# PROCESS MODELING AND NUMERICAL INVESTIGATION OF VENEER CUTTING SYSTEM OF A PLYWOOD PLANT WITH STOCHASTIC APPROACH

Dr. Subhash Malik, Dr. Narendra Kumar, Er. Sudhir Kumar

Maharishi Markandeshwar University, Mullana, India,

Technology Education & Research Integrated Institutions, Kurukshetra, India subhashmalik604@gmail.com narendraip005@gmail.com sudhirtamak@gmail.com

#### Abstract

Present paper covers performance modelling and performability evaluation of a veneer-cutting system of plywood manufacturing industry. The performability is evaluated as a function of availability. In this system the different subsystems are connected in hybrid mode. Markovian Approach was used for developing the process modeling of the subsystems and to evaluate the performability of said system. MATLAB software was used to perform the numerical computations as well as simulation of results. The current work examines the impact of varied failure rates and repair rates on the long-term availability of the system. A Particle Swarm Optimization (PSO) based technique was used to optimize the results. A Decision Support System (DSS), which can be helpful for making strategic decisions on financial investments in managing the maintenance priorities, spare part management, and human resource requirements, among other things, has been recommended based on the numerical investigation.

Keywords: Availability, DSS, Maintenance, Markov Chain, PSO, RAM Tools

## 1. Introduction

The manufacturing of plywood is a complex engineering process. It undergoes through several stages like veneer cutting, laying up and gluing operation, hot/cold pressing and trimming process etc. With rapid increase of market competition manufacturers have ensure the progressively improve in their production processes. Use of human labor provides flexibility. Need of varying sizes of the required final product usually interrupt progression in the crucial stage of layup. The availability, cost of production, quality, and, in certain situations, the safety of the operator has all been negatively impacted by the condition. The modern business communities of these fields have taken a positive lesson from it. They grasped as an opportunity to learn from a long list of such failures and their impact in terms of economy and safety.

Regattieri and Bellomi [13] developed a system that reduces the manpower requirements and wastage of materials and improving the operational performance. Use of certain modeling tools in industrial practices can help them in making appropriate decisions on Reliability Availability and Maintainability (RAM) issues. Various quantitative as well as qualitative tools and techniques are available for these types of analysis. Studies related to RAM facilitates in identifying several maintenance related issues and maintenance planning for smooth system working. Available literature on the subject shows that an equipment maintenance policy generally works in two ways: 1) Corrective Maintenance (CM) which is an offline activity where repair action is taken only after the equipment has failed; and 2) Preventive Maintenance (PM). This plan involves an online maintenance activity well in advance to avoid the frequent failure of system.

In the next sub section usefulness of the certain RAM tools and their typical applications in process industries are suitably discussed. RAM Approaches in Process Industries.

RAM tools reported in the literature in the present study may be classified into two categories namely (i) non state space and (ii) state space models.

The modeling techniques belonging to the non-state space category are Reliability-Block-Diagram, Fault Tree Analysis whereas Petri-Nets (PN) and Markovian processes are coming under the state space models [9,10]. These modeling tools are briefly described as under:

Fault Tree Analysis (FTA): At Bell Telephone Laboratory, this modelling method was created for the first time in 1962. In its original module, a combination of events that might cause a system failure was represented using a visual representation of logical links between events. The system represents top event in the modelling process. Dhillon and Rayapati [3] presented several examples describing successful applications of FTA to modelling of industrial systems. The RAM analysis of a RO desalination plant has also been done by Hajeeh and Chaudhuri [4] using it. Its aptitude for managing complex maintenance operations, which are best handled by state-space approaches like Markov or PN formalisms, is one of its significant drawbacks when employed as a RAM analysis tool.

Reliability-Block-Diagram (RBD): Reliability Block Diagram represents the various connections between the components of system. The two forms of series in Reliability Block Diagram are Series and Parallel Configurations. Based upon the Operational Dependency each component in Reliability Bloc Diagram is represented with help of a block i.e. connected either in series, parallel or hybrid mode. RBD Techniques has proved its effectiveness so far in the analysis of reliability of system. The fundamental flow diagram of the process is used to create a high-level dependability block diagram in this.

Khan and Kabir [6] carried out availability analysis of ammonia plant using Reliability Block Diagram is an example of availability analysis of industrial process systems.

Petri Nets (PN) Model: PN Modeling Technique was first used in 1962 by Dr. Carl Adam Petri in his thesis of doctorate. PN uses bipartite directed graph for process modeling of systems having synchronization, randomness and concurrency simultaneously. It has circles to indicate places, bars to denote transitions, and black dots inside the circles to represent tokens [17]. Sachdeva et al [15] applied Petri Nets for the performance modelling and evaluate long run steady state availability of paper manufacturing plant.

Bahl [2] used PN approach for the availability assessment of various systems of a fertilizer industry. More recently, Angel and Jayaparvathy [1] applied PN approach for developing safety system against occurrence of fire. Kumar et al [7,8] performed availability analysis of different repairable industrial units producing different products however similar in operational nature such as randomness, synchronization and concurrency etc.

Markov Process: It is a great process of stochastic behavior used to develop the performance model of systems that exhibit probabilistic behavior. It has many important applications in time-based reliability as well as availability analysis. Here in Movkov state transition diagrams are used for modelling of stochastic behavior of system. The system is capable of a number of distinct states across time. It is possible to specify the speed at which transitions between these states happen. Regardless of the number of states the system passed through to

arrive at this state, the system's transition from one state to another solely depends on the prior one. There are two forms of Markovian Chain models: Discrete-Time-Markov-Chain (DTMC) and Continuous-Time-Markov-Chain (CTMC). Explosion of a number states is the main problem with the markovian chain models which makes difficult to deal with the tedious mathematical calculations.

The work of Singh et al. [16] and Kumar et al. [18,19] uses petri nets for modelling and performance evaluation of subsystems of a thermal power plant. More recently, Malik and Tewari [12] applied Markov Chains for modeling and evaluated availability for different power plants. Kempa [11] dealt with performance modelling of a production system with Markov chains.

Keeping in view of this, in the present study we have considered a Plywood plant facing several challenges as mentioned earlier. The system description and performance modeling is described in subsequent sections here after.

## 2. System Description

Usually, the plywood manufacturing has nine main steps. These are (i) log collection (ii) debarking (iii) steaming the blocks (iv) peeling blocks into veneers (v) drying veneers (vi) gluing and laying up the veneers one over the another (vii) pressing veneers in a hot press (viii) plywood trimming and (ix) finishing and stamping as shown in Fig.1. The veneer making system is responsible for around 35to 40 % of the total production of the plant. The system under study is a poplar plywood manufacturer situated in the Ganga basin of Northern India. The various subsystems under consideration are as follows:

• Debarking Machine: It used to separate the tree bark and wood without damaging it. Further the logs extracted are into specified lengths. It consists of movable debarking head, roller table, hydraulics mechanism, horizontal and diagonal conveyors and electrically insulated control cabin etc.

• Veneer Lathe: In this subsystem a veneer knife cuts the steamed blocks into veneers of desired thickness usually 3mm. The veneer sheets are further clamped to a usable width, to allow for shrinkage and trim. Veneer peeling knives, mechanical drives, tool holders and chucks are the major components of this sub system.

• Veneer Drier: It is used to dry the veneers obtained from the barks maintaining the desired level of moisture contents (usually 1to 15%). This subsystem comprises of heating and cooling components and process measuring devices. A veneer drier typically has three heating zones followed by a cooling section. Heating zone consists of source of hot air, circulating fans and the ports for exhaust which are used reduce the temperature veneer before exiting to the drier.

• Plywood Scanner: This subsystem is used to inspect, sort, grade and repair of plywood. It has (i) face and back scanners to detect visual 2-D and 3-D defects (ii) edge scanning for panel layup defects (iii) dimensional scanning for checking length and width and (iv) paralleling and guiding robotic movements for precise sorting and stacking etc.



Figure 1: Flow diagram of Plywood Manufacturing Plant

## 3. Performance Modeling

In this study continuous time Markov Chains have been used to represent the transitions among various subsystems and to develop a performance model of the system. Fig. 2 shows the Markov model of the veneer cutting system. The failure and repair rates, among other variables, were taken into account when modelling the system's performance. The maintenance history books of the plant were obtained in discussion with plant's persons for the required data presented in table 1. Additionally, the following presumptions were used for system modelling and analysis.:

- Exponential distributions have been used to express failure and repair rates.
- A unit is as good as new after repair.
- Standby units have the same nature and capacity as active.
- Only the delay in the availability of repair facilities causes a delay in the start of repairs.
- The system can operate in reduced capacity mode as well.

Notations:

A, B, C and D: :All of the subsystems A, B, C, and D are in fine working order.

A<sup>-</sup> :shows that subsystem A is functioning in a reduced state.

B<sup>-</sup> :shows that subsystem B is functioning in a reduced state.

C<sup>-</sup> :shows a reduced state of operation for subsystem C.

a, b, c and d is shows that A, B, C, and D are all in a failed state, correspondingly.

 $\lambda$ i, i=1,2,3.....7 : Failure- Rates (FR) from states A, B, C, D, A, B and C to the states A, B, C, d, a, b and c respectively.

µi, i=1,2,3.....7 : Repair- Rates (RR) from states A, B, C, D, A, B and C respectively.

Pj(t), j=1,2,3....27: Probability that all subsystems are functioning properly and the system is in the jth state at time t. Pj'(t) represents the derivative of Pj(t) with respect to time 't'.



Figure 2: Performance Model of Veneer Cutting System

## 4. Performance Analysis

```
Using mnemonic rule a set of first order differential equations related to the transition diagram seen above
(Fig.2) of the system at Time (t+\Deltat) may be written as follows:
P0(t+\Delta t) - P0(t) = [-\lambda 1 \Delta t - \lambda 2 \Delta t - \lambda 3 \Delta t - \lambda 4 \Delta t] P0(t) + P1(t) \mu 1 \Delta t + P2(t) \mu 2 \Delta t + P3(t) \mu 3 \Delta t + P8(t) \mu 4 \Delta t
Dividing both sides by \Delta t, it becomes:
[P0(t+\Delta t)-P0(t)]/\Delta t = [-\lambda 1 - \lambda 2 - \lambda 3 - \lambda 4]P0(t) + P1(t)\mu 1 + P2(t)\mu 2 + P3(t)\mu 3 + P8(t)\mu 4
On taking limit as \Delta t \rightarrow 0, this obtained as:
P'0(t)=-X0P0(t)+µ1 P1(t)+µ2 P2(t)+µ3 P3(t)+µ4 P8(t)
P'0(t)+X0P0(t) = \mu 1P1(t)+\mu 2P2(t)+\mu 3P3(t)+\mu 4P8(t)
                                                                                                                                                          (1)
Similarly,
P'1 (t)+X1 P1(t)=\lambda1P0(t)+\mu2P4(t)+\mu3P5(t)+\mu4P9(t)+\mu5P10(t)
                                                                                                                                                          (2)
P'2(t) + X2P2(t) = \lambda 2P0(t) + \mu 1P4(t) + \mu 3P6(t) + \mu 4P11(t) + \mu 6P12(t)
                                                                                                                                                          (3)
P'3 (t)+X3P3(t)=\lambda3P0(t)+\mu1P5(t)+\mu2P6(t)+\mu4P13(t)+\mu7P14(t)
                                                                                                                                                          (4)
P'4(t)+X4P4(t)=λ2 P1 (t)+λ1 P2 (t)+μ3P7(t)+μ4P15(t)+μ5P16(t)+μ6P17(t)
                                                                                                                                                          (5)
P'5(t)+X5P5(t)=\lambda 3P1(t)+\lambda 1P3(t)+\mu 2P7(t)+\mu 4P18(t)+\mu 5P19(t)+\mu 7P20(t)
                                                                                                                                                          (6)
P'6(t)+X6P6(t)=\lambda 3P2(t)+\lambda 2P3(t)+\mu 1P7(t)+\mu 4P21(t)+\mu 6P22(t)+\mu 7P23(t)
                                                                                                                                                          (7)
P'7(t) + X7P7(t) = \lambda 3P4(t) + \lambda 2P5(t) + \lambda 1P6(t) + \mu 4P24(t) + \mu 5P25(t) + \mu 6P26(t) + \mu 7P27(t)
                                                                                                                                                          (8)
where, X0= \lambda1+\lambda2+\lambda3+\lambda4
         X1 = \lambda 2 + \lambda 3 + \lambda 4 + \lambda 5 + \mu 1
X2 = \lambda 1 + \lambda 3 + \lambda 4 + \lambda 6 + \mu 2
X3 = \lambda 1 + \lambda 2 + \lambda 4 + \lambda 7 + \mu 3
X4 = \lambda 3 + \lambda 4 + \lambda 5 + \lambda 6 + \mu 1 + \mu 2
X5 = \lambda 2 + \lambda 4 + \lambda 5 + \lambda 7 + \mu 1 + \mu 3
X6 = \lambda 1 + \lambda 4 + \lambda 6 + \lambda 7 + \mu 2 + \mu 3
X7 = \lambda 4 + \lambda 5 + \lambda 6 + \lambda 7 + \mu 1 + \mu 2 + \mu 3
                                                                                                                                                          (9)
P'8 (t) +\mu4 P8(t)=\lambda4P0(t)
```

| Subhash Malik, Narendra Kumar, Sudhir Kumar<br>PM & NUMERICAL INVESTIGATION OF SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RT&A, No 2 (73)<br>Volume 18, June 2023 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $P'_{i}(t)+u_{i}P_{i}(t)=\lambda iP_{1}(t)$ , where, i=9.10; i=4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (10)                                    |
| $P'_{i}(t)+u_{i}P'_{i}(t)=\lambda_{i}P'_{2}(t)$ , here, i=11.12; i=4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11)                                    |
| $P'_{1}(t)+uiPi(t)=\lambda iP3(t)$ , here, i=13.14; i=4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (12)                                    |
| $P'_{1}(t)+ui Pi(t)=\lambda i P4(t), here, i=15.16.17; i=4.5.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (13)                                    |
| $P'_{i}(t)+uiPi(t)=\lambda iP5(t)$ here i=18 19 20: i=4 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14)                                    |
| $P'_{1}(t)+\mu P'_{1}(t)=\lambda P_{1}(t)$ here i=21 22 23: i=4.6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (11)                                    |
| $P'_{1}(t) + \mu P_{1}(t) = \lambda i P_{7}(t) \text{ here } i = 24.25.26.77 i = 4.5.6.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (16)                                    |
| Steady State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (10)                                    |
| By imposing the condition steady state probabilities of the system are derived that as t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t→∞ d/dt→0                              |
| With this equations (5.58) to (5.73) the following equation system are derived that as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t / <sup>30</sup> , u/ut /0.            |
| $Y_{0}D_{0-1}P_{1+1}P_{2}P_{2+1}P_{2}P_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (17)                                    |
| $x_{010} - \mu_{111} + \mu_{212} + \mu_{313} + \mu_{413}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (17)                                    |
| Similarly,<br>$V_{1D1}=11D0\dots 2D4\dots 2D5\dots 4D0\dots ED10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10)                                    |
| $XIP1=XIP0+\mu_2P4+\mu_3P3+\mu_4P3+\mu_3P10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (18)                                    |
| $X2P2 = A2P0 + \mu 1P4 + \mu 3P6 + \mu 4P11 + \mu 6P12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (19)                                    |
| $X3P3=X3P0+\mu 1P5+\mu 2P6+\mu 4P13+\mu P14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (20)                                    |
| $X4P4=X2P1+X1P2+\mu3P7+\mu4P15+\mu5P16+\mu6P17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (21)                                    |
| $X5P5 = X3P1 + X1P3 + \mu 2P7 + \mu 4P18 + \mu 5P19 + \mu 7P20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (22)                                    |
| Χ6Ρ6=λ3Ρ2+λ2Ρ3+μ1Ρ7+μ4Ρ21+μ6Ρ22+μ7Ρ23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (23)                                    |
| Χ7Ρ7= λ3Ρ4+ λ2Ρ5+ λ1Ρ6+μ4Ρ24+μ5Ρ25+μ6Ρ26+μ7Ρ27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (24)                                    |
| μ4 Ρ8=λ4Ρ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (25)                                    |
| μj Pi=λjP1, where, i=9, 10; j=4, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (26)                                    |
| μj Pi=λjP2, where, i=11, 12; j=4, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (27)                                    |
| μj Pi=λjP3, where, i=13, 14; j=4, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (28)                                    |
| μj Pi=λjP4, where, i=15, 16, 17; j=4, 5, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (29)                                    |
| μj Pi=λjP5, where, i=18, 19, 20; j=4, 5, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (30)                                    |
| μj Pi=λjP6, where, i=21, 22, 23; j=4, 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (31)                                    |
| μj Pi(t)=λjP7(t),where, i=24, 25, 26, 27;j=4 ,5, 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (32)                                    |
| It can be found by recursively solving these equations as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| P1= $(\lambda 1/\mu 1)$ P0; P2= $(\lambda 2/\mu 2)$ P0; P3= $(\lambda 3/\mu 3)$ P0; P4= $[(\lambda 1\lambda 2)/(\mu 1\mu 2)]$ P0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| P5=[( $\lambda$ 1 $\lambda$ 3)/(μ1μ3)]P0;P6=[( $\lambda$ 2 $\lambda$ 3)/(μ2 μ3)]P0; P7 = [( $\lambda$ 1 $\lambda$ 2 λ3)/(μ1μ2 μ3)]P0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| On adding,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| P1+P2+P3+ +P7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| =[ $(\lambda 1/\mu 1) + (\lambda 2/\mu 2) + (\lambda 3/\mu 3) + (\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 2\lambda 3)/(\mu 2\mu 3) + (\lambda 1\lambda 2\lambda 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3)/( µ1µ2 µ3)] P0                       |
| = KP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (33)                                    |
| where, $K = [(\lambda 1/u1) + (\lambda 2/u2) + (\lambda 3/u3) + (\lambda 1\lambda 2)/(u1u2) + (\lambda 1\lambda 3)/(u1u3) + (\lambda 2\lambda 3)/(u2u3) + (\lambda 1\lambda 2)/(u1u3) + (\lambda 2\lambda 3)/(u2u3) + ($                                               | $2 \lambda 3)/(\mu 1 \mu 2 \mu 3)];$    |
| Similarly, P9+P10= $(\lambda 4/\mu 4 + \lambda 5/\mu 5)(\lambda 1/\mu 1)$ P0; P11+P12= $(\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 2/\mu 2)$ P0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| P13+P14= $(\lambda 4/\mu 4 + \lambda 7/\mu 7)(\lambda 3/\mu 3)$ P0:P15+P16+P17= $(\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 2)$ P0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| $P18+P19+P20=(\lambda 4/\mu 4+\lambda 5/\mu 5+\lambda 7/\mu 7)(\lambda 1\lambda 3)/(\mu 1\mu 3)P0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| $P21+P22+P23=(\lambda 4/\mu 4+\lambda 6/\mu 6+\lambda 7/\mu 7)(\lambda 2\lambda 3)/(\mu 2\mu 3)P0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| $P24+P25+P26+P27=(\lambda 4/\mu 4+\lambda 5/\mu 5+\lambda 6/\mu 6+\lambda 7/\mu 7)(\lambda 1\lambda 2,\lambda 3)/(\mu 1\mu 2,\mu 3)]P0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (34)                                    |
| The sum of all probability must equal one under the normalizing condition $i e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (54)                                    |
| $\Sigma P_i = 1 \ \Omega r \ P_0 + P_1 + P_2 + P_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (35)                                    |
| This implies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (55)                                    |
| ID(1+D) + D(1+D) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )+                                      |
| [10+(11+12++17)+10+(13+110)+(11+112)+(113+114)+(113+110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+117)+(110+17)+(10+17)+(10+17)+(10+17)+(10+17)+(10+17)+(10+17)+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )+                                      |
| (P21+P22+P23)+P24+P23+P20+P27]=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| $P0[1+K+\Lambda 4/\mu 4+(\Lambda 4/\mu 4+\Lambda 5/\mu 5)(\Lambda 1/\mu 1)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 6/\mu 6)(\Lambda 2/\mu 2)+(\Lambda 4/\mu 4+\Lambda 7/\mu 7)(\Lambda 3/\mu 3)+(\Lambda 4/\mu 4+\Lambda 7)(\Lambda 4/\mu 4+\Lambda 7)(\Lambda 7/\mu 7))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μ4+λ5/μ5+λ6/μ6)(λ1λ2                    |
| )/(µ1µ2)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| (Λ4/μ4+λ5/μ5+λ//μ7)(λ1λ3)/(μ1μ3)+(λ4/μ4+λ6/μ6+λ//μ7)(λ2λ3)/(μ2μ3)+(λ4/μ4+λ5/μ5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ6/μ6+λ7/μ7)(λ1λ2                       |
| λ3)/( μ1μ2 μ3)]=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| $Or, P0=[1+K+\lambda 4/\mu 4+(\lambda 4/\mu 4+\lambda 5/\mu 5)(\lambda 1/\mu 1)+(\lambda 4/\mu 4+\lambda 6/\mu 6)(\lambda 2/\mu 2)+(\lambda 4/\mu 4+\lambda 7/\mu 7)(\lambda 3/\mu 3))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /+                                      |
| $(\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 7/\mu 7)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 7/\mu 7)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 7/\mu 7)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 4/\mu 4 + \lambda 5/\mu 5 + \lambda 7/\mu 7)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6 + \lambda 6/\mu 6)(\lambda 1\lambda 2)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4 + \lambda 6/\mu 6)(\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 4/\mu 4)(\lambda 4/\mu 4) + (\lambda 4/\mu 4)/(\mu 4)(\lambda 4/\mu 4)) + (\lambda 4/\mu 4)/(\mu 4)/(\mu 4)/(\mu 4)/(\mu 4)/(\mu 4)/(\mu 4)) + (\lambda 4/\mu 4)/(\mu 4$ | λ7/μ7)(λ2λ3)/(μ2μ3)+                    |
| (λ4/μ4+λ5/μ5+λ6/μ6+λ7/μ7)(λ1λ2 λ3)/( μ1μ2 μ3)]-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (36)                                    |

| Now, it is possible to determine the system $A(\infty)$ availability by utilizing:                                                                                                                                                  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A(∞)=P0+P1+P2+P3++P7                                                                                                                                                                                                                |      |
| $= [1 + (\lambda 1/\mu 1) + (\lambda 2/\mu 2) + (\lambda 3/\mu 3) + (\lambda 1\lambda 2)/(\mu 1\mu 2) + (\lambda 1\lambda 3)/(\mu 1\mu 3) + (\lambda 2\lambda 3)/(\mu 2\mu 3) + (\lambda 1\lambda 2\lambda 3)/(\mu 1\mu 2\mu 3)]P0$ |      |
| =(1+K)P0                                                                                                                                                                                                                            | (37) |

Using Eq. 37, it is possible to determine the long-term availabilities for a variety of permitted pairings of repair and failure rates of veneer manufacturing systems in steady state. Tables 2 provide a summary of the impact of failure and repair rates on system availability. Following is a discussion of how availability affects system performance in relation to the parameters of the subsystems under consideration.

| Name of Sub-System       | Mean Failure-Rate/hr | Mean Repair-Rate / hr ( µi ) |
|--------------------------|----------------------|------------------------------|
| -                        | ( <i>λ</i> i )       |                              |
| Debarking Machine (A)    | 2.0X10-3             | 1.3X10-2                     |
| Veneer cutting lathe (B) | 6.0X10-2             | 14X10-2                      |
| Veneer Driers (C)        | 22.5X10-4            | 1.2X10-1                     |
| Optical Scanner (D)      | 7.5X10-5             | 1.2X10-3                     |

**Table 1:** Data of failure and repair of Veneer System

| Table 2: Effects of subsystem failure and | l repair rates variation | on system performance |
|-------------------------------------------|--------------------------|-----------------------|
|-------------------------------------------|--------------------------|-----------------------|

| Subsystem           | Variation in failure rates $\lambda i$ | Effect of variation on system |  |  |
|---------------------|----------------------------------------|-------------------------------|--|--|
|                     | (Repair rates µi)                      | availability                  |  |  |
| 1 Debarking machine | 0.0016-0.0024 (0.017-0.009)            | 0.8342-0.8028 (2.14)          |  |  |
| 2Veneer lathe       | 0.02-0.10(0.20-0.08)                   | 0.9156-0.5635 (35.21)         |  |  |
| 3 Drier             | 0.00025-0.00425(0.20-0.04)             | 0.8301-0.8187 (1.14)          |  |  |
| 4 Plywood           | 0.000035-0.000115                      | 0.8578-0.6964 (16.14)         |  |  |
| scanner             | (0.0020-0.0004)                        |                               |  |  |



Figure 3: Effect on availability of the failure and repair rate of the debarking machine

Fig. 3 reveals that the variation in FRR of debarking machine has moderate impact on performance of system. Overall 2.14 % Changes have been noted in the system's availability, with the debarking machine's failure rate rising from 0.0016 to 0.0024 and its repair rate falling from 0.017 to 0.009.



Figure 4: : Effect on availability of the failure and repair rate of the veneer lathe.

The failure and repair rates of the veneer lathe are shown to have a significant impact on the system's overall availability in Fig. 4 above. The overall availability varies by 35.20 percent, with the veneer lathe's failure rate rising from 0.02 to 0.10 and its repair rate falling.



Figure 5: : Impact of the veneer dryer's repair and failure rates on availability.

As can be seen from Fig. 5, there is little to no impact on the system's availability when failure and repair rates vary within acceptable bounds. The system's availability varies1.14 %, with the veneer dryer's failure rate rising from 0.00025 to 0.00425 and its repair rate falling from 0.20 to 0.04.



Figure 6: Impact on availability of the plywood scanner's failure and repair rates.

According to Fig. 6, changing the failure and repair rates within the given ranges has a significant impact on the system under consideration's overall availability. The plywood scanner's failure rate rose from 0.000035 to 0.000115, while its repair rates fell from 0.0020 to 0.0004, creating a 16.14% difference in the system's availability.

## 5. Performance Optimization

In the present study, to see the further enhancement in the availability of the system a performance optimization were carried out using Particle Swarm Optimization (PSO) algorithms. The PSO technique was first used by Dr. Kennedy [5] He proposed on the basis of the social behavior of birds or bees called 'particles' in their optimum search for food sources. In this, each bird has its own objective value at present, current position and current velocity. Ever experienced best value by the particle is called p-best i.e. personal best. It also considers the best objective value experienced by any particle ever called g-best i.e. global best.

Thomas Schoene [14] described a standard version of classical PSO which uses the following relations to determine velocity and position of the ith particle:

$$Vi (n+1) = w^*Vi (n) + C1(n)^* R1i (n) ^*{p-besti - Xi(n)} + C2(n)^* R2i (n) ^*{g-best - Xi(n)}; n = 0, 1..., N-1 (38)$$

where Vi is the velocity of ith particle, Xi is the position of ith particle. 'n' in parenthesis represents the iteration number, n = 0 refers to the initialization; N is the total no. of performed iterations, C1 and C2 are the personal weight and global weights respectively (preferably C1 = C2 = 2). R1i and R2i are random numbers distributed between 0 and 1 and 'w' the inertia weight that ranges from 0.4 to 1.4.

In PSO, the best solution represents the optimum position of a particle. There is random initialization of particles along with their velocity and position which were evaluated with equations (38) and (39). The main steps involved in optimization process may be depicted as shown in Fig.7 below:



Figure 7: Flow Diagram PSO

The best position reached in each iteration is compared with the best previous position and similarly their position of the global best and personal best are updated. Each particle is updated to a new best position considering their previous experience after adjusting their velocities. After reaching to the new position, the particles of swarn are updated. Best optimal solution is obtained by repeating the process in same manner.

#### Computational Optimized Results of Veneer Making System

Following the procedure mentioned in Fig.7 by varying the failure and repair rate within the permissible limits performance optimization of various subsystems has been carried out These are are shown below:

 $\lambda 1 \epsilon$  (0.0016-0.0024),,  $\mu 1 \epsilon$  (0.009-0.017);  $\lambda 2 \epsilon$  (0.02-0.10),  $\mu 2 \epsilon$  (0.08-0.20);  $\lambda 3 \epsilon$  (0.00025-0.00425),  $\mu 3 \epsilon$  (0.04-0.20) and  $\lambda 4 \epsilon$  (0.000035-0.000115),  $\mu 4 \epsilon$  (0.0004-0.0020)

The effect of population size and the number of iterations on the system performance is shown below in Tables 3 and 4 as given below.

| Table 3: Effect of Population Size (PS) Variation on the Accessibility of Veneer Making System |                 |      |         |             |             |      |      |        |             |
|------------------------------------------------------------------------------------------------|-----------------|------|---------|-------------|-------------|------|------|--------|-------------|
| Populatio                                                                                      | io Failure Rate |      |         |             | Repair rate |      |      |        | Optimum     |
| n Size@                                                                                        | $\lambda 1$     | λ2   | λ3      | $\lambda 4$ | μ1          | μ2   | μ3   | μ4     | Availabilit |
| no. of GS                                                                                      |                 |      |         |             |             |      |      |        | y (%)       |
| 100                                                                                            |                 |      |         |             |             |      |      |        |             |
| 10                                                                                             | 0.0019          | 0.02 | 0.00092 | 0.000109    | 0.010       | 0.17 | 0.15 | 0.0016 | 0.9123      |
| 20                                                                                             | 0.0018          | 0.02 | 0.00343 | 0.000067    | 0.013       | 0.14 | 0.10 | 0.0019 | 0.9383      |
| 50                                                                                             | 0.0018          | 0.02 | 0.00235 | 0.000048    | 0.013       | 0.16 | 0.10 | 0.0016 | 0.9492      |
| 100                                                                                            | 0.0018          | 0.02 | 0.00246 | 0.000047    | 0.013       | 0.16 | 0.10 | 0.0016 | 0.9498      |
| 200                                                                                            | 0.0016          | 0.02 | 0.00036 | 0.000041    | 0.016       | 0.17 | 0.10 | 0.0018 | 0.9611      |
| 1500                                                                                           | 0.0018          | 0.02 | 0.00235 | 0.000040    | 0.015       | 0.18 | 0.05 | 0.0019 | 0.9614      |
| 3000                                                                                           | 0.0016          | 0.02 | 0.00189 | 0.000038    | 0.015       | 0.20 | 0.04 | 0.0018 | 0.9638      |
| 4000                                                                                           | 0.0016          | 0.02 | 0.00191 | 0.000038    | 0.015       | 0.20 | 0.04 | 0.0018 | 0.9639      |
| 6000                                                                                           | 0.0016          | 0.02 | 0.00186 | 0.000037    | 0.015       | 0.20 | 0.04 | 0.0017 | 0.9641      |
| 8000                                                                                           | 0.0016          | 0.02 | 0.00348 | 0.000035    | 0.015       | 0.19 | 0.08 | 0.0020 | 0.9669      |
| 15000                                                                                          | 0.0016          | 0.02 | 0.00379 | 0.000035    | 0.017       | 0.20 | 0.10 | 0.0020 | 0.9685      |

| Generatio | Failure Rate |      |             |             | Repair rate |      |      |        | Optimum     |
|-----------|--------------|------|-------------|-------------|-------------|------|------|--------|-------------|
| n Size @  | $\lambda 1$  | λ2   | $\lambda 3$ | $\lambda 4$ | μ1          | μ2   | μ3   | μ4     | Availabilit |
| no. of PS |              |      |             |             |             |      |      |        | y (%)       |
| 50000     |              |      |             |             |             |      |      |        |             |
| 10        | 0.0015       | 0.10 | 0.0051      | 0.0016      | 0.015       | 0.19 | 0.05 | 0.0016 | 0.9560      |
| 20        | 0.0016       | 0.02 | 0.00373     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9682      |
| 30        | 0.0016       | 0.02 | 0.00379     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9684      |
| 50        | 0.0016       | 0.02 | 0.00380     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9685      |
| 80        | 0.0016       | 0.02 | 0.00380     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9685      |
| 120       | 0.0016       | 0.02 | 0.00380     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9685      |
| 200       | 0.0016       | 0.02 | 0.00380     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9685      |
| 250       | 0.0016       | 0.02 | 0.00380     | 0.000035    | 0.017       | 0.20 | 0.11 | 0.0020 | 0.9685      |



Figure 8: Optimum Availability of Veneer Making System using PSO

The Fig. 8 shows the highest achievable availability of system is as much as 96.85%. Based on the detailed investigation a comparative analysis of results is presented in Table 5 in the form of DSS.

## 6. Conclusions

The detailed investigation carried out on different subsystems here indicates that the veneer cutting lathe needs an utmost maintenance priority as it is the most critical subsystem. The failure of veneer knives is the main reason for the failure is in veneer cutting lathe. The effect of varying repair facilities on the availability of system were carried out which will further help in the allocation of repair facilities among the subsystems. The obtained outcomes also demonstrate the usefulness of the RAM tools. The analysis carried out will further help the maintenance engineers to optimize the overall maintenance cost and overall production cost. Thus it understood that appropriate RAM tools have the direct impact on the maintenance cost and overall production cost [15].

| Table 5: Summary of Results and DSS for Veneer making system of Plywood Manufacturing Plant |           |                           |               |              |             |  |  |  |  |
|---------------------------------------------------------------------------------------------|-----------|---------------------------|---------------|--------------|-------------|--|--|--|--|
| Name of                                                                                     | Name of   | Varying Failure Impact of |               | Optimized    | Suggested   |  |  |  |  |
| System                                                                                      | subsystem | rates $\lambda$ i and     | change on     | Availability | Maintenance |  |  |  |  |
|                                                                                             |           | (Repair Rates             | availability  | based on     | Priorities* |  |  |  |  |
|                                                                                             |           | μi)                       | using Markov  | PSO (%)      |             |  |  |  |  |
|                                                                                             |           |                           | (%)           |              |             |  |  |  |  |
|                                                                                             | Debarking | 0.0016-0.0024             | 0.8342-0.8028 |              | TTT         |  |  |  |  |
|                                                                                             | Machine   | (0.017-0.009)             | (2.14)        |              | I           |  |  |  |  |
|                                                                                             | Veneer    | 0.02-0.10                 | 0.9156-0.5635 |              |             |  |  |  |  |
| Veneer                                                                                      | lathe     | (0.2-0.08)                | (35.21)       |              |             |  |  |  |  |
| Making                                                                                      | Drion     | 0.00025-0.00425           | 0.8301-0.8187 | 96.85 %      |             |  |  |  |  |
| System                                                                                      | DHei      | (0.2-0.04)                | (1.14)        |              | 1 V         |  |  |  |  |
|                                                                                             | Plunuaad  | 0.000035-                 | 0 8578 0 6064 |              |             |  |  |  |  |
|                                                                                             | Scanner   | 0.000115                  | (1(14))       |              | II          |  |  |  |  |
|                                                                                             |           | (0.0020 - 0.0004)         | (10.14)       |              |             |  |  |  |  |

Table 5: Summary of Results and DSS for Veneer making system of Plywood Manufacturing Plant

\* At present being managed on the basis of intuitive decisions of the plant managers

In case it is desired to determine more possible efficient performance of such systems then we recommend the use of PSO type of optimization approach to be used for further optimizing the results obtained using Markov or any other convenient approaches as has been done in the present case study. Here a DSS is proposed (in Table 5) so that a significant amount of wastage in material and manpower involvement can be reduced. Hence, for researchers a lot of opportunity to work on the advancement of veneer layup process so as to achieve an optimum point between cost vs quality ensuring safety and volume of production. In future, It will be of great interest if Petri Nets approach is applied in such cases that supports non constant failure pattern also.

## References

[1] Angel, A.S. and Jayaparvathy, R. (2019), "Performance modeling of an intelligent emergency evacuation system in buildings on accidental fire occurrence". Safety science 12:196-205.doi.10.1016/j.ssci.2018.10.027.

[2] Bahl, A., Sachdeva, A. and Garg, R.K. (2018), "Availability analysis of distillery plant using petri nets", International Journal of Quality & Reliability Management, Vol. 35 No. 10, pp. 2373-2387.

[3] Dhillon, B. S., Rayapati, S. N. (1988), "Chemical-system reliability:a review", IEEE Transactionson Reliability,Vol. 37, pp.199-208.

[4] Hajeeh, M., Chaudhuri, D. (2000), "Reliability and availability assessment of reverse osmosis", Desalination, Vol.130, pp.185-192.

[5] Kennedy, J. and Eberhart, R. (1995),. "Particle swarm optimization", Proceedings, IEEE International Conference on Neural Networks, Vol. 4, pp.1942–1948.

[6] Khan, M. R. R., Kabir and A. B. M. Z. (1995), "A vailability simulation of an ammonia plant", Reliability Engineering and System Safety, Vol.48, pp.217-227.

[7] Kumar,N., Tewari, P.C. and Sachdeva, A. (2019), "Performance Modelling and Analysis of Refrigeration System of a Milk Processing Plant using Petri Nets", International Journal of Performability Engineering, Vol. 15, No. 7, pp. 1751-1759.

[8] Kumar,N., Tewari, P.C. and Sachdeva, A. (2020) "Performance modelling and availability analysis of a milk pasteurising system using Petri nets formalism", International Journal of Simulation and Process Modelling , Vol.15, No.5, pp.401-408, 2020. DOI: 10.1504/IJSPM.2020.110915.

[9] Kumar, N., Tewari, P.C. and Sachdeva, A. "Performance Assessment of Milk Processing System using Petri Nets" SN Applied Sciences, Vol. 2:1-12, DOI:10.1007/s42452-020-03282-0. 4.

[10] Kumar,N., Tewari, P.C. and Sachdeva, A. "Petri Nets Modelling and Analysis of the Veneer Layup System of Plywood Manufacturing Plant", Int. journal for engineering modeling, DOI: 10.31534/engmod.2020.1-2.ri.07v.

[11] Kempa, W. M. (2020). "On time-to-buffer overflow distribution in a single-machine discrete-time system with finite capacity", Mathematical Modelling and Analysis', 25(2),pp. 289-302. https://doi.org/10.3846/mma.2020.10433.

[12] Malik, S and Tewari, PC 2020 Optimization of coal handling system performability for a thermal power plant using PSO algorithmGrey Systems: Theory and Application Vol. 10 No. 3, 2020, pp. 359-376.

[13] Regattieri, A. and Bellomi, G. 2009. "Innovative lay-up system in plywood manufacturing process", European Journal Wood Prod. 67:55–62. DOI 10.1007/s00107-008-0282-0.

[14] Schoene, T. (2011), "Step-Optimized Particle Swarm Optimization", M.S. thesis, University of Saskatchewan, Saskatoon, Canada.

[15] Sachdeva,A., Kumar,D. Kumar,P. 2008. "Planning and optimizing the maintenance of paper production system in a paper plant", Computers & industrial Engineering 55:817-829.

[16] Singh, J., Pandey, P.C. and Kumar, D. (1990), "Designing for reliable operation of urea

synthesis in the fertilizer industry", Microelectronics and Reliability, Vol.30, pp.1021-1024.

[17] Viswanadham, N. and Narahari, Y. (2015), "Performance modeling of automated mfg. systems", PHI learning Pvt. Ltd., Delhi.

[18] Er. Sudhir Kumar, Dr. P.C. Tewari Performability optimisation of multistate coal handling system of a thermal power plant having subsystems dependencies using pso and comparative study by petri nets. Reliability: Theory & Applications. 2023, March 1(72): 250-263. https://doi.org/10.24412/1932-2321-2023-172-250-263.

[19] Er. Sudhir Kumar, Dr. P.C. Tewari Performability analysis of multistate ash handling system of thermal power plant with hot redundancy using stochastic petrinets. Reliability: Theory & Applications. 2022, September 3(69): 190-201. https://doi.org/10.24412/1932-2321-2022-369-190-201