Idzhar A. Lakibul, Bernadette F. Tubo RT&A, No 2 (73)
On the TeSU—G family of distributions Volume 18, June 2023

On the TeSU—G family of distributions applied to life
data analysis

1

IpzHAR A. LAkiBUL! AND BERNADETTE F. TUuBO?

°
12Department of Mathematics and Statistics
Mindanao State University - Iligan Institute of Technology
Iligan City, Philippines
lidzhar.lakibul@g.msuiit.edu.ph, *bernadette.tubo@g.msuiit.edu.ph

Abstract

This paper derives distributions from the U-quadratic and the T-X family of distributions labeled as the
T-extended Standard U-quadratic—G family of distributions or simply, TeSU—G family. In particular,
the TeSU—Weibull distribution (TeSU—W) is explored with respect to some statistical properties such
as its limiting distribution, moment, mean and variance and moment generating function. Also, the
statistical properties of the TeSU—Exponential distribution (TeSU—E) which is a special case of the
TeSU—W are also derived. The Weibull and Exponential distributions are mostly used in life data
analysis because of its ability to adapt to different situations. Moreover, the formula for the median is
derived via a proposed algorithm. Simulation study is conducted to verify the performance of the ML
estimates of the TeSU—W distribution for varied sample sizes. Further, real life data analysis reveals that
derived extended distribution can provide a better fit than several well-known distributions.

Keywords: U-quadratic distribution, T-X family of distributions, Weibull distribution

1. INTRODUCTION

Classical statistical distribution plays a vital role in many areas of science for describing the
behavior of any data as well as for modelling data. But nowadays, due to the complexity of the
data, the classical distribution needs to be modified in order to cater the complexity of the data.
Up to this time, researchers are working in methodologies on statistical distribution theory in
order to solve these types of problems.

In 1985, Azzalini [4] introduced a skewed family of distribution for generating a distribution
with additional skewed parameter. Other identified family of distributions are the Marshall-Olkin
extended (MOE) family [12] and the exponentiated family of distributions [10].

Moreover Eugene [9] in 2002 introduced a composite method of combining two or more known
competing distributions through transformations, like the Gamma generated family [16], the
Kumaraswamy—G (Kw—G) family [7], the Beta extended—G family [§], the Exponentiated Gener-
alized family [5], the Kumarsway Marshall-Olkin—G family [1]], the Generalized odd log-logistic
family [6], the generalized transmuted—G family [13] and the Exponentiated Kumarasway—G
class family [15].

This paper derives an extended or modified distribution named as TeSU—G family of dis-
tribution and explored a derived model using the Weibull as the baseline distribution. This is
named as the TeSU—Weibull distribution (TeSU—W). The statistical properties like its limiting
distribution, moment, mean and variance, and moment generating function are derived. Similarly,
the properties of the TeSU— Exponential distribution (TeSU—E), which is a special case of the
TeSU—W are obtained.
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The rest of the paper is organized as follows: The extended Standard U-quadratic (eSU)
distribution is derived in section 2; in section 3, the TeSU—G family of distribution is introduced;
in section 4, the cdf and pdf of both TeSU—W and TeSU—E distributions are derived using the
results in sections 2 and 3. Some statistical properties of TeSU—W are presented in section 5.
In section 6, estimates of the TeSU—W parameters via the maximum likelihood estimation is
generated. Simulation study is presented in section 7 while the application to real life dataset are
discussed in section 8. Finally, some concluding remarks are presented in section 9.

2. THE ESU DISTRIBUTION

This section shows the derivation of the extended Standard U-quadratic distribution (eSU).
Consider the special case of the T-X family which was introduced by Alzaatreh [2] in 2013.
Accordingly, for any arbitrary baseline cumulative distribution function (cdf) G(x), a new cdf
F(x) can be generated using the equation

R = [ i )

where f(t) is a probability density function (pdf) of a random variable T with support on the
interval [0, 1]. Also, consider the Transmuted—G family of distributions introduced by Shaw [14],
that is, for any baseline cdf G(x), we can define a new cdf K(x) given by

K(x) = (1+1)G(x) = AG*(x), 2
where A € [—1,1]. Note that (2) can be written as

(x)
K(x) = /O “
where
f(8) =144 =2t Iy (8) = (1= A)fa(t) + Af2(t) ®)
with pdfs f1(t) and fa(t) are given as f1(t) = 1 Ijgq)(t) and fa(t) = 2(1 — t) Ijg (), respectively.

Hence, f(t) can be written as a mixture of two pdfs with support set on the interval [0, 1].

Now consider the pdf of the U-quadratic distribution. For a random variable T that follows a
U-quadratic distribution, the pdf of T is given by

I(t) = m(t — n)?, 4
12 a+b
where t € [a,b],a < b,a,b € R,m = m and n = —

To standardize equation , let 2 = 0 and b = 1. Then, equation (4) becomes

1) = 12(— 22, ©)

where t € [0,1]. Substituting I(t) of (5) in equation (3) for f,(t) derives the pdf of the eSU-
quadratic distribution denoted as f,g;;(t) and is given by

fosu(t) =1 —A+3A(2t —1)?, (6)

where t € [0,1] and A € [-1,1].
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3. TaE TESU—G FAMILY OF DISTRIBUTION

This section introduces a T-extended Standard U-quadratic (TeSU)— G Family of distribution.
Using equation (I) and the pdf of eSU in (6) derives the cdf of TeSU—G family of distribution
given by
Frsu—c(x) = (1+2A)G(x) — 6AG?(x) +4AG3(x),x € R )
with corresponding pd f
f(x) = g(x)[1—A+3A(2G(x) —1)’],x € R ®)

where A € [—1,1] and g(x) is the pdf associated with a baseline cdf G(x). Note that, if A =0,
the cdf of TeSU-G reduces to the cdf of the baseline distribution.

4. Tuae TESU—WEIBULL AND THE TESU—EXPONENTIAL DISTRIBUTIONS

This section discusses the derivation of the cdf and pdf of the TeSU using the Weibull and
Exponential as baseline distributions. Suppose that a random variable X has Weibull distribution
with cdf G, (x) and pdf gw(x) given, respectively, as follows:

Gw(x)=1- e~™ and )
ew(x) = Tﬂxﬁ_le_”ﬁ, (10)

where x > 0 and with scale T and shape f parameters.

The cdf of the TeSU—Weibull distribution (TeSU—W) is derived by substituting (9) in equation
(7), so that we have

Frsu_w(x) =1—e ™ (1+21 —6le ™ +41e7 277, 11
where 7 >0,8>0,A € [—%, 1] and x > 0 with corresponding pdf given as
— ‘rx/S
Fresu—w (x) = TBxP 1™ (1424 — 124~ 4 120620 ™), (12)

Note that the exponential distribution is a special case of the classical Weibull distribution when
B = 1. Thus, when 8 = 1, the TeSSU—W reduces to the TeSU— Exponential distribution (TeSU—E).

The cdf of TeSU—E is given as

Fresu—p(x) =1 —e ™ (142 — 6Ae™ ™ + 4Ae2™),

where T >0, A € [—4,1] and x > 0 with corresponding pdf

—27x

fresu—g(x) = 1" ™ (1424 — 12he” ™ + 12\ 20e ).

~ 7 A=-050

=025
— 2=0.00
— 2=050
— 2=1.00

pdf

Figure 1: Plots of the pdf of the TeSU—W for T = 1.4, B = 2.5 and for some values of A
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pdf

Figure 2: Plots of the pdf of the TeSU—E for T = 1.4 and for some values of A

Figure 1 depicts the pdfs of TeSU-W at fixed values of T = 1.4 and B = 2.5 with varied
values of A € {—0.5,—0.25,0,0.5,1.0}. It can be observed that the TeSU-W displays a bimodal
distribution when 0 < A < 1, while when A = 0, it depicts the usual shape of the classical Weibull
distribution. Moreover, for —% < A <0, a unimodal distribution which is leptokurtic in nature or
a peaked top is observable.

A special case of the TeSU—W is the TeSU—Exponential distribution (TeSU—E), that is, when
the parameter 8 is equal to one. Figure 2 shows the graph of TeSU—E with fixed value of T = 1.4
and varied values of A stated previously. The following distribution shapes can be noticed: (1)
when A = 0, the graph of the TeSU-E is the same as the classical exponential distribution; (2)
when —% < A <0, then it exhibits a unimodal distribution which is positively skewed, and (3)
when 0 < A < 1, it follows an inverted skewed bathtub shape. These types of shape are important
for describing the complex behavior of the data specially when data distribution reflects a bimodal
shape. Hence, the next discussions are focused on the TeSU-W distribution which can cater the
bimodal distribution.

5. SOME STATISTICAL PROPERTIES

5.1. Survival and Hazard Functions of TeSU-W

Let X be a random variable with cdf given in equation and pdf given in equation (I2). Then

for x > 0, the survival function S7,5;;_w(x) and hazard function hp.gy w(x) = fresu-—w of X

 Smsu-w
are given, respectively, as follows:
Stesu—w (%) =1 — Fresu—w(x)

— e ™ (1420 —6he ™ 41072

and
P11 422 — 120e ™ 4 12002
TBx e e
hresu-w(x) = px™ ) (13)

1421 — 6Ae~TF 4 4re—214F

Note that if 8 = 1, then Stesy—w(x) = Stesu—g(x) and hresy—w(x) = hresu—£ ().
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Figure 4: Plots of the h(x) of the TeSU—E for T = 1.4 with varied A.

Figure 3 shows that at fixed values of T = 1.4 and B = 2.5 and varied values A ¢
{-0.5,-0.25,0,0.5,1.0}, the hazard rate function h(x) of the TeSU—W can model not only
monotonic but also non-monotonic behavior of the failure rate of the observations, which are
inherent in survival lifetime data. Moreover, Figure 4 reveals that the TeSU-E hazard rate function
h(x) can model complex data which are either non-monotonic decreasing, increasing or with
constant rate.

5.2.  The Limiting Distribution of TeSU-W

This section derives the limiting distribution of the probability distribution function (Theorem 1)
and the hazard function (Theorem 2) of TeSU—W.

Theorem 1. (i) The limit of the probability density function f(x) of the TeSU-Weibull distribu-
tion as x — oo is equal to 0, that is,

lim fresu-w(x) = 0.

(i)
oo ifp <1
chig[l)fTesu—w(x) =¢T(1+2)) ifp=1.
0 ifp>1

Proof. Recall that the pdf of TeSU-W is given in equation (12). It is clear that

lim fresu—w(x) =0
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. . —1xB .
since lim e~ ™ = lim
X—500 x—r00 pTxP

= 0. This proves (i).
To prove Theorem 1 (ii), we have

lim fresu_w = 8 lim ¥~ lim e~ ™" (1 + 24 — 124 lim e=™" + 121 lim ¢~2).
x—0 x—0 x—0 x—0 x—0

Observe that for f > 0,

lime~™ = lim —~ — 1.

x—0 x— pTxP

It follows that
lim frsy—w(x) = T(1 4 2A) lim xF~ 1.
x—0 x—0

If B =1, then we have
lim frosy—w(x) = (1 +2A) lim x° = 7(1 +22).
x—0 x—0
Next, for B > 1 we have
lim fTesufw(x) = Tﬁ(l +2)\) lim xﬁﬁl =0.
x—0 x—0

Lastly, for B < 1 we get
Lim fresu-w(x) = TB(1+24) lim 2P
X—

x—0

but f—1 < 0 since B < 1. Also, p—1 can be express as p —1 = —(1 — ) = —c, where
c=1—p>0. It follows that

lim ooy w(x) = TB(1+2A) lim xF~1 = 7B(1 +22)(lim 2 )¢ = co.
x—0 x—0

x—0 X

Theorem 2. The limit of the hazard rate function of the TeSU-W distribution is given by the
following:

0 ifp<1
lim hrsu-w(x) =71 ifp=1.
o iffp>1
(ii)
00 ifp <1
chiE)I‘(l]hTesufw(X) = T(l +2/\) lf‘B =1.
0 ifp>1

Proof. By taking the limit of equation as x — oo, we have the following results. It can be
verified that

T (limy—yo0 1) (1 4+ 24 — 124 limy o0 e ™ + 124 im0 6 27)
1427 — 6Alimy 00 e—TxP +4A limy 00 e—2txP :

xlglgo hesu—w(x) =

Observe that .
lim e~ = lim —5 = 0,
X—00 X—00 pTX

TP

then it follows that

lim hresi—w(x) = 74 lim P
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If B =1 then
lim hresu-w(x) = 7.
If B > 1 then
xh_r)rolo hresu-w(x) = Tﬁ(}g{}o x)F1 = 0.
If B <1 then

Y st () = Jimy 1 =0
This proves (i). The proof of Theorem 2 (ii) is as follows: By definition of the hazard function,
we have )
im fresu—w(x)
lim hp,gy— = .
xli% TeSU W(x) lim STESU—W(x)
x—0

Observed that,
lim Sqesy_w (x) = (lim e~ ™) (1 +2A — 6A lim e~ ™" + 47 lim e~ 2™,
x—0 x—0 x—0 x—0

But lime ™

F 1. Hence, it follows that lim St.s;;_w(x) = 1. Thus,
x—0 x—0

lim hresy—w(x) = lim frsy—w(x).
x—0 x—0

By Theorem 1, we have

% ifp <1
lim hresy—w (x) = Lim fresu—w(x) = im frsu-w(x) = ¢ T(1+24) ifp=1.
0 ifg>1

5.3. Moment and Moment Generating Function of TeSU-W

This section derives the rth moment (Theorem 3), the mean and variance (Corollary 1), and the
moment generating function (Theorem 4) of TeSU—-W.

Theorem 3. The rth moment of TeSU-W distribution, with pdf given in is given by
! :r‘ﬁr(%+1)[1+2A—6A2‘ﬁ +4A37F), (14)

where r = 1,2,..,n and I'(+) is a gamma function.

Proof. The rth raw moment is defined by p, = E(X") = / x" f(x)dx. Thus, using the pdf f(x)
0
in equation (12) and simplifying, we have

e = / xrrﬁxﬁ_le_”ﬁ (1427 — 120 ™ 4+ 12027 )dx
0

(1 +2A)r‘%r(% +1)—6A2 BT AT(L +1) +4/\3‘%r‘%r(% +1)

-

= | N

- f%r(% +1)[1+2A —6A27F + 43"
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Corollary 1. The mean and variance of the TeSU-W distribution are, respectively, given by

11 1 _1
p=pi=t /51“(3+1)[1+2A—6)\2 P +4A37F] and

5 -2 2 -2 -2 5,1 -1 _1.,
=T ﬁ[F(g+1)(1+2/\—6}\2 P+4A3 F)—T (B+1)(1+2/\—6A2 P +4A3 F)7].

Proof. The mean of the TeSU-W distribution is obtained when r = 1 in (14). Thus,
, _1.1 _1 _1
p=i =T (g F1)[142A — 6427 F +4A37F).

It is to note that 02 = p}, — (u})*. Now, the 2nd raw moment 1}, of the proposed distribution
is obtained using equation when r = 2. Tt follows that

_2 2 _2 _2
Wy =1 ﬁr(g+1)[1+2/\—6x\2 P +4A37F).

Therefore, the variance ¢ of TeSU-W distribution is derived as

o? = ph—(1h)?

2 _2 _2 1 1 _1\?
lr<ﬁ+1> <1+2A6A2 F 4423 ﬁ)rz (5“) <1+2A6/\2 B+ 4A3 33) ]

= T

=N

Theorem 4. Let X follows the TeSU-W distribution, then its moment generating function,
My, w () is given as

© re7F g _r _r
Mxpoy () = ZO p I"(B+1)(1+2/\—6)\2 P +4A37F),
r=

where t € R.

Proof. By definition of moment generating function and using equation (14), we have
Mixrgyw () = E(e')
e}
= /0 ™ fresu—w (x)dx.

Recall that !X = Z;’":O %xr. Hence, we have
oo o t}’ .
MXTeSufw(t) = /0 Z Fx fTeSllfW(x)dx
r=0""

t}’ o0
= / X' fresu—w(x)dx

r! Jo

[
[7e

r=0
[ee] tr ,
Thus,
X tT By _r _r
Mxper w() =Y, , F(B+1)(1+2/\—6A2 B 4737 F).
r=0 :
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5.4. The Median of TeSU—G family and TeSU—-W distribution

This section described the process of the derivation of the median of the TeSU—G family of
distributions. Consider the Structured Set of Skew—Kurtotic Transmutations proposed by Shaw
[14], that is, for parameters ay, a; we shall consider the polynomial family given by

1
where z € [0,1] and the non-negativity of the pdf P’ at the end points should satisfy
u o
_1_?2§061§1+?2.

Let u follows a uniform distribution (0,1). Then the solution for the equation P(z, a1, ap) = u is
as follows:

u, ifl’él =a, =0
M71+V“+“MM+AM7”,im2=0
201
2= \B/H, ifOé]Z%,azzl
1—Y1—u, ifog =—3,00 =1
C(u, a1, a2), otherwise

where C(+) is a function that denotes the general cubic (GC) solver for other cases. This function
is processed by the following algorithm.

Step 1. Compute
_ 403 +3(ap — 4)az
3603
4 — Ya (ap +2) 4+ 27(1 — 2u)a3
10843 '

Q

7

R:

Step 2. If R?> > Q3, the equation has one real and two complex roots. In this case we have,

A= —sign(®) (R + V=)

{A,iﬂAzO
B=10Q

L
otherwise

o 1 o1 3
C(M,Dll,l)(z) = A+B— § ((){2 - 2) .

Otherwise, the cubic has three real roots and this is done by setting

0 = arccos (R> ;
\3/@ 7

0—2m 1 /a7 3
C(M,DCLDCZ) - _2\/7 cos < 3 ) - g <[x2 - 2) .

Observed that the cdf (7) of the TeSU-G family can be rewritten as

F(x)=z—2z(1-2) [le + ap <z—;)},
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where z = G(x), a1 = 0 and ay = 4A, A € [—0.5,1]. The inverse of F(x) is a solution to the
following equation

z=C(u,a1,a) = G(x) = C(u,0,4A).

Hence, the given algorithm can be modified as follows. Let u follows a uniform distribution (0,1).
Then,

Step 1*. Compute

1 1
=-(1-2),A#0;
=3 (1-3) 70

_1-2u

T

Step 2*. If R?> > Q3 then

Q=

A = —sign(R) (|R| + \/m> :

A, ifA=0
B:{Q f

L
= otherwise
A/

x=G! (A+B+;).

Otherwise,

0—arccos< R )
V)’
(1 6 —2r
x=G (2 2\/7cos< 3 )),

where G~1(x) is the inverse function of any baseline distribution function G(x). If A = 0, then

x = G~ !(u). The updated algorithm can be used for generating random numbers that follows

any TeSU distribution. Consequently, the median of TeSU—G family can be computed by taking
1 .

u = 5, that is,

(3). ifA =0

1
2
Yypag = . (15)
me G-1 {% _9 % (1 — %) cos (9032")} , otherwise

Setting G(x) to be the cdf in equation (9) of the Weibull distribution, the algorithm is then modi-
fied to generate random numbers from the TeSU—Weibull distribution. The modified algorithm
is as follows:

Step 1**. Compute

1 1
=-(1-=),A#0;
0-;(1-3) 70
_1-2u
164
Step 2**. If R? > Q3 then

Q=

A = —sign(R) (|R| +VRI - Q3> ;

A ifA=0
B:{Q g

L
= otherwise
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- (n-a-a)

Qzarccos< R )
Vi)'
x:(ilog<;+2\/7ws (9—3271)))%%.

1
If A =0, then x = (—1log(u))?. Hence, the median of the TeSU—W is solved using equation 1}
as

™=

Otherwise,

(—%log(%))%, ifA=0

Xmed(TeSU-W) = 1 ‘
(—%log (% +24/Q cos (%)))ﬁ , otherwise

6. Tue TESU—W MODEL PARAMETER ESTIMATION

Let Xj,Xp,...,X;; be an independently and identically distributed random variables from a
TeSU—Weibull distribution. Then the likelihood function of the TeSU—W is given by

n B—1 _1xP B P
L=]]|tBx e ™ (1421 —120e” ™ + 121 2™ || .
i=1
Then the log-likelihood function is given by
Z B—1 P - P
I=)Y log |tpxt e ™ (1424 —12e™ ™ + 121 > | |. (16)
i=1

The derivatives of with respect to the parameters 7,  and A are given as follow:

Bl
o n &g = zixge i
— =YXy = 17
T T l; ! g Yi @)
n n no. fgl . 7”?
aai = Y- wxllog(x;) + Y log(x;) + 12TA zi; log (xi)e ; (18)
g B 3 i=1 i=1 Yi
p p
Al L 1—6e ™ +6e 2™
ﬁ _ zizzl m , (19)

where y; = 1424 — 124¢~™ +124¢ 27 and z; = 1 — 2¢~ 7.

Setting equations (17), (18) and (19) equal to zero, the numerical maximum likelihood estimates
£, B and A of the parameters can be obtained by any numerical method like the Newton-Raphson
iterative method.

7. TaeE AsymrTOoTIiC PROPERTIES OF TESU—W ML EsTIMATES

This section presents the simulation study result conducted to verify the performance of the
ML estimates of TeSU-W distribution when sample sizes are varied. The simulation process
proceeded with 2 sets of data from TeSU-W distribution and considered the following sets of
parameters values: s; = {t = 14, =25,A =05} and s, = {t =14, =1,A = —0.5}. For
each s;, the study is processed for varied sample sizes n € {50, 100,200,500,1000}. Also, at each
replication, the ML estimates , f and A are computed. The process is repeated 1000 times for
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each s;, and some diagnostic statistics like the average estimate (AE), biases and mean squared
errors (MSE) are determined and are summarized in Tables 1 and 2. These indicate that the
MSE of T, ,B and A for sets sj, i = 1,2 decay toward zero as the sample size increases, that is,
lim;;—seo MSE = limy_ye0 % Yy (Pi — P)2 = 0 where P = 7,8, A. This implies that the AE of the
parameters for each s; tend to be closer to the true parameters as sample sizes n increases.

Table 1: Some diagnostic statistics of TeSU-W for Table 2: Some diagnostic statistics of TeSU-W for

s1 at varied n So at varied n
n MLE AE Bias MSE n MLE AE Bias MSE
+ 1446 0.046 0.047 T 1509 0.109 0.044
50 B 2716 0216 0.124 50 B 1.107  0.107 0.036
A 0569 0.069 0.041 A —0486 0.014 0.007
T 1440 0.040 0.022 T 1.483 0.083 0.019
100 B 2694 0194 0.070 100 B 1.084 0.084 0.014
A 0552 0.052 0.020 A —0498 0.002 0.001
£ 1433 0.033 0.010 T 1473  0.073 0.012
200 B 2683 0183 0.051 200 B 1.080  0.080 0.009
A 0555 0.055 0.010 A —0.500 0.000 0.000
£ 1429 0.029 0.005 T 1.463  0.063 0.006
500 B 2679 0179 0.039 500 B 1.073  0.073 0.006
A 0547 0.047 0.005 A —0.500 0.000 0.000
¢ 1428 0.028 0.003 T 1.463  0.063 0.005
1000 B 2671 0171 0.032 1000 B 1.072  0.072 0.006
A 0544 0.044 0.003 A —0.500 0.000 0.000

Figure 6: Plots of the MSE and Bias for % (left), B (center) and A (right) in s,

8. TaE TESU—W 1IN L1FE DATA ANALYSIS

This section illustrates the TESU—W distribution when applied to real life dataset using a package
"fitdistrplus” of the R software. The result of the TeSU—W distribution will then be compared to
the recent work of Arif [3] on the New Extended Exponentiated Weibull (NEEW) distribution and
the work of Malik [11] on the New Transmuted Weibull (NTW) distribution. The New NEEW
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pdf is given by

axh
oc/'\x)"le’”A(l — e’“x)‘) {39(13 )(2 +60-— 967'”)\) + 2]
,x>0,a,A,0 >0

fneew(x) = 1

while the pdf of the New Transmuted Weibull (NTW) distribution is given by

Furw(x) = 6AxA e [1 Ay Zﬁw] ,%,0,A>0,-1<B<1.
—e

Model diagnostics are done with the determination of the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K—S), Cramer-von Mises (W*) and
the Anderson-Darling (A) statistics. As a rule of thumb, a smaller value of these statistics implies
a better fit of the model using the proposed distribution to the given dataset.

The COVID-19 cases in India from May 1, 2020 to June 14, 2020 are used in this study. This
data set can be accessed from the siteweb (Coronavirus Update (Live):7,114,524 Cases and 406,552
Deaths from COVID-19 Virus Pandemic - Worldometer). For calculation purpose, we consider
data (1072). Table 3 lists the MLEs of the TeSU-W, NEEW, NTW and TeSU-E distributions fitted
to the given dataset while Table 4 shows the different diagnostics statistics. Consistently in all
diagnostic criterion, the TeSSU—W gave the lowest values of the diagnostic statistics compared to
NEEW, NTW and TeSU-E distributions. It may imply that the TeSU—W works well when fitted
with the given dataset and that the ML estimates are asymptotically equal to the true values of
the parameters. In addition, same result is observed from the plots of the fitted models and the
histogram of the dataset given in Figure 7.

Table 3: ML estimates of the fitted models using the different distributions

Distribution & B o A T
TeSU-W 3.05948300 0.47928580  0.00000183
NEEW 0.00111771 0.00000082  1.69201100
NTW —0.99999996 0.00047039  1.86047516
TeSU—E —0.49999997  0.01248669

Table 4: Some diagnostic statistics of the fitted models using the different distributions

Distribution AIC BIC K-S A W
TeSU-W 428.9631 434.3830 0.1005729 0.4046896 0.0566358
NEEW 433.5504 438.9703 0.1271787 0.6914853 0.1042066
NTW 433.0563 438.4763 0.1255249 0.7159459 0.1097673
TeSU—E 446.9146  450.528 0.1660065 2.2543706 0.3196720
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0015
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0010

0.005

s

T T 1
20 40 60 80 100 120 140

0.000
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Figure 7: Plots of the models fitted to the COVID-19 data
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9. CONCLUDING REMARKS

This paper derives a new family of distributions called the T-extended Standard U-quadratic—G
family of distributions or simply, TeSU—G family. Derived models of the family called as TeSU—
Weibull distribution (TeSU—W) and the TeSU-Exponential distribution (TeSU—E) are generated
and its limiting behavior, moments, mean and variance, and moment generating function are
computed. Also, formula of the median for the TeSU—G family as well as for TeSU—W distribution
are derived. Furthermore, the Maximum Likelihood (ML) estimates of the TeSU—W distribution
is derived. Simulation study shows that the ML estimates is asymptotically equal to the true
value of the parameters as sample sizes increases. This can be observed by the values of MSE that
goes to zero, on the average. Life data analysis using the TeSU—W distribution to a COVID-19
dataset provides better fit compared with the existing New Extended Exponentiated Weibull
(NEEW) distribution and the New Transmuted Weibull (NTW) distribution as explored by Arif
[3] in 2022 and Malik [11] in 2022, respectively.
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