tα

)
e−βtα

(5)

• HF: The instantaneous failure of any system is defined by its HF

h(t) =
α β2 (1 + tα) tα−1

(1 + β + βtα)
(6)

The RC for the LD can be obtained by putting α = 1 in the above expressions, respectively.
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The reminder of the paper is organized as follows: Section 2, describes different methods of
classical estimation. The problem of ACIs based on MLEs and MPSEs are discussed in Section
of 3. The BCIs for RC are described in Section 4. Bayes estimation procedure along with Bayes
computation technique have been discussed in Section 5. Section 6 presents the comparison
among the classical and Bayes estimators using Monte Carlo simulations. A real-life data set has
been used for illustrative purpose in Section 7. Lastly, Section 8 concludes the findings of the
considered study.

2. Classical methods of estimation

2.1. Maximum likelihood estimation

In this section, we consider the classical estimation of the RC discussed in previous section. For
this purpose, first we obtain the MLE of the parameters and then the MLE of the RC can be
constructed by using invaraince property. Let X1, X2, · · · , Xn are the n iid units from the Equation
(1) put on a life test. The log-likelihood function (ln(α, β|x) = L) based on all n observations is

L = n ln(α) + 2n ln(β)− n ln(1 + β)− β
n

∑
i=1

xα
i +

n

∑
i=1

ln(1 + xα
i ) + (α − 1)

n

∑
i=1

ln xi (7)

The MLEs of the parameters α, β are obtained by solving the derivatives of L w. r. t. α and β
respectively. Let α̂m, β̂m be the MLEs of the parameters then the MLEs of the RC are obtained as

µ̂m =
Γ
(

1
α̂m

)
(α̂m + α̂m β̂m + 1)

α̂2
m β̂

1
α̂m
m (1 + β̂m)

, R̂(t)m =

(
1 +

β̂m

1 + β̂m
tα̂m

)
e−β̂mt, ĥ(t)m =

α̂m β̂2
m (1 + tα̂m)tα̂m−1

1 + β̂m + βtα̂m

(8)

2.2. Maximum product spacing estimation

The maximum product spacing method is introduced by [5], [6] as an alternative to MLE for the
estimation of the unknown parameters of continuous univariate distributions. The maximum
product spacing method was also derived independently by [15] as an approximation to the
Kullback-Leibler measure of information. To motivate our choice, [6] proved that this method is
as efficient as the MLEs and consistent under more general conditions.

Let us define the spacing function as the difference of the two consecutive CDFs

Di = F(xi)− F(x(i−1)) =

(
1 +

β

1 + β
xα

i−1

)
e−βxα

i−1 −
(

1 +
β

1 + β
xα

i

)
e−βxα

i (9)

such that ∑Di = 1,

MPSE method chooses α, β which maximizes the geometric mean of the spacing defined in
equation (9)

G =

(
n+1

∏
i=1

Di

) 1
n+1

(10)

The equation (10) defines the alternative likelihood function using spacing. The MPS estimates
can be obtained with the help of above equation by maximizing w.r.t. the parameters using
iterative procedure. Once MPSE of the parameters say α̂p, β̂p are obtained, the MPSE of the
reliability characteristics are obtained by simply using the invariance property.

µ̂p =
Γ
(

1
α̂p

)
(α̂p + α̂p β̂p + 1)

α̂2
p β̂

1
α̂p
p (1 + β̂p)

, R̂(t)p =

(
1 +

β̂p

1 + β̂p
tα̂p

)
e−β̂pt, ĥ(t)p =

α̂p β̂2
p (1 + tα̂p)tα̂p−1

1 + β̂p + βtα̂p

(11)
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respectively.

3. Asymptotic confidence intervals for RC

3.1. ACIs using the usual likelihood function

In most of the two parameter lifetime distributions the construction of exact confidence intervals
(CIs) usually is not an easy task due to implicit form of the MLEs. Therefore, 100(1 − τ)% ACIs
may be considered based on asymptotic distribution of MLEs. It is noted that

√
n
(
Θ − Θ̂

)
∼

AN(0, I(Θ̂)), where Θ = (α, β) and Θ̂ is the estimate of Θ. Hence, for this purpose the Fisher
Information matrix is computed as;

I(α̂, β̂) = E


−∂2L

∂α2 − ∂2L
∂α∂β

− ∂2L
∂β∂α

−∂2L
∂β2


(α̂,β̂)

(12)

where;

∂2L
∂α2 = − n

α2 − β
n

∑
i=1

(ln xi)
2xα

i +
n

∑
i=1

xα
i (ln xi)

2

1 + xα
i

(
1 −

xα
i

1 + xα
i

)
+ 2

n

∑
i=1

xα
i ln xi +

n

∑
i=1

xα
i (ln xi)

2 {(α − 1)}

∂2L
∂α∂β

=
∂2L

∂β∂α
=

n

∑
i=1

xα
i ln xi,

∂2L
∂β2 =

−2n
β2 +

n
(1 + β)2 .

All the above derivatives are evaluated at (α̂, β̂). The above matrix given in equation (17) can
be inverted to obtain the estimate of the asymptotic variance- covariance matrix of the MLEs
and diagonal elements of I−1(α̂, β̂) provides asymptotic variance of α and β respectively. Then
using large sample theory, two sided 100(1 − τ)% approximate confidence interval for α, β is
constructed as

α̂ ± Z1− τ
2

√
var(α̂), β̂ ± Z1− τ

2

√
var(β̂).

Since, the MLEs of the RC’s are constructed easily by applying invariance property of MLE but
at the same time similar difficulties arise in construction of CIs for RCs, because no explicit
distributions are available for the RCs. As we have seen from previous equations, RCs are the
function of parameters α, β. Hence, the intervals for µ, R(t) and H(t) are constructed by applying
the concept of ∆-method. The ∆-method is a general approach for computing confidence intervals
for functions of maximum likelihood estimates. Let g(Θ) is any function of Θ such that it is
differentiable w.r.t. the parameter(s), then

√
n
(

g(Θ)− g(Θ̂)
)
∼ AN(0, σ2

Θ g′(Θ̂)2)

CI for µ:

For large sample, it may verified that,
√

n (µ − µ̂)√
σ2

µ̂

∼ AN(0, 1)

where, variance of µ (σ2
µ̂) is given as;

σ2
µ̂ = σ2

α̂

(
∂µ

∂α

)2
+ σ2

β̂

(
∂µ

∂β

)2
,
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∂µ

∂α
=

Γ 1
α (α + αβ + 1)

α2β
1
α (1 + β)

[
− 1

α2 Ψ(1/α) +
1 + β

α + αβ + 1
− 2

α
+

log β

α2

]
∂µ

∂β
=

Γ 1
α (α + αβ + 1)

α2β
1
α (1 + β)

[
α

α + αβ + 1
− 1

αβ
− 1

1 + β

]
σ̂2

α and σ̂2
β are the variances of the parameter α, β respectively. The 100(1 − τ)% CIs for the µ is

given by,

µ̂m ± Z τ
2

√
σ2

µ̂

CI for R(t):
Similarly, for reliability function R(t),

√
n
(

R(t)− R̂(t)
)√

σ2
R̂(t)

∼ AN(0, 1)

where, variance of R̂(t)(σ2
R̂(t)

) is given as;

σ2
R̂(t) = σ2

α̂

(
∂R(t)

∂α

)2

+ σ2
β̂

(
∂R(t)

∂β

)2

∂R(t)
∂α

=

(
1 +

β

1 + β
tα

)
e−βtα

[
−β tα log t +

β tα log t
1 + β + β tα

]
∂R(t)

∂β
=

(
1 +

β

1 + β
tα

)
e−βtα

[
−tα +

tα

(1 + β)(1 + β + β tα)

]
The 100(1 − τ)% CIs for the R(t) is given by,

R̂(t)m ± Z τ
2

√
σ2

R̂(t)

CI for h(t): Similarly for hazard rate;

√
n
(

h(t)− ĥ(t)
)

√
σ2

ĥ(t)

∼ AN(0, 1)

where, variance of ĥ(t), σ2
ĥ(t)

is given as;

σ2
ĥ(t) = σ2

α̂

(
∂h(t)

∂α

)2

+ σ2
β̂

(
∂h(t)

∂β

)2

∂h(t)
∂α

=
α β2 (1 + tα) tα−1

(1 + β + βtα)

[
1
α
+

tα log t
1 + tα

+ log t − β tα log t
1 + β + β tα

]
,

∂h(t)
∂β

=
α β2 (1 + tα) tα−1

(1 + β + βtα)

[
2
β
+

1 + tα

1 + β + β tα

]
The 100(1 − τ)% CIs for the h(t) is given by,

ĥ(t)m ± Z τ
2

√
σ2

ĥ(t)
.
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3.2. ACIs using spacing function

In this section, we have obtained the asymptotic confidence intervals using MPSE. As it was
mentioned by [6] that the MPS method has the similar properties as MLE and is asymptotically
equivalent. Estimation using MPSE has been also discussed by [19] and they showed mathemati-
cally that θ̂MPS = θ̂ML + o(n− 1

2 ) i.e. (the asymptotic or bootstrap inference around parameters
based on MPSE may be carried out by utilizing the ML asymptotic). Utilizing the same concept, as
MPSEs do not yield closed form of the estimators, hence the ACIs using MPSE for the parameters
have been constructed. Let I

′
(α̃, β̃) be the observed Fishers information matrix and is defined as

I
′
(α̃p, β̃p) =

[
−G ′ ′′

αα −G ′ ′′
αβ

−G ′ ′′
βα −G ′ ′′

ββ

]
(α̃, β̃)

(13)

The elements of the above matrix are given below

G ′ ′′
αα =

1
n + 1

 F(x1, α, β)F
′′
αα(x1, α, β)−

(
F
′
α(x1, α, β)

)2

F(x1, α, β)2


+

1
n + 1

 n

∑
i=2

{F(xi, α, β)− F(xi−1, α, β)}
{

F
′′
αα(xi, α, β)− F

′′
αα(xi−1, α, β)

}
{F(xi, α, β)− F(xi−1, α, β)}2


− 1

n + 1


{

F
′
α(xi, α, β)− F

′
α(xi−1, α, β)

}2

{F(xi, α, β)− F(xi−1, α, β)}2

− 1
n + 1

{1 − F(xn, α, β)} F
′′
αα(xn, α, β) +

{
F
′
α(xn, α, β)

}2

{1 − F(xn, α, β)}2


Similarly, the second derivative of the function G with respect to β is given by,

G ′ ′′
ββ =

1
n + 1

 F(x1, α, β)F
′′
ββ(x1, α, β)−

(
F
′
β(x1, α, β)

)2

F(x1, α, β)2


+

1
n + 1

 n

∑
i=2

{F(xi, α, β)− F(xi−1, α, β)}
{

F
′′
ββ(xi, α, β)− F

′′
ββ(xi−1, α, β)

}
{F(xi, α, β)− F(xi−1, α, β)}2


− 1

n + 1


{

F
′
β(xi, α, β)− F

′
β(xi−1, α, β)

}2

{F(xi, α, β)− F(xi−1, α, β)}2

− 1
n + 1

{1 − F(xn, α, β)} F
′′
ββ(xn, α, β) +

{
F
′
β(xn, α, β)

}2

{1 − F(xn, α, β)}2


and the second derivative of the function G with respect to α, β is given as:

G ′ ′′
αβ = G ′ ′′

βα =
1

m + 1

 F(x1, α, β)F
′′
αβ(x1, α, β)− F

′
α(x1, α, β)F

′
β(x1, α, β)

F(x1, α, β)2


+

1
m + 1

 n

∑
i=2

{F(xi, α, β)− F(xi−1, α, β)}
{

F
′′
αβ(xi, α, β)− F

′′
αβ(xi−1, α, β)

}
{F(xi, α, β)− F(xi−1, α, β)}2


− 1

m + 1


{

F
′
α(xi, α, β)− F

′
α(xi−1, α, β)

}{
F
′
β(xi, α, β)− F

′
β(xi−1, α, β)

}
{F(xi, α, β)− F(xi−1, α, β)}2


− 1

m + 1

{1 − F(xm, α, β)} F
′′
αβ(xm, α, β) +

{
F
′
α(xm, α, β)

}{
F
′
β(xm, α, β)

}
{1 − F(xm, α, β)}2
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where,

F
′
α(xi, α, β) = −

(
1 +

β

1 + β
xα

i

)
e−βxα

i

[
−β xα

i log xi +
β xα

i log xi

1 + β + β xα
i

]
,

F
′′
αα(xi, α, β) = F′

α(xi, α, β)

[
− F′

α(xi, α, β)

1 − F(xi, α, β)
+ log xi +

β(1 + β) xα
i log xi

(1 + β)(1 + β + β xα
i ) + 1

−
β xα

i log xi

1 + β + β xα
i

]

F
′
β(xi, α, β) = −

(
1 +

β

1 + β
xα

i

)
e−βxα

[
−xα

i +
xα

i
(1 + β)(1 + β + β xα

i )

]

F
′′
ββ(xi, α, β) = F

′
β(xi, α, β)

[
F′

β(xi, α, β)

1 − F(xi, α, β)
−

2 + xα
i + 2β + 2β xα

i
(1 + β)(1 + β + β xα

i ) + 1
− 1

1 + β
−

1 + xα
i

1 + β + β xα
i

]

F
′′
βα(xi, α, β) = −

F′
β

1 − F(xi, α, β)
+

2 + xα
i + 2β + 2β xα

i
(1 + β)(1 + β + β xα

i ) + 1
− 1

1 + β
−

1 + xα
i

1 + β + β xα
i

.

Thus, we can obtain an estimator of the information matrix as I(α̂, β̂), where α̂=α̂p and β̂=β̂p are
the MPS estimator of the parameters and V(α̂) and V(β̂) are the diagonal elements of I−1(α̂, β̂)
which denotes the variance and covariance matrix. The approximate (1 − τ)100% confidence

intervals for the parameters α and β is, therefore, given as, α̂ ± Z τ
2

√
V(α̂) and β̂ ± Z τ

2

√
V(β̂)

respectively, where Z τ
2

is the upper ( τ
2 ) percentile of standard normal distribution. The interval

estimate of RC using MPSE can be constructed in same way as discussed in previous subsection.

4. Bootstrap confidence interval

The confidence regions of parameters of a distribution have been determined using aspects of the
distribution of the data. In particular, these regions have often been specified by appealing to the
central limit theorem and normal approximations. The notion behind bootstrap techniques begins
with the concession that the information about the source of the data is insufficient to perform
the analysis to produce the necessary description of the distribution of the estimator. Thus, in
this section, we considered an alternative procedure to usual method of CIs called as bootstrap
method. The bootstrap method of finding confidence interval of parameters of a distribution is a
most efficient sampling and re-sampling procedures without need of pivotal quantity, for more
detail see, [7-8], [11]. Here, we discuss the different types of bootstrap confidence interval (BCIs),
namely standard bootstrap (s-boot), percentile boot (p-boot) and students t-bootstrap (t-boot).
The following steps may be used to construct the 95% BCI’s.

1. Specify the value of sample size n and model parameters α, β.

2. Generate a sample x1, x2, · · · , xn from equation (1)

3. Compute MLE α̂, β̂ of α, β using x1, x2, · · · , xn.

4. Again generate bootstrap samples x∗1 , x∗2 , · · · , x∗n from equation (1) using α̂, β̂ as a population
value and then compute MLE of RC ρ̂ = [µ̂, R̂(t), ĥ(t)].

5. Repeat step 2-3, B times and simulate ρ̂∗i ; i = 1, 2, · · · , B.
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4.1. s-boot

Let ρ̄∗ and σ∗
ρ be the sample mean and sample standard deviation of ρ̂∗, i = 1, 2, · · · , B.

ρ̄∗ =
1
B

B

∑
i=1

ρ̂∗i and σ∗
ρ =

√√√√ 1
B

B

∑
i=1

(ρ̂∗i − ρ̄∗)2

respectively. Thus, 100(1 − τ)% s-boot confidence interval for ρ is given by

[ρ̂s
L, ρ̂s

U ] ∈ [ρ̂∗ − Zτ/2 σ∗
ρ ρ̂∗ + Zτ/2.σ∗

ρ ]

4.2. p-boot

Let ρ̂∗(δ) be the δ-percentile of (ρ̂∗(i); i = 1, 2, · · · , B) and ρ̂∗(δ) is such that

1
B

B

∑
i=1

I(ρ̂∗(i) ≤ ρ̂∗(δ)) = δ : 0 ≤ δ ≤ 1

where, I(.) is the indicator function. Then 100(1 − τ)% p-boot confidence interval is given by(
ρ̂

p
L, ρ̂

p
U

)
∈
(

ρ̂∗[B
τ
2 ], ρ̂∗[B

1−τ
2 ]
)

4.3. t-boot

The students t-bootstrap confidence interval is obtained by the following additional steps;

• Generate again bootstrap sample x∗∗1 , x∗∗2 , x∗∗n of size n from equation (1) using ρ̂∗.

• Compute MLE of ρ say ρ̂∗∗.

• Calculate σ∗∗
ρ =

√
1
B ∑B

i=1(ρ̂
∗∗
i − ρ̄∗∗)2 where ρ̄∗∗ = 1

B ∑B
i=1 ρ̂∗∗i

• Compute the statistic T =
ρ̂∗∗ − ρ̄∗∗

σ∗∗
ρ

. The 100(1 − ρ)% t-boot confidence interval for ρ is

given by (
ρ̂

p
L, ρ̂

p
U

)
∈
(

ρ̄∗∗ − Tτ/2σ∗∗
ρ , ρ̄∗∗ + Tτ/2 σ∗∗

ρ

)
To study the different CIs, we consider their estimated W and C. For each of the considered
methods, the average width of the BCIs is computed based on the B different trials. The
average width and coverage probability are given by

W =
∑B

i=1 (Ui − Li)

B
, C =

# (L ≤ ρ ≤ U)

B

where L and U are the 100(1 − τ)% CI based on B replicates.

5. Bayesian estimation and credible interval

In this section, the Bayes estimators of the RC have been derived under gamma priors and
different loss function as mentioned in Section 1. Let X = (X1, X2, X3, ..., Xn) be the random
observations of size n from (1). Since, Bayes paradigm combines sample information with prior
distribution and provide the updated distribution, termed as posterior distribution, hence, the
posterior distribution is derived and the respective Bayes estimates are computed under SELF
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and LLF. For review of the parametric inference on Bayesian paradigm one may see, [16], [18],
[20] etc. Let us consider the priors for α, β are;

π1(α) ∝ αa−1e−bα, π2(β) ∝ βc−1e−dβ

Since, the considered priors are independent and flexible in nature, hence the joint prior π(α, β)
of (α, β) is given by;

π(α, β) ∝ αa−1e−bαβc−1e−dβ (14)

where a, b, c and d are the hyper-parameters, assuming to be known and positive. The prior
defined in the equation above accommodates the different shapes of other distributions which
depends over the values of hyper-parameters. Jeffrey’s non-informative prior is also a particular
case of the above prior and obtained by assuming a, b, c, d → 0, given by

π(α, β) ∝
1

α β
; α, β > 0

Although, the prior defined above is improper in nature but the resulting posterior always remains
proper. The joint posterior distribution is obtained as

p(α, β|x) ∝ αn+a−1β2n+c−1(1 + β)−n exp

{
−bα − dβ − β

n

∑
i=1

xα
i

}
n

∏
i=1

{
(1 + xα

i )xα−1
i

}
(15)

The Bayes estimators of the RC under SELF is the posterior mean and is given by

Θ̂s f = Ep(Θ|x) (16)

where

Ep(Θ|x) = K−1
∞∫

α=0

∞∫
β=0

Θ αn+a−1β2n+c−1(1 + β)−n exp

{
−bα − dβ − β

n

∑
i=1

xα
i

}
n

∏
i=1

{
(1 + xα

i )xα−1
i

}
dα dβ

(17)

SELF is the most popular and most widely used symmetric loss function, although sometimes in
reliability inference SELF does not provide more accurate result due to over and under estimation.
The details of LLF is given in Section 1. The Bayes estimates of the considered characteristics
under the LLF is obtained by using the following expression.

Θ̂l f = − 1
ψ

log
(

Ep

[
e−ψΘ|x

∼

])
(18)

provided that the expectation Ep

[
e−ψΘ|x

∼

]
exists and is finite, where Θ = [α, β, µ, R(t), h(t)] and

Ep

[
e−ψΘ |x

∼

]
= K−1

∞∫
α=0

∞∫
β=0

αn+a−1 β2n+c(1 + β)−n exp

{
−bα − dβ − β

n

∑
i=1

xα
i − ψΘ

}
×

n

∏
i=1

{
(1 + xα

i )xα−1
i

}
dα dβ. (19)

5.1. Bayes computation via Markov Chain Monte Carlo method

From the previous section, It has been observed that the form of Bayes estimators can not
be solved analytically. The evaluation of the posterior expectation will be complicated and it
will be the ratio of two intractable integrals. In such situations, Markov Chain Monte Carlo
(MCMC) technique can be effectively used to generate sample from full conditional posterior
distributions. For more detail about MCMC method see, [12], [20], [21]. Thus concept of Gibbs
under Metropolis-Hastings (M-H) sampling procedure has been utilized to generate sample from
the posterior density function (22) under the assumption that parameters α and β has independent
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gamma priors with hyper-parameters (a, b) and (c, d) respectively. To implement Gibbs under
M-H algorithm the full conditional posterior densities of α and β are given by;

p1(α|β, x) ∝ αn+a−1e−bα exp

{
−bα − β

n

∑
i=1

xα
i

}
n

∏
i=1

{
(1 + xα

i )xα−1
i

}
(20)

p2(β|α, x) ∝ β2n+c−1(1 + β)−n exp

{
−dβ − β

n

∑
i=1

xα
i

}
(21)

The following steps are taken to generate posterior samples from full conditional distribution.

• Start with j = 1 and initial values (α0, β0)

• Using M-H algorithm generate posterior sample for α and β from (25) and (26) respectively,
where asymptotic normal distribution of full conditional densities are considered as a
proposal.

• Repeat step 2, for all j = 1, 2, 3, · · · , N and obtained (α1, β1), (α2, β2), ...(αN , βN)

• Generate the sequence of µ, R(t) and h(t) for specified t by plugin the sequences of
(αj, β j); j = 1, 2, · · · , N, as

µ1, µ2, · · · , µN , R1, R2, · · · , RN , h1, h2, · · · , hN

• The Bayes estimates of the RC under SELF are given by

µ̂s f ≈
1

N − N0

N−N0

∑
j=1

µj, R̂(t)s f ≈
1

N − N0

N

∑
j=1

Rj, ĥ(t)s f ≈
1

N − N0

N

∑
j=1

hj

• The Bayes estimates under LLF are obtained as;

µ̂l f = − 1
ψ

log

(
1

N − N0

N

∑
j=1

exp(−ψµj)

)
, R̂(t)l f = − 1

ψ
log

(
1

N − N0

N

∑
j=1

exp(−ψRj)

)
, ĥ(t)l f = − 1

ψ
log

(
1

N − N0

N

∑
j=1

exp(−ψhj)

)
,

respectively. N0 is the burn in period of Markov Chain.

5.2. HPD credible interval

After extracting the posterior samples we can easily construct the HPD credible intervals for α and
β, see [3]. Therefore for this purpose order α1, α2, ..., αN as α1 < α2 < ... < αN and β1, β2, ..., βN as
β1 < β2 < ... < βN . Then 100(1 − τ)% credible intervals of α and β are

(α1, α[N(1−τ)]), ..., (α[Nτ], αN)and(β1, β[N(1−τ)]), ..., (β[Nτ], βN)

Using the sequence of µ, R(t) and h(t) the 100(1− τ)% credible intervals for RC can be constructed
by proceeding in similar way. Here [x] denotes the greatest integer less than or equal to x. Then,
the HPD credible interval is that interval which has the shortest length.

6. Comparison of estimators by a simulation study

In this section, we carry out a simulation study to assess the performance of the proposed point
(classical & Bayesian) and interval estimates (AICs, BCIs & HPD) for PLD and in particular for
Lindley distribution. To perform simulation study, a set of sample sizes n = 10, 20, 30, 50, 100
with different parametric combinations (α, β) = (0.75, 0.85), (1, 0.75), (2.5, 1.5), (2, 2.5)&(3.5, 2)
are taken. Since, the PLD reduces to LD when α = 1, therefore the choice (α, β) = (1, 0.75) among
the considered choices corresponds the result for LD. In classical setup, the MLE, MPSE of µ,
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R(t) and h(t) have been computed for specified t = 0.75. The ACIs based on MLEs and MPSEs
are constructed for the considered characteristics. Also, for each design, B = 1, 000 bootstrap
samples with each of size n are drawn from the original sample and BCIs are constructed based
on replicated K = 3000 times. Next, we discussed the Bayesian estimation procedure for the
estimation of the same characteristics using MCMC technique and construct HPD credible interval
based on generated posterior samples. The Bayes estimates are reported under informative gamma
prior and non-informative prior using SELF and LLF. For LLF, the choices of loss parameter ψ are
taken as (−2, 1.5). The negative/positive choices of ψ indicated the departure from symmetry.
Average mean square error (MSEs) of the RC for each set up are reported in Tables 4-6. In all
the simulation Tables, (•)m, (•)p denote the estimates obtained via MLE, MPSE and (•)s f , (•)l f 1,
(•)l f 1 denote the Bayes estimates obtained under SELF and LLF (ψ = −2, ψ = −1.5) respectively.
Tables 4-6 describe the average estimates and MSEs for MTSF, RF and HF obtained via different
classical methods of estimation and Bayes estimation method, respectively. Form this simulation
study it is noted that the MSEs of the classical estimates obtained through MLE and MPSE
methods are very close to each other and more or less similar to the MSEs of the Bayes estimates
obtained under non-informative prior. However, the Bayes estimates under informative prior
information provide better results in terms of MSE than classical estimates and Bayes estimates
with non-informative prior. The MSEs of all the proposed estimates ensure the property of
consistency through increasing sample size, also the MSEs of the Bayes estimators under SELF
and Bayes estimates under LLF are almost same and the significance differences are very small
for all the considered choices of parameters and sample sizes.

The estimated average widths (W) and coverage probabilities (C) of 95% ACIs based on
MLE and MPSE, different BCIs and HPDIs of the RC are reported in Tables 7-9. We observe
that as the sample size increases, the average widths decreases in all the cases as expected. The
width of the Bayes interval is less as compared to the width of ACIs and BCIs. In comparison
of ACIs and BCIs, the width of BCIs are lesser and boot-p perform better. Consequently, the
smaller width affects the coverage probability. All simulations were performed using programs
written in the open source statistical package R. Moreover, among the three methods of BCIs, the
average width of p-boot is minimum in most of the cases and the average widths follows the
order p-boot < s-boot < t-boot for all the considered variations of the sample size and model
parameters. Therefore, we conclude that p-boot shows overall better performance of the BCIs for
PLD.

7. Real data analysis

In this section, a real-life data set has been considered to show the applicability of proposed
study. The data set is reported by [2] which represents the strength measurements in GPA, for
single carbon fibers and impregnated 1000-carbon fiber tows. The data set is given below; The
average strength of single carbon fiber is 1.451 with standard deviation 0.495. The summary of
the data set is presented via box plot in Figure 1, and noted that the median and mean of the data
are very close to each other. However, the quartiles are equidistance from median value which
indicates the symmetricity of the data. The fitting of the PLD for the above data set is checked
by different model selection tools and compared with most popular two parametric probability
distributions namely, Weibull distribution (WD), gamma distribution (GD), normal distribution
(ND), logistic distribution (LGD) and generalized exponential distribution (GED). The considered
selcetion tools are: negative of log-likelihood −L, Akaike information criterion (AIC) [AIC=-2
L+2k], Bayesian information criterion (BIC) [BIC=-2 L + k log n], Kolmogrov-Smirnov (KS) test
[KS=Supx|Fn(x)− F̂(x)|]. The model would be taken as best with least value of these measures.
The values of the considered measures along with the p−value are given in Table 1, and observed
that PLD has least values of −L̂, AIC, BIC, KS with higher p-value. Further, the estimated density
with histogram and empirical cumulative distribution function plots for the different models are
displayed in Figure 2 and Figure 3, respectively. From these Figures, it may be easily verified that
the PLD might be a better choice as compared to other considered probability distributions.
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Figure 1: Summary of the data via box plot.

Table 1: Values of different tools for model selection.

Model MLE -LogL AIC BIC KS P-VALUE
PLD α̂=2.6959 -48.6797 101.3594 105.8276 0.04054 0.9999

β̂=0.4864
WD â=3.2487 -49.00054 102.0011 106.4693 0.043752 0.9994

b̂=1.0171
GD α̂=6.9968 -53.08266 110.1653 114.6335 0.0884 0.6536

β̂=4.8209
ND µ̂=1.4513 -48.90256 101.8051 106.2733 0.037603 0.9992

σ̂=0.4915
LGD µ̂=1.4533 -49.40943 102.8189 107.2871 0.047889 0.9974

ŝ=0.2796
GED α̂=8.8283 -56.66857 117.3371 121.8054 0.11192 0.3531

λ̂=1.8965

The classical estimates (MLEs, MPSE) of the RC, µ, R(t) and h(t) are computed for arbitrarily
chosen t = 1.5. Since in case of real-life data set no any prior information is available, thus one
may use most suited non-informative prior which may be proper or improper but it leads proper
posterior. Here, we have taken the same non-informative prior where losses are SELF and LLF.
The Bayes estimates are calculated under non-informative prior using MCMC method, reported
in Table 2. In order to perform Bayes computation using MCMC method, well mixing of the chain
has been checked via tuning of the variance of the MLE. To achieve stationarity of the Markov
Chain, (N0 = 500) samples (burn in period) are discarded out of 12000 generated posterior
deviates. It has been verified that the generated posterior samples are well mixed and assume the
stationary property. Further, different interval estimates namely ACIs, BCIs and HPD credible are
constructed for the same characteristics, given in Table 3. From Table 3, it is clearly visible that
the width of the interval obeys the pattern Wm ≈ Wp > Ws−boot > Wp−boot ≈ Wt−boot > WBayes.

Table 2: Estimates of the RC for t = 1.5 of the considered data set.

RC Θ̂m Θ̂p Θ̂s f Θ̂l f 1 Θ̂l f 2
µ 1.4519 1.4488 1.4563 1.4586 1.4546

R(t) 0.4632 0.4752 0.4673 0.4647 0.4647
h(t) 1.7200 1.7236 1.7121 1.7520 1.6840
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Table 3: Width of the interval of RC for the considered data set when t = 1.5.

MLE MPSE s-boot p-boot t-boot HPD
RC W W W W W W
µ 0.4149 0.4147 0.2318 0.2242 0.2269 0.1860

R(t) 0.3346 0.3426 0.0906 0.0846 0.0798 0.0532
h(t) 1.8786 1.8626 0.3030 0.3000 0.3221 0.1843
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Figure 2: Estimated density and ECDF plots based on considered data.
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Table 4: Average MSEs of the classical and Bayes estimators of MTSF and RF.

n µ
Classical estimators Bayes(informative) Bayes (non-informative)

µ̂m µ̂p µ̂s f µ̂l f 1 µ̂l f 2 µ̂s f µ̂l f 1 µ̂l f 2
10

2.5445

0.8280 0.8472 0.6872 0.6972 0.6197 0.6964 0.6988 0.6269
20 0.5430 0.6847 0.5356 0.4203 0.3421 0.5739 0.6125 0.3905
30 0.3997 0.4273 0.3416 0.3611 0.2436 0.3434 0.3499 0.2500
50 0.2170 0.2123 0.1856 0.1914 0.1561 0.2016 0.3007 0.1644

100 0.0917 0.0940 0.0851 0.0903 0.0773 0.0915 0.1152 0.0840
10

2.0952

0.5299 0.5285 0.4791 0.4136 0.3923 0.5175 0.4658 0.2759
20 0.1858 0.2002 0.1813 0.1282 0.1502 0.1946 0.2113 0.1551
30 0.1053 0.1230 0.1262 0.1249 0.1094 0.1228 0.2076 0.1389
50 0.0700 0.0780 0.0723 0.0886 0.0661 0.0742 0.0921 0.0674

100 0.0304 0.0313 0.0310 0.0340 0.0298 0.0350 0.0390 0.0331
10

0.6951

0.0213 0.0233 0.0175 0.0209 0.0167 0.0234 0.0214 0.0221
20 0.0101 0.0109 0.0096 0.0100 0.0094 0.0103 0.0107 0.0100
30 0.0068 0.0066 0.0062 0.0064 0.0062 0.0070 0.0072 0.0069
50 0.0040 0.0042 0.0037 0.0037 0.0036 0.0041 0.0042 0.0041

100 0.0020 0.0020 0.0020 0.0020 0.0020 0.0022 0.0022 0.0021
10

0.7621

0.0089 0.0086 0.0081 0.0083 0.0080 0.0104 0.0323 0.0103
20 0.0045 0.0044 0.0042 0.0042 0.0042 0.0049 0.0049 0.0049
30 0.0033 0.0033 0.0030 0.0030 0.0030 0.0031 0.0031 0.0031
50 0.0022 0.0021 0.0020 0.0020 0.0020 0.0022 0.0022 0.0021

100 0.0010 0.0010 0.0009 0.0009 0.0009 0.0010 0.0011 0.0010
10

0.8841

0.0091 0.0087 0.0083 0.0085 0.0082 0.0100 0.0102 0.0100
20 0.0045 0.0043 0.0043 0.0043 0.0043 0.0045 0.0046 0.0045
30 0.0034 0.0033 0.0030 0.0030 0.0030 0.0032 0.0033 0.0032
50 0.0017 0.0018 0.0016 0.0016 0.0016 0.0020 0.0020 0.0020

100 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

n R(t)
Classical estimators Bayes(informative) Bayes (non-informative)
R̂(t)m R̂(t)p R̂(t)s f R̂(t)l f 1 R̂(t)l f 2 R̂(t)s f R̂(t)l f 1 R̂(t)l f 2

10

0.6907

0.0143 0.0143 0.0136 0.0134 0.0138 0.0144 0.0142 0.0147
20 0.0080 0.0074 0.0069 0.0069 0.0069 0.0079 0.0079 0.0080
30 0.0051 0.0049 0.0045 0.0045 0.0046 0.0052 0.0052 0.0053
50 0.0031 0.0033 0.0029 0.0029 0.0032 0.0031 0.0031 0.0031

100 0.0015 0.0015 0.0014 0.0014 0.0014 0.0015 0.0015 0.0015
10

0.7529

0.0119 0.0116 0.0114 0.0111 0.0116 0.0120 0.0117 0.0122
20 0.0066 0.0068 0.0063 0.0062 0.0064 0.0064 0.0063 0.0064
30 0.0045 0.0047 0.0043 0.0042 0.0043 0.0044 0.0045 0.0047
50 0.0027 0.0028 0.0025 0.0025 0.0025 0.0027 0.0027 0.0027

100 0.0013 0.0013 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013
10

0.3909

0.0190 0.0128 0.0135 0.0137 0.0134 0.0196 0.0199 0.0194
20 0.0089 0.0088 0.0076 0.0077 0.0076 0.0082 0.0082 0.0081
30 0.0052 0.0054 0.0051 0.0051 0.0051 0.0053 0.0056 0.0055
50 0.0033 0.0029 0.0028 0.0027 0.0028 0.0033 0.0033 0.0033

100 0.0016 0.0015 0.0016 0.0016 0.0016 0.0017 0.0017 0.0017
10

0.5000

0.0182 0.0123 0.0133 0.0134 0.0133 0.0187 0.0187 0.0188
20 0.0084 0.0087 0.0075 0.0075 0.0075 0.0087 0.0087 0.0087
30 0.0062 0.0061 0.0051 0.0051 0.0051 0.0056 0.0056 0.0056
50 0.0036 0.0038 0.0034 0.0034 0.0034 0.0031 0.0032 0.0031

100 0.0017 0.0018 0.0016 0.0016 0.0016 0.0018 0.0018 0.0018
10

0.6655

0.0161 0.0131 0.0119 0.0117 0.0121 0.0165 0.0162 0.0168
20 0.0081 0.0072 0.0067 0.0066 0.0068 0.0074 0.0074 0.0075
30 0.0058 0.0054 0.0046 0.0045 0.0046 0.0054 0.0054 0.0055
50 0.0031 0.0031 0.0027 0.0027 0.0027 0.0033 0.0033 0.0033

100 0.0016 0.0016 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016
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Table 5: Average MSEs of the classical and Bayes estimators of HF.

n h(t)
Classical estimators Bayes(informative) Bayes (non-informative)
ĥ(t)m ĥ(t)p ĥ(t)s f ĥ(t)l f 1 ĥ(t)l f 2 ĥ(t)s f ĥ(t)l f 1 ĥ(t)l f 2

10

0.4148

0.0387 0.0392 0.0365 0.0345 0.0321 0.0351 0.0360 0.0378
20 0.0141 0.0195 0.0115 0.0121 0.0111 0.0146 0.0156 0.0139
30 0.0079 0.0076 0.0070 0.0073 0.0069 0.0079 0.0082 0.0077
50 0.0048 0.0047 0.0045 0.0046 0.0044 0.0046 0.0047 0.0046

100 0.0020 0.0022 0.0019 0.0019 0.0019 0.0021 0.0022 0.0021
10

0.4257

0.0394 0.0324 0.0320 0.0365 0.0297 0.0327 0.0375 0.0300
20 0.0155 0.0150 0.0145 0.0153 0.0141 0.0145 0.0153 0.0140
30 0.0097 0.0074 0.0094 0.0073 0.0094 0.0096 0.0099 0.0098
50 0.0057 0.0058 0.0052 0.0054 0.0055 0.0056 0.0057 0.0056

100 0.0035 0.0033 0.0025 0.0025 0.0024 0.0026 0.0027 0.0026
10

1.9937

0.7851 0.7478 0.7298 0.7252 0.7206 0.7124 0.7503 0.7864
20 0.4959 0.4832 0.3240 0.4209 0.2428 0.3953 0.5106 0.3887
30 0.2342 0.1563 0.2093 0.2179 0.1739 0.2124 0.2891 0.2176
50 0.1168 0.1320 0.1085 0.1293 0.0976 0.1179 0.1412 0.1055

100 0.0487 0.0432 0.0420 0.0412 0.0477 0.0531 0.0580 0.0503
10

2.4304

0.5859 0.6898 0.4941 0.4781 0.4453 0.5271 0.6132 0.5805
20 0.5130 0.6181 0.3966 0.4567 0.2981 0.4765 0.5106 0.5461
30 0.2681 0.2955 0.2371 0.2319 0.2000 0.2595 0.3539 0.2162
50 0.1771 0.1747 0.1454 0.1727 0.1320 0.1605 0.1532 0.1603

100 0.0978 0.0819 0.0649 0.0713 0.0616 0.0713 0.0773 0.0683
10

1.7233

0.7301 0.4766 0.4056 0.4707 0.3060 0.6604 0.4941 0.4933
20 0.3194 0.3469 0.2161 0.2860 0.1830 0.2875 0.2577 0.2668
30 0.1819 0.1732 0.1228 0.1428 0.1132 0.1325 0.1528 0.1230
50 0.0681 0.0705 0.0640 0.0620 0.0613 0.0773 0.0848 0.0736

100 0.0375 0.0383 0.0335 0.0352 0.0327 0.0373 0.0392 0.0363
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8. Conclusion

In this paper, we have considered the classical and Bayesian point and interval estimation of the
reliability characteristics (RC) for the PLD based on complete observations. In classical estimation,
MLE, MPSE are discussed for RC. The Bayes estimators are derived with informative and non-
informative priors under SELF and LLF for the same characteristics. Further, different CIs, as
ACIs based on MLE and MPSE, three BCIs, namely s-boot, p-boot, t-boot and Bayes credible HPD
intervals based on generated posterior samples are obtained. The theoretical comparison of the
point and interval estimates obtained via different methods of estimation are not feasible. Hence,
the Monte Carlo simulation study has been performed to make the extensive comparison in terms
of average MSEs and average width of the respective CIs. Monte Carlo simulation results showed
that p-boot CIs achieve better performance than the other BCIs and ACIs in terms of width for all
the considered choices. Among the methods of estimation, Bayes estimates under informative
prior are the best performing estimator in terms of the average MSEs as well as average width
of CIs. Coverage probabilities do not follow any specific trend but for shorter length of the CIs,
C decreases and reaching to the nominal values. Lastly, a practical data set has been used to
illustrate the proposed methodology, and observed that it echoed the same pattern as simulation.
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Abstract 

 
For optimal utilization of resources, the inventory models are required in several places such as 
market yards, production processes, warehouses, oil exploration industries and food vegetable 
markets. Huge work has been produced by several researchers in inventory models for obtaining 
optimal ordering quantity and pricing policies. This paper addresses an EOQ model for deteriorating 
items having Weibull decay under inflation and permissible delay in payments. It is considered that 
the demand of items is a function of selling price. It is further assumed that the decay of items starts 
after certain period of time which can be well characterized by truncated Weibull probability model 
for the life time of the commodity. The optimal ordering and pricing policies of this system are derived 
and analyzed in the light of the input parameters and costs. Through sensitivity analysis it is 
demonstrated that the delay in the payments and rate of inflation have significant effect on the optimal 
policies. This model is very useful in the analyzing market yards where sea foods, vegetables, fruits, 
edible oils are stored and distributed. 
 
Keywords: EOQ model, selling price depended demand, truncated decay. 

 
1. Introduction 

 
Decay is the major consideration for planning inventory and scheduling orders. The decay is in 
general random due to various factors such as environmental conditions, type of commodity, 
storage facility and natural life time. Considering the life time of commodity as random several 
authors developed various inventory model for deteriorating items with various plausible 
assumptions. The review on inventory models with deteriorating items is given by [1], [2], [3], [4]. 
Recently [5], [6], [7], [8], [9], and [10] have developed several inventory models with the assumption 
that the life time of a commodity is random and follows a specified distribution depending on the 
nature of commodity. In all these papers they assumed that the decay starts immediately after the 
procurement.  But in many practical situations the deterioration of items in the stock starts only after 
certain period of time. This type of delay in decay can be characterized by truncated Weibull life 
time distribution which is often known as three parameter Weibull distribution. 

Another basic assumption made by all these authors is that the payments must be made to the 
supplier immediately after receiving the items. However, it is a common phenomenon that the 
supplier allows a certain fixed period for finalizing the accounts and does not charge any interest 
during that period from the retailer. In [11] studied an EOQ model with assumption of permissible 
delay in payments. His work was extended to deteriorating items by [12]. Later [13], [14], [15] and 
others have developed EOQ models with permissible delay in payments. 

413 



 
K Srinivasa Rao, M Amulya, K Nirupama Devi  
INVENTORY MODEL WITH SELLING PRICE DEPENDENT DEMAND  

      RT&A, No 4 (71) 
  Volume 17, December 2022  

 

In today’s business transaction, the supplier will offer a cash discount to encourage the retailer 
in addition to allowing a fixed period for settlement of account. In addition to this there is a change 
in money value over time. Ignoring inflation may leads falsification in the model. Recently [16] has 
studied Inventory Model with Generalized Pareto life time under permissible delay in payments 
while deriving the optimal pricing and ordering policies. Considering the inflation several authors 
have studied various inventory model with permissible delay in payments. However, they assumed 
the decay is constant or independent of time, but in many practical situations the deteriorating rate 
is time dependent. An EOQ model with time quadratic demand by [17]. They considered the 
inflation while determining the optimal policies. 

Little work has been reported regarding EOQ models under permissible delay in payments 
having inflation and selling price dependent demand, which are very useful for analyzing many 
practical situations arising at market yards, warehouse etc. Hence in this paper we develop and 
analyze the Economic Order Quantity model with truncated Weibull decay under permissible delay 
in payments and inflation having selling price dependent demand.  

Section (2) of this paper deals with the assumptions of the model and notation. Section (3) is to 
develop the instantaneous inventory level at any given time 𝑡. The optimal ordering and pricing 
policies of the model are derived in Section (4). Section (5) considers Numerical illustration of the 
model. The sensitivity analysis is presented in Section (6). Section (7) deals with conclusions. 

2. Assumptions 

For developing the Economic Order Quantity model, the following assumptions are made 

• Deterioration start time is 𝛾. 
• Weibull distribution is the life time distribution of the commodity. Its p.d.f is 

𝑓(𝑡) = 𝛼𝛽(𝑡 − 𝛾)!"#𝑒"$(&"')! 
Where 𝛼 is the scale parameter, 𝛽 is the shape parameter and 𝛾 is the location parameter 

The instantaneous deterioration rate is 
ℎ(𝑡) = 𝛼(𝑡 − 𝛾)!	, 𝑡 ≥ 𝛾 

• Demand function is  
𝑅(𝑝(𝑡)) = 𝑎 − 𝑏𝑝(𝑡) = 𝑎 − 𝑏𝑝𝑒)& 

Which is selling price dependent demand. Where, 𝑎 is the fixed demand, 𝑎 > 0, 𝑏 is the 
demand parameter, 𝑏 > 0, and 𝑎 > 𝑏,  𝑝(𝑡) is the selling price of an item at time 𝑡	and	𝑝  is 
the selling price of the item at time 𝑡 = 0. 

• Rate of inflation is 𝑟,  0 < 𝑟 < 1 
• Shortages are not allowed. 
• Zero lead time. 
• During the permissible delay period (𝑀), the account is not settled, the generated sales 

revenue is deposited in an interest-bearing account. At the end of the trade credit period, 
the customer pays off for all the units ordered. 

• There is no repair or replacement of the deteriorated units during the cycle time. 

Notation 
𝐻   : Finite horizon length. 

𝑅(𝑝(𝑡))                : Demand per unit time as a function of selling price. 

ℎ  : Holding cost of inventory per unit time after excluding interest. 

𝑟  : Rate of inflation. 

𝑝(𝑡) = 𝑝𝑒)& : Per unit selling price. 

𝑔(𝑡) = 𝑔𝑒)&         : Purchase cost of a unit at time 	𝑡. 
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𝐴(𝑡) = 𝐴𝑒)& : Per order cost at time 𝑡. 

𝐼*		   : Interest charged per Rs. INR in stock per a year by the supplier. 

	𝐼,    : Interest earned in Rs. INR per a year. 

𝑀   : Permissible delay period which is allowed in settling the account. 

𝑄   : Order quantity per a cycle. 

𝑇              : Cycle length 

𝐼(𝑡)   : On-hand inventory at time  𝑡, 0 ≤ 𝑡 ≤ 𝑇. 

𝑇𝐶(𝑝, 𝑇)               : Total cost over (0, 𝐻). 

𝑁𝑃(𝑝, 𝑇) : Net profit rate function over planning period. 
 

3. Inventory Model 
 
Let  𝑄  be the inventory level of the system at time 𝑡 = 0. During (0, 𝛾)  inventory will decrease due 
to demand and during (𝛾, 𝑇) inventory will decrease due to demand and deterioration. Since no 
shortages are allowed, at time 𝑇 the inventory level reaches zero, the stock is replenished 
instantaneously. The schematic diagram representing the inventory level is shown in Figure-3.1. 
 

 
Figure -1: Schematic diagram representing the inventory level of selling price dependent demand model 

 
 
Let  𝐼(𝑡) be the on-hand inventory at time 𝑡. The differential equations governing the on-hand 
inventory at time 𝑡 are 

-
-&
𝐼(𝑡) = −𝑅G𝑝(𝑡)H																																																				0 ≤ 𝑡 ≤ 𝛾																																																																			(1)           

-
-&
𝐼(𝑡) + ℎ(𝑡)𝐼(𝑡) = −𝑅G𝑝(𝑡)H																															𝛾 ≤ 𝑡 ≤ 𝑇																																																																			(2)           

where      ℎ(𝑡) = 𝛼𝛽(𝑡 − 𝛾)!"#																																														𝛾 ≤ 𝑡 ≤ 𝑇 

	and									𝑅(𝑝(𝑡)) = 𝑎 − 𝑏𝑝(𝑡) = 𝑎 − 𝑏𝑝𝑒)& 

with initial conditions   𝐼(0) = 𝑄	𝑎𝑛𝑑		𝐼(𝑇) = 0. 

Solving equation (1) and using the initial condition 𝐼(0) = 𝑄, we get 

𝐼(𝑡) = 𝑄 − 𝑎𝑡 +
𝑏𝑝
𝑟 (𝑒

)& − 1)																																																												0 ≤ 𝑡 ≤ 𝛾																																																								(3) 

Solving equation (2) and using the initial condition  𝐼(𝑇) = 0, we get   
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𝐼(𝑡) = 𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!
/

&

𝑑𝑢Q 							𝛾 ≤ 𝑡 ≤ 𝑇																																																							(4)		 

Equating equations (3) and (4) when 𝑡 = 𝛾, we get 

𝑄 = 𝑎𝛾 −
𝑏𝑝
𝑟 (𝑒

)' − 1) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

																																																																				(5) 

Substituting  𝑄 in equation (3), we get 

𝐼(𝑡) = 𝑎(𝛾 − 𝑡) +
𝑏𝑝
𝑟 (𝑒

)& − 𝑒)') + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢						0 ≤ 𝑡 ≤ 𝛾																										(6)	
/

'

 

Since the length of time intervals are all the same, we have  
𝐼(𝑗𝑇 + 𝑡)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑎(𝛾 − 𝑡) +

𝑏𝑝
𝑟 (𝑒

)& − 𝑒)'	) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!
/

'

𝑑𝑢														0 ≤ 𝑡 ≤ 𝛾

																																																																																																																																																																																						(7)

𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!
/

&

𝑑𝑢Q 																																																𝛾 ≤ 𝑡 ≤ 𝑇

 

 
4. The Optimal Ordering and Pricing Policies 
 

Total cost function is the sum of Ordering Cost (𝑂𝐶), Cost Deterioration (𝐶𝐷), Inventory Carrying 
Cost (𝐼𝐶𝐶), Interest Charged  (𝐼𝐶#) and Interest Earned (𝐼𝐸#).  
Each cost component is computed as follows:  
Ordering Cost, 𝑂𝐶 is 

𝑂𝐶 = 𝐴(0) + 𝐴(𝑇) + 𝐴(2𝑇)+. . . +𝐴(𝑛 − 1)𝑇 = 𝐴 ^
𝑒)1 − 1
𝑒)/ − 1_																																																																												(8) 

Cost Deterioration, 𝐶𝐷 is 

𝐶𝐷 =a𝑔𝑒)2/ N𝑄 −O(𝑎 − 𝑏𝑝𝑒)&)𝑑𝑡
/

3

Q
4"#

253

	 

where, 𝑄 is as given in equation (5). On simplification, we get 

𝐶𝐷 = 𝑔 N𝑎𝛾 − 𝑎𝑇 −
𝑏𝑝
𝑟 (𝑒

)' − 𝑒)/) + 𝑎O𝑒$(."')!𝑑𝑢−𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q ^
𝑒)1 − 1
𝑒)/ − 1_																										(9)

/

'

 

Inventory Carrying Cost, 𝐼𝐶𝐶 is  

𝐼𝐶𝐶 = ℎa𝑔(𝑗𝑇) NO 𝐼(𝑗𝑇 + 𝑡)𝑑𝑡
/

3

Q
4"#

253

 

					= ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O𝑒$(."')!𝑑𝑢

/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

					+O𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q ^
𝑒)1 − 1
𝑒)/ − 1_																																																				(10) 

For computing interest charged and earned, there are two possibilities based on the customer’s 
choice. Interest Charges 	(𝐼𝐶) for unsold items at the initial time or after the permissible delay period  
𝑀 and interest Earned 	(𝐼𝐸) from the sales revenue during the permissible delay period. 
Case (i): Optimum cycle length  𝑇 is larger than or equal to 𝑀 i.e., 𝑇 ≥ 𝑀 
Interest Charged in (0, 𝐻), 𝐼𝐶# is 
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𝐼𝐶# = 𝐼7a𝑔(𝑗𝑇) NO 𝐼(𝑗𝑇 + 𝑡)𝑑𝑡
/

8

Q
4"#

253

 

	= 𝐼!𝑔 %
𝑎
2
(𝛾" +𝑀" − 2𝑀𝛾) +

𝑏𝑝
𝑟" 1𝑒

#$31 − 𝑟(𝛾 −𝑀)5 − 𝑒#%6 + (𝛾 −𝑀) 7𝑎8 𝑒&(()$)
!𝑑𝑢

+

$

− 𝑏𝑝8𝑒#(,&(()$)!𝑑𝑢
+

$

; 

						+O𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q ^
𝑒)1 − 1
𝑒)/ − 1_																																																		(11) 

Interest Earned in (0, 𝐻), 𝐼𝐸- is   

𝐼𝐸# = 𝐼,a𝑝(𝑗𝑇) NO(𝑎 − 𝑏𝑝𝑒)&)𝑡𝑑𝑡
8

3

Q
4"#

253

 

								= 𝐼,𝑝 e
𝑎𝑀6

2 −
𝑏𝑝
𝑟6
[𝑒)8(𝑟𝑀 − 1) + 1]f ^

𝑒)1 − 1
𝑒)/ − 1_																																																																																									(12) 

The total cost over (0, 𝐻) is 	𝑇𝐶(𝑝, 𝑇) and is given by 

𝑇𝐶(𝑝, 𝑇) = 𝑂𝐶 + 𝐶𝐷 + 𝐼𝐶𝐶 + 𝐼𝐶# − 𝐼𝐸#																																																																																																																(13) 

Substituting equations (8), (9), (10), (11) and (12) in (13), we get 

𝑇𝐶(𝑝, 𝑇) = 

N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇 −
𝑏𝑝
𝑟 (𝑒

)' − 𝑒)/) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O𝑒$(."')!𝑑𝑢

/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

	+O𝑒"$(&"')! N𝑎O 𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q 

+𝐼!𝑔 @
𝑎
2
(𝛾" +𝑀" − 2𝑀𝛾) +

𝑏𝑝
𝑟" 1𝑒

#$31 − 𝑟(𝛾 −𝑀)5 − 𝑒#%6 + (𝛾 −𝑀) 7𝑎8 𝑒&(()$)
!𝑑𝑢

+

$

− 𝑏𝑝8𝑒#(,&(()$)!𝑑𝑢
+

$

; 

+O𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q 

	−𝐼,𝑝 e
𝑎𝑀6

2 −	
𝑏𝑝
𝑟6
[𝑒)8(𝑟𝑀 − 1) + 1]fQ ^

𝑒)1 − 1
𝑒)/ − 1_																																																																																														(14)		 

The net profit is the difference of gross revenue and total cost. 

The gross revenue is  (𝑝𝑒)/ − 𝑔𝑒)/)(𝑎 − 𝑏𝑝𝑒)/) 

Hence, the net profit is   𝑁𝑃(𝑝, 𝑇) = (𝑝𝑒)/ − 𝑔𝑒)/)(𝑎 − 𝑏𝑝𝑒)/) − 𝑇𝐶(𝑝, 𝑇)																																											(15) 

where, 𝑇𝐶(𝑝, 𝑇) is as given in (14) 
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For obtaining the optimal policies of the model, maximize 	𝑁𝑃(𝑝, 𝑇) with respect to 𝑇 and  𝑝. The 
conditions for obtaining optimality are  

𝜕𝑁𝑃(𝑝, 𝑇)
𝜕𝑇 = 0,

𝜕𝑁𝑃(𝑝, 𝑇)
𝜕𝑝 = 0					𝑎𝑛𝑑			𝐷 = hh

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑝6

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇𝜕𝑝

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇𝜕𝑝

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇6

hh < 0 

where D is the determinant of Hessian matrix  

9:;(<,/)
9/

= 0 implies, 

(𝑝 − 𝑔)[𝑎𝑟𝑒)/ − 2𝑝𝑏𝑟𝑒6)/] 

i^
𝑒)1 − 1
𝑒)/ − 1_ j𝑔 j−𝑎 + 𝑏𝑝𝑒

)/ + 𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k 

+ℎ𝑔 N𝛾 j𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k + O𝑒"$(&"')! j𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k 𝑑𝑡
/

'

Q 

+𝐼7𝑔 N(𝛾 −𝑀) j𝑎𝑒$(/"')
! − 𝑏𝑝𝑒)/0$(/"')!k+O𝑒"$(&"')! j𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')! 	k 𝑑

/

'

𝑡Q 

+N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇 −
𝑏𝑝
𝑟 (𝑒

)' − 𝑒)/) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O𝑒$(."')!𝑑𝑢

/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

	+O𝑒"$(&"')! N𝑎O 𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

Q 𝑑𝑡
/

'

Q 

+𝐼!𝑔 7
𝑎
2
(𝛾" +𝑀" − 2𝑀𝛾) +

𝑏𝑝
𝑟" 1𝑒

#$31 − 𝑟(𝛾 −𝑀)5 − 𝑒#%6 + (𝛾 −𝑀) 7𝑎8𝑒&(()$)
!𝑑𝑢

+

$

− 𝑏𝑝8𝑒#(,&(()$)!𝑑𝑢
+

$

; 

+O𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

Q 𝑑𝑡
/

'

Q 

	−𝐼,𝑝 e
𝑎𝑀6

2 −	
𝑏𝑝
𝑟6
[𝑒)8(𝑟𝑀 − 1) + 1]fQ ^

𝑒)1 − 1
(𝑒)/ − 1)6_ 𝑟𝑒

)/l = 0																																																																					(16) 

 9:;(<,/)
9<

= 0  implies,     

𝑒)/(𝑎 + 𝑏𝑔𝑒)/ − 2𝑝𝑏𝑒)/)    

−A𝑔 7−
𝑏
𝑟
(𝑒#$ − 𝑒#+) − 𝑏8 𝑒#(,&(()$)!𝑑𝑢

+

$

; + ℎ𝑔 7
𝑏
𝑟"
[𝑒#$(1 − 𝑟𝛾) − 1] − 𝑏𝛾 78𝑒#(,&(()$)

!𝑑𝑢
+

$

; 

−𝑏O𝑒"$(&"')! NO 𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q + 𝐼7𝑔 m
𝑏
𝑟6 n𝑒

)'G1 − 𝑟(𝛾 −𝑀)H − 𝑒)8o 

418 



 
K Srinivasa Rao, M Amulya, K Nirupama Devi  
INVENTORY MODEL WITH SELLING PRICE DEPENDENT DEMAND  

      RT&A, No 4 (71) 
  Volume 17, December 2022  

 

		−𝑏(𝛾 −𝑀) NO𝑒).0$(."')!𝑑𝑢
/

'

Q − 𝑏O𝑒"$(&"')! NO 𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑
/

'

𝑡Q 

−𝐼, e
𝑎𝑀6

2 −	
2𝑏𝑝
𝑟6

[𝑒)8(𝑟𝑀 − 1) + 1]fp ^
𝑒)1 − 1
𝑒)/ − 1_ = 0																																																																																								(17) 

For given values of the parameters and costs, equations (16) and (17) are solved using MATHCAD 
to get the optimal cycle length 𝑇 = 𝑇# and selling price	𝑝 = 𝑝#. Substituting the optimal values  𝑇# 
and  𝑝# in equation (14) we get the minimum total cost. Substituting this minimum total cost, 	𝑇# and  
𝑝# in equation (15), we get the maximum profit as 

𝑁𝑃∗(𝑝-, 𝑇-) = (𝑝-𝑒#+" − 𝑔𝑒#+")(𝑎 − 𝑏𝑝-𝑒#+") 

−N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇# −
𝑏𝑝#
𝑟 (𝑒)' − 𝑒)/") + 𝑎O 𝑒$(."')!𝑑𝑢

/"

'

− 𝑏𝑝#O 𝑒).0$(."')!𝑑𝑢

/"

'

Q 

+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝#
𝑟6

[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O 𝑒$(."')!𝑑𝑢

/"

'

− 𝑏𝑝#O 𝑒).0$(."')!𝑑𝑢

/"

'

Q 

	+O 𝑒"$(&"')! N𝑎O 𝑒$(."')!𝑑𝑢

/"

&

− 𝑏𝑝#O 𝑒).0$(."')!𝑑𝑢

/"

&

	Q 𝑑𝑡

/"

'

Q 

+𝐼!𝑔 @
𝑎
2
(𝛾" +𝑀" − 2𝑀𝛾) +

𝑏𝑝-
𝑟" 1𝑒

#$31 − 𝑟(𝛾 −𝑀)5 − 𝑒#%6 + (𝛾 −𝑀)7𝑎8 𝑒&(()$)!𝑑𝑢

+"

$

− 𝑏𝑝-8 𝑒#(,&(()$)!𝑑𝑢

+"

$

; 

+8 𝑒)&(/)$)! 7𝑎 8 𝑒&(()$)!𝑑𝑢

+"

/

− 𝑏𝑝-8 𝑒#(,&(()$)!𝑑𝑢

+"

/

	; 𝑑𝑡

+"

$

;	−𝐼0𝑝- I
𝑎𝑀"

2 −	
𝑏𝑝-
𝑟"

[𝑒#%(𝑟𝑀 − 1) + 1]J; K
𝑒#1 − 1
𝑒#+" − 1L 

																																																																																																																																																																																										(18) 

Case (ii): Cycle Length  𝑇 is smaller than 𝑀 i.e., 𝑇 < 𝑀 

Interest Earned, 𝐼𝐸6 is  

𝐼𝐸6 = 𝐼,a𝑝(𝑗, 𝑇) iO 𝑅(𝑝(𝑡))𝑡𝑑𝑡 + 𝑅(𝑝(𝑇))[𝑇(𝑀 − 𝑇)]
/

3
q

4"#

253

 

									= 𝑝𝐼, rO(𝑎 − 𝑏𝑝𝑒)&)𝑡𝑑𝑡 + (𝑎 − 𝑏𝑝𝑒)/)
/

3

[𝑇(𝑀 − 𝑇)]l ^
𝑒)1 − 1
𝑒)/ − 1_ 

							= 𝑝𝐼, e
𝑎𝑇6

2 −
𝑏𝑝
𝑟6
[𝑒)/(𝑟𝑇 − 1) − 1] + (𝑎 − 𝑏𝑝𝑒)/)[𝑇(𝑀 − 𝑇)]f ^

𝑒)1 − 1
𝑒)/ − 1_																																										(19) 

Thus, the total cost over (0, 𝐻) is  𝑇𝐶(𝑝, 𝑇) 

𝑇𝐶(𝑝, 𝑇) = 𝑂𝐶 + 𝐶𝐷 + 𝐼𝐶𝐶 − 𝐼𝐸6																																																																																																																											(20) 

Substituting equations (8), (9), (10) and (19) in (20), we get 

𝑇𝐶(𝑝, 𝑇) = N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇 −
𝑏𝑝
𝑟 (𝑒

)' − 𝑒)/) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 
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																	+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O𝑒$(."')!𝑑𝑢

/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

																+O𝑒"$(&"')! N𝑎O𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q 

		

													−𝑝𝐼, e
𝑎𝑇6

2 −
𝑏𝑝
𝑟6
[𝑒)/(𝑟𝑇 − 1) − 1] + (𝑎 − 𝑏𝑝𝑒)/)[𝑇(𝑀 − 𝑇)]ff ^

𝑒)1 − 1
𝑒)/ − 1_																																				(21) 

The net profit is the difference of gross revenue and total cost. 

The gross revenue is    (𝑝𝑒)/ − 𝑔𝑒)/)(𝑎 − 𝑏𝑝𝑒)/) 

Hence, the net profit is			𝑁𝑃(𝑝, 𝑇) = (𝑝𝑒)/ − 𝑔𝑒)/)(𝑎 − 𝑏𝑝𝑒)/) − 𝑇𝐶(𝑝, 𝑇)																																												(22) 

where, 𝑇𝐶(𝑝, 𝑇)  is as given in equation (21)  
For obtaining the optimal policies of the model we maximize 𝑁𝑃(𝑝, 𝑇)  with respect to 𝑇 and 𝑝. The 
conditions for obtaining optimality are  

𝜕𝑁𝑃(𝑝, 𝑇)
𝜕𝑇 = 0,

𝜕𝑁𝑃(𝑝, 𝑇)
𝜕𝑝 = 0			𝑎𝑛𝑑			𝐷 = hh

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑝6

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇𝜕𝑝

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇𝜕𝑝

𝜕6𝑁𝑃(𝑝, 𝑇)
𝜕𝑇6

hh < 0 

where 𝐷 is the determinant of Hessian matrix 

9:;(<,/)
9/

= 0		implies, 

(𝑝 − 𝑔)[𝑎𝑟𝑒)/ − 2𝑏𝑟𝑝𝑒6)/] − i^
𝑒)1 − 1
𝑒)/ − 1_ j𝑔 j−𝑎 + 𝑏𝑝𝑒

)/ + 𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k 

+ℎ𝑔 N𝛾 j𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k + O𝑒"$(&"')! j𝑎𝑒$(/"')! − 𝑏𝑝𝑒)/0$(/"')!k 𝑑𝑡
/

'

Q 

−𝐼,𝑝[𝑎𝑇 − 𝑏𝑝𝑇𝑒)/ + (𝑎 − 𝑏𝑝𝑒)/)(𝑀 − 2𝑇) + (𝑀𝑇 − 𝑇6)(−𝑏𝑝𝑟𝑒)/)] 

+N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇 −
𝑏𝑝
𝑟 (𝑒

)' − 𝑒)/) + 𝑎O𝑒$(."')!𝑑𝑢
/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O𝑒$(."')!𝑑𝑢

/

'

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

'

Q 

	+O𝑒"$(&"')! N𝑎O 𝑒$(."')!𝑑𝑢
/

&

− 𝑏𝑝O𝑒).0$(."')!𝑑𝑢
/

&

Q 𝑑𝑡
/

'

Q 

	−𝐼,𝑝 e
𝑎𝑇6

2 −
2𝑏𝑝
𝑟6

[𝑒)/(𝑟𝑇 − 1)] + (𝑎 − 𝑏𝑝𝑒)/)[𝑇(𝑀 − 𝑇)]fQ ^
𝑒)1 − 1
(𝑒)/ − 1)6_ 𝑟𝑒

)/l = 0																												(23) 

 9:;(<,/)
9<

= 0  implies,     

𝑒)/(𝑎 + 𝑏𝑔𝑒)/ − 2𝑝𝑏𝑒)/) − N𝑔 N−
𝑏
𝑟
(𝑒)' − 𝑒)/) − 𝑏O𝑒).0$(."')!𝑑𝑢

/

'

Q 
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+ℎ𝑔 N
𝑏
𝑟6
[𝑒)'(1 − 𝑟𝛾) − 1] − 𝑏𝛾O𝑒).0$(."')!𝑑𝑢

/

'

−𝑏O𝑒"$(&"')! NO 𝑒).0$(."')!𝑑𝑢
/

&

	Q 𝑑𝑡
/

'

Q 

−𝐼, e
𝑎𝑇6

2 −
2𝑝𝑏
𝑟6

[𝑒)/(𝑟𝑇 − 1)] + (𝑎 − 2𝑝𝑏𝑒)/)[𝑇(𝑀 − 𝑇)]fQ ^
𝑒)1 − 1
𝑒)/ − 1_ = 0																																														(24) 

For given values of the parameters and costs, equations (23) and (24) are solved using MATHCAD 
to get the optimal cycle length 𝑇 = 𝑇6 and selling price	𝑝 = 𝑝6. Substituting the optimal values of  𝑇6 
and  𝑝6 in equation (21), we get the minimum total cost. Substituting this minimum total cost,	𝑇6 and  
𝑝6 in equation (22), we get the maximum profit as 

𝑁𝑃∗(𝑝6, 𝑇6) = (𝑝6𝑒)/# − 𝑔𝑒)/#)(𝑎 − 𝑏𝑝6𝑒)/#) 

																								− N𝐴 + 𝑔 N𝑎𝛾 − 𝑎𝑇6 −
𝑏𝑝6
𝑟 (𝑒)' − 𝑒)/#) + 𝑎O 𝑒$(."')!𝑑𝑢

/#

'

− 𝑏𝑝6O 𝑒).0$(."')!𝑑𝑢

/#

'

Q 

																								+ℎ𝑔 N
𝑎𝛾6

2 +
𝑏𝑝6
𝑟6

[𝑒)'(1 − 𝑟𝛾) − 1] + 𝛾 N𝑎O 𝑒$(."')!𝑑𝑢

/#

'

− 𝑏𝑝6O 𝑒).0$(."')!𝑑𝑢

/#

'

Q 

																								+O 𝑒"$(&"')! N𝑎O 𝑒$(."')!𝑑𝑢

/#

&

− 𝑏𝑝6O 𝑒).0$(."')!𝑑𝑢

/#

&

	Q 𝑑𝑡

/#

'

Q 

																				−𝑝6𝐼, N
𝑎𝑇66

2 −
𝑏𝑝6
𝑟6

[𝑒)/#(𝑟𝑇6 − 1) − 1] + (𝑎 − 𝑏𝑝6𝑒)/#)[𝑇6(𝑀 − 𝑇6)]Qs ^
𝑒)1 − 1
𝑒)/# − 1_													(25)			 

5. Numerical Illustration 

The optimal values of selling price (𝑝) and cycle length (𝑇) are obtained by using the equation 
(16) and (17) or (23) and (24). The optimal values of  𝑇 are taken as 𝑇 = 𝑇#		𝑖𝑓	𝑇# ≥ 𝑀 and  𝑇 =
𝑇6	𝑖𝑓	𝑇6 < 𝑀. 

To illustrate the developed model of Case (i) i.e, if 𝑇# ≥ 𝑀, a numerical example with the 
following parameter values is considered. The deteriorating parameters 𝛼, 𝛽	𝑎𝑛𝑑	𝛾  vary from 0.020 
to 0.024, 0.06 to 0.72 and 0.06 to 0.72 respectively. The values of the other parameters and costs are 
considered as follows: 	𝑎 = 1000	𝑡𝑜1200	, 𝑏 = 0.010	𝑡𝑜	0.012	units, A = Rs. 250.0	to	300.0, 𝑔 =
𝑅𝑠. 0.20	𝑡𝑜		0.24 = Rs. 0.100	to	0.120	𝐼7 = 𝑅𝑠. 0.150	to	0.180, 𝐼, = 𝑅𝑠. 0.120	to	0.144, 𝑀 = 15	𝑑𝑎𝑦𝑠 =
#?
@3
= 0.500	𝑡𝑜	0.600, 𝑟 = 0.010	to	0.012, 𝐻 = 12.0	to	14.4  months. 

By substituting the above values in equations (16) and (17) and solving, the optimal values of 
cycle length 𝑇 and selling price 𝑝 are obtained. Substituting the optimal values of cycle length 
𝑇 and selling price 𝑝 in equations (5) and (15), the optimal values of Order quantity  𝑄 and net 
profit  𝑁𝑃 are obtained and presented in Table-1. 

From Table-1, it is observed that when the parameter '𝑎' is increasing from 1000 to 1200 units, 
the optimal ordering quantity '𝑄', the cycle length ‘T’ and the net profit '𝑁𝑃' are increasing from 
1250.845 to 1585.738 units, 1.245 to 1.314 and Rs.1977.152 to Rs.2050.474 respectively and the unit 
selling price '𝑝' is decreasing from Rs. 4.275 to Rs. 3.625, when other parameters and costs are fixed. 

When the parameter '𝑏' is increasing from 0.010 to 0.012 units, the optimal ordering quantity 
'𝑄' increasing from 1250.845 to 1250.849, cycle length '𝑇', selling price ‘p’ are remains constant at 
1.245, Rs.4.275 and the net profit '𝑁𝑃' is decreasing from Rs.1977.151 to Rs.1977.150 respectively, 
when other parameters and costs are fixed. 

As the deterioration parameter α is increasing from 0.020 to 0.024, the optimal ordering 
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quantity '𝑄' and the cycle length ‘T’ are increasing from 1250.845 to 1375.107 units, 1.245 to 1.365 
respectively and the unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. Rs.4.275 to 
Rs. 4.140 and Rs.1977.152 to Rs.1953.603 respectively, when other parameters and costs are fixed. 

 
Table-1: Optimal values of 𝑄, 𝑁𝑃, 𝑇	𝑎𝑛𝑑	𝑝 for different values of parameters and costs 

 
For h=0.1, Ic=0.15, Ie=0.12, M=0.5, r=0.01, H=12 

𝒂	 𝒃	 𝜶	 𝜷	 𝜸	 𝑨	 𝒈	 𝑸 𝑻 	𝒑 𝑵𝑷 
 1000	 0.01	 0.02	 0.6	 0.6	 250	 0.2	 1250.845 1.245 4.275 1977.152 
1050	 	 	 	 	 	 	 1328.542 1.259 4.090 1994.236 
1100	 	 	 	 	 	 	 1410.353 1.275 3.921 2012.050 
1150	 	 	 	 	 	 	 1496.130 1.294 3.766 2030.755 
1200	 	 	 	 	 	 	 1585.738 1.314 3.625 2050.474 
	 0.0105	 	 	 	 	 	 1250.847 1.245 4.275 1977.151 
	 0.0110	 	 	 	 	 	 1250.847 1.245 4.275 1977.151 
	 0.0115	 	 	 	 	 	 1250.849 1.245 4.275 1977.150 
	 0.0120	 	 	 	 	 	 1250.849 1.245 4.275 1977.150 
	 	 0.021	 	 	 	 	 1281.746 1.275 4.239 1971.233 
	 	 0.022	 	 	 	 	 1312.768 1.305 4.204 1965.332 
	 	 0.023	 	 	 	 	 1343.894 1.335 4.171 1959.454 
	 	 0.024	 	 	 	 	 1375.107 1.365 4.140 1953.603 
	 	 	 0.63	 	 	 	 1290.509 1.284 4.227 1970.017 
	 	 	 0.66	 	 	 	 1332.079 1.325 4.181 1962.661 
	 	 	 0.69	 	 	 	 1375.594 1.368 4.135 1955.097 
	 	 	 0.72	 	 	 	 1421.082 1.413 4.090 1947.340 
	 	 	 	 0.63	 	 	 1252.355 1.247 4.272 1976.975 
	 	 	 	 0.66	 	 	 1253.806 1.248 4.269 1976.811 
	 	 	 	 0.69	 	 	 1255.199 1.250 4.266 1976.658 
    0.72   1256.534 1.252 4.263 1976.517 
     262.5  1170.346 1.165 4.489 1984.103 
     275.0  1167.304 1.162 4.498 1984.386 
     287.5  1161.260 1.156 4.516 1984.953 
     300.0  1160.959 1.156 4.517 1984.982 
      0.21 1255.235 1.249 4.277 1961.926 
      0.22 1259.979 1.254 4.279 1946.543 
      0.23 1265.073 1.259 4.280 1930.992 
      0.24 1270.516 1.264 4.281 1915.263 

 
For a=1000, b=0.01, α=0.02, β=0.6, γ=0.6, A=250, g=0.2 

𝒉 𝑰𝒄 𝑰𝒆 𝑴 𝒓 𝑯 𝑸 𝑻 	𝒑 𝑵𝑷 
0.105      1252.897 1.247 4.275 1971.381 
0.110      1255.002 1.249 4.274 1965.584 
0.115      1257.161 1.251 4.274 1959.762 
0.120      1259.374 1.253 4.273 1953.913 

 0.1575     1251.530 1.245 4.272 1970.434 
 0.1650     1252.233 1.246 4.270 1964.532 
 0.1725     1253.034 1.247 4.267 1958.606 
 0.1800     1254.068 1.248 4.264 1951.804 
  0.126    1268.103 1.262 4.228 1975.626 
  0.132    1285.617 1.279 4.183 1974.133 
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𝒉 𝑰𝒄 𝑰𝒆 𝑴 𝒓 𝑯 𝑸 𝑻 	𝒑 𝑵𝑷 
  0.138    1303.390 1.296 4.139 1972.676 
  0.144    1321.422 1.314 4.097 1971.258 
   0.525   1282.482 1.276 4.182 1976.588 
   0.550   1316.396 1.309 4.091 1976.187 
   0.575   1352.685 1.345 4.002 1976.004 
   0.600   1391.447 1.383 3.916 1976.099 
    0.0105  1242.297 1.236 4.292 1979.547 
    0.0110  1242.297 1.236 4.292 1979.547 
    0.0115  1233.796 1.228 4.309 1981.935 
    0.0120  1233.796 1.228 4.309 1981.935 
     12.6 1228.266 1.222 4.330 1974.585 
     13.2 1206.405 1.201 4.386 1972.158 
     13.8 1185.239 1.180 4.443 1969.864 
     14.4 1164.742 1.160 4.501 1967.694 

 
When the parameter β is increasing from 0.60 to 0.72 the optimal ordering quantity '𝑄' and  
the cycle length ‘T’ are increasing from 1250.845 to 1421.082 units, 1.245 to 1.413 respectively and the 
unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.090 and Rs.1977.152 
to Rs.1947.340 respectively, when other parameters and costs are fixed. 

As the deterioration parameter γ is increasing from 0.60 to 0.72, the optimal ordering quantity 
'𝑄' and the cycle length ‘T’ are increasing from 1250.845 to 1256.534 units, 1.245 to 1.252 respectively 
and the unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.263 and 
Rs.1977.152 to Rs.1976.517 respectively, when other parameters and costs are fixed. 

If the ordering cost '𝐴' increases from Rs.250 to 300, the optimal ordering quantity '𝑄' and the 
cycle length ‘T’ are decreasing from 1250.845 to 1160.959 units, 1.245 to 1.156 respectively and the 
unit selling price '𝑝' and the net profit '𝑁𝑃' are increasing from Rs. 4.275 to Rs. 4.517 and Rs.1977.152 
to Rs.1984.982 respectively, when other parameters and costs are fixed. 

When the unit cost '𝑔' is increasing from Rs.0.20 to 0.24, the optimal ordering quantity '𝑄', the 
cycle length ‘T’ and the unit selling price '𝑝' are increasing from 1250.845 to 1270.516 units, 1.245 to 
1.264 and Rs. 4.275 to Rs. 4.281 respectively and the net profit '𝑁𝑃' is decreasing from Rs.1977.152 to 
Rs.1915.263 respectively, when other parameters and costs are fixed. 

When holding cost 'ℎ' is increasing from Rs.0.100 to 0.120, the optimal ordering quantity '𝑄' 
and the cycle length ‘T’ are increasing from 1250.845 to 1259.374 units, 1.245 to 1.253 respectively 
and the unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.273 and 
Rs.1977.152 to Rs.1953.913 respectively, when other parameters and costs are fixed. 

When interest charged '𝐼* ' increases from Rs.0.150 to 0.180, the optimal ordering quantity '𝑄' 
and the cycle length ‘T’ are increasing from 1250.845 to 1254.068 units, 1.245 to 1.248 respectively 
and the unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.264 and 
Rs.1977.152 to Rs.1951.804 respectively, when other parameters and costs are fixed. 

If interest charged '𝐼, ' increases from Rs.0.120 to 0.144, the optimal ordering quantity '𝑄' the 
the cycle length ‘T’ are increasing from 1250.845 to 1321.422 units, 1.245 to 1.314 respectively and the 
unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.097 and Rs.1977.152 
to Rs.1971.258 respectively, when other parameters and costs are fixed. 

If the permissible delay period '𝑀' increases from 0.5 months to 0.6 months, the optimal 
ordering quantity '𝑄' and the cycle length ‘T’ are increasing from 1250.845 to 1391.447 units, 1.245 
to 1.383 respectively and the unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 
to Rs. 3.916 and Rs.1977.152 to Rs.1976.099 respectively, when other parameters and costs are fixed. 

 The inflation rate '𝑟' increases from 0.010 to 0.0120 the optimal ordering quantity '𝑄' and the 
cycle length ‘T’ are decreasing from 1250.845 to 1233.796 units, 1.245 to 1.228 respectively and the 

423 



 
K Srinivasa Rao, M Amulya, K Nirupama Devi  
INVENTORY MODEL WITH SELLING PRICE DEPENDENT DEMAND  

      RT&A, No 4 (71) 
  Volume 17, December 2022  

 

unit selling price '𝑝' and the net profit '𝑁𝑃' are decreasing from Rs. 4.275 to Rs. 4.309 and Rs.1977.152 
to Rs.1981.935 respectively, when other parameters and costs are fixed. 

When the time horizon '𝐻' increases from 12 months to 13.8 then the optimal ordering quantity 
'𝑄', the cycle length ‘T’ and the net profit '𝑁𝑃' are decreasing from 1250.845 to 1164.742 units, 1.245 
to 1.16 and Rs.1977.152 to Rs.1967.694 respectively and the unit selling price '𝑝' is increasing from Rs. 
4.275 to Rs. 4.501, when other parameters and costs are fixed. 

 

6. Sensitivity Analysis 
 

To study the effect of changes in the model parameters and costs on the optimal values of the order 
quantity, cycle length, selling price and net profit, the sensitivity analysis is carried by considering 
𝑎 = 1000, 𝑏 = 0.01	units, α = 0.02, β = 0.60, γ = 0.60, A = Rs. 250, 𝑔 = 𝑅𝑠. 0.20, h = Rs. 0.100,
𝐼7 = 𝑅𝑠. 0.150, 𝐼, = 𝑅𝑠. 0.120, 𝑀 = 0.500, 𝑟 = 0.01, 𝐻 = 12 months. Table-2 summarizes these 
results for variations of -15%, -10%, -5%, 0, 5%, 10%, 15% of the parameters and costs. 

As the parameter 𝑎 increases from -15% to +15%, the optimal order quantity 𝑄 is increases from  
1044.252 to 1496.13, cycle length ‘T’ increases from 1.223 to 1.294, selling price ‘p’ decreases from 
Rs.4.940 to Rs.3.766 and the net profit increases from Rs.1927.777 to Rs.2030.755. 

 When the total demand during the cycle period 𝑏 increases from -15% to +15%, the optimal 
order quantity '𝑄' increases from 1250.843 to 1250.849, cycle length '𝑇' and selling price '𝑝' remains 
constant 1.245 and Rs.4.275 and the net profit '𝑁𝑃' decreases from Rs.1977.153 to Rs.1977.150. 

As the deterioration parameter 𝛼 increases from -15% to +15%, the optimal order quantity '𝑄' 
increases from 1159.039 to 1343.894, cycle length '𝑇' increases from 1.155 to 1.335, selling price '𝑝' 
decreases from Rs.4.394 to Rs.4.171 and the net profit '𝑁𝑃' decreases from Rs.1994.984 to Rs.1959.454. 

If the parameter 𝛽 increases from -15% to +15%, the optimal order quantity '𝑄' increases from 
1165.449 to 1375.594, cycle length '𝑇' increases from 1.160 to 1.368, selling price '𝑝' decreases from 
Rs.4.388 to Rs.4.135 and the net profit '𝑁𝑃' decreases from Rs.1992.891 to Rs.1955.097 

 When the deterioration parameter 𝛾 increases from -15% to +15%, the optimal order quantity 
'𝑄' increases from 1245.965 to 1255.199, cycle length '𝑇' increases from 1.238 to 1.250, selling price '𝑝' 
decreases from Rs.4.285 to Rs.4.266 and the net profit '𝑁𝑃' decreases from Rs.1977.753 to Rs.1976.658. 

When the ordering cost  𝐴 increases from -15% to +15%, the optimal order quantity '𝑄' decreases 
from 1636.158 to 1161.260, cycle length '𝑇' decreases from 1.623 to 1.156, selling price '𝑝' increases 
from Rs.3.693 to Rs.4.516 and the net profit '𝑁𝑃' increases from Rs.1950.119 to Rs.1984.953. 

As the unit cost 𝑔 increases from -15% to +15%, the optimal order quantity '𝑄' increases from 
1239.817 to 1265.073, cycle length '𝑇' increases from 1.234 to 1.259, selling price '𝑝' increases from 
Rs.4.267 to Rs.4.280 and the net profit '𝑁𝑃' decreases from Rs.2021.981 to Rs.1930.992. 

As the holding cost ℎ increases from -15% to +15%, the optimal order quantity '𝑄' increases from 
1245.014 to 1257.161, cycle length '𝑇' increases from 1.239 to 1.251, selling price ‘p’ decreases from 
Rs.4.276 to Rs.4.274 and the net profit decreases from Rs.1994.320 to Rs.1959.762. 

When the interest charged 𝐼7 increases from -15% to +15%, the optimal order quantity '𝑄' 
increases from 1249.630 to 1253.034, cycle length '𝑇' increases from 1.243 to 1.247, selling price ‘p’ 
decreases from Rs.4.281 to Rs.4.267 and the net profit decreases from Rs.1995.489 to Rs.1958.606. 

If the interest earned  𝐼, increases from -15% to +15%, the optimal order quantity '𝑄' increases 
from 1200.594 to 1303.390, cycle length '𝑇' increases from 1.195 to 1.296, selling price '𝑝' decreases 
from Rs.4.425 to Rs.4.139 and the net profit '𝑁𝑃' decreases from Rs.1981.910 to Rs.1972.676. 

When the permissible delay period 𝑀 increases from -15% to +15%, the optimal order quantity 
'𝑄' increases from 1168.658 to 1352.685, cycle length '𝑇' increases from 1.164 to 1.345, selling price '𝑝' 
decreases from Rs.4.562 to Rs.4.002 and the net profit '𝑁𝑃' decreases from Rs.1979.374 to Rs.1976.004. 

If the inflation rate 𝑟 increases from -15% to +15%, the optimal order quantity '𝑄' decreases from 
1259.440 to 1233.796, cycle length '𝑇' decreases from 1.253 to 1.228, selling price '𝑝' increases from 
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Rs.4.258 to Rs.4.309 and the net profit '𝑁𝑃' increases from Rs.1974.749 to Rs.1981.935. 
When the time horizon 𝐻 increases from -15% to +15%, the optimal order quantity '𝑄' decreases 

from 1490.623 to 1185.239, cycle length '𝑇' decreases from 1.480 to 1.180, selling price '𝑝' increases 
from Rs.3.820 to Rs.4.443 and the net profit '𝑁𝑃' decreases from Rs.2008.083 to Rs.1969.864. 

 
Table-2: Efect on Optimal Values with Respect to Parameters Variation 

 
Variation 

Parameters 
 Percentage change in parameter   

-15 -10 -5 0 5 10 15 
 

𝑎 

𝑄 1044.252 1108.494 1177.432 1250.845 1328.542 1410.353 1496.130 
𝑇 1.223 1.226 1.233 1.245 1.259 1.275 1.294 
𝑝 4.940 4.699 4.477 4.275 4.090 3.921 3.766 
𝑁𝑃 1927.777 1944.253 1960.585 1977.152 1994.236 2012.050 2030.755 

 

𝑏 

𝑄 1250.843 1250.843 1250.845 1250.845 1250.847 1250.847 1250.849 
𝑇 1.245 1.245 1.245 1.245 1.245 1.245 1.245 
𝑝 4.275 4.275 4.275 4.275 4.275 4.275 4.275 
𝑁𝑃 1977.153 1977.153 1977.152 1977.152 1977.151 1977.151 1977.150 

 

α 

𝑄 1159.039 1189.474 1220.082 1250.845 1281.746 1312.768 1343.894 
𝑇 1.155 1.185 1.215 4.275 1.275 1.305 1.335 
𝑝 4.394 4.353 4.313 1977.152 4.239 4.204 4.171 
𝑁𝑃 1994.984 1989.032 1983.086 1.245 1971.233 1965.332 1959.454 

 

β 

𝑄 1165.449 1177.053 1213.044 1250.845 1290.509 1332.079 1375.594 
𝑇 1.160 1.172 1.207 1.245 1.284 1.325 1.368 
𝑝 4.388 4.372 4.323 4.275 4.227 4.181 4.135 
𝑁𝑃 1992.891 1990.722 1984.056 1977.152 1970.017 1962.661 1955.097 

 

γ 

𝑄 1245.965 1247.650 1249.277 1250.845 1252.355 1253.806 1255.199 
𝑇 1.238        1.241 1.243 1.245 1.247 1.248 1.250 
𝑝 4.285 4.281 4.278 4.275 4.272 4.269 4.266 
𝑁𝑃 1977.753 1977.540 1977.340 1977.152 1976.975 1976.811 1976.658 

 

𝐴 

𝑄 1636.158 1440.839 1340.631 1250.845 1170.346 1167.304 1161.260 
𝑇 1.623 1.432 1.333 1.245 1.165 1.162 1.156 
𝑝 3.693 3.899 4.078 4.275 4.489 4.498 4.516 
𝑁𝑃 1950.119 1964.813 1970.615 1977.152 1984.103 1984.386 1984.953 

 

𝑔 

𝑄 1239.817 1243.134 1246.810 1250.845 1255.235 1259.979 1265.073 
𝑇 1.234 1.237 1.241 1.245 1.249 1.254 1.259 
𝑝 4.267 4.270 4.273 4.275 4.277 4.279 4.280 
𝑁𝑃 2021.981 2007.169 1992.229 1977.152 1961.926 1946.543 1930.992 

 

ℎ 

𝑄 1245.014 1246.903 1248.847 1250.845 1252.897 1255.002 1257.161 
𝑇 1.239 1.241 1.243 1.245 1.247 1.249 1.251 
𝑝 4.276 4.275 4.275 4.275 4.275 4.274 4.274 
𝑁𝑃 1994.320  1988.621 1982.898 1977.152  1971.381 1965.584 1959.762 

 

IC 

𝑄 1249.630 1249.910 1250.290 1250.845 1251.530 1252.233 1253.034 
𝑇 1.243 1.244 1.244 1.245 1.245 1.246 1.247 
𝑝 4.281 4.279 4.277 4.275 4.272 4.270 4.267 
𝑁𝑃 1995.489 1989.675 1983.842 1977.152 1970.434 1964.532 1958.606 

 

ID 

𝑄 1200.594 1217.093 1233.842 1250.845 1268.103 1285.617 1303.390 
𝑇 1.195 1.211 1.228 1.245 1.262 1.279 1.296 
𝑝 4.425 4.373 4.323 4.275 4.228 4.183 4.139 
𝑁𝑃 1981.910 1980.296 1978.709 1977.152 1975.626 1974.133 1972.676 
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Variation 
Parameters 

 Percentage change in parameter   
-15 -10 -5 0 5 10 15 

 

𝑀 

𝑄 1168.658 1194.025 1221.391 1250.845 1282.482 1316.396 1352.685 
𝑇 1.164 1.189 1.216 1.245 1.276 1.309 1.345 
𝑝 4.562 4.466 4.370 4.275 4.182 4.091 4.002 
𝑁𝑃 1979.374 1978.584 1977.831 1977.152 1976.588 1976.187 1976.004 

 

𝑟 

𝑄 1259.440 1259.440 1250.845 1250.845 1242.297 1242.297 1233.796 
𝑇 1.253 1.253 1.245 1.245 1.236 1.236 1.228 
𝑝 4.258 4.258 4.275 4.275 4.292 4.292 4.309 
𝑁𝑃 1974.749 1974.749 1977.152 1977.152 1979.547 1979.547 1981.935 

 

𝐻 

𝑄 1490.623 1402.823 1323.141 1250.845 1228.266 1206.405 1185.239 
𝑇 1.480 1.394 1.316 1.245 1.222 1.201 1.180 
𝑝 3.820 3.963 4.114 4.275 4.330 4.386 4.443 
𝑁𝑃 2008.083 1995.997 1985.781 1977.152 1974.585 1972.158 1969.864 
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7. Conclusion 

In this paper an EOQ model for deteriorating items with permissible delay in payments having 
truncated Weibull distribution with inflation is proposed and analyzed. In inventory control, 
permissible delay in payments has significance influence in obtaining the optimal pricing and 
ordering policies. The truncated Weibull distribution is one of the most significant life time 
distributions for items such as food and vegetables markets, market yards and chemical industries, 
etc., where the deterioration is skewed and having long upper tail. The truncated Weibull 
distribution includes exponential distribution as a particular case. The sensitivity analysis of the 
model revealed that the pricing and ordering are highly influenced by the parameters and costs. The 
model with constraints on warehouse capacity and budget can also be developed with permissible 
delay in payment and truncated Weibull decay which will be published elsewhere. 
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Abstract 

Under assorted fuzzy numbers, we portray an FM/FD/1 queuing model with an unrestrained limit. 

The foremost target of this paper is to compare the efficacy of an FM/FD/1 queuing model based on 

fuzzy queuing theory and intuitionistic fuzzy queuing theory. Birth (arrival) and death (service) 

rates are thought to be triangular and triangular intuitionistic fuzzy numbers. The fuzzy 

consequence of unpredictability modeling is a fuzzy random variable because arbitrary events can 

only be recognized in an undefined manner. As a consequence, it is essential to interpret the direct 

correlation between volatility and vagueness. The lining miniature's prosecution dimensions are 

fuzzified and then examined using arithmetic and logical operations. The evaluation metrics for the 

fuzzy queuing theory model are furnished as a range of outcomes, meanwhile, the intuitionistic fuzzy 

queuing theory model has plenty of virtues. An approach is conducted to ascertain quality measures 

using a methodological approach in which fuzzy values are preserved without being incorporated into 

crisp values, allowing us to draw scientific conclusions in an uncertain environment. The 

arithmetical precepts are defined in dealing with various fuzzy numbers to test the model's technical 

feasibility. A comparison illustration is constituted for each fuzzy number. 

Keywords: queuing theory, triangular fuzzy number, triangular intuitionistic 

fuzzy number, infinite capacity. 

1. Introduction

A queue is made up of at least one queue or one or more remodeled offices that carry a system 

of regulations. To initiate propagation in the queuing hypothesis, the specifications birth rate (birth) 

and death rate (service) are required. Kaufmann [1] featured an introduction to fuzzy subset theory 

in 1975. John F Shortle et al [2] envisioned several basic queuing suppositions in 1985. In 1986, Yager 

[3] proposed a different interpretation of the fuzzy set extension principle. In 1989, Lie et al [4]

proposed a fuzzy queuing model. In 1992, Negi et al [5] made an overview of queuing systems.

Recently, Lofti A Zadeh [6] depicted fuzzy sets and logic in 1995. Chen [7, 8] posited a parameterized

nonlinear optimization strategy to fuzzy queues with the widespread regime in 2005, and an

arithmetic programming approach to dealing with equipment interruption with fuzzy parameters in

2006. He evolved FM/FM/1/1/FCFS is a fuzzified exponential time dependent on queuing
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hypothesis.  In 2007, K. Gupta et al [9] published a book that was knowledgeable regarding queuing 

models. Fuzzy logic with engineering disciplines was proposed by Timothy J. Rose [10] in 2010. In 

2012, S. Barak et al [11] published a paper on the cost analysis of fuzzy queuing systems. Srinivasan 

[12] proposed a fuzzy queuing model based on the DSW algorithm in 2014. Shanmugasundaram et

al [13] postulated a DSW computation version on fuzzy multi-server queuing in 2015. Using the DSW

algorithm, Mohd Zaki et al [16] likened the queuing model and the fuzzy queuing model. The basic

framework is focused on Atanassov's extension principle and  - cut method, and Narayana Moorthy

et al [20] used intuitionistic fuzzy numbers as hyperparameters. Arpita Kabiraj et al [21] used

intuitionistic notions in a linear programming problem to solve fuzzy linear programming problems.

In this analysis, G. Chen et al [22] glanced at optimized and enthalpies techniques in fuzzy M/M/1

queues, using all fuzzy numbers as a covariate. In their paper, S. Hanumantha Rao et al [23] proposed

a single semi-Markov queueing system with constraints, encouraging or discouraging arrivals, and a

rejigged customer reneging policy. S. Hanumantha Rao et al [24] proposed the membership function

of the fuzzy cost function to procure optimistic prognostications for certain key metrics of a

customizable 2 different service dedicated server markovian limiting queues with server starts and

breakdown over N-policy. The prediction generating function was used by S.S. Sanga et al [25] to

generate the stable flow mathematical formulation for predictive distributions and systems

assessment processes. R. Sethi et al. [26] used an iterative method for extracting steady queue

distributions, making multiple performance indices, and wandering numerical experiments to typify

the attitude of the system coefficients as numerous system parameters are updated. F. Ferdowsi [28]

envisioned an intuitionistic fuzzy measure to negotiate with uncertainty, in which he used a

credibility indicator to integrate a fuzzy model into a crisp model. To investigate the performance of

a system, B. R. Kumar et al [29] used estimation theory and defuzzification. A. Tamilarasi [27]

researched the intuitionistic fuzzy and queuing model utilizing trapezoidal intuitionistic fuzzy

numbers. The fuzzy queues are assessed by transferring fuzzy values into crisp values, as shown in

the aforementioned overview. As a consequence, we've proposed a technique for tackling

deterministic queues in both fuzzy and intuitionistic fuzzy environments without shifting their

nature in this paper. In comparison to previous strategies, this initiative is favorable in that it is

eloquent, resilient, and noteworthy. According to the results of the analysis, the fuzzy queuing

model's performance measurements are within the spectrum of the intuitionistic fuzzy queuing

model's computed performance measures. In the queuing theory, both the specifications, that is, the

birth (arrival) times and death (service) times, are geared towards achieving predefined

appropriations in the customary lining model. The birth rate and death rate are commonly

characterized using terminological terms, such as large, small, incredibly low, and modest, which are

better reflected by fuzzy and intuitionistic fuzzy sets. Probably the easiest queue with deterministic

service time is the FM/FD/1 queue, which has a multitude of uses in performance measurement,

network technologies, and other areas. The main concept is to obtain exact fuzzy values, that is,

without attempting to convert them to crisp values, and then apply the queuing performance

formulas to two types of participatory cognitive abilities, namely triangular and intuitionistic fuzzy

enrolment capacities.

A deterministic queueing model is perhaps the most basic type of queuing problem, as it does 

not necessitate the use of probability to describe the arrival and service pattern. The set of inputs 

entering at particular times and the processing times are both fixed. The arrival rate is Poisson in this 

model, but the service rate is deterministic, i.e., it is consistent. If we can make the service 

deterministic, that is, suspend evolutionary divergence from the service, we can substantially reduce 

the virtues of the number in the system as well as the waiting time if we want to optimize the queuing 

parameters. One solution is to add further servers, and besides, if we can also completely eradicate 

chance variations, whether, through digitalization or any other means, things will get better 

remarkably. 
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Section 2 introduces some underlying concepts and definitions. The insinuations and 

nomenclature are discussed in Section 3. The suggested queuing model is presented in Section 4. Two 

numerical precepts are solved in Section 5. The discussion of findings is presented in Section 6. The 

prototype is checked in Section 7. 

2. Preliminaries

The motive of this division is to give some basic definitions, annotations, and outcomes that 

are used in our subsequent calculations. 

Definition 2.1: [14]  A fuzzy set A  is defined on R, the set of real numbers is called a fuzzy number 

if its membership function  : 0,1R
A

 →  has the following conditions: 

(a) A is convex, which means that there exists ,
1 2

x x R and  0,1  , such that

( )( ) ( ) ( ) 1 min ,
1 2 1 2

x x x x
A A A

    + − 

(b) A is normal, which means that there exists an x R such that ( ) 1x
A

 =

(c) A is piecewise continuous. 

Definition 2.2: [14] A fuzzy number A  is defined on R, the set of real numbers is said to be a 

triangular fuzzy number (TFN) if its membership function  : 0,1R
A

 →  which satisfies the 

following conditions:” 

( )x
A

   = 

{

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise

Figure 1: Triangular fuzzy number 

The triangular fuzzy number is illustrated in Fig 1. 

Definition 2.3:[14] “Let the two triangular fuzzy numbers be ( ), ,
1 2 3

P a a a and ( ), ,
1 2 3

Q b b b  and 

then the arithmetic operations on TFN be given as follows: 

(A)Addition
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( ) ( )

( ) ( )

, , , ,
1 2 3 1 2 3

, , , ,
1 1 1 2 2 2

P Q a a a b b b

P Q m m   

+  +

+  +

   ( ),max , ,max ,
1 2 1 2 1 2

P Q m m    +  + (1)

(B)Subtraction

( ) ( )

( ) ( )

, , , ,
1 2 3 1 2 3

, , , ,
1 1 1 2 2 2

P Q a a a b b b

P Q m m   

−  −

−  −

   ( ),max , ,max ,
1 2 1 2 1 2

P Q m m    −  −  (2) 

(C) Multiplication

( ) ( ). , , . , ,
1 2 3 1 2 3

P Q a a a b b b

( ) ( ). , , . , ,
1 1 1 2 2 2

P Q m m   

   ( ). . ,max , ,max ,
1 2 1 2 1 2

P Q m m     (3) 

(D) Division

( )
( )

, ,
1 2 3

, ,
1 2 3

a a aP

Q b b b


( )
( )

, ,
1 1 1

, ,
2 2 2

mP

Q m

 

 


   1 ,max , ,max ,
1 2 1 2

2

mP

mQ
   

 
 
 
 

 ” (4)

 Definition 2.4: For every triangular fuzzy number ( ) ( ), ,
1 2 3

P a a a F R  ranking function 

( ): F R R →  is defined by graded mean as”

 

( )
( )4

1 2 3

6

a a a
P

+ +
 =

For any two TFN ( ), ,
1 2 3

P a a a  and ( ), ,
1 2 3

Q b b b  We have the following comparisons, 

( ) ( )

( ) ( )

( )

( )

a P Q P Q

b P Q P Q

  

   

 

( ) ( )

( ) ( )

( )

( ) 0 0

c P Q P Q

d P Q P Q

   = 

−    − =

A triangular fuzzy number ( ) ( ), ,
1 2 3

P a a a F R  is known to be positive if ( ) 0P  and defined

by  0P .” 

Definition 2.5:[15] Let a non–empty set be X . An Intuitionistic fuzzy set (IFS) A  is defined as 

( ) ( )( ) , , /A x x x x X
A A

  = 
 

, where  : 0,1X
A

 →


 and  : 0,1X
A

 →


 denotes the degree of 

membership and degree of non– membership functions respectively where x X  , for every 

( ) ( ), 0 1.x X x x
A A

   + 
 

” 

Definition 2.6:[15] “An intuitionistic fuzzy set A  described on R, the real numbers are said to be an

Intuitionistic fuzzy number (IFN) if its membership function  : R 0,1
A

 →


 and its non –
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membership function  : R 0,1
A

 →


 should agreeable to the following conditions: 

i) A is normal, which means that there exists an x R , such that ( ) ( )1, 0x x
A A

 = =
 

 

ii) A is convex for the membership function 
A



, which means that there exists ,

1 2
x x R

and  0,1    such that ( )( ) ( ) ( ) 1 min , .
1 2 1 2

x x x x
A A A

    + − 
  

iii) A is concave for the non – membership function
A



 , which means that there exists 

,
1 2

x x R and  0,1  such that” ( )( ) ( ) ( ) 1 max , .
1 2 1 2

x x x x
A A A

    + − 
  

Definition 2.7:[15] “A fuzzy number A  on R is said to be a triangular intuitionistic fuzzy number

(TIFN) if its membership function  : R 0,1
A

 →


 and non – membership function  : R 0,1
A

 →


has the following conditions:

 

( )x
A




=

{

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise

 

and 

( )x
A


 = 

{

 1 for 𝑥 < �̃�1
′ , 𝑥 > �̃�3

′

�̃�2−𝑥

�̃�2−�̃�1
′  for �̃�1

′ ≤ 𝑥 ≤ �̃�2

0 for 𝑥 = �̃�2
𝑥−�̃�2

�̃�3−�̃�2
for  �̃�2 ≤ 𝑥 ≤ �̃�3

′

and is given by ( ), , ; , ,
1 2 3 1 2 3

A a a a a a a  = where .
1 1 2 3 3

a a a a a     ” 

Figure 2: Intuitionistic triangular fuzzy number 

The intuitionistic triangular fuzzy number is illustrated in Fig 2. 

Cases: Let ( ), , ; , ,
1 2 3 1 2 3

A a a a a a a  = be a TIFN then the following cases arises.

Case:1 If ,
1 1 3 3

a a a a = = then A  represent a TFN.
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Case:2 If  1 1 2 3 3
a a a a a m = = = = =  then A  represent a real number m . The parametric form of 

TIFN A  is defined as ( ), , ; , ,A m m     =  where , & ,     represents the left spread and right 

spread of membership functions and non – membership functions respectively.” 

Definition 2.8:[15] TIFN ( ) ,A F R  (where ( )F R  is the set of all TIFN) can also be represented as

a pair ( ), ; ,A a a a a  = of functions ( ) ( ) ( ) ( ), , &a r a r a r a r      for 0 1r   which satisfies the

following requirements: 

i) ( ) ( )&a r a r   is a bounded monotonic increasing left continuous function for membership

and non–membership functions respectively. 

ii) ( ) ( )&a r a r   is a bounded monotonic decreasing left continuous function for membership

and non–membership functions respectively. 

iii) ( ) ( ) , 0 1.a r a r r    

iv) ( ) ( ) , 0 1.a r a r r       ” 

Definition 2.9: “The extension of fuzzy arithmetic operations of Ming Ma et al [14] to the set of 

TIFN based upon both location indices and functions of fuzziness indices. The location indices 

number is taken in the regular arithmetic while the functions of fuzziness indices are assumed to 

follow the lattice rule which is the least upper bound in the lattice I  . For any two arbitrary TIFN 

( ), , ; , ,
1 1 1 1 1 1

P m m      and ( ), , ; , ,
2 2 2 2 2 2

Q m m      and   , , , , + −   then the 

arithmetic operations on TIFN are defined by 

( ), , ; , , .
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m             =      

 In particular, for any two TIFNs ( ), , ; , ,
1 1 1 1 1 1

P m m      and ( ), , ; , ,
2 2 2 2 2 2

Q m m     

the arithmetic operations are defined as  

( ) ( ), , ; , , , , ; , ,
1 1 1 1 1 1 2 2 2 2 2 2

P Q m m m m             = 

       ( ), max , , max , ; , max , , max ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m             =  

( ), , ; , ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m             =      

In particular, for any two TIFNs ( ) ( ), , ; , , , , ; , , ,
1 2 3 1 2 3 1 1 1 1 1 1

P a a a a a a m m         

( ) ( ), , ; , , , , ; , ,
1 2 3 1 2 3 2 2 2 2 2 2

Q b b b b b b m m          we define:” 

Addition 

( ) ( ), , ; , , , b , b ; b , b , b
1 2 3 1 2 3 1 2 3 1 2 3

P Q a a a a a a b     + = +

 ( ) ( ), , ; , , , , ; , ,
1 1 1 1 1 1 2 2 2 2 2 2

P Q m m m m            + = +

       ( ), max , , max , ; , max , , max ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m            + = + +   (5) 

Subtraction 

( ) ( ), , ; , , , b , b ; b , b , b
1 2 3 1 2 3 1 2 3 1 2 3

P Q a a a a a a b     − = −

( ) ( ), , ; , , , , ; , ,
1 1 1 1 1 1 2 2 2 2 2 2

P Q m m m m            − = −

       ( ), max , , max , ; , max , , max ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m            − = − −  (6) 

Multiplication   

( ) ( ), , ; , , , b , b ; b , b , b
1 2 3 1 2 3 1 2 3 1 2 3

P Q a a a a a a b      = 

  ( ) ( ), , ; , , , , ; , ,
1 1 1 1 1 1 2 2 2 2 2 2

P Q m m m m             = 
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       ( ), max , , max , ; , max , , max ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m             =    (7) 

Division 

 ( ) ( ), , ; , , , b , b ; b , b , b
1 2 3 1 2 3 1 2 3 1 2 3

P Q a a a a a a b      = 

      ( ) ( ), , ; , , , , ; , ,
1 1 1 1 1 1 2 2 2 2 2 2

P Q m m m m             = 

       ( ), max , , max , ; , max , , max ,
1 2 1 2 1 2 1 2 1 2 1 2

P Q m m m m             =   ”    (8)

Definition 2.10: “Consider an arbitrary TIFN ( ) ( ), , ; , , , , ; , ,
1 2 3 1 2 3

A a a a a a a m m       = = and

the magnitude of TIFN A  is given by 

( ) ( ) ( )

( ) ( ) ( )

1
2

2

1
6

2

mag A a a m a a f r dr

mag A m f r dr   

    = + + + +

    = + + − −

In real life scenario, decision-makers select the value of ( )f r  based on their circumstances. Here

for our ease, we choose  ( ) 2
f r r =

( )
( )

( )
( )

6

6

2

6

m
mag A

a a m a a
mag A

    + + − −
 =

 + + + +
 =

For any two TIFN ( ), , ; , , ,
1 1 1 1 1 1

P m m      ( ), , ; , ,
2 2 2 2 2 2

Q m m      in ( )F R , we define

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

a P Q mag P mag Q

b P Q mag P mag Q

c P Q mag P mag Q

     

     

     =

” 

3. Suppositions and Diacritical marks

3.1. Suppositions 

The following are the accompanying presumptions used in the current model: 

i) With only one server, the ( ) ( )/ / 1 : /FM FD FCFS  queuing model has no bounds.

ii) Service discipline First-Come-First-Served (FCFS)

iii) Arrival times that are widely disseminated.

iv) Fixed deterministic service fetishization.

v) The birth(arrival) rate and death(service) rate are both ambiguous figures.

3.2. Diacritical marks 

Here we are using the following notations: 

,  →  The mean no. of consumers who arrive in a predetermined period of time. 

,  →  The mean no. of consumers being serviced per unit of time. 

 →Traffic intensity 

,N N
q q

 → The mean no. of consumers in the line.

,
s s

N N  → The mean no. of consumers in the system.
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,
q q

T T  → The mean sojourn time of the consumers in the queue. 

,T Ts s → The mean sojourn time of the consumers in the system. 

FM → Fuzzified exponential distribution. 

FD →  Fuzzified Regular service distribution. 

,P P → Interarrival rate. 

,Q Q →  Service rate. 

4. Single server deterministic fuzzy queuing model with infinite capacity

We envisage a solo server queuing model governed by the First Come, First Served (FCFS) 

principle. It's composed as ( ) ( )/ / 1 : /FM FD FCFS  in Kendall's notation. Fuzzified exponential

distribution with arrival rate is denoted by FM, and fuzzified stable (consistent) dispersion with 

service rate is denoted by FD. This is a stochastic process, and the state vector is the collection 

 0,1, 2, ... in which the value implies the number of customers in the system, which encompasses

any enterprise currently in the establishment. Because it is unbounded in size, there is no limit to the 

number of customers it can hold. Let   and    be the fuzzy and intuitionistic fuzzy arrival rates 

respectively. Let   and    be the fuzzy and intuitionistic fuzzy service rates respectively. At the 

steady-state, the FCFS discipline is upheld but the capacity is unlimited. 

The following are the fabrication characteristics of the above model: 

i) The anticipated number of customers in the system is given as

( )

2

,
2 1

Ns
 

 
 

= + =
−

 (9) 

ii) The anticipated number of customers in the queue is given as

( )

2

2 1
Nq




=

−
(10) 

iii) The anticipated waiting time of customers in the queue is given as

( )2 1
Tq



 
=

−
(11) 

iv) The anticipated waiting time of customers in the system is given as

( )
1

2 1
Ts



  
= +

−
   (12)

5. Solo server deterministic fuzzy queuing model with unlimited capability

The plaza has a ginormous market and over 10 different manufacturers. Contemplate a 

shopping centre with a parking slot facility on one floor, with 12 access points and 12 exit ramps for 

vehicles that are free of charge. Envision two vehicles arriving at the parking spot every minute. 

Under this scenario, we enumerate the examples and solve them. Interpret the entry rate and the 

departure rate as both TFNs and TIFNs symbolized by  ,    and  ,    respectively. We postulate 

the system's limit, is infinity. 
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5.1. Single server deterministic fuzzy queuing model with infinite capacity 

Let ( )1, 2, 3 =  is the arrival rate and ( )11,12,13 = is the service rate of the queuing model. 

Determine the TFN in the form of ( ), ,m   as ( )2,1,1 =  and ( )12,1,1 = . To determine the values

of a number of customers and their sojourn time in the queue as well as a system using suitable 

formulas among (9), (10), (11), & (12). It is necessary to use the appropriate arithmetic operations 

described in (1), (2), (3), and (4) for add, sub, multiply, and divide, respectively. 

The metrics of performance are calculated and tabulated in Table 1. 

Table 1: Performance measures using TFN 

Quantifiable metrics using TFN 

Nq ( )0.9834, 0.0166,1.0166−

Ns ( )0.8168, 0.1832,1.1832−

Tq ( )0.9917, 0.0083,1.0083−

Ts ( )0.9084, 0.0916,1.0916−

5.2. Single server deterministic intuitionistic fuzzy queuing model with infinite 

capacity 

Let ( )1.5, 2, 2.5;1, 2, 3 =  is the arrival rate and ( )11.5,12,12.5;11,12,13 = is the service rate

of the queuing model. Determine the TIFN in the form of ( ), , ; , ,m m      as ( )2, 0.5, 0.5; 2,1,1 =

and ( )12, 0.5, 0.5;12,1,1 = . To determine the values of a number of customers and their sojourn

time in the queue as well as a system using suitable formulas among (9), (10), (11), & (12). It is 

necessary to use the appropriate arithmetic operations described in (5), (6), (7), and (8) for add, sub, 

multiply, and divide, respectively. 

The metrics of performance are calculated and tabulated in Table 2. 

Table 2: Performance measures using TIFN 

Quantifiable metrics using TIFN 

Nq ( )0.4834, 0.0166, 0.5166; 0.9834, 0.0166,1.0166− −

Ns ( )0.3168, 0.1832, 0.6832; 0.8168, 0.1832,1.1832− −

Tq ( )0.4917, 0.0083, 0.5083; 0.9917, 0.0083,1.0083− −

Ts ( )0.4084, 0.0916, 0.5916; 0.9084, 0.0916,1.0916− −

The following figures depict the visualizations of Tables 1 and 2. 
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Figure 3:    The number of customers in the queue Nq Figure  4: The waiting time of the customers in the queue

Tq

Figure 5:    The number of customers in the system 

Ns

Figure 7: The membership ( )  and the non-

membership functions ( )  of the number of customers 

in the queue Nq

Figure 6: The waiting time of customers in the system 

Ts

Figure 8: The membership ( )  and the non-

membership ( )  functions of the waiting time of 

consumers in the queue” Tq
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Figure 9: The membership ( )  and the non-

membership ( )  functions of the number of consumers 

in the system” Ns

Figure 10: The membership ( )  and the non-

membership ( )  functions of the waiting time of 

consumers in the system” sT   

6. Results and Discussions

Tables 1-2 provide the results, which show different assessments for a multitude of 

membership functions (TFN and TIFN). 

i) The mean value of  0.0166Nq =  and the left and right stretched values are -0.9834 and

1.0166 respectively emphasizing that the queue length of consumers is closely between

-0.9834 and 1.0166. Its most assured value is 0.0166.

ii) The mean value of  0.1832Ns =  and the left and right stretched values are -0.8168 and 1.1832

respectively emphasizing that the system length of consumers is closely between

-0.8168 and 1.1832. Its most assured value is 0.1832.

iii) The mean value of  0.0083T
q
=  and the left and right stretched values are -0.9917 and 1.0083

respectively emphasizing that the sojourn time of consumers in the queue is closely between

-0.9917 and 1.0083. Its most assured value is 0.0083.

iv) The mean value of  0.0916Ts =  and the left and right stretched values are -0.9084 and 1.0916

respectively emphasizing that the sojourn time of consumers in the system is closely

between -0.9084 and 1.0916. Its most assured value is 0.0916.

v) The mean value of  0.0166Nq = and the left and right fuzziness of membership ( )

functions are -0.4834 and 0.5166 respectively and the left and right fuzziness of non-

membership ( )  functions are -0.9834 and 1.0166 respectively. Its most assured value is 

0.0166. 
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vi) The mean value of  0.1832Ns = and the left and right fuzziness of membership ( )
functions are -0.3168 and 0.6832 respectively and the left and right fuzziness of non-

membership ( )  functions are -0.8168 and 1.1832 respectively. Its most assured value is 

0.1832. 

vii) The mean value of  0.0083Tq = and the left and right fuzziness of membership ( )  functions

are -0.4917 and 0.5083 respectively and the left and right fuzziness of non-membership ( )

functions are -0.9917 and 1.0083 respectively. Its most assured value is 0.0083. 

viii) The mean value of  0.0916Ts = and the left and right fuzziness of membership ( )  functions

are -0.4084 and 0.5916 respectively and the left and right fuzziness of non-membership ( )  

functions are -0.9084 and 1.0916 respectively. Its most assured value is 0.0916. 

The findings demonstrate that the exhibition measures , , , , , , &N N T T N N T Tq s q s q s q s      for both 

the fuzzy queuing theory and intuitionistic fuzzy queuing models were metabolized and tested in 

this study. Because the intuitionistic fuzzy set supposition is more efficaciously customizable, the 

intuitionistic fuzzy queuing model is significantly more effective and efficient in measuring the 

exhibition of the deterministic FM/FD/1 queuing model framework. The intuitionistic fuzzy queuing 

model produces more comprehensive data, which is immensely beneficial when characterizing a 

model framework. As a result, this study concludes that intuitionistic fuzzy lining is one of the options 

for registering exposition parameters because the data obtained from the implementation is much 

better to recognize and perceive. 

7. Conclusion

In this manuscript, IFS is shown as a quite crucial asset to fuzzy set theory when interacting 

with ostensible implementation in single server deterministic queuing models with infinite capacity. 

We validated the system using comparison sorting rubrics such as the extrapolated length of the 

customer line and the system for both classifications of arrivals without changing the composition of 

the queues from fuzzy to crisp. In addition, fuzzy values and intuitionistic fuzzy values are used to 

ascertain the assumptive sojourn time of customers in the line and throughout the system. Another 

cause to use the suggested technique indicator is that it delivers viable paths to beliefs in the queuing 

utilizing multiple forms of membership functions (TFN and TIFN) while retaining exactness within 

the shuttered crisp interval. 

The birth rate and death rate are fuzzy allegiances, so we make a comparison between the 

fuzzy and intuitionistic fuzzy set hypothesis. System length, queue length, system sojourn time, 

queue sojourn time, and other execution proportions are interestingly ambiguous. The proposed 

method's effectiveness is supported by mathematical precepts. It should be acknowledged that by 

raising the number of variables, the accomplishment of the queuing model can be enhanced. 

Entrepreneurs, retail outlets, and dealerships can use the proposed model to precisely determine the 

best queueing system execution.  

The prediction model is used to reach scientific claims, and the fuzzy and intuitionistic fuzzy 

queue with infinite capacity is explained in greater detail. The envisaged queuing system's 

authenticity and conciseness are appraised using the TFN and TIFN mathematical manifestations. A 

numerical model demonstrates the design flexibility of the preferred methodology. The intuitionistic 

fuzzy queuing model is certainly better and more favorable in appraising dimensions of queuing 

models because the intuitionistic fuzzy theory is more configurable. As an outcome, intuitionistic 

fuzzy queuing is one of the healthiest modes of computing performance standards, according to this 

study, because the evidence found from the application is easier to spot and explore. The paper can 
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be extended from various angles. One is to consider birth and death rates as random variables, or 

fuzzy random variables. Consider neutrosophic fuzzy numbers as an additional aspect to protrude 

this paper. 
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Abstract 
 

This paper deals with the transient state behavior of an M/M/1 retrial queueing model contains two 
parallel servers with departures occur in batches. At the arrival epoch, if all servers are busy then 
customers join the retrial group. Whereas, if the customers find any of one server is free then they 
join the free server and start its service immediately. Here, we assume that primary customers 
arrive according to Poisson process. The retrial customers also follow the same fashion. Service time 
follows an exponential distribution. Explicit time dependent probabilities of exact number of 
arrivals and exact number of departures when both servers are free or when one server is busy or 
when both servers are busy are obtained by solving the difference differential equation recursively. 
Some important verification and conversion of two-state model into single state are also discussed. 
Some of the existing results in the form of special cases have been deduced. 
 

                        Keywords: Retrial, Queueing, Arrivals, Departures, Batch 
 
 
 

1. Introduction 
 
In recent years, computer networks and data communication systems are the fastest growing 
technologies, which have led to significant development in applications such as advance in 
internet, audio data traffic, video data traffic, etc. Recently there have been significant 
contributions to retrial queueing system in which arriving customer who finds the server busy 
upon arrival is require leaving the service area and repeating his demand after some time. Between 
trials, a blocked customer who remains in a retrial group is said to be in orbit. Retrial queue have 
applications in telephone switching systems, telecommunication networks and computers are 
competing to gain service from a central processing unit. Moreover, retrial queues are also used as 
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mathematical models of several computer systems: packet switching networks, shared bus local 
area networks operating under the carrier-sense multiple access protocol and collision avoidance 
star local area networks etc. There are enough of literatures available on retrial queues. We 
referred some of the work like Artalejo and Corral [1], Falin and Templeton [2] and Artalejo [3] etc. 
        In many queueing systems it is assumed that customers arrive singly at a service facility and 
depart singly from the service facility. However, this assumption is violated in many other real 
word situations. Letters arriving at a post office, ships arriving at a port in convoy, people going to 
a theatre and so on are some examples of queuing in which customers do not arrive and depart 
singly but in bulk or groups. The size of an arriving group and departing group may be a random 
variable or a fixed number. Mathematically as well as practically the cases where the size of an 
arriving group and departing group is a random variable, are more common, and also more 
difficult to handle. 
       One can note that the batch arrival queue may not always be given the name ‘batch’ but 
instead of this many authors chose to use the term ‘bulk’. Predominantly, this reflects two leading 
strands of applications, where ‘bulk’ often gives a connotation of transportation settings whereas 
‘batch’ frequently implies applications in communications.  
       Queueing situations in which arrivals occur singly, but service is in bulk are considered in this 
research. Bulk service queues have potential applications in many areas e.g. in loading and 
unloading of cargoes at a seaport, in traffic signal systems, in computer networks where jobs are 
processed in batches, manufacturing/ production systems, cinema halls, in transportation 
processes involving buses, airplanes, trains, ships, elevators etc. Bailey [4] introduced the concept 
of bulk service and the same was later studied by a number of parishioners. Juan [5] obtained a 
numerical method for the single server bulk service queueing system with variable capacity. 
Janssen and Leeuwaarden [6] presented an analytic rather than a numerical framework for dealing 
with discrete time bulk service queue. Goswami et al. [7] analysed a discrete time single server 
infinite buffer bulk service queues. In this research, the inter-arrival time of successive arrivals and 
service times of batches are assumed to be independent and geometrically distributed. Al-
khedhairi and Tadj [8] investigated the queueing process of a bulk service queueing system under 
Bernoulli schedule. 
        The classical transient results for the M/M/1, M/M/c and M/G/1 queue provide little insight 
into the behavior of a queueing system through a fixed operation time 𝑡. The function 𝑃!(𝑡) gives 
the distribution for the number in the system at time 𝑡, but practically provides no information on 
how the system has regulated up until time 𝑡. The question seems to be answered by Pegden and 
Rosenshine [9]. The analysis of their paper based on M/M/1 queueing model in which the state of 
the system is given by (𝑖, 𝑗),	where 𝑖 is the number of arrivals and 𝑗 is the number of departures 
until time 𝑡. Kalra and Singla [10] investigated the performance analysis of a two-state retrial 
queueing model with batch departures. In this paper, they obtained time dependent probabilities 
of exact number of arrivals in the system and exact number of departures from the system when 
only one server is free or busy. Garg and Kumar [11] studied a single server retrial queue with 
impatient customers and obtained time-dependent probabilities of number of exact arrivals and 
number of exact departures from the orbit. 
      This research studies a time dependent retrial queueing model by obtaining the explicit 
probabilities of the exact number of arrivals in the system and the exact number of departures from 
the system by a given time 𝑡 wherein the departures occur from the orbit in batches of variable 
size. 
       The rest of this paper is organized as follows: Section 2 gives a relatively formal description of 
the queueing model. In Section 3, we defined the two-dimensional state model and derived the 
difference-differential equations. The time dependent solution for the model is obtained in section 
4. Section 5 presents the some useful performance measures of the system and Section 6 discussed 
some special cases. The last section ends with a suitable conclusion. 
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2. Model Description 
2.1. Assumption and Notation 
 
The two parallel servers retrial queueing system is considered wherein departures take place in 
batches of variable size whenever these occur from the orbit. The primary calls follow a Poisson 
distribution with rate 𝜆. If the server is busy at the arrival time, then the arriving call joins the orbit, 
whereas if the server is free then the service of arriving call gets started. The behavior of customers 
in orbit is same as in the main model, i.e. every customer in orbit produces a Poisson flow of 
repeated calls with rate	𝜃. If a batch of repeated calls finds the server free, it is served and leaves 
the system after service otherwise, if the server is occupied at that time then the system state does 
not change. Arrivals occur one by one and departures occur from the orbit in batches of variable 
size with rate 𝜇. The input flow of primary calls, intervals between repeated trials and service 
times are mutually independent. For distribution of arrivals, service times and retrials, we make 
use of the following assumptions and notations: 
 
1) The repeated calls for each server follow a Poisson distribution with parameter	𝜃. 
2) In this model the departures occur from the orbit is treated as bulk departures whose capacity 

is determined afresh before each service which is equal to newly determined capacity of the 
server or units present in the orbit, whichever is less. In this case capacity of the server is a 
random variable. The size of the batch is determined at beginning of the each service. The 
probability that the server can serve a batch of g units is 𝑏" so that	∑ 𝑏" = 1#

"$% , where K is the 
maximum capacity of the server. 

3) The Service times for each call depart in batches of variable size and follow an exponential 
distribution with parameter 𝜇. 

 
Laplace transformation 𝑓(̅𝑠) of 𝑓(𝑡)  is given by 

𝑓(̅𝑠) = ∫ 𝑒!"#∞
!  𝑓(𝑡) dt,    Re (s) > 0 

The Laplace inverse of 

"($)
&($)

	𝑖𝑠	 ∑ ∑ '!"#$	(&"'

()"*+)!(+*-)!
)"
+.-

/
0.- × 1

$#(	"($)
1$$#(	&($)

	(𝑝 − 𝑎0))"	 ∀ p=	𝑎0, 		𝑎3 ≠ 𝑎0 for i ≠ k. 

where, 

𝑃(𝑝) = (𝑝 − 𝑎-))( (𝑝 − 𝑎4))) ………. (𝑝 − 𝑎/))* 

𝑄(𝑝) is a polynomial of degree < 𝑚-+𝑚4+𝑚5 +………….𝑚/-1. 

If 𝐿*-{𝑝(𝑠)} = 𝑃(𝑡) and 𝐿*-{𝑞(𝑠)} = 𝑄(𝑡) , then 

𝐿*-{𝑝(𝑠)	𝑞(𝑠)} = ∫ 𝑃(u)𝑄(t − u)'
! du = 𝑃 ∗ 𝑄, where 𝑃 ∗ 𝑄 is the convolution of P and Q. 

 
3. The Two-Dimensional State Model 

3.1. Definitions 
 
𝑃&,(,)(𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the 
system by time 𝑡 when server is idle. 
𝑃&,(,*(𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the 
system by time 𝑡 when 𝑘 servers are busy.    𝑘 = 1,2. 
𝑃&,((𝑡)= Probability that there are exactly 𝑖 arrivals in the system and 𝑗 departures from the system 
by time 𝑡. 

											𝑃&,((𝑡) = 𝑃&,(,)(𝑡) + 𝑃&,(,%(𝑡)								∀𝑖, 𝑗; 			𝑖 ≥ 𝑗. 
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Also 
𝑃&,(,%(𝑡) = 0, 𝑖 ≤ j;	𝑃&,(,)(𝑡) = 0, 𝑖 < 𝑗. 

Initially  
																																𝑃),),)(0) = 1;	𝑃&,(,)(0) = 0	&	𝑃&,(,*(0) = 0;		∀𝑖, 𝑗 ≠ 0.		𝑘 = 1,2. 

 
3.2. The difference – differential equations governing the system are 

 
  1
1'
𝑃3,3,!(𝑡) = −	𝜆	𝑃3,3,!(𝑡) + 𝜇	 ∑ A∑ 𝑏+7

+.8 C7
8.- 𝑃3,3*8,-(𝑡)  																																																							𝑖 ≥ 0, 𝑖 ≥ K                              (1) 

	 1
1'
𝑃3,9,!(𝑡) = −(𝜆 + (𝑖 − 𝑗)𝜃)𝑃3,9,!(𝑡) + 𝜇	∑ 𝑏87

8.- 𝑃3,9*8,-(𝑡)																																														𝑖 > 𝑗,𝑖 > 0; 𝑗 ≥ K                    (2) 

 1
1'
𝑃-,!,-(𝑡) = −(𝜆 + 𝜇)𝑃-,!,-(𝑡) + 	𝜆𝑃!,!,!(𝑡)                                                                                                               (3) 

	 1
1'
𝑃4,!,4(𝑡) = −(𝜆 + 𝜇)𝑃4,!,4(𝑡) + 	𝜆𝑃-,!,-(𝑡)                                                                                                               (4) 

1
1'
𝑃3,9,-(𝑡) = 																										−(𝜆 + 𝜇 + (𝑖 − 𝑗 − 1)𝜃)𝑃3,9,-(𝑡) + 	𝜆𝑃3*-,9,!(𝑡) +	(𝑖 − 𝑗)𝜃𝑃3,9,!(𝑡) +

																														2𝜇𝑃3,9*-,4(𝑡)																																																																																																											𝑖 > 1, 𝑖> j ≥ 0                          (5) 

𝑑
𝑑𝑡 𝑃3,9,4

(𝑡) = −(𝜆 + 2𝜇)𝑃3,9,4(𝑡) + 	𝜆𝑃3*-,9,-(𝑡) + 	𝜆A1 − 𝛿3*4,9C𝑃3*-,9,4(𝑡) + (𝑖 − 𝑗 − 1)𝜃𝑃3,9,-(𝑡)																												 

																																																																																																																																																															𝑖 > 2, 𝑖	> j ≥ 0                           (6)   

where	𝛿3*4,9 = M1, 𝑤ℎ𝑒𝑛	𝑖 − 2 = 𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Using the Laplace transformation 𝑓 ̅(s) of 𝑓(𝑡)which is given by 

𝑓 ̅(s) = ∫ 𝑒*:'∞
! 𝑓(𝑡)	dt,    Re (s) > 0  

in the equations (1) - (6) along with the initial conditions, the following equations are obtained: 

(𝑠 + 𝜆)𝑃S!,!,!(𝑠) = 𝑃!,!,!(0)
(𝑠 + 𝜆)𝑃S3,3,!(𝑠) = 𝜇∑ A∑ 𝑏+7

+.8 C𝑃S3,3*8,-(𝑠)	7
8.-

T 																																																																							𝑖	> 0, 𝑖 ≥ K                               (7) 

(𝑠 + 𝜆 + (𝑖 − 𝑗)𝜃)𝑃S3,9,!(𝑠)	= 𝜇∑ 𝑏87
8.- 𝑃S3,9*8,-(𝑠)	                                               𝑖 > 𝑗, 𝑖 > 0, 𝑗	 ≥ 	K																			(8) 

(𝑠 + 𝜆 + 𝜇)𝑃S-,!,-(𝑠)	= 𝜆	𝑃S!,!,!(𝑠)	                                                                                                                               (9) 

(𝑠 + 𝜆 + 𝜇)𝑃S4,!,4(𝑠)	= 𝜆	𝑃S-,!,-(𝑠)	                                                                                                                             (10) 

(𝑠 + 𝜆 + 𝜇 + (𝑖 − 𝑗 − 1)𝜃)𝑃S3,9,-(𝑠)	=𝜆	𝑃S3*-,9,!(𝑠) + (𝑖 − 𝑗)𝜃𝑃S3,9,!(𝑠) + 2𝜇𝑃S3,9,*-,4(𝑠) 

                                                                                                                                            𝑖 > 1, 𝑖 > 𝑗	 ≥ 0																								(11) 

(𝑠 + 𝜆 + 2𝜇)𝑃S3,9,4(𝑠)	=𝜆	𝑃S3*-,9,-(𝑠) + 𝜆	A1 − 𝛿3*-,9C𝑃S3*-,9,4(𝑠) + (𝑖 − 𝑗 − 1)𝜃𝑃S3,9,-(𝑠) 

                                                                                                                                             𝑖 > 2, 𝑖 > 𝑗	 ≥ 0                    (12) 

  
3.3. Solution of the Problem 
 
Solving equations (7) to (12) recursively, the following results are obtained 

𝑃<),),)(𝑠) =
%
+,l

                                                                                                                               (13) 

𝑃<%,%,)(𝑠) =
l-

(+,l)!	(+,l,µ)
                                                                                                                 (14) 

𝑃<&,&,)(𝑠) =
%
+,l

𝜇∑ >∑ 𝑏1#
1$" ?𝑃<&,&2",%(𝑠)																																																																						#

"$% 𝑖 > 1                               (15) 

𝑃<&,3,)(𝑠) =
µ

(4,l,µ,(&23)q	)
A𝑏%𝑃<&,%,%(𝑠) + 𝑏3𝑃<&,),%(𝑠)B																																																					𝑖 > 2																																			(16) 
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𝑃<%,),%(𝑠) = C %
+,l
D C l

4,l,µ
D                                                                                                                 (17)

     

𝑃<3,%,%(𝑠) =
l

(4,l,µ	)
𝑃<%,%,)(𝑠) + 2𝜇

l

(4,l,3µ	)(4,l,µ	)
𝑃<%,),%                                                                                 (18) 

𝑃<&,%,%(𝑠) =
3µ

(4,l,µ,(&23)q	)
l"#$

(+,l,3µ)"#$
𝑃<%,),%(𝑠)																																																														𝑖 > 2                         (19) 

𝑃<&,&2%,%(𝑠) =
l

(4,l,µ	)
𝑃<&2%,&2%,)(𝑠) +

q
(4,l,µ	)

𝑃<&,&2%,)(𝑠) +
3-

(4,l,µ	)
𝑃<&,&23,3(𝑠) 

                                                                                                         𝑖 > 2																																							(20) 

𝑃<&,),3(𝑠) =
l"#$

(+,l,3µ)"#$
𝑃<%,),%(𝑠)                                                                    𝑖 > 1                         (21) 

𝑃<&,(,3	(𝑠) = E∑ C l

+,l,3µ
D
&2(2*&2(

*$% η5
, (s)𝑃<(,*,(,%(s)G                                           𝑖	 ≥ 𝑗 + 2, 𝑗	 ≥ 1																		(22)

  

where	η5
,  (s) = 

⎩
⎪
⎨

⎪
⎧ 1											𝑓𝑜𝑟	𝑘 = 1
C1 + (*2%)q

+,l,3µ
D 					𝑓𝑜𝑟	𝑘 = 2	𝑡𝑜	𝑖 − 𝑗 − 1

(*2%)q
+,l,3µ

											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗
 

 

𝑃<&,(,%	(𝑠) =
l

(4,l,µ	,(&2(2%)q)
𝑃<&2%,(,)	(𝑠) + (&2()q

(4,l,µ,(&2(2%)q	)
𝑃<&,(,)	(𝑠) 

3µ
(4,l,µ,(&2(2%)q	)

E∑ C l

+,l,3µ
D
&2(2*&2(

*$) η5
, (s)𝑃<(,*,(2%,%(s)G  

 

                                                                                                     𝑖	 ≥ 𝑗 + 2, 𝑗	 ≥ 2                   (23) 

𝑤ℎ𝑒𝑟𝑒	η5
, (s) =

⎩
⎪
⎨

⎪
⎧

1											𝑓𝑜𝑟	𝑘 = 0

S1 +
𝑘q

𝑠 + l+ 2µT 					𝑓𝑜𝑟	𝑘 = 1	𝑡𝑜	𝑖 − 𝑗 − 1

𝑘q
𝑠 + l+ 2µ 											𝑓𝑜𝑟	𝑘 = 𝑖 − 𝑗

 

𝑃<&,(,)	(𝑠) =
%

(4,l,(&2()q	)
>µ∑ 𝑏"#

"$% ?𝑃<&,(2",%(s)                                               𝑖 > 𝑗 ≥ 3                                (24) 

Using the Inverse Laplace transformation 

6(7)
8(7)

is∑ ∑ 9%&#'	:)&*

(;&21)!(12%)!
;&
1$%

!
*$% × =

'#$	

=7'#$	
C6(7)
8(7)

D (𝑝 − 𝑎*);& 			∀	𝑝 = 𝑎*, 𝑎& ≠ 𝑎* for 𝑖≠ 𝑘. 

where 

 𝑃(𝑝) = (𝑝 − 𝑎%);$(𝑝 − 𝑎3);! ……… . (𝑝 − 𝑎!);+ 

	𝑄(𝑝)is a polynomial of degree <𝑚%+𝑚3+𝑚> +………….𝑚! − 1. 

If 𝐿2%{f(s)} = F(t) and 𝐿2%{g(s)} = G(t), then 

𝐿2%{f(s) g(s)} = ∫ 𝐹(u)𝐺(t − u)9
) du = F * G,   F * G is called the convolution of F and G. 

and 
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The Laplace inverse of 𝑁b!$,+!,+-
?,@,A (𝑠) = %

(+,?)+$(+,@)+!(+,A)+-
 is  

𝑁!$,+!,+-
?,@,A (𝑡) =∑ ∑

:#)*		9+-#'(2%)%.$B '#$%#$CB∏ (!$,/#0#$
1$23 E$)CB∏ (!!,0#!

1!23 E!)C

(!-21)!(;2%)!	(@2?)+!.%#$(A2?)+$.'#%
1
;$%

!-
1$%  

														+cc
𝑒2@9		𝑡!!21(−1);,%> 12%;2%?>∏ (𝑛% +F2G2%

E$$) g%)?>∏ (𝑛> +G23
E!$) g3)?

(𝑛3 − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑏)!-,;2%(𝑐 − 𝑏)!$,12;

1

;$%

!!

1$%

 

+cc
𝑒2A9		𝑡!$21(−1);,%> 12%;2%?>∏ (𝑛3 +F2G2%

E$$) g%)?>∏ (𝑛> +G23
E!$) g3)?

(𝑛% − 𝑙)! (𝑚 − 1)!	(𝑎 − 𝑐)!-,;2%(𝑏 − 𝑐)!!,12;

1

;$%

!$

1$%

 

in equations (13) to (24), the following probabilities are 

𝑃),),)(𝑡) = 𝑒2l9																																																																																																																																															                               (25) 

𝑃%,%,)(𝑡) = lµ(𝑡𝑒2l9)𝑒2(l,µ)9																																																																																																																																										(26) 

𝑃&,&,)(𝑡) = jµ∑ >∑ 𝑏1#
1$" ?	𝑒2l9#

"$% k ∗ 𝑃%,&2",%(𝑡)																																																																		𝑖 > 1																																(27) 

𝑃&,3,)(𝑡) = µ𝑏%𝑒2(l,µ,(&23)q	)9 ∗ 𝑃&,%,%(𝑡) + µ𝑏3𝑒2(l,µ,(&23)q	)9 ∗ 𝑃&,),%(𝑡)																			𝑖 > 2                         (28) 

𝑃%,),%(𝑡) = l𝑒2l9 C%
µ
− :#µ*

µ
D                                                                                                                                                                                                                (29) 

𝑃3,%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃%,%,)(𝑡)+ 2lµ𝑒2(l,µ)9 C %
3µ
− :#!µ*

3µ
D ∗ 𝑃%,),%(𝑡)                                                      (30) 

𝑃&,%,%(𝑡) = m2µl&2%𝑒2(l,µ,(&23)q	)9 n %
(3µ)"#$

−𝑒23µ9c (9)4

H!

&23

H$)

%
(3µ)"#4

op ∗ 𝑃%,),%(𝑡)  

                                                                                                                           										𝑖 > 2                         (31) 

𝑃&,&2%,%(𝑡) = 																										l𝑒2(l,µ)9 ∗ 𝑃&2%,&2%,)(𝑡) + q𝑒2(l,µ)9 ∗ 𝑃&,&2%,)(𝑡) + 2µ𝑒2(l,µ)9 ∗

																																	𝑃&,&23,3(𝑡)																																																																																																		𝑖 > 2                            (32)

        

𝑃&,),3(𝑡) = Cl&2% 9"#!

(&23)!
𝑒2(l,3µ)9D ∗ 𝑃%,),%(𝑡) 																																																																		𝑖 > 1                         (33) 

 𝑃&,(,3(𝑡) = Cl&2(2% 9"#5#!

(&2(23)!
𝑒2(l,3µ)9D ∗ 𝑃(,%,(,%(𝑡) + 

q Cl&2(2* 9"#5#&#$

(&2(2*2%)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +c Cl&2(2*(k − 1)q 9"#5#&

(&2(2*)!
𝑒2(l,3µ)9D ∗

&2(2%

*$3

&2(2%

*$3

𝑃(,*,(,%(𝑡) + >(i − j − 1)q𝑒2(l,3µ)9? ∗ 𝑃&,(,%(𝑡) 																																																												𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1																(34) 

𝑃&,(,%(𝑡) = l𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&2%,(,)(𝑡) + (𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&,(,)(𝑡) 	+

												2µl&2(𝑒2(l,µ	,(&2(2%)q)9 n %
(3µ)"#5

−𝑒23µ9c (9)4

H!

&2(2%

H$%

%
(3µ)"#5#4

o ∗ 	𝑃(,(2%,%(𝑡) +

									2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
n %
(3µ)"#5#&

−𝑒23µ9c (9)4

H!

&2(2*2%

H$)

%
(3µ)"#5#&#4

o ∗	𝑃(,*,(2%,%(𝑡) +

								2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
(kq) n %

(3µ)"#5#&.$
−𝑒23µ9c (9)4

H!

&2(2*

H$)

%
(3µ)"#5#&.$#4

o ∗

									𝑃(,*,(2%,%(𝑡) + 2µ(𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 C
%
3µ
− :#!µ*

3µ
D ∗ 𝑃&,(2%,%(𝑡)� 

                                                                                                                                 𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 2             (35) 
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𝑃&,(,)(𝑡) = >µ∑ 𝑏"𝑒2(l,µ	,(&2()q)9#
"$% ? ∗ 𝑃&,(2",%(𝑡)																																																						𝑖 > 𝑗 ≥ 3																											(36) 

 
4. Measures of Effectiveness 

 
4.1. The Laplace transform of the probability 𝑃&.(𝑡) that exactly i units arrive by time t is : 

𝑃<&.(𝑠) = t 𝑃<&,(	(𝑠)
&
($) = l"

(+,l)".$
 ;i > 0                                                                                    (37) 

 
And its Inverse Laplace transform is 

𝑃&.(𝑡)=
:#l*	(l9)"

&!
                                               (38) 

 
The basic assumption on primary arrivals is that it forms a Poisson process and above analysis of 
abstract solution also verifies the same. 
 

4.2. The probability that exactly j customers have been served by time t. 𝑃.(	(𝑡) in terms of 𝑃&,(	(𝑡) is 
given by:        

𝑃.(	(𝑡) =c𝑃&,(	(𝑡)
J

&$(

 

4.3. From the abstract solution of our model, we verified that the sum of all possible probabilities       
is one i.e. taking summation over i and j on equations (15)-(31) and adding, we get 

ccj𝑃<&,(,)	(𝑠) + 𝑃<&,(,%(𝑠) + 𝑃<&,(,3(𝑠)k =
1
𝑠

&

($)

∞

&$)

 

Taking inverse Laplace transformation, we get 

ccj𝑃&,(,)	(𝑡) + 𝑃&,(,%	(𝑡) + +𝑃&,(,3	(𝑡)k = 1,
&

($)

∞

&$)

 

which is a verification of our results. 
 

4.4. Converting two-state model into single state model: 
 
To convert two-dimensional state model into a single state model probability	𝑄!,*	(𝑡) is defined as 

under: 
	𝑄!,*	(𝑡) = Probability that there are 𝑛 customers in the orbit at time 𝑡 and the servers are free or 
busy according as 𝑘 = 0,1,2. 
The probability of exactly 𝑛 customers in the system at time 𝑡 in terms of	𝑃&,(	,)(𝑡) and 	𝑃&,(	,*(𝑡): 
  When the server is free, it is defined by probability	𝑄!,)	(𝑡) 

𝑄!,)	(𝑡) = 	c𝑃(,!,(,)(𝑡)
∞

($)

 

In this case, the number of customers in the orbit is equal to 𝑛 which is obtained by using: 
𝑛 = (number of arrivals – number of departures)    
When 𝑘 servers are busy, it is defined by probability 𝑄!,*	(𝑡) 
																																																														𝑄!,*	(𝑡) = 	t 𝑃(,!,*,(,*(𝑡)

∞
($) 																																																											(𝑘 = 1,2)

  
                                              where 𝑘	defines the number of servers. 
In this case, the number of customers in the orbit is equal to 𝑛 which is obtained by using: 
𝑛 = (number of arrivals – number of departures – 𝑘)   
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Using the above definitions from the equations (1) to (6) the set of equations in statistical 
equilibrium are: 
l𝑄),)	 = µA∑ >∑ 𝑏1#

1$" ?#
"$% B𝑄",%																																																																		                                                           (39) 

(l+ 𝑛𝜃)𝑄!,)	 = µ>∑ 𝑏1#
1$" ?𝑄!,",%																																																																																																															𝑛 > 0											(40)                        

(l+ 𝑛𝜃 + µ)𝑄!,%	 = l𝑄!, + (𝑛 + 1)𝜃𝑄!,%,) + 2µ𝑄!,3,)																																																																			𝑛 ≥ 0          (41)
  
(l+ 2µ)𝑄!,3 = l𝑄!,%	 + (𝑛 + 1)𝜃𝑄!,%,% + l𝑄!2%,3																																																																									𝑛 ≥ 0           (42) 
 

           4.5. Special Case: 
 

1. When the units are served singly and considering𝐾 = 1, 𝑏% = 1, 𝑏3 = 𝑏> = 𝑏K = ⋯ = 𝑏# = 0 in     
equations (25) to (36), then the probabilities coincide with the results of Singla and Kalra [12]. 
𝑃),),)(𝑡) = 𝑒2l9																																																				                                                                                               (43) 

  𝑃%,%,)(𝑡) = lµ(𝑡𝑒2l9)𝑒2(l,µ)9																																																																																																									                                           (44) 

	𝑃&,&,)(𝑡) = lµ𝑒2l9 C%
µ
− :#µ*

µ
D ∗ 𝑃&2%,&2%,)(𝑡) + µq𝑒2l9 C%

µ
− :#µ*

µ
D ∗ 𝑃&,&2%,)(𝑡) + 	2µ3𝑒2l9 C

%
µ
− :#µ*

µ
D ∗

																														𝑃&,&23,3(𝑡)                                            																																																			𝑖 > 1                         (45) 

 𝑃&,3,)(𝑡) = 2µ3𝑒2(l,(&23)q)9 C %
(µ,(&23)q	)

− :#(µ.("#!)q	)*

(µ,(&23)q	)
D ∗ 𝑃&,),3(𝑡)																															𝑖 ≥ 3                         (46) 

                                                                                    𝑃%,),%(𝑡) = l𝑒2l9 C%
µ
−

:#µ*

µ
D																																																																																																									                               (47) 

𝑃3,%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃%,%,)(𝑡)+ 2lµ𝑒2(l,µ)9 C %
3µ
− :#!µ*

3µ
D ∗ 𝑃%,),%(𝑡)                                                      (48) 

𝑃&,%,%(𝑡) = m2µl&2%𝑒2(l,µ,(&23)q	)9 n %
(3µ)"#$

−𝑒23µ9c (9)4

H!

&23

H$)

%
(3µ)"#4

op ∗ 𝑃%,),%(𝑡)  

                                                                                                                                  𝑖 > 2                         (49) 

𝑃&,&2%,%(𝑡) = l𝑒2(l,µ)9 ∗ 𝑃&2%,&2%,)(𝑡) + q𝑒2(l,µ)9 ∗ 𝑃&,&2%,)(𝑡) + 2µ𝑒2(l,µ)9 ∗ 		𝑃&,&23,3(𝑡)   

                                                                                                                                 𝑖 > 2                             (50)

  

𝑃&,),3(𝑡) = Cl&2% 9"#!

(&23)!
𝑒2(l,3µ)9D ∗ 𝑃%,),%(𝑡)																		                                             𝑖 > 1                         (51) 

                            𝑃&,(,3(𝑡) = Cl&2(2% 9"#5#!

(&2(23)!
𝑒2(l,3µ)9D ∗ 𝑃(,%,(,%(𝑡) +q Cl&2(2* 9"#5#&#$

(&2(2*2%)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +

&2(2%

*$3

																																											c Cl&2(2*(k − 1)q 9"#5#&

(&2(2*)!
𝑒2(l,3µ)9D ∗ 𝑃(,*,(,%(𝑡) +	>(i − j	 − 1)q𝑒2(l,3µ)9?

&2(2%

*$3
∗ 𝑃&,(,%(𝑡) 

                                                                             𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 1															(52) 

 𝑃&,(,%(𝑡) = 											l𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&2%,(,)(𝑡) + (𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 ∗ 𝑃&,(,)(𝑡) 		+

															2µl&2(𝑒2(l,µ	,(&2(2%)q)9 n %
(3µ)"#5

−𝑒23µ9c (9)4

H!

&2(2%

H$%

%
(3µ)"#5#4

o ∗ 		𝑃(,(2%,%(𝑡) +

																2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
n %
(3µ)"#5#&

−𝑒23µ9c (9)4

H!

&2(2*2%

H$)

%
(3µ)"#5#&#4

o ∗

																	𝑃(,*,(2%,%(𝑡) +
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																	2µ𝑒2(l,µ	,(&2(2%)q)9c l&2(2*
&2(2%

*$%
(kq) n %

(3µ)"#5#&.$
−𝑒23µ9c (9)4

H!

&2(2*

H$)

%
(3µ)"#5#&.$#4

o ∗

												𝑃(,*,(2%,%(𝑡) + 2µ(𝑖 − 𝑗)q𝑒2(l,µ	,(&2(2%)q)9 C
%
3µ
− :#!µ*

3µ
D ∗ 𝑃&,(2%,%(𝑡) 

                                                                                                                                 𝑖 ≥ 𝑗 + 2, 𝑗 ≥ 2								      (53) 

𝑃&,(,)(𝑡) = lµ𝑒2(l,(&2()q)9 C %
µ	,(&2()q

− :#(µ	.("#5)q)*

µ	,(&2()q
D ∗ 𝑃&2%,(2%,)(𝑡) + 

µ(𝑖 − 𝑗 + 1)q𝑒2(l,(&2()q)9 w
1

µ	 + (𝑖 − 𝑗)q−
𝑒2(µ	,(&2()q)9

µ	 + (𝑖 − 𝑗)qx ∗ 𝑃&,(2%,)
(𝑡)

+ 2µ3l&2(,% y c c
𝑒2(l,(&2()q)9		𝑡(&2(,%)21(−1);,%> 12%;2%?>∏ (1 +F2G2%

E$$) g%)?>∏ (1 +G23
E!$) g3)?

>(𝑖 − 𝑗 + 1) − 𝑙?! (𝑚 − 1)!	(µ);(2µ− (𝑖 − 𝑗)q)%,12;

1

;$%

&2(,%

1$%

−		
𝑒2(l,µ	,(&2()q)9

(µ)(&2(,%)(µ− (𝑖 − 𝑗)q)
+

𝑒2(l,3µ)9

(2µ− (𝑖 − 𝑗)q)(&2(,%)(µ− (𝑖 − 𝑗)q)z
∗ 𝑃(2%,(23,%(𝑡) + 	2µ3c l(&2(,%)2*

&2(

*$%

 

m∑ ∑
:#(l.("#5)q)*		98("#5.$)#&9#'(2%)%.$B '#$%#$CB∏ (%,/#0#$

1$23 E$)CB∏ (%,0#!
1!23 E!)C

(((&2(,%)2*)21)!(;2%)!	(µ)%(3µ2(&2()q)$.'#%
1
;$%

(&2(,%)2*
1$% −

												 :#(l.µ	.("#5)q)*

(µ)("#5.$)#&(	µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)("#5.$)#&(	µ2(&2()q)
p�∗ 𝑃(,*2%,(23,%(𝑡) + 	2µ3 ∑ l(&2(,%)2*&2(

*$% (𝑘q)

 m∑ ∑
:#(l.("#5)q)*		9((("#5.$)#&).$)#'(2%)%.$B '#$%#$CB∏ (%,/#0#$

1$23 E$)CB∏ (%,0#!
1!23 E!)C

L(((&2(,%)2*),%)21M!(;2%)!	(µ)%(3µ2(&2()q)$.'#%
1
;$%

L(&2(,%)2*M,%
1$% −

:#(l.µ	.("#5)q)*

(µ)8("#5.$)#&9.$(µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)8("#5.$)#&9.$(µ2(&2()q)
p ∗ 𝑃(,*2%,(23,%(𝑡) + 2µ3	(𝑖 − 𝑗 +

1)q { :#(l.("#5)q)*

(µ)(3µ2(&2()q)
− :#(l.µ.("#5)q)*

(µ)(µ2(&2()q)
+ :#(l.!µ)*

(3µ2(&2()q)(µ2(&2()q)
| ∗ 𝑃&,(23,%(𝑡) 

                                                                                                                                          𝑖 > 𝑗 ≥ 3               (54) 

2. Letting	𝐾 = 1, 𝑏% = 1, 𝑏3 = 𝑏> = 𝑏K = ⋯ = 𝑏# = 0 and 𝜇 = 1 in (39) to (42), then the following 

equations are: 

(l+ 𝑛𝜃)𝑄!,)	 = 𝑄!,%																																																																																																																			𝑛 ≥ 0                     (55) 

(l+ 𝑛𝜃 + 1)𝑄!,%	 = l𝑄!,)	 + (𝑛 + 1)𝜃𝑄!,%,) + 2𝑄!,3																																																																													𝑛 ≥ 0          (56)   

(l+ 2)𝑄!,3 = l𝑄!,%	 + (𝑛 + 1)𝜃𝑄!,%,% + l𝑄!2%,3																																																														𝑛 ≥ 0          (57) 

which coincide with the results (2.1) – (2.3) of Falin and Templeton [2]. 

6. Conclusion 
 

In this study, a two retrial queueing system with bulk departures having two identical parallel 
servers is investigated. Bulk queueing systems are common in real-life situations such as 
elevators, loading and unloading cargoes, giant wheel, chemical manufacturing process, 
communication networks and tourism etc. Transient probabilities of exact number of arrivals and 
departures are found by solving difference differential equations recursively when no, one or 
both servers are busy. Further, some particular cases of interest are discussed along with special 
cases. From two-dimensional state queueing model, factors are well understood and quantified.  
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Abstract

The behaviour of everyday real life processes played a greater role in distribution theory. Thus, this article
proposes a transmuted Weibull Frechet (TWFr) distribution for modeling real life datasets. Of most
important, the statistical properties of the TWFr distribution such as the hazard, survival functions, order
statistic, quantile, odd, cumulative functions were derived and examined. A simulation study to examine
the performance of the TWFr distribution was also conducted. A glass fiber data and breaking stress of
carbon data real life application were used to showcase the performance of the proposed model. The results
showed that the TWFr distribution competes favourably well with other types of continuous distributions
in the Frechet family of distributions.

Keywords: Frechét distribution, Hazard rate function, Order statistics, Transmutation, Weibull
distribution.

1. Introduction

Modeling the distributions of real life processes poses greater challenges despite the numerous
distributions that have been proposed in literature. However, there is a growing interest in
developing newer classes of classical univariate distributions for modeling variety of data sets
that arise from our daily scenarios. Thus, it becomes necessary to model these processes either by
compounding one or more distributions to address these complex situations.

The Weibull distribution proposed by a famous statistician called Weibull in 1951 [27] has a
wide range of applications in modeling failure time processes, lifetime processes, mechanical and
electrical systems. More so, the Weibull distribution has been found to be better for modeling the
minimum of large number of independent positive random variables in extreme value theory.
On the other hand, the Frechet distribution is a special case of the Weibull distribution used
to model extreme value scenarios like earthquakes, horse racing, floods, rainfall, wind speed,
queues in supermarkets and sea waves (see [2]). The Frechet distribution has been widely used
to model extreme value scenarios because of its stochastic phenomena. However, the Frechet
distribution is used for modeling maximum of a large number of independent random variables
from a particular class of distributions ([1]). Hence, because of its usefulness, improving the
flexibility of the Frechet distribution becomes necessary by adding a transmuted parameter that
can reflect the true characteristics of the data set(see [13]).

Several statistical distributions have been proposed in literature. For example, [2] proposed
the Weibull Frechet distribution, [12] proposed the generalized odd Weibull generated family of
distributions. Recently, [26] proposed the gamma extended Frechet distribution. [17] proposed
the beta Frechet distribution. [16] proposed the exponentiated Frechet distribution. [14] proposed
Kumaraswamy Frechet distribution. The generalized transmuted Frechet (GTFr) distribution
was proposed in [18]. [14] estimated the Frechet type 11 parameters and [23] proposed a
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new generalization of the Frechet distribution. In this study, the transmuted Weibull Frechet
distribution is introduced.

A random variable X with a scale parameter α, and β, τ, ν the shape parameters has a Weibull
Frechet distribution if the cumulative density function is given as

G(x) = 1− exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)

. (1)

The corresponding probability density function is given as

g(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

.

(2)

However, the pdf and cdf of a random variable X can be transmuted with a transmutation
parameter |λ| ≤ 1 as

f (x; λ) = g(x)
[

1 + λ− 2λG(x)
]

, (3)

and

F(x; λ) =

(
1 + λ

)
G(x)− λ

[
G(x)

]2

(4)

with G(x) and g(x) as the cdf and pdf of the baseline/parent distribution respectively.
This article is organized as follows: The introduction was given in section 1, Section 2 is the

formulation of the transmuted Weibull Frechet distribution. Section 3 discussed the maximum
likelihood of model parameters. In Section 4, we derived some properties of the TWFr distribution.
Section 5 is the simulation study and real life application to validate the proposed model and
Section 6 is the conclusion.

2. The Transmuted Weibull Frechet Distribution

Let X be random variable. Then, the pdf of the TWFr is defined as

fTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

.

(5)

The corresponding cdf is given as

FTWFr(x) =
(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2

.

(6)

Figure 1 shows the plot of the pdf for TWFr distribution with different parameters values.
The plot of the TWFr distribution shows that it could be increasing, decreasing and skewed to the
right and left depending on the values of the parameters.
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Figure 1 The plots of the TWFr pdf for some parameter values

The reliability or survival function (rf) of the random variable X is given as

r fTWFr(x) =exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2

.

(7)
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Its hazard rate function (hrf) is given as

hrTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

×
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2}−1

.

(8)

Figure 2 shows the plot for the hazard rate function of the TWFr distribution. The plot
shows that the TWFr model is decreasing and bathtub depending on the values of the associated
parameters.
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Figure 2 The plots of the TWFr hrf for some parameter values

The cumulative hazard rate function (chrf) of the TWFr model is given as

chr fTWFr(x) =− ln
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2}

.

(9)

3. Parameter Estimation of the Transmuted Weibull Frechet

Distribution

Let X be random variable with TWFr distribution function. Then, the log-likelihood ` of the
distribution for parameter vector (λ, β, τ, ν, α)T is given as,

` = n log(τνβαβ) + s + m + z + p (10)
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∂`

∂λ
= p′λ = 0, (11)

∂`

∂α
=

k′α
k
− s′α + m′α − z′α + p′α = 0, (12)

∂`

∂τ
=

n
τ
− z′τ + p′τ = 0, (13)

∂`

∂ν
=

n
ν
− s′ν + m′ν − z′ν + p′ν = 0, (14)

and
∂`

∂β
=

n
β
+

k′β
k
− s′β + m′β − z′β + p′β = 0. (15)

where ′ denotes partial derivative and subscript the respective parameter and

k = αβ; s =
n

∑
i=1

[
−ν
(α

x
)β
]

; m =
n

∑
i=1

log
{

1− exp
[
−(α

x
)β

]}−ν−1

;

z =
n

∑
i=1

(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

;

p =
n

∑
i=1

log
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

.

The Equations (11), (12), (13), (14) and (15) are nonlinear and can not be easily obtained
in closed form. Thus, the solutions to the parameter vector are obtained numerically using
the Newton-Raphson algorithm and with various statistical and mathematical softwares like R,
Mathematical, Maple and Matlab.

4. Some Statistical Properties of the Transmuted Weibull Frechet

Distribution

This section investigates some statistical properties of the TWFr distribution. These include,
quantile and random number generation and order statistics.

4.1. Quantile Function and Median

Let X be a random variable such that X ∼ TWFr(α, λ, β, a, b). Then, the quantile function of X
for u ∈ (0, 1) is real solution of the following equation given as

Q(u) = F−1(x). (16)

Thus,

xu = α

[
log
{

1 +
[
(−τ−1) log(1− φ(u))

]− 1
ν
}]− 1

β

(17)

0 < u < 1

where

φ(u) =



(1+λ)−
√

(1+λ)2−4λu
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−4λu
2λ , if λ > 0,

u, otherwise λ = 0.
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By setting u = 0.5 in Equation (17), we have the median (M) of X as

M = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.5))

]− 1
ν
}]− 1

β

, (18)

with

φ(u) =



(1+λ)−
√

(1+λ)2−2λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−2λ
2λ , if λ > 0,

0.5, otherwise λ = 0.

However, the 25th and 75th percentile for the random variable X is obtained as

Q1 = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.25))

]− 1
ν
}]− 1

β

, (19)

with

φ(u) =



(1+λ)−
√

(1+λ)2−λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−λ
2λ , if λ > 0,

0.25, otherwise λ = 0.

Q3 = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.75))

]− 1
ν
}]− 1

β

, (20)

with

φ(u) =



(1+λ)−
√

(1+λ)2−3λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−3λ
2λ , if λ > 0,

0.75, otherwise λ = 0.

4.2. Reversed Hazard Function and Odds Functions

The reversed hazard function (rhf) of the TWFr distribution is given as

rh fTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τν

{
exp
[
(

α

x
)β

]
− 1
})

×
[

1− λ + 2λexp
(
−τν

{
exp
[(α

x
)β
]
− 1
})]

×
{

1 + exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

λ− 1
)

− λ

(
exp
(
−2τ

{
exp
[(α

x
)β
]
− 1
}−ν))}−1

.

(21)
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The Odd function that corresponds to the TWFr distribution is given as

OTWFr(x) =1 +
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−2τ

{
exp
[(α

x
)β
]
− 1
}−ν))}−1

.

(22)

4.3. Distribution of the Order Statistics

Let X1, X2, · · · , Xn be a random sample of size n from the fTWFr(x) distribution and X(1), X(2), · · · , X(n)be
the corresponding order statistics, Then, probability density function of the kth order statistics Xk,
say fk(x) is given as

fk(x) =
n!(

k− 1
)
!
(
n− k

)
!

[
FTWFr(x)

]k−1

fTWFr(x)
[

1− FTWFr(x)
]n−k

. (23)

−∞ < x < ∞.

On substituting into Equation (23), we have

fk(x) =
n!(

k− 1
)
!
(
n− k

)
!

× τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

×
[(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2]k−1

×
[

1−
(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2]n−k

.

(24)

The minimum and maximum order statistics are obtained when k = 1 and k = n respectively.

4.4. Simulation Study

A simulation is performed to examine the flexibility and efficiency of the TWFr distribution.
Tables 1 and 2 show the simulation results for different values of parameters. The simulation was
performed as follows:

• Data were generated using

xu = α

[
log
{

1 +
[
(−τ−1) log(1− φ(u))

]− 1
ν
}]− 1

β

0 < u < 1.
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with

φ(u) =



(1+λ)−
√

(1+λ)2−4λu
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−4λu
2λ , if λ > 0,

u, otherwise λ = 0.

• The values of the parameters were purportedly set as α = 1.5, β = 0.5,τ = 1.0, ν = 1.0 and
λ = 0.5, α = 1.5, β = 0.5,τ = 1.0, ν = 1.0 and λ = −0.5.

• The sample sizes were taken as n = 10, 50, 150, 350, 400 and 500.

• Each sample size was replicated 5000 times.

In the simulation study, we investigated the mean estimates (MEs), variance, biases and means
squared errors (MSEs) of the MLEs.
The bias was calculated as (for S = α, λ, β, τ, ν)

B̂iasS =
1

5000

5000

∑
i=1

(
Ŝi − S

)
.

Also, the MSE was obtained as

M̂SES =
1

5000

5000

∑
i=1

(
Ŝi − S

)2

.

In Tables 1 and 2, the results of the Monte Carlo study show that the MSEs decay towards zero
as the sample size increases which corroborates with the first-order asymptotic theory. The mean
estimates of the TWFr distribution parameter estimates tend to the true parameter values as the
sample size increases which also corroborates the fact that the asymptotic normal distribution
provides an adequate approximation of the estimates.

5. Real-Life Applications

A breaking stress of carbon fibers and glass fiber real life datasets were used to examine the
performance and flexibility of the model based on its test statistic. Several criteria were used
to determine the distribution of the best fit: Akaike Information Criteria (AIC), Consistent
Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC), and Hannan and Quinn
Information Criteria (HQIC).
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Table 1 Simulation results for mean estimates, biases and root mean squared errors of τ̂, ν̂, α̂, λ̂ > 0 and β̂ for the
TWFr distribution.

n Parameter ME Bias Variance MSE
10 α̂ 1.4627 -0.0373 0.1504 0.1518

β̂ 0.6653 0.1653 0.0738 0.1011
τ̂ 1.0968 0.0968 0.1034 0.1128
ν̂ 0.9871 -0.0129 0.2505 0.2507
λ̂ 0.3617 -0.1383 0.1493 0.1684

50 α̂ 1.5383 0.0383 0.0618 0.0632
β̂ 0.5326 0.0326 0.0167 0.0177
τ̂ 1.0924 0.0924 0.0485 0.0571
ν̂ 1.0037 0.0037 0.0924 0.0924
λ̂ 0.4170 -0.0830 0.0690 0.0759

150 α̂ 1.5540 0.0540 0.0279 0.0308
β̂ 0.5068 0.0068 0.0050 0.0050
τ̂ 1.0529 0.0529 0.0240 0.0268
ν̂ 1.0012 0.0012 0.0322 0.0322
λ̂ 0.4742 -0.0258 0.0417 0.0423

350 α̂ 1.5528 0.0528 0.0142 0.0170
β̂ 0.4983 -0.0017 0.0019 0.0019
τ̂ 1.0367 0.0367 0.0116 0.0129
ν̂ 1.0063 0.0063 0.0137 0.0137
λ̂ 0.4960 -0.0040 0.0234 0.0234

400 α̂ 1.5539 0.0539 0.0134 0.0163
β̂ 0.4975 -0.0025 0.0016 0.0016
τ̂ 1.0334 0.0334 0.0102 0.0113
ν̂ 1.0072 0.0072 0.0115 0.0116
λ̂ 0.5001 0.0001 0.0205 0.0205

500 α̂ 1.5500 0.0500 0.0104 0.0129
β̂ 0.4968 -0.0032 0.0013 0.0013
τ̂ 1.0276 0.0276 0.0079 0.0087
ν̂ 1.0071 0.0071 0.0091 0.0091
λ̂ 0.5058 0.0058 0.0176 0.0176

The density functions considered include (for x > 0)

• Weibull Frechet: f (x) = abβαβx−β−1exp
[
−b( α

x )
β

]{
1− exp

[
−( α

x )
β

]}−b−1

× exp
(
−a
{

exp[( α
x )

β]− 1
}−b)

;

• Exponentiated Frechect: f (x) = λβαβx−β−1exp
[
−( α

x )
β

]{
1− exp

[
−( α

x )
β

]}λ−1

;

• Kumaraswamy Frechet: f (x) = abβαβx−β−1exp
[
−a( α

x )
β

]{
1− exp

[
−( α

x )
β

]}b−1

;

• Beta Frechet: f (x) = βαβx−β−1

B(a,b) exp
[
−a( α

x )
β

]{
1− exp

[
−( α

x )
β

]}b−1

;

• Gamma Extended Frechet: f (x) = aβαβx−β−1

Γ(b) exp
[
−( α

x )
β

]{
1− exp

[
−( α

x )
β

]}a−1(
−log{1−
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Table 2 Simulation results for mean estimates, biases and root mean squared errors of τ̂, ν̂, α̂, λ̂ < 0 and β̂ for the
TWFr distribution.

n Parameter ME Bias Variance MSE
10 α̂ 1.5887 0.0887 0.1859 0.1937

β̂ 0.6626 0.1626 0.0532 0.0796
τ̂ 0.9814 -0.0186 0.1996 0.1999
ν̂ 0.9641 -0.0359 0.1531 0.1544
λ̂ -0.5970 -0.0970 0.7110 0.7204

50 α̂ 1.5604 0.0604 0.0658 0.0694
β̂ 0.5448 0.0448 0.0164 0.0184
τ̂ 0.9843 -0.0157 0.0538 0.0540
ν̂ 1.0009 0.0009 0.0683 0.0683
λ̂ -0.4541 0.0459 0.0995 0.1016

150 α̂ 1.5587 0.0587 0.0284 0.0318
β̂ 0.5117 0.0117 0.0060 0.0062
τ̂ 1.0013 0.0013 0.0224 0.0224
ν̂ 1.0134 0.0134 0.0272 0.0274
λ̂ -0.4521 0.0479 0.0363 0.0386

350 α̂ 1.5561 0.0561 0.0146 0.0178
β̂ 0.5010 0.0010 0.0024 0.0024
τ̂ 1.0100 0.0100 0.0100 0.0101
ν̂ 1.0158 0.0158 0.0114 0.0116
λ̂ -0.4636 0.0364 0.0168 0.0181

400 α̂ 1.5582 0.0582 0.0130 0.0164
β̂ 0.4998 -0.0002 0.0021 0.0021
τ̂ 1.0110 0.0110 0.0089 0.0091
ν̂ 1.0166 0.0166 0.0100 0.0103
λ̂ -0.4642 0.0358 0.0160 0.0173

500 α̂ 1.5563 0.0563 0.0102 0.0134
β̂ 0.4991 -0.0009 0.0017 0.0017
τ̂ 1.0109 0.0109 0.0074 0.0075
ν̂ 1.0159 0.0159 0.0078 0.0081
λ̂ -0.4650 0.0350 0.0129 0.0141

exp
[
−( α

x )
β

]}a)b−1

;

• Transmuted Frechet: f (x) = βαβx−β−1exp
[
−( α

x )
β

]{
1 + λ− 2λexp

[
−( α

x )
β

]}
;

• Frechet: f (x) = λαλx−λ−1exp
[
−( α

x )
λ

]
;

• Alpha Power Inverse Weibull: f (x) = log(α)
(α−1) λβexp(−λx−β)αexp(−λx−β);

• Transmuted Rayleigh: f (x) = x
α2 exp

(
− x2

2α2

)(
1− β + 2βexp

(
− x2

2α2

))
.

5.1. Breaking Stress of Carbon fibres

The first data consist of 100 breaking stress of carbon fibres as used in [19] and [5]. It consists
of 100 observations taken on breaking stress of carbon fibers (in Gba). Table 3 shows the test
statistics. The dataset are as follow:
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2.81, 2.77, 2.17, 2.83, 1.92, 1.41, ,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 3.11,4.42, 2.41,
3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39,
2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61,
2.12,1.89, 2.88, 3.68, 2.97, 1.36,3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 0.98, 2.76, 4.91, 3.68, 1.84,
1.59, 3.19 2.82, 2.05, 3.65.

Table 3 Performance rating of the TWFr distribution with breaking stress of carbon fibres dataset

Model Parameter MLEs(Std. Errors) AIC CAIC BIC HQIC -2`
τ̂ = 86.6226(41.4818)

ν̂ = 0.4167(0.2361)
Transmuted Weibull Frechét α̂ = 3.7977(1.3096) 292.0566 292.4776 302.4773 296.2740 282.0566

λ̂ = 0.6301(0.1704)
β̂ = 0.4463(0.1260)
α̂ = 0.6942(0.363)
β̂ = 0.6178(0.284)

Weibull Frechét 294.6000 295.0211 305.0207 298.8174 286.6000
â = 0.0947(0.456)
b̂ = 3.5178(2.942)

α̂ = 69.1489(57.349)
Exponentiated Frechect β̂ = 0.5019(0.0800) 295.7000 295.8237 300.9103 297.8087 291.7000

λ̂ = 145.3275(122.824)
α̂ = 2.0556(0.0710)
β̂ = 0.4654(0.0070)

Kumaraswamy Frechét 297.1000 297.5211 307.5207 301.3174 289.1000
â = 6.2815(0.0630)

b̂ = 224.1800(0.1640)
α̂ = 1.6097(2.4980)
β̂ = 0.4046(0.1080)

Beta Frechét 311.1000 311.5211 321.5207 315.3174 303.1000
â = 22.0143(21.432)

b̂ = 29.7617(17.4790)
α̂ = 1.3692(1.3692)
β̂ = 0.4776(0.1330)

Gamma Extended Frechét 312.0000 312.4211 322.4207 316.2174 304.0000
â = 27.6452(14.1360)
b̂ = 17.4581(14.8180)

α̂ = 109.8227(75.5562)
Alpha Power Inverted Weibull β̂ = 1.1138(0.2018) 328.4842 328.7342 336.2997 331.6473 322.4842

λ̂ = 2.2803(0.1420)
α̂ = 1.9315(0.0971)

Transmuted Frechét β̂ = 1.7435(0.0760) 350.5000 350.7500 358.3155 353.6631 344.5
λ̂ = 0.0819(0.1980)
α̂ = 1.8705(0.1120)

Frechét 348.3000 348.4237 353.5103 350.4087 344.3000
λ̂ = 1.7766(0.113)

Figures 3 and 4 show the empirical pdf and cdf for the breaking stress of carbon for the TWFr
model.

5.2. Glass fibres data

The second data consist of 1.5 cm strengths of glass fibres obtained at the UK National Physical
Laboratory. The data were used to compare the performance of the TWFr distribution as used in
[25], [11], [3], [15], [24], [21], [5], [6], [4], [7], [22], [8], [9], [10], [20] and [28]. The observations are
as follows:

1.53, 1.54, 1.55, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36,
1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.61, 1.58, 1.59, 1.60, 1.61,0.55, 0.74,1.50, 1.50, 1.55, 1.52, 1.64, 1.66,
1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01,
2.24, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67,.
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Figure 3 The empirical cdfs of the TWFr density for the breaking stress of carbon
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Figure 4 The empirical pdfs of the TWFr density for the breaking stress of carbon

The descriptive statistics of the glass fibers dataset are showed in Table 4. Table 5 shows the
measure of comparison for the various distribution under consideration.

Table 4 Descriptive statistics for the glass fibres dataset to 2 decimal points

Mean Median Mode St.D IQR Variance Skewness Kurtosis 25thP. 75thP.
1.51 1.59 1.61 0.32 0.31 0.11 -0.81 0.80 1.38 1.69

Figures 5 and 6 show the empirical pdf and cdf for the glass fiber data for the TWFr model.
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Table 5 Performance rating of the TWFr distribution with glass fibres dataset

Model Parameter MLEs(Std. Errors) AIC CAIC BIC HQIC -2`
τ̂ = 0.5739(0.1877)
ν̂ = 3.9560(2.2162)

Transmuted Weibull Frechét λ̂ = 0.0300(0.0135) 35.7214 36.7740 46.4370 39.9359 25.7214
α̂ = 5.8185(4.2645)
β̂ = 1.2345(0.1734)
α̂ = 0.3865(0.7990)
β̂ = 0.2436(0.2850)

Weibull Frechét 39.0000 39.6896 47.5725 42.3716 31.0000
â = 1.4762(4.782)

b̂ = 16.8561(20.4850)
α̂ = 2.0518(0.9886)
β̂ = 0.6466(0.1630)

Beta Frechét 68.6261 69.3157 77.1986 71.9977 69.300
â = 15.0756(12.057)
b̂ = 36.9397(22.649)
α̂ = 1.6625(0.9520)
β̂ = 0.7421(0.197)

Gamma Extended Frechét 69.6237 70.3016 78.1098 72.9007 61.4503
â = 32.1120(17.3970)
b̂ = 13.2688(9.967)
α̂ = 61.10(48.14)

Alpha Power Inverted Weibull β̂ = 0.78(0.16) 82.5800 82.9900 89.0100 85.1100 76.5848
λ̂ = 3.80(0.30)

α̂ = 1.2640(0.0589)
Frechét 97.7105 97.9045 102.0078 99.3560 93.6980

λ̂ = 2.8879(0.2340)
α̂ = 1.3068(0.034)

Transmuted Frechét β̂ = 2.7898(0.1648) 100.1009 100.5078 106.4897 102.5908 94.0893
λ̂ = 0.1298(0.2080)

α̂ = 1.0895(1.1e− 08)
Transmuted Rayleigh β̂ = 1.0e− 10(1.7e− 12) 103.5818 103.7820 107.8680 105.2676 99.5818

α̂ = 83.4497(79.2814)
Alpha Power Inverted Exponential λ̂ = 0.3137(0.0774) 196.3253 196.5253 200.6116 198.0111 191.4580
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Figure 5 The empirical cdfs of the TWFr density for the glass fiber data

5.3. Discussion

The performance of a model is determined by the value that corresponds to the lowest Akaike
Information Criteria (AIC) or the highest Log-likelihood value is regarded as the best model. In
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Figure 6 The empirical pdfs of the TWFr density for the glass fiber data

the two real life cases considered, the TWFr distribution has the lowest AIC values.

6. Conclusion

The Transmuted Weibull Frechet distribution has been successfully derived. Its expressions for
the basic statistical properties which include the order statistics distribution, cumulative hazard
function, reversed hazard function, quantile, median, hazard function, odds function have been
successfully established. The shape of the distribution could be increasing (depending on the
value of the parameters). An application of real life data shows that the TWFr distribution is a
better competitor for some other families of distributions.
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Abstract 
 

Ranked set sampling is an approach to data collection originally combines simple random sampling 
with the field investigator's professional knowledge and judgment to pick places to collect samples. 
Alternatively, field screening measurements can replace professional judgment when appropriate and 
analysis that continues to stimulate substantial methodological research. The use of ranked set 
sampling increases the chance that the collected samples will yield representative measurements. This 
results in better estimates of the mean as well as improved performance of many statistical procedures. 
Moreover, ranked set sampling can be more cost-efficient than simple random sampling because fewer 
samples need to be collected and measured. The use of professional judgment in the process of selecting 
sampling locations is a powerful incentive to use ranked set sampling. This paper is devoted to the 
study, we introduce an approach to the mean estimators in ranked set sampling. The amount of 
information carried by the auxiliary variable is measured with the on populations and samples and 
to use this information in the estimator, the basic ratio and the generalized exponential ratio 
estimators are as an improved form of a difference cum exponential ratio type estimator under the 
ranked set sampling in order to estimate the population mean of study variate Y using single 
auxiliary variable X. The expressions for the mean squared error of propose estimator under ranked 
set sampling is derived and theoretical comparisons are made with competing estimators. We show 
that the proposed estimator has a lower mean square error than the existing estimators. In addition, 
these theoretical results are supported with the aid of some real data sets using R studio. Therefore, 
Under RSS architecture, a better difference cum exponential ratio type estimator has been suggested. 
The estimator's mathematical form has been developed, and its efficiency requirements have been 
developed in relation to various already-existing estimators from the literature. By imputing various 
values for the constants used in the creation of our proposed estimator, we also provide several specific 
situations of our estimator. 
 
 

Keywords: Ranked Set Sampling; Exponential Ratio Type Estimator; Ratio Estimator, Mean Square 
Error (MSE), Efficiency, R studio. 
 

1. Introduction 
 
It is well known that the information of the auxiliary variable is commonly used in order to increase 
efficiency and precision in sample surveys. It has also a role in the related methods of estimation, 
such as ratio, product, and regression. If the correlation between the study variable (Y) and the 
auxiliary variable (X) is highly positive, the ratio method of estimation is used. If not, the product 

Y
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method of estimation is employed effectively provided that this correlation is highly negative. In 
recent years, there have been many articles on estimators for the population mean in the Sampling 
Theory Literature, such as unbiased estimators in general form for estimating the finite population 
mean in stratified random sampling [1], a generalized ratio estimator is proposed by using some 
robust measures with single auxiliary variable [2 and 3], an efficient families of ratio-type estimators 
to estimate finite population mean using known correlation coefficient between study variable and 
auxiliary variable by [5 aand 6], Estimation of rare and clustered population mean using stratified 
adaptive cluster sampling and using auxiliary character in stratified random sampling [7 and 8]. The 
estimation of population mean using auxiliary attribute under ranked set sampling (RSS) [9, 10 and 
11]. The problem of exponential estimator for estimating the population mean considered under RSS 
using attribute, two phase sampling by [12, 13, 14, and 15]. 

In addition to the Simple Random Sampling (SRS) method, RSS, which may be considered 
as a controlled random sampling design, was first introduced to estimate the pasture yield by [16]. 
The RSS procedure involves randomly drawing n sets of n units each from the population for which 
the mean is to be estimated. It is assumed that the units in each set can be ranked visually. From the 
first set of n units, the lowest unit ranked is measured. From the second set of n units, the second 
lowest unit ranked is measured. This process continues until the nth ranked unit is measured. The 
gain in efficiency by a computation involving five distributions illustrated by [16]. As a simple 
introduction to the concept of RSS, when X is a random variable with a density function F(x) and 
(x1,x2,...,xn) are the unobserved values from n units, we may then rank them by visual inspection or 
based on a concomitant variable. RSS involves selecting one unit among every ranked set consisting 
of m units for quantification.  
The RSS method can be briefly described step by step as follows:   
Step 1: Randomly select m2 units from the target population.  
Step 2: Allocate the m2 selected units as randomly as possible into m sets, each of size m.  
Step 3: Without knowing any values of the variable of interest, rank the units within each set with 
respect to variable of interest. This may be based on personal professional judgment or done with 
concomitant variable correlated with the variable of interest.  
Step 4: Choose a sample for actual quantification by including the smallest ranked unit in the first 
set, the second smallest ranked unit in the second set and this process continues in this way until the 
largest ranked unit is selected from the last set. 
Step 5: Repeat Steps 1 through 4 for n cycles to obtain a sample of size mn for actual quantification. 
[17] 
When it is ranked on the auxiliary variable, let 𝑦("), 𝑥(") denote an ith  judgment ordering in the ith set 
for the study variable and the ith order statistic in the ith set for the auxiliary variable, respectively.   

In the remaining part of this article, the estimators for the population mean under RSS are mentioned 
in Section 2, the adapted estimator from the SRS to RSS is given in Section 3, theoretical and 
numerical comparisons of the adapted estimator are performed with the existing adapted estimators 
in literature in Sections 4 and 5, respectively. 

2. Estimators in literature 

The estimator of the population ratio using the RSS as defined by [19]. 

𝑡$%% =
𝑦&[']
�̅�[']

																																																																																																									(2.1) 

Where 𝑦&['] =
)
'
∑ 𝑦(𝑖)'
"*)   and �̅�['] =

)
'
∑ 𝑥(𝑖)'
"*) . Note that the estimator in (2.1) can also be used for 

the population total and mean. Then, the estimator for the population mean can be written as 
follows:	

𝑦&+$%% =
𝑦&[']
�̅�[']

𝑋&																																																																																																					(2.2) 
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Where it is assumed that the population mean 𝑋& of the auxiliary variable x is known and the MSE 
equation of the estimator in (2.2) can be given by 

𝑀𝑆𝐸(𝑦&+$%%) ≅
1
𝑚𝑟 7𝑆,

- − 2𝑅𝑆,. + 𝑅-𝑆.-; −
1
𝑚-𝑟 <=𝜏,(")- − 2𝑅=𝜏,.(") + 𝑅-=𝜏.(")-

/

"*)

/

"*)

/

"*)

?																(2.3) 

Where, 𝑅 = 01

21
, 𝑆.- is the population variance of the auxiliary variable, 𝑆,- 

is the population variance 
of the study variable, Syx is the population covariance between the auxiliary and study variables, 
𝜏.(") = 7𝜇.(") − 𝑋&;, 𝜏,(") = 7𝜇,(") − 𝑌&;, and 𝜏,.(") = 7𝜇,(") − 𝑌&;7𝜇.(") − 𝑋&;. Here, 𝑌&  is the population 
mean of the study variable. Note that the values of 𝜇.(") and 𝜇,(") 

depend on the order statistics from 
some specific distributions and these values can be found in [19]. We would like to remind that the 
values of 𝜇.(") and 𝜇,(") 

can be taken to be same in the absence of judgment error if the variables have 
the same distribution (see the appendix of [20] 
The following estimator by adapting [21] to the RSS proposed by [22]:   
 

𝑦&3$%% =
3,1["]
.̅["]

𝑋&																																																																																																																												(2.4)  

Where k is a constant.  
 The MSE of the estimator in (2.4) is given by  

𝑀𝑆𝐸(𝑦&+$%%) ≅
1
𝑚𝑟 7𝑘

∗-𝑆,- − 2𝑅𝑘∗𝑆,. + 𝑅-𝑆.-; + 𝑌&-(𝑘∗ − 1)-

−
1
𝑚-𝑟 <=𝑘∗-𝜏,(")- − 2𝑅𝑘∗=𝜏,.(") + 𝑅-=𝜏.(")-

/

"*)

/

"*)

/

"*)

?																																																						(2.5) 

where 𝑘∗ = )6789$9%:;%$(')

)679%):;%[']
) , Here, 𝑊,.(") =

)
/)+2101

∑ 𝜏,.(")/
"*)  and 𝑊,["]

- = )
/)+01)

∑ 𝜏,(")-/
"*) , 𝛾 = )

/+
 
, 𝐶. and 

𝐶, are the population coefficients of variation of the auxiliary and study variables, respectively, 𝜌  is 
the population correlation between the auxiliary and the study variables. 

3. Proposed estimator 

An improved difference cum-exponential ratio type is defined for estimating 𝑌& as following         [18 
and 21] 

𝑌&$< = J𝑡)𝑦&['] + 𝑡-7𝑋& − �̅�['];K Lexp P
𝑋& − �̅�[']
𝑋& + �̅�[']

QR																																																															(3.1) 

To obtain the MSE of 𝑌&$<, write  

𝑦&(') = 𝑌&(1 +∈=),   and    �̅�(') = 𝑋&(1 +∈)), 

Such that   𝐸(∈=) = 𝐸(∈)) = 0,  

and     𝐸(∈=)- = 𝑉 V
,1(")
01)
W = )

/+
)
01)
X𝑆,- −

)
/
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)
/+

)
0121
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)
/
∑𝑡,(")- Y = Z𝜃𝐶,. −𝑤,.(")], 

Where 𝑊.["]
- = )

/)+21)
∑ 𝜏.(")-/
"*)

 Expressing (1.1) in terms of e’s, 

𝑌&$< = {𝑡)𝑌&(1 +∈=) + 𝑡-(𝑋& − 𝑋&(1 +∈)))} Lexp P
𝑋& − 𝑋&(1 +∈))
𝑋& + 𝑋&(1 +∈))

QR 

𝑌&$< = {𝑡)𝑌& + 𝑡)𝑌& ∈=− 𝑡-𝑋& ∈)} Lexp `−
∈)
2 a b1 +

∈)
2 c

:)
R																																												(3.2) 

Expanding the right hand side of (1.2) and retaining terms up to the second power of e’s, 
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𝑌&$< = {𝑡)𝑌& + 𝑡)𝑌& ∈=− 𝑡-𝑋& ∈)} Lexp `−
∈)
2 a P1 +

∈)
2 +

∈)-

4 QR	 

𝑌&$< = {𝑡)𝑌& + 𝑡)𝑌& ∈=− 𝑡-𝑋& ∈)} L1 −
∈)
2 +

∈)-

4 +
∈)-

8 R																																														(3.3) 

From (3.3), 

𝑌&$< − 𝑌& = 𝑌& L(𝑡) − 1) + 𝑡) ∈=−
𝑡) ∈)
2 − 𝑡-𝑅 ∈)−

𝑡) ∈=∈)
2 +

𝑡-𝑅 ∈)-

2 +
3𝑡) ∈)-

8 R																																					(3.4) 

Squaring (3.4) and then taking expectation of both sides, the MSE of the estimator 𝑌&$< is  
𝑀𝑆𝐸(𝑌&$<) = 𝑌&-{𝑡)-𝜑) − 𝑡)𝜑- + 𝑡--𝑅-𝜑> − 𝑡)𝑡-𝑅𝜑?}																																																									(3.5) 

Where, 
𝜑) = 	𝛾J𝐶,- + 𝐶.- − 2𝐶,.K − J𝑤,["]- +𝑤.["]- − 2𝑤,.["]K 
𝜑- = 	𝛾{𝐶.-} − J𝑤.["]- K 

𝜑> = 	𝛾 f
3
4𝐶.

- − 𝐶,.g + f
3
4𝑤.["]

- −𝑤,.["]g 

𝜑? = 	𝛾J𝐶.- − 𝐶,.K + J𝑤.["]- −𝑤,.["]K 
Obtain the optimum 𝑡) and 𝑡- to minimize 𝑀𝑆𝐸(𝑌&$<). Differentiate 𝑀𝑆𝐸(𝑌&$<) with respect to 𝑡) and 
𝑡- and equating the derivatives to zero, optimum values of 𝑡) and 𝑡-  is given by 

𝑡)@AB =
2𝜑-𝜑>

4𝜑)𝜑> − 𝜑?-
 

 
𝑡-@AB =

𝜑-𝜑?
4𝜑)𝜑> − 𝜑?-

 

Substituting the value of 𝑡)@AB and 𝑡-@AB in (3.5), we get the minimum value of  𝑀𝑆𝐸(𝑌&$<) as 

𝑀𝑆𝐸/"'(𝑌&$<) = 𝑌&-{𝑡)-𝜑) − 𝑡)𝜑- − 𝑡--𝑅-𝜑>}																																																																						(3.6) 

4. Efficiency 
In this section, the performances of the proposed estimator have been demonstrated over the 
traditional ratio estimator in the RSS and the estimator of [23] respectively, as follows: 

𝑀𝑆𝐸(𝑦&+$%%) −𝑀𝑆𝐸/"'(𝑌&$<) > 0 
J(1 − 𝑡)

-)𝜑) + 𝑡)𝜑- + 𝑡--𝑅-𝜑>K > 0																																																																				(4.1) 
 

𝑀𝑆𝐸(𝑦&3$%%) −𝑀𝑆𝐸/"'(𝑌&$<) > 0 
{(𝑘∗ − 1)- + (1 − 𝑡)-)𝜑) + 𝑡)𝜑- + 𝑡--𝑅-𝜑>} > 0																																																			(4.2) 

 
Table 1: Some members of exponential ratio type estimator in ranked set sampling 

Estimator t1 t2 

𝑌&$<) = J𝑦&['] + 7𝑋& − �̅�['];K Lexp P
𝑋& − �̅�[']
𝑋& + �̅�[']

QR 1 1 

𝑌&$<- = J7𝑋& − �̅�['];K Lexp P
𝑋& − �̅�[']
𝑋& + �̅�[']

QR 0 1 

𝑌&$<> = J𝑦&[']K Lexp P
𝑋& − �̅�[']
𝑋& + �̅�[']

QR 1 0 

 

5. Numerical example 

To observe performances of the estimators, we use some real-life populations. The descriptions of 

these populations are given below: 

Population I {source: [24]} 
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Y: Acceleration of automobiles 
X: Engine horsepower of automobiles 
Objective: To estimate population mean of Acceleration of automobiles. 
The summary statistics are given below: 

𝑁 = 392, 𝑛 = 30,𝑚 = 10, 𝑟 = 3, 𝜇. = 104.4694, 𝜇, = 15.5413, 𝑆, = 2.7589, 𝑆. = 38.4912, 
	𝐶. = 0.3684, 𝐶, = 0.1775, 𝐶., = −0.0451, 𝛽-(.) = 0.6541, 𝛽)(.) = 1.079, 𝜌., = 0.9091 

 
Population II {source: [25]} 
Y: Body Mass Index (BMI) of Crohn’s disease patients 
X: Weight of Crohn’s disease patients 
Objective: To estimate population mean of Body Mass Index (BMI) of Crohn’s disease patients. 
The summary statistics are given below: 

𝑁 = 117, 𝑛 = 20,𝑚 = 5, 𝑟 = 4, 𝜇. = 69.0256, 𝜇, = 26.0624, 𝑆, = 4.9888, 𝑆. = 14.2438, 
	𝐶. = 0.2063, 𝐶, = 0.1914, 𝐶., = 0.0325, 	𝛽-(.) = 0.7746, 𝛽)(.) = 0.6571, 𝜌., = 0.8222 

 
Population III {source: [26]} 
Y: Body Mass Index (BMI) 
X: Thigh Circumference 
Objective: To estimate population mean of Body Mass Index (BMI). 
The summary statistics are given below: 

N = 36, n = 8,m = 4, r = 2, µC = 49.3806, µD = 25.678, SD = 3.8198, SC = 3.7599, 
	CC = 0.0761, CD = 0.1488, CCD = 0.0066, 	β-(C) = −0.6159, β)(C) = −0.0607, ρCD = 0.9848 

 
Percent Relative Efficiencies (PREs) of our proposed estimators along with competitor estimators 
from literature have been presented in Table 2, 3 and 4 for different real-life populations. 

 
Table 2: PRE of Estimators for Population I  

   𝑌&$<) 𝑌&$<- 𝑌&$<> 𝑌&$< 

 100      
 212.19 100     

𝑌&$<) 245.19 231.72 100    
𝑌&$<- 241.45 210.47 98.81 100   
𝑌&$<> 238.97 189.37 90.84 93.08 100  
𝑌&$< 361.74 275.18 249.18 245.15 213.49 100 

Table 2, revealed the percent relative efficiencies (PRE) of estimators for population I. It is observed 
that the proposed difference cum exponential ratio type estimator in ranked set sampling 𝑌&$< proved 
to be the best estimator in the sense of having highest percent relative efficiency than usual unbiased 
estimators𝑌&+$EE, 𝑌&3$EE for the population I. The generalized form of proposed difference cum 
exponential ratio type estimator 𝑌&$< is 361.74% more efficient than the existing estimator  and 
275.18% more efficient than 𝑌&3$EE.  

Moreover, the special cases of our proposed generalized estimator  𝑌&$<),  𝑌&$<- and	𝑌&$<> are also 
proved to be more efficient than existing estimators. These results suggest using proposed difference 
cum exponential ratio type estimator to estimate population mean of Acceleration of automobiles. 
  

rRSSy RSSyk
rRSSy

RSSyk
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Table 3:  PRE of Estimators for Population II 

   𝑌&$<) 𝑌&$<- 𝑌&$<> 𝑌&$< 

 100      

 204.74 100     
𝑌&$<) 238.48 238.29 100    
𝑌&$<- 237.37 204.28 93.92 100   
𝑌&$<> 221.49 174.28 89.32 82.74 100  
𝑌&$< 352.86 252.48 248.82 229.23 190.48 100 

Table 3, showed the percent relative efficiencies (PRE) of estimators for population II. It is observed 
that the proposed difference cum exponential ratio type estimator in ranked set sampling 𝑌&$< also 
proved to be the best estimator in the sense of having highest percent relative efficiency than usual 
unbiased estimators 𝑌&+$EE, 𝑌&3$EE for the population II. The generalized form of proposed difference 
cum exponential ratio type estimator 𝑌&$< is 352.86% more efficient than the existing estimator  
and 252.48% more efficient than 𝑌&3$EE. Moreover, the special cases of our proposed generalized 
estimator 𝑌&$<),  𝑌&$<- and	𝑌&$<> are also proved to be more efficient than existing estimators. These 
results suggest using proposed difference cum exponential ratio type estimator to estimate 
population mean of Body Mass Index (BMI) of Crohn’s disease patients. 

Table 4:  PRE of Estimators for Population III 
   𝑌&$<) 𝑌&$<- 𝑌&$<> 𝑌&$< 

 100      
 238.48 100     

𝑌&$<) 275.28 264.82 100    
𝑌&$<- 263.82 249.27 98.47 100   
𝑌&$<> 239.83 237.42 97.38 98.37 100  
𝑌&$< 384.27 283.38 259.37 278.38 239.57 100 

Table 4, showed the percent relative efficiencies (PRE) of estimators for population III. It is observed 
that the proposed difference cum exponential ratio type estimator in ranked set sampling 𝑌&$< also 
proved to be the best estimator in the sense of having highest percent relative efficiency than usual 
unbiased estimators𝑌&+$EE, 𝑌&3$EE for the population III. The generalized form of proposed difference 
cum exponential ratio type estimator 𝑌&$< is 384.27% more efficient than the existing estimator  
and 283.38% more efficient than 𝑌&3$EE. Moreover, the special cases of our proposed generalized 
estimator 𝑌&$<), 𝑌&$<- and	𝑌&$<> are also proved to be more efficient than existing estimators. These 
results suggest using proposed difference cum exponential ratio type estimator to estimate 
population mean of Body Mass Index (BMI). 

6. Conclusion 

In this article, an improved difference cum exponential ratio type estimator has been proposed under 
RSS design. The mathematical form of the estimator has been derived and its condition of efficiencies 
has been formulated with respect to some existing estimators from literature. Further, we present 
some special cases of our proposed estimator by imputing different values of constants utilized in 
the formation of proposed estimator. For comparing the efficiencies of proposed estimator with 
some existing estimators, we utilized some real-life populations for estimating population mean of 
Acceleration of automobiles, population mean of Body Mass Index (BMI) of Crohn’s disease patients 
and population mean of Body Mass Index (BMI). The result from these populations shows that our 
proposed estimator and its special cases perform efficiently as compare to existing estimators. We 
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also observe that efficiency of proposed estimator and its special cases increases when the correlation 
between study and auxiliary variable increases. Therefore, it is recommended to use proposed 
estimator for estimating population mean when correlation between study and auxiliary variable is 
strong positive.  
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Abstract

With a Bayesian framework, the current study intends to fit the Type II generalized Topp–Leone-G
(TIIGTL-G) model as an accelerated failure time (AFT) model to censored survival data. In this paper, we
have obtained and analysed three AFT models using Type II Generalized Topp-Leone (TIIGTL) distribution
as generator and considering Weibull, Exponential, and Log-Logistic as a baseline distribution. The
fitting of these models to the censored survival data is done with the help of R and STAN. A comparison
of these two models is conducted, and the best model is chosen using the Bayesian model evaluation
criteria LOOIC and WAIC.

Keywords: Type II generalized Topp–Leone G Model, Bayesian Survival Modelling, Censored
data, Leave one out information criteria, STAN

1. Introduction

[1] proposed the Type II generalised Topp-Leone-G (TIIGTL-G) family of distributions, which
uses the Topp-Leone random variable as a generator, and investigated its mathematical properties
and how they were used to fit lifetime data. Research analysts are evaluating lifetime data and
issues with modelling the survival process using the extended form of the standard distribution
in the survival study. It has been shown that the Bayesian paradigm is instrumental in analyzing
survival models in many real-world contexts. [2] set up and analysed Topp-Leone exponential
distribution, Topp-Leone exponentiated exponential distribution and Topp-Leone exponentiated
extension distribution using Bayesian approach. Also, [3] fitted the Weibull, Topp-Leone-Weibull
(TL-W), and Generalized Topp-Leone-Weibull (GTL-W) survival models as accelerated failure
time models using Bayesian approach and have shown that TL-W AFT model is the most suitable
model for fitting a censored data (tumor data). Recently, [4] analysed and compared three
accelerated failure time models—Weibull, log-normal, and log-logistic under Bayesian framework.

In this article, We have fitted a censored survival data using TIIGTL-G model as an accelerated
failure time (AFT) model. The aforementioned models were fitted using the full Bayesian inference-
supporting probabilistic programming language STAN [5] in R. The programming language Stan
is used to define statistical models, and in Bayesian analysis, it is most frequently employed as an
Hamiltonian Monte Carlo (HMC) sampler [6, 7]. STAN primarily uses the No-U-Turn sampler
(NUTS) [8] to obtain posterior simulation for Bayesian analysis. Thus, we have also evaluated and
selected the best model using Leave-One-Out information criteria (LOOIC) and Watanabe-Akaike
information criteria or widely applicable information criteria (WAIC) for the diet data. Using a
fitted Bayesian model and the log-likelihood assessed at the posterior simulations of the parameter
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values, LOO and WAIC are two methods for evaluating the precision of pointwise out-of-sample
predictions [9]. Thus, in this article, we have conducted a Bayesian analysis of TIIGTL-Weibull
AFT, TIIGTL-Exponential AFT, and TIIGTL-Log-logistic AFT models by presenting summaries of
the posterior densities in both numerical and graphical form by using R and Stan.

2. Type II Generalized Topp–Leone–G (TIIGTL-G) family

Let a continuous random variable T with baseline cdf and pdf G(t, φ) and g(t, φ) respectively
with parameter vector φ. The cumulative distribution function (cdf), probability density function
(pdf), survival function, and hazard function of the TIIGTL-G family are respectively given by

FT(t, c, d, φ) = 1− (1− G(t, φ)2d)c (1)

fT(t, c, d, φ) = 2cdg(t, φ)[G(t, φ)]2d−1(1− G(t, φ)2d)c (2)

ST(t, c, d, φ) = 1− FT(t, c, d, φ) = (1− G(t, φ)2d)c (3)

hT(t, c, d, φ) = fT(t, c, d, φ)/ST(t, c, d, φ) (4)

Thus, the random variable T with the pdf given in Equation 2 will be denoted as T ∼ TIIGTL−
G(c, d, φ) where c,d are two shape parameters and φ is parameter vector of baseline distribution.
Also, random number generation from the survival model is accomplished by equating F(t) and
v, where V has Uni f orm(0, 1) distribution. Thus,

F(t) = v (5)

1− (1− G(t)2d)c = v (6)

then we have,
G(t) = [1− (1− v)1/c]1/2d (7)

For any baseline cdf G(t), this is the TIIGTL-G model’s general expression for producing random
numbers.

3. Accelerated Failure Time (AFT) models

It has been noted in statistical literature that many models have been created for assessing survival
data or life time data. The Cox Proportional Hazard (PH) model is the most well-liked of them
all. When examining survival data, the Accelerated Failure Time (AFT) model can be thought of
as a good substitute for the Cox PH model [10]. AFT models are parametric models that take into
account the linear regression of the logarithm of the survival time T on a variety of covariates.
They are used to investigate the impact of a covariate on how quickly or slowly the survival
process advances [3]. According to the AFT model, covariates and failure time have a direct
relationship [11]. If number of covariates x1, x2, ..., xp have an impact on survival time T then we
can write the AFT model as:

log(T) = β0 +
L

∑
k=1

βkxk + σe = x′β + σε (8)

where βk, k = 1, 2, ..., L are the coefficients of regression, σ is a scale parameter such that σ > 0
and ε is the random error with a specified probability distribution.
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3.1. Weibull AFT model

Let survival time T follows Weibull distribution with scale and shape parameter λ and α re-
spectively. Then the probability density function, cumulative distribution function, and survival
function of Weibull distribution are provided as follows [12]:

g(t|α, λ) = (α/λ)(t/λ)α−1exp(−(t/λ)α) (9)

G(t|α, λ) = 1− exp(−(t/λ)α) (10)

S(t|α, λ) = exp(−(t/λ)α) (11)

hence, we can write T ∼ Weibull(α, λ). Now, Let a random variable ε has a standard ex-
treme value distribution with density function g(e) = exp(e − exp(e)) and survival func-
tion S(e) = exp(−exp(e)) substituting e = (logt − x′β)/σ from the Equation 8 in the ex-
treme value distribution and then the Weibull AFT model is obtained and we can write it
as T ∼Weibull(1/σ, exp(x′β)).

3.1.1 TIIGTL-W AFT model

The Type two generalized Topp-Leone-Weibull (TIIGTL-W) AFT model is obtained by considering
weibull AFT model as the baseline model G and substituting it in the TIIGTL-G model. Thus,
the cdf, pdf, survival function, and hazard function of the TIIGTL-W AFT model are respectively
given by

F(t|Ω, x) = 1− (1− G(t)2d)c (12)

f (t|Ω, x) = 2abg(t)[G(t)]2d−1(1− G(t)2d)c (13)

S(t|Ω, x) = (1− G(t)2d)c (14)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (15)

Where t > 0, g(t) and G(t) are the pdf and cdf of Weibull AFT model. Ω = (c, d, σ, β),c,d and α
are shape parameters and λ is scale parameter. Also σ = 1/α, λ = exp(x′β) from the AFT model
and we have T ∼ TIIGTL−W(c, d, 1/σ, exp(x′β)). Now, for random number generation from
TIIGTL-W we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (16)

1− exp(−(t/λ)α) = [1− (1− v)1/c]1/2d (17)

then we get,
t = exp(x′β)[−log(1− (1− (1− v)1/c)1/2d)]σ (18)

This is the TIIGTL-W AFT model’s general expression for producing random numbers, where
λ = exp(x′β) and σ = 1/α.

3.2. Exponential AFT model

Let survival time T follows Exponential distribution with inversescale or rate parameter λ > 0
Then the probability density function, cumulative distribution function, and survival function of
Exponential distribution are provided as follows [12]:

g(t|α, λ) = 1− exp(−λt) (19)

G(t|α, λ) = λexp(−λt) (20)

S(t|α, λ) = exp(−λt) (21)

hence, we can write T ∼ Exp(λ). Now, Let a random variable ε has a standard extreme
value distribution with density function g(e) = exp(e− exp(e)) and survival function S(e) =
exp(−exp(e)). Considering σ = 1 substituting e = (logt − x′β) from the Equation 8 in the
extreme value distribution and then the Exponential AFT model is obtained and we can write it
as T ∼ Exp(exp(−x′β)).
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3.2.1 TIIGTL-E AFT model

The Type two generalized Topp-Leone-Exponential (TIIGTL-E) AFT model is obtained by con-
sidering exponential AFT model as the baseline model G and substituting it in the TIIGTL-G
model. Thus, the cdf, pdf, survival function, and hazard function of the TIIGTL-E AFT model are
respectively given by

F(t|Ω, x) = 1− (1− G(t)2d)c (22)

f (t|Ω, x) = 2cdg(t)[G(t)]2d−1(1− G(t)2d)c (23)

S(t|Ω, x) = (1− G(t)2d)c (24)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (25)

Where t > 0, g(t) and G(t) are the pdf and cdf of Exponential AFT model. Ω = (c, d, β) ,c,d are
shape parameters and λ is inversescale parameter. Also λ = exp(−x′β) from the AFT model and
we have T ∼ TIIGTL− E(c, d, exp(−x′β)) . Now, for random number generation from TIIGTL-E
we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (26)

1− exp(−λt) = [1− (1− v)1/c]1/2d (27)

then we get,
t = (−exp(x′β))log[1− (1− (1− v)1/c)1/2d] (28)

This is the TIIGTL-E AFT model’s general expression for producing random numbers, where
λ = exp(x′β).

3.3. Log Logistic AFT model

Let survival time T follows Log Logistic distribution with scale and shape parameter λ and α
respectively. Then the probability density function, cumulative distribution function, and survival
function of Log Logistic distribution are provided as follows [12]:

g(t|α, λ) = (α/λ)(t/λ)α−1(1 + (t/λ)α)−2 (29)

G(t|α, λ) = 1− (1 + (t/λ)α)−1 (30)

S(t|α, λ) = (1 + (t/λ)α)−1 (31)

hence, we can write T ∼ LL(α, λ). Now, Let a random variable ε has a standard logistic
value distribution with density function g(e) = exp(e)(1 − exp(e))−2 and survival function
S(e) = (1 − exp(e))−1 substituting e = (logt − x′β)/σ from the Equation 8 in the extreme
value distribution and then the Log Logistic AFT model is obtained and we can write it as
T ∼ LL(1/σ, exp(x′β)).

3.3.1 TIIGTL-LL AFT model

The Type two generalized Topp-Leone-log-logistic (TIIGTL-LL) AFT model is obtained by con-
sidering log-logistic AFT model as the baseline model G and substituting it in the TIIGTL-G
model. Thus, the cdf, pdf, survival function, and hazard function of the TIIGTL-W AFT model
are respectively given by

F(t|Ω, x) = 1− (1− G(t)2d)c (32)

f (t|Ω, x) = 2cdg(t)[G(t)]2d−1(1− G(t)2d)c (33)

S(t|Ω, x) = (1− G(t)2d)c (34)

h(t|Ω, x) = f (t|Ω, x)/S(t|Ω, x) (35)

Where t > 0, g(t) and G(t) are the pdf and cdf of Log-logistic AFT model. Ω = (c, d, σ, β),c,d
and α are shape parameters and λ is scale parameter. Also σ = 1/α, λ = exp(x′β) from the AFT
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model and we have T ∼ TIIGTL− LL(c, d, 1/σ, exp(x′β)). Now, for random number generation
from TIIGTL-LL we proceed as follows, Let V ∼ Uni f orm(0, 1). Then from Equation 7 we have

G(t) = [1− (1− v)1/c]1/2d (36)

1− (1 + (t/λ)α)−1 = [1− (1− v)1/c]1/2d (37)

then we get,
t = exp(x′β)[(1− (1− (1− v)1/c)1/2d)−1 − 1]σ (38)

This is the TIIGTL-LL AFT model’s general expression for producing random numbers, where
λ = exp(x′β) and σ = 1/α.

4. Diet Data

90 homogenous rats of the same species, age, and environmental conditions were separated into
three groups and fed with low, saturated, and unsaturated fat diets, respectively, as reported by
[13]. Each rat’s foot pad received an identical dosage of tumour cells. 200 days of observation of
the rats revealed the growth of a tumour as the event. Several of the rats got tumours, but several
did not. Survival time is defined as the amount of time without a tumour or the amount of time
before one develops one. The survival times of the tumor-free animals are marked with stars and
treated as censored. As a result, the data is correctly suppressed, as shown in the Table 1. The
primary objective of this study is to compare the three diets’ tumor-preventing capacities in rats.

Table 1: Tumor-free duration (days) of 90 rats on three different diets (∗ indicates censored)

Low Fat Saturated Fat Unsaturated Fat
(30 rats) (30 rats) (30 rats)
140 87 200∗ 124 96 81 112 63 66
177 56 200∗ 58 142 133 68 63 94
50 66 200∗ 56 86 165 84 77 101
65 73 200∗ 68 75 170∗ 109 91 105
86 119 200∗ 79 117 200∗ 153 91 108
153 140∗ 200∗ 89 98 200∗ 143 66 112
181 200∗ 200∗ 107 105 200∗ 60 70 115
191 200∗ 200∗ 86 126 200∗ 70 77 126
77 200∗ 200∗ 142 43 200∗ 98 63 161
84 200∗ 200∗ 110 46 200∗ 164 66 178

4.1. Data Structure for computation in R

We have produced the data in a listed form necessary for fitting Bayesian models to the data
using stan function.

y = survival times (Tumor-free time in days)

y <- c(140,177,50,65,86,153,181,191,77,84,87,56,66,73,119,140,200,200,

200,200,200,200,200,200,200,200,200,200,200,200,124,58,56,68,79,89,107,

86,142,110,96,142,86,75,117,98,105,126,43,46,81,133,165,170,200,200,200,

200,200,200,112,68,84,109,153,143,60,70,98,164,63,63,77,91,91,66,70,77,

63,66,66,94,101,105,108, 112,115,126,161,178 )

event=1 if tumor is developed or zero if it is censored

event <- c(rep(1,15),rep(0,15),rep(1,23),rep(0,7),rep(1,30))

Low-Fat is considered as reference category

x1 = 1 if saturated fat is applied and 0 otherwise

x1 <- c(rep(0,30),rep(1,30),rep(0,30))
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x2 = 1 if unsaturated fat is applied and 0 otherwise

x2 <- c(rep(0,30),rep(0,30),rep(1,30))

x = cbind(1,x1,x2)

N = nrow(x)

M = ncol(x)

datt = list(y=y, event=event,x=x,N=N,M=M)

5. Bayesian Analysis

In Bayesian analysis, following Bayes Theorem, we look for the exact parameter distributions
known as the posterior distribution by fusing the prior distribution of parameter with the data or
likelihood. We must define a prior distribution for the model’s parameters and likelihood of the
data before building the Bayesian regression model.

5.1. Likelihood

Following the [14] , the joint likelihood function for right censored data is given as

L =
n

∏
i=1

h(ti)
γi S(ti) (39)

Also as an alternative to the likelihood, the log-likelihood can be written as

logL =
n

∑
i=1

(γi(logh(ti) + logS(ti))) (40)

here γi is an indicator variable such that γ = 0 if the observed value is censored and γ = 1 if the
observed value is failed (recorded). In equation 39 we can sustitute the hazard function h(ti) and
survival function S(ti) of TIIGTL-W AFT , TIIGTL-E AFT and TIIGTL-LL AFT models in order
to get the likelihood of TIIGTL-W AFT , TIIGTL-E AFT and TIIGTL-LL AFT survival models
respectively.

5.2. Prior

A prior distribution must be specified for the model’s parameters in order to build a Bayesian
regression model. Two prior types—the student t prior and the normal prior, are used by the
researchers in the remaining sections of this work. Student t distribution is used for the priors
of shape and scale parameters and Normal distribution is used as a prior for the regression
coefficients. These priors are weekly informative priors and are discussed briefly by [3].

5.3. Posterior

The Bayes Theorem can be used to determine the joint posterior distribution of parameter
Ω = (c, d, σ, β) = (c, d, σ, β0, β1, ..., βp) given data as

P(Ω|t, X) ∝ L(Ω|t, X)P(Ω) (41)

P(Ω|t, X) ∝ L(Ω|t, X)P(c)P(d)P(σ)P(β) (42)

Here parameters are assumed to be independent and X is the matrix of covariates. Hence we
can obtain the joint posterior distribution of TIIGTL-W AFT Model, TIIGTL-W AFT Model and
TIIGTL-LL AFT Model by sustituting the likelihood and priors of corresponding models in
equation 42. Because it is challenging to determine the marginal distributions of the parameters
and the normalised joint posterior distribution analytically, the estimates and other relevant
results are obtained using the Markov chain Monte Carlo (MCMC) simulation technique.
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5.4. Implementation using Stan

The package rstan is necessary to run STAN code in R. For the Bayesian modeling, there are
several blocks in Stan such as Data and Transformed data block, Parameter, and Transformed
parameter block, Generated quantities block, etc. Following are the stan codes containing all
these blocks for all three models discussed in this article.

5.4.1 Stan code for TIIGTL-W AFT model

stancode_ttgtlw = "

functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(((1-((weibull_cdf(t[i],shape3,

scale[i]))^(2*shape2)))^(shape1)));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,shape3,scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

weibull_lpdf(t[i]|shape3,scale[i])+

(((2*shape2)-1)*weibull_lcdf(t[i]|shape3,scale[i]))+

((shape1-1)*(log(1-(weibull_cdf(t[i],shape3,

scale[i]))^(2*shape2))))) - ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtlw_lpdf(vector t,vector d,real shape1,

real shape2,real shape3,vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,shape3,scale)+

log_S(t,shape1,shape2,shape3,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates
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matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape3

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

shape2 ~ student_t(5,0,10) T[0, ];//prior for shape2

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtlw(event,shape1,shape2,1/sigma,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+

weibull_lpdf(y[n]|1/sigma,exp(x[n,]*beta))+

(((2*shape2)-1)*weibull_lcdf(y[n]|1/sigma,

exp(x[n,]*beta))))+((shape1-1)*

(log(1-(weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^

(2*shape2))))-(log(((1-((weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta)))^(2*shape2)))^(shape1))))*event[n])+

(log(((1-((weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^(2*shape2)))

^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*(-log((1-(1-((1-u)^(1/shape1)))

^(1/(2*shape2)))^(sigma)));}

}

}

"

5.4.2 Stan code for TIIGTL-E AFT model

stancode_ttgtle = "
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functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,vector inversescale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(((1-((exponential_cdf(t[i],

inversescale[i]))^(2*shape2)))^(shape1)));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,vector inversescale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,inversescale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

exponential_lpdf(t[i]|inversescale[i])+

(((2*shape2)-1)*exponential_lcdf

(t[i]|inversescale[i]))+

((shape1-1)*(log(1-(exponential_cdf

(t[i],inversescale[i]))^(2*shape2))))) - ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtle_lpdf(vector t,vector d,real shape1,

real shape2,vector inversescale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,inversescale)+

log_S(t,shape1,shape2,inversescale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

}

// transformed parameters block

transformed parameters{

RT&A, No 4 (71) 
Volume 17, December 2022 

485 



Devashish and Athar Ali Khan
BAYESIAN ANALYSIS OF TIIGTL-G AFT MODELS USING R AND STAN

vector[N] linpred;

vector[N] mu;

linpred = -x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0,];//prior for shape1

shape2 ~ student_t(5,0,10) T[0,];//prior for shape2

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtle(event,shape1,shape2,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+

exponential_lpdf(y[n]|exp(-(x[n,]*beta)))+

(((2*shape2)-1)*exponential_lcdf(y[n]|exp(-(x[n,]*

beta)))))+((shape1-1)*

(log(1-(exponential_cdf(y[n],exp(-(x[n,]*

beta))))^

(2*shape2))))-(log(((1-((exponential_cdf(y[n],

exp(-(x[n,]*beta))))^(2*shape2)))^(shape1))))*event[n])+

(log(((1-((exponential_cdf(y[n],

exp(-(x[n,]*beta))))^(2*shape2)))^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*(-log(1-(1-((1-u)^(1/shape1)))

^(1/(2*shape2))));}

}

}

"

5.4.3 Stan code for TIIGTL-LL AFT model

stancode_ttgtlll = "

functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log((1-(((1+(t[i]/scale[i])^(-shape3))^(-1))^(2*shape2)))

^(shape1));

}

return log_S;

}
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//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,shape3,scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

(log(shape3)-(shape3)*log(scale[i])+(shape3-1)*

log(t[i])-2*log(1+(t[i]/scale[i])^(shape3)))+

(((2*shape2)-1)*log(((1+(t[i]/scale[i])^(-shape3))^(-1)))+

((shape1-1)*(log(1-((1+(t[i]/scale[i])^(-shape3))^(-1))^(2*shape2))))))

-ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_ttgtlll_lpdf(vector t,vector d,real shape1,

real shape2,real shape3,vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,shape3,scale)+

log_S(t,shape1,shape2,shape3,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape3

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block
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model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

shape2 ~ student_t(5,0,10) T[0, ];//prior for shape2

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_ttgtlll(event,shape1,shape2,1/sigma,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = ((log(2)+log(shape1)+log(shape2)+(log(1/sigma)-

(1/sigma)*(x[n,]*beta)+((1/sigma)-1)*log(y[n])-

2*log(1+(y[n]/exp(x[n,]*beta))^(1/sigma)))+

(((2*shape2)-1)*log(((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1))))+

((shape1-1)*(log(1-(((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1))^

(2*shape2))))))-(log(((1-((((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))

^(-1))^(2*shape2)))^(shape1))))*event[n]))+

(log((1-(((((1+(y[n]/exp(x[n,]*beta))^(-1/sigma))^(-1)))^(2*shape2)))

^(shape1))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*((((1-(1-((1-u)^(1/shape1)))^(1/(2*shape2)))

^(-1))-1)^(sigma));}

}

}

"

5.5. Model fitting with Stan

The function stan from the package rstan is used for the fitting of all three models based on
TIIGTL-G family. All relevant codes for the numeric as well as graphical summary are attached
in upcoming sub sections.

5.5.1 Fitting of TIIGTL-W AFT model

require(survival)

betaw = solve(crossprod(x),crossprod(x,log(y)))

betaw = c(betaw)

TTGTLWAFT <- stan(model_code = stancode_ttgtlw,data=datt,

init=list(list(beta=betaw),list(beta=betaw)),iter=5000,chains=2)

Output and graphics Summarization: Table 2 contains the results obtained after fitting the
TIIGTL-W AFT model to the diet data set. The coeffcients beta[2] of saturated fat (x1) and
beta[3] of unsaturated fat (x2) are negative which indicate that both x1 and x2 expedite the tumor
development process, consequently, survival time (time to develop a tumor) will be shorter. From
the summary results and from the caterpillar plot (Figure 1b), it is seen that the 95% credible
intervals do not contain a value of zero for the coefficients of the diets, so the coefficients are
statistically significant. Additionally, we can see the posterior estimates (mean and se_mean), the
standard deviation (sd), and the credible interval. Also we can observe the n_eff (rough estimate
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of the effective sample size), and the Rhat, also known as the potential scale reduction factor [15],
which calculates the Markov chain’s convergence to the target distribution. According to [15]
the allowable range of n_eff is greater than 100 and Rhat values less than 1.1. We can observe
Rhat values for all parameters of the TIIGTL-W AFT model is less than 1.1, this indicates that the
Monte Carlo error is tolerable, the Markov chains reach to the target distribution, and the effective
sample size is appropriate.. Trace plots are also attached (Figure 1a) as indicator of convergence
of MCMC algorithm. Using the Bayesplot package, posterior predictive density (PPD) charts are
used to visually evaluate the model. Posterior predictive density (Figure 2a) graphs shows that
the TIIGTL-W AFT model is consistent with the current data.

Table 2: Summary of Posterior estimates of TIIGTL-W AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 2.825 0.037 1.416 -0.168 0.398 5.402 1440 1.002
beta[2] -0.390 0.003 0.157 -0.695 -0.648 -0.086 2353 1.000
beta[3] -0.658 0.004 0.161 -0.980 -0.930 -0.345 2049 1.000
shape1 9.569 0.154 8.365 0.524 0.936 31.259 2953 1.001
shape2 13.829 0.253 10.081 2.275 2.945 40.073 1586 1.001
sigma 2.726 0.025 0.956 1.044 1.241 4.739 1494 1.002

(a) (b)

Figure 1: (a) Traceplot for TIIGTL-W AFT model, In two separate runs, two chains were displayed; combining the two
chains successfully indicates that MCMC algorithm has converged to the target joint posterior distribution.
(b) Caterpillar plot for TIIGTL-W AFT model

(a) (b)

Figure 2: (a) Posterior predictive density (PPD) plot of the TIIGTL-W AFT model to check model convergence. The
TIIGTL-W AFT model’s posterior predictive density adequately fits the data, according to the PPD plot (b)
Posterior density plot for TIIGTL-W AFT model
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5.5.2 Fitting of TIIGTL-E AFT model

TTGTLEAFT <- stan(model_code = stancode_ttgtle,data=datt,

init=list(list(beta=betae),list(beta=betae)),iter=5000,chains=2)

Output and graphics Summarization: From Table 3 we can observe that the coeffcients beta[2]
of saturated fat (x1) and beta[3] of unsaturated fat (x2) are negative and the Rhat of the TIIGTL-E
AFT model parameters are less than 1.1, which shows Markov chain converges to the target
distribution. Also, n_eff is greater than 100. From the caterpillar plot (Figure 3b), it is seen that
the 95% credible intervals do not contain a value of zero for the coefficients of the diets, so the
coefficients are statistically significant. The PPD plot (Figure 4a) of the TIIGTL-E AFT model
indicates that the posterior predictive density matched the data well.

Table 3: Summary of Posterior estimates of TIIGTL-E AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 4.507 0.034 1.000 2.950 3.063 6.360 889 1.001
beta[2] -0.362 0.004 0.158 -0.671 -0.619 -0.059 1672 1.001
beta[3] -0.615 0.005 0.185 -0.968 -0.914 -0.245 1231 1.001
shape1 3.206 0.131 5.022 0.168 0.192 18.503 1473 1.000
shape2 4.755 0.163 5.236 1.211 1.296 19.390 1036 1.002

(a) (b)

Figure 3: (a) Traceplot for TIIGTL-E AFT model parameters (b) Caterpillar plot for the TIIGTL-E AFT model

(a) (b)

Figure 4: (a) The posterior predictive density (PPD) plot of the TIIGTL-E AFT model (b) Posterior density plot
TIIGTL-E AFT model parameters
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5.5.3 Fitting of TIIGTL-LL AFT model

TTGTLLLAFT <- stan(model_code = stancode_ttgtlll,,data=datt,

init=list(list(beta=betall),list(beta=betall)),iter=5000,chains=2)

Output and Graphics Summarization: From Table 4 we can observe that the coeffcients
beta[2] of saturated fat (x1) and beta[3] of unsaturated fat (x2) are negative and the Rhat of the
TIIGTL-LL AFT model parameters are less than 1.1, which shows Markov chain converges to
the target distribution. Also, n_eff is greater than 100. From the caterpillar plot (Figure 5b), it is
seen that the 95% credible intervals do not contain a value of zero for the coefficients of the diets,
so the coefficients are statistically significant. The PPD plot (Figure 6a ) of the TIIGTL-LL AFT
model indicates that the posterior predictive density matched the data well.

Table 4: Summary of Posterior estimates of TIIGTL-LL AFT model parameters

parametrs mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1] 2.951 0.025 1.141 0.713 1.108 5.304 2017 1.000
beta[2] -0.354 0.004 0.157 -0.674 -0.618 -0.039 1987 1.000
beta[3] -0.575 0.004 0.172 -0.913 -0.850 -0.234 1651 1.001
shape1 11.323 0.176 8.929 1.188 1.829 34.794 2566 1.000
shape2 11.555 0.167 8.733 1.568 2.175 33.203 2738 1.000
sigma 1.145 0.007 0.309 0.514 0.616 1.758 1713 1.000

(a) (b)

Figure 5: (a) Traceplot of TIIGTL-LL AFT model parameters (b) Caterpillar plot for TIIGTL-LL AFT model

(a) (b)

Figure 6: (a) The posterior predictive density (PPD) plot of the TIIGTL-LL AFT model (b) Posterior density plot for
TIIGTL-LL AFT model
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5.6. Bayesian model Comparison

We take into account model evaluation and selection standards such as Watanabe Akaike Infor-
mation Criteria (WAIC) and Leave One Out cross-validation Information Criteria (LOOIC) ([16]
,[17]) in order to compare the fitted models. In R, loo package [17] is used to obtain LOOIC and
WAIC by using the log-likelihood evaluated at the posterior simulations of the parameters after
fitting the model through STAN. The lower value of these selection strategies, however, denotes a
better model fit.

Table 5: LOOIC and WAIC values for all models.

Model LOOIC WAIC

TIIGTL-E AFT 1026.4 1026.3
TIIGTL-W AFT 1024.5 1024.5
TIIGTL-LL AFT 1015.0 982.8

From Table 5, we can see that the LOOIC and WAIC value of the TIIGTL-LL AFT model is
lowest among the three, which shows in comparison to other models for diet data, the TIIGTL-LL
AFT model is a superior survival model.

5.7. Conclusion

In a Bayesian framework, the Weibull, Exponential, and Log-Logistic Accelerated Failure Time
models for the diet data are fitted using the Type II Generalized Topp–Leone distribution. Diet
coefficients for each model have statistical significance. The posterior predictive density (PPD)
plots for the TIIGTL-W AFT, TIIGTL-E AFT, and TIIGTL-LL AFT models were used to calculate
the posterior predictive check. The replicated data sets are derived from the same model as the
original data set, and all are sufficient models for projecting the future value, as seen in the PPD
plot where the data y and replicated data set yrep exhibit the same behaviour and share a similar
appearance. TIIGTL-LL AFT model fits the censored diet data better than the other models,
according to comparisons of posterior predictive density plots, LOOIC and WAIC.
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Abstract 
 

This paper deals with the assessment of various reliability factors of a real-life manufacturing system 
having inspection facility. This multistate manufacturing system have five workstations those are 
connected in series configuration as: W1, W2, W3, W4, W5. Workstations W2 and W4 has the configuration 
2-out-of -3: G and 1-out-of-3: F. Due to failure of the any of the workstation, whole manufacturing system 
can completely fail. Apart from this machine failure can also make system down. To avoid sudden failure 
in the system pre-emptive maintenance strategy has been adopted. This is a corrective maintenance action 
before a failure occurs and scheduled during off days. Risk analysis is done because of fault of W5 
workstation in material quality inspection. Probability distributions like exponential time distribution is 
followed by all failures and general time distribution by all repairs. To study the probabilistic behavior of 
the system in different possible transition states, Markov process have been used. Supplementary variable 
technique and copula method of finding joint probability distribution have been used to obtained various 
reliability features such as steady state behavior of the system, reliability function, availability, Mean 
time to failure, sensitivity analysis and profit analysis. 
 
Keywords: Reliability analysis, Mean time to failure, Availability, Sensitivity 
analysis, Risk analysis  
 
 

1. Introduction 
 

Nowadays, Due to the globalization of the market and business, a lot of problems related to 
manufacturing industries like delays in product delivery, machine failure, cancellation of demand, 
etc. are encountered by the industries daily. Therefore, reliability and availability analysis are 
important for the performance analysis of discrete manufacturing systems. A lot of work has been 
done to discuss reliability measures of manufacturing systems using different approaches [1, 3, 5, 6 
and 7]. Here, a concept of making a methodical approach to analyze a failure-free system for a 
manufacturing industry is developed for a practical period [9].    

 
The objective of this work is to assess the performance and risk analysis of a manufacturing 

system under different operating conditions. This multistate manufacturing system contains five 
workstations that are connected in the series configuration as W1, W2, W3, W4, and W5. Workstation 
W1 consists of the raw material supplied by a merchant or vendor for making finished goods. At 
workstation W2 material provided by workstation W1 is transformed into welded usable form and 
small and big components are used to make the final product. Later on, these welded components 
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are sent to workstation W3 for the dye or tint process. Workstation W4 plays a vital role in this 
complex manufacturing system as the finished product assembles here only by connecting and 
arranging equipped components in logical order received from workstation W3. At last, before  

 
sending the finished product to suppliers in the market, it goes through the inspection process at 
workstation W5 for quality inspection. On the workstations W2 and W4, three machines are involved 
in performing the same task connected parallelly. These workstations follow 2-out -of-3:G and 1-
out-of-3:F conformations, which means that for the fully operational stage of the system in which it 
can achieve the required target, it is essential that at least two machines of workstation W2 and W4 
are in working condition otherwise in the opposite case the system fails [2]. Along with this, Machine 
failure is also considered which may be major or minor. To get maximum reliability, two groups of 
repairmen are involved in repairing the system according to their knowledge and skills. Here, a joint 
probability distribution is obtained using copula methodology when both groups are involved in 
repairing the system at the same time [4 and 8]. After getting finished goods, product inspection is 
done by workstation W5. Here, any fault or ignorance in the inspection of the product can take the 
system into a risk state that can cause system failure. For example, if a technical fault is there in final 
assembled product due to wrong assembly or material use which can result in a failure after a certain 
period of use of the product or in certain climatic conditions, also the product have been not tested 
for that period or under that climatic conditions.  The transition state diagram and state specification 
of the considered system are shown in figure-1 and table-1 respectively. The figure-1 shows positive 
transition intensities, and the transition probabilities for time ∆ are proportional to the intensities, 
the remaining transition probabilities for time ∆ are equal to o (∆). 

 
2. Notations 

 
P0(t)               : Denotes Probability at time t when the system is in initial state S0 

Pi (k, t)          : 
 
 
 
 
W1/W2/W3/   : 
W4/W5 

Denotes the probability of system getting in breakdown state because of          
failure of the ith workstation at time t, also elapsed repair time considered in 
between k and k+D, where i= 1, 2, 3, 4, 5, M, QR, and k∈ [0, +∞) 
 
Workstation 1 to Workstation 5 

K                   : Elapsed repair time, where k∈ [0, +∞) 

 

/    : 

 
The Showing Failure rate of the one machine of the Workstation 2/ 4. 

            : 
Machine failure rate  

          : 
 
 

          : 
 
 

                : 

Showing the probability of 2-out -of-3: G state of workstation 2 i.e. system is 
in fully operational mode even after one machine of workstation 2 is failed and 
rest two are in working condition 
 
Showing the probability of 2-out -of-3: G state of workstation 4 i.e. system is 
in fully operational mode even after one machine of workstation 4 is failed and 
rest two are in working condition 
The General failure rate of ith workstation, where i= 1, 2, 3, M, 4, 5.  

W1y A1y

My

)(1 tPW

)(1 tPA

iy
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            : Showing repair rate of ith workstation between the time interval (k, k+D), 
where i= 1, 2, 3, 4, 5, M, QR, and k∈ [0, +∞) 

               : 
Showing risk rate or the factor which indicates the level of risk taken into 
consideration which can lead the system into the risk stage 
 

Pi, W (k, t)   : 
 
 
 
 
Pi, A (k, t)   : 
 
 
 
 
PQR(q, t)        : 

Shows the probability of the failed state of the system due to failure of the ith 
workstation from the state S2 when one machine of workstation W2 is not 
working.  Elapsed repair time for the ith subsystem lies between (k, k+D), where 
i=1, 3, 4 and k∈ [0, +∞) 
 
Shows the probability of the failed state of the system due to failure of the ith 
workstation from the state S2 when one machine of workstation 4 is not 
working.  Elapsed repair time for the ith subsystem lies between (k, k+D), where 
i= 1, 2, 3 and k∈ [0, +∞). 
 
Shows the probability at time t when the system is in the risk due to ignorance 
in inspection at the workstation 5 
 

K1, K2            :            Profit and service cost per unit time respectively 
              

Also, consider and , according to Gumbel- Hougaard copula methodology the 
joint probability distribution is given by  

      . 
 
2.1. Assumptions 
 
For reliability analysis of this manufacturing system, the following assumptions are taken into 
consideration. 

§ All the workstations are fully operational at t=0. 
§ Failures follow exponential time distribution and are statistically independent while repairs 

follow arbitrary time distributions. 
§ Repaired workstations are assumed like in good working conditions. 
§ Workstations 2 and 4 follow 2-out-of-3: G and 1-out-of-3: F conformation. 
§ It is also considered that the manufacturing system can fail due to any mechanical failure 

that may be major or minor or both at the same time. Here joint probability distribution is  
used to solve these failures using the copula methodology [6]. The whole system can also     
fail due to machine failures that may be either major or minor or both. 

 
2.2. State specification 
          
Table -1 shows the state specification of the transition diagram-1 
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Table 1: State specification table 

 

States Description System 
State  

S0 The system is in the fully operational stage. G 

S1 The system is in the failed state due to the failure of the 
workstation W1. FR 

S2 The system is in a working state when workstation W2 is 
in 2-out-of-3: G configuration.  G 

S3 Due to the failure of workstation W3, the whole system is 
in the failed state.  FR 

S4 The system is in a working state when workstation W4 is 
in 2-out-of-3: G configuration.  G 

S5 Due to machine failure, the whole system is in a 
breakdown condition. FR 

S6 System is working at high risk due to negligence of the 
workstation W5. RS 

S7 
The system is in inoperable condition from the risk state 
i.e. S6 due to ignorance in the inspection. FR 

S8 
The system is in inoperable condition from the state S2 as 
workstation W1 is unable to work due to some vendor 
issues. 

FR 

S9 The system is in inoperable condition from the state S2 
due to the failure of workstation W4. FR 

S10 The system is in the failed state from the state S2 because 
workstation W2 follows 1-out-of-3: F configuration.  

FR 

S11 The system is inoperable due to the not functioning of 
workstation W3.   FR 

S12 The system is in inoperable condition from the state S4 
due to the failure of workstation W1.                                   FR 

S13 The system is inoperable from the state S4 due to the 
failure of the workstation W2. FR 

S14 The system is inoperable from the state S4 due to the 
failure of the workstation W3. FR 

S15 The system is inoperable from the state S4 due to the 
failure of the workstation W4. FR 
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Figure 1: Transition State diagram 

 

3. Formulation of the mathematical model 

Following integro- differential equations which satisfying the model are obtained after probabilistic 
considerations and limiting process:            
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3.2 Initial Condition 

, otherwise zero.                                                                                                                         (30) 

After solving equations (1) to (16), using initial and boundary conditions by taking Laplace 
transform, one can obtain following up and down probabilities of the system.       

                                                                                                                                            (31) 

                                                                                                                                           (32)                                                                                                                                                                 

                                                                                                                                           (33) 

                                                                                                                                  (34) 

                                                                                                                                 (35) 

                                                                                                                               (36) 

                                                                                              (37)                                                                                                                                        

                                                                                   (38) 

                                                                                                                         (39) 

[ ])()()(),0( 0 tPtPtPtP WAQQR ++= g

)(),0( tPtP QRQQ y=

)(),0( tPtP WVVW y=

)(),0( tPtP WAAW y=

)(),0( tPtP WpPW y=

)(),0( tPtP WWW y=

)(),0( tPtP AVVA y=

)(),0( tPtP pppA y=

)(),0( tPtP AWWA y=
)(),0( tPtP AAA y=

1)0(0 =P

)(
1)(0 sK

sP =

)(
)()(1 sK
sBsPw =

)(
)()(1 sK
sAsPA =

)(
)(

)( sJ
sK

sP v
v

v
y

=

)(
)(

)( sJ
sK

sP P
P

P
y

=

)(
)(

)( sJ
sK

sP M
M

M
y

=

[ ] )()()(1
)(

)( sJsAsB
sK

sP QR
Q

QR ++=
g

[ ] )()()()(1
)(

)( sJsJsBsA
sK

sP QQR
QQ

Q ++=
yg

)(
)(
)(

)( sJ
sK
sB

sP V
V

VW
y

=

500 



 
Surabhi Sengar, Mangey Ram 
RELIABILITY EVALUATION AND ANALYSIS OF A K-OUT-OF-N 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

                                                                                                                         (40) 

                                                                                                                         (41)  

                                                                                                                         (42) 

                                                                                                                          (43) 

                                                                                                                          (44) 

                                                                                                                        (45)                                                                                                                 

                                                                                                                           (46) 
where, 

 

             

                                                                                                    (47) 

                                                                                 (48) 

                                                                                                                                 (49) 

                                                                                                                                                 (50) 

                                                                                                                                                 
(51) 

                       (52) 

                        (53) 

   
          (54)  

                                                                                                              (55) 
Also, 

                                                                                                                              (56) 

)(
)(
)()( sJ

sK
sBsP P

P
PW

y
=

)(
)(
)()( sJ

sK
sBsP A

A
AW

y
=

)(
)(
)(

)( sJ
sK
sB

sP W
W

W
y

=

)(
)(
)(

)( sJ
sK
sA

sP V
V

VA
y

=

)(
)(
)()( sJ

sK
sAsP P

P
PA

y
=

)(
)(
)(

)( sJ
sK
sA

sP W
W

WA
y

=

)(
)(
)()( sJ

sK
sAsP A

A
A

y
=

----++++++= )()()()( 11 sSsSsSssK MMPPVVQWAPMV yyygyyyyy

[ ] [ ] -+-+-
2

1

1

1 )()()()()(
c

sSsS
C

sSsSsS w
WWQRQ

A
AAQRQQRQ

y
yg

y
ygg

)(1)(
2

1

1

1 sJ
CC

sS QR
AW

QQQ ú
û

ù
ê
ë

é
++
yy

gy

WAQQRMPVi
s
sS

sJ v
i ,,,,,,for,

)(1
)( =

-
=

Q

QR
QR s

sSsJ
y+

-
=

)(1)(

1

1)(
C

sA Ay
=

2

1)(
C

sB Wy
=

+= sC1 )()()( sSsSsS WWPPVVQWAPMV yyygyyyyy ---+++++

+= sC2 )()()( sSsSsS AAPPVVQWAPMV yyygyyyyy ---+++++

.,,,,,,&,,,,,,,])(exp[)()(
00

ughqryxjWAQQRMPVifordjdjjsjjS
i

ijii ==--= òò
¥

ff

[ ][ ] qqq ff
/1

)(logexp rr MM +=

s
sPsP downup

1)()( =+

501 



 
Surabhi Sengar, Mangey Ram 
RELIABILITY EVALUATION AND ANALYSIS OF A K-OUT-OF-N 

RT&A, No 4 (71) 
Volume 17, December 2022  

 

 

To study the steady-state behavior of the system using Abel’s lemma we have 
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where, 
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=Mean time to repair the ith failure                                                                                   (62) 
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 (As s tends to 0)                                                                                                (65) 

                                                                                                                                        (66) 

For a non-repairable system, the Laplace transform of the reliability when all repair rates of the 
system are zero, then from equation (31), we have   

                                                                     

where R(s) is the Laplace transform of the reliability function.  

The reliability of the transit system is obtained as: 
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 Availability of the system is given by,  

                                                                                          

                                                                                                                                     

 

Taking inverse Laplace transforms, we have 
 

                                                                               (69)
  
Sensitivity analysis is performed for monitoring changes in reliability and MTTF of the system with 

respect to workstations W1, W3, and risk factor . 
we obtain  

                                                                                     (70) 

Also, we can get and . 

                                                     (71) 

Also,  and . 
 
The profit function of the considered manufacturing system is given by 

                                                                                                                  
where, K1 and K2 are revenue and repair costs per unit time, respectively.  
Also 
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4. Results and discussion 

 

To check more concrete behavior of the system, Numerical computation of reliability, availability, 

and profit function is done concerning time by keeping other parameter fixed and also MTTF of the 

system for different failure rates.  

Figure 2 shows the movement of reliability with respect to time. It reveals that due to 

ignorance of the workstation W5 in inspection, the reliability decreases with the passage of time. 

Figure 3 shows a rapid decrease in MTTF with an increment in Workstation W1, W3, and machine 

failure rate. It is also observed that in some instances MTTF is almost the same with respect to these 

three failure rates. Also, as the risk rate increases, the MTTF of the system decreases smoothly shown 

in figure 4. Figure 5 gives an idea about the availability of the system that decreases constantly as 

time increases. 

Sensitivity analysis of system reliability is done for different workstations failure rates as 

shown in figures 6, 7, 8, and 9. Here we observe that the system has almost same sensitivity for W1 

workstation failure and risk rate, although machine failure and workstation W2 come next in 

magnitude. 

  Finally, Figure 10 shows that the cost of the system increases in general with time. 
 

 
Figure 2: Reliability Vs Time 
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Figure 3: MTTF Vs workstation W1, workstation W3 and Machine failure 

 

 
Figure 4: MTTF Vs Risk Rate 

 

 
Figure 5: Availability Vs Time 
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Figure 6: Sensitivity of system reliability with respect to workstation W1 failure. 
                                                             

 
Figure 7: Sensitivity of system reliability with respect to workstation W2 failure. 

 

Figure 8: Sensitivity for MTTF with respect to X1= , X2= . (X=X1=X2)( = =.001, .002 ….01) 
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Figure 9: Sensitivity for MTTF with respect to X= ( =.01,. 02,…,.1) 
 

 
Figure 10: Cost Vs Time 

 
5. Conclusion 

 
In this work, the operational behavior of a k-out of-n configuration system is discussed including 
risk factor using mathematical modelling technique. Also, a comparative analysis of reliability, 
availability, MTTF, risk, sensitivity, and profit function are done with time for different 
workstations. The proposed technique has an advantage of analyzing reliability of a complex 
manufacturing system in a more flexible way.  
 The study may help a manufacturing industry in: 

a. Handling resources and suppliers 
b. Planning of production strategies and maintenance policies  
c. Decision making. 
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Abstract

In reliability theory minimum of two random variables has a significant meaning, and models with
increasing failure rates play a vital role. Motivated by these facts, in this article, a two-parameter lifetime
distribution with an increasing failure rate is constructed by considering the method of a minimum of
two independent random variables following the exponential and Teissier distributions and studied in
detail. Several exciting features, such as moments, quantiles, Bonferroni and Lorenz curves, entropies,
stress–strength reliability, moments of a residual lifetime, and order statistics, are derived for the proposed
distribution. For the estimation purpose, eight different techniques have been used, including maximum
likelihood, ordinary least square, weighted least square, Cramer-von Mises, maximum product spacing,
Anderson-Darling, right-tailed Anderson-Darling, and bootstrapping (parametric and nonparametric).
The performance of these estimators is compared using three real datasets. The exact Fisher information
matrix elements are derived, and confidence intervals based on the information matrix and bootstrapping
techniques are constructed. A simulation study is carried out to see the efficiency of the maximum
likelihood in terms of mean square error and bias. Negative log-likelihood, Akaike information criteria,
Bayesian information criteria, Consistent Akaike information criteria, and Hannan-Quinn information
criteria are the goodness-of-fit statistics employed. Furthermore, other nonparametric test statistics such as
Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises are used for model selection. Moreover,
three real datasets related to epidemiology, seismology, and reliability are modeled and compared with
exponential, exponentiated exponential, Lindley, exponentiated Lindley, Rayleigh, exponentiated Rayleigh,
Gompertz, exponentiated Gompertz, Weibull, and exponentiated Weibull distributions to demonstrate
how the suggested model performs in practice. And it is observed that the proposed distribution provides
a better fit among all considered models, according to most of the test statistics. The proposed lifetime
distribution is unimodal and capable of modeling positive datasets with an increasing failure rate which
contains Gompertz one-parameter model as a particular case. It is a simple model with only two
parameters resulting from expressions for different characteristics that are analytically tractable. So, it is
expected that it will be helpful in various disciplines where such types of data exist, such as reliability,
lifetime modeling, and survival analysis.

Keywords: Probability distribution, Moments, Information Matrix, Maximum likelihood estima-
tor, Bootstrap, Simulations.

1. Introduction

To model, the frequency of mortality associated with aging alone, Teissier [1] developed an
increasing failure rate distribution, known as the Teissier distribution (TD). Muth [2] pointed
out that the TD has a heavier tail than some classical distributions like the gamma, Weibull, and
log-normal distributions. The TD was used by Rinne [3] to model the lifetime of a real dataset
related to used motor cars. Leemis and McQueston [4] established a univariate distributional
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relationship, in which this model was reconsidered and renamed the "Muth distribution." Some
statistical features of Muth distribution were thoroughly investigated by Jodra et al. [5]. Irshad et
al. [6, 7] studied inference and some other extensions of the Muth distribution. Saroj et al. [12]
introduced inverse muth distribution.
Recently, exponentiated Teissier distribution (ETD) has been given by Sharma et al. [11]. Eghw-
erido [12], and Poonia and Aazad [13] applied the alpha power transform (APT) technique of
Mahdavi and Kundu [14] on TD and ETD, respectively. The exponential distribution (ED) is a
well-known classical distribution with some distinguishing features such as a constant hazard
rate and memorylessness. Related references on exponential distributions can be found in the
literature, for example, see Gupta and Kundu [15], Nadarajah and Haghighi [16] and Mahdavi
and Kundu [14]. Gompertz proposed that human mortality increases exponentially with age.
Makeham extended Gompertz’s suggestion of competing risks by adding one and two parameters
to the standard Gompertz distribution known as Gompertz Makeham-I (GMD-I) and Gompertz
Makeham-II (GMD-II) distributions, respectively. Chapter 10 of Marshall and Olkin [17] provides
a comprehensive review of the Gompertz and all extensions made by Makeham. According to
chapter 10 of Marshall and Olkin [17], GMD-I has three cases. The cdf of the second case of
GMD-I is given as

F(x; θ, β, ξ) = 1 − e−ξ(eθx+βθx−1) θ > 0,−1 ≤ β < 0, ξ > 0. (1)

However, TD is a particular case of the second case of GMD-I when ξ = 1 and β = −1. The case
of β = −1 is under communication. Recently, many lifetime distributions has been developed in
reliability theory, Deepthy and Sebastian [9] developed Burr III Modified Weibull Distribution,
Manoharan and Kavya [13] extended Lomax distribution to construct a reliability model. Some
probable scenarios that arise in real-life applications because of the distribution of the minimum
of two random variables are fascinating, see chapters 5 and 17 of Marshall and Olkin [17].

Suppose X1 and X2 are two independent random variables follow Teissier and exponential
distribution with parameters θ and θλ respectively. The cumulative density functions (cdfs) of X1
and X2 are given by (for x > 0, θ > 0, λ ≥ 0)

FX1(x; θ) = 1 − eθx−eθx+1, FX2(x; θ, λ) = 1 − e−θλx, (2)

respectively. Suppose X=Minimum{X1, X2}. The cdf, pdf, survival function, hazard rate
function (hrf), cumulative hazard rate and reversed hazard rate of METD are given by (for
x > 0, θ > 0, λ > 0)

F(x; θ, λ) = 1 − e1+θx−eθx−θλx, (3)

f (x; θ, λ) = θ
(

λ − 1 + eθx
)

e1+θx−eθx−θλx, (4)

S(x; θ, λ) = e1+θx−eθx−θλx, h(x; θ, λ) = θ
(

λ − 1 + eθx
)

, (5)

H(x; θ, λ) = (eθx + θλx − θx − 1), r(x; θ, λ) =
θ
(
λ − 1 + eθx) eθx+1

eθλx+eθx − eθx+1
. (6)

Interestingly, the pdf of METD can be obtained from second case of GMD-I as a special case by
substituting ξ = 1 and β = λ − 1 in Eqn.(1), in this case 0 ≤ λ < 1. Unfortunately, this case has
not received much attention in the literature. However, the METD model work for λ ≥ 1 also. It
should be noted that Gompertz’s one-parameter distribution is a particular case of METD when
λ = 1 in METD.
The rest of the article is organized as follows. In Section 2, some statistical properties of the
METD have been derived. Section 3 deals with the estimation of the parameters of METD. In
Section 4, simulation is carried out. In section 5 three applications are presented to show that
the proposed distribution can be used quite effectively in analyzing the real-life datasets. Finally,
section 6 provides some conclusions.
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2. Statistical Properties

In this section some basic features of the proposed distribustions such as shape analysis of pdf
and hrf of METD, moments, quantiles, Bonferroni and Lorenz Curve, Renyi entropy, stress-
strength reliability (ssr), moments of residual life function and order statistics are studied.

2.1. Shape of pdf and hrf

The pdf of METD is log-concave as

(log f (x))
′′
=

−θ2eθx[(eθx − 1)2 + 2λ(eθx − 1) + (λ − 1/2)2 + 3/4
]

(eθx + λ − 1)2 , (7)

is negative for all x > 0, θ > 0, λ > 0. Moreover, limx→0+ f (x) = θλ and limx→∞ f (x) = 0.

The pdf is decreasing for λ ≥ 1 and having a unique mode at 1
θ log

(
1
2

(
3 − 2λ +

√
5 − 4λ

))
for

0 ≤ λ < 1, see Fig.1(a). Also (h(x))
′
= θ2eθx > 0 =⇒ hrf is exponentially increasing.

2.2. Moment generating function and moments

By using u = eθx, the moment generating function (mgf) of METD can be written as

MX(t) = e
[
E0

λ− t
θ −1(1)− (1 − λ)E0

λ− t
θ
(1)
]
, (8)

where
El

s(z) =
1

Γ(l + 1)

∫ ∞

1
(log u)le−zuu−s ds, (9)

l > −1, s ∈ R and Γ(.) is the gamma function. Moreover, the rth derivative of MX(t) at t = 0
also the rth moment about origin, can be given as

E(Xr) = M(r)
X (0) = eθ−rΓ(r + 1)

(
Er

λ−1(1)− (1 − λ)Er
λ(1)

)
. (10)

Using the moments, mean, variance, skewness and excess kurtosis of the METD can be calculated
and shown in Fig.1.

2.3. Quantile function

By inverting the cdf of METD, the quantile function of METD(θ, λ) can be expressed as

ξp =


1
θ log

[
(λ − 1)W−1

(
e

1
λ−1 (1−p)

1
1−λ

λ−1

) ]
if λ < 1

1
θ log

[
(λ − 1)W

(
e

1
λ−1 (1−p)

1
1−λ

λ−1

) ]
if λ > 1

,
1
θ

log
[
1 − log(1 − p)

]
if λ = 1 (11)

where p ∈ (0, 1), W(.) represent the Lambert-W function( see Jodra [18]) and W−1(.) is the nega-
tive branch of the Lambert-W function, p = 0.25, 0.50, 0.75 corresponds to the first, second(median)
and third quartiles.

2.4. Bonferroni and Lorenz Curve

The Bonferroni curve, Lorenz curve and Gini coefficient are defined as B(p) = 1
pµ

∫ p
0 F−1(t) dt,

L(p) = 1
µ

∫ p
0 F−1(t) dt, and G = 1 − 2

∫ 1
0 L(p) dp, respectively, where 0 < p < 1, µ =

∫ 1
0 F−1(t) dt

and F−1(.) is the quantile function. Lorenz curve for METD is given as

L(p) = 1 −
J
(
θ, ξp, 1, λ − 1, 1

)
− (1 − λ)J

(
θ, ξp, 1, λ, 1

)
J(θ, 0, 1, λ − 1, 1)− (1 − λ)J(θ, 0, 1, λ, 1)

, (12)

where J(θ, t, r, s, z) = 1
Γ(r+1)

∫ ∞
eθt (log u)re−zuu−s du.
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Figure 1: Plots of (a) Probability density function, (b) Mean, median, and mode, and (c) Mean, variance, skewness,
and excess kurtosis, (d) Gini coefficient, for the METD when θ = 1.

2.5. Renyi entropy

The Renyi entropy of a non-negative continuous random variable X with pdf f (x) is a mea-
sure of variation and is defined as IR(γ) = 1

1−γ log
∫ ∞

0 f (x)γdx, where γ > 0 and γ ̸= 1. If
X ∼METD(θ, λ) then the Renyi entropy of X is given by (using u = ex)

IR(γ) =
1

1 − γ
log
[
eγθγ−1H(γ, γ(λ − 1) + 1, λ − 1, γ)

]
, (13)

where H(z, s, c, p) =
∫ ∞

1 u−se−zu(c + u)p du, c > −1.

2.6. Stress strength reliability

Suppose X1 and X2 are two random variables from the METD family such that X1 ∼ METD(θ1, λ1)
and X2 ∼ METD(θ2, λ2). The ssr of METD is specified as

R = P(X1 > X2) =
∫ ∞

0
fX1(x)FX2(x) dx. (14)

using u = eθx, the expression of R can be written as

R = 1 − e2 (Q (θ, θλ2 − θ + λ1 − 1) + (λ1 − 1) Q (θ, θ (λ2 − 1) + λ1)) , (15)

where Q(θ, s) =
∫ ∞

1 u−se−(u+uθ) du and θ = θ2/θ1.

2.7. Moments of residual life function

The rth moment of residual life of a random variable X with pdf f (x) and cdf F(x) is given by

mr(t) = E[(X − t)r|X > t] =
1

1 − F(t)

∫ ∞

t
(x − t)r f (x) dx, (16)

where r = 1, 2, 3, ....
The mean and variance of residual life may be expressed as m(t) = m

′
1(t)− t, and V(t) = m

′
2(t)−

(m
′
1(t))

2 where m
′
r(t) = 1

1−F(t)

∫ ∞
t xr f (x) dx. By using u = eθx and defining J(θ, t, r, s, z) =

1
Γ(r+1)

∫ ∞
eθt (log u)re−zuu−s du , the numerator of m

′
r(t) can be written as

∫ ∞

t
xr f (x) dx = eΓ(r + 1)θ−r[J(θ, t, r, λ − 1, 1) + (λ − 1)J(θ, t, r, λ, 1)

]
. (17)
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2.8. Order statistics

Assume that X1, X2, ..., Xn is a random sample of size n drawn from a population with the pdf
f (x) and the related order statistics X(1), X(2), ..., X(n). The pdf of rth order statistics of METD is
given as

fX(r)(x) =
θ

B(r, n − r + 1)

(
λ − 1 + eθx

)
(1 − ϕ(x))r−1 (ϕ(x))n−r+1 , (18)

where ϕ(x) = e1−θλx+θx−eθx
, B(a, b) =

∫ 1
0 ta−1(1 − t)b−1dt, x > 0, θ > 0, β > 0, r ≤ n. The mth

moment of rth order statistics X(r) is derived as

E[Xm
(r)] =

θ−mΓ(m + 1)
B(r, n − r + 1)

n−r

∑
i=0

i+r−1

∑
j=0

(−1)i+jej+1
(

i + r − 1
j

)(
n − r

i

)
[

Em
qj
(j + 1) + (λ − 1)Em

qj+1(j + 1)
]
,

(19)

where El
s(z) given in Eqn. (9) and qj = (j + 1)(λ − 1).

3. Estimation of Parameters

For the estimation purpose, eight different techniques have been used, including maximum
likelihood (MLE), ordinary least square (OLS), weighted least square (WLS), Cramer-von Mises
(CVM), maximum product spacing (MPS), Anderson-Darling (AD), right-tailed Anderson-Darling
(RTAD), and bootstrapping (parametric and nonparametric). For the OLS and MPS techniques,
see Swain et al. [19], and Cheng and Amin [20], respectively. A general theory of various
estimation techniques can be found in Sharma et al. [11] and Dey et al. [?]. For parametric and
nonparametric bootstrap estimation, 1000 samples were generated according to the algorithm
given by Kharazmi et al. [21]. The discussed estimation procedures are applied to two real
datasets, and the results are shown in section 5.

3.1. Method of the Maximum likelihood

The maximum likelihood (MLE) approach is the most extensively used approach for parameter
estimation. This approach has numerous flexible properties, including consistency, asymptotic
efficiency, and invariance. Suppose x1, x2, ..., xn be a sample of size n from the METD. For the
vector of parameters Θ = (θ, λ), the log-likelihood function of METD is given as

l(Θ) = n log θ +
n

∑
i=1

[
1 − eθxi + θ(1 − λ)xi

]
+

n

∑
i=1

log
[
λ − 1 + eθxi

]
. (20)

The MLEs of the parameters have been calculated numerically using Mathematica 12.3. After dif-
ferentiation of the log-likelihood function with respect to the parameters θ and λ, the components
of the score vector U(Θ) can be expressed as

Uθ =
n
θ
+

n

∑
i=1

xieθxi

λ − 1 + eθxi
+

n

∑
i=1

xi(1 − λ − eθxi ), Uλ =
n

∑
i=1

1
λ − 1 + eθxi

− θ
n

∑
i=1

xi. (21)

The MLEs of the parameters can be obtained by setting these equations to zero and solving
them. Another advantage of the MLE approach is that it is useful to construct approximated
confidence interval (ACI) of the parameters, see Lawless [?]. The exact 2 × 2 information matrix

I(Θ) required for interval estimate of METD parameters defined as I(Θ) =

(
Iθ,θ Iθ,λ
Iλ,θ Iλ,λ

)
. The

members of the I(Θ|x) for the METD are given as

Iθ,θ = −E
(∂2l(Θ|x)

∂θ2

)
= θ−2[2e

{
(λ − 1)(E2

λ−1(1)− J2
λ−1(λ − 1)) + E2

λ−2(1)
}
+ 1
]
, (22)
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Iθ,λ = Iλ,θ = −E
(∂2l(Θ|x)

∂θ∂λ

)
=

1
θ

[
e(E1

λ−1(1) + (λ − 1)E1
λ(1) + J1

λ−1(λ − 1))
]
, (23)

and

Iλ,λ = −E
(∂2l(Θ|x)

∂λ2

)
= eJ0

λ(λ − 1), (24)

where the integral El
s(z) is defined in Eqn.(9) and the integral Jr

s (k) =
1

Γ(r+1)

∫ ∞
1

e−uu−s logr(u)
k+u du.

The multivariate normal distribution N2(0, I(Θ̂)−1) may be used to generate confidence intervals
for model parameters under usual regularity conditions.
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Figure 2: The MSE and bias of the parameters for the simulated samples.

4. Simulation

To investigate the performance of the MLEs for the METD parameters, several simulations are
explored for different sample sizes. The samples are generated from Eqn. (11), using the inverse
cdf technique. The parameters values are taken as θ = 1 and λ = 0.5, 1.0 and 1.5 and the sample
sizes are selected as n = 20, 40, 60, 80, 100, 140, 180, 220, 260, 320, 380, 440, 500, 580, 660, 740, 820 and
900. Each sample size is repeated 1000 times, biases and mean squared errors are calculated. Fig.2
displays the results of the simulation. The trends in Fig.2 reveal that as the sample size increases,
the MSEs and bias of the MLEs decay toward zero, as expected by first-order asymptotic theory.

5. Data Analysis

Three real datasets are being used to demonstrate the practical significance of the METD
model. The first dataset was downloaded from the webportal of the World Health Organi-
zation (https://covid19.who.int/) on October 12, 2021, which denotes the daily number of deaths
in South Africa due to the novel coronavirus from May 11, 2020, to June 28, 2020. Currently, the
first dataset is slightly modified by the WHO. The second dataset is related to seismology and is
taken from the Wolfram data repository, which indicates the earthquake waiting times in days.
The third dataset is taken from Murthy et al. [25], which is about aircraft windshield data and
demonstrates the service times of windshields that had not failed at the time of observation.

• Dataset I
8, 12, 1, 13, 19, 9, 14, 3, 22, 26, 27, 30, 28, 10, 22, 52, 43, 28, 25, 34, 32, 40, 22, 50, 37, 56, 60, 44,
46, 82, 82, 48, 74, 70, 69, 57, 88, 57, 49, 63, 94, 46, 53, 61, 111, 103, 87, 48, 73.

• Dataset II
840, 1901, 40, 139, 246, 157, 695, 1336, 780, 1617, 145, 294, 335, 203, 638, 44, 562, 1354, 436,
937, 33, 721, 454, 30, 735, 121, 76, 36, 384, 38, 150, 710, 667, 129, 365, 280, 46, 40, 9, 92, 434,
402, 556, 209, 82, 736, 194, 99, 599, 220, 584, 759, 304, 83, 887, 319, 375, 832, 263, 460, 567,
328.
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• Dataset III
0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794,
2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900,
2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622,
1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435,
4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

Table 1 give a brief summary of the datasets and fitted METD. The datasets are starting from
non-zero and right-skewed. Therefore, METD may be the right choice to model these datasets.
Parametric and non-parametric bootstrap techniques also have been applied for estimation
purpose by adopting the methodology of Efron and LePage [22]. According to the described
methodology in the estimation section, the exact information matrix for the datasets I, II and

III are given as:
(

14517.2 77.4383
77.4383 0.7927

)
,
(

3.0789 × 106 484.359
484.359 0.0799

)
and

(
30.5202 3.54375
3.54375 0.787313

)
,

respectively. Inverse of the exact information matrix for the datasets I, II and III are given

as:
(

0.0001 −0.0140
−0.0140 2.6341

)
,
(

6.8421 × 10−6 −0.0414
−0.0414 263.358

)
and

(
0.0686361 −0.308936
−0.308936 2.66068

)
, respec-

tively. The interval estimates of the parameters based on the expected information matrix are
given as: (i) For the dataset I, θ̂ ∈ (0.0134, 0.0201), λ̂ ∈ (0.0253, 0.9342). (ii) For the dataset II, θ̂ ∈
(0, 0.0012), λ̂ ∈ (0, 7.2586) and (iii) For the dataset III, θ̂ ∈ (0.3018, 0.4312), λ̂ ∈ (0.0812, 0.8867).
The point and interval estimates of the parameters based on the parametric bootstrap are given
as: (i) For the dataset I, θ̂ = 0.0170, λ̂ = 0.4903, θ̂ ∈ (0.0137, 0.0206), λ̂ ∈ (0.1577, 1.0143). (ii)
For the dataset II, θ̂ = 0.0007, λ̂ = 3.1266, θ̂ ∈ (0.0003, 0.0012), λ̂ ∈ (1.4779, 6.6621) and (iii) For
the dataset III, θ̂ = 0.3709, λ̂ = 0.4771, θ̂ ∈ (0.3096, 0.4411), λ̂ ∈ (0.1274, 0.9156) . The point and
interval estimates of the parameters based on the non-parametric bootstrap are given as: (i) For
the dataset I, θ̂ = 0.0169, λ̂ = 0.4885, θ̂ ∈ (0.0141, 0.0201), λ̂ ∈ (0.1315, 0.9469). (ii) For the dataset
II, θ̂ = 0.0007, λ̂ = 3.1244, θ̂ ∈ (0.0003, 0.0012), λ̂ ∈ (1.4249, 6.0172) and (iii) For the dataset III,
θ̂ = 0.3696, λ̂ = 0.4913, θ̂ ∈ (0.3115, 0.4367), λ̂ ∈ (0.1812, 0.9456) All the seven different estimation

Table 1: Summary of the datasets and fitted METD.

Size Min Q.25 Median Q.75 Max Mean Skew Ex-Ku
Data I 49 1 25 46 61 111 45.46 0.42 -0.52
METD - 0 23.99 43.26 64.22 ∞ 45.47 0.41 -0.41
Data II 62 9 129 328 667 1901 437.21 1.49 2.52
METD - 0 136.87 323.22 624.12 ∞ 437.20 1.48 2.57
Data III 63 0.04 1.09 2.06 2.81 5.14 2.08 0.43 -0.26
METD - 0 1.09 1.98 2.94 ∞ 2.08 0.41 -0.41

approaches, as given in the estimation section, have been applied to estimate the parameters
of METD for the both datasets, and results are shown in Table 2 with different test statistics
and ranking based on Kolmogorov-Smirnov (KS) test. From Table 2, it may be concluded that
according to the KS test, the maximum likelihood (ML) and CVM are the best estimator among
considered estimation procedures for dataset I and II respectively, whereas MPS is the worst
techniques among all considered methods for the both datasets. For third dataset CVM is most
effective estimator and AD is not much efficient among all estimators.

The METD is compared with the following distributions: exponential distribution (ED),
exponentiated exponential distribution (EED) of Kundu and Gupta [15], Teissier distribution (TD)
of Teissier [1], exponentiated Teissier distribution (ETD) of Sharma et al. [11], Rayleigh distribution
(RD), exponentiated Rayleigh distribution (ERD), Lindley distribution, exponentiated Lindley
distribution, Gompertz Distribution (GOD), exponentiated Gompertz Distribution (EGOD) of
El-Gohary et al. [24], Weibull distribution (WD), and exponentiated Weibull distribution (EWD)
of Mudholkar and Srivastava [23]. Several goodness-of-fit (gof) statistics are used for model
selection, including negative log-likelihood (NLL), Akaike (AIC), Bayesian (BIC), and Consistent
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Table 2: Estimation of parameters by different techniques and various test statistics with ranking(r).

Method θ̂ λ̂ NLL OLSS WLSS CVMS MPSS ADS RTADS KS p-Value(KS) r
Dataset I
ML 0.0168 0.4797 227.402 0.0175 6.0462 0.0178 -4.0207 0.1138 0.0556 0.0475 0.9996 1
OLS 0.0162 0.5409 227.453 0.0159 5.0371 0.0190 -4.0177 0.1182 0.0548 0.0507 0.9989 4
WLS 0.0160 0.5599 227.496 0.0161 4.9512 0.0202 -4.0172 0.1262 0.0593 0.0518 0.9984 6
CVM 0.0168 0.4873 227.403 0.0172 5.9974 0.0177 -4.0206 0.1136 0.0556 0.0498 0.9991 3
MPS 0.0157 0.5926 227.587 0.0171 5.1453 0.0228 -4.0168 0.1450 0.0706 0.0551 0.9964 7
AD 0.0166 0.5003 227.408 0.0166 5.5836 0.0178 -4.0195 0.1122 0.0536 0.0489 0.9993 2
RTAD 0.0165 0.5208 227.421 0.0161 5.3265 0.0182 -4.0187 0.1137 0.0530 0.0513 0.9987 5
Dataset II
ML 0.0006 3.2178 438.650 0.0343 17.6435 0.0335 -4.5439 0.2896 0.1375 0.0610 0.9642 6
OLS 0.0005 3.8710 438.714 0.0331 17.7131 0.0338 -4.5406 0.2960 0.1444 0.0582 0.9764 2
WLS 0.0005 3.8398 438.690 0.0338 17.4445 0.0341 -4.5409 0.2905 0.1404 0.0596 0.9708 4
CVM 0.0006 2.9352 438.662 0.0340 17.9474 0.0329 -4.5459 0.2940 0.1378 0.0577 0.9784 1
MPS 0.0002 8.7240 438.942 0.0364 18.2424 0.0386 -4.5389 0.3158 0.1631 0.0612 0.9631 7
AD 0.0006 3.4156 438.657 0.0339 17.5170 0.0336 -4.5426 0.2889 0.1376 0.0600 0.9687 5
RTAD 0.0006 3.1760 438.651 0.0338 17.6555 0.0330 -4.5439 0.2900 0.1370 0.0588 0.9742 3
Dataset III
ML 0.3665 0.4840 98.1613 0.0347 16.0498 0.0379 -4.6152 0.2623 0.1334 0.0681 0.9127 4
OLS 0.3799 0.4184 98.2516 0.0322 16.8590 0.0325 -4.6204 0.2722 0.1394 0.0637 0.9458 2
WLS 0.3682 0.4751 98.1627 0.0341 16.0314 0.0370 -4.6156 0.2612 0.1329 0.0673 0.9188 3
CVM 0.3888 0.3811 98.4149 0.0332 18.4910 0.0315 -4.6256 0.3026 0.1577 0.0625 0.9534 1
MPS 0.3480 0.5702 98.3114 0.0442 18.2744 0.0514 -4.6127 0.3125 0.1647 0.0709 0.8870 6
AD 0.3660 0.3162 99.2066 0.1814 67.5575 0.1848 -4.6290 1.0657 0.5165 0.0959 0.5740 7
RTAD 0.3695 0.4734 98.1657 0.0340 16.0688 0.0367 -4.6160 0.2611 0.1325 0.0687 0.9074 5

Akaike (CAIC), and Hannan-Quinn (HQIC) information criteria. Other robust test statistics,
including Kolmogorov-Smirnov (KS), Anderson-Darling (AD), and Cramer-von Mises (CVM),
as well as the p-value of KS, are examined for model selection in addition to these information
metrics. The model with the lowest test statistics value and the highest p-value was chosen
as the best model among all competitors. Table 3 shows all the relevant gof statistics of the
fitted distributions for both datasets. For dataset I, according to AD, CVM, and KS tests, METD
achieved the first rank, whereas according to AIC, BIC, CAIC, and HQIC, METD achieved the
second rank, and ETD achieved the first rank among all competitor models. According to NLL,
EGOD, ETD, and EWD have better ranks than METD. Therefore, as METD is a simple model in
comparison with exponentiated models and has a significant p-value, it is concluded that METD
may be a good choice to model the first dataset.
METD ranked first in NLL, AD, CVM, and KS tests for dataset II, while METD ranked second in
AIC, BIC, CAIC, and HQIC tests, and ED ranked first among all competitors models. ED has no
significant p-value. Therefore, it is concluded that METD provides a reasonable fit for the second
dataset in comparison with all competitor distributions. For third dataset, METD is consistently
achieved best rank according to all gof test statistics. Only it is second under NLL and KS test.
According to the AIC and KS test, the top four models are selected for both datasets. Histograms
of datasets with pdfs of distributions, are displayed in Fig. 3. Once again, these plots confirm the
conclusion that the METD is an appropriate model for these datasets.

6. Conclusion

The METD is a two-parameter distribution proposed in this study. The hazard rate function
of the METD is exponentially increasing and the probability density function is unimodal
(0 ≤ λ < 1) and decreasing (λ ≥ 1). Two different datasets of different characteristics (unimodal
and decreasing) are provided to show the practical significance of the present distribution.
Furthermore, the proposed distribution can be used as an alternative to some well-known
distributions such as exponential, Lindley, Rayleigh, Gompertz, Weibull, and their exponentiated
models, and it is expected that it will provide a better fit for similar datasets than the models
discussed in this paper. The METD demonstrated in this study shows its ability to model
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Figure 3: Histogram with some better fitted pdfs for dataset I (a),(b), dataset II (c),(d) and dataset III (e),(f) where
better models according to AIC in first column and better models according to KS test in second column.
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Table 3: Various goodness-of-fit statistics, the number of parameters (NP) with respective ranking r of all fitted
distributions for the first and second datasets.

Distribution NP NLL r AIC r BIC r CAIC r HQIC r AD r CVM r KS PV(KS) r
Dataset I
ED 1 236.035 13 474.070 13 475.962 13 476.962 13 474.788 13 2.8483 12 0.5423 13 0.1999 0.0344 13
EED 2 231.116 11 466.232 11 470.015 11 472.015 11 467.667 11 0.6772 10 0.1161 11 0.1207 0.4377 11
TD 1 233.764 12 469.528 12 471.42 12 472.42 12 470.246 12 3.0822 13 0.3962 12 0.1780 0.0787 12
ETD 2 227.391 2 458.782 1 462.566 1 464.566 1 460.218 1 0.1155 2 0.0180 2 0.0532 0.9977 5
RD 1 230.394 10 462.787 9 464.679 6 465.679 5 463.505 9 0.8837 11 0.0876 8 0.1026 0.6419 8
ERD 2 228.079 6 460.157 4 463.941 4 465.941 6 461.593 4 0.2162 6 0.0378 6 0.0838 0.8529 6
LD 1 230.188 9 462.376 8 464.268 5 465.268 4 463.094 8 0.5572 9 0.0998 10 0.1155 0.4933 10
ELD 2 230.165 8 464.330 10 468.114 10 470.114 10 465.765 10 0.5232 8 0.0911 9 0.1132 0.5191 9
GOD 2 227.437 5 458.875 3 462.659 3 464.659 3 460.310 3 0.1311 5 0.0204 5 0.0506 0.9989 4
EGOD 3 227.383 1 460.766 5 466.442 8 469.442 8 462.919 5 0.1163 3 0.0181 3 0.0479 0.9995 2
WD 2 228.807 7 461.614 7 465.397 7 467.397 7 463.049 7 0.2932 7 0.0442 7 0.0874 0.8158 7
EWD 3 227.401 3 460.803 6 466.478 9 469.478 9 462.956 6 0.1204 4 0.0187 4 0.0484 0.9994 3
METD 2 227.402 4 458.805 2 462.588 2 464.588 2 460.240 2 0.1138 1 0.0178 1 0.0475 0.9996 1
Dataset II
ED 1 438.986 7 879.971 1 882.098 1 883.098 1 880.806 1 0.3666 7 0.0534 7 0.0744 0.8562 8
EED 2 438.748 5 881.496 5 885.750 5 887.750 5 883.166 5 0.3574 6 0.0486 6 0.0738 0.8627 7
TD 1 487.937 13 977.874 13 980.001 13 981.001 13 978.709 13 32.2274 13 3.8607 13 0.3786 2.67 × 10−8 13
ETD 2 442.409 10 888.818 9 893.073 9 895.073 9 890.489 9 1.2232 10 0.1945 10 0.1106 0.4035 10
RD 1 464.709 12 931.417 12 933.544 12 934.544 12 932.252 12 13.7411 12 1.4724 12 0.2574 0.0004 12
ERD 2 439.801 8 883.602 8 887.857 7 889.857 7 885.273 7 0.4831 8 0.0589 8 0.0658 0.9347 3
LD 1 446.268 11 894.536 11 896.663 11 897.663 10 895.371 11 3.6521 11 0.3507 11 0.1594 0.0765 11
ELD 2 438.755 6 881.510 6 885.764 6 887.764 6 883.180 6 0.3317 4 0.0421 4 0.0684 0.9138 5
GOD 2 438.656 2 881.312 3 885.566 3 887.566 3 882.982 3 0.2905 2 0.0337 2 0.0614 0.9622 2
EGOD 3 441.424 9 888.847 10 895.229 10 898.229 11 891.353 10 0.8585 9 0.1241 9 0.0848 0.7306 9
WD 2 438.703 4 881.406 4 885.660 4 887.660 4 883.076 4 0.3406 5 0.0440 5 0.0700 0.9006 6
EWD 3 438.692 3 883.384 7 889.766 8 892.766 8 885.890 8 0.3230 3 0.0403 3 0.0669 0.9261 4
METD 2 438.650 1 881.301 2 885.555 2 887.555 2 882.971 2 0.2896 1 0.0335 1 0.0610 0.9641 1
Dataset III
ED 1 109.299 13 220.597 13 222.740 13 223.740 13 221.440 13 3.8816 12 0.7789 13 0.2077 0.0074 13
EED 2 103.547 10 211.093 10 215.380 11 217.380 11 212.779 11 1.3151 10 0.2329 10 0.1437 0.1339 10
TD 1 106.974 12 215.947 12 218.090 12 219.090 12 216.790 12 3.9012 13 0.4427 12 0.1705 0.0453 12
ETD 2 98.288 4 200.577 3 204.863 3 206.863 3 202.263 3 0.3049 4 0.0464 3 0.0761 0.8311 5
RD 1 102.492 9 206.984 8 209.127 8 210.127 5 207.827 8 1.2469 9 0.0841 6 0.0958 0.5754 6
ERD 2 99.198 6 202.397 4 206.683 4 208.683 4 204.083 4 0.5116 6 0.0903 7 0.1067 0.4383 7
LD 1 104.578 11 211.156 11 213.299 10 214.299 10 211.999 10 2.1351 11 0.4159 11 0.1564 0.0821 11
ELD 2 101.888 8 207.776 9 212.063 9 214.063 9 209.462 9 0.9654 8 0.1682 9 0.1300 0.2170 9
GOD 2 98.276 3 200.553 2 204.840 2 206.840 2 202.239 2 0.3033 3 0.0466 4 0.0679 0.9143 1
EGOD 3 98.231 2 202.463 5 208.893 5 211.893 7 204.992 5 0.2890 2 0.0428 2 0.0694 0.9009 3
WD 2 100.318 7 204.635 7 208.922 6 210.922 6 206.321 7 0.6425 7 0.0929 8 0.1086 0.4164 8
EWD 3 98.327 5 202.654 6 209.084 7 212.084 8 205.183 6 0.3105 5 0.0473 5 0.0760 0.8325 4
METD 2 98.161 1 200.323 1 204.609 1 206.609 1 202.008 1 0.2623 1 0.0379 1 0.0681 0.9127 2
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Covid-19, earthquake waiting times and service times data appropriately.
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Abstract

The consistency of the Bayesian estimation of a parameter is shown for a class of ergodic discrete
Markov chains. J.L. Doob’s method was used, offered earlier for the i.i.d. situation. The result may be
useful in the reliability theory for models with unknown parameters, in the risk management in financial
mathematics, and in other applications.
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1. Introduction

Parameter estimation plays a significant and in some cases possibly even a crucial role in quite
a few applications such as the reliability theory for models with unknown parameters, see
[4, chapter 3], in the Extreme Values theory for Markov processes, in the risk management in
financial mathematics, et al. In the asymptotic sense, one of the basic desirable properties of any
estimator in the long run is its consistency, weak or strong, as it shows that the estimation is
close to the “true” parameter if the classical setting is accepted. Similarly, in the Bayesian setting
consistency means literally the same – convergence to the sample value of the parameter, even
though there is no such thing as a “true parameter value” because it is to be sampled from the
prior distribution. Also, as it is well-known, Bayesian estimators often work well in the classical
setting, too, assuming some fictitious prior distribution for the parameter is chosen.

In this paper the problem of strong consistency is tackled for a certain class of Markov
models in the Bayesian setting, and, as was already mentioned, in the classical situation with a
fixed nonrandom “true” parameter value. Assume that there is a family of distributions {Pθ}
parameterised by some variable θ ∈ Θ, where Θ ⊂ Rm is a given parametric space. Any estimator
is a measurable function of the observations, or, a bit more generally, a mapping from the space
of outcomes Ω, say, to the space (Rm,B(Rm)) which is Borel measurable with respect to the
sigma-algebra of the observations FX ; here B(Rm)) is the Borel sigma-algebra in Rm.

In the Bayesian setting it is assumed that there is some prior distribution for θ on the set Θ;
the latter is usually a topological space, and in this paper, it will be assumed that Θ is a domain in
Rm which is not necessarily bounded. S.N. Bernstein and R. von Mises were the first to establish
consistency and the first steps towards the asymptotic normality of the Bayesian estimator for
some particular i.i.d. cases, see [1, Chapter IV, p.271], [18, pp. 188-192]. The general theory about
asymptotic normality was developed later by Le Cam [13] and Ibragimov and Khasmisnky [5];
for more recent results see, for example, [12], [15]. Another direction related to the problem was
asymptotic singularity of measures for large observation samples based on martingale theory
and developed in [6, 7, 8, 14, 17], et al. Naturally asymptotic normality requires more restrictive
assumptions. On the other hand, “just” consistency may often be used for constructions of
more efficient estimations by certain modifications. Also, in a situation where the conditions for
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asymptotic normality are not met, it may be even more desirable to know whether the applied
estimator is consistent. Hence, it makes sense to separate the studies of sufficiency conditions for
both properties, asymptotic normality and consistency.

In this paper the approach offered for the i.i.d. observations in [3] is used, adjusted for a class
of markovian models. An important point in [3] was a Strong Law of Large Numbers for the
sample distribution functions (d.f. in what follows) as the number of observations tends to infinity.
Also essential was an assumption that theoretical d.f. are different for different parameters. In
this paper discrete densities on a finite or countable state space are used. This restriction looks
not crucial and likely may be relaxed. At the level of ideas, the most close to this study is the
paper [17], where the earlier basic results from [6, 7, 8] are applied precisely to the problem of
parameter estimators’ consistency. However, formally conditions in for this property [17] and in
what follows are different. Also, in a way, this paper is based on a more simple background than
that in [6, 7, 8, 17].

The paper consists of this Introduction, The setting, Auxiliary lemmata, Main result (theorem
4), and Proof of theorem 4.

2. The setting

Let{Xt} be a homogeneous Markov chain (MC) in discrete time T = {0, 1, . . .} with a finite
or countable (denumerable) state space X ⊂ R1 (it will be clear in what follows why it is
convenient to work on R1: although it is not a restriction, but it may be desirable that the
elements of the state space are linearly ordered). The transition probabilities are denoted by
pij(s, t) = P(Xt = j|Xs = i)) = P(Xt−s = j|X0 = i)) = pij(t− s) for s ≤ t, and let P(t) = (pij(t))
be the transition probability matrix over time t; furthermore, they will all depend on a parameter
θ. The notion of ergodicity of a MC is not uniquely determined in the literature; in the present
paper we understand it as follows.

Definition 1. A homogeneous MC (Xn, n = 0, 1, . . .) is called ergodic if there exists a limiting invariant
probability measure µ which does not depend on the initial distribution – say, µ0 – and to which there is a
convergence in total variation for each µ0:

lim
t→∞
‖pµ0,·(t)− µ·‖TV = 0, (1)

where pµ0,j(t) = Pµ0(Xt = j). Recall that the total variation metric, or distance is given by the formula

‖µ− ν‖TV := 2 sup
A∈F (X )

(µ(A)− ν(A)).

As it was said, the transition probabilities depend on a parameter and the problem under
consideration is estimation of this parameter given observations on the time interval [1, n] where
n → ∞. It is assumed that θ ∈ Θ ⊂ Rm; Θ is a domain, not necessarily bounded. Naturally, a
stationary measure, generally speaking, also depends on θ: denote it from now on by µθ(dx) and
note that under the assumption of convergence (1) it is necessarily unique. We will need the
extended process Yn = (Xn, Xn+1) which is also a MC on the state space X × X . The symbol
µθ(dx, dx′) will denote the stationary measure for the MC (Yn); it is easy to see that such an
invariant measure does exist. Assume that the functions pθ(·, ·) are Borel measurable with respect
to the variable θ. Then due to the ergodicity (see (1)) the invariant probabilities are also Borel
measurable in θ. Following Doob’s approach, suppose that a (weak) Law of Large Numbers (LLN)
holds true for the MC (Xn) with respect to the corresponding measure Pθ , for each θ . In this
case, LLN is also valid for the MC (Yn), where Yn := (Xn, Xn+1). It is easy to see that these two
conditions – LLN for the MC (Xn) and for the MC (Yn) – are equivalent. Hence, the following
assumption will be accepted in what follows.

Assumption 2. It is assumed that for each θ ∈ Θ and any measurable A, B a convergence holds true,∣∣∣∣∣ 1
T

T−1

∑
s=0

1(Xs ∈ A, Xs+1 ∈ B)− µθ(A× B)

∣∣∣∣∣ Pθ

→ 0, T → ∞.
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This assumption is equivalent also to the condition∣∣∣∣∣ 1
T

T−1

∑
s=0

g(Ys)−
∫

g(y)µθ(dy)

∣∣∣∣∣ Pθ

→ 0, T → ∞,

for any bounded measurable function g(y), where y = (x, x′).

Let us collect the comments made earlier in the form of a proposition.

Proposition 3. Under the assumptions made above the following statements hold:

1. If (Xn) is a homogeneous MC then Yn is also a homogeneous MC.

2. If the MC (Xn) is ergodic then the MC (Yn) is also ergodic, and vice versa.

Note that, as usual, all sigma-algebras in the text are regarded as completed with respect to
the corresponding probability measures.

3. Main result

The Bayesian setting assumes that the parameter θ is random; let it have a prior probability
distribution Q on Θ. Recall that here Θ is a domain in Rm, not necessarily bounded. It is assumed
that

Eθ < ∞. (2)

Any estimator of the parameter given observations is represented by some Borel measurable
function θ̂n = θ̂n(X1, . . . , Xn). As it is well-known (cf., for example, [2, chapter 19]), there exists a
Borel measurable function φn such that the Bayesian estimator reads,

E(θ|X1, . . . , Xn)
Pθ-a.s.
= φn(X1, . . . , Xn).

So, the statistic θ̂n := φn(X1, . . . , Xn) = E(θ|X1, . . . , Xn) is necessarily (FX
N ,B(Rm))-measurable;

hence, also (FX
∞ ,B(Rm))-measurable, and φn is measurable with respect to the pair of σ-algebras

(B(X )n,B(Rm)), ∀n ∈ N, where B(X ) is the set of all subsets of the state space X , that is,
B(X ) = 2X . Recall that a pointwise limit of measurable functions is also measurable.

Theorem 4. Let the following conditions be satisfied:

1. Transition probability matrices of the MC (Xn) for different values of θ are different, that is, for any
θ 6= θ′ there exist i, j such that pθ

ij 6= pθ′
ij .

2. Let MC (Yn) be ergodic for each θ under the measure Pθ in the sense of the definition (1), and let
the (weak) LLN hold for the process Y for each θ in the sense of the assumption (2). Then there is a
convergence

θ̂n → θ, n→ ∞, P− a.s. (3)

Here, as usual in the Bayesian setting,

P(dθ, dω) = Q(dθ)Pθ(dω).

Remark 5. Recall that similar results under different conditions were established in [17, theorems 1-
2]. Formally, those conditions in [17] may be applicable, or not applicable in our situation because the
assumption of the absolute continuity for the projection measures on the sigma-algebra FX

n for any two
values of the parameter is not assumed, see [17, Theorem 1, condition (C)] and [17, Theorem 2, condition
(b)]. In markovian examples in [7, §13] a similar condition to [17, Theorem 1, condition (C)] was assumed
as well, see theorem 22, condition (b). In the present paper such a condition is neither assumed, nor
it follows from the other assumptions. Intuitively, the lack of continuity should only help consistency;
nevertheless, even if so, it apparently does require some calculus. In any case, the proof of the theorem 4 in
what follows does not distinguish between the cases tackled in [17] and the cases not covered by this cited
paper.
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Remark 6. As in the setting of Doob in [3], this result may also be used in the classical setting where θ is
not random and there exists a unique “true” parameter value. For that, an artificial prior density should
be introduced on Θ which must be everywhere positive. Then, as in [3], the analogous assertion will hold
true about an almost sure convergence of the artificial Bayesian estimator under the product measure on
Θ×X∞.

In particular, what is usually highlighted about Bernstein and von Mises theorem is that if the measure
Q has a densty q(θ) which is everywhere positive, then convergence of the Bayesian estimator towards θ
will take place almost everywhere in Θ with respect to the Lebesgue measure. Actually, it suffices for this
property that the measure Q were absolutely continuous with respect to the latter. However, in either case
there is no way to know for which particular values of θ this convergence is valid and for which maybe not;
it may only be claimed that the set of “bad” values of θ with no convergence has measure zero.

4. Auxiliary results

Let us define the sample distribution function

FN(x, x′) :=
1
N

N−1

∑
t=0

1(Xt ≤ x, Xt+1 ≤ x′).

Denote by S = {F(x, x′), x, x′ ∈ R} the space of all functions of two variables (x, x′) with the
following properties:

1. 0 ≤ F(x, x′) ≤ 1 for each x, x′ ∈ R.

2. If x ≤ z, x′ ≤ z′, then F(x, x′) ≤ F(z, z′) (monotonicity).

3. For each x, x′ ∈ R
lim

z↓x,z′↓x′
F(z, z′) = F(x, x′).

4. For each x, x′ ∈ R there exists a limit

lim
z↑x,z′↑x′

F(z, z′) =: F(x, x′)−.

(NB: Actually, the latter notation will not be used in what follows; it is just an analogue
of the one-dimensional property of “làg” – possessing “limites à gauche” – for the one-
dimensional case. Respectively, the property 3 is the analogue of the “càd” – being “continue
à droite” for a function of one variable.)

5.
lim

z↑+∞,z′↑+∞
F(z, z′) = 1.

6.
lim

z↓−∞,z′↓−∞
F(z, z′) = 0.

In fact, in the situation under the consideration we deal with some proper subset of all
distribution functions of two variables, because all corresponding measures on R2 have atoms in
our setting. However, all we need is that this more general space of distribution functions with a
certain metric is a Polish space, and this will be guaranteed by proposition 16 in what follows.

Denote by Σ(S) the sigma-algebra on S generated by all finite cylinders, i.e.,

Σ(S) := σ(F ∈ S : F(x1, x′1) ≤ a1, . . . F(xn, x′n) ≤ an))

for any (x1, x′1), . . . , (xn, x′n) ∈ R2 and a1, . . . , an ∈ [0, 1].

Note that the distribution function of any two-dimensional random vector belongs to the
space S , and all sample d.f. FN belong to this space, too.
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Lemma 7. The function FN : Ω 7→ R is a measurable map with respect to the corresponding pair of
sigma-algebras (FX

N ; Σ(S)).

Proof. The proof is elementary and is shown here only for the convenience of the reader.
Indeed, for any couple (x, x′) the mapping

FN(x, x′) :=
1
N

N−1

∑
t=0

1(Xt ≤ x, Xt+1 ≤ x′)

is measurable as a function of ω, as a finite sum of random variables (indicators), which may be
expressed by the relation

(ω : FN(x, x′) ≤ a) ∈ FX
N

for any a ∈ R. Then, for any finite sets of (x1, x′1), . . . , (xn, x′n) and a1, . . . , an we have,

(ω : FN(x1, x′1) ≤ a1, . . . FN(xn, x′n) ≤ an)) ∈ FX
N ,

by the definition of what is a sigma-algebra. Therefore, FN(·, ·) as a function of ω is, indeed,
(FX

N ; Σ(S))-measurable, as required. �

In the next lemma it is assumed that the distribution of Y0 = (X0, X1) is invariant. In this case
its distribution function is denoted by F̂θ(x, x′); recall that due to ergodicity it is unique. It may
be presented by the formula

F̂θ(x, x′) = F̂θ(x)pθ
x,x′ , (4)

where, in turn, F̂θ(x) is the (unique) invariant distribution function of the MC Xn with respect to
the probability measure Pθ , which is simultaneously the limiting distribution function for the
(Xn).

Lemma 8. Under the assumption that all transition probabilities pθ
ij, i, j ∈ X are Borel measurable in θ,

the invariant distribution function F̂θ(x, x′) is Borel measurable in θ for each pair (x, x′).

Proof. Indeed, invariant probabilities pθ
inv(i), i ∈ X are measurable in θ as limits of measurable

n-step transition probabilities. So, the “double” invariant probabilities pθ
inv(i)pθ(ij), i, j ∈ X also

have the same property. Hence, the theoretical d.f.

Pθ
x0
(Xn ≤ x, Xn+1 ≤ x′) = ∑

i≤x
pθ

x0,i(n) ∑
j≤x′

pθ
i,j

is clearly Borel measurable in θ, too. So is its limit at n → ∞ which equals F̂θ(x, x′), as
required. �

Let us recall the Lèvy–Doob theorem on convergence of conditional expectations.

Proposition 9. (see, e.g., [11, Theorem 4.3.10]) Let E|ξ| < ∞ and let Fn, n = 0, 1, . . . be an increasing
sequence of σ-algebras, Fn ⊂ Fn+1, and let F∞ be the minimal σ-algebra which contans all Fn, that is,
F∞ =

∨
n
Fn (that is the minimal sigma-algebra generated by all Fn). Then

lim
n→∞

E(ξ|Fn) = E(ξ|F∞), a.s.

and
lim

n→∞
E|E(ξ|F∞)−E(ξ|Fn)| = 0.

In our setting due to the proposition 9 we have,

lim
n→∞

E(θ|X1, . . . , Xn) = lim
n→∞

φn(X) = E(θ|FX
∞) a.s.

This implies that the limit in the left hand side in the latter double equality is FX
∞-measurable.
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Lemma 10. Assume that the transition probability matrices are different for different parameter values,
that is, θ 6= θ′ implies that there exist i, j such that pθ

ij 6= pθ
ij. Then the mapping θ 7→ F̂θ(j, j′), j, j′ ∈ X is

one-to-one. Moreover, the mapping

G : θ 7→ F̂θ(x, x′), x, x′ ∈ R, (5)

is also one-to-one.

Proof. The proof follows from the formula (4). Indeed, if for θ 6= θ′ the one-dimensional
invariant distribution functions F̂θ(·) are different, then two-dimensional are different, too. If
for some pair θ 6= θ′ the one-dimensional d.f. coincide, F̂θ(·) = F̂θ′(·), then the two-dimensional
one are yet different due to the formula (4) and by virtue of the distinguishability assumption
of transition probabilities for different parameter values. The same property for the mapping G
follows straightforwardly. �

Further, due to the assumed LLN the following convergence of relative frequencies holds,

1
n

n−1

∑
t=0

1(Xt ≤ j) Pθ

→ F̂θ(j) = Eθ
inv1(X0 ≤ j), n→ ∞,

where Eθ
inv is expectation with respect to the corresponding invariant measure. A similar

convergence holds true for two-dimensional relative frequencies,

1
n

n−1

∑
t=0

1(Xt ≤ j, Xt+1 ≤ j′) Pθ

→ F̂θ(j, j′) = Eθ
inv1(X0 ≤ j, X1 ≤ j′), n→ ∞.

Since two-dimensional invariant d.f. F̂θ(·, ·) are different for any two different parameter values,
the value θ is uniquely determined by the infinite trajectory of observations X = (Xn, n = 1, . . .).
In other words, the mapping θ 7→ F̂θ(·, ·) is one-to-one. This mapping is measurable due to the
LLN and because the limit of measurable mappings is also measurable. Moreover, as it follows
from proposition 13 (see below; it is not linked to this lemma), the inverse mapping is also
measurable.

Let us recall some further definitions; it is necessary because one of them is not standard in
most of mathematics areas (see definition 12 in what follows).

Definition 11. Borel measurable sets in a Polish (& more generally, in any topological) space X are the
sets of the minimal σ-algebra B(X) of subsets in X which contains all open subsets in X.

Definition 12. Let X, Y be Borel measurable sets in Polish spaces X, Y, respectively. The mapping
f : X → Y is called:

1. Borel iff its graph Γ f = {(x, y) : x ∈ X, f (x) = y} is a Borel set in the space X×Y;

2. B-measurable iff the image of any Borel set from the space Y under the inverse mapping f−1 is a
Borel set in X.

Note that the “usual” definition of a Borel function in the majority of areas of mathematics
coincides with 10.2.

The next result may be found in [10, Theorem 2.4.3] (we only state the part of this theorem
which will be used in what follows).

Proposition 13 ([10, Theorem 2.4.3]). Let X, Y be Borel sets in Polish spaces and f : X → Y be some
mapping. Then:

1. If f is Borel measurable then the images of all Borel sets from Y under the inverse mapping f−1 are
also Borel, so that the mapping f is B-measurable;

2. Vice versa, if f is B-measurable then it is a Borel function.
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Corollary 14. If the mapping f is Borel measurable and one-to-one, then its inverse f−1 is B-measurable
and, hence, Borel one in the sense of definition 12.

In order to apply proposition 13 in the proof of our main result in the next section, let us show
that both proposition and its corollary 14 are applicable to the mapping G (see (5)).

Lemma 15. Under the assumptions of theorem 4 the mapping G−1 is Borel and B-measurable.

Proof. Firstly, the mapping G : θ 7→ F̂θ(·, ·) is B-measurable in the sense of the definition 12.
Indeed, the element F̂θ(·, ·) is a limit in probability Pθ of the sequence of functions Eθ FN(·, ·),
which are all B-measurable in θ; therefore, so is their limit.

Secondly, according to lemma 10, the mapping G is one-to one; hence, so is its inverse is G−1.
The claim of lemma 15 now follows from corollary 14. �

Further, it is desirable that the parametric space Θ and the space of invariant distribution
functions were complete and separable metric spaces. It is trivial with Θ ⊂ Rm with the Euclidean
metric; for the space of “double” distribution functions a suitable matric should be chosen which
is, of course, not unique. To each distribution function there correspond a probability distribution
on R2. Let us accept that the distance between two distribution functions is defined as a distance
between their corresponding measures. Let us choose Prokhorov’s metric dp(ν1, ν2) for them: if
α-neighbourhood of a set A ⊂ R2 is denoted by

Aα :={ā :=(a1, a2) ∈ R2 : d(ā, A)<α}, if A 6= ∅, ∅α = ∅ ∀α > 0,

then the distance between probability measures ν1, ν2 on R2 is defined by the formula

dp(ν1, ν2) := inf{α> 0 : ν2(A)≤ν1(Aα)+α & ν1(A)≤ν2(Aα)+α, ∀A ∈ B(S)}.

The same formula provides the distance between two distribution functions, namely, as a distance
dp(·, ·) between the corresponding measures on R2.

Proposition 16 ([16, Lemma 1.4]). Let a metric space be complete and separable. Then the space of
probability measures on it with the Prokhorov metric is also complete and separable.

5. Proof of theorem 4

Proof. By virtue of Lèvy–Doob’s theorem (see proposition 9) we have,

θ̂n ≡ E(θ|X1, . . . , Xn) = E(θ|FX
n )→ E(θ|FX

∞) =: θ̂∞, n→ ∞ P-a.s.. (6)

Due to its definition, the random variable θ̂∞ is FX
∞-measurable; being a conditional expectation,

it is a Bayesian estimator of θ constructed upon the infinite sequence of observations X1, X2, . . .
For the proof of the theorem, it suffices to establish the equality

θ̂∞
P−a.s.
= θ. (7)

The basis for thsi equality is the empirical fact that θ is uniquely deterined by the infinite sequence
of observations due to the assumed LLN and because of the one-to-one correspondence between
θ and the invariant distribution of the pair (X0, X1). Let us provide more rigorous considerations
related, in particular, to the measurability.

By virtue of the LLN assumptions, we have

FX
N−1 3 FN(x) =

1
N

N−1

∑
i=0

I(Xi ≤ x) Pθ

→ F̂θ(x) = Eθ
inv I(X0 ≤ x),

and also

FX
N 3FN(x, x′)=

1
N

N−1

∑
i=0

I(Xi ≤ x, Xi+1 ≤ x′) Pθ

→ F̂θ(x, x′)=Eθ
inv I(X0≤ x, X1≤ x′).
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The random variable FN(x, x′) is (FX
N ,B(R2))-measurable for any pair (x, x′) ∈ R2. According to

lemma 7, the mapping FN(·, ·) is (FX
N , Σ(S))-measurable, hence, it is a random variable in the

space of distribution functions.
Now, according to lemma 10 the following equality holds true,

θ
P−a.s.
= G−1( F̂θ(·, ·)︸ ︷︷ ︸

∈FX
∞

).

By virtue of lemma 15, the mapping G−1 is Borel and B-measurable. Therefore,

G−1(F̂θ(·, ·)) ∈ FX
∞ .

Therefore, by virtue of (6),

θ̂n → E(θ|FX
∞)

P−a.s.
= E(G−1(F̂θ(·, ·))|FX

∞)
P−a.s.
= G−1(F̂θ(·, ·)) P−a.s.

= θ.

This means that (7) holds true. implies the desired convergence (3). Theorem 4 is proved. �
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"...one of the most important problems
in the philosophy of natural sciences is
... to make precise premises which would
make it possible to regard any given
real events as independent."

A. N. Kolmogorov,
Foundations of the Theory of Probability

Abstract

We define degree of mutual dependence of three events in a probability space by using Boltzmann-Shannon
entropy function of an appropriate variable distribution produced by these events and depending on four
parameters varying, in general, within of a polytope. It turns out that the entropy function attains its
absolute maximum exactly when the three events are mutually independent and its absolute minimum at
some vertices of the polytope where the events are "maximally" dependent. By composing the entropy
function with an appropriate linear function we obtain a continuous "degree of mutual dependence"
function with the same domain and the interval [0, 1] as a target. It attains value 0 when the events are
mutually independent (the entropy is maximal) and value 1 when they are "maximally" dependent (the
entropy is minimal). A link is available for downloading a Java code which evaluates the degree of mutual
dependence of three events in the classical case of a sample space with equally likely outcomes.

Keywords: entropy; average information; degree of dependence; probability space; probability
distribution; experiment in a sample space; linear system; affine isomorphism; classification space.

1. Introduction

In our papers [6] and [7]) we introduce and study a measure of dependence of two events
in a probability space, based on the fundamental notion of Boltzmann-Shannon entropy. The
present work is written as a natural conceptual continuation of the above papers for the case of
three events A1, A2, A3. By analogy, we consider the joint experiment J3 of the corresponding
three binary trials, whose probability distribution gives rise to the entropy function that, in turn,
measures the mutual dependence of these events.

In accord with [6, 4.1], any one of the three pairs of events Ai, Aj, 1 ≤ i < j ≤ 3, produces a joint
experiment Jij whose probability distribution satisfies the linear system (3). Since the partition
J3 of the sample space is finer than each partition Jij, its probability distribution (ξ1, . . . , ξ8)
satisfies the linear system (5). After fixing the probabilities α = (α1, α2, α3) of the components of
Yule’s triple A = (A1, A2, A3), the general solution of the last system depends on four parameters
θ = (θ0, . . . , θ3) chosen among ξk’s. Taking into account that ξk(θ)’s are probabilities, we obtain
that θ varies within a subset I7(α) of R4, which is described in Theorem 1. In case α ∈ (0, 1)3 the
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set I7(α) is a polytope, see [2, Ch. 12]. Since the system of linear inequalities (9) which define the
polytope I7(α) is minimal (Lemma 2), we can apply the machinery from the previous citation in
order to use the corresponding properties of this polytope.

The 7-tuples (α, θ) vary within a polytope I7 ⊂ R7 which is the inverse image of the 7-
dimensional simplex ∆7 via the affine isomorphism (7). The projection p(α, θ) = α produces
the fibre bundle (I7, p, [0, 1]3) with fibre p−1(α) = C7(α) where C7(α) = {α} × I7(α), for the
definition see [5, Part I, 2, 1.1]. This fibre bundle is used for classification of all equivalence classes
of Yule’s triples with given α and θ, cf. [6, Theorem 1]. An isomorphic fibre bundle can be used
for classification of all probability distributions produced by the above equivalence classes of
Yule’s triples. The general patterns of these two fibre bundles are described in terms of very
elementary algebraic geometry at the end of Subsection 4.2 where also classification Theorem 2 is
formulated.

Corollary 1, (ii), yields that 0 < ξk(θ) < 1, k = 1, . . . , 8, if and only if θ ∈ I̊7(α). In particular,
I̊7(α) is the natural domain of the entropy function Eα(θ) of the probability distribution (ξk(θ))

8
k=1,

defined in (11).
In Lemma 4 we prove that Eα(θ) is a strictly concave function that can be extended in a unique

way as continuous at the polytope I7(α). Moreover, its continuous extension Êα is also a strictly
concave function. In Corollary 2 we show that all permutations of the members of Yule’s triple
A = (A1, A2, A3) have the same entropy.

Subsection 5.2 is devoted to finding the set of critical points of the entropy function Eα(θ). It
turns out that this set is not empty: The special point θ(α) ∈ I̊7(α) defined by the formulae (10) is
critical, see Lemma 6.

Since the Hessian of Eα(θ) is a negative definite quadratic form everywhere in its domain
I̊7(α), we obtain that the set of local maximums of the entropy function Eα(θ) coincides with the
set of its critical points, see Lemma 7.

In accord with Weierstrass theorem, the extended entropy function Êα(θ) attains an absolute
maximum and an absolute minimum in its compact domain I7(α). Theorems 3 and 4 make
this statement more precise. The former asserts that Êα(θ) has a unique absolute maximum at
the point θ(α). The latter uses the structure of the frontier of the polytope I7(α), described, for
example, in [2, Chapter 12, 12.1], and shows that Êα(θ) attains its absolute minimum only at some
of its vertices. We note here an analogy with the simplex method.

Subsection 6.1 contains two statements that motivate the use the extended entropy function
Êα(θ) for measuring the power of mutual relations among three events. In Lemma 8 we show that
the components of a Yule’s triple are mutually independent if and only if the corresponding θ
coincides with θ(α). In other words, we observe mutual independence exactly when Êα(θ) attains
its absolute maximum, which is in keeping conformity with our intuition. In the case of sample
space with equally likely outcomes, Lemma 9 establishes the set-theoretic relations among the
components of a Yule’s triple when the corresponding θ lies on any one of the 3-faces of the
polytope I7(α). Intuitively, the "maximally" tight-fitting is observed at the vertices some of which
are points of absolute minimum of Êα(θ).

Let A = (A1, A2, A3) be a Yule’s triple with α = (α1, α2, α3), α1 = Pr(A1), α2 = Pr(A2),
α3 = Pr(A3). In the final Subsection 6.2 we compose the extended entropy function Êα(θ)
with a linear function and define a function eα : I7(α) → [0, 1], whose value at any θ ∈ I7(α)
corresponding to A is said to be degree of dependence of the events A1, A2, A3. Note that
eα(θ(α)) = 0 (the events A1, A2, A3 are mutually independent) and eα(θ1) = 1 for any vertex θ1
where Êα(θ) attains its absolute minimum (the events A1, A2, A3 are maximally dependent).

2. Definitions and Notation

Let (Ω,A, Pr) be a probability space with set of outcomes Ω, σ-algebra A, and probability
function Pr. In this paper we are using only the structure of Boolean algebra on A.

We introduce the following notation:
Given events A1, A2, A3 from A, we set A = (A1, A2, A3) ∈ A3;
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R is the range of the probability function Pr : A → R;
Given α1, α2, α3 ∈ R, we set α = (α1, α2, α3);
Given θ0, θ1, θ2, θ3 ∈ R, we set θ = (θ0, θ1, θ2, θ3);
I(αi, αj) = [max(0, αi + αj − 1), min(αi, αj)], 1 ≤ i < j ≤ 3, see [6, 4.1];

I(αi ,αj) = [max(0, αi − αj), min(αi, 1− αj)], 1 ≤ i < j ≤ 3;
[(α)] is the fiber of the surjective map

A3 → R3, (A1, A2, A3) 7→ (Pr(A1), Pr(A2), Pr(A3)),

over α ∈ R3;
[
(
αi, αj

)
] is the fiber of the surjective map

A2 → R2, (Ai, Aj) 7→ (Pr(Ai), Pr(Aj)),

over (αi, αj) ∈ R2, 1 ≤ i < j ≤ 3;

θ
(A)
0 = Pr(A1 ∩ A2 ∩ A3), θ

(A)
1 = Pr(Ac

1 ∩ A2 ∩ A3),

θ
(A)
2 = Pr(A1 ∩ Ac

2 ∩ A3), θ
(A)
3 = Pr(A1 ∩ A2 ∩ Ac

3), A ∈ A3;

θ(A) = (θ
(A)
0 , θ

(A)
1 , θ

(A)
2 , θ

(A)
3 );

[(α, θ)] is the fiber of the map [(α)]→ R4, A 7→ θ(A), over any θ ∈ R4, and R(α) is its range.
We note that the fibers [(α)] for (α) ∈ R3 form a partition of A3 and the fibers [(α, θ)] for

θ ∈ R(α) form a partition of [(α)].
The members of the fiber [(α)] are said to be Yule’s triples of type (α). The members of the fiber

[(α, θ)] are called Yule’s triples of type (α, θ).

3. Methods

In this paper we are using fundamentals of:
• Linear algebra,
• Affine geometry,
• Polytope theory,
• Fibre bundles,
• Real algebraic geometry.

4. Classification of Yule’s Triples

and Their Probability Distributions

4.1. The Probability Distribution of a Yule’s Triple

Any ordered triple A = (A1, A2, A3) ∈ A3 produces three experiments of the form

Jij = (Ai ∩ Aj) ∪ (Ai ∩ Ac
j ) ∪ (Ac

i ∩ Aj) ∪ (Ac
i ∩ Ac

j ), 1 ≤ i < j ≤ 3,

and the experiment

J3 = (A1 ∩ A2 ∩ A3) ∪ (Ac
1 ∩ A2 ∩ A3) ∪ (A1 ∩ Ac

2 ∩ A3) ∪ (A1 ∩ A2 ∩ Ac
3)∪

(A1 ∩ Ac
2 ∩ Ac

3) ∪ (Ac
1 ∩ A2 ∩ Ac

3) ∪ (Ac
1 ∩ Ac

2 ∩ A3) ∪ (Ac
1 ∩ Ac

2 ∩ Ac
3)

(cf. [8, I,§5]). We introduce the following notation:

ξ
(Ai ,Aj)
1 = Pr(Ai ∩ Aj), ξ

(Ai ,Aj)
2 = Pr(Ai ∩ Ac

j ),
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ξ
(Ai ,Aj)
3 = Pr(Ac

i ∩ Aj), ξ
(Ai ,Aj)
4 = Pr(Ac

i ∩ Ac
j ), 1 ≤ i < j ≤ 3.

Moreover, we set
ξ
(A)
1 = Pr(A1 ∩ Ac

2 ∩ Ac
3), ξ

(A)
2 = Pr(Ac

1 ∩ A2 ∩ Ac
3),

ξ
(A)
3 = Pr(Ac

1 ∩ Ac
2 ∩ A3), ξ

(A)
4 = Pr(Ac

1 ∩ Ac
2 ∩ Ac

3),

ξ
(A)
5 = Pr(A1 ∩ A2 ∩ A3), ξ

(A)
6 = Pr(Ac

1 ∩ A2 ∩ A3),

ξ
(A)
7 = Pr(A1 ∩ Ac

2 ∩ A3), ξ
(A)
8 = Pr(A1 ∩ A2 ∩ Ac

3). (1)

The above probabilities satisfy the following identities:

ξ
(A)
5 + ξ

(A)
8 = ξ

(A1,A2)
1 , ξ

(A)
1 + ξ

(A)
7 = ξ

(A1,A2)
2 ,

ξ
(A)
2 + ξ

(A)
6 = ξ

(A1,A2)
3 , ξ

(A)
3 + ξ

(A)
4 = ξ

(A1,A2)
4 ,

ξ
(A)
5 + ξ

(A)
7 = ξ

(A1,A3)
1 , ξ

(A)
1 + ξ

(A)
8 = ξ

(A1,A3)
2 ,

ξ
(A)
3 + ξ

(A)
6 = ξ

(A1,A3)
3 , ξ

(A)
2 + ξ

(A)
4 = ξ

(A1,A3)
4 ,

ξ
(A)
5 + ξ

(A)
6 = ξ

(A2,A3)
1 , ξ

(A)
2 + ξ

(A)
8 = ξ

(A2,A3)
2 ,

ξ
(A)
3 + ξ

(A)
7 = ξ

(A2,A3)
3 , ξ

(A)
1 + ξ

(A)
4 = ξ

(A2,A3)
4 . (2)

For any 1 ≤ i < j ≤ 3 and any (Ai, Aj) ∈ [
(
αi, αj

)
], the probability distribution

(ξ
(i,j)
1 , ξ

(i,j)
2 , ξ

(i,j)
3 , ξ

(i,j)
4 ) = (ξ

(Ai ,Aj)
1 , ξ

(Ai ,Aj)
2 , ξ

(Ai ,Aj)
3 , ξ

(Ai ,Aj)
4 )

satisfies the linear system∣∣∣∣∣∣∣∣∣∣
ξ
(i,j)
1 + ξ

(i,j)
2 = αi

ξ
(i,j)
3 + ξ

(i,j)
4 = 1− αi

ξ
(i,j)
1 + ξ

(i,j)
3 = αj

ξ
(i,j)
2 + ξ

(i,j)
4 = 1− αj.

(3)

The identities (2) and the linear systems (3) yield that for any ordered triple A ∈ [α], the
probability distribution

(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) = (ξ
(A)
1 , ξ

(A)
2 , ξ

(A)
3 , ξ

(A)
4 , ξ

(A)
5 , ξ

(A)
6 , ξ

(A)
7 , ξ

(A)
8 ) (4)

satisfies the linear system∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 + ξ5 + ξ7 + ξ8 = α1
ξ2 + ξ3 + ξ4 + ξ6 = 1− α1
ξ2 + ξ5 + ξ6 + ξ8 = α2

ξ1 + ξ3 + ξ4 + ξ7 = 1− α2
ξ3 + ξ5 + ξ6 + ξ7 = α3

ξ1 + ξ2 + ξ4 + ξ8 = 1− α3.

(5)

Let us denote for short ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) and let H7 be the affine hyperplane in
R8 with equation ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + ξ8 = 1. For any α ∈ R3 the solutions of (5)
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depend on four parameters, say θ0 = ξ5, θ1 = ξ6, θ2 = ξ7, θ3 = ξ8, and for any triple α ∈ R3 form
a 4-dimensional affine space `α in H7 with parametric representation

`α :



ξ1 = α1 − θ0 − θ2 − θ3
ξ2 = α2 − θ0 − θ1 − θ3
ξ3 = α3 − θ0 − θ1 − θ2
ξ4 = 1 − α1 − α2 − α3 + 2θ0 + θ1 + θ2 + θ3
ξ5 = θ0
ξ6 = θ1
ξ7 = θ2
ξ8 = θ3

(6)

The map
ι7 : R7 → H7, (α, θ) 7→ ξ, (7)

defined by formulae (6) is an affine isomorphism with inverse affine isomorphism

χ7 : H7 → R7, ξ 7→ (ξ1 + ξ5 + ξ7 + ξ8, ξ2 + ξ5 + ξ6 + ξ8, ξ3 + ξ5 + ξ6 + ξ7, ξ5, ξ6, ξ7, ξ8). (8)

The symmetric group S3 acts on R7 by the rule σ(α, θ) = (σα; σθ), where σα = (ασ−1(1), ασ−1(2), ασ−1(3))

and σθ = (θ0, θσ−1(1), θσ−1(2), θσ−1(3)), σ ∈ S3. When necessary, we write σα and σθ in order to
distinguish the actions of σ on α’s and θ’s, respectively.

On the other hand, we transport the action of S3 on the set {6, 7, 8} via the bijection 1 7→
6, 2 7→ 7, 3 7→ 8 and define an action of S3 on the hyperplane H7 by the formula

σξ = (ξσ−1(1), ξσ−1(2), ξσ−1(3), ξ4, ξ5, ξσ−1(6), ξσ−1(7), ξσ−1(8)).

Lemma 1. The affine isomorphism ι7 is also an isomorphism of S3-sets: ι7(σ(α, θ)) = σι7(α, θ).

Proof. We check the statement for a set of generators of S3: For σ = (12) we have

ξ1((12)(α, θ)) = ξ2(α, θ), ξ2((12)(α, θ)) = ξ1(α, θ),

ξ6((12)(α, θ)) = ξ7(α, θ), ξ7((12)(α, θ)) = ξ6(α, θ).

For σ = (23) we have

ξ2((23)(α, θ)) = ξ3(α, θ), ξ3((23)(α, θ)) = ξ2(α, θ),

ξ7((23)(α, θ)) = ξ8(α, θ), ξ8((23)(α, θ)) = ξ7(α, θ).

�

4.2. The Geometric Classification

After fixing the coordinates α1, α2, and α3, the isomorphism ι7 from (7) maps the 4-dimensional
affine space ζα = {α} ×R4 onto the 4-dimensional affine space `α in H7. We denote by ι

(α)
7 the

(affine) restriction of ι7 on ζα, so ι
(α)
7 : ζα → `α.

The trace of the 8-dimensional cube {ξ ∈ R8|0 ≤ ξk ≤ 1, k = 1, . . . , 8} onto the hyperplane
H7 is the 7-dimensional simplex ∆7 defined in H7 by the inequalities ξ1 ≥ 0, . . . , ξ8 ≥ 0. The
inverse image T7 = ι−1

7 (∆7) via the affine isomorphism ι7 is the convex polyhedron in R7 with
non-empty interior, defined by the system of inequalities

T7 :



θ0 + θ2 + θ3 ≤ α1
θ0 + θ1 + θ3 ≤ α2
θ0 + θ1 + θ2 ≤ α3

2θ0 + θ1 + θ2 + θ3 ≥ α1 + α2 + α3 − 1.
θ0 ≥ 0

θ1 ≥ 0
θ2 ≥ 0

θ3 ≥ 0

(9)
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The form (8) of the inverse isomorphism χ7 yields that T7 ⊂ [0, 1]7. In particular, T7 is a polytope.
Note that we are using the terminology about polytopes introduced in [2, Ch. 12].

For any α ∈ R3 we set C7(α) = ζα ∩ T7, so C7(α) = {α} × I7(α), where I7(α) ⊂ R4 and R4

is furnished with coordinates θ. The subset I7(α) is defined in R4 via the system (9) with fixed
α. Hence I7(α) is a convex bounded polyhedron in R4. We also set D7(α) = ι7(C7(α)). Since
ι7(ζα) = `α, we obtain that D7(α) = `α ∩ ∆7.

We consider T7, ζα ' R4, C7(α), I7(α), `α, ∆7, and D7(α) as topological subspaces of the
corresponding ambient linear spaces, with topology induced by their standard topology. Moreover,
for each subset A of a topological space X we denote by Å its interior with respect to X. We note
that Å is the largest open set contained in A, see [3, § 1, no6].

Lemma 2. The minimal number of half-spaces in R4, whose intersection is the polyhedron I7(α)
is 8.

Proof. We can not omit any one of the inequalities in (9) formed by the free variables ξ5 = θ0,
ξ6 = θ1, ξ7 = θ2, and ξ8 = θ3. It turns out that the general solution of the linear system (5)
can also be written in terms of the free variables ξ1, ξ2, ξ3, and ξ4. In particular, neither of the
inequalities ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, and ξ4 ≥ 0, that define the polytope T7 can be omitted, too.

�
We define the point θ(α) ∈ R4 by the formulae

θ
(α)
0 = α1α2α3, θ

(α)
1 = (1− α1)α2α3, θ

(α)
2 = α1(1− α2)α3, θ

(α)
3 = α1α2(1− α3). (10)

Lemma 3. If α ∈ [0, 1]3, then θ(α) ∈ I7(α) and the following three statements are equivalent:
(i) One has α ∈ (0, 1)3.
(ii) One has θ(α) ∈ I̊7(α).
(iii) One has I̊7(α) 6= ∅.

Proof. The equalities θ1 + θ3 + θ4 − α1 = −α1(1− α2)(1− α3), θ1 + θ2 + θ4 − α2 = −α2(1−
α1)(1− α3), θ1 + θ2 + θ3 − α3 = −α3(1− α1)(1− α2), and 2θ1 + θ2 + θ3 + θ4 − α1 − α2 − α3 + 1 =
(1− α1)(1− α2)(1− α3) yield that the system (9) is satisfied if α ∈ [0, 1]3. If, in addition, α ∈ (0, 1)3,
then (9) with strict inequalities holds. Thus, the implication (i) =⇒ (ii) is also proved.

(ii) =⇒ (iii) This is trivial.
(iii) =⇒ (i) Let θ ∈ I̊7(α). Then ξk(θ) > 0, k = 1, . . . , 8, their sum is 1, and satisfy the linear

system (5). Therefore α ∈ (0, 1)3.
�

Theorem 1. (i) One has

I7(α) =



(0, 0, 0, 0) if at least two of α′is are 0
{0} × I(α2, α3)× {0} × {0} if α1 = 0, α2 > 0, α3 > 0
{0} × {0} × I(α1, α3)× {0} if α2 = 0, α1 > 0, α3 > 0
{0} × {0} × {0} × I(α1, α2) if α3 = 0, α1 > 0, α2 > 0
{α3} × {0} × {0} × {1− α3} if α1 = 1, α2 = 1, α3 > 0
{α2} × {0} × {1− α2} × {0} if α1 = 1, α3 = 1, α2 > 0
{α1} × {1− α1} × {0} × {0} if α2 = 1, α3 = 1, α1 > 0

{(α2 − θ3, 0, α3 − α2 + θ3, θ3)|θ3 ∈ I(α2,α3)} if α1 = 1, α2 > 0, α3 > 0
{(α3 − θ1, θ1, 0, α1 − α3 + θ1)|θ1 ∈ I(α3,α1)} if α2 = 1, α1 > 0, α3 > 0
{(α1 − θ2, α2 − α1 + θ2, θ2, 0)|θ2 ∈ I(α1,α2)} if α3 = 1, α1 > 0, α2 > 0

and I7(α) is a polytope in R4 if α ∈ (0, 1)3.
(ii) One has ι7(C̊7(α)) = D̊7(α) the interiors being with respect to affine spaces ζα and `α,

respectively.

Proof. (i) The systems (5) and (9) imply the equalities. In case α ∈ (0, 1)3, Lemma 3 yields
that the bounded convex polyhedron I7(α) in R4 has non-empty interior. In other words, it is a
polytope.
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(ii) It is enough to note that the (affine) restriction ι
(α)
7 : ζα → `α is, in particular, a homeomor-

phism.
�

Corollary 1. Let α ∈ R3.
(i) The system of constraint conditions 0 ≤ ξk(θ) ≤ 1, k = 1, . . . , 8, on the solutions (6) of linear

system (5) is equivalent to the property θ ∈ I7(α).
(ii) One has 0 < ξk(θ) < 1, k = 1, . . . , 8, if and only if θ ∈ I̊7(α).

Proof. (i) The equalities C7(α) = ζα ∩ T7 and D7(α) = `α ∩ ∆7 imply part (i). We have
C̊7(α) = ζα ∩ T̊7 and D̊7(α) = `α ∩ ∆̊7, where the interiors T̊7 and ∆̊7 are with respect to affine
spaces R7 and H7, respectively. Now, Theorem 1, (ii), yields part (ii).

�
We have R(α) ⊂ I7(α) and define I(·)7 (α) = R(α). The dotted polytope C(·)

7 (α) = {α} × I(·)7 (α),
(α) ∈ R3, is the locus of all 7-tuples of probabilities (α, θ(A)), where A ∈ [(α)].

By plugging θ(α) in the formulae (6), we obtain the point ξ(α) ∈ H7 with coordinates

ξ
(α)
1 = α1(1− α2)(1− α3), ξ

(α)
2 = (1− α1)α2(1− α3),

ξ
(α)
3 = (1− α1)(1− α2)α3, ξ

(α)
4 = (1− α1)(1− α2)(1− α3),

ξ
(α)
5 = α1α2α3, ξ

(α)
6 = (1− α1)α2α3, ξ

(α)
7 = α1(1− α2)α3, ξ

(α)
8 = α1α2(1− α3).

Let U3 be the rational 3-dimensional algebraic manifold defined in R7 by the equations (10). In
other words, U3 is the locus of the points in R7 of the form (α, θ(α)), α ∈ R3. Let us denote
W3 = ι7(U3), so W3 is the locus of the points ξ(α), α ∈ R3, in H7. Then χ7(W3) = U3, W3 is an
algebraic subvariety of H7, and the restrictions of ι7 and χ7 on U3 and W3, respectively, form a
pair of mutually inverse isomorphisms of 3-dimensional rational algebraic manifolds. Moreover,
W3 ∩ `α = {ξ(α)} for any α ∈ R3. Let us denote κ3 = ι3 ◦ δ3, where δ3 is the isomorphism of
algebraic manifolds R3 → U3, α 7→ (α, θ(α)). Therefore, κ3 : R3 → W3 is also an isomorphism of
algebraic manifolds.

We have the product vector bundle with total space R7, base R3, projection (α, θ) 7→ α, and
fibre ζα. Now, we transport the structure of fibre bundle by means of the pair of isomorphisms
(ι7, κ3) to H7 and W3, thus obtaining a structure of vector bundle with total space H7, base W3,
projection π : H7 → W3, with π−1(ξ(α)) = `α. Via restriction we obtain a fibre bundle with
total space T7, base [0, 1]3, projection (α, θ) 7→ α, and fibre C7(α), as well as a fibre bundle with
total space ∆7 and base w3 = κ3([0, 1]3). Combining the equality ι7(C7(α)) = D7(α), Lemma 3,
and Theorem 1, (ii), we obtain that if α ∈ [0, 1]3 (respectively, α ∈ (0, 1)3), then ξ(α) ∈ D7(α)
(respectively, ξ(α) ∈ D̊7(α)). Thus, w3 ∩ D7(α) = {ξ(α)} and the projection π : ∆7 → w3 has
fibres π−1(ξ(α)) = D7(α). Moreover, the restriction of the pair (ι7, κ3) is an isomorphism of fibre
bundles.

For the sake of transparency, we note that T7 = ∪
(α)∈[0,1]3 C7(α), ∆7 = ∪

(α)∈[0,1]3 D7(α). The

unions T(·)
7 = ∪(α)∈R3 C(·)

7 (α), ∆(·)
7 = ∪(α)∈R3 D(·)

7 (α) are the corresponding dotted polytopes.
The above considerations yield the following classification theorem:

Theorem 2. (i) The affine isomorphism ι7 : R7 → H7 transforms any polytope C7(α) (resp., dotted
polytope C(·)

7 (α)) onto the polytope D7(α) (resp., onto the dotted polytope D(·)
7 (α)).

(ii) The dotted polytope C(·)
7 (α) is the classification space of all Yule’s triples of type [(α, θ)].

The dotted polytope ∆(·)
7 (α) is the classification space of all probability distributions (1) produced

by Yule’s triples of type [(α, θ)].
(iii) ι7 maps the polytope T7 (resp., dotted polytope T(·)

7 ) onto the polytope ∆7 (resp., onto the

dotted polytope ∆(·)
7 ).

(iv) The dotted polytope T(·)
7 is the classification space of all Yule’s triples. The dotted polytope

∆(·)
7 is the classification space of all probability distributions produced by Yule’s triples.
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5. Entropy and Dependence of Yule’s Triples

In this section we suppose α ∈ (0, 1)3, that is (Lemma 3), I̊7(α) 6= ∅.

5.1. The Entropy Function

The function E : ∆̊7 → R, E(ξ) = −∑8
k=1 ξk ln ξk, is strictly concave since the open simplex ∆̊7

is convex and all of its "entropy" summands E(k)(ξ) = −ξk ln ξk are strictly concave. Let us fix
α ∈ (0, 1)3 and let

Eα(θ) =
8

∑
k=1

E(k)
α (θ), E(k)

α (θ) = −ξk(θ) ln ξk(θ), (11)

be the composition of E with the affine isomorphism ι
(α)
7 : Eα(θ) = E(ι(α)7 (θ)). In accord with

Corollary 1, (ii), the entropy function (11) of the experiment J3 has I̊7(α) as a natural domain:
Eα : I̊7(α)→ R.

Lemma 4. (i) The entropy function Eα is a strictly concave function.
(ii) The entropy function Eα can be extended as continuous at I7(α) and this extension Êα is

unique.
(iii) The continuous extension Êα of Eα at I7(α) is also a strictly concave function.

Proof. Note that the polytope I7(α) and its interior I̊7(α) are bounded convex sets.
(i) The function Eα is composition of the affine map ι

(α)
7 followed by the strictly concave

function E(ξ).
(ii) We apply [3, § 8, no5, Theorem 1].
(iii) The point θ(0) belongs to the frontier of the polytope I7(α) if and only if ξk(θ

(0)) = 0 for
indices k from some set K and ξk(θ

(0)) > 0 for the rest of the indices, where k = 1, . . . , 8. Moreover,
for any k ∈ K we have E(k)(θ)→ 0 when θ → θ(0), θ ∈ I̊7(α). In other words, Ê(k)(θ(0)) = 0.

A boundary transition yields that Êα is a concave function. Moreover, since there are indices
k /∈ K, the function Eα is strictly concave. Indeed, let θ(1) ∈ I̊7(α) and λ ∈ (0, 1). In accord with [2,
Ch. 11, Lemma 11.2.4], we have (1− λ)θ(0) + λθ(1) ∈ I̊7(α), hence

Ê(k)((1− λ)θ(0) + λθ(1)) = E(k)((1− λ)θ(0) + λθ(1)) < (1− λ)E(k)(θ(0)) + λE(k)(θ(1))

for any k = 1, . . . , 8.
In case k /∈ K we have Ê(k)(θ(0)) = E(k)(θ(0)) and we are done. Now, let k ∈ K and let θ → θ(0),

θ ∈ I̊7(α). We obtain

Ê(k)((1− λ)θ(0) + λθ(1)) = lim
θ→θ(0)

E(k)((1− λ)θ + λθ(1)) ≤

(1− λ) lim
θ→θ(0)

E(k)(θ) + λE(k)(θ(1)) = (1− λ)Ê(k)(θ(0)) + λÊ(k)(θ(1)).

�
The symmetric group S3 acts on the entropy functions Eα(θ) by the rule σEα(θ) = Eα(σ−1θ),

σ ∈ S3.

Lemma 5. If σ ∈ S3, then Eσα(θ) = σEα(θ) and I7(σα) = σθ I7(α).

Proof. (i) According to Lemma 1, we have σ−1Eσα(θ) = Eσα(σθ) = E(ι(σα)
7 (σθ)) = E(ι7(σα, σθ)) =

E(σι7(α, θ)) = E(ι7(α, θ)) = Eα(θ). Finally, the domain of σEα(θ) is the polytope σθ I7(α) and we
obtain I7(σα) = σθ I7(α).

�

Corollary 2. Let σ ∈ S3.
(i) One has Êσα(σθ) = Êα(θ).
(ii) All permutations of the members of Yule’s triple A = (A1, A2, A3) have the same entropy:

If A ∈ [(α)], then σA ∈ [(σα)] and Êσα(θ(σA)) = Êα(θ(A)).
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Proof. (i) Let θ(0) be point from the frontier of the polytope I7(α). Then σθ(0) is point from the
frontier of the polytope I7(σα) with interior σθ I̊7(α). We have θ → θ(0), θ ∈ I̊7(α), if and only if
σθ → σθ(0), σθ ∈ σ I̊7(α). The equality from Lemma 5 can be written in the form Eσα(σθ) = Eα(θ)
and a boundary transition yields the result.

(ii) Implied by part (i).
�

5.2. The Entropy Function and its Critical Points

For any θ ∈ I̊7(α) we obtain

∂Eα(θ)

∂θ0
= ln

ξ1(θ)ξ2(θ)ξ3(θ)

ξ2
4(θ)ξ5(θ)

,
∂Eα(θ)

∂θ1
= ln

ξ2(θ)ξ3(θ)

ξ4(θ)ξ6(θ)
,

∂Eα(θ)

∂θ2
= ln

ξ1(θ)ξ3(θ)

ξ4(θ)ξ7(θ)
,

∂Eα(θ)

∂θ3
= ln

ξ1(θ)ξ2(θ)

ξ4(θ)ξ8(θ)
.

Thus, the set of critical points of the function Eα(θ) is the intersection of the interior I̊7(α) ⊂ R4

and the algebraic variety in R4 with equations

ξ1(θ)ξ2(θ)ξ3(θ)− ξ2
4(θ)ξ5(θ) = 0, ξ2(θ)ξ3(θ)− ξ4(θ)ξ6(θ) = 0,

ξ1(θ)ξ3(θ)− ξ4(θ)ξ7(θ) = 0, ξ1(θ)ξ2(θ)− ξ4(θ)ξ8(θ) = 0.

Lemma 6. (i) The point θ(α) is a critical point of the entropy function Eα.
(ii) One has

Eα(θ
(α)) = − ln

(
αα1

1 αα2
2 αα3

3 (1− α1)
1−α1(1− α2)

1−α2(1− α3)
1−α3

)
.

Proof. (i) We have

ξ
(α)
1 ξ

(α)
2 ξ

(α)
3 −

(
ξ
(α)
4

)2
ξ
(α)
5 =

α1(1− α2)(1− α3)(1− α1)α2(1− α3)(1− α1)(1− α2)α3−

(1− α1)
2(1− α2)

2(1− α3)
2α1α2α3 = 0,

ξ
(α)
2 ξ

(α)
3 − ξ

(α)
4 ξ

(α)
6 =

(1− α1)α2(1− α3)(1− α1)(1− α2)α3 − (1− α1)(1− α2)(1− α3)(1− α1)α2α3 = 0,

ξ
(α)
1 ξ

(α)
3 − ξ

(α)
4 ξ

(α)
7 =

α1(1− α2)(1− α3)(1− α1)(1− α2)α3 − (1− α1)(1− α2)(1− α3)α1(1− α2)α3 = 0,

ξ
(α)
1 ξ

(α)
2 − ξ

(α)
4 ξ

(α)
8 =

α1(1− α2)(1− α3)(1− α1)α2(1− α3)− (1− α1)(1− α2)(1− α3)α1α2(1− α3) = 0.

(ii) We have

−Eα(θ
(α)) = −E(ξ(α)) =

8

∑
k=1

ξ
(α)
k ln ξ

(α)
k =

ξ
(α)
1 ln(α1(1− α2)(1− α3)) + ξ

(α)
2 ln((1− α1)α2(1− α3))+

ξ
(α)
3 ln((1− α1)(1− α2)α3) + ξ

(α)
4 ln((1− α1)(1− α2)(1− α3))+

ξ
(α)
5 ln(α1α2α3) + ξ

(α)
6 ln((1− α1)α2α3)+

ξ
(α)
7 ln(α1(1− α2)α3) + ξ

(α)
8 ln(α1α2(1− α3)) =

(ξ
(α)
1 + ξ

(α)
5 + ξ

(α)
7 + ξ

(α)
8 ) ln α1 + (ξ

(α)
2 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
8 ) ln α2+
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(ξ
(α)
3 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
7 ) ln α3 + (ξ

(α)
2 + ξ

(α)
5 + ξ

(α)
6 + ξ

(α)
8 ) ln(1− α1)+

(ξ
(α)
1 + ξ

(α)
3 + ξ

(α)
4 + ξ

(α)
7 ) ln(1− α2) + (ξ

(α)
1 + ξ

(α)
2 + ξ

(α)
4 + ξ

(α)
8 ) ln(1− α3) =

ln
(

αα1
1 αα2

2 αα3
3 (1− α1)

1−α1(1− α2)
1−α2(1− α3)

1−α3
)

.

�

5.3. The Entropy Function and its Second Derivative

Given k, k = 1, . . . , 8, the Hessian of the function E(k)
α (θ), θ ∈ I̊7(α), is the 4× 4 symmetric matrix

H(k)(θ) = ( ∂2E(k)
α

∂θi∂θj
(θ))4

i,j=1, where ∂2E(k)
α

∂θi∂θj
(θ) = − ∂ξk(θ)

∂θi

∂ξk(θ)
∂θj

1
ξk(θ)

. Then the Hessian H(θ) of the

entropy function Eα(θ) is the 4× 4 symmetric matrix H(θ) = ∑8
k=1H(k)(θ). In accord with [4,

Ch. 3, 3.1.4], since the functions E(k)
α (θ) are strictly concave, the corresponding quadratic forms

tτH(k)(θ)τ are negative semi-definite: tτH(k)(θ)τ ≤ 0 for all τ ∈ R4. In particular, the quadratic
form tτH(θ)τ = ∑8

k=1
tτH(k)(θ)τ is negative semi-definite. Moreover, since tτH(5)(θ)τ = − 1

θ0
τ2

1 ,
tτH(6)(θ)τ = − 1

θ1
τ2

2 , tτH(7)(θ)τ = − 1
θ2

τ2
3 , and tτH(8)(θ)τ = − 1

θ3
τ2

4 , the quadratic form tτH(θ)τ

is negative definite for any θ ∈ I̊7(α) and we obtain

Lemma 7. The set of local maximums of the entropy function Eα(θ) coincides with the set of its
critical points.

The compactness of the polytope I7(α) yields that the extended entropy function Êα(θ) attains
its absolute maximum and absolute minimum.

Theorem 3. The extended entropy function Êα(θ) has a unique absolute maximum attained at
the point θ(α) from (10).

Proof. Lemma 6 and Lemma 7 yield that the entropy function Eα(θ) and, therefore, also the
extended entropy function Êα(θ), has a local maximum at the point θ(α). In accord with Lemma 4
and Lemma 10, Êα(θ) has a unique absolute maximum at θ(α).

�

Theorem 4. If the extended entropy function Êα(θ) attains an absolute minimum at some point
from the polytope I7(α), then this point is a vertex of I7(α).

Proof. Lemma 2 allows us to use [2, Theorem 12.1.5, 12.1.8, Proposition 12.1.9] and we
conclude that since the restriction of Êα(θ) on an i-face, i = 1, 2, 3, of the polytope I7(α) is also a
strictly concave function, we can apply at most four times Lemma 11.

�
The continuous extension Êα(θ), θ ∈ I7(α), of the entropy function Eα(θ), θ ∈ I̊7(α), is said to

be the extended entropy function of Yule’s triples of type [(α)].

6. Degree of Mutual Dependence of a Triple of Events

6.1. Two Motivation Statements

Lemma 8. The three components of the Yule’s triple A = (A1, A2, A3) are mutually independent
if and only if θ(A) = θ(α).

Proof. In accord with [8, I,§5, (4)], the events A1, A2, A3 are mutually independent if and
only if Pr(Ai ∩ Aj) = Pr(Ai)Pr(Aj), 1 ≤ i < j ≤ 3, Pr(A1 ∩ A2 ∩ A3) = Pr(A1)Pr(A2)Pr(A3).
Using (2), we write these conditions in the form∣∣∣∣∣∣∣∣

θ0 + θ1 = α2α3
θ0 + θ2 = α1α3
θ0 + θ3 = α1α2
θ0 = α1α2α3.
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The point θ(α) from (10) is the unique solution of this system.
�

Now, we suppose, in addition, that (Ω,A, Pr) is a discrete uniform probability space. The faces
of the polytope I7(α) ⊂ R4 are parts of the hyperplanes with equations ξk(θ) = 0, k = 1, . . . , 8.
According to (1), the following equivalences hold:

Lemma 9. Let A = (A1, A2, A3) be a Yule’s triple of events. One has:

ξ1(θ
(A)) = 0 iff A1 ⊂ A2 ∪ A3, ξ2(θ

(A)) = 0 iff A2 ⊂ A1 ∪ A3,

ξ3(θ
(A)) = 0 iff A3 ⊂ A1 ∪ A2, ξ4(θ

(A)) = 0 iff Ac
1 ⊂ A2 ∪ A3,

ξ5(θ
(A)) = 0 iff A1 ∩ A2 ⊂ Ac

3, ξ6(θ
(A)) = 0 iff A2 ∩ A3 ⊂ A1,

ξ7(θ
(A)) = 0 iff A1 ∩ A3 ⊂ A2, ξ8(θ

(A)) = 0 iff A1 ∩ A2 ⊂ A3.

6.2. Definition of Degree of Mutual Dependence

The value of extended entropy function Êα(θ) of Yule’s triples of type [(α)] at θ = θ(A) is called
entropy of Yule’s triple A = (A1, A2, A3) of type [(α)]. In accord with Corollary 2, the entropy does
not depend on the order of the components of A. This fact together with the opposites described
in Lemmas 8 and 9 motivate the use of the extended entropy function Êα(θ) as a measure of
strength of mutual dependence of three events A1, A2, A3.

Let us denote by M the absolute maximum Êα(θ(α)) and let m be the absolute minimum of
Êα(θ), attained at some vertex of the polytope I7(α), see Theorems 3 and 4. The former also yields
that m < M.

Following [6, 5.2], for any θ ∈ I7(α) we define eα : I7(α)→ [0, 1], eα(θ) =
Êα(θ)−M

m−M . The value of
the function eα at θ ∈ I7(α), θ = θ(A), A = (A1, A2, A3), is said to be degree of mutual dependence of
the events A1, A2, A3, with α1 = Pr(A1), α2 = Pr(A2), α3 = Pr(A3). Intuitively, eα(θ(A)) measures
the strength of the mutual relations among the events A1, A2, A3.

The above definition of eα yields

Corollary 3. The degree of mutual dependence of three events does not depend on the choice of
base of logarithms in the extended entropy function.

Example 5. In case α = ( 1
10 , 1

5 , 3
10 ) the polytope I7(α) has 12 vertices

v1,2,3,8, v1,2,5,8, v1,3,5,8, v2,3,5,8, v1,2,3,5, v1,2,5,7,

v1,2,7,8, v1,5,6,7, v1,5,6,8, v1,6,7,8, v2,5,7,8, v5,6,7,8.

Here by vk1,k2,k3,k4 we denote the vertex which is the intersection point of the hyperplanes with
equations ξk1 = 0, ξk2 = 0, ξk3 = 0, and ξk4 = 0. At the first four vertices the extended entropy
function attains its absolute minimum (approximately equal to 0.8018185525433372). Equivalently,
we have

eα(v1,2,3,8) = eα(v1,2,5,8) = eα(v1,3,5,8) = eα(v2,3,5,8) = 1.

On the other hand, let, for example, the vertex v1,3,5,8 belongs to the dotted polytope I(·)7 (α), that
is, let θ(A) = v1,3,5,8, where A = (A1, A2, A3) is a Yule’s triple.

Moreover, let us assume that (Ω,A, Pr) is a sample space with equally likely outcomes. In
accord with Lemma 9, we can conclude that the system of set-theoretic relations

A1 ⊂ A2 ∪ A3, A3 ⊂ A1 ∪ A2, A1 ∩ A2 ⊂ Ac
3, A1 ∩ A2 ⊂ A3,

or equivalently, the system of relations A3 ⊂ A1 ∪ A2, A1 ⊂ A3 ∩ Ac
2, is one of the most powerful

under the condition α = ( 1
10 , 1

5 , 3
10 ).

On the other hand, v1,3,5,8 is again a vertex in case α = ( 1
5 , 3

10 , 2
5 ) but now the above system of

relations is not the most powerful one: eα(v1,3,5,8) < 1.
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Example 6. [9, Section 3, 3.2], (Bernstein 1928) Let us consider a sample space with four equally
likely outcomes 112, 121, 211, 222. The events A1 = {112, 121}, A2 = {112, 211}, A3 = {121, 211},
are pairwise independent but not mutually independent because A1 ∩ A2 ∩ A3 = ∅. Below
we evaluate their degree of mutual dependence. We set A = (A1, A2, A3) and note that α =

( 1
2 , 1

2 , 1
2 ). Using (1), we obtain ξ

(A)
1 = ξ

(A)
2 = ξ

(A)
3 = ξ

(A)
5 = 0, ξ

(A)
4 = ξ

(A)
6 = ξ

(A)
7 = ξ

(A)
8 = 1

4 .
Therefore Êα(θ(A)) = −2 ln 1

2 . On the other hand, the polytope I7(α) has 50 vertices and the
extended entropy function Êα(θ) attains its absolute minimum m = − ln 1

2 at 48 of them. Since
M = Êα(ξ(α)) = −3 ln 1

2 , we have eα(θ(A)) = 1
2 .

Remark 1. One can find below the link to a Java program which calculates the degree of mutual
dependence of three events in a sample space with equally likely outcomes:

http://www.math.bas.bg/algebra/valentiniliev/

7. Conclusions

This paper finishes the trilogy that begins with [6] and [7]. It presents an original approach to
the problem of measuring the magnitude of dependence of several events in a probability space,
which rests upon Boltzmann-Shannon entropy of a probability distributions produced by these
events. The first two parts are devoted to the fundamental case of two events where, for a given
level of entropy intensity, one can discern negative from positive dependence, thus defining a
direction. Moreover, the function of dependence of two events is closely related to the information
exchanged between the two binary trials generated by these events.

The case of three events is studied here and this examination shows, in particular, that the
general case of a finite number of events differs only in technical difficulties.

A. Appendix

A.1. Folklore Results about Extrema
of a Concave Function

Our source of definitions and results about convex sets is [1, Ch. 11].
Let C ⊂ Rn. We remind that the function f : C → R is said to be concave (respectively, strictly

concave) if C is a convex set and for any two different points c1, c2 ∈ C and any λ ∈ (0, 1) one has
f ((1− λ)c1 + λc2) ≥ (1− λ) f (c1) + λ f (c2) (respectively, f ((1− λ)c1 + λc2) > (1− λ) f (c1) +
λ f (c2)).

Lemma 10. (i) Any local maximum point of a concave function is an absolute one.
(ii) There exists at most one local maximum point of a strictly convex function.
(iii) There exists at most one absolute maximum point of a strictly concave function.

Proof. Let f : C → R be a concave function.
(i) Let c0 ∈ C be a point at which f attains a local maximum and let U ⊂ C be a neighbourhood

of c0 such that f (c0) ≤ f (c) for all c ∈ U. Let us suppose that there exists a point c1 ∈ C such
that f (c1) > f (c0). Then f ((1− λ)c0 + λc1) ≤ (1− λ) f (c0) + λ f (c1) > f (c0) for all λ ∈ (0, 1).
If λ is sufficiently close to 0, then f ((1− λ)c0 + λc1) ∈ U and hence f ((1− λ)c0 + λc1) ≥ f (c0)
which is a contradiction.

(ii) Let, in addition, f be strictly concave and c1, c2 ∈ C be two different points at which f
attains a local maximum. In accord with part (i), we have f (c1) = f (c2) and then f ((1− λ)c1 +
λc2) > (1− λ) f (c1) + λ f (c2) = f (c1) for all λ ∈ (0, 1). Since f attains an absolute maximum at
c1, this is a contradiction.

Part (ii) implies part (iii).
�
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Lemma 11. Let f : C → R be a strictly concave function and let for any point c ∈ C̊ there exists
an open line segment Wc such that c ∈Wc ⊂ C. If f attains an absolute minimum at c0 ∈ C, then
c0 /∈ C̊.

Proof. Let us suppose that c0 ∈ C̊ and let the points c1, c2 ∈ Wc, c1 6= c2, be such that
c0 = (1− λ)c1 + λc2 for some λ ∈ (0, 1). Then f (c1) ≥ f (c0), f (c2) ≥ f (c0), and f (c0) = f ((1−
λ)c1 + λc2) > (1− λ) f (c1) + λ f (c2) ≥ (1− λ) f (c0) + λ f (c0) = f (c0), which is a contradiction.

�
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Abstract

In this research paper, we have proposed the Power Length Biased Weighted Lomax Distribu-
tion(PLBWLD) as a new probability model . Moments, moment generating function, characteristic
function, cumulant generating function, and reliability analysis such as survival function, hazard rate,
reverse hazard rate, cumulative hazard function, and mills ratio are among the statistical features of
PLBWLD that have been obtained here. Order statistics and PLBWLD’s generalized entropy are also
calculated. Maximum likelihood estimation is used to estimate the parameters of the model. Finally for
demonstration purposes an application to the real data sets is provided to understand the new probability
model’s performance and flexibility.

Keywords: Length biased weighted Lomax distribution, power length biased weighted Lomax
distribution, hazard rate function, moments, maximum likelihood estimation, order statistics,
generalized entropy.

1. Introduction

Pareto distribution of second type is another name for the Lomax distribution. Lomax distribution
was first used to model the failure rate of businesses by Lomax [8]. In the literature, the Lomax
distribution has been employed in a variety of ways. According to Balkema and de Haan[3], it has
been extensively utilized for life testing and reliability modeling including insurance, actuarial,
demographics, economics, medical sciences, finance and engineering. The number of novel
models with a high degree of flexibility is growing year after year. As a result, the researchers
have shifted their focus to create new families of distributions and propose a variety of new
families of distributions in order to better examine and investigate real-world data in various
applications. Statistical distributions have gained a lot of attention recently as researchers try to
figure out how to create flexible models for modelling a variety of data sets. It is because the
classical distributions aren’t very good at modelling data sets with a lot of variation. As a result,
generalised probability models continue to grow and expand. In recent years, designing a new
probability model from previously established models using various methodologies has gained
a lot of attention. The power transformation technique, in which an extra parameter is added
to the parent distribution, is one such strategy employed by several researchers. The addition
of an extra parameter to the parent model usually increases the goodness of fit and gives more
flexibility. Krishnarani [6] , Zaka and Akhter [9] are few of the researchers who have worked
on power generalization of probability models. The concept of weighted distributions was first
developed by Fisher [5].
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If X is a non-negative random variable with the probability density function f (x), then the
probability density function of the weighted random variable Xw is given by

fw(x) =
w(x) f (x)
E(w(x))

; x ≥ 0

When w(x) = x, the resultant distribution is clearly length biased, with a probability density
function given as;

fL(x) =
x f (x)
E(x)

; x ≥ 0

If the random variable X has the length biased weighted Lomax distribution with shape parameter
η and scale parameter λ respectively, then it’s probability density function(pdf) and cumulative
distribution function (cdf) proposed by Ahmad et al. [1] , are respectively given as

f (x; η, λ) =
η(η − 1)

λ2 x
(

1 +
x
λ

)−(η+1)
; x > 0, η > 1, λ > 0

F(x; η, λ) = 1−
(

1 +
x
λ

)−η (
1 +

xη

λ

)
; x > 0, η > 1, λ > 0

2. POWER LENGTH BIASED WEIGHTED LOMAX DISTRIBUTION(PLBWLD)

The primary goal of this research paper is to improve the flexibility of the length biased weighted
Lomax distribution by developing an expanded version of the model using power transformation
technique. Suppose the random variable X assumes the length biased weighted Lomax distribu-

tion with parameters η and λ, then the transformed variable V = X
1
β will follow power length

biased weighted Lomax distribution with parameters η, β and λ.
The probability density function of the power length biased weighted Lomax distribution is
obtained as;

f (v; η, β, λ) =
η(η − 1)β

λ2 v2β−1
(

1 +
vβ

λ

)−(η+1)

; x > 0, η > 1, λ, β > 0 (1)

The cumulative distribution function of the power length biased weighted Lomax distribution is
obtained as

F(v; η, β, λ) = 1−
(

1 +
vβ

λ

)−η (
1 +

vβη

λ

)
(2)

For the visual illustration of the possible shapes of pdf and cdf of PLBWLD, Figure 1 and Figure
2 have been plotted. Plots of the survival function and hazard rate function of the PLBWLD
distribution for different parameter values are also displayed in Figure 3
Remark: For β = 1 in 1, we obtain the length biased weighted Lomax distrbution.

3. RELIABILITY ANALYSIS OF THE POWER LENGTH BIASED WEIGHTED
LOMAX DISTRIBUTION(PLBWLD)

This section focuses on obtaining the reliability (survival function), hazard rate (failure rate),
reverse hazard function, cumulative hazard function and mills ratio expressions respectively for
PLBWLD.

3.1. Survival function

The survival function or reliability function is the complement of the cumulative distribution
function and it is defined as the probability that a system will survive beyond a specified time
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Figure 1: Pdf Plots of the PLBWLD density for various values of η , β and λ.
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Figure 2: Distribution function Plots of the PLBWLD for various values of η , β and λ.

and is obtained for the PLBWLD as

R(v; η, β, λ) = 1− F(v; η, β, λ) =

(
1 +

vβ

λ

)−η (
1 +

vβη

λ

)
(3)

3.2. Hazard Rate

Hazard rate also known as hazard function , force of mortality or failure rate. The Hazard rate
assess the ability of a lifetime component to fail or to expire depending on the life completed and
thus has wide variety of applications in lifetime distributions. Using (1) and (3), the expression
for the hazard rate of PLBWLD is obtained as

h(v; η, β, λ) =
f (v; η, β, λ)

R(v; η, β, λ)
=

η(η − 1)β

λ2 v2β−1
(

1 +
vβ

λ

)−1 (
1 +

vβη

λ

)−1

(4)
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Figure 3: Survival function and Hazard Rate Plots of the PLBWLD for various values of η , β and λ.

3.3. Reverse Hazard function

The concept of reversed hazard rate of a random life is defined as the ratio between the life
probability density to its distribution function . It is expressed as

hr(v; η, β, λ) =
f (v; η, β, λ)

F(v; η, β, λ)

Using equation (1) and (2) , the reverse hazard function for the Power length biased weighted
Lomax distribution is obtained as

hr(v; η, β, λ) =

η(η−1)β
λ2 v2β−1

(
1 + vβ

λ

)−(η+1)

1−
(

1 + vβ

λ

)−η (
1 + vβη

λ

) (5)

3.4. Cumulative Hazard function

The cumulative hazard function can be thought of as providing the total accumulated risk of
experiencing the event of interest that has been gained by progressing to time t. The cumulative
hazard function for the PLBWLD is defined as

ΛPLBWLD(v; η, β, λ) = − log R(v; η, β, λ)

ΛPLBWLD(v; η, β, λ) = log


(

1 + vβ

λ

)η

(
1 + vβη

λ

)
 (6)

3.5. Mills Ratio

The mills ratio for the power length biased weighted Lomax distribution is defined as

M.R =
F(v; η, β, λ)

R(v; η, β, λ)
=

1(
1 + vβ

λ

)−η (
1 + vβη

λ

) − 1 (7)
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4. RESIDUAL AND REVERSED RESIDUAL LIFE FUNCTIONS OF THE
POWER LENGTH BIASED WEIGHTED LOMAX DISTRIBUTION(PLBWLD)

4.1. Residual life function

In life testing situations, the additional lifetime given that a component has survived until time t
is called residual life function. More specifically, if v is the life of a component, then the random
variable r(t) = (v− t|v > t); t ≥ 0 is used to explain the residual life of a lifetime component. For
the PLBWLD, the survival function of the residual life time r(t), t ≥ 0 is defined as

Rr(t)(v; η, β, λ) =
R(v + t)

R(v)

Rr(t)(v; η, β, λ) =

(
1 +

(v + t)β

λ

)−η (
1 +

(v + t)βη

λ

)(
1 +

tβ

λ

)η (
1 +

tβη

λ

)−1

(8)

For the residual life time random variable r(t), t ≥ 0, the cdf and pdf are respectively obtained as

Fr(t)(v; η, β, λ) = 1− Rr(t)(v; η, β, λ)

Fr(t)(v; η, β, λ) = 1−
(

1 +
(v + t)β

λ

)−η (
1 +

(v + t)βη

λ

)(
1 +

tβ

λ

)η (
1 +

tβη

λ

)−1

(9)

On differentiating the above equation w.r.t v, we obtain

fr(t)(v; η, β, λ) =
l −m

n2 (10)

where

l =
(

1 +
(v + t)β

λ

)−η (
1 +

(v + t)βη

λ

)(
1 +

tβ

λ

)−η
θ

λ
βtβ−1

[
1−

(
1 +

tβη

λ

)(
1 +

tβ

λ

)−1]

m =

(
1 +

tβ

λ

)−η (
1 +

tβη

λ

)(
1 +

(v + t)β

λ

)−η
θ

λ
β(v + t)β−1

[
1−

(
1 +

(v + t)βη

λ

)(
1 +

(v + t)β

λ

)−1]

n =

[(
1 +

tβη

λ

)(
1 +

tβ

λ

)−η
]2

Also, the associated failure rate of r(t), t ≥ 0 for the power length biased weighted Lomax
distribution is given by

hr(t)(v; η, β, λ) =
fr(t)(v; η, β, λ)

Rr(t)(v; η, β, λ)

hr(t)(v; η, β, λ) =

(
l −m

n2

)(
1 +

(v + t)β

λ

)η (
1 +

(v + t)βη

λ

)−1(
1 +

tβ

λ

)−η (
1 +

tβη

λ

)1

(11)

where

l =
(

1 +
(v + t)β

λ

)−η (
1 +

(v + t)βη

λ

)(
1 +

tβ

λ

)−η
θ

λ
βtβ−1

[
1−

(
1 +

tβη

λ

)(
1 +

tβ

λ

)−1]
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m =

(
1 +

tβ

λ

)−η (
1 +

tβη

λ

)(
1 +

(v + t)β

λ

)−η
θ

λ
β(v + t)β−1

[
1−

(
1 +

(v + t)βη

λ

)(
1 +

(v + t)β

λ

)−1]

n =

[(
1 +

tβη

λ

)(
1 +

tβ

λ

)−η
]2

4.2. Reversed Residual life function

The random variable ¯r(t) = (t− v|v ≤ t); t ≥ 0 is used to explain the residual life of a lifetime
component . For the power length biased weighted Lomax distribution , the survival function of
the reversed residual life time ¯r(t), t ≥ 0 is defined as

R ¯r(t)(v; η, β, λ) =
F(t− v)

F(t)

R ¯r(t)(v; η, β, λ) =
1−

(
1 + (t−v)β

λ

)−η (
1 + (t−v)βη

λ

)
1−

(
1 + tβ

λ

)−η (
1 + tβη

λ

) (12)

For the reversed residual life time random variable ¯r(t), t ≥ 0, the cdf of power length biased
weighted Lomax distribution is obtained as

F ¯r(t)(v; η, β, λ) = 1− R ¯r(t)(v; η, β, λ)

F ¯r(t)(v; η, β, λ) =


(

1 + (t−v)β

λ

)−η (
1 + (t−v)βη

λ

)
1−

(
1 + tβ

λ

)−η (
1 + tβη

λ

)
−


(

1 + tβ

λ

)−η (
1 + tβη

λ

)
1−

(
1 + tβ

λ

)−η (
1 + tβη

λ

)
 (13)

5. STATISTICAL PROPERTIES OF PLBWLD

This section is devoted to discuss the related measures of the new formulated model like raw
moments, central moments, measures of skewness, kurtosis, coefficient of variation, index of
dispersion, mode and harmonic mean.

5.1. Raw Moments

The rthmoment of the PLBWLD about origin µ
′
r is given by

µ
′
r = E(Vr) =

∞∫
0

vr f (v; η, β, λ)dv

Using (1) and further simplification, rthmoment of the PLBWLD about origin µ
′
r is obtained as

µ
′
r =

λ
r
β

(
r
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − r
β − 1)

(14)

Using equation(14) and substituting r = 1, 2, 3, 4 , the first four moments about origin of the
PLBWLD are obtained as

µ
′
1 =

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)

(15)
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The equation (15) represents the mean of the PLBWLD.

µ
′
2 =

λ
2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)
(16)

µ
′
3 =

λ
3
β

(
3
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)

(17)

µ
′
4 =

λ
4
β

(
4
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)(η − 4

β − 1)
(18)

5.2. Moments about Mean (Central Moments)

The moments about the mean, also known as central moments is defined as

µ2 = µ
′
2 − (µ

′
1)

2

using equations (15) and (16), we have

µ2 =
λ

2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)
−

λ
1
β

(
1
β + 1

)
!

(θ − 1
β − 1)


2

(19)

The equation(19) represents the variance of our new formulated model.

µ3 =
λ

3
β

(
3
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)

− 3
λ

2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)

+ 2

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)


3

(20)

µ4 =
λ

4
β

(
4
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)(η − 4

β − 1)
− 4

 λ
3
β

(
3
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)


λ

1
β

(
1
β + 1

)
!

(η − 1
β − 1)



+6

 λ
2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)


λ

1
β

(
1
β + 1

)
!

(η − 1
β − 1)

− 3

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)


4

The following four coefficients are obtained for the PLBWLD based upon the first four moments
about the mean and using the above expressions defined as:

β1 =
µ2

3

µ3
2

γ1 =
√

β1

β2 =
µ4

µ2
2

γ2 = β2 − 3
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β1 =

 λ
3
β
(

3
β +1

)
!

(η− 1
β−1)(η− 2

β−1)(η− 3
β−1)

− 3

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

+ 2

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

3


2

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2


3 (21)

We need another measure that is dependent on the sign of the third central moment since the
nature of skewness cannot be estimated using this relation.

γ1 =
√

β1

γ1 =

 λ
3
β
(

3
β +1

)
!

(η− 1
β−1)(η− 2

β−1)(η− 3
β−1)

− 3

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

+ 2

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

3
 λ

2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2


3
2

(22)

Also,

β2 =
µ4

(µ2)2 (23)

where

µ4 =
λ

4
β

(
4
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)(η − 4

β − 1)
− 4

 λ
3
β

(
3
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)(η − 3
β − 1)


λ

1
β

(
1
β + 1

)
!

(η − 1
β − 1)



+6

 λ
2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)


λ

1
β

(
1
β + 1

)
!

(η − 1
β − 1)

− 3

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)


4

And,

µ2 =
λ

2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)
−

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)


2

Again,

γ2 = β2 − 3

5.2.1 Coefficient of variation

CV =

√
µ2

µ
′
1

On using the equations (15) and(19), the coefficient of variation can be obtained for PLWLD.

C.V =

√√√√√ λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2

λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

(24)
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5.2.2 Index of Dispersion

The index of dispersion is defined as

D =
σ2

µ
′
1

Using the formula we obtain the index of dispersion for the PWLBWLD as

D =

λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2

λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

(25)

5.2.3 Mode

To discuss PLBWLD’s monotonicity, we use the logarithm of its probability density function as;

log f (v; η, β, λ) = log

{
η(η − 1)β

λ2 v2β−1
(

1 +
vβ

λ

)−(η+1)}
In order to find the value of mode, we differentiate the above equation w.r.t v and equate to zero,
it yields

v̂ =

{
(2β− 1)λ

(η − 2)β + 2

} 1
β

(26)

Equation (26) represents the modal value for the PLBWLD.

5.2.4 Harmonic Mean

The harmonic mean for the PLBWLD is defined as

E(V−1) = E(
1
V
) =

∞∫
0

1
v

f (v; η, β, λ)dv

=

∞∫
0

1
v

η(η − 1)β

λ2 v2β−1
(

1 +
vβ

λ

)−(η+1)

dv

on solving the integral and further simplification, we obtain the harmonic mean for PLBWLD as

H =
1

η(η − 1)λ−
1
β ∑
− 1

β +1
k=0 (−1)k+1(

− 1
β +1
k

)

(
1

− 1
β−η−k+1

) (27)

6. Moment Generating function, Characteristic function and cumulant

Generating function OF PLBWLD

6.1. Moment Generating Function

The moment generating function of PLBWLD distribution is defined as

Mv(t) =
∞∫

0

etv f (v)dv
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using the following series expansion

ex = 1 + x +
x2

2!
+ ...

Mv(t) =
∞

∑
r=0

tr

r!

∞∫
0

vr f (v; η, β, λ)dv

Using equation (14) we obtain the moment generating function for PLBWLD as

Mv(t) =
∞

∑
r=0

tr

r!

λ
r
β

(
r
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − r
β − 1)

(28)

6.2. Characteristic Function
The characteristic function for the PLBWLD can be obtained using the relation φv(t) = Mv(it)

φ(t) =
∞

∑
r=0

(it)r

r!

λ
r
β

(
r
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − r
β − 1)

(29)

6.3. Cumulant Function
The cumulant function for the PLBWLD is obtained by using the relation kv(t) = log Mv(it)

kv(t) = log
∞

∑
r=0

tr

r!

λ
r
β

(
r
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − r
β − 1)

(30)

7. Order Statistics of PLBWLD

The order statistics connected to the power length biased weighted Lomax distribution is devoted in this
section. Let V(t;n) be the tth order statistics with the random sample v(1), v(2), v(3), ...v(m) derived from the
PLBWLD having the probability density function (pdf) f (v; η, β, λ) and cumulative distribution function
(cdf) F(v; η, β, λ). Therefore, the probability density function (pdf) and cumulative distribution function (cdf)
of v(t;n) say f(t;n)(v) and F(t;n)(v) are respectively defined as

f(t;n)(v) =
n!

(t− 1)!(n− t)!
[F(v; η, β, λ)]t−1 [1− F(v; η, β, λ)]n−t f (v; η, β, λ) (31)

F(t;n)(v) =
n

∑
j=t

(
n
j

)
[F(v; η, β, λ)]j [1− F(v; η, β, λ)]n−j (32)

Using equation(1) and equation(2) in equation(31) and equation(32), the pdf and cdf of tth ordered statistics
for the PLBWLD are derived and are expressed as

f(t;n)(v) =
n!

(t− 1)!(n− t)!

1−
(

1 +
vβ

λ

)−η (
1 +

vβη

λ

)t−1 [
1 +

vβ

λ

)−η (
1 +

vβη

λ

]n−t

η(η − 1)β

λ2 v2β−1

(
1 +

vβ

λ

)−(η+1)

F(t;n)(v) =
n

∑
j=t

(
n
j

)1−
(

1 +
vβ

λ

)−η (
1 +

vβη

λ

)j (1 +
vβ

λ

)−η (
1 +

vβη

λ

)n−j
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In order to obtain the expression for pdf of smallest(minimum) order statistics v(1) and the largest (maximum)
order statistics v(m) of PLBWLD , we assume t = 1 and n respectively and are expressed in the form as

f(1;n)(v) = n

[
1 +

vβ

λ

)−η (
1 +

vβη

λ

]n−1
η(η − 1)β

λ2 v2β−1

(
1 +

vβ

λ

)−(η+1)

(33)

f(n;n)(v) = n

1−
(

1 +
vβ

λ

)−η (
1 +

vβη

λ

)n−1
η(η − 1)β

λ2 v2β−1

(
1 +

vβ

λ

)−(η+1)

(34)

7.1. Median order statistics
The pdf of median order statistics, v(n+1) is defined as

f(n+1;n)(v) =
(2n + 1)!

n!n!
[F(v; η, β, λ)]n [1− F(v; η, β, λ)]n f (v; η, β, λ)

f(n+1;n)(v) =
(2n + 1)!
(n)!(n)!

1−
(

1 +
vβ

λ

)−η (
1 +

vβη

λ

)n [
1 +

vβ

λ

)−η (
1 +

vβη

λ

]n

η(η − 1)β

λ2 v2β−1

(
1 +

vβ

λ

)−(η+1)

8. Characterization of PLBWLD

Theorem 1. Let v(1), v(2), ...v(n) be n independently and identically distributed random samples selected
from PLBWLD having a sample mean of v̄n and sample variance of s2

n then,

lim
n→∞

E( s2
n

v̄n
) =
(

σ
µ

)2

Proof: E(v̄n) = µ and var(v̄n) =
σ2

n

We know that

E(v̄n)
2 = var(v̄n) + [E(v̄n)]

2

E(v̄n)
2 =

1
n

 λ
2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)
−

λ
1
β

(
1
β + 1

)
!

(θ − 1
β − 1)


2+

λ
1
β

(
1
β + 1

)
!

(η − 1
β − 1)


2

since

E(s2
n) = σ2 =

 λ
2
β

(
2
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)
−

λ
1
β

(
1
β + 1

)
!

(θ − 1
β − 1)


2

Therefore

E
(

s2
n

v̄n2

)
=

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(θ− 1
β−1)

2


1
n

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(θ− 1
β−1)

2
+

 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2
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On taking the limits to both sides of the above equation , we have

lim
n→∞

E(
s2

n
v̄n

) =

 λ
2
β
(

2
β +1

)
!

(η− 1
β−1)(η− 2

β−1)
−

 λ
1
β
(

1
β +1

)
!

(θ− 1
β−1)

2


 λ
1
β
(

1
β +1

)
!

(η− 1
β−1)

2

lim
n→∞

E(
s2

n
v̄n

) =

(
σ

µ

)2

Hence , the above theorem is proved

9. Information measure of PLBWLD

Entropy is a quantitative measures of the amount of uncertainty in a random variable. This section is
dedicated to obtaining the PLBWLD generalized entropy expression.

Theorem 2. The generalized entropy for the PLBWLD is expressed as

I(α) =
1

α(α− 1)


(

α
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − α
β − 1)


(

η − 1
β − 1

)
( 1

β + 1)!


α

− 1


Proof:The generalized entropy is defined as

I(α) =
vαµ−α − 1
α(α− 1)

where

vα =

∞∫
−∞

vα f (v)dv

and µ represents mean. For PLBWLD, we have

vα =
λ

α
β

(
α
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − α
β − 1)

µ =
λ

1
β

(
1
β + 1

)
!

(η − 1
β − 1)

Therefore, the expression for the generalized entropy of PLBWLD is obtained as

I(α) =
1

α(α− 1)


(

α
β + 1

)
!

(η − 1
β − 1)(η − 2

β − 1)...(η − α
β − 1)


(

η − 1
β − 1

)
( 1

β + 1)!


α

− 1

 (35)

10. Estimation of Parameters

This section is devoted to maximum likelihood estimation technique for estimating the unknown parameters
η, β, λ of PLBWLD.
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10.1. Maximum Likelihood Estimation(MLE)
Suppose v1, v2, v3, ...vm be the random sample derived from the PLBWLD having the probability density
function (pdf) f (v; η, β, λ). Therefore, for m observations , the likelihood function of PLBLWD is obtained as

L(v; η, β, λ) =

[
η(η − 1)β

λ2

]m m

∏
i=1

v2β−1

(
1 +

vβ

λ

)−(η+1)

Maximizing the log likelihood function yields estimates η̂, β̂, λ̂ estimations of the unknown parameters
η, β, λ. The log likelihood function is given by

log L(v; η, β, λ) = m log η + m log (η − 1) + m log β− 2m log λ +
m

∑
i=1

log (vi)
2β−1 − (η + 1)

m

∑
i=1

log

(
1 +

vβ
i

λ

)
(36)

The MLE’s of η, β and λ are derived after partially differentiating (36) with respect to the corresponding
parameters and equating to zero. We obtain the three normal equations as

m(2η − 1)
η(η − 1)

=
m

∑
i=1

log

(
1 +

vβ
i

λ

)
(37)

2m
λ

=
(η + 1)

λ2

m

∑
i=1

vβ
i(

1 + vβ

λ

) (38)

m
β
+ 2

m

∑
i=1

log vi = (η + 1)
m

∑
i=1

βvβ−1
i

(1 + vβ
i )

(39)

The above three non-linear equations (37),(38) and (39) are not in closed form. Therefore, we shall solve these
equations numerically using Newton-Raphson technique of solving equations iteratively and numerically .

11. SIMULATION ILLUSTRATION

The performance of maximum likelihood estimates are examined in this section. To demonstrate the
behavior of maximum likelihood estimates (MLEs) in terms of random generating sample sizes n= 100,
150 and a simulation research was conducted using R software. The procedure was repeated 100 times
with various parameter combinations selected. The average MLE values and accompanying empirical mean
squared errors (MSEs) were calculated in each scenario. Table 1 and table 2 shows the simulation findings.
The estimates are stable and near to the genuine parameter values, as shown in table 1 and 2 . In all
circumstances, the MSE drops as the sample size increases.

12. APPLICATION

For illustrating the flexibility, adaptability, and suitability of the PLBWLD, we use two actual data sets to
show that the power length biased weighted lomax distribution (PLBWLD) can be better model than lomax
distribution (LD) and length biased weighted lomax distribution (LBWLD).
To demonstrate how the proposed distribution can be effective in a real-world situation, two real life data
sets have been examined . The following models have been investigated for comparison.

∙ Length biased weighted Lomax distribution (LBWLD) With pdf given in

f (v; η, λ) =
η(η − 1)

λ2 v
(

1 +
v
λ

)−(η+1)
; v > 0, η > 1, λ > 0

∙ Lomax distribution (LD) with pdf given as

f (v; η, λ) =
η

λ

(
1 +

v
λ

)−(η+1)
; v > 0, η > 1, λ > 0

Here, several goodness-of-fit criterion such as Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Akaike Information Criterion Corrected (AICC) , Hannan Quinn Information Criterion
(HQIC) and Kolmogorov -Smirnov (KS) statistics are used. The statistic with the lowest value is considered
the best fit. The numerical results are produced using R programme for analysis purposes.
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Table 1: Average values of MLEs and the corresponding MSEs(n=100).

Parameter MLE MSE
η λ β η̂ λ̂ β̂ η̂ λ̂ β̂

1.5 1.2 2 1.60342 1.46263 1.88991 0.10386 0.29586 0.07998
2.5 1.61165 1.52594 2.37138 0.04400 0.32747 0.11551
3 1.60230 1.44918 2.80023 0.04089 0.23487 0.18081

1.8 2 1.60342 2.13739 1.88990 0.03866 0.54490 0.07997
2.5 1.56354 2.06030 2.41250 0.01490 0.28395 0.08610
3 1.60906 2.06175 2.79079 0.039382 0.29147 0.19585

2 1.2 2 2.11303 1.37128 2.10674 0.33824 0.53606 0.17352
2.5 2.29354 1.64115 2.61302 1.94607 3.27331 0.27052
3 2.24369 1.54492 3.05438 0.88963 1.57343 0.42315

1.8 2 2.15325 2.11382 2.08488 0.40547 1.02721 0.19684
2.5 2.10288 1.95731 2.54206 0.20766 0.57590 0.21280
3 2.17188 2.13039 3.11005 0.45798 1.41945 0.32907

Table 2: Average values of MLEs and the corresponding MSEs(n=150).

Parameter MLE MSE
η λ β η̂ λ̂ β̂ η̂ λ̂ β̂

1.5 1.2 2 1.57382 1.40020 1.92791 0.02535 0.20046 0.06029
2.5 1.57460 1.35389 2.36473 0.02172 0.10933 0.08347
3 1.55781 1.36290 2.89490 0.01292 0.11236 0.08685

1.8 2 1.56615 2.00830 1.90932 0.01953 0.24642 0.04964
2.5 1.56273 1.92833 2.38188 0.01404 0.16196 0.08055
3 1.58063 2.05766 2.87854 0.02763 0.23273 0.08986

2 1.2 2 2.12305 1.36716 2.05878 0.25457 0.38323 0.12918
2.5 2.08487 1.37785 2.59013 0.15097 0.28118 0.16941
3 2.05282 1.30232 3.10483 0.14772 0.29009 0.22523

1.8 2 2.06271 1.90663 2.04340 0.14480 0.42436 0.085475
2.5 2.01103 1.84029 2.62634 0.10312 0.31950 0.20608
3 2.13476 2.06073 3.04121 0.23962 0.70488 0.26052

12.1. Data Set 1
Data set 1: The first data is on the breaking stress of carbon fibres of 50 mm length (GPa). The data has been
previously used by [2] . The data is as follows:

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43,
2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09,
3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20,
4.38, 4.42, 4.70, 4.90

12.2. Data set 2
Data set 2: The following data represent the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by [4]. The data are as follows:

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08,1.09, 1.12,
1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63,1.68, 1.71, 1.72,
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Table 3: −2ln(l), AIC, AICC, BIC for the first data set.

Model −2ln(l) AIC AICC BIC HQIC K-S

PLBWLD 175.004 181.004 181.391 187.573 183.6 0.078

LBWLD 224.008 228.008 228.199 232.388 229.731 0.250

LD 265.990 269.989 270.180 274.369 271.720 0.358
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Figure 4: Fitted density plots for dataset1

1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54,2.54, 2.78, 2.93, 3.27,
3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55

Table 4: −2ln(l), AIC, AICC, BIC for the second data set.

Model −2ln(l) AIC AICC BIC HQIC K-S

PLBWLD 187.753 193.753 194.106 200.583 196.472 0.084

LBWLD 195.049 199.049 199.223 203.602 200.861 0.168

LD 226.075 230.075 230.249 234.628 231.888 0.294

13. CONCLUSION

This research paper uses power transformation to develop a novel life time probability model called power
length biased weighted Lomax distribution. Ordinary moments, moment generating function, hazard rate,
order statistics, and generalized entropy are among the significant aspects of PLBWLD that are obtained
here. In addition, two real data sets are used to highlight the practical value.
The three-parameter PLBWLD distribution has been introduced here to have more flexibility in terms of the
hazard rate function and density function. Using goodness of fit criteria, the suggested model’s effectiveness
is compared with other competing distributions. The new distribution can exhibit a much more flexible
model for life time data . The new model was fitted to two different real-life data sets and showed that it
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Figure 5: Fitted density plots for dataset2

could offer a better fit than a set of extensions of Lomax distribution. We believe that the suggested model
will have broader statistical applications.
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Abstract

In process of observing data, it is sometimes not possible to obtain data precisely and fuzzy methods
are useful for analyzing such data sets. In this article, we propose location-scale family of the Teissier
distribution for fitting fuzzy censored data sets. The maximum likelihood, least squares and Bayes
estimators of the parameters of the Teissier distribution are constructed in the presence of the progressively
fuzzy censored samples. In addition to that statistical properties of the distribution are also derived.
Fitting of the tensile strengths of the carbon fibers is done using the proposed distribution with comparison
to the location-scale families of the exponential, Maxwell and Lindley distributions. We found that the
Teissier distribution can be effectively used for fitting complete and fuzzy censored data as well.

Keywords: Location-scale Teissier distribution, Fuzzy lifetime data, Type-II progressive censoring
scheme, Mean residual life, Moments, Maximum likelihood estimator, Least squares estimator,
Bayes estimator

1. Introduction

Uncertainty is associated with our daily life activities. We have to take some actions/decisions
to minimize the risk or maximize the gains in business and other activities. We make some
probabilistic statements to assess the nature of the random phenomenon under consideration,
so that our decision makes our life better. In this article, we are concerned about the life of
man-made systems/products and propose a method of estimating the parameter associated with
the random phenomenon. Lifetimes are not deterministic and they are random in nature. This
type of uncertainty arises due the random nature of the phenomenon and are efficiently dealt
by the statistical methods where the lifetimes are considered as random variables having certain
probability distributions that are characterized by some constants (called parameters).

In conventional statistical inferences, random observations are drawn from the population and
inferences are made about the parameters provided that the data are observed precisely. In many
cases, it may not be possible to obtain the data in precise form because of many unavoidable
reasons such as the lack of information, human errors, measurement errors and other practical
difficulties. In fact, the real measurements of the continuous variables are never precisely obtained
and have some errors. For instance, locations of the objects in space, live positions of ships
on radar screen and space time data are a few examples among many. There is uncertainty
always attached with the individual observation. Such type of uncertainty cannot be dealt by the
conventional statistical procedures. In such cases, the fuzzy set theory is useful for explaining the
random behavior of the observations. Until 1960, the probability theories and statistics are used
to model the uncertainty. In 1968, [7] introduced the probability measure for fuzzy events, see
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also [6]. [22] discussed various methods for fuzzy data estimation and hypothesis testing. From
the application point of view, [5] proposed the statistical analysis of fuzzy data. [8, 21] proposed
to use Bayesian approach to estimate the parameters and reliability function for the distributions
using the fuzzy lifetime data. Recently, [11] presented classical and Bayesian procedure for
estimating the parameter of Rayleigh distribution based on Type-II progressively hybrid censored
data under fuzzy setup.

In the field of surveys and life testing experiments, it may be possible to come across the
situation of incomplete/lost data due to lack of time, cost and some other constraints. Some
of the experimental units have some complete information and the rest reports non-occurrence.
The units for which exact failure information is available are called complete samples and the
remaining units are called censored observations. For analyzing such censored data, it is essential
to use censoring schemes. Conventional Type-I and Type-II censoring schemes have been studied
by many authors, see [13], [15] and [14] for modeling censored data sets.

Under Type-I censoring scheme, n units are put under observation and the experiment
is carried-out up to a predetermined time. In the case of the Type-II censoring scheme, the
experiment is terminated when pre-fixed numbers of units are observed to have failed. It is
worth to mention here that these schemes do not enough flexible to incorporate removals of the
experimental units at the stages other than the final terminal stage. In this context, [9] proposed a
censoring scheme, called the progressive censoring scheme, which has an advanced feature that
allows the removal of the units at the intermediate stages. Since then, an extensive list of literature
is seen devoted to the progressive censoring. We follow [17] and [35] for the detailed theoretical
aspects, estimation methods and applications of this scheme. [2] provided two simulation
algorithms for generating the progressive Type-II censored samples based on exponential and
uniform random variable transformations. [18] proposed classical and Bayes estimation for the
flexible Weibull parameters under the progressive Type-II censoring scheme. [19] discussed the
different estimation methods for estimating the parameters of Rayleigh distribution on the basis
of progressive Type-II censoring scheme.

Suppose n experimental units are put under observation and experiment is terminated after a
prefixed number (m) of observations are observed. At each stage, we progressively drop some
prefixed number of units from the remaining units. Suppose that as the first failure occurs, some
units, say R1 are removed from the remaining (n− 1) units. At the second stage, R2 units are
removed from the remaining (n− R1− 2) units. Similarly, at th mth stage xm is observed, Rm units
are removed from the remaining (n− R1 − · · · − Rm−1 −m) units such that (m + ∑m

i=1 Ri = n).
We terminate the experiment at time point xm. This is how we obtain the progressively censored
data (x1, x2, . . . , xm) with prefixed removals (R1, R2, . . . , Rm).

The objective of this paper is to develop the various estimation methods to estimate the
parameters of two-parameter Teissier distribution with fuzzy censored data. The Teissier distri-
bution was first introduced in [23] to model the frequency of the mortality due to ageing only
i.e. deaths are protected from the accidents and disease. Later on, [24] used this distribution for
the reliability analysis. After that it has been overlooked in the literature. [25] rediscovered the
Teissier distribution and derived its statistical properties. For adding more flexibility to the model,
[26] introduced a two parameter extension of Teissier distribution called Power Muth distribution.
[34] proposed another two parameter extension of the Teissier distribution, called exponentiated
Teissier distribution. Recently, [36] proposed the Teissier generalised family of the distributions
and produced various flexible probability distributions.

The rest of the paper is organized as follows. In section 2, the progressive censoring and
different methods of estimation are discussed. Section 3 deals with the brief introduction of
fuzzy random variable and related concepts. We introduce location-scale family of the Teissier
distributions in section 4 and discussed it’s properties here. Section 5 discusses the estimation
of parameters of the Teissier distribution for the Type-II progressive censoring under under
fuzzy setup. Simulation study and real data application are discussed in section 6 and section 7,
respectively. At last, overall conclusions are given in section 8.
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2. Progressive Censoring and Estimation Methods

Statistical inference mainly focuses on the estimation of the unknown model parameters using the
available observed data. As discussed in the above section, we may encounter the situation where
the observed data is censored. The estimation procedures can be easily implemented for censored
data, [35]. In this section, we describe the maximum likelihood estimation (MLE), least squares
estimation (LSE) and Bayes estimation procedures for the Type-II progressively censored data.

Under the MLE, we maximize the joint density function (called likelihood function) of
observed random sample over the parameter space. If we are given realizations of the n i.i.d.
random variables, the likelihood function is nothing but the product of the respective densities.
Suppose that X is a random variable governed by the probability distribution function (pdf)
f (x, θ) and x1, x2, ...., xn are the n i.i.d. random samples drawn from it. The likelihood function is
L(θ; x) = ∏n

i=1 f (xi, θ), where θ is the parameter of interest.
Since, in this paper, we consider progressively Type-II censored data, we define the likelihood

function (following [35]) as given by

L(θ) = C
m

∏
i=1

f (xi) (1− F (xi))
Ri , (1)

where C = ∏m−1
i=1

(
n−∑i

j=1(ri + 1)
)

and f (x) and F(x) are the pdf and cdf of the assumed

probability distribution. The MLE θ̂ of θ maximize the likelihood function given in the equation
(1). For some distributions, the closed-form MLEs are not possible to derive and iterative methods
are used for numerical computation of the estimates.

In the process of estimating the parameters, [1] proposed the method of least squares for
estimating the beta parameters. That are obtained by minimizing the sum of squares of the
discrepancies between the observed and expected distributions. For the progressively Type-II
censored data, [12] have constructed the LSEs of the parameters of the generalised inverted
exponential distribution. For the Type-II progressively censored sample, we have

E [F(xi)] = 1−
m

∏
j=m−i+1

αj, (2)

where αj =
ai

1+ai
and ai = i + ∑m

j=m−i+1 Ri. The LSEs are obtained by minimising the following
function

S(θ) =
m

∑
i=1

[F(xi)− E(F(xi))]
2 . (3)

The equation (3) are usually optimized numerically as the closed form solution is not possible in
most of the cases.

In recent decades, Bayesian perspective received a great attention by researchers for statistical
inferences. In Bayesian framework, we use the Bayes theorem to update the probability for a
hypothesis after observing the data as evidence. It facilitates to use the prior information for
formulating a better method of estimation. Bayes procedure is discussed in section 5.

3. Fuzzy random variable and membership function

Before defining the fuzzy random variable, some basic definitions are needed to explore. Let
S = (Ω, A, Pθ) be the probability space. Here (Ω, A) is a measurable space and Pθ is the
probability measure defined on measurable space (Ω, A).

Definition 1. Membership function for any set Ω is the function from Ω to real interval [0, 1].
Here the value of µÃ(x) at x define the "Grade of membership" or "degree of truthfulness ".

µÃ(x) : Ω→ [0, 1]
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Here membership function is not limited to 0 and 1 only, but takes any value between [0, 1].

Definition 2. Here Ω is a universal set. Fuzzy set Ã in Ω is denoted by an ordered set of pairs
(x, µÃ(x)). The first component of which denotes elements of the set Ã and second denotes the
degree of membership of that elements in set Ã.

If supµÃ(x) = 1, then Ã is called normal fuzzy set.

Definition 3. Let X be the universal set. Then the support of a fuzzy set Ã, i.e. S(Ã) is the set of
all points x ∈ X such that µÃ(x) > 0.

Definition 4. Let X be the universal set. A fuzzy set Ã is said to be convex if µÃ(λx1 + (1−
λ)x2) ≥ min(µÃ(x1), µÃ(x2)), x1, x2 ∈ X, 0 < λ < 1.

Definition 5. A fuzzy set Ã is a fuzzy number if it is normal, convex and its support is bounded.

In general, there are two fuzzy numbers that are mostly used Triangular fuzzy number and
Trapezoidal fuzzy number. Triangular fuzzy number is denoted by x̃ = (u, v, w) with correspond-
ing membership function as

µx̃(x) =



x−u
v−u , u ≤ x ≤ v

w−x
w−v v ≤ x ≤ w

0, otherwise

(4)

Fuzzy random variable can be defined as random variable, the value of which is not real but
fuzzy number which is nothing but a particular kind of fuzzy set, see [7], [6] and [22].

4. Location-Scale Teissier distribution

In any probability distribution, location parameter determines the shift of the distribution or
origin on the horizontal axis. Sometimes, in reliability and life testing experiments, it is possible
that failure will absolutely not happen before a given time. In this regard, location parameter
have some profound effect in reliability and life-testing experiments. Here, we introduce the
Teissier distribution with location parameter denoted by µ.

Definition 6. Consider random variable Y that follows the Teissier distribution defined in [23]
with scale parameter θ. Then the random variable Y = X + µ is said to follow the 2-parameter
Teissier (2-T) distribution indexed by location parameter µ and scale parameter θ. The pdf and
cdf of the 2-T distribution are given as follows

f (x; µ, θ) = θe(eθ(x−µ))
(

eθ(x−µ) − 1
)

exp
(
−eθ(x−µ)

)
, x > µ > 0, θ > 0, (5)

F(x; µ, θ) = 1− exp
[
θ(x− µ)− eθ(x−µ) + 1

]
, x > µ > 0, θ > 0. (6)

The corresponding hazard function of the 2-T distribution is given by

h(x; µ, θ) = θ
(

eθ(x−µ) − 1
)

, x > µ > 0, θ > 0.

Note that h
′
(x; µ, θ) = θ2eθ(x−µ) +

(
eθ(x−µ) − 1

)
> 0, ∀ x > µ > 0, θ > 0. It can be concluded that

the hazard function of the 2-T distribution is monotonic increasing.
Fig. 1 displays the various shapes of the pdf of the 2-T distribution. We can see that the

distribution is unimodal and right skewed. So, it is flexible enough to fit a wide varieties of
right skewed data sets. Fig. 2 displays the hazard rate function which has increasing shapes for
different parameter values. Since, the 2-T has increasing hazard rate, so it may be a good choice
for modelling data set in reliability and survival analysis where the things are more likely to fail
with the increasing time.
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Figure 1: Density function for different values of θ for given µ = 0 and µ = 2
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Figure 2: Hazard function for different values of θ for given µ = 0 and µ = 2

4.1. Properties

In this section, the basic properties of the 2-T distribution are derived. We derive moments,
quantile function, moments generating function and mean residual life function.

4.1.1 Quantile function

The quantile function or inverse cumulative distribution function is more precisely used to
generate the computer pseudo random data from associated probability distribution and explore
its basic statistical properties such as measures of central value, dispersion, skewness and
kurtosis. The qth quantile of any random variable X is defined as the solution of the equation
FX(ηq) = q, 0 < q < 1 i.e. ηq = F−1

X (q), where F(.) is the cdf. The closed-form expression of
the 2-T distribution is obtained in terms of the Lambert-W function. The Lambert-W function
is used to obtain the solution of the equation W(z)eW(z) = z, z ∈ C. For more details about the
Lambert-W function see [31]. For the 2-T distribution ηq is the solution of the equation

1− exp
[
θ(ηq − µ)− eθ(ηq−µ) + 1

]
= q, 0 < q < 1. (7)
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On simplifying the equation (7), it turns out to be

eθ(ηq−µ) = θ(ηq − µ) + (1− log(1− q)).

Here we note that eθ > 0, ∀ θ > 0 and eθ 6= 1, ∀ θ > 0 also (ηq − µ) 6= 0 ∀ ηq > µ. So, this equation
can be solved by using the Lambert-W function. ηq is given by

ηq = µ− 1
θ
+

1
θ

log(1− q)− 1
θ

W−1

(
u− 1

e

)
(8)

where W−1 represents the negative branch fo Lambert-W function.

4.1.2 Mean Residual Life

The mean residual life (MRL) is an important criterion of reliability measure of non-negative
random variables. Sometimes it is more relevant than the hazard rate function, mainly in repair
and replacement problems because it relates only to the risk of immediate failure than entire
residual life function. The MRL or mean remaining life of the random variable X beyond the
value x, denoted by r(x) is given as

r(x) = E ((X− x)/X > x) =
∫ ∞

x

F̄(y)dy
F̄(x)

. (9)

The analytical expression of the MRL function for the 2-T distribution is given as follows

r(x) =
1

F̄(x)

∫ ∞

x
exp

(
θ(y− µ)− eθ(y−µ) + 1

)
dx. (10)

In equation (10), we have made change of variable (x− µ) = z and again make substitution as
eθz = t in the equation. Then we obtain the expression of MRL of the 2-T distribution as

r(x) =
exp

(
1− eθ(x−µ)

)
θF̄(x)

, (11)

where F̄(x) is the survival function of the random variable X.

4.1.3 Moment Generating Function

The analytical expression for moment generating function of random variable X following the
2-T distribution, having the density function as fX(x) is defined as

MX(t) = E(etx) =
∫ ∞

µ
etx fX(x)dx. (12)

Proposition 1. The moment generating function of the 2-T Teissier distribution is given by

MX(t) = eµt+1
[

Γ
(

2 +
t
θ

, 1
)
− Γ

(
1 +

t
θ

, 1
)]

,−∞ < t < ∞,

where Γ denotes the upper incomplete gamma function.

Proof. The proof is straight forward. �

4.1.4 Moments

For calculating the moments of the 2-T distribution, we make use of Generalized integro-
exponential function, the integral representation of which is given as

Eb
a(t) =

1
Γ(b + 1)

∫ ∞

1
(log v)bv−ae−tvdv, m = 0, 1, 2, ..... (13)

where t, a ∈ C and Γ(p) =
∫ ∞

0 e−xxp−1 is the ordinary gamma function.
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Proposition 2. For random variable X following the distribution (5), the kth moment is given by

E[Xk] = eµk
k

∑
i=0

(k
i)

(µθ)i

[
Ei
−1(1)− Ei

0(1)
]

. (14)

Proof. Let X be any random variable and following any particular distribution fX(x). Then
kth moment of the random variable X is given as

E[Xk] =
∫

xk fX(x)dx. (15)

Now for the moments of the 2-T distribution, fX(x) here is as defined in (5) also make substitution
as (x− µ) = y, the above equation turns out to be as

E[Xk] = θe
∫ ∞

0
(µ + y)keθy

(
eθy − 1

)
exp

(
−eθy

)
dy.

Now using Binomial expansion in the expression (µ + y)k and using the substitution eθy = t in
the above equation. Then, it turns out to be as

E[Xk] = µke
k

∑
i=0

(k
i)

(µθ)i

[∫ ∞

1
(log t)ite−tdt−

∫ ∞

1
(log t)ie−tdt

]
.

Here, by using the generalized integro-exponential function in the above equation it will be same
as (14). �

In this section, the analytical expression of the particular case i.e. for k = 1 (Mean) is also
derived.

Corollary 1. Let X be the random variable following the 2-T distribution given in (5), then for
given µ and θ, the mean of the distribution will be given by

E[X] =

(
µ +

1
θ

)
where E stands for the expectation.
Proof. For given µ and θ, mean value of the 2-T distribution is defined as E[X] =

∫ ∞
µ x fX(x)dx.

Here, fX(x) is same as defined in (5). Now, making substitution as (x− µ) = y we get

E[X] = θe
∫ ∞

0
(µ + y) eθy

(
eθy − 1

)
exp

(
−eθy

)
dy

By making substitution eθy = t in the above equation and using analytical expression
∫ ∞

1 log z(z−
1)e−zdz = 1

e , we get required result. �

5. Estimation for fuzzy progressively censored data

In this section, for the given fuzzy progressively censored data, we obtain the MLEs, LSEs and
Bayes estimators of the parameters µ and θ.

5.1. Maximum likelihood estimation

Following the [7], the likelihood for fuzzy data can expressed as

`(θ, µ; x) = A
m

∏
i=1

∫
f (xi) [1− F (xi)]

Ri µx̃i (x)dx. (16)

Let (xi, ri) be the progressive sample. For 2-T distribution, the log−likelihood function can be
obtained by putting the value (6) and (5) in (16). Differentiating the above equation with respect
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to µ and θ and equating to zero. We obtain

d
dµ

log l =
m

∑
i=1

∫ (
fµ(xi) [1− F (xi)]

Ri − Ri [1− F (xi)]
Ri−1 Fµ(xi)

)
µx̃i (x)dx∫

f (xi) [1− F (xi)]
Ri µx̃i (x)dx

= 0,

d
dθ

log l =
m

∑
i=1

∫ (
fθ(xi) [1− F (xi)]

Ri − Ri [1− F (xi)]
Ri−1 Fθ(xi)

)
µx̃i (x)dx∫

f (xi) [1− F (xi)]
Ri µx̃i (x)dx

= 0,

where fµ(x) = d
dµ f (x) and Fµ(x) = d

dµ F(x). Above equations can not be solved analytically.
That’s why some numerical techniques such as Newton-Raphson are required to solve these
equations.

5.2. Least squares estimation

The equations (2) and (6) provide the method of obtaining the LSEs for fuzzy data. The LSEs can
be obtained by minimising S. So differentiating S with respect to µ and θ and equating to 0, we
obtain

dS
dµ

=
m

∑
i=1

∫
[F(xi)− E(F(xi))] Fµ(xi)µx̃i (x)dx = 0,

dS
dθ

=
m

∑
i=1

∫
[F(xi)− E(F(xi))] Fθ(xi)µx̃i (x)dx = 0,

where E (F(xi)) = 1−∏m
j=m−i+1 αj, αj =

ai
1+ai

, ai = i + ∑m
j=m−i+1 Ri , and dS

dµ , dS
dθ are the first

order derivatives of the F(x) with respect to µ and θ. Equations dS
dµ = 0 and dS

dθ = 0 provide the
LSEs for µ and θ. But there is no closed form solution of the above equations. A suitable iterative
search method such as Newton-Raphson is is needed to obtain the LSEs of the parameters.

5.3. Bayes Estimation

In statistical inferences, Bayesian estimation turns out as a valid and powerful alternative of
classical or traditional perspectives of the parameter estimation. In this section, Bayes estimates
of the parameters of the 2-T distribution are derived using the Type-II progressive censoring
scheme where data is given in form of the fuzzy numbers. Here, we assume that the parameters
(µ, θ) follow the independent gamma priors denoted by π1(µ) and π2(θ) respectively. Then, the
probability density function of µ and θ are given as follows

π1(µ) =
pn

Γ(n)
exp(−pµ)µn−1, µ, p, n > 0,

π2(θ) =
qa

Γ(n)
exp(−qθ)θb−1, θ, b, q > 0.

The joint posterior density of µ and θ for given observed data is defined by

π(µ, θ|x̃) = π1(µ)π2(θ)l(θ, µ; x)∫ ∞
0

∫ ∞
0 π1(µ)π2(θ)l(θ, µ; x)dµdθ

,

where l(θ, µ; x) is the log-likelihood defined in the equation (16). Bayes estimates of any function
of µ and θ i.e. g(µ, θ) under the squared error loss function is defined as

E(g(µ, θ)) =

∫ ∞
0

∫ ∞
0 g(µ, θ)π1(µ)π2(θ)l(θ, µ; x)dµdθ∫ ∞
0

∫ ∞
0 π1(µ)π2(θ)l(θ, µ; x)dµdθ

. (17)
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The above integral (17) can not be solved analytically. So we have to use some approximations
to calculate the Bayes estimates. Here, we proposed Markov Chain Monte Carlo technique
to obtain the Bayes estimates of the parameters of the 2-T distribution. In this paper, we use
Metropolis-Hastings (MH) algorithm to simulate the posterior samples.

In order to obtain the reasonable results by simulation in a limited amount of time, the choice
of an effective proposal distribution is crucial. Since the target density is unknown, the choice of
the proposal distribution is very difficult. To overcome this difficulty [33] provided a possible
adaptive algorithm as a remedy which adapts continuously to the target distribution. The basic
idea is to update the proposal distribution by using the knowledge we acquired so far about the
target population. For the simulation algorithm researchers may see [37].

6. Simulation Study

To estimate the unknown constants of the proposed distribution, various estimation methods
are proposed such as MLE, LSE, and Bayes estimation in the previous sections. To access
the long-run performance and to choose the best possible estimators for the 2-T parameters,
simulation experiments are carried-out. During simulations, we generate the Type-II progressively
fuzzy censored pseudo-random data from the 2-T distribution with various choices of the 2-T
parameters. Without loss of generality, we here present the simulation results for a parameter
combination (µ = 1, θ = 1.5). To compare the performance of these estimators, we calculate the
bias and mean squared error (MSE) for each estimators. For generating the progressive Type-II
censored data, we use an algorithm given by ([2]). After getting the pseudo data, each realization
of x is then fuzzified by using the triangular fuzzy number defined in (4). In generating the
random sample form the 2-T distribution, we have to use Lambert-W function which is easily
available in R software.

Further, for the fixed value of µ and θ, we take the different combinations of (n, m) along with
four removal schemes for variation purposes. The removal schemes are as follows:
Scheme 1: R1 = (n−m) and R2 = R2 = ....Rm = 0,
Scheme 2: R1 = R2 = ......Rm−1 = 0 and Rm = n−m,
Scheme 3: R1 = R2 = ......Rn−m = 1 and Rn−m+1 = .......R2m−n = 0,
Scheme 4: R1 = R2 = ......R(2m−n) = 0 and R2m−n+1 = .......Rm = 0.

On the basis of simulation results summarized in the Tables (1 and 2), we observe that even
for the small sample size, the performance of all the estimators is quite satisfactory. The average
estimates are nearer to the true values of the parameters and MSEs of all the estimators decrease
as the sample size increases (i.e. m increases for the given n) under the different removal schemes.
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Table 2: Average estimate, Bias and MSE of the estimators of µ for given µ = 1, θ = 1.5

(n,m,s) MLE BIAS MSE LSE BIAS MSE BAYES BIAS MSE

(20,12,1) 1.05117 0.08489 0.01194 0.96279 0.147329 0.03393 0.95877 0.10030 0.01661
(20,12,2) 1.07121 0.09659 0.01546 0.96337 0.128139 0.02589 0.93566 0.12577 0.02813
(20,12,3) 1.05428 0.08559 0.01219 0.96157 0.13481 0.02856 0.95331 0.10465 0.01845
(20,12,4) 1.05842 0.08893 0.01322 0.95713 0.13284 0.02776 0.94327 0.11840 0.02488

(20,16,1) 1.04958 0.08302 0.01146 0.9722 0.12815 0.02577 0.96858 0.09272 0.01336
(20,16,2) 1.05754 0.08701 0.01252 0.96564 0.12048 0.02289 0.96034 0.10296 0.01680
(20,16,3) 1.04896 0.08189 0.01119 0.97146 0.12415 0.0242 0.96601 0.09257 0.01345
(20,16,4) 1.05377 0.08582 0.01221 0.96663 0.12211 0.02320 0.96038 0.10094 0.01654

(30,18,1) 1.03790 0.06643 0.00736 0.97335 0.11831 0.02198 0.97923 0.07149 0.00784
(30,18,2) 1.05625 0.07593 0.00966 0.97553 0.10164 0.01621 0.98319 0.06926 0.00736
(30,18,3) 1.03848 0.06589 0.00734 0.97729 0.10477 0.01742 0.98215 0.08784 0.01240
(30,18,4) 1.04099 0.06827 0.00786 0.96974 0.10467 0.01727 0.97611 0.07657 0.00913

(30,24,1) 1.03706 0.06560 0.00719 0.97992 0.10319 0.01662 0.97835 0.07379 0.00745
(30,24,2) 1.04694 0.07004 0.00821 0.97807 0.09683 0.01470 0.09792 0.06645 0.00721
(30,24,3) 1.03493 0.06352 0.00674 0.97905 0.09887 0.01541 0.98565 0.06580 0.00653
(30,24,4) 1.03961 0.06692 0.00756 0.97831 0.09554 0.01432 0.98573 0.06517 0.00643

(40,24,1) 1.02919 0.05493 0.00509 0.98192 0.10178 0.01636 0.98354 0.06807 0.00702
(40,24,2) 1.05041 0.06566 0.00721 0.98207 0.08668 0.01182 0.98933 0.05802 0.00510
(40,24,3) 1.02968 0.05493 0.00503 0.98149 0.08933 0.01259 0.98579 0.06193 0.00582
(40,24,4) 1.03283 0.05694 0.00540 0.97724 0.08872 0.01242 0.98870 0.05761 0.00505

(40,32,1) 1.02840 0.05495 0.00503 0.98604 0.08961 0.01249 0.99025 0.05438 0.00451
(40,32,2) 1.04047 0.05944 0.00593 0.98374 0.08232 0.01073 0.98886 0.05601 0.00478
(40,32,3) 1.02827 0.05382 0.00483 0.98503 0.08418 0.01117 0.99035 0.05371 0.00441
(40,32,4) 1.03192 0.05598 0.00526 0.98272 0.083117 0.01073 0.98901 0.05568 0.00472

(50,32,1) 1.02491 0.04841 0.00389 0.98714 0.08689 0.01173 0.99131 0.04960 0.00373
(50,32,2) 1.04350 0.05681 0.00542 0.98590 0.07658 0.00919 0.99125 0.04857 0.00361
(50,32,3) 1.02472 0.04763 0.00381 0.98443 0.07822 0.00967 0.98994 0.05062 0.00391
(50,32,4) 1.02843 0.04942 0.00416 0.98371 0.07742 0.00948 0.98932 0.05171 0.00407

Table 1: Average estimate, Bias and MSE of the estimators of θ for given µ = 1, θ = 1.5

(n,m,s) MLE BIAS MSE LSE BIAS MSE BAYES BIAS MSE

(20,12,1) 1.68417 0.26014 0.13438 1.51204 0.32128 0.19246 1.51421 0.46034 0.09226
(20,12,2) 1.87181 0.43052 0.39091 1.50953 0.32969 0.19795 1.51804 0.43837 0.15056
(20,12,3) 1.70755 0.28655 0.15911 1.51094 0.33063 0.21401 1.51649 0.13176 0.10492
(20,12,4) 1.74806 0.32708 0.21514 1.49362 0.32598 0.19692 1.52243 0.00117 0.13382

(20,16,1) 1.65856 0.23182 0.10179 1.50694 0.27225 0.13749 1.51162 0.42873 0.06524
(20,16,2) 1.72482 0.28867 0.16376 1.48766 0.26682 0.12266 1.51452 0.16994 0.08835
(20,16,3) 1.65894 0.23057 0.10174 1.50268 0.26759 0.12866 1.50970 0.07517 0.06535
(20,16,4) 1.69341 0.26412 0.13576 1.49197 0.26952 0.12975 1.51735 0.03427 0.08529

(30,18,1) 1.62509 0.19206 0.06812 1.49969 0.24981 0.10879 1.51535 0.56535 0.04742
(30,18,2) 1.79499 0.33826 0.11789 1.50243 0.26144 0.11812 1.52215 0.78643 0.07443
(30,18,3) 1.63589 0.20816 0.08106 1.50654 0.25692 0.11976 1.51554 0.38108 0.05667
(30,18,4) 1.65963 0.23143 0.10024 1.48741 0.25252 0.11179 1.52062 0.64902 0.06721

(30,24,1) 1.61181 0.17401 0.05427 1.49836 0.21281 0.07755 1.51166 0.13018 0.03632
(30,24,2) 1.67945 0.22550 0.09407 1.49155 0.21491 0.07673 1.51314 0.12987 0.03987
(30,24,3) 1.60598 0.17006 0.05202 1.49456 0.21026 0.07416 1.51199 0.13882 0.03696
(30,24,4) 1.63389 0.19729 0.07220 1.49172 0.2089 0.07286 1.51423 0.12571 0.04457

(40,24,1) 1.59452 0.15782 0.04424 1.50070 0.21230 0.07591 1.51460 0.03188 0.03336
(40,24,2) 1.76290 0.29066 0.15152 1.50191 0.22435 0.07381 1.52099 0.06421 0.05131
(40,24,3) 1.60391 0.17089 0.05283 1.49815 0.21323 0.07699 1.51675 0.03746 0.03862
(40,24,4) 1.62594 0.19079 0.06559 1.48809 0.21711 0.07946 1.51199 0.21665 0.03781

(40,32,1) 1.58081 0.14022 0.03471 1.49854 0.18253 0.05580 1.50969 0.19968 0.02466
(40,32,2) 1.66169 0.19758 0.06913 1.49313 0.18304 0.05512 1.51179 0.21566 0.03059
(40,32,3) 1.58256 0.140137 0.03532 1.4959 0.17741 0.05193 1.50996 0.19452 0.02508
(40,32,4) 1.60563 0.16096 0.04668 1.49024 0.17888 0.05241 1.51156 0.21259 0.03001

(50,32,1) 1.57342 0.13123 0.02990 1.50051 0.17974 0.05394 1.50665 0.09304 0.02300
(50,32,2) 1.72174 0.24448 0.10128 1.49803 0.19029 0.05928 1.51015 0.11409 0.03324
(50,32,3) 1.58079 0.13939 0.03447 1.49515 0.18043 0.05417 1.50771 0.11663 0.02528
(50,32,4) 1.60111 0.15821 0.04490 1.49576 0.18461 0.05669 1.50946 0.12165 0.03084
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Figure 3: Fitted density of various distributions
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Figure 4: Fitted CDF of various distributions

7. Real Data Application

To demonstrate the application of the proposed distribution and estimation methods, a real
data set has been considered, that represent the tensile strength, measured in Giga-Pascal (GPa),
of 69 carbon fibers tested under tension at gauge lengths of 20mm, see [27]. They conducted
single-filament tensile tests on carbon fibers of differing gauge lengths. These experimental
results were further reported and analyzed by [28] and [29]. [30] also used this data to show
the usefulness of the three-parameter Birnbaum-Saunders distribution and the inverse Gaussian
distribution. Set of data points is given as follows :

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,
2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633,
2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012,
3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585

As we have stated in the first section that this paper aims to propose the use of the 2-T distri-
bution for fuzzy data sets, we assume that the tensile strength of carbon fibers are observed with
some degrees of imprecision and fit the 2-T distribution over the other competing distributions.
Here, the triangular fuzzy number is used to model the unknown value of x̃ = (u, v, w). The
corresponding membership function of each value of observed data point, say x, is given by

µx̃(x) =



x−(xi−h)
h , xi − h ≤ x ≤ xi,

(xi+h)−x
h , xi ≤ x ≤ xi + h,

0, otherwise,

(18)

where h = 0.05xi.

Table 3: MLEs, AIC, BIC and KS-statistics along with p-value for complete data set without fuzzy

Model
MLEs

NLL AIC BIC KS p-value
α̂ λ̂

Teissier 1.217 0.834 49.982 103.965 108.433 0.089 0.641
Maxwell 1.136 0.761 51.291 106.582 111.051 0.095 0.557

Exponential 1.312 0.878 78.001 158.001 164.469 0.310 0.000
Lindley 1.312 1.265 72.943 147.887 154.355 0.276 0.000
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Table 4: MLEs, AIC, BIC and KS-statistics along with p-value for complete fuzzy data

Model
MLEs

NLL AIC BIC
α̂ λ̂

Teissier 1.216 0.834 196.3064 396.613 401.081
Maxwell 1.136 0.761 197.6153 399.230 403.699

Exponential 1.312 0.877 224.3245 450.649 457.117
Lindley 1.312 1.264 219.2673 440.535 447.002

In order to proceed with the fuzzy set-up, we would like to first assess the goodness-of-fit of
the proposed distribution to model the given data set. For this purpose, we use some goodness-
of-fit criteria such as Kolmogorov-Smirnov (KS) statistic, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to compare the fitting of the competing distributions. For the
comparison purposes, we take two parameter families of the exponential, Maxwell and Lindley
distributions, which are very popular distributions in statistical literature. Table 3 consists of the
MLEs and negative log-Likelihood (NLL) values for all four distributions for the carbon fibers
data. Table (4) also shows the different model selection criteria such as AIC, BIC, and KS-statistic
along with the p-value. From the table, it is observed that the 2-T distribution has the lowest
AIC, BIC and KS values for given data-set. As we can note that the 2-T distribution has the
smallest statistic values among others, it may be used to model the tensile strength data set over
the considered distributions. Since, we aimed to propose the estimation under fuzzy set-up, the
fitting of all four distributions under fuzzy environment is also presented. The fitting results are
presented in table (4). We can also note here that the 2-T distribution also has the smallest AIC
and BIC values under fuzzy set up. It can be concluded that the 2-T is the best fitting model
among others for the fuzzy and without fuzzy data problems as well.

From the Tables (3) and (4) it is found that 2-T distribution is quite enough flexible to model
the uncertainty arises due to the randomness and fuzziness. Table (5) includes the estimates of the
parameters under the MLE, LSE and Bayesian estimation methods for the 2-T distribution under
different progressive Type-II censoring schemes. These parameters are calculated for different
schemes as well as for the different sample sizes. The 95 percent confidence intervals are also
provided for the 2-T parameters. For the Bayesian estimation, the non-informative priors are
considered to estimate µ and θ. Fig. (5) represents the corresponding density and trace plots
for the simulated posterior samples based on the real data-set. Here, the trace plots display the
random scatter of the sample around the mean values and do not have trend which emphasis
the fact that the model has converged. Also, the density plots show the unique modality of the
parameters.
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Table 5: MLEs, LSEs and Bayes estimates under progressive fuzzy sample

m Schemes
MLEs LSEs Bayes CI HPD

µ̂ θ̂ µ̂ θ̂ µ̂ θ̂ µ̂ θ̂ µ̂ θ̂

1 1.242 1.208 1.513 1.510 1.213 1.170 (1.15,1.33) (1.03,1.39) (1.11,1.30) (0.99,1.33)
40 2 1.211 0.828 1.343 0.876 1.140 0.752 (1.08,1.35) (0.68,0.97) (0.95,1.29) (0.60,0.88)

3 1.250 1.038 1.641 1.589 1.216 0.999 (1.16,1.34) (0.88,1.19) (1.10,1.30) (0.83,1.16)
4 1.233 0.915 1.587 1.302 1.190 0.875 (1.13,1.34) (0.77,1.06) (1.05 ,1.30) (0.72,1.02)
1 1.243 1.142 1.512 1.401 1.215 1.111 (1.15,1.33) (0.98,1.30) (1.10,1.30) (0.94,1.26)

45 2 1.217 0.841 1.366 0.900 1.152 0.771 (1.09,1.34) (0.70,0.98) (0.98,1.29) (0.64,0.90)
3 1.255 1.057 1.623 1.510 1.225 1.026 (1.17,1.33) (0.91,1.20) (1.13,1.30) (0.88,1.18)
4 1.230 0.888 1.552 1.176 1.193 0.858 (1.12,1.34) (0.75,1.02) (1.06,1.30) (0.72,0.99)
1 1.244 1.085 1.513 1.311 1.215 1.058 (1.15,1.34) (0.94,1.23) (1.10,1.30) (0.91,1.20)

50 2 1.220 0.847 1.389 0.926 1.156 0.786 (1.10,1.34) (0.72,0.97) (1,1.29) (0.66,0.91)
3 1.255 1.049 1.590 1.391 1.226 1.020 (1.17,1.33) (0.91,1.19) (1.13,1.30) (0.88,1.16)
4 1.228 0.874 1.508 1.082 1.189 0.846 (1.11,1.34) (0.75,1.00) (1.04,1.30) (0.71,0.97)
1 1.241 0.974 1.490 1.134 1.204 0.945 (1.15,1.33) (0.85,1.09) (1.01,1.30) (0.83,1.07)

60 2 1.220 0.843 1.410 0.949 1.169 0.800 (1.10,1.34) (0.73,0.95) (1.01,1.29) (0.69,0.91)
3 1.246 0.971 1.507 1.148 1.215 0.945 (1.15,1.33) (0.85,1.09) (1.11,1.30) (0.83,1.07)
4 1.226 0.859 1.435 0.975 1.187 0.831 (1.11,1.34) (0.75,0.97) (1.05,1.30) (0.73,0.95)
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Figure 5: The density and trace plots of simulated µ and θ for complete data

8. Conclusion

In real world situations, it is always possible that the observed lifetime data might be observed
imprecisely and may be represented in the form of fuzzy numbers. Therefore, a suitable statistical
methodology is required to handle these type of data sets. In this article, we introduced a two
parameter Teissier distribution to model the fuzzy censored lifetime data sets. We derived the
some useful properties of the distribution such as mean residual life, moments, moment generating
function and quantile function. We also discussed different methods to estimate the parameters
of Teissier distribution by using the maximum likelihood, least square and Bayesian techniques.
In order to assess the validity and applications of the estimation procedures, we presented an
extensive simulation study. Lastly, a real data set is considered to discuss the applicability of
the distribution. From the data, it is found that Two parameter Teissier distribution may be a
better choice over other competing distributions such as Maxwell, Exponential and Lindley. The
objective of the article was to introduce a new two parameter distribution to model the fuzzy
censored data set having increasing failure rate which is generally found in the reliability and
survival analysis. Future objectives may be threefold. The first one may be In future, with the
objective of modelling the fuzzy data set, the more flexibility can be added by introducing more
parameters in the distribution. Also, we can work in future with different censoring schemes
available in the literature.
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Abstract 

In this paper, we consider a record-based transmuted version of Power Lomax distribution and it is named as 

Record-based Transmuted Power Lomax (RTPL) distribution. Further, we present several statistical properties 

of the proposed distribution such as moments, quantiles, stochastic ordering, order statistics, and its explicit 

expressions. Some of its reliability measures such as survival function, hazard function, cumulative hazard 

function, mean residual time, and mean inactivity time is also discussed. The maximum likelihood method is 

used to estimate the parameters of the RTPL distribution and this new extended model is applied to a real 

datasets to access the suitability and applicability of the model based on well-known information criteria and 

test for goodness of fit. The simulation study is performed to verify the efficiency and asymptotic behavior of the 

maximum likelihood estimators.  

Keywords: Record-based Transmuted map, Power Lomax distribution, Lambert 

W function, Maximum Likelihood Estimation. 

1. INTRODUCTION

Record values and record statistics are routine and central points for monitoring many aspects of 

human life in date to date activities and it has a lot of real-life applications. In particular, the 

industry has many products which fail at times due to stress. For example, an electronic 

component ceases to function in an environment of high temperature, and a battery dies under the 

stress due to over use. But the precise breaking stress or failure point varies even among identical 

items. Hence in such experiments, measurements may be made sequentially and only the record 

values are observed. Thus, the number of measurements made is considerably smaller than the 

complete sample size. This “measurement saving” method can be important when the 

measurement of these experiments is costly if the entire sample was destroyed. There are 

situations in which an observation is sorted only if it is a record value. This includes studies in 

meteorology, hydrology, economics, athletic events, and life testing studies. 

In 1952, Chandler introduced the study of record values and discussed lots of the most important 

and basic properties of records. Let ,..., 21 XX  be the sequence of the random variables, there are 

two types of the record values such as upper and lower records. We say that
nX  be the upper 

record value if { } ,....3,2,,...,,max 121 => − nXXXX nn
this means that 

nX  which is more than all 

previous sX ' , and 
nX  be the lower record value if { } ,....3,2,,...,,min 121 =< − nXXXX nn

. In two

situations 
1X  is considered the first upper or lower record value. The upper records can be used in 

many real-life phenomena when compares to the lower records. Now if together with some 
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sequence ...,, 21 XX  one considers ....  ,...,  , 2111 nn XYXYXY −=−=−= , then it becomes evident that the 

lower record times for sY ' is coinciding with the corresponding upper record times of sX ' .

Balakrishnan et.al [9] proposed a record-based transmuted map to generate new probability 

models.  Let
nXXX ,...,, 21

be a sequence of an independent and identically distributed random 

variable with a distribution function ( )xG . Let ( )1UX  and ( )2UX be the two upper records from the

above sequence of independent and identically distributed random variables. Define a random 

variable Y as follows: 

( )

( )



 −

=
pX

pX
Y

U

U

y probabilit with ,

1y probabilit with ,

2

1

Where, [ ]1,0∈p , then

( ) ( ) ( )( ) ( )( )xXPpxXPpxF UUY ≤+≤−= 211

The record-based transmuted cumulative distribution function is obtained as 

( ) ( ) ( ) ( )xGxGpxGxF Y log.+= ; for Rx ∈ , 10 ≤≤ p  (1) 

The corresponding probability density function is given by 

( ) ( ) ( )[ ]xGppxgxfY log.1 −−= ; for Rx ∈ , 10 ≤≤ p  
(2) 

Balakrishnan et al. [9] also introduced a few new record-based transmuted (RT) probability 

distributions like RT-exponential (RTE) distribution, RT-Linear exponential (RTLE) distribution, 

RT-Weibull (RTW) distribution, etc. Vijay Kumar et al. [8] studied the Record-Based Transmuted 

Generalized Linear Exponential Distribution with increasing, decreasing, and bathtub-shaped 

failure rates. 

The Lomax distribution, is also known as Pareto Type II distribution and it is proposed by K.S. 

Lomax (1954). It is also classified as heavy-tailed distribution and referred as a shifted Pareto 

distribution, which is widely used in survival analysis. It is popularly used as an alternative to 

power-law, exponential, gamma, and Weibull distribution for modeling heavy-tailed data in the 

domain of business, Economics, and Actuarial science. A random variable X follows the Lomax 

distribution with the shape parameters 0>β  and the scale parameter 0>λ  and its cumulative 

distribution function is given by 

( )
β

λ

−









+−=

x
xF 11 ; 0>x  (3) 

The corresponding probability density function is given below 

( )
1

1

−−








 +=
β

λλ
β x

xf ; 0>x (4) 

El-Houssainy et al. [14] mentioned that the Power Lomax (PL) distribution is obtained by using the 

power transformation that is β
1

XY = . The random variable X is said to follow the three-

parameter PL distribution with the shape parameters 0, >βα  
and scale parameter 0>λ if the 

cumulative distribution function of 0>x  is given by
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( ) ( ) αβα λλ
−

+−= xxF 1 (5) 

The probability density function of the power Lomax distribution is given by 

( ) ( ) 11 −−− +=
αββα λαβλ xxxf (6) 

In the literature, some extensions of the Lomax distribution were developed and further showed 

that these resultant distributions are better than the baseline distribution, and the following will be 

the list of a few such extensions of the Lomax distribution. Abdul-Moniem et al. [1] introduced 

Exponentiated Lomax (EL) distribution, Muhammad Rajab et al.[19] proposed Beta-Lomax (BL) 

distribution, Cordeiro G. M et al. [11] developed gamma-Lomax (GL) distribution,  El-Bassiouny et 

al. [13] studied Exponential Lomax distribution, Singh Yadav et al.[20] investigated on Inverse 

Lomax (IL) distribution, Masood Anwar et al. [6] presented the Half-logistic Lomax (HLL) 

distribution, and Sanaa Al-Marzouki et al. [4] developed the Exponentiated power Lomax 

distribution. 

The remaining part of this paper is organized as follows: In Section 2, we introduce Record based 

Transmuted power Lomax (RTPL) distribution and present some of its special cases. In Section 3, 

we derive some structural properties including quantile function, moments, Lorenz curve, 

Bonferroni curve, entropy, and order statistics. In Section 4, we present the simulation study to 

measure the precision and asymptotic nature of parameter estimates of the proposed distribution. 

In Section 5, we discuss the maximum likelihood estimates (MLEs) of the model parameters. In 

Section 6, we considered two data set for illustrating the suitability and goodness of fit of the RTPL 

distribution. In Section 7, we conclude the study with a summary of results. 

2. RECORD-BASED TRANSMUTED POWER LOMAX DISTRIBUTION

A non-negative integer-valued random variable X is said to follow Record based transmuted 

Power Lomax distribution with scale parameter 0>λ , shape parameters 0, >βα and [ ]1,0∈p
 
if

its cumulative distribution function is of the following form 

( )
( ) 



















+

−
+

−=
α

βαβ

α

λ
λ

λ

λ
x

p
x

xF log11  (7) 

And the corresponding probability density function of the RTPL distribution is given by 

( )
( ) 






























+

+−
+

= +

− α

βαβ

βα

λ
λ

λ

αβλ
x

p
x

x
xf log1.1

1

1

(8)
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Figure: 1a

Figure 1. The probability density plot of the RTPL distribution

The shapes of the probability density function of RTPL distributions for different values of the

parameters can be described in

unimodal and positively skewed which represents the density plot with fixed

and λ  those with different values. From

and reversed J shaped and the curves represent fixed values such that

values to the other three parameters of RTPL distribution.

2.1.Reliability Analysis 

In this section, we define the survival function, hazard rate function,

and cumulative hazard rate function of the RTPL distribution.

The survival function of RTPL distribution is obtained as follows

S

 Figure: 2a

Figure 2. The plots of the Survival function of RTPL distribution

BASED POWER LOMAX DISTRIBUTION

Figure: 1a                                                      Figure: 1b 

The probability density plot of the RTPL distribution

The shapes of the probability density function of RTPL distributions for different values of the

parameters can be described in Figure 1. From Figure 1a, it is observed that the curves are

unimodal and positively skewed which represents the density plot with fixedα β

different values. From Figure 1b, it can be observed that the curve is left

shaped and the curves represent fixed values such that and assign different

values to the other three parameters of RTPL distribution. 

In this section, we define the survival function, hazard rate function, reversed hazard rate function,

and cumulative hazard rate function of the RTPL distribution. 

The survival function of RTPL distribution is obtained as follows 

( )
( ) 



















+

−
+

=
α

βαβ

α

λ
λ

λ

λ
x

p
x

xS log1

Figure: 2a  Figure: 2b

The plots of the Survival function of RTPL distribution

4=λ

The probability density plot of the RTPL distribution 

The shapes of the probability density function of RTPL distributions for different values of the 

that the curves are 

0.5, 2.5, 1pα β= = =  

igure 1b, it can be observed that the curve is left-skewed 

and assign different 

reversed hazard rate function, 

(9)

Figure: 2b 

The plots of the Survival function of RTPL distribution 
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The hazard rate function of RTPL distribution defined as

 Figure: 3a

Figure 3.

The cumulative hazard function of RTPL distribution is as follows

(H

(11) 

The reversed hazard function of the RTPL distribution is given as

(τ x

The survival function plot with

and different values of the parameter

for 4=λ and assigning different values for the parameters

decreasing as time increases. Figure 3a displays the hazard rate plot for

� with changing value, which describes the curves are in

that hazard rate plot for 4=λ
increasing and reversed J shaped.
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The hazard rate function of RTPL distribution defined as 
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Figure 3. The hazard rate plot for RTPL distribution 

The cumulative hazard function of RTPL distribution is as follows 
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The reversed hazard function of the RTPL distribution is given as 
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The survival function plot with parameters  5.2 ,5.1 == βα and 1=p  is represented in

and different values of the parameter λ  and Figure 2b shows the survival function plot of RTPL

and assigning different values for the parameters p and , , βα . The survival curves are

decreasing as time increases. Figure 3a displays the hazard rate plot for ,5.1=α
with changing value, which describes the curves are increasing, decreasing, and

4 , and varying parameter values for   , βα and

shaped. 

(10) 

Figure: 3b 























α

λ
 (12) 

s represented in Figure 2a 

igure 2b shows the survival function plot of RTPL

. The survival curves are 

1 ,5.2 , == pβ  and 

creasing, decreasing, and Figure 3b shows 

and p  the curves are
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Special cases: For different values of the parameters, the following distributions are obtained as 

the special case of the RTPL distribution. 

Case 1: If the value of 0=p , then the distribution function given in (7) reduced to the power 

Lomax distribution.  

Case 2: If the value of 0=p  and 1=β , then the distribution function given in (7) reduced to the 

Lomax distribution. 

3. STATISTICAL AND MATHEMATICAL PROPERTIES

This section deals with some important properties of the proposed RTPL distribution such as 

quantile function, moments, inverted moments, entropy, stochastic ordering, and order statistics. 

3.1. Quantile Function 

The quantile function plays an important role when simulating random variables from a 

probability distribution. The quantile function of the RTPL distribution function is defined as 

follows 
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The closed-form expression of the quantile function has been obtained by using the Lambert W-

function such as: 

( ) ( ) νν ν =WeW

Where � is the complex number. For real numbers,
e

1
−≥ν , the Lambert W function has only two

branches 0W  which takes the value in [ )∞− ,1   and 1−W  which takes the value in [ )1,−∞−  and for
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Now using the negative branch of the Lambert W function in the above equation we get, 
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Thus, by solving the equation (13), we get the quantile function as given below 
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The median of the probability distribution can be obtained by taking the u as 0.5 in the above 

quantile function.  
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3.2. Method of Moments 

The �th raw moment of the random variable X having RTPL distribution is obtained by substituting 

the equation (8) as follows:  
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The first two moments of the distribution can be derived from equation (16) and it is given as 
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(18) 

The ��� incomplete moment of the RTPL distribution can be obtained by using the equation (8) as 

follows: 
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By taking � = 1 in the equation (19) to get the1	� incomplete moment of RTPL distribution and it is 

given as  
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The ��� central moment of RTPL distribution is defined as follows 
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The ��� inverted moment of RTPL distribution is defined and obtained as follows 
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Mean residual life (MRL) or life expectancy at time t is the expected additional life length for a 

unit, which is still alive at time t. The mean residual lifetime of the RTPL distribution is defined as 

follows 
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Mean inactivity time (MIT) is the waiting time to elapsed since the failure of an item is on the 

condition that the failure can be occurred in (0,t). The mean inactivity time of the proposed RTPL 

distribution is obtained as 
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3.3. Measures of Inequality and Uncertainty 

In this section, the measures of uncertainty and three inequality measures of the RTPL distribution 

have been derived. The Lorenz curve of the RTPL distribution can be derived by using the first 

RT&A, No 4 (71) 
Volume 17, December 2022 

581 



K.M.Sakthivel and V.Nandhini
RECORD-BASED POWER LOMAX DISTRIBUTION
 

incomplete moment in (20) and the moment in (17) is obtained as follows 
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The Bonferroni curve of the RTPL distribution is obtained by using (7) and the Lorenz curve in (25) 

is given below 
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The Zenga Index of the RTPL distribution is obtained as 
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By substituting the equations (28) and (29) in (27), we get the Zenga Index of the RTPL 

distribution. 

Entropy is one of the important tools for measuring the uncertainty of the random variables and 

the information provided by such variables. In some cases, the random variables in the probability 

distribution are associated with some sort of uncertainty, and entropy can be used to quantify 

them. 
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The R
́nyi entropy can be derived by using the equation (8) is defined as follows 
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3.4. Order Statistics 

The order statistics play a vital role in predicting the failure time of certain items by using 

previously observed failures. Let 
nXXX ,...,, 21

be a random sample of size n, and let 
nrX :

denotes that �th order statistic, then the pdf of 
nrX :

 is given by 
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Substituting the equations (7) and (8) in the above equation, we can write 
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3.5. Record Statistics 

Let ( ) ( ) ( )nUUU XXX ,...,, 21  be the upper record values from a sequence of identically and

independently distributed random variables from the RTPL distribution. The pdf of ��upper 

record value ( )nUX  of the RTPL distribution is defined by 
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The pdf of ��lower record value ����� of the RTPL distribution is defined by 
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3.6.Stochastic Ordering 

The ordering of probability distributions particularly among lifetime distributions plays an 

important role in the statistical literature. We consider stochastic orders, namely, the hazard rate, 

the mean residual life, and the likelihood ratio order for two independent RTPL random variables 

under a restricted parameter space. It can be recalled that if a family has a likelihood ratio 

ordering, it has the monotone likelihood ratio property. If X and Y are independent random 

variables with a cumulative distribution function �� and �� respectively, then X is said to be 

smaller than Y in the 

• stochastic order YX st≤ if ( ) ( )xFxF YX ≥ for all x

• hazard rate order YX hr≤  if ( ) ( )xhxh YX ≥ for all x

• mean residual life order YX mrl≤ if  ( ) ( )xmxm YX ≥ for all x

• likelihood ratio order YX lr≤ if ( )
( )xf

xf

Y

X  decreases in x. 

The following results are well known for establishing stochastic ordering of probability 

distributions. The likelihood ratio is given as follows 
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By taking the logarithm on both sides of the likelihood ratio which is given in the equation (34) 

then we get, 
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Now if ααα == 21 , βββ == 21
, ppp == 21 and 21 λλ > then ( )

( )
0log ≤

xf

xf

dx

d

Y

X implies that 

YX lr≤ and hence YX lr≤ , YX hr≤ YX mlr≤ and YX st≤ .

4. MAXIMUM LIKELIHOOD ESTIMATION METHOD

In this section, the maximum likelihood method is used to estimate the unknown parameters of the 

RTPL distribution and the information matrix is obtained to observe the asymptotic behavior of 

the parameters of RTPL distribution.  

Let 
nXXX ,...,, 21

be a random sample from the RTPL distribution with unknown parameters 

p and ,,, λβα then the likelihood function is given by
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The log-likelihood function of the RTPL distribution is given below 
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Taking first-order partial derivatives of the equation (37) to find the unknown parameters, 
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Then the maximum likelihood estimates of the parameters p and ,,, λβα can be obtained by 

solving the partial differential equations in (38) to (41). The Fisher information ���  matrix for RTPL 

distribution is given by 
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The Fisher information matrix can be obtained by deriving the second-order partial of the log-

likelihood function in equation (37) for unknown parameters. So we obtain the asymptotic 

100�1 − ��% confidence intervals for the unknown parameters of RTPL �, �, �, and � can be easily 

obtained by using the equation given below  
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Where 

2

αz  is the 
2

α
quantile of the standard normal distribution. 

5. MONTE CARLO SIMULATION

This section deals with the simulation study by generating the samples from the proposed 

distribution. The idea behind the Monte Carlo simulation is to generate a series of experimental 

samples using the random number sequence and it creates a fluctuating convergence process. The 

inverse transformation method is the most commonly used technique to generate random variates 

of the distribution. If a random variates R follows a uniform distribution with [0,1], the random 

variates ( )RFX
1−=  have a continuous cumulative probability distribution ( )XF . In this case,

the inverse function is defined as
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( ) ( ){ } 10for    ;:min
1 ≤≤≥== −

RRxFxRFX  

The procedure for generating random variates using the inverse transformation method is 

Step 1: Generate a uniformly distributed random number sequence R between the interval [0,1]. 

Step 2: Calculate the random variates X of the RTPL distribution by using the equation given 

below, 
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We study the performance of MLE of the RTPL distribution by conducting various simulations for 

different sample sizes and different parameter values. After generating random samples, it can be 

used to obtain the mean estimate, average bias, and root mean square error of the maximum 

likelihood estimators of the distribution.  

a) Mean estimate of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

∑
=

N

iN 1

ˆ
1

υ

b) The average bias of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

( )∑
=

−
N

iN 1

ˆ
1

υυ

c) Root mean squared error of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

( )∑
=

−
N

iN 1

2
ˆ

1
υυ

Table 1. Average Bias, Root mean square error of the estimates based on MLE by Monte Carlo 

Simulation of RTPL distribution for different sample sizes. 

N Parameter 5.0,4,5.2,3: ==== pICase λβα  1,4,5.2,3: ==== pIICase λβα  

Mean AB RMSE Mean AB RMSE 

25 

α  
β  

λ  
p

4.63043 

2.87287 

7.87230 

0.36628 

1.63043 

0.37287 

3.87230 

-0.13371

6.54560 

0.91905 

12.0427 

0.32787 

4.13564 

3.27358 

12.8557 

0.56351 

1.13564 

0.77358 

8.85574 

-0.43648

4.42860 

1.02376 

18.3768 

0.63158 

50 

α  
β  

λ  
p

4.79498 

2.65200 

8.58040 

0.35866 

1.79498 

0.15200 

4.58040 

-0.14134

6.37452 

0.56537 

13.3039 

0.31642 

3.21649 

3.35949 

9.45730 

0.63158 

0.21649 

0.85949 

5.45730 

-0.36841

2.91639 

1.07604 

13.0895 

0.44482 

75 

α  

β  

λ  
p

4.70200 

2.57257 

8.06813 

0.39320 

1.70200 

0.07257 

4.08045 

-0.10679

5.25124 

0.47150 

11.2990 

0.31475 

2.85943 

3.39907 

8.56134 

0.63080 

-0.14056

0.89907

4.56134

-0.36919

2.78340 

1.08594 

12.5419 

0.45047 

100 

α  

β  

λ  
p

4.88606 

2.52120 

8.08045 

0.39184 

1.88606 

0.02120 

4.06813 

-0.10816

5.17449 

0.42337 

10.4641 

0.31473 

2.58303 

3.39977 

7.72486 

0.63409 

-0.41696

0.89977

3.72485

-0.36590

2.06095 

1.03959 

10.9990 

0.44544 

RT&A, No 4 (71) 
Volume 17, December 2022 

587 



K.M.Sakthivel and V.Nandhini
RECORD-BASED POWER LOMAX DISTRIBUTION
 

Table 2. Average Bias, Root mean square error can be obtained by Monte Carlo Simulation of 

RTPL distribution for different sample sizes. 

n Parameter 1.0,4.0,6.0,5.0:  ==== pICase λβα  1,4.0,6.0,5.0: ==== pIICase λβα  

Mean AB RMSE Mean AB RMSE 

50 

α  
β  

λ  
p

0.63005 

0.66297 

0.50398 

0.29443 

0.13004 

0.06297 

0.10398 

0.19443 

0.46860 

0.24380 

0.78359 

0.35607 

0.46542 

0.39145 

0.34823 

0.34648 

-0.03457

0.29992

1.39085

-0.51504

0.27323 

0.29433 

2.27508 

0.69344 

100 

α  
β  

λ  
p

0.55927 

0.63287 

0.37730 

0.29320 

0.05927 

0.03287 

-0.02269

0.19320

0.22920 

0.15135 

0.30049 

0.36410 

0.69993 

0.75728 

0.81821 

0.83007 

-0.10854

0.25728

0.86313

-0.59811

0.16292 

0.25213 

1.28071 

0.62799 

500 

α  
β  

λ  
p

0.52201 

0.60772 

0.34190 

0.24686 

0.02201 

0.00772 

-0.05809

0.14686

0.10083 

0.05899 

0.15553 

0.32035 

1.79085 

1.26313 

0.79885 

0.65827 

-0.15176

0.21821

0.39885

-0.39769

0.16203 

0.24087 

0.66036 

0.48515 

1000 

α  

β  

λ  
p

0.51573 

0.60490 

0.34769 

0.21904 

0.01573 

0.00490 

-0.05230

0.11904

0.07803 

0.04176 

0.12756 

0.28422 

0.40188 

0.48495 

0.60230 

0.66413 

-0.15352

0.20107

0.25827

-0.33586

0.15928 

0.24376 

0.46895 

0.40010 

Table 1 shows the simulation study is repeated for 1000=N times each which has its sample size 

is given by 100,75,50,25=n  and for two different cases such parameter values are shown as 

5.0,4,5.2,3: ==== pICase λβα , and 1,4,5.2,3: ==== pIICase λβα . Table 2 describes 

the simulation study is repeated for 10000=N times each with sample size n = 50, 100, 500, 1000 

and by taking parameter values 1.0,4.0,6.0,5.0: ==== pICase λβα and

1,4.0,6.0,5.0: ==== pIICase λβα . In the simulation study, we present the mean, average 

bias, and RMSE values of the parameters p and ,,, λβα  for different sample sizes. From the

results, we can verify that as the sample size n increases, the RMSEs decay toward zero. The 

average bias for the parameters is slightly larger for small to moderate sample sizes but tends to 

get smaller as the sample size n increases. We also observe that for all the parametric values, the 

bias decrease as the sample size n increases. Hence the ML estimates of RTPL distribution are 

consistent and efficient. 

6. APPLICATIONS

In this section, we consider two real data sets for illustrating the suitability of the RTPL 

distribution in real-time applications, the first data set consists of the breaking stress of carbon 

fibers with the length of 50mm, and the second data involves the exact failure time of Kevlar 

373/epoxy that is subject to constant pressure can be discussed by using the maximum likelihood 

method of estimation and goodness of fit test. The model selection is carried out by using the AIC 

(Akaike information criterion), the BIC (Bayesian information criterion), and the CAIC (consistent 

Akaike information criteria). 

( ) qLAIC 2ˆ2 +−= θ

( ) ( )nqLBIC logˆ2 +−= θ

( )
1

2ˆ2
−−

+−=
qn

qn
LCAIC θ
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Where ( )θ̂L denotes the log-likelihood function evaluated at the MLEs, p  is the number of

parameters, and n is the sample size. Here, θ  denotes the parameters p,,, λβαθ = . An iterative

procedure is applied to solve the equations (38), (39), (40), and (41). The model with minimum AIC 

(or BIC, CAIC) values is chosen as the best model to fit the given data sets. 

Data Set 1: The data set contains exact times of failure. More precisely, it consists of the life of 

fatigue fracture of Kevlar 373/epoxy that is subject to constant pressure (at the 90% stress level) 

until all had failed. Analysis of this data set can also be found in [16]. These data are listed as: 

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 

0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773,1.1733, 

1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 

1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 

2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 

3.4045,  3.4846,  3.7433,  3.7455, 3.9143,  4.8073,  5.4005,  5.4435,  5.5295,  6.5541,  9.0960. 

Table 3. Summary of statistics for Data set 1. 

n Minimum Q1 Median Mean Q3 Maximum 

69 0.0251 0.8645 1.5728 1.5675 2.0903 3.7455 

Table 4. The Parameter estimates of the RTPL distributions for Data set 1. 

Probability 

Models 

Parameter Estimates 

�  �! �! �̂

RTPL 142.646 1.25041 134.721 0.84430 

Expo-Lomax 14.3067 2.973127e+02 3.299822e-03 - 

H-L 4.669135e+02 1.965831e-03 - - 

Lomax 4569.5 6914.7 - - 

Table 5. The log-likelihood, information criteria, and Goodness of fit test for Data set 1. 

Accuracy 

Measures 

Probability Models 

RTPL Expo-Lomax H-L Lomax 

-log L 87.698 91.753 93.440 100.062 

AIC 183.39 189.50 190.91 204.12 

BIC 192.33 196.20 195.37 208.59 

CAIC 184.02 189.87 191.09 204.31 

#$
%  0.1678 0.2094 0.5941 1.1240 

&$
%  1.1275 1.2655 3.0836 5.5955 

'$ 0.1175 0.1183 0.1639 0.2221 

Table 5, provides the estimated values of the parameters and likelihood values for all the fitted 

distributions. From this, minimum values of the information criterion represent the fitness of the 

new model and we conclude that the RTPL distribution is best when compared to Lomax 

distribution, Half-logistic Lomax (HL) [6], and Exponentiated Lomax (Expo-Lomax) [1] 

distributions. The test statistics(�, )�
*, +�

*  have the smallest values for the Kevlar 373/epoxy data 

set under the RTPL distribution when compare to other suitable models. The RTPL distribution is 

approximately a better model for this real dataset. 
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Figure 4: Estimated pdf plot for the data set 1 

Figure 4 shows the fitted pdf plot, in which the histogram represents data points, and the curves 

show the fitness of the four comparable distributions. This plot shows that the RTPL model 

provides an adequate fit to the lifetime of fatigue fracture of the Kevlar 373/epoxy datasetwhen 

compared to the other advisory models. 

Data Set 2: This dataset describes the breaking stress of carbon fibers with a length (GPA) of 

50mm. The data has been taken from [17]. The data is given as follows: 0.39, 0.85, 1.08, 1.25, 1.47, 

1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.5, 2.55, 

2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88 , 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 

3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 

4.38, 4.42, 4.70, 4.90. 

Table 6. Summary of statistics for Data set 2. 

n Minimum Q1 Median Mean Q3 Maximum 

66 0.390 2.178 2.835 2.759 3.277 4.900 

Table 7. The Parameter estimates of the RTPL distributions for Data set 2. 

Probability 

Models 

Parameter Estimates 

�  �! �! �̂ ,  

RTPL 98.6077 2.77527 1161.283 0.74846 - 

Expo-PL 5690.105 1.11941 7.95276 - 6600.825

PL 105.423 2.08411 784.590 - - 

H-L 7.176263e+02 7.599327e-04 - - - 

Lomax 2686.160 7663.882 - - - 

Table 8: The log-likelihood, information criteria, and Goodness of fit test for Data set 2. 

Accuracy 

Measures 

Probability Models 

RTPL Expo-PL PLomax H-L Lomax 

-log L 85.5269 94.2648 98.4301 122.4363 133.0312 

AIC 179.053 196.529 202.860 248.872 270.0624 

BIC 187.812 205.288 209.429 253.252 274.4417 

CAIC 179.709 197.185 203.247 249.063 270.2529 
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#$
%  0.06810 0.38229 1.8567 12.206 13.422 

&$
%  0.40351 1.9864 8.6186 2.4891 2.7094 

'$ 0.07319 0.16162 0.29427 0.3269 0.3474 

Table 8 presents the estimated values of the parameters for all the fitted distributions. From this we 

conclude that the RTPL distribution provides the best fit to the given data set when compared to 

Lomax distribution, Half-logistic Lomax (HL) [6], Exponentiated Power Lomax (Expo-PL) [4], and 

Power Lomax (PLomax) [14] distributions. The values of tests statistics such as the Kolmogorov-

Smirnov (� , Cramér-von Mises )�
*, Anderson and Darling +�

* can be used to measure the goodness 

of fit of the RTPL distribution while concerning the other models through the breaking stress of 

carbon fibers data. Hence, the RTPL distribution approximately provides an adequate fit for the 

dataset. 

Figure 5: Estimated pdf plot for the data set 2 

The fitted pdf plot is displayed in Figure 5, this plot shows that the histogram represents the data 

points and the curve shows the fitness of the five different distribution which is chosen for this 

comparative study. From this, we conclude that the RTPL model provides an adequate fit to the 

breaking stress of the carbon fibers data set, when compared to the other suitable models. 

7. CONCLUSION

In this paper, a new extension of the four-parameter Lomax distribution is proposed and it is 

named as Record-based Transmuted Power Lomax distribution based on Record based transmuted 

map. The usefulness of this newly proposed model is illustrated by using two real data sets. This 

results illustrate that the proposed model provides a consistently better fit than the other existing 

suitable models. The graphical representation of the hazard rate of RTPL model has been explored 

and the obtained shapes are increasing, decreasing, and reversed J shaped. The maximum 

likelihood estimation method is used to estimate the unknown parameters of the RTPL 

distribution. The performance of the maximum likelihood estimates is investigated through the 

Monte Carlo simulation study to generate a random sample by using the quantile function and we 

observed that the proposed distribution shows a better fit when the sample size increases. The 

results of the Kolmogorov Smirnov test, Cramer Von Mises test, Anderson Darlings test, and 

important information criterions conclude that the RTPL model is provided goodness fit and 

emerge as better model compared to the other models. It is evident that, it has a lot of scope and 

real time applications in many field of science.  
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Abstract

In this paper, by using progressively type II censored samples, we discuss on estimation of the parameters
of a power Lindley model. Maximum likelihood estimates (MLE) and approximate confidence intervals of
the unknown parameters are obtained. Then, considering squared error loss function, the Bayes estimates
of the parameters are derived. Because there are not closed forms for the Bayes estimates, we use Tierney
and Kadane’s technique, to calculate the approximate Bayes estimates. Further, the results are extended to
the stress-strength reliability parameter involving two power Lindley distributions. The ML estimate
of the stress-strength parameter and its approximate confidence interval are obtained. Then, the Bayes
estimates and highest posterior density credible interval of the involved parameter are obtained by using a
Markov Chain Monte Carlo method. To evaluate the performances of maximum likelihood and Bayes
estimators simulation studies are conducted and two examples of real data sets are provided to illustrate
the procedures.

Keywords: Power Lindley model, progressive type II censoring, Bayesian approach, Maximum
likelihood method, Stress-strength reliability

1. Introduction

A random variable (r.v.) X follows the power Lindley model with parameters γ and δ, denoted
by PL(γ, δ), if its probability density function (p.d.f.) and survival function are defined as

f (x; γ, δ) =
γδ2

δ + 1
(1 + xγ) xγ−1e−δxγ

, x > 0, γ, δ > 0. (1)

and

S(x; γ, δ) =

(
1 +

δ

δ + 1
xγ

)
e−δxγ

, x > 0, γ, δ > 0, (2)

respectively. This model is introduced by Ghitany et al. [10] as a new distribution useful to
analyze lifetime data. They studied the statistical properties and maximum likelihood estimation
(MLE) of the power Lindley model on the basis of complete random sample. However, in many
life testing and reliability analysis, the experiment may be terminated before the failure of all
items. Hence, the available observations are called censored samples. By the censoring, the
test time can be reduced and further some experimental components are kept for future use.
In the conventional type I and type II censoring schemes, removing items at stages other than
the terminal stage of the test is not allowed. Therefore, in the literature, a more important
scheme called progressively type II censoring (PTII) is provided as follows. Suppose that a
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sample of size n items are in a life test. When the first item is failed (time x(1)), U1 items
are discarded from the surviving n− 1 items. With the second failure (x(2)), U2 items of the
n− 2−U1 surviving items are deleted. This procedure is continued until the time of dth failure
(x(d)) in which Ud = n− d− (U1 + U2 + . . . + Ud−1) surviving items are removed. Note that
the censoring numbers Ui, i = 1, ..., d, are determined before beginning of the study. When
d = n and U1 = U2 = . . . = Ud = 0, the complete sample of size n is observed. Also, if
U1 = U2 = . . . = Ud−1 = 0 and Ud = n − d, the ordinary TII censored sample of size d is
observed.

There is a large amount of literature about the estimation of lifetime model parameters using
PTII censoring scheme. Krishna and Kumar [16] studied estimation of reliability characteristics in
Lindley model. Bayesian analysis for Rayleigh distribution under PTII scheme is discussed by
Lee et al. [19]. Pradhan and Kundu [21] addressed statistical inference of generalized exponential
model in presence of PTII censored data. Balakrishnan [3] presented inferential approaches for
different lifetime models based on the above PTII censoring scheme. Ghitany et al. [11] applied
ML procedure to derive the estimates of the Gompertz model parameters by using complete
and PTII censored data. Kim and Han [13] provided different inference procedures for Rayleigh
distribution parameter by using a progressively censored sample.

The interest of this paper is to provide classical and Bayesian inferences for the parameters of
power Lindley distribution by using a PTII censored sample. We first describe the construction
of likelihood function using a PTII censored sample from power Lindley distribution. Then, the
ML estimates of the parameters and their approximate confidence intervals (CI) are obtained.
Considering squared error loss function and using gamma priors of the parameters, an expression
is provided as the Bayesian estimate of any function of the parameters. Since this expression can
not simplified to a nice closed form, we employ Tierney and Kadane’s procedure to obtain the
approximate Bayes estimates.

Moreover, the above estimation techniques based on PTII censoring scheme can be naturally
extended for inferences about the stress-strength model. This model has attracted the attention
of statisticians for many years due to their applicability in diverse areas such as medicine,
engineering, and quality control, among others. In reliability studies with strength X and stress
Y , the parameter R = P(X > Y) measures the reliability of a system ( [15] ). It is used in
biometrical researches for comparison of the two quantities obtained from practical experiments.
There is a large amount of literature about the estimation of R using different approaches and
distributional assumptions on (X, Y). Estimation of R in the models with correlated stress and
strength is conducted by [4]. Hanagal [12] derived maximum likelihood estimate of stress-strength
parameter R in a bivariate Pareto model. Inference for the stress-strength models in a generalized
exponential model is studied by Kundu and Gupta [18]. Pak et al. [ 20] have used fuzzy set
theory to derive inferences on the parameter R when the observations of the strength and stress
are imprecise quantities. Statistical estimation of R for the exponential model is discussed by
Krishnamoorthy et al. [ 17]. Inference on the reliability in multicomponent models when the
stress and strength have Weibull distribution is considered by Kizilaslan and Nadar[14]. Eryilmaz
[6] computed the reliability of coherent structures in multivariate stress-strength models.

Recently, Ghitany et al. [9] developed inference procedures for the stress-strength power
Lindley models when the complete information about all experimental units are available.
However, in practice, we may deal with censored data sets in which the failures of some items are
not observed. For example, assume that the random variables X and Y describe the treatment
effects of two new drugs and the quantity of interest is R = P(X > Y). In such situations,
censored samples from both treatment groups are observed, rather than complete samples. Other
examples include comparison of carbon fiber strengths at different gauge lengths and comparison
of the concentration of sulphur dioxide from a Beach in two different years. In this study, we
obtain Bayesian and classical estimates of the reliability R by using PTII censored samples from the
stress and strength populations. We first determine the ML estimate of the reliability parameter
and its asymptotic confidence interval. Then, we use a Markov Chain Monte Carlo (MCMC)
procedure to obtain the Bayes estimate and highest posterior density (HPD) credible interval of
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the parameter R.
The layout of this paper is as follows. Section 2 concerns inference procedures for the power

Lindley based on PTII censored sample. In Section 3, statistical inferences for the reliability
parameter R are discussed. To evaluate the performances of the proposed estimators, simulation
studies are conducted in Section 4. In Section 5, a real data set from Ebrahimi [7] is analysed
to demonstrate the application of PTII censoring scheme. Then, to illustrate the estimation
procedures of the stress-strength model, we present an example of two real data sets. Finally,
some comments and conclusions are made in Section 6.

2. Inference for progressively censored data

2.1. Maximum likelihood estimation

Assume that n independent components are put on a life testing experiment with the lifetimes
following the power Lindley model. Before the commencement of the experiment, the quantity
d ≤ n is specified and the censoring scheme (U1, ..., Ud) with Ui ≥ 0 is determined. Then, by
using a PTII censored sample denoted as x = (x(1), ..., x(d)), the likelihood function of γ and δ
can be expressed as

LO(γ, δ) = K
d

∏
i=1

f (x(i); γ, δ)
[
S(x(i); γ, δ)

]Ui

= K
γdδ2d

(δ + 1)d e
−δ

d
∑

i=1
xγ
(i)(1+Ui) d

∏
i=1

(1 + xγ
(i))xγ−1

(i)

(
1 +

δ

δ + 1
xγ
(i)

)Ui

, (3)

where K = n(n−U1 − 1) . . . (n−U1 − . . .−Ud−1 − d + 1). Therefore, the corresponding log-
likelihood function of the parameters become

`(γ, δ) = log(K) + d log γ + 2d log δ− d log(δ + 1)− δ
d

∑
i=1

xγ
(i)(1 + Ui)

+
d

∑
i=1

[
log(1 + xγ

(i)) + (γ− 1) log x(i)
]
+

d

∑
i=1

Ui log
(

1 +
δ

δ + 1
xγ
(i)

)
. (4)

The MLE of the parameters γ and δ, say γ̂ and δ̂, are the solutions of nonlinear equations

∂`

∂γ
=

d
γ
+

d

∑
i=1

log x(i) − δ
d

∑
i=1

xγ
(i) log x(i)(1 + Ui)

+
d

∑
i=1

xγ
(i) log x(i)
1 + xγ

(i)
+

d

∑
i=1

Ui

δxγ
(i) log x(i)

δ + 1 + δxγ
(i)

= 0, (5)

∂`

∂δ
=

2d
δ
− d

δ + 1
−

d

∑
i=1

xγ
(i)(1 + Ui) +

d

∑
i=1

Ui

xγ
(i)

(δ + 1)2 + δ(δ + 1)xγ
(i)

= 0. (6)

Note that there are not explicit solutions for the above system of equations and it is required
to employ nonlinear numerical computational techniques to calculate the MLEs. In a similar
problem, Valiollahi et al. [25], have use EM algorithm to obtain the ML estimates of the parameters.
Here, in real data application and simulation studies described later on, we employ nlm function
in the R statistical software ([22]) to compute the MLEs.

Once the ML estimates of γ and δ are obtained, we can apply the asymptotic normality of
the MLEs to compute the approximate CIs for the parameters. The observed variance-covariance
matrix for the MLEs of the parameters is

Σ̂ =

 − ∂2`(γ,δ)
∂γ2 − ∂2`(γ,δ)

∂γ∂δ

− ∂2`(γ,δ)
∂γ∂δ − ∂2`(γ,δ)

∂δ2

−1

(γ=γ̂,δ=δ̂)

=

[
σ11(γ̂, δ̂) σ12(γ̂, δ̂)
σ12(γ̂, δ̂) σ22(γ̂, δ̂)

]
, (7)
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where

∂2`(γ, δ)

∂γ2 = − d
γ2 − δ

d

∑
i=1

xγ
(i)(log x(i))

2(1 + Ui)

+
d

∑
i=1

[
xγ
(i)(log x(i))2

(1 + xγ
(i))

2
+ Ui

δxγ
(i)(log x(i))2

(δ + 1)(1 + δ
δ+1 xγ

(i))
2
], (8)

∂2`(γ, δ)

∂γ∂δ
= −

d

∑
i=1

xγ
(i) log x(i)(1 + Ui) +

d

∑
i=1

Uix
γ
(i) log x(i)

1
(δ + 1 + δxγ

(i))
2

, (9)

∂2`(γ, δ)

∂δ2 = −2d
δ2 +

d
(δ + 1)2 −

d

∑
i=1

Uix
γ
(i)

2(δ + 1) + (2δ + 1)xγ
(i)

((δ + 1)2 + δ(δ + 1)xγ
(i))

2
. (10)

Thus, by using the delta method and inverse logarithmic transformation (see [10]), the 100(1− α)%
CIs for the parameters γ and δ are derived, respectively, as

(eL
1 , eU

1 ) and (eL
2 , eU

2 ), (11)

where

(L1, U1) ≡ log γ̂± z α
2

√
σ11(γ̂, δ̂)

γ̂
, (12)

(L2, U2) ≡ log δ̂± z α
2

√
σ22(γ̂, δ̂)

δ̂
(13)

in which z α
2

is the α
2 upper quantile of the standard normal distribution.

2.2. Bayesian analyzes

In the Bayesian setting, the observer combine subjective opinion based on insight or experience
with the available observations to get balanced values and to update the estimates as more
information and data become accessible. In this section we obtain the Bayes estimates of the
unknown parameters assuming that γ and δ are independent r.v.s from the gamma models with
respective densities {

π1(γ; a1, b1) ∝ γa1−1 e−γb1 , γ > 0,
π2(δ; a2, b2) ∝ δa2−1 e−δb2 , δ > 0,

(14)

where the hyperparameters ai, bi, i = 1, 2, are positive. By combining (3) with (14), the joint
density function of (γ, δ) and the data x = (x(1), ..., x(m)) becomes

π3(γ, δ, x) ∝
γd+a1−1 e−γb1 δ2d+a2−1

(δ + 1)d e
−δ(b2+

d
∑

i=1
xγ
(i)(1+Si))

d

∏
i=1

(1 + xγ
(i))xγ−1

(i)

(
1 +

δ

δ + 1
xγ
(i)

)Ui

. (15)

Thus, we can write the posterior density function of γ and δ as

π∗(γ, δ | x) =
π3(γ, δ, x)

∞∫
0

∞∫
0

π3(γ, δ, x)dγdδ

. (16)

Now, assuming squared error loss function, the Bayes estimate of a function h(γ, δ) from the
parameters is obtained as

E(h(γ, δ) | x) =
∞∫

0

∞∫
0

π∗(γ, δ | x) h(γ, δ)dγdδ. (17)
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Since the posterior density function π∗(γ, δ | x) has a complex form, deriving a nice closed
form for the Bayes estimate of h(γ, δ) is difficult. Therefore, in the following, the approximate
Bayes estimates are calculated using Tierney and Kadane’s procedure.
Setting

F(γ, δ) =
1
n

ln π3(γ, δ, x) and F∗(γ, δ) = F(γ, δ) +
1
n

ln h(γ, δ),

the expression in (17) can be rewritten as

E(h(γ, δ) | x) =

∫ ∞
0

∫ ∞
0 enF∗(γ,δ)dγdδ∫ ∞

0

∫ ∞
0 enF(γ,δ)dγdδ

. (18)

Following Tierney and Kadane [24], equation (18) can be approximated as the following form:

ĥBT(γ, δ) =

[
det Ψ∗

det Ψ

]1/2
exp

{
n
[
F∗(γ̄∗, δ̄∗)− F(γ̄, δ̄)

]}
, (19)

where (γ̄∗, δ̄∗) and (γ̄, δ̄) maximize F∗(γ, δ) and F(γ, δ), respectively, and Ψ∗ and Ψ are minus
the inverse Hessians of F∗(γ, δ) and F(γ, δ) at (γ̄∗, δ̄∗) and (γ̄, δ̄), respectively.
In our case

F(γ, δ) =
1
n
{c + (d + a1 − 1) log γ− γb1 + (2d + a2 − 1) log δ

−d log(δ + 1)− δ
d

∑
i=1

xγ
(i)(1 + Ui)

+
d

∑
i=1

[
log(1 + xγ

(i)) + (γ− 1) log x(i)
]
+

d

∑
i=1

Ui log
(

1 +
δ

δ + 1
xγ
(i)

)
} (20)

where c does not depend on γ and δ. Therefore, (γ̄, δ̄) can be derived from the equations

∂

∂γ
F(γ, δ) =

1
n
{d + a1 − 1

γ
− b1 +

d

∑
i=1

log x(i) − δ
d

∑
i=1

xγ
(i) log x(i)(1 + Ui)

+
d

∑
i=1

xγ
(i) log x(i)
1 + xγ

(i)
+

n

∑
i=1

Ui

δxγ
(i) log x(i)

δ + 1 + δxγ
(i)
} = 0,

∂

∂δ
F(γ, δ) =

1
n

{
2d + a2 − 1

δ
− d

δ + 1
− b2 −

d

∑
i=1

xγ
(i)(1 + Ui) +

d

∑
i=1

Ui

xγ
(i)

(δ + 1)2 + δ(δ + 1)xγ
(i)

}
= 0.

Then, by using the second order derivatives of F(γ, δ), the determinant of the negative of the
inverse Hessian of H(γ, δ) at (γ̄, δ̄) is given by det Ψ = (F11F22 − F2

12)
−1 where

F11 =
1
n
{−d + a1 − 1

γ̄2 − δ
d

∑
i=1

xγ̄
(i)(log x(i))

2(1 + Ui)

+
d

∑
i=1

[
xγ̄
(i)(log x(i))2

(1 + xγ̄
(i))

2
+ Ui

δ̄xγ̄
(i)(log x(i))2

(δ̄ + 1)(1 + δ̄
δ̄+1 xγ

(i))
2
]},

F12 =
1
n
{−

d

∑
i=1

xγ̄
(i) log x(i)(1 + Ui) +

d

∑
i=1

Uix
γ̄
(i) log x(i)

1

(δ̄ + 1 + δ̄xγ̄
(i))

2
},
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F22 =
1
n
{−2d + a2 − 1

δ̄2 +
d

(δ̄ + 1)2 −
d

∑
i=1

Uix
γ̄
(i)

2(δ̄ + 1) + (2δ̄ + 1)xγ̄
(i)

((δ̄ + 1)2 + δ̄(δ̄ + 1)xγ̄
(i))

2
}.

Now, for computing the estimate of γ under squared error loss function, let h(γ, δ) = γ. Thus,
we have

F1∗(γ, δ) =
1
n
{c + (d + a1) log γ− γb1 + (2d + a2 − 1) log δ

−d log(δ + 1)− δ
d

∑
i=1

xγ
(i)(1 + Ui)

+
d

∑
i=1

[
log(1 + xγ

(i)) + (γ− 1) log x(i)
]
+

d

∑
i=1

Ui log
(

1 +
δ

δ + 1
xγ
(i)

)
} (21)

and (γ̄∗, δ̄∗) are computed from the following system of equations:

∂

∂γ
F1∗(γ, δ) =

1
n
{d + a1

γ
− b1 +

d

∑
i=1

log x(i) − δ
d

∑
i=1

xγ
(i) log x(i)(1 + Ui)

+
d

∑
i=1

xγ
(i) log x(i)
1 + xγ

(i)
+

n

∑
i=1

Ui

δxγ
(i) log x(i)

δ + 1 + δxγ
(i)
} = 0,

∂

∂δ
F1∗(γ, δ) =

1
n

{
2d + a2 − 1

δ
− d

δ + 1
− b2 −

d

∑
i=1

xγ
(i)(1 + Ui)

+
d

∑
i=1

Ui

xγ
(i)

(δ + 1)2 + δ(δ + 1)xγ
(i)

}
= 0.

Moreover, calculating the second order derivative of F1∗(γ, δ) at (γ̄∗, δ̄∗), we obtain

F1∗
11 =

1
n
{−d + a1

(γ̄∗)2 − δ
d

∑
i=1

xγ̄∗

(i)(log x(i))
2(1 + Ui)

+
d

∑
i=1

[
xγ̄∗

(i)(log x(i))2

(1 + xγ̄∗

(i))
2

+ Ui

δ̄∗xγ̄∗

(i)(log x(i))2

(δ̄∗ + 1)(1 + δ̄∗
δ̄∗+1 xγ̄∗

(i))
2
]},

F1∗
12 =

1
n
{−

d

∑
i=1

xγ̄∗

(i) log x(i)(1 + Ui) +
d

∑
i=1

Uix
γ̄∗

(i) log x(i)
1

(δ̄∗ + 1 + δ̄∗xγ̄∗

(i))
2
},

F1∗
22 =

1
n
{−2d + a2 − 1

(δ̄∗)2 +
d

(δ̄∗ + 1)2 −
d

∑
i=1

Uix
γ̄∗

(i)

2(δ̄∗ + 1) + (2δ̄∗ + 1)xγ̄∗

(i)

((δ̄∗ + 1)2 + δ̄∗(δ̄∗ + 1)xγ̄∗

(i))
2
}.

and hence det Ψ1∗ = (F1∗
11 F1∗

22 − (F1∗
12 )

2)−1. Therefore, the Bayes estimate of γ becomes

γ̂BT =

[
det Ψ1∗

det Ψ

]1/2

exp
{

n
[

F1∗(γ̄∗, δ̄∗)− F(γ̄, δ̄)
]}

. (22)

Following the same arguments with h(γ, δ) = δ in F∗(γ, δ), δ̂BT can then be obtained straightfor-
wardly.
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3. Inference for the stress-strength reliability

3.1. MLE of R

Suppose that X and Y are random variables in the stress-strength model that are independently
distributed as PL(γ, δ) and PL(γ, η), respectively. Our quantity of interest is the parameter
R = P(X > Y) that is derived as (see [10] ):

R =
η2

η + 1

(
2δ + 1

(δ + 1)(δ + η)2 +
1

δ + η
+

2δ

(δ + 1)(δ + η)3

)
. (23)

In order to compute the maximum likelihood of the parameter R, we need to compute the
MLEs of γ, δ and η. Let x = (x(1), ..., x(d1)

) be a PTII censored sample from PL(γ, δ) based on
censoring scheme (U1, ..., Ud1) and y = (y(1), ..., y(d2)

) be a PTII censored sample from PL(γ, η)
based on censoring scheme (V1, ..., Vd2). Then, the log-likelihood function of the parameters γ, δ
and η (ignoring the constant terms) becomes

L(γ, δ, η; x, y) = (d1 + d2) log γ + d1 log
(

δ2

δ + 1

)
− δ

d1

∑
i=1

xγ
(i)(1 + Ui)

+
d1

∑
i=1

[
log(1 + xγ

(i)) + (γ− 1) log x(i)
]
+

d1

∑
i=1

Ui log
(

1 +
δ

δ + 1
xγ
(i)

)

+d2 log
(

η2

η + 1

)
− η

d2

∑
j=1

yγ
(j)(1 + Vj)

+
d2

∑
j=1

[
log(1 + yγ

(j)) + (γ− 1) log y(j)

]
+

d2

∑
j=1

Vj log
(

1 +
η

η + 1
vγ
(j)

)
.

(24)

The ML estimates of the parameters γ, δ and η, say γ̂, δ̂ and η̂, are computed from the system of
equations

∂L
∂γ

=
d1 + d2

γ
+

d1

∑
i=1

log x(i) − δ
d1

∑
i=1

xγ
(i) log x(i)(1 + Ui)

+
d1

∑
i=1

xγ
(i) log x(i)
1 + xγ

(i)
+

d1

∑
i=1

Ui

δxγ
(i) log x(i)

δ + 1 + δxγ
(i)

+
d2

∑
j=1

log y(j) − η
d2

∑
j=1

yγ
(j) log y(j)(1 + Vj)

+
d2

∑
j=1

yγ
(j) log y(j)

1 + yγ
(j)

+
d2

∑
j=1

Vj

ηyγ
(j) log y(j)

η + 1 + ηyγ
(j)

= 0, (25)

∂L
∂δ

=
d1(δ + 2)
δ(δ + 1)

−
d1

∑
i=1

xγ
(i)(1 + Ui) +

d1

∑
i=1

Ui

xγ
(i)

(δ + 1)2 + δ(δ + 1)xγ
(i)

= 0 (26)

and
∂L
∂η

=
d2(η + 2)
η(η + 1)

−
d2

∑
j=1

yγ
(j)(1 + Vj) +

d2

∑
j=1

Vj

yγ
(j)

(η + 1)2 + η(η + 1)xγ
(i)

= 0. (27)

Then, by using the invariance property of the MLEs, the maximum likelihood estimate of
R ≡ R(δ, η) is obtained as R(δ̂, η̂). Moreover, from the asymptotic normality of the MLEs (see
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[23]), R̂ is asymptotically normal with mean R and asymptotic variance

σ2
R =

{
τ11

(
∂R
∂δ

)2
+ τ22

(
∂R
∂η

)2
+ 2τ12

(
∂R
∂δ

)(
∂R
∂η

)}
where

∂R
∂δ

=
−δη2[δ3 + 2δ2(η + 3) + δ(η + 2)(η + 6) + 2(η2 + 3η + 3)]

(η + 1)(δ + 1)2(δ + η)4 ,

∂R
∂η

=
δ2η[6 + δ2(η + 2) + 2δ(η + 1)(η + 3) + η(η2 + 6η + 12)]

(δ + 1)(η + 1)2(δ + η)4 ,

and τij, i = 1, 2, 3, are the elements of the negative of the matrix
∂2L
∂δ2

∂2L
∂δ∂η

∂2L
∂δ∂γ

∂2L
∂η∂δ

∂2L
∂η2

∂2L
∂η∂γ

∂2L
∂γ∂δ

∂2L
∂γ∂η

∂2L
∂γ2


−1

. (28)

Now, by using (24), we obtain

∂2L
∂γ2 = −d1 + d2

γ2 − δ
d1

∑
i=1

xγ
(i)(log x(i))

2(1 + Ui)

+
d1

∑
i=1

[
xγ
(i)(log x(i))2

(1 + xγ
(i))

2
+ Ui

δxγ
(i)(log x(i))2

(δ + 1)(1 + δ
δ+1 xγ

(i))
2
]

−η
d2

∑
j=1

yγ
(j)(log y(j))

2(1 + Vj)

+
d2

∑
j=1

[
yγ
(j)(log y(j))

2

(1 + yγ
(j))

2
+ Vj

ηyγ
(j)(log y(j))

2

(η + 1)(1 + η
η+1 yγ

(j))
2
],

∂2L
∂δ2 = −2d1

δ2 +
d1

(δ + 1)2 −
d1

∑
i=1

Uix
γ
(i)

2(δ + 1) + (2δ + 1)xγ
(i)

((δ + 1)2 + δ(δ + 1)xγ
(i))

2
,

∂2L
∂η2 = −2d2

η2 +
d2

(η + 1)2 −
d2

∑
j=1

Vjy
γ
(j)

2(η + 1) + (2η + 1)yγ
(j)

((η + 1)2 + η(η + 1)yγ
(j))

2
,

∂2L
∂γ∂δ

= −
d1

∑
i=1

xγ
(i) log x(i)(1 + Ui) +

d1

∑
i=1

Uix
γ
(i) log x(i)

1
(δ + 1 + δxγ

(i))
2

,

∂2L
∂γ∂η

= −
d2

∑
j=1

yγ
(j) log y(j)(1 + Vj) +

d2

∑
j=1

Vjy
γ
(j) log y(j)

1
(δ + 1 + δyγ

(j))
2

,

∂2L
∂δ∂η

=
∂2L

∂η∂δ
= 0.

Thus, the 100(1− α)% asymptotic CI of the reliability R can be derived as(
eL

1 + eL ,
eU

1 + eU

)
(29)

where

(L, U) ≡ log
(

R̂
1− R̂

)
± z α

2

√
σ̂2

R

R̂(1− R̂)
. (30)
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Table 1: Different estimates of the parameter γ for various sample sizes when (γ, δ) = (2, 1).

n d Scheme MLE Bayes Confidence interval
AV MSE AV MSE AL CP

20 12 (0,...,0,8) 2.2134 0.3406 2.2186 0.3619 2.2976 0.9261
(8,0...,0) 2.2463 0.5812 2.2509 0.5875 2.8365 0.9232
(0,8,0,...,0) 2.2377 0.5685 2.2311 0.5713 2.8121 0.9238

20 15 (0,...,0,5) 2.1023 0.2818 2.1058 0.2831 1.8658 0.9317
(5,0...,0) 2.2339 0.3416 2.2354 0.3427 2.5813 0.9306
(0,5,0,...,0) 2.1961 0.3225 2.1975 0.3240 2.5762 0.9311

20 18 (0,...,0,2) 2.0761 0.1938 2.0782 0.1947 1.5696 0.9359
(2,0...,0) 2.1874 0.2773 2.1876 0.2785 2.3375 0.9346
(0,2,0,...,0) 2.1325 0.2619 2.1338 0.2623 2.3129 0.9352

30 15 (0,...,0,15) 2.0830 0.2310 2.0861 0.2341 1.7589 0.9317
(15,0...,0) 2.2116 0.3341 2.2174 0.3352 2.3436 0.9302
(0,15,0,...,0) 2.1078 0.3196 2.1083 0.3197 2.3379 0.9305

30 20 (0,...,0,10) 2.0322 0.1875 2.0328 0.1878 1.6136 0.9321
(10,0...,0) 2.1371 0.2918 2.1395 0.2925 2.3355 0.9308
(0,10,0,...,0) 2.0916 0.2641 2.0937 0.2644 2.3278 0.9311

30 25 (0,...,0,5) 2.0208 0.1234 2.0214 0.1238 1.3373 0.9432
(5,0...,0) 2.0864 0.2175 2.0873 0.2189 2.1897 0.9409
(0,5,0,...,0) 2.0738 0.1983 2.0749 0.1984 2.1736 0.9414

50 30 (0,...,0,20) 2.0192 0.1185 2.0205 0.1187 1.3118 0.9373
(20,0...,0) 2.0775 0.1931 2.0782 0.1946 2.1671 0.9358
(0,20,0,...,0) 2.0368 0.1857 2.0391 0.1874 2.1503 0.9360

50 35 (0,...,0,15) 2.0143 0.0902 2.0151 0.0908 1.1579 0.9461
(15,0...,0) 2.0560 0.1428 2.0568 0.1434 2.1486 0.9432
(0,15,0,...,0) 2.0229 0.1297 2.0247 0.1302 2.1338 0.9438

50 45 (0,...,0,5) 2.0113 0.0606 2.0128 0.0618 0.9576 0.9467
(5,0...,0) 2.0416 0.1089 2.0431 0.1097 1.1945 0.9440
(0,5,0,...,0) 2.0177 0.0926 2.0190 0.0934 1.1871 0.9443

3.2. Bayes estimate of R

This section focuses on Bayesian estimation of the reliability parameter R as well as the corre-
sponding HPD credible interval when the prior assigns to γ and δ the gamma model with the
pdfs given by (14) and takes η to be independent of γ and δ with the prior

π3(η; a3, b3) ∝ ηa3−1 e−ηb3 , η > 0, a3 > 0, b3 > 0. (31)

First, by using (14), (24) and (31), the joint density function of γ, δ, η and the data can be written
as

π4(γ, δ, η, ; x, y) ∝
γd1+d2+a1−1 e−γb1 δ2d1+a2−1

(δ + 1)d1
e
−δ(b2+

d1
∑

i=1
xγ
(i)(1+Ui))

η2d2+a3−1

(η + 1)d2
e
−η(b3+

d2
∑

j=1
yγ
(j)(1+Vj)) d1

∏
i=1

(1 + xγ
(i))xγ−1

(i)

(
1 +

δ

δ + 1
xγ
(i)

)Ui

d2

∏
j=1

(1 + yγ
(j))y

γ−1
(j)

(
1 +

η

η + 1
yγ
(j)

)Vj

. (32)
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Table 2: Different estimates of the parameter γ for various sample sizes when (γ, δ) = (2, 0.5).

n d Scheme MLE Bayes Confidence interval
AV MSE AV MSE AL CP

20 12 (0,...,0,8) 2.0431 0.2782 2.0438 0.2795 1.9530 0.9212
(8,0...,0) 2.1251 0.4137 2.1279 0.4163 2.2571 0.9207
(0,8,0,...,0) 2.0983 0.4062 2.1016 0.4078 2.2429 0.9210

20 15 (0,...,0,5) 1.9698 0.2119 1.6759 0.2127 1.7483 0.9326
(5,0...,0) 2.1073 0.3376 2.1079 0.3378 2.23116 0.9311
(0,5,0,...,0) 2.0891 0.3198 2.0893 0.3214 2.2164 0.9315

20 18 (0,...,0,2) 2.0116 0.1490 2.0129 0.1493 1.4368 0.9369
(2,0...,0) 2.0852 0.2618 2.0873 0.2637 2.2103 0.9347
(0,2,0,...,0) 2.0717 0.2560 2.0729 0.2584 2.1852 0.9353

30 15 (0,...,0,15) 1.9774 0.2057 1.9762 0.2069 1.6771 0.9312
(15,0...,0) 2.0965 0.3284 2.0988 0.3287 2.2196 0.9303
(0,15,0,...,0) 2.0827 0.3095 2.0844 0.3116 2.1975 0.9309

30 20 (0,...,0,10) 1.9813 0.1371 1.9803 0.1378 1.4097 0.9322
(10,0...,0) 2.0817 0.2841 2.0835 0.2867 2.1678 0.9310
(0,10,0,...,0) 2.0736 0.2537 2.0740 0.2558 2.1513 0.9314

30 25 (0,...,0,5) 1.9837 0.0970 1.9821 0.0973 1.2195 0.9438
(5,0...,0) 2.0705 0.2118 2.0723 0.2140 2.1431 0.9413
(0,5,0,...,0) 2.0591 0.1956 2.0595 0.1973 2.1108 0.9420

50 30 (0,...,0,20) 1.9792 0.1088 1.9766 0.1096 1.1414 0.9315
(20,0...,0) 2.0633 0.1837 2.0635 0.1845 2.1570 0.9306
(0,20,0,...,0) 2.0485 0.1791 2.0492 0.1793 2.1206 0.9311

50 35 (0,...,0,15) 1.9839 0.0837 1.9826 0.0846 1.0388 0.9349
(15,0...,0) 2.0518 0.1398 2.0540 0.1403 2.1148 0.9328
(0,15,0,...,0) 2.0409 0.1134 2.0418 0.1149 2.1953 0.9340

50 45 (0,...,0,5) 1.9915 0.0519 1.9913 0.0528 0.8762 0.9418
(5,0...,0) 2.0478 0.1034 2.0496 0.1047 1.1826 0.9411
(0,5,0,...,0) 2.0362 0.0892 2.0368 0.0907 1.1644 0.9417

Thus, the Bayes estimate of the reliability parameter against squared error loss function becomes

R̂SE = E(R | x, y) =

∞∫
0

∞∫
0

∞∫
0

Rπ4(γ, δ, η, ; x, y)dδdηdγ

∞∫
0

∞∫
0

∞∫
0

π4(γ, δ, η, ; x, y)dδdηdγ

. (33)

It is observed that the Bayes estimate of R are involved the ratio of two integrals for which
simplified closed forms can not be obtained. Therefore, in the following, we adopt Gibbs
sampling method to extract random samples from the conditional densities of the parameters
and use them to compute the Bayes estimate and HPD credible interval of R.

From (32), the conditional posterior densities of γ, δ and η can be extracted, respectively, as

π∗1 (γ | δ, η, x, y) ∝ π1(γ; d1 + d2 + a1, b1) e
−δ

d1
∑

i=1
xγ
(i)(1+Ui)

d1

∏
i=1

(1 + xγ
(i))xγ−1

(i)

(
1 +

δ

δ + 1
xγ
(i)

)Ui

e
−η

d2
∑

j=1
yγ
(j)(1+Vj) d2

∏
j=1

(1 + yγ
(j))y

γ−1
(j)

(
1 +

η

η + 1
yγ
(j)

)Vj

, (34)
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Table 3: Different estimates of the parameter δ for various sample sizes when (γ, δ) = (2, 1).

n d Scheme MLE Bayes Confidence interval
AV MSE AV MSE AL CP

20 12 (0,...,0,8) 0.9925 0.0793 0.9914 0.0824 0.9167 0.9241
(8,0...,0) 0.9813 0.1137 0.9802 0.1141 0.9814 0.9225
(0,8,0,...,0) 0.9841 0.1064 0.9819 0.1097 0.9732 0.9228

20 15 (0,...,0,5) 0.9947 0.0533 0.9923 0.0554 0.8280 0.9316
(5,0...,0) 0.6832 0.1085 0.9815 0.1087 0.9328 0.9305
(0,5,0,...,0) 0.9866 0.0936 0.9860 0.0952 0.9215 0.9311

20 18 (0,...,0,2) 0.9965 0.0455 0.9957 0.0463 0.8045 0.9374
(2,0...,0) 0.9873 0.0872 0.9864 0.0879 0.8906 0.9357
(0,2,0,...,0) 0.9911 0.0810 0.9897 0.0831 0.8755 0.9362

30 15 (0,...,0,15) 0.9951 0.0475 0.9930 0.0478 0.8113 0.9385
(15,0...,0) 0.9856 0.0914 0.9852 0.0922 0.8842 0.9339
(0,15,0,...,0) 0.9892 0.0851 0.9903 0.0858 0.8731 0.9350

30 20 (0,...,0,10) 0.9960 0.0307 0.9938 0.0319 0.6693 0.9498
(10,0...,0) 0.9893 0.0836 0.9861 0.0874 0.8371 0.9347
(0,10,0,...,0) 0.9907 0.0768 0.9905 0.0791 0.8219 0.9358

30 25 (0,...,0,5) 0.9978 0.0276 0.9956 0.0280 0.6523 0.9415
(5,0...,0) 0.9915 0.0711 0.9807 0.0725 0.8112 0.9383
(0,5,0,...,0) 0.9921 0.0547 0.9913 0.0569 0.7863 0.9392

50 30 (0,...,0,20) 0.9960 0.0211 0.9952 0.0216 0.5222 0.9403
(20,0...,0) 0.9904 0.0766 0.9883 0.0790 0.7460 0.9376
(0,20,0,...,0) 0.9914 0.0631 0.9809 0.0657 0.7291 0.9380

50 35 (0,...,0,15) 0.9973 0.0157 0.9934 0.0168 0.5063 0.9417
(15,0...,0) 0.9920 0.0519 0.9913 0.0523 0.7186 0.9391
(0,15,0,...,0) 0.9928 0.0469 0.9917 0.0475 0.7033 0.9394

50 45 (0,...,0,5) 0.9982 0.0150 0.9975 0.0152 0.5003 0.9438
(5,0...,0) 0.9937 0.0471 0.9924 0.0485 0.6719 0.9407
(0,5,0,...,0) 0.9946 0.0338 0.9937 0.0346 0.6548 0.9411

π∗2 (δ | γ, x, y) ∝ π2(δ; 2d1 + a2, b2 +
d1

∑
i=1

xγ
(i)(1 + Ui))

1
(δ + 1)d1

d1

∏
i=1

(
1 +

δ

δ + 1
xγ
(i)

)Ui

(35)

and

π∗3 (η | γ, x, y) ∝ π2(δ; 2d2 + a3, b3 +
d2

∑
j=1

yγ
(j)(1 + Vj))

1
(η + 1)d2

d1

∏
j=1

(
1 +

η

η + 1
yγ
(j)

)Vj

. (36)

Since the well known distributions are not available for conditional densities in (34)-(36), direct
sampling from these distributions is not possible. We can approximate a posterior density
function by normal distribution if the density be unimodal and roughly symmetric (see Gelman
et al. [8]). In our case, we observed that the plot of posterior densities of γ, δ and η are similar
to normal distribution (not reported here). Therefore, in the following algorithm, we employ
Metropolis-Hastings (M-H) technique with the proposed normal distribution to generate samples
from conditional densities.

1) Let initial values of the parameters to be (γ0, δ0, η0) and set l = 1.
2) Considering the proposed distribution q(γ) ≡ N(γl−1, τ33) for the M-H method, generate

γl , from π∗1 (γ | δl−1, ηl−1, x, y).
3) Generate δl , from π∗2 (δ | γl , x, y) using M-H method with the proposed distribution

q(δ) ≡ N(δl−1, τ11).
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Table 4: Different estimates of the parameter δ for various sample sizes when (γ, δ) = (2, 0.5).

n d Scheme MLE Bayes Confidence interval
AV MSE AV MSE AL CP

20 12 (0,...,0,8) 0.4810 0.0217 0.4782 0.0209 0.5393 0.9221
(8,0...,0) 0.4729 0.0346 0.4711 0.0369 0.6748 0.9216
(0,8,0,...,0) 0.4765 0.0317 0.4726 0.0323 0.6513 0.9220

20 15 (0,...,0,5) 0.4862 0.0188 0.4855 0.0195 0.5364 0.9287
(5,0...,0) 0.4793 0.0309 0.4764 0.0341 0.6472 0.9254
(0,5,0,...,0) 0.4850 0.0274 0.4819 0.0280 0.6391 0.9263

20 18 (0,...,0,2) 0.5037 0.0163 0.5052 0.0169 0.5327 0.9328
(2,0...,0) 0.4866 0.0250 0.4861 0.0278 0.6118 0.9308
(0,2,0,...,0) 0.4907 0.0239 0.4892 0.0254 0.5975 0.9315

30 15 (0,...,0,15) 0.4895 0.0126 0.4873 0.0149 0.5281 0.9321
(15,0...,0) 0.4811 0.0287 0.4806 0.0293 0.6255 0.9296
(0,15,0,...,0) 0.4829 0.0241 0.4814 0.0248 0.6194 0.9307

30 20 (0,...,0,10) 0.4936 0.0117 0.4917 0.0146 0.4737 0.9346
(10,0...,0) 0.4874 0.0216 0.4860 0.0235 0.5914 0.9312
(0,10,0,...,0) 0.4891 0.0194 0.4879 0.0206 0.5726 0.9317

30 25 (0,...,0,5) 0.5044 0.0105 0.5091 0.0109 0.4419 0.9385
(5,0...,0) 0.4917 0.0183 0.4913 0.0187 0.5137 0.9357
(0,5,0,...,0) 0.4926 0.0168 0.4922 0.0175 0.4975 0.9363

50 30 (0,...,0,20) 0.5080 0.0107 0.5103 0.0119 0.3529 0.9377
(20,0...,0) 0.4855 0.0175 0.4854 0.0196 0.4816 0.9328
(0,20,0,...,0) 0.4902 0.0159 0.4896 0.0171 0.4589 0.9336

50 35 (0,...,0,15) 0.4958 0.0090 0.4947 0.0093 0.3455 0.9389
(15,0...,0) 0.5123 0.0144 0.5128 0.0177 0.4258 0.9352
(0,15,0,...,0) 0.4920 0.0123 0.4917 0.0140 0.4177 0.9364

50 45 (0,...,0,5) 0.5033 0.0067 0.5046 0.0069 0.3398 0.9422
(5,0...,0) 0.4923 0.0130 0.4912 0.0138 0.3941 0.9395
(0,5,0,...,0) 0.4937 0.0108 0.4936 0.0114 0.3892 0.9413

4) Generate ηl , from π∗3 (η | γl , x, y) using M-H method with the proposed distribution
q(η) ≡ N(ηl−1, τ22).

5) Compute R from (4) and set l = l + 1.
6) Repeat Steps 2-5, M times to get Rl for l = 1, ..., M.

By using the generated random samples from the above Gibbs technique, the approximate Bayes
estimate of the reliability parameter R against squared error loss function becomes

R̃ =
1
M

M

∑
l=1

Rl . (37)

Also, let R(1) < ... < R(M) be the ordered values of Rl for l = 1, ..., M. The HPD credible
interval of R will be derived by selecting the interval with the shortest length through the
following 100(1− α)% credible intervals of R:

(R(1), R((1−α)M)), ..., (R(αM), R(M)).

4. Simulation study

To evaluate the behaviour of the proposed estimators for various sample sizes, we performed
extensive Monte Carlo simulations. The performance of the competitive estimates has been
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Table 5: Different estimates of the stress-strength parameter R for various sample sizes when (γ, δ, η) = (2, 1, 1).

n1, n2 d1, d2 Scheme MLE Bayes CI CRI
AV MSE AV MSE AL CP AL CP

20 12 (0,...,0,8) 0.4976 0.0127 0.4978 0.0136 0.3704 0.9318 0.3648 0.9312
(8,0...,0) 0.4943 0.0156 0.4918 0.0178 0.3775 0.9302 0.3754 0.9267
(0,8,0,...,0) 0.4961 0.0139 0.4937 0.0141 0.3716 0.9305 0.3690 0.9274

20 15 (0,...,0,5) 0.4986 0.0100 0.4952 0.0119 0.3352 0.9337 0.3325 0.9320
(5,0...,0) 0.4967 0.0137 0.4938 0.0155 0.3419 0.9316 0.3408 0.9308
(0,5,0,...,0) 0.4981 0.0120 0.4945 0.0127 0.3369 0.9317 0.3347 0.9314

20 18 (0,...,0,2) 0.4988 0.0084 0.4973 0.0089 0.3221 0.9352 0.3146 0.9342
(2,0...,0) 0.4970 0.0116 0.4977 0.0128 0.3297 0.9328 0.3275 0.9326
(0,2,0,...,0) 0.4985 0.0092 0.4961 0.0090 0.3228 0.9336 0.3218 0.9331

30 15 (0,...,0,15) 0.4978 0.0099 0.4986 0.0095 0.3478 0.9386 0.3421 0.9359
(15,0...,0) 0.4955 0.0125 0.4942 0.0144 0.3507 0.9352 0.3472 0.9338
(0,15,0,...,0) 0.4971 0.0108 0.4938 0.0107 0.3483 0.9358 0.3440 0.9340

30 20 (0,...,0,10) 0.4983 0.0073 0.4967 0.0076 0.3362 0.9407 0.3292 0.9380
(10,0...,0) 0.4970 0.0107 0.4953 0.0093 0.3419 0.9365 0.3378 0.9347
(0,10,0,...,0) 0.4978 0.0085 0.4972 0.0086 0.3393 0.9374 0.3314 0.9356

30 25 (0,...,0,5) 0.4992 0.0052 0.4993 0.0058 0.3047 0.9421 0.2982 0.9417
(5,0...,0) 0.4982 0.0083 0.4971 0.0083 0.3120 0.9397 0.3102 0.9403
(0,5,0,...,0) 0.4991 0.0054 0.4980 0.0051 0.3059 0.9409 0.3041 0.9407

50 30 (0,...,0,20) 0.4983 0.0039 0.4972 0.0032 0.2841 0.9441 0.2776 0.9417
(20,0...,0) 0.4962 0.0071 0.4966 0.0083 0.2875 0.9423 0.2856 0.9403
(0,20,0,...,0) 0.4981 0.0044 0.4982 0.0049 0.2849 0.9428 0.2814 0.9407

50 35 (0,...,0,15) 0.4991 0.0035 0.4963 0.0031 0.2621 0.9447 0.2605 0.9426
(15,0...,0) 0.4965 0.0067 0.4974 0.0069 0.2689 0.9430 0.2657 0.9411
(0,15,0,...,0) 0.4987 0.0036 0.4983 0.0036 0.2643 0.9432 0.2641 0.9414

50 45 (0,...,0,5) 0.4994 0.0026 0.4992 0.0025 0.2385 0.9468 0.2332 0.9461
(5,0...,0) 0.4982 0.0029 0.4970 0.0033 0.2384 0.9439 0.2370 0.9425
(0,5,0,...,0) 0.4993 0.0026 0.4985 0.0028 0.2366 0.9446 0.2351 0.9426

compared in terms of their average values (AV) and mean squared errors (MSE). In addition, the
confidence intervals (CI) and HPD credible intervals (CRI) are compared on the basis of their
average lengths and coverage percentages. The calculations are conducted using R 2.14.0 which is
a common software package for statistical computing.

First, in order to compare the maximum likelihood and Bayesian procedures developed in
Section 2, We have considered two sets of parameter values as (γ, δ) = (2, 1), (2, 0.5) and three
sampling schemes

I: (U1, ..., Ud) = (0, ..., 0, n− d),
II: (U1, ..., Ud) = (n− d, 0, ..., 0)
III: (U1, ..., Ud) = (0, n− d, 0, ..., 0)

In each case, by employing the method of Balakrishnan and Sandhu [2], different random samples
are generated from PL model and the ML estimates of the unknown parameters are obtained
from the system of equations in (5) and (6). To obtain the Bayes estimates of γ and δ using Tierney
and Kadane’s approach, we assume that the hyper-parameters take values as 0.001 as suggested
by Congdon [5]. Tables 1-4 present the AVs and MSEs of the estimates obtained from 10000
replications.

Further, for the generated samples, we have derived 95% confidence intervals and counted the
ones that cover the correct value of a specific parameter. The number of such intervals divided
by 10000 is reported as estimated coverage probabilities. For different sample sizes, the average
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Table 6: Different estimates of the stress-strength parameter R for various sample sizes when (γ, δ, η) = (2, 0.2, 1).

n1, n2 d1, d2 Scheme MLE Bayes CI CRI
AV MSE AV MSE AL CP AL CP

20 12 (0,...,0,8) 0.9260 0.0022 0.9244 0.0028 0.1728 0.9340 0.1676 0.9319
(8,0...,0) 0.9289 0.0038 0.9273 0.0046 0.1756 0.9316 0.1732 0.9288
(0,8,0,...,0) 0.9276 0.0025 0.9265 0.0027 0.1737 0.9332 0.1719 0.9294

20 15 (0,...,0,5) 0.9243 0.0015 0.9221 0.0019 0.1641 0.9381 0.1528 0.9347
(5,0...,0) 0.9277 0.0032 0.9289 0.0031 0.1692 0.9350 0.1655 0.9326
(0,5,0,...,0) 0.9253 0.0016 0.9255 0.0018 0.1650 0.9357 0.1637 0.9331

20 18 (0,...,0,2) 0.9222 0.0013 0.9230 0.0013 0.1519 0.9408 0.1492 0.9390
(2,0...,0) 0.9227 0.0023 0.9241 0.0027 0.1563 0.9389 0.1535 0.9358
(0,2,0,...,0) 0.9225 0.0014 0.9247 0.0014 0.1527 0.9394 0.1508 0.9362

30 15 (0,...,0,15) 0.9239 0.0017 0.9245 0.0016 0.1567 0.9412 0.1432 0.9386
(15,0...,0) 0.9275 0.0026 0.9291 0.0032 0.1590 0.9390 0.1565 0.9379
(0,15,0,...,0) 0.9264 0.0017 0.9258 0.0018 0.1574 0.9408 0.1546 0.9381

30 20 (0,...,0,10) 0.9227 0.0013 0.9174 0.0014 0.1431 0.9433 0.1327 0.9412
(10,0...,0) 0.9261 0.0019 0.9266 0.0023 0.1466 0.9419 0.1449 0.9389
(0,10,0,...,0) 0.9239 0.0014 0.9231 0.0014 0.1439 0.9423 0.1435 0.9403

30 25 (0,...,0,5) 0.918 0.0010 0.9207 0.0011 0.1256 0.9472 0.1240 0.9435
(5,0...,0) 0.9203 0.0015 0.9225 0.0017 0.1278 0.9439 0.1269 0.9422
(0,5,0,...,0) 0.9196 0.0011 0.9216 0.0012 0.1263 0.9446 0.1247 0.9427

50 30 (0,...,0,20) 0.9216 0.0009 0.9227 0.0010 0.1065 0.9419 0.1027 0.940
(20,0...,0) 0.9241 0.0018 0.9233 0.0016 0.1093 0.9403 0.1064 0.9356
(0,20,0,...,0) 0.9223 0.0013 0.9229 0.0014 0.1076 0.9407 0.1056 0.9378

50 35 (0,...,0,15) 0.9204 0.0008 0.9219 0.0009 0.1008 0.9430 0.0958 0.9416
(15,0...,0) 0.9232 0.0011 0.9258 0.0013 0.1034 0.9412 0.1017 0.9405
(0,15,0,...,0) 0.9217 0.0009 0.9213 0.0011 0.1016 0.9414 0.1005 0.9411

50 45 (0,...,0,5) 0.9179 0.0005 0.9275 0.0006 0.0978 0.9487 0.0923 0.9473
(5,0...,0) 0.9192 0.0006 0.9210 0.0008 0.0991 0.9461 0.0975 0.9448
(0,5,0,...,0) 0.9206 0.0006 0.9208 0.0006 0.0980 0.9464 0.0962 0.9457

lengths (AL) and coverage probabilities (CP) of the CIs are also provided in Tables 1-4.
It is observed from Tables 1-4 that, for each censoring scheme, the estimates computed

from larger sample sizes have smaller MSEs as we expected. The estimates of the parameters
computed using the Bayesian procedures and the MLEs yield similar results. Therefore, in this
case, the maximum likelihood method is preferred since it has concise computations compared
to the Tierney and Kadane’s technique. It can be further observed that the asymptotic results
of the MLEs have satisfactory performances and in most of the cases the CPs are close to the
predetermined nominal level. Comparing the three different censoring schemes, we observe that
the estimates computed over the first sampling scheme, corresponding to the well-known type II
censored sampling, have better performances followed by schemes III and II, respectively.

Next, to assess the accuracy of the inferential procedures of the reliability parameter R, we
generate PTII censored samples from PL distribution by considering two sets of values for the
parameters γ,δ and η as (γ, δ, η) = (2, 1, 1), (2, 0.2, 1). With these choices of the parameter values,
the true value of reliability R become 0.5 and 0.9182, respectively. We first obtain the ML estimates
of the unknown parameters by using the log-likelihood function (24) and use them to compute
the MLE of the reliability R from expression (23). Also, by using relation (29), we construct 95%
confidence intervals of R and reported ALs and CPs computed over 10000 replications in Tables 5
and 6.

Moreover, we derive the approximate Bayes estimate and HPD credible interval of the
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Table 7: Point and interval estimations of the parameters γ and δ under different progressive type II censoring schemes
for example 1.

m Scheme MLE Bayes CI
51 (0∗51) γ 0.9467 0.9319 (0.7618,1.1317)

δ 0.0093 0.0128 (0.0039,0.0196)
40 (0∗39,11) γ 1.0275 1.0007 (0.8027,1.3152)

δ 0.0062 0.0079 (0.0014,0.0260)
40 (0∗34,1∗5,6) γ 0.9996 0.9671 (0.7785,1.2835)

δ 0.0066 0.0084 (0.0016,0.0272)
40 (0∗34,2∗5,1) γ 0.9773 0.9519 (0.7592,1.2581)

δ 0.0069 0.0087 (0.0017,0.0283)
30 (0∗29,21) γ 1.0348 0.9927 (0.7684,1.3935)

δ 0.0059 0.0085 (0.0011,0.0316)
30 (0∗22,2∗7,7) γ 0.9982 0.9571 (0.7767,1.3524)

δ 0.0060 0.0083 (0.0012,0.0310)
30 (0∗19,1∗10,11) γ 1.0197 0.9773 (0.7539,1.3794)

δ 0.0056 0.0081 (0.0010,0.0307)

parameter R by applying Gibbs sampling technique. To this end, a Markov chain of size
75000 is generated and the first 25000 of the observations is removed to eliminate the effect of the
starting distribution. In order to reduce the dependence among the generated samples, we take
every 10th sampled value which result in a final chain of size 5000. To investigate the convergence
of MCMC samples, we have used the idea of Gelman[8] and compute scale reduction factor
estimate

√
Var(∆)/W in which ∆ is the estimand of interest and Var(∆) = (n− 1)W/n + Z/n,

where n is the iteration number of each chain, and W and Z are the within and between sequence
variances, respectively. It is observed that the value of scale factor is less than 1.1 which is an
acceptable value for convergence of MCMC chain. Finally, the means of the simulated samples
are recorded as the Bayes estimates of the parameter R. The AVs and MSEs of the Bayes estimates
obtained from 10000 replications as well as the 95% credible intervals are tabulated in Tables 5
and 6.

It is found that classical and Bayesian point estimates of R behave in a similar manner.
The MSEs of all the estimates decrease as d1 and d2 increase. Also, the MSEs for the extreme
value 0.9182 of R are smaller than the case where R = 0.5. It is seen that credible intervals of
the parameter R attained smaller CPs compared to the approximate CIs and the length of all
confidence and credible intervals decrease as the observed sample sizes increase.

5. Data Analysis

To illustrate the estimation procedures presented in this paper, two examples based on real-life
data sets are provided.

Example 1: The following data set reports the times (in days) from remission to relapse for 51
patients with acute nonlymphoblastic leukaemia ([7]).

304, 273, 955, 642, 239, 269, 230, 534, 197, 1160, 24, 697, 57, 395, 284, 64, 209, 90, 82, 89, 111, 117,
128, 143, 148, 152, 166, 171, 186, 191, 223, 247, 254, 258, 264, 270, 332, 393, 487, 510, 516, 518, 518,
608, 46, 57, 304, 341, 294, 65, 90.

[?] provided various methods of estimation for this data considering that it is drown from
a PL distribution. Here, assuming different PTII samples of size d = 30; 40; 51 from these data,
we compute the parameter estimates using the ML and Bayesian procedures. First, we use the
nlm function in R statistical package to determine the MLEs of γ and δ. Then, assuming that the
hyper-parameters take values as a1 = b1 = a2 = b2 = 2, the Bayes estimates of the parameters
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Table 8: Point and interval estimations of the parameter R under different progressive type II censoring schemes for
example 2.

d1, d2 Scheme MLE Bayes CI CRI{
69
65

(0∗69)
(0∗65)

0.6388 0.6355 (0.5536,0.7240) (0.5393,0.6387){
50
50

(0∗49, 19)
(0∗49, 15)

0.6213 0.6188 (0.5377,0.7642) (0.5114,0.7313){
69
50

(0∗69)
(0∗49, 15)

0.6293 0.6350 (0.5228,0.6943) (0.5099,0.6265){
50
65

(0∗49, 19)
(0∗65)

0.6264 0.6260 (0.5371,0.7165) (0.5268,0.6543){
69
50

(0∗69)
(0∗39, 1∗10, 5)

0.5781 0.5743 (0.4952,0.7329) (0.4628,0.6755){
50
65

(0∗39, 1∗10, 9)
(0∗65)

0.6684 0.6672 (0.5618,0.7807) (0.5724,0.7639){
50
50

(0∗39, 1∗10, 9)
(0∗39, 1∗10, 5)

0.6140 0.6092 (0.4931,0.7556) (0.5044,0.7103){
50
50

(0∗44, 2∗5, 9)
(0∗44, 2∗5, 5)

0.6117 0.6104 (0.5137,0.7613) (0.4988,0.7151){
50
65

(0∗44, 2∗5, 9)
(0∗65)

0.6717 0.6695 (0.5280,0.7259) (0.5734,0.7621){
40
40

(0∗39, 29)
(0∗39, 25)

0.6248 0.6196 (0.4763,0.7314) (0.4992,0.7441){
40
40

(0∗29, 1∗10, 19)
(0∗29, 1∗10, 15)

0.6204 0.6173 (0.4933,0.7295) (0.5033,0.7354){
40
40

(0∗29, 2∗10, 9)
(0∗29, 2∗10, 5)

0.6171 0.6147 (0.4719,0.7136) (0.4958,0.7280){
40
40

(0∗39, 29)
(0∗29, 1∗10, 15)

0.5834 0.5781 (0.4406,0.6929) (0.4581,0.6994){
40
40

(0∗39, 29)
(0∗29, 2∗10, 5)

0.5478 0.5438 (0.4572,0.7079) (0.4244,0.6716)

are obtained by applying Tierney and Kadane’s method described in section 2. The respective
estimates of the parameters along with 95% CIs are tabulated in Table 7.

Example 2: In this example we consider two data sets reported in [1] on the failure stresses of
single carbon fibers of lengths 20mm and 50mm, as follows:
Data set 1: (20mm, (n = 69)) 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966,
1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274,
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566,
2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821,
2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.
Data set 2: (50mm, (k = 65)) 1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812,
1.840, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.019, 2.051,2.055, 2.058, 2.088, 2.125, 2.162,
2.171, 2.172, 2.18, 2.194, 2.211, 2.270, 2.272, 2.280, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.390, 2.410,
2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601, 2.604, 2.620, 2.633, 2.670, 2.682,
2.699, 2.705, 2.735, 2.785, 3.020, 3.042, 3.116, 3.174.

Ghitany et al. [9] showed that the PL(γ, δ) fits data sets 1 and 2 very well and compute
the MLE of the reliability parameter R by using the complete samples. Now, we obtain the
Bayes and ML estimates of R by using different censoring schemes. To analyze the data under
Bayesian perspective, all the hyper-parameters are considered to be 0.001. At first, samples of
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70,000 realizations are generated from the posterior densities in (34)-(36) and to diminish the
trace of initial samples, the first 20000 realizations are deleted. Then, one observation in every 5
iterations is saved to break the autocorrelation between generated samples. For the first sampling
scheme, the plot of the simulated values of R and its Histogram are given in Fig. 2 which shows
the convergence of Gibbs algorithm. Table 8 reports different estimates of R as well as the 95%
confidence and credible intervals. It is observed that the Bayesian and ML estimates of the
parameters are about the same, however, the width of CRIs are somewhat shorter than that of CIs.
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Figure 1: Simulated values of R and Histogram of R.

6. Conclusions

In this paper, we have used maximum likelihood and Bayesian procedures for estimating the
unknown parameters of the two-parameter PL model based on PTII censoring scheme. The MLEs
and asymptotic CIs for the interested parameters are computed. Since the Bayes estimates of
the involved parameters could not be obtained analytically, we have employed an approximate
technique to derive Bayes estimates. Further, we have developed inferential procedures for the
stress-strength reliability parameter R based on PTII censored samples. ML and Bayes point
estimates of the parameter R along with its classical and Bayesian interval estimates are derived.
In order to assess the accuracy of the various approaches, Monte Carlo simulations are conducted.
It is found that, on the basis of non-informative priors, the Bayes and ML estimates have similar
performances. Also, by increasing the sample sizes, expected improvements are observed in the
performances of all estimators. It must be pointed out that Bayesian methods based on Tierney
and Kadane and MCMC procedures need expensive computations compared to the maximum
likelihood method. However, by employing informative priors (not reported here), Bayesian
approach produces estimates with better performances.
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