
S. Immaculate, P. Rajendran
QUEUEING THEORY FOR MAXIMIZING SYSTEM SIZE

THE APPLICATION OF QUEUEING THEORY FOR 

MAXIMIZING SYSTEM SIZE USING ENCOURAGED 

ARRIVAL 

S. Immaculate, P. Rajendran*

• 
Department of Mathematics, School of Advanced Sciences, 

Vellore Institute of Technology, Vellore, India - 632014. 

immaculate.s@vit.ac.in 

Correspondence email: prajendran@vit.ac.in 

Abstract 

Customers are frequently drawn in by lucrative deals and discounts offered by businesses. These 

interested customers are referred to as encouraged arrivals. The major goal of this study is to evaluate 

the performance of the automobile assembly line in order to decrease waiting time by coordinating the 

activities at each workstation using stopwatch time study approach. The novelty of this research is to 

convert poisson arrival to encouraged arrival with some discounts (like.,10%, 20%). The queuing 

problem is represented by the notation M/M/1: FCFS/∞/∞ in Kendall's notation. It is a single 

channel, multi-server service with infinite system capacity and an infinite number of calling 

population. Data concerning the system's encouraged arrival and service distribution were 

established. These data were used to calculate the system performance parameter. The finding of the 

study was used to predict the system's performance and effectiveness and to make logical 

recommendations for possible future improvements. According to the results, it is possible to conclude 

that increasing the level of automation reduces part waiting time, decreasing the cost of waiting. 

When compared to the poisson arrival system, the size of the Markovian encouraged arrival queuing 

system is increased as shown in the table. Little’s law is verified that system size and queue size is 

same as in length. Little's law is used to predicts lead time based on production rate and work-in-

process. Here it is verified as shown in table. 

Keywords: Encouraged arrival, Assembly Line, Queuing Analysis, Stopwatch 

time study, Steady state Solution. 

1. Introduction

In public areas like post offices, banks and gas stations, waiting is a common occurrence. Not just 

people, but also machinery and moving vehicles at traffic lights experience the phenomena of 

waiting. Bottlenecks arise and assume the shape of lines when resources are limited and unable to 

fulfil demand.  In an assembly line, to make a final product as soon as possible, pieces are 

systematically attached to a product utilizing the well-planned logistics. The sequential organization 

of employees, equipment or parts is the main goal of assembly lines. In flow-oriented production 

system, the productive units performing the operations are repeatedly linked to a service.  

          The work components are often conveyed along the line via, a transportation system such as a 

conveyor belt where they are delivered to stations one after another. The different types of assembly 

lines include single-model, batch-model and mixed-model lines. A few product models are 
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manufactured in batches, one at a time on the same line with time allocated for a changeover so that 

the line is set up for the production of a new system. The procedure for choosing the configuration 

of the goods to be produced on the line must minimize the number of workstations, balance the 

delay and fulfil other placement requirements such as production rate, variety, minimal distance 

moved, division of labor and quality.  

         Introduction to congestion theory in telephone systems was discussed in [1] effective 

implementation of cycle time reduction strategies. For semiconductor back-end manufacturing 

considered in [2]. The goal of traditional assembly line balancing procedures is to get us to the point 

of subdividing work so that the amount of time that stations are out of balance is kept to a minimum 

is studied in [3]. Queuing analysis to analyses patient load in outpatient and inpatient services to 

facilitate more realistic resource planning is found in [4]. The Application of queuing theory in multi-

stage production line is studied in [5]. Discussion of operational transport analysis methods and the 

practical application of queuing theory to stationary traffic considered in [6]. Modelling and analysis 

of manufacturing systems considered in [7]. Queuing theory in solving automobile assembly line 

problems in [8]. Improving effectiveness and efficiency of assembly line with a stopwatch time study 

and balancing activity elements was discussed in [9]. Queuing theory and manufacturing systems 

modelling and analysis are done and they are developed. Few among them were found in [10 and 

11].  Parallel tasks and stations are considered by Bard (1989), as is dead time, which is the time 

required for transporting workpieces from one station to the next while no tasks can be executed. 

         Maximization of system size in solving automobile assembly line problem using encouraged 

arrival proposed in this work. An introduction is described in Section 1. The Markovian queue with 

encouraged arrival for mathematical model formulation is described in Section 2. Numerical 

illustrations are provided in Section 3. Results and discussion are given in Section 4. Section 5 

contains the Conclusion. 

2. Mathematical Model

The mathematical model predicates to satisfy the following conditions: 

i) Customers arrive one by one to an encouraged arrival discipline process with rate  𝜆(1 + 𝜒),

where 𝜒  represents the customer's previous or observed data. If a previous firm gave

discounts and percentages, the number of consumers observed values ranging from 𝜒 = 0.1

and 𝜒  = 0.2 respectively.

ii) Service time is symmetrically and exponentially distributed.

iii) Customers adhere to the first in, first out principle.

2.1 Steady State Solution: 

We obtain the following system of differential difference equations. 

𝑑

𝑑𝑡
𝑃0(𝑡) = − 𝜆(1 + 𝜒)𝑃0(𝑡) + 𝜇𝑃1(𝑡)   ( 1 ) 

𝑑

𝑑𝑡
𝑃𝑛(𝑡) = 𝜆(1 + 𝜒)𝑃𝑛−1(𝑡) − {𝜆(1 + 𝜒) +  𝜇}𝑃𝑛(𝑡) + 𝜇𝑃𝑛+1(𝑡)     𝑛 ≥ 1   ( 2 ) 

In the steady state, as 𝑡 → ∞, 𝑃𝑛(𝑡) =  𝑃𝑛 and therefore 𝑃𝑛
1(𝑡) = 0 as 𝑡 → ∞ then, the equations are,

     0 =  − 𝜆(1 + 𝜒)𝑃0 + 𝜇𝑃1               ( 3 ) 

     0 =     𝜆(1 + 𝜒)𝑃𝑛−1 − {𝜆(1 + 𝜒) +  𝜇}𝑃𝑛 + 𝜇𝑃𝑛+1    ( 4 ) 

Now the value of 𝑃𝑛  is obtained as,    𝑃𝑛 = 𝜌𝑛𝑃0
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𝑃𝑛  =  (
𝜆(1+𝜒)

𝜇
)

𝑛

𝑃0     ( 5 ) 

The value 𝑃0 can be computed by using the obvious requirement, that the sum of all probabilities 

must be equal to 1. 

∑ 𝑃𝑛 ∞
𝑛=0 =  𝑃0 ∑  ∞

𝑛=0 𝜌𝑛

    = 𝑃0
1

1−𝜌  

    ∑ 𝑃𝑛 ∞
𝑛=0 = 1       ( 6 ) 

Where, 𝑃0 = 1 − 𝜌  

It is clear that the traffic rate 𝜌 must be less than 1, otherwise the sum of probabilities would not be 

1 (not even limited). From (6) to (5) gives the general formula for 𝑃𝑛: 

𝑃𝑛 =  𝜌𝑛(1 − 𝜌)

= (
𝜆(1+𝜒)

𝜇
)

𝑛

𝑃𝑛  = (1 −
𝜆(1+𝜒)

𝜇
)           ( 7 ) 

The equation (7) represent a very important result used to obtain all the characteristics of the M/M/1 

system. 

3. Numerical Illustration

The performance of the M/M/1 queueing system is analysed numerically concerning the parameters 

Values λ(1 + χ), μ, χ represent discounts values 10% and 20% of the table and figure. The following 

table 1 displays the parameters for the number of customers in the queueing system for various 

values of λ(1 + χ) , μ. 

Labor level 

         An important component to take into account when conducting an assessment study of an 

automobile assembly plant is the number of personnel engaged in productive operations on the 

assembly line. Depending on how much automation is used throughout the line, different people 

are required. The encouraged arrival method is more efficient than the Poisson process. 

Output of the Problem Evaluation Analysis 

        The Estimation Analysis was done by calculating the system performance parameters such as 

idle system, length in system, length in queue, waiting time in system, waiting time in queue and 

system utilization.  
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Table 1: Encouraged arrival 10% and utilization factor for Markovian model 

Work 

Station 
𝜒 

Encouraged Arrival 

rate 

𝜆(1 + 𝜒)/Min 

Mean Service 

Time (𝜇)/min 

Utilization factor 
𝜆(1+𝜒)

𝜇

1 0.1 12.1 16.9 0.72 

2 0.1 14.3 17.8 0.80 

3 0.1 13.2 17.8 0.74 

4 0.1 11.0 16.4 0.67 

5 0.1 11.0 18.1 0.61 

6 0.1 14.3 19.2 0.74 

7 0.1 12.1 17.2 0.70 

8 0.1 11.0 19.8 0.56 

9 0.1 13.2 17.6 0.75 

10 0.1 11.0 16.9 0.65 

11 0.1 14.3 18.1 0.79 

12 0.1 11.0 17.8 0.62 

13 0.1 12.1 17.1 0.71 

14 0.1 14.3 18.9 0.76 

15 0.1 13.2 18.6 0.71 

16 0.1 15.4 20.0 0.77 

Figure 1: Usage of workstation graph 

The utilization factor for each workstation is displayed in Figure 1. It is clear from the graph 

that certain workstations are operating below capacity. This might be as a result of the low amount 

of automation or labor at such a station.    

3.1 Encouraged Arrival 10% of the Queuing System: 

In station 1:  

λ(1 + χ) = 11(1 + 0.1) = 12.1 parts/min,  𝜇 = 16.9 parts/min 

(i) Traffic intensity 𝜌 = 
(λ(1+χ))

μ
=  

12.1

16.9
  = 0.72 

Utilization…0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.72 0.8 0.74 0.67 0.61
0.74 0.7

0.56
0.75

0.65
0.79

0.62 0.71 0.76 0.71 0.77
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(ii) Idle system = 1 - 𝜌 = 1 – 0.72 = 0.28

(iii) Length in system 𝐿𝑠 = 
(λ(1+χ))

μ−λ(1+χ)
 = 

12.1 

16.9−12.1
= 

12.1

4.8
  = 2.52 

(iv) Length in queue 𝐿𝑞 =
(λ(1+χ))2

μ(μ−λ(1+χ))
= 

(12.1 )2

16.9(4.8)
= 

146.41

81.12
 = 1.81 

(v) Waiting time in system  𝑤𝑠 =
1

μ−λ(1+χ)
 = 

1

16.9−12.1
 = 

1

4.8
 = 0.21 × 60 = 12.6 sec. 

(vi) Waiting time in queue 𝑤𝑞  =
(λ(1+χ))

μ(μ−λ(1+χ))
  = 

12.1 

16.9(4.8)
= 

12.1

81.12
 = 0.14 × 60 = 8.4 sec 

Table 2: Encouraged arrival for 10% discounts and utilization factor for a Markovian queuing. 

Stations 𝜒 𝜆(1 + 𝜒) 𝜇 𝜌 1-𝜌 𝐿𝑠 𝐿𝑞 𝑊𝑆 𝑊𝑞 

1 0.1 12.1 16.9 0.72 0.28 2.52 1.81 12.6 8.4 

2 0.1 14.3 17.8 0.80 0.20 4.09 3.28 17.4 13.8 

3 0.1 13.2 17.8 0.74 0.26 2.87 2.13 13.2 9.6 

4 0.1 11.0 16.4 0.67 0.33 2.04 1.37 11.4 7.2 

5 0.1 11.0 18.1 0.61 0.39 1.55 0.94 8.4 5.4 

6 0.1 14.3 19.2 0.74 0.26 2.92 2.17 14.4 9.0 

7 0.1 12.1 17.2 0.70 0.30 2.37 1.67 11.4 8.4 

8 0.1 11.0 19.8 0.56 0.44 1.25 0.69 6.6 3.6 

9 0.1 13.2 17.6 0.75 0.25 3.0 2.25 13.8 10.2 

10 0.1 11.0 16.9 0.65 0.35 1.86 1.21 10.20 6.6 

11 0.1 14.3 18.1 0.79 0.21 3.76 2.97 15.6 12.6 

12 0.1 11.0 17.8 0.62 0.38 1.62 0.99 9.0 5.4 

13 0.1 12.1 17.1 0.71 0.29 2.42 1.71 12.0 8.4 

14 0.1 14.3 18.9 0.76 0.24 3.11 2.35 13.2 9.6 

15 0.1 13.2 18.6 0.71 0.29 2.44 1.74 11.4 7.80 

16 0.1 15.4 20.0 0.77 0.23 3.35 2.58 13.2 10.2 

In M/M/1 automobile assembly line problem with 10% encouraged arrival for length in system and 

queue as well as waiting time in system and queue. 
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Figure 2: Encouraged arrival of 10% discounts system and queue Size. 

Table 3: Encouraged Arrival 10% discounts comparing with the Poisson Arrival (PA) model. 

Stations (𝜆) 𝜆(1 + 𝜒) PA 

(𝐿𝑠) 

EA 

(𝐿𝑠) 

PA 

(𝐿𝑞) 

EA 

(𝐿𝑞) 

PA 

(𝑊𝑠) 

EA 

(𝑊𝑠) 

PA 

(𝑊𝑞) 

EA 

(𝑊𝑞) 

1 11 12.1 1.86 2.52 1.21 1.81 10.2 12.6 6.62 8.4 

2 13 14.3 2.71 4.09 1.98 3.28 12.5 17.4 9.13 13.8 

3 12 13.2 2.07 2.87 1.39 2.13 10.3 13.2 6.97 9.6 

4 10 11.0 1.56 2.04 0.95 1.37 9.4 11.4 5.72 7.2 

5 10 11.0 1.23 1.55 0.68 0.94 7.4 8.4 4.09 5.4 

6 13 14.3 2.10 2.92 1.42 2.17 9.7 14.4 6.55 9.0 

7 11 12.1 1.77 2.37 1.12 1.67 9.7 11.4 6.19 8.4 

8 10 11.0 1.02 1.25 0.52 0.69 6.1 6.6 3.09 3.6 

9 12 13.2 2.14 3.0 1.46 2.25 10.7 13.8 7.31 10.2 

10 10 11.0 1.45 1.86 0.86 1.21 8.7 10.20 5.15 6.6 

11 13 14.3 2.55 3.76 1,83 2.97 11.8 15.6 8.45 12.6 

12 10 11.0 1.28 1.62 0.72 0.99 7.7 9.0 4.32 5.4 

13 11 12.1 1.80 2.42 1.16 1.71 9.8 12.0 6.33 8.4 

14 13 14.3 2.20 3.11 1.51 2.35 10.2 13.2 6.99 9.6 

15 12 13.2 1.82 2.44 1.17 1.74 9.1 11.4 5.87 7.80 

16 14 15.4 2.33 3.35 1.63 2.58 10.0 13.2 7.00 10.2 

  Table 3 demonstrate that measuring each station has a substantial influence on the efficacy and 

efficiency of production operations in encouraged arrival by increasing system size and waiting time 

when compared to the poisson arrival for 10% discount by utilizing stopwatch time study methods. 
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Figure 3: Comparison of poisson arrival to encouraged arrival in systems and queues for 10% discounts. 

Table 4: Verification of Little’s law 

Stations 𝜆(1 + 𝜒) 𝐿𝑞 𝐿𝑠 𝑊𝑞 𝑊𝑠 𝐿𝑞 =  𝜆(1 + 𝜒)𝑊𝑞 𝐿𝑠= 𝜆(1 + 𝜒) 𝑊𝑠 

1 12.1 1.81 2.52 0.14 0.21 1.7 2.54 

2 14.3 3.28 4.09 0.23 0.29 3.28 4.14 

3 13.2 2.13 2.87 0.16 0.22 2.11 2.90 

4 11.0 1.37 2.04 0.12 0.19 1.32 2.09 

5 11.0 0.94 1.55 0.09 0.14 0.99 1.54 

6 14.3 2.17 2.92 0.15 0.204 2.15 2.92 

7 12.1 1.67 2.37 0.14 0.19 1.69 2.29 

8 11.0 0.69 1.25 0.06 0.11 0.66 1.21 

9 13.2 2.25 3.0 0.17 0.23 2.24 3.04 

10 11.0 1.21 1.86 0.11 0.17 1.21 1.87 

11 14.3 2.97 3.76 0.21 0.26 3.0 3.72 

12 11.0 0.99 1.62 0.09 0.15 0.99 1.65 

13 12.1 1.71 2.42 0.14 0.20 1.7 2.42 

14 14.3 2.35 3.11 0.16 0.22 2.28 3.15 

15 

16 

13.2 

15.4  

1.74 

2.58  

2.44 

3.35 

0.13 

0.17 

0.19 

0.22 

1.72 

2.62 

2.51 

3.38  
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3.2 Encouraged arrival 20% of the queuing system: 

Table 5: Encouraged arrival for 20% discounts and utilization factor for a Markovian model. 

Stations 𝜒 𝜆(1+𝜒) (𝜇) (𝜌) (1-𝜌) (𝐿𝑠) (𝐿𝑞) (𝑊𝑆) (𝑊𝑞) 

1 0.2 13.2 16.9 0.78 0.22 3.57 2.79 16.2 12.6 

2 0.2 15.6 17.8 0.87 0.13 7.09 0.98 27.0 23.4 

3 0.2 14.4 17.8 0.80 0.20 4.24 3.43 17.4 14.4 

4 0.2 12.0 16.4 0.73 0.27 2.73 1.99 13.8 10.20 

5 0.2 12.0 18.1 0.66 0.34 1.97 1.30 9.6 6.6 

6 0.2 15.6 19.2 0.81 0.19 4.33 3.52 16.8 15.6 

7 0.2 13.2 17.2 0.77 0.23 3.3 2.53 15.0 11.4 

8 0.2 12.0 19.8 0.61 0.39 1.54 0.93 7.8 4.8 

9 0.2 14.4 17.6 0.82 0.18 4.5 3.68 13.2 15.6 

10 0.2 12.0 16.9 0.71 0.29 2.45 1.74 12.0 8.4 

11 0.2 15.6 18.1 0.86 0.14 6.24 5.38 24.0 20.4 

12 0.2 12.0 17.8 0.67 0.33 2.07 1.39 10.20 7.2 

13 0.2 13.2 17.1 0.77 0.23 3.38 2.61 15.6 11.4 

14 0.2 15.6 18.9 0.83 0.17 4.73 3.90 18.0 15.0 

15 0.2 14.4 18.6 0.77 0.23 3.43 2.65 14.4 10.8 

16 0.2 16.8 20.0 0.84 0.16 5.25 4.41 18.6 15.6 

In M/M/1 automobile assembly line problem using the stopwatch time study approach method with 

20% encouraged arrival for length in system and queue, as well as waiting time in system and queue. 

Figure 4: Shows that the encouraged arrival of 20% discounts systems and queues size. 

The (table 6) demonstrate that measuring each station has a substantial influence on the efficacy and 

efficiency of production operations in encouraged arrival by increasing system size and waiting time 
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when compared to the poisson arrival for 20% discount by using stopwatch time study approach. 

Table 6: Encouraged arrival 20% discounts model comparing with the Poisson arrival (PA) model. 

Sta

tio

ns 

(𝜆) 𝜆(1 + 𝜆) 
PA 

(𝐿𝑠) 

EA 

(𝐿𝑠) 

PA 

(𝐿𝑞) 

EA 

(𝐿𝑞) 

PA 

(𝑊𝑠) 

EA 

(𝑊𝑠) 

PA 

(𝑊𝑞) 

EA 

(𝑊𝑞) 

1 11 13.2 1.86 3.57 1.21 2.79 10.2 16.2 6.62 12.6 

2 13 15.6 2.71 7.09 1.98 0.98 12.5 27.0 9.13 23.4 

3 12 14.4 2.07 4.24 1.39 3.43 10.3 17.4 6.97 14.4 

4 10 12.0 1.56 2.73 0.95 1.99 9.4 13.8 5.72 10.20 

5 10 12.0 1.23 1.97 0.68 1.30 7.4 9.6 4.09 6.6 

6 13 15.6 2.10 4.33 1.42 3.52 9.7 16.8 6.55 15.6 

7 11 13.2 1.77 3.3 1.12 2.53 9.7 15.0 6.19 11.4 

8 10 12.0 1.02 1.54 0.52 0.93 6.1 7.8 3.09 4.8 

9 12 14.4 2.14 4.5 1.46 3.68 10.7 13.2 7.31 15.6 

10 10 12.0 1.45 2.45 0.86 1.74 8.7 12.0 5.15 8.4 

11 13 15.6 2.55 6.24 1,83 5.38 11.8 24.0 8.45 20.4 

12 10 12.0 1.28 2.07 0.72 1.39 7.7 10.20 4.32 7.2 

13 11 13.2 1.80 3.38 1.16 2.61 9.8 15.6 6.33 11.4 

14 13 15.6 2.20 4.73 1.51 3.90 10.2 18.0 6.99 15.0 

15 12 14.4 1.82 3.43 1.17 2.65 9.1 14.4 5.87 10.8 

16 14 16.8 2.33 5.25 1.63 4.41 10.0 18.6 7.00 15.6 

Figure 5: Comparison of poisson arrival to encouraged arrival in systems and queues for 20% discounts.
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Table 7:  Verification of Little’s law: 

Station 𝜆(1 + 𝜒) 𝐿𝑞 𝐿𝑠 𝑊𝑞 𝑊𝑠 𝐿𝑞 =  𝜆(1 + 𝜒)𝑊𝑞 𝐿𝑠= 𝜆(1 + 𝜒) 𝑊𝑠 

1 13.2 2.79 3.57 0.21 0.27 2.77 3.56 

2 15.6 0.98 7.09 0.39 0.45 7.02 7.02 

3 14.4 3.43 4.24 0.24 0.29 3.46 4.18 

4 12.0 1.99 2.73 0.17 0.23 2.04 2.76 

5 12.0 1.30 1.97 0.11 0.16 1.92 1.92 

6 15.6 3.52 4.33 0.26 0.28 4.06 4.37 

7 13.2 2.53 3.3 0.19 0.25 2.51 3.3 

8 12.0 0.93 1.54 0.08 0.13 0.96 1.56 

9 14.4 3.68 4.5 0.26 0.31 3.74 4.5 

10 12.0 1.74 2.45 0.14 0.20 1.7 2.4 

11 15.6 5.38 6.24 0.34 0.4 5.30 6.24 

12 12.0 1.39 2.07 0.12 0.17 1.44 2.04 

13 13.2 2.61 3.38 0.19 0.26 2.51 3.43 

14 15.6 3.90 4.73 0.25 0.30 3.9 4.7 

15 

16 

14.4 

16.8 

2.65 

4.41 

3.43 

5.25 

0.18 

0.26 

0.24 

0.31 

2.6 

4.37 

3.46 

5.21 

4. Results and Discussions

This research provides recommendation to improve the standard of service to be more effective and 

efficient. The stopwatch time study approach in [9] was used to determine the average service time 

and distribution of encouraged arrival rates for each workstation. The degree of variation in the 

materials or components used to make the cars, as well as the manufacturing processes, affect service 

times. The timelines for the vehicle under consideration's arrival and assembly are summarized in 

the table. In comparison to the Poisson arrival system, the size of the Markovian encouraged arrival 

queuing system increased. 

5. Conclusion

Based on the findings, the queuing problem in an automobile assembly line to improve the standard 

of service to be more effective and efficient. The encouraged arrival and service distribution data for 

the system were determined. These data were used to calculate the system performance parameter. 

The result shows that increasing automation will lead to quicker processing times for parts and 

lower lead costs. The company will benefit greatly from this study because it will make it easier for 

management to plan future production by providing them with all the data pertaining to the 

performance of the company's assembly line. 
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