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Abstract

This study proposes and investigates the weighted intervened exponential distribution, which is demon-
strated as a generalized extension of the intervened exponential distribution. The form of the weighted
intervened exponential distribution is obtained by considering a specific non-negative weighted function.
The probability density function and cumulative density function of the proposed model are given, and its
generalized form of reliability function and the hazard rate function is also derived. By choosing a different
set of parametric values, the graphical demonstrations of the probability density function of weighted
intervened exponential distribution are given where it acquires different curve shapes. The weighted
intervened exponential distribution density function is then further studied in the limited form as a
special case called the length-biased intervened exponential distribution. Along with the distribution of
order statistics, stochastic ordering, stress-strength reliability, and entropy measure, several distributional
and reliability aspects of the length-biased intervened exponential distribution are derived. For estimating
the unidentified parameters of the length-biased variant, the most suggested approach known as the
maximum likelihood estimation technique is implemented. To explore the behavior of the parameter
estimates for various sample sizes, a sample data generation technique is required to carry out the process.
Since the quantile function of the length biased intervened exponential distribution is not in closed form.
So, the alternative data generation algorithm is employed which is known as the acceptance-rejection
algorithm technique, and a Monte-Carlo simulation study is done. The absolute average bias and mean
square error of the estimated parameters of the length-biased version model are calculated and it is noticed
that both the calculated measures decrease simultaneously on increasing the sample size. In order to
determine if the model is appropriate, a real-life time-to-event data set is examined as an example, and
length biased distribution is juxtaposed with several other common available lifetime distributions for
comparison purposes.

Keywords: Acceptance-rejection algorithm; Entropy; Weighted intervened distribution; Monte
Carlo simulation

1. Introduction

The literature witnesses the dominance of exponential distribution among all existing lifetime
models over data analysis in essential fields like reliability theory, survival analysis, and several
other branches of statistical as well as the applied sciences. As it is well observed the exponential
model has been extended in different ways with the help of new model development methods
and transformation techniques, such as inverted gamma distribution by Lin et al., [11], generalized
exponential distribution by Gupta and Kundu [9], weighted exponential distribution by Gupta
and Kundu [8], etc. are few examples. Apart from these extensions, a new development in
statistics called the intervention was brought into existence by Shanmugam [21] in the form of a
new discrete intervention model called the intervened Poisson distribution. Later on, in another
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successful attempt Shanmugam et al. [22] developed the continuous intervened exponential
model, which was later introduced as a lifetime distribution in the field of reliability theory and
survival analysis by Bhat and Pundir [2]. The cumulative and probability density functions (c.d. f
& p.d. f ) of IvED are given by

FIvED(x; Θ) =

{
1− ρe−(x−σ)/ρθ−e−(x−σ)/θ

(ρ−1) ρ 6= 1

1−
(
1 + x−σ

θ

)
e−(x−σ)/θ ρ = 1

(1)

and,

f IvED(x; Θ) =

{
e−(x−σ)/ρθ−e−(x−σ)/θ

(ρ−1)θ ρ 6= 1
(x−σ)

θ2 e−(x−σ)/θ ρ = 1
(2)

where, σ < x < ∞, and Θ = {(σ, θ, ρ) : σ > 0, θ > 0, ρ > 0} which is commonly known as the
parameter space with intervention parameter ρ and rate parameter θ. The wider applicability
of the model motivated us to extend the intervened exponential distribution (IvED) further in
the direction of the weighted distributions and the distribution obtained is known as weighted
intervened exponential distribution (WIvED). Thus, the newly proposed WIvED is a type of
generalization of IvED. To trace the history of weighted distributions, Fisher [7] investigated
the influence of ascertainment procedures on frequency estimates and developed the notion
of weighted distributions. When diversifying Fisher’s core theories, Rao ([18], [19]) realized
the need for a unifying notion by attempting to identify numerous sampling conditions that
might be handled according to what he named weighted distributions. To know the history
and applicability of weighted distributions Patil published several articles that he wrote with
co-authors refer Taillie et al. [23], Patil and Taillie [12], Patil and Rao [15], Denis and Patil [5],
Laird et al. [10], Patil and Ord [14], etc. moreover, see more references Patil [16]. In a definition,
Patil et al. [13] proposed the methodology used to determine the weighted version probability
density function (p.d. f ) is depicted below:

f (x; Θ) =
w(x) f∗(x; Θ)

E [w(X)]

where, f∗(x; Θ) is the natural density function of existing distribution with parameter space Θ
and w(x) is the non-negative weighted function by choosing w(X) = Xr, then E [w(X)] = E [Xr]
is the rth moment about origin. The rth raw moment of IvED derived by Bhat and Pundir [2] is
presented in a simplified form as given by

µ′r =
1

θ (ρ− 1)

r

∑
k=0

(
r
k

)
σkθr−k+1

(
ρr−k+1 − 1

)
. (3)

Therefore, according to the definition of weighted distributions, the c.d. f and p.d. f of WIvED(σ, θ, ρ)
derived from a r.v X ∼ IvED(σ, θ, ρ) are given by

FWIvED(x; Θ) =


1− θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)}

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

1− θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)}
∑r

k=0 (
r
k)σ

kθr−k+2Γ(r−k+2)
eσ/θ ρ = 1

(4)

and,

fWIvED(x; Θ) =


xre−(x−σ)/ρθ−xre−(x−σ)/θ

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

xr(x−σ)

∑r
k=0 (

r
k)σ

kθr−k+2Γ(r−k+2)
e−(x−σ)/θ ρ = 1

(5)

where, σ < x < ∞, and Θ is parameter space. The reliability function of the WIvED(σ, θ, ρ) is
obtained as

RWIvED(x; Θ) =


θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)}

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)}
∑r

k=0 (
r
k)σ

kθr−k+2Γ(r−k+2)
eσ/θ ρ = 1

(6)
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and, its hazard rate function is

hWIvED(x; Θ) =


xre−(x−σ)/ρθ−xre−(x−σ)/θ

θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)} ρ 6= 1
xr(x−σ)

θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)} e−x/θ ρ = 1
(7)

further, we study the special case density function of WIvED obtained at r = 1 from equation (5),
that is, defined as Length(size)-biased intervened exponential distribution (LBIvED). The mean,
variance several statistical and reliability properties, parameter estimation, simulation, stochastic
ordering, order statistics, and real-life applicability of LBIvED are studied in proceeding sections
and subsections.

2. Distribution and its Properties

The cumulative and probability density functions (c.d. f & p.d. f ) of LBIvED are given by

FLBIvED(x; Θ) =

 1− {ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ}
(ρ−1)[σ+θ(ρ+1)] ρ 6= 1

1− θ2+(x+θ)(x−σ+θ)
θ(σ+2θ)

e−(x−σ)/θ ρ = 1
(8)

and,

fLBIvED(x; Θ) =


xe−(x−σ)/ρθ−xe−(x−σ)/θ

θ(ρ−1)[σ+θ(ρ+1)] ρ 6= 1
x(x−σ)

θ2(σ+2θ)
e−(x−σ)/θ ρ = 1

(9)

where, 0 < σ < x < ∞ and Θ being its parameter space. The attempt is made to derive the
expressions of mean (µx) and its variance

(
σ2

x
)
. Also, some of the measures of LBIvED(σ, θ, ρ 6= 1)

which are not in closed form are the quantile function, median and the mode. Note, for simplicity
here on-wards, we take τ = (ρ− 1) [σ + θ (ρ + 1)].

µx =
2θ2 (ρ3 − 1

)
+ 2σθ

(
ρ2 − 1

)
+ σ2 (ρ− 1)

τ
(10)

and

σ2
x =

2θ3 (ρ4 − 1
)
+ 2σθ2 (ρ3 − 1

)
+ (3σ + 2) σθ

(
ρ2 − 1

)
+ σ3 (ρ− 1)

τ
− (µx)

2 . (11)

In Figure 1 and Figure 2, the p.d. f of LBIvED(σ, θ, ρ 6= 1) is plotted graphically. This is evident
from the graphical representation that the distribution is positively skewed, where multiple p.d. f
curves are displayed for various chosen sets of parameter values.
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Figure 1: P.d. f Plot
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Figure 2: P.d. f Subplots

2.1. Moments

In this subsection, the derivation of moments particularly central and non-central are derived. So,
if a random variable X ∼ LBIvED(σ, θ, ρ 6= 1), then central moments (µr) expression is obtained
by

µr =
1

θτ

∫ ∞

σ
(x− µx)

r x
{

e−(x−σ)/ρθ − e−(x−σ)/θ
}

dx

to solve the integral, first, we expand the term (x− µx)
r by using binomial expansion. After,

integration and simplification the resulting equation is

µr =
1
τ

r

∑
k=0

(
r
k

)
(σ− µx)

r θr−kΓ (r− k + 1)
{

θ
(

ρr−k+2 − 1
)
(r− k + 1)− σ

(
ρr−k+1 − 1

)}
. (12)

In a similar context, we derive the non-central moments (µ′r) expression for a random variable
X ∼ LBIvED(σ, θ, ρ 6= 1). The procedure to obtain the final resulting expression is given by

µ′r =
1

θτ

∫ ∞

σ
xr+1

{
e−(x−σ)/ρθ − e−(x−σ)/θ

}
dx

after, simplifications the resulting equation is

µ′r =
1
τ

r+1

∑
k=0

(
r + 1

k

)
σkΓ (r− k + 2) θr−k+1

(
ρr−k+2 − 1

)
(13)

2.2. Generating Functions for Moments

In general, the moment generating function (m.g. f ) denoted by MX(t) of a r.v X is obtained by,

MX(t) = E
(

etX
)
=
∫ ∞

−∞
etx f (x)dx (14)

so, to derive the m.g. f of a r.v X ∼ LBIvED(σ, θ, ρ 6= 1), we have

MX(t) =
∫ ∞

σ
etx fLBIvED(x; Θ)dx
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on substituting the p.d. f of LBIvED, when ρ 6= 1 and proceed with the transforming technique,
we get

=
etx

θτ

∫ ∞

0
(x + σ)

{
e−
(

1
θρ−t

)
x − e−(

1
θ−t)x

}
dx

on solving this further by using the gamma function, the required resulting equation of m.g. f is
obtained as

MX(t) =
{σ (1− θt) (1− θρt) + θ (1 + ρ− 2θρt)} eσt

(1− θt)2 (1− θρt)2 [σ + θ (ρ + 1)]
. (15)

Next, the characteristic function (c. f ) of a r.v X ∼ LBIvED(σ, θ, ρ 6= 1) is derived by

φX(t) = E(eιtX) =
∫ ∞

σ
eιtx fLBIvED(x; Θ)dx

=
{σ (1− θιt) (1− θριt) + θ (1 + ρ− 2θριt)} eσιt

(1− θιt)2 (1− θριt)2 [σ + θ (ρ + 1)]
(16)

3. Discussion on Reliability Properties

Suppose a random variable X is such that it is non-negative, X ∼ LBIvED( σ, θ, ρ), the p.d. f of
X is fLBIvED(x; Θ), and its c.d. f FLBIvED(x; Θ) which are given in equation (9) and (8) respectively.
Then the reliability function of LBIvED(σ, θ, ρ) is given by

RLBIvED(x; ξ) =


ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ

τ ρ 6= 1
θ2+(x+θ)(x−σ+θ)

θ(σ+2θ)
e−(x−σ)/θ ρ = 1

(17)

the essential failure rate functions of a random variable X ∼ LBIvED(σ, θ, ρ 6= 1) are obtained.
The hazard rate and reverse hazard rate functions are given by

hLBIvED(x; ξ) =


xe−(x−σ)/ρθ−xe−(x−σ)/θ

θ{ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ} ρ 6= 1
x(x−σ)

θ{θ2+(x+θ)(x−σ+θ)} ρ = 1
(18)

in Figure 3 and Figure 4, the hazard rate function of LBIvED(σ, θ, ρ 6= 1) is plotted graphically. It
is shown in the graphical representation the distribution is having increasing multiple hazard
rate function curves that are displayed for various chosen sets of parameter values.
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Figure 4: Hazard Rate Function Subplots

3.1. Mean Residual Life Function

The Mean Residual Life (MRL) function is used to investigate the aging process phenomenon of
systems. To determine the MRL for a random variable X representing the component’s life, is
defined by

mLBIvED(x; Θ) = E [X− x|X > x] =
1

RLBIvED(x; Θ)

∫ ∞

x
RLBIvED(x; Θ)dx. (19)

The function m(x; Θ) is defined over any domain of a random variable, it is of special significance
for a non-negative random variable explaining the lifetime of the system, and at time x for an
operational system, conditional expected residual life is determined by Finkelstein [6]. Further-
more, while the shape of the hazard rate function is essential, the MRL function is considered to
be much more meaningful than the hazard rate function. Since the first describes the full residual
life function, whilst the other simply evaluates the possibility of immediate failure at the time
x. The MRL function of the LBIvED(σ, θ, ρ 6= 1) is determined by using the relation (19) and is
obtained as follows:

mLBIvED(x; Θ) =
1

RLBIvED(x; Θ)

∫ ∞

x

ρ (x + ρθ) e−(x−σ)/ρθ − (x + θ) e−(x−σ)/θ

τ
dx.

On solving the above integral and further simplifications gives the following required MRL
function of the model.

mLBIvED(x; Θ) =
θρ2 (x + 2ρθ) e−(x−σ)/ρθ − θ (x + 2θ) e−(x−σ)/θ

τRLBIvED(x; Θ)
(20)

3.2. Stress-Strength Reliability

It is easily noticed, that a significant amount of research work had already been carried out in the
field of stress-strength modeling on the estimation of reliability R = Pr. (X1 > X2), where the
random variables X1 and X2 represent the strength and stress factors of the system possessing the
same distributions of uni-variate family. For the vast majority of the well-known standard distri-
butions, the algebraic representation for R has been developed. Here, X1 ∼ LBIvED(σ, θ2, ρ1 6= 1)
and X2 ∼ LBIvED(σ, θ2, ρ2 6= 1) are unrelated and have the same distribution, so-called LBIvED,
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we calculate the reliability R. The procedure to measure R by having the c.d. f of X2 and p.d. f of
X1 is described as follows

FLBIvED(x; Θ) = 1− ρ2 (x + ρ2θ2) e−(x−σ)/ρ2θ2 − (x + θ2) e−(x−σ)/θ2

(ρ2 − 1) [σ + θ2 (ρ2 + 1)]
ρ 6= 1 (21)

and,

fLBIvED(x; Θ) =
xe−(x−σ)/ρ1θ1 − xe−(x−σ)/θ1

θ1(ρ1 − 1) [σ + θ1 (ρ1 + 1)]
ρ 6= 1 (22)

then, R is derived by

R =
∫ ∞

σ

{∫ x

σ
fX2(x)dx

}
fX1(x)dx =

∫ ∞

σ
FX2(x) fX1(x)dx (23)

= 1 −
θ1θ2ρ1ρ2

2
B (θ1ρ1 + θ2ρ2)

{
σ (σ + θ2ρ2) +

θ1θ2ρ1ρ2 (2σ + θ2ρ2)

(θ1ρ1 + θ2ρ2)
+

2 (θ1θ2ρ1ρ2)
2

(θ1ρ1 + θ2ρ2)
2

}

+
θ1θ2ρ1

B (θ1ρ1 + θ2)

{
σ (σ + θ2) +

θ1θ2ρ2 (2σ + θ2)

(θ1ρ1 + θ2)
+

2 (θ1θ2ρ2)
2

(θ1ρ1 + θ2)
2

}

+
θ1θ2ρ2

2
B (θ1 + θ2ρ2)

{
σ (σ + θ2ρ2) +

θ1θ2ρ2 (2σ + θ2ρ2)

(θ1 + θ2ρ2)
+

2 (θ1θ2ρ2)
2

(θ1 + θ2ρ2)
2

}

− θ1θ2

B (θ1 + θ2)

{
σ (σ + θ2) +

θ1θ2 (2σ + θ2)

(θ1 + θ2)
+

2 (θ1θ2)
2

(θ1 + θ2)
2

}

where, B = θ1 (ρ1 − 1) (ρ2 − 1) [σ + θ1 (ρ1 + 1)] [σ + θ2 (ρ2 + 1)].

4. Entropy Measures

In science and engineering, entropy measures have already been studied as a practical application
of the system. The two uncertainty measures of variation so-called Rényi entropy by Rényi
[17] and Tsallis entropy by Tsallis [24] are studied in this section, the expressions of both these
measures are given in the following respective subsections:

4.1. Rényi Entropy

The Rényi entropy of order α, for a non-negative r.v X ∼ LBIvED( σ, θ, ρ 6= 1) is derived by

h̄R(α) =
1

1− α
log
[∫ ∞

σ
{ fLBIvED(x; Θ)}α dx

]
; α ≥ 0, α 6= 1

on substituting the p.d. f of LBIvED when ρ 6= 1 and making use of binomial expansion by
treating α as a finite nature number. The simplified equation of Rényi entropy of order α is
derived as given by

h̄R(α) =
1

1− α
log

{
α

∑
r=0

α

∑
k=0

(α
r)(

α
k) (−1)r σk (θρ)α−k+1 Γ (α− k + 1)

{θτ}r [α + r (ρ− 1)]α−k+1

}
(24)

4.2. Tsallis Entropy

The Tsallis entropy also known as q-entropy of order q, for a non-negative r.v X ∼ LBIvED( σ, θ,
ρ 6= 1) is derived by

Tq(x) =
1

1− q

[
1−

∫ ∞

σ
{ fLBIvED(x; Θ)}q dx

]
; q ≥ 0, q 6= 1
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on substituting the p.d. f of LBIvED when ρ 6= 1 and making use of binomial expansion by
treating α as a finite nature number. The simplified equation of Tsallis entropy of order q is
derived as given by

Tq(x) =
1

1− q

[
1−

q

∑
r=0

q

∑
k=0

(q
r)(

q
k) (−1)r σk (θρ)q−k+1 Γ (q− k + 1)

{θτ}r [q + r (ρ− 1)]q−k+1

]
(25)

5. Stochastic Ordering and Order Statistics

In this section, the stochastic ordering of the model and its order statistics are discussed.

5.1. Stochastic Ordering

Over the past several years, the usage of stochastic ordering has drastically increased across
a wide range of statistical fields. These disciplines include reliability theory, queuing theory,
survival analysis, and many more fields refer to Shaked and Shantikumar [20]. Let the r.v′s
X1 and X2, where X1 ∼ LBIvED(σ1, θ1, ρ1 6= 1) and X2 ∼ LBIvED(σ2, θ2, ρ2 6= 1), have p.d. f ′s
denoted by fX1(x), fX2(x) and c.d. f ′s denoted by FX1(x), FX2(x) respectively. According to the
model, it is believed that the random variable X1 is smaller than X2 in the,

(a1) Stochastic order (mathematically X1 ≤st X2), if FX1(x; Θ1) ≥ FX2(x; Θ2)∀x.

(a2) Hazard rate order (mathematically X1 ≤hr X2), if hX1(x; Θ1) ≥ hX2(x; Θ2)∀x.

(a3) Mean residual life order (mathematically X1 ≤MRL X2), if mX1(x; Θ1) ≥ mX2(x; Θ2)∀x.

(a4) Likelihood ratio order (mathematically X1 ≤LR X2), if
fX1 (x;Θ1)

fX2 (x;Θ2)
decreases in x.

Since the following results show that, the four stochastic orders stated above are connected,

X1 ≤MRL X2 ⇐ X1 ≤hr X2 ⇐ X1 ≤LR X2 and X1 ≤st X2 ⇐ X1 ≤hr X2.

When the required conditions are met, the LBIvED(σ, θ, ρ 6= 1) models are arranged w.r.t the
strongest likelihood ratio ordering, stated in the following theorem.

Theorem 1. Suppose X1 ∼ LBIvED(σ1, θ1, ρ1), and X2 ∼ LBIvED(σ2, θ2, ρ2), with the condition,
that if σ1 = σ2 = σ, (ρ1>ρ2) > 1, and (θ1>θ2) then (X1 ≤st X2), (X1 ≤hr X2), (X1 ≤lr X2), and
(X1 ≤MRL X2).

Proof. Proof of the specified ratio is sufficient to demonstrate the outcome.

fX1(x; Θ1)

fX2(x; Θ2)
=

θ2(ρ2 − 1) [σ2 + θ2 (ρ2 + 1)]
θ1(ρ1 − 1) [σ1 + θ1 (ρ1 + 1)]

{
e−(x−σ1)/ρ1θ1 − e−(x−σ1)/θ1

}
{

e−(x−σ2)/ρ2θ2 − e−(x−σ2)/θ2
} .

Now, applying log both sides and differentiate w.r.t x.

d
dx

log
{

fX1(x; Θ1)

fX2(x; Θ2)

}
=

θ1ρ1U (V1 − ρ2V2)− θ2ρ2V (U1 − ρ1U2)

θ1θ2ρ1ρ2UV

where, U =
{

e−(x−σ1)/ρ1θ1 − e−(x−σ1)/θ1
}

, V =
{

e−(x−σ2)/ρ2θ2 − e−(x−σ2)/θ2
}

, U1 = e−(x−σ1)/ρ1θ1 ,

U2 = e−(x−σ1)/θ1 , V1 = e−(x−σ2)/ρ2θ2 , and V2 = e−(x−σ2)/θ2 . Hence, if σ1 = σ2 = σ, (ρ1>ρ2), and

(θ1>θ2) then d
dx log

{
fX1 (x;Θ1)

fX2 (x;Θ2)

}
≤ 0, which implies that (X1 ≤st X2), (X1 ≤hr X2), (X1 ≤lr X2),

and (X1 ≤MRL X2). �
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5.2. Order Statistics

In order to discuss the order statistics of n random observations x = { x1, x2, x3, ..., xn }
drawn from LBIvED(σ, θ, ρ 6= 1). The random sample is arranged in ascending order such as
x1:n ≤ x2:n ≤, ...,≤ xn:n. Then, we denote the p.d. f of random variable which is of ith order by
fi:n(xi, Θ); i = 1, 2, ..., n, and joint p.d. f of (i, j)th order variable pair by fi:j:n(xi, xj); 1 ≤ i ≤ j ≤ n,
whose expressions are given by

fi:n(xi; Θ) = π1[FLBIvED(x(i); Θ)]i−1[1− FLBIvED(x(i); Θ)]n−i fLBIvED(x(i); Θ) (26)

and,

fi:j:n(xi, xj) = π2[FLBIvED(x(i); Θ)]i−1[FLBIvED(x(j); Θ)− FLBIvED(x(i); Θ)]j−i−1

[1− FLBIvED(x(j); Θ)]n−j fLBIvED(x(i); Θ) fLBIvED(x(j); Θ) (27)

where F(.) and f (.) are c.d. f and p.d. f . The constants π1 and π2 are given by

π1 = n!
(i−1)!(n−i)! and π2 = n!

(i−1)!(j−i−1)!(n−j)!

on substituting i = 1 and i = n in equation (26) the p.d. f ′s of 1st and nth order statistics obtained
are given as follows:

f1:n(x(1); Θ) = n
[
1− FLBIvED(x(1); Θ)

]n−1
fLBIvED(x(1); Θ)

=
n
[
ρφ(1)e

−(x(1)−σ)/ρθ − ψ(1)e
−(x(1)−σ)/θ

]n−1 [
x(1)

{
e−(x(1)−σ)/ρθ − e−(x(1)−σ)/θ

}]
θ(ρ− 1)n [σ + θ (ρ + 1)]n

(28)

and,

fn:n(x(n); Θ) = n
[

FLBIvED(x(n); Θ)
]n−1

fLBIvED(x(n); Θ)

=
n
[
τ −

{
ρφ(n)e

−(x(n)−σ)/ρθ − ψ(n)e
−(x(n)−σ)/θ

}]n−1 [
x(n)

{
e−(x(n)−σ)/ρθ − e−(x(n)−σ)/θ

}]
θ(ρ− 1)n [σ + θ (ρ + 1)]n

. (29)

Similarly, the joint order statistic density function of LBIvED(σ, θ, ρ 6= 1) is given as

fi:j:n(x(i), x(j)) =
π2

θ2(ρ− 1)n [σ + θ (ρ + 1)]n

.
[
(ρ− 1) [σ + θ (ρ + 1)]−

{
ρφ(i)e

−(x(i)−σ)/ρθ − ψ(i)e
−(x(i)−σ)/θ

}]i−1

.
[{

ρφ(i)e
−(x(i)−σ)/ρθ − ψ(i)e

−(x(i)−σ)/θ
}
−
{

ρφ(j)e
−(x(j)−σ)/ρθ − ψ(j)e

−(x(j)−σ)/θ
}]j−i−1

.
[
ρφ(j)e

−(x(j)−σ)/ρθ − ψ(j)e
−(x(j)−σ)/θ

]n−j [
x(i)

{
e−(x(i)−σ)/ρθ − e−(x(i)−σ)/θ

}]
.
[

x(j)

{
e−(x(j)−σ)/ρθ − e−(x(j)−σ)/θ

}]
where, φ(r) =

(
x(r) + ρθ

)
and ψ(r) =

(
x(r) + θ

)
; r = 1, n, i, j

6. Parameter Estimation and Simulation

6.1. Estimation Procedure of Model Parameters

Let a random sample x1, x2, ..., xn, consisting of n observations is drawn from LBIvED( σ, θ,
ρ 6= 1). The most frequently used technique called the method of maximum likelihood estimation
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approach is chosen for the estimation of the parameters. So, we write the log-likelihood function
of the complete data for LBIvED(σ, θ, ρ 6= 1) as

log L =
n

∑
i=1

log
{

xie−(xi−σ)/ρθ − xie−(xi−σ)/θ
}
− n log {θ(ρ− 1) [σ + θ (ρ + 1)]} . (30)

Setting φ = e−(xi−σ)/ρθ and ψ = e−(xi−σ)/θ , then (30) becomes

log L =
n

∑
i=1

log {φ− ψ}+
n

∑
i=1

log xi − n log θ − n log(ρ− 1)− n log [σ + θ (ρ + 1)] . (31)

On differentiating equation (31) with respect to (w.r.t) σ, θ, and ρ, the normal equations obtained
are

∂ log L
∂σ

=
n

∑
i=1

φ− ρψ

ρθ (φ− ψ)
− n

[σ + θ (ρ + 1)]
(32)

∂ log L
∂θ

=
n

∑
i=1

(xi − σ) (φ− ρψ)

ρθ2 (φ− ψ)
− n (ρ + 1)

[σ + θ (ρ + 1)]
− n

θ
(33)

∂ log L
∂ρ

=
n

∑
i=1

φ (xi − σ)

ρθ2 (φ− ψ)
− nθ

[σ + θ (ρ + 1)]
− n

ρ− 1
. (34)

To get the maximum likelihood estimates (MLEs), we equate equations (32), (33), and (34) to zero.
But the equations obtained are not in closed form. So, the recommended functions such as nlm or
optim are used to maximize the log-likelihood function in the R programming language. Also, the
alternative iterative technique known as the Newton-Raphson method could be employed to yield
the solution for the parameters. Further to construct the Fisher information matrix there must
exist the second-order partial differentials which do exists as can be proved by the continuity of
first-order differentials. Also, let us suppose that the MLEs of Θ are given by Θ̂ = { ( σ, θ, ρ ) :
σ > 0, θ > 0, ρ > 0 } then Fisher information matrix is defined as

I (Θ) = −E


∂2 log L

∂σ2
∂2 log L

∂σ∂θ
∂2 log L

∂σ∂ρ
∂2 log L

∂θ∂σ
∂2 log L

∂θ2
∂2 log L

∂θ∂ρ
∂2 log L

∂ρ∂σ
∂2 log L

∂ρ∂θ
∂2 log L

∂ρ2

 (35)

the partial derivatives of Fisher information matrix I (Θ) are given by

∂2 log L
∂σ2 =

n

∑
i=1

(φ− ρψ)2 − (φ− ψ) (φ− ρψ)

ρ2θ2 (φ− ψ)2 +
n

[σ + θ (ρ + 1)]2
(36)

∂2 log L
∂θ2 =

n

∑
i=1

(xi − σ) (φ− ρψ) {(1 + 3ρ)ψ− 2 (1 + ρ) φ}
ρ2θ3 (φ− ψ)2 +

n (ρ + 1)2

[σ + θ (ρ + 1)]2
+

n
θ2 (37)

∂2 log L
∂ρ2 =

n

∑
i=1

φ (xi − σ) {(σ + 2ρθ) φ− 2ρθψ}
ρ4θ2 (φ− ψ)2 +

nθ2

[σ + θ (ρ + 1)]2
+

n

(ρ− 1)2 (38)

∂2 log L
∂θ∂σ

=
n

∑
i=1

ρθ
(
φ2 + ρψ2)− (σ + ρθ − 2σρ + σρ2 + ρ2θ

)
φψ

ρ2θ3 (φ− ψ)2 +
n (ρ + 1)

[σ + θ (ρ + 1)]2
(39)

∂2 log L
∂ρ∂σ

=
n

∑
i=1

ρθ
(
φ2 + ρψ2)− (σ− σρ + ρθ + ρ2θ

)
φψ

ρ3θ (φ− ψ)2 +
nθ

[σ + θ (ρ + 1)]2
(40)

∂2 log L
∂ρ∂θ

=
n

∑
i=1

(xi − σ)
{(

σ− σρ + ρ2θ
)

φψ− ρθ (ρ + 1)ψ2 − ρθφ2}
ρ3θ3 (φ− ψ)2 − σ

[σ + θ (ρ + 1)]2
. (41)
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We drop the expectation term as it is difficult to compute for the second-order partial differential
elements of the Fisher information matrix see Cohen [4]. Therefore we write I (Θ) as

I
(
Θ̂
)
= −


∂2 log L

∂σ2
∂2 log L

∂σ∂θ
∂2 log L

∂σ∂ρ
∂2 log L

∂θ∂σ
∂2 log L

∂θ2
∂2 log L

∂θ∂ρ
∂2 log L

∂ρ∂σ
∂2 log L

∂ρ∂θ
∂2 log L

∂ρ2


(σ,θ,ρ)=(σ̂,θ̂,ρ̂)

(42)

now to construct the confidence intervals (C.I′s) for parameters of LBIvED( σ, θ, ρ 6= 1 ), we
first find inversion matrix I(Θ)−1 consisting of the diagonal elements as variances whereas
the off-diagonal elements represent the co-variances. The 100(1− ζ)% C.I′s for σ, θ, and ρ are

σ̂± χζ/2
√

V(σ̂), θ̂± χζ/2

√
V(θ̂), and ρ̂± χζ/2

√
V(ρ̂) respectively, where the term χζ/2 is (ζ/2)th

upper percentile of a normal variate.

6.2. Simulation Study

It is necessary for a statistical distribution, to explore the behavior of estimated parameters by
performing a Monte-Carlo simulation study at various randomly selected sample sizes, as n = {
30, 90, 150, 210, 350, 500 }. Since the quantile function of LBIvED does not exist in closed form.
So, to simulate the data, an alternative technique is utilized known as the acceptance-rejection
algorithm. In Table 1, the average bias (Bias = 1

n ∑n
i=1(Θ̂−Θ)) and average mean square error

(MSE = 1
n ∑n

i=1(Θ̂−Θ)2) of the estimated parameters are calculated. The simultaneous decrease
of Bias and MSE of parameters σ, θ, and ρ are reported as the sample size increases. It is clear,
that the consistency property of estimated parameters holds for LBIvED.

Table 1: Parameter Bias and MSE of LBIvED(σ, θ, ρ 6= 1)

(σ, θ, ρ) n
Bias MSE

σ̂ θ̂ ρ̂ σ̂ θ̂ ρ̂

(0.91, 0.82, 0.78)

30 0.16580 0.37902 1.7e+01 0.027489 0.14366 3.0e+02
90 0.06044 0.27480 2.65334 0.003654 0.07551 7.04022

150 0.04272 0.25322 1.11791 0.001825 0.06412 1.24971
210 0.03215 0.23397 0.97621 0.001034 0.05474 0.95299
350 0.01838 0.20611 0.67691 0.000338 0.04248 0.45821
500 0.01439 0.20147 0.63070 0.000207 0.04059 0.39778

(1.01, 1.87, 0.83)

30 0.39676 0.73710 1.2e+01 0.157419 0.54332 1.4e+02
90 0.16685 0.58280 2.36629 0.027840 0.33966 5.59931

150 0.11098 0.48364 1.03614 0.012317 0.23391 1.07359
210 0.08229 0.43797 0.69849 0.006772 0.19182 0.48789
350 0.05865 0.39767 0.55490 0.003440 0.15814 0.30791
500 0.04099 0.36097 0.46926 0.001681 0.13030 0.22020

(1.02, 1.59, 1.05)

30 0.37336 0.53592 1.2e+01 0.139400 0.28721 1.6e+02
90 0.15147 0.32432 1.97947 0.022842 0.10519 3.91829

150 0.09869 0.25286 0.69786 0.009740 0.06394 0.48701
210 0.07163 0.22203 0.45958 0.005131 0.04930 0.21121
350 0.03737 0.15245 0.27079 0.001397 0.02324 0.07333
500 0.03229 0.11726 0.19951 0.001042 0.01375 0.03980
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7. Model Applicability

7.1. Real-Life Data Based Applications

In this section, an illustration of the proposed methodology is given. Real-life examples are
presented to demonstrate the superior performance of the proposed LBIvED model. The real-life
data sets that are analyzed in this study are given below:

The first data set of T8 fluorescent lamps analyzed by Ahmed [1] represents the lifetime
(Hours) for 50 devices given by: 0.445, 0.493, 0.285, 0.564, 0.760, 0.381, 0.690, 0.579, 0.636, 0.238,
0.149, 0.244, 0.126, 0.796, 0.405, 0.553, 0.780, 0.431, 0.184, 0.375, 0.198, 0.890, 0.192, 0.463, 0.486,
0.521, 0.366, 0.486, 0.116, 0.511, 0.612, 0.117, 0.384, 0.326, 0.057, 0.412, 0.586, 0.517, 0.570, 0.588,
0.497, 0.246, 0.234, 0.228, 0.552, 0.893, 0.403, 0.458, 0.134, 0.338.

The second data set by Bader and Priest [3] consists of 63 samples representing the strength
measured in GPA for single carbon fibers with gauge lengths of 10mm given by: 1.901, 2.132,
2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575,
2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996,
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408,
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395,
5.020.

The output results of the analyzed data sets include the estimated parameters, the information
measures such as Akaike information criteria { AIC = −2 log L(x; Θ) }, Bayesian information
criteria { BIC = −2 log L(x; Θ) + k log L(x; Θ) }, Hannan Quen information criteria { HQIC =
−2 log L(x; Θ) + 2k log [log(n)] }, where constants n and k represent the sample size and the
number of parameters respectively. The goodness-of-fit statistics tests are the Anderson Darling
test, Cramer Von Mises test, and the Kolmogorov Smirnov test statistic with a p-value. The
existing distributions that are compared with LBIvED are IvED, exponential distribution (ED),
weighted exponential distribution (WED), and length-biased exponential distribution (LBED).
The p.d. f ′s are given as,

ED = f (x; Θ) =
1
σ

e−x/σ (43)

WED = f (x; Θ) =
(σ + 1)

σ
θe−θx

(
1− e−σθx

)
(44)

LBED = f (x; Θ) =
[θ(σ + 1)]2

σ (σ + 2)
xe−θx

(
1− e−σθx

)
(45)

Table 2: Various measures from the first data set

Models
In f ormation Measures

σ̂ θ̂ ρ̂ log L AIC BIC HQIC
LBIvED 0.01975 0.13979 1.00007 7.60999 -9.21998 -3.48391 -7.03565

IvED 0.04305 0.19339 1.00033 6.10016 -6.20032 -0.46426 -4.01600
LBED 1.749e+4 4.65200 - 4.11157 -3.96781 -0.39908 -2.76691
WED 1.278e-04 4.65203 - 4.11157 -4.22313 -0.39908 -2.76691

ED 0.42990 - - -7.78987 17.5797 19.4918 18.3078

Models
Goodness-o f - f it Tests

σ̂ θ̂ ρ̂ CVM AD KS p-value

LBIvED 0.01975 0.13979 1.00007 0.14036 0.75075 0.12723 0.3932
IvED 0.04305 0.19339 1.00033 0.17074 0.91949 0.15728 0.1685
LBED 1.749e+4 4.65200 - 0.13315 0.71331 0.16757 0.1206
WED 1.278e-04 4.65203 - 0.13315 0.71330 0.16761 0.1205

ED 0.42990 - - 0.13395 0.71750 0.23317 0.0087
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Table 3: Various measures from the second data set

Models
In f ormation Measures

σ̂ θ̂ ρ̂ -log L AIC BIC HQIC
LBIvED 1.87153 0.50522 1.00011 59.884 125.768 132.197 128.297

IvED 1.87408 0.59253 1.00026 60.663 127.326 133.756 129.855
LBED 1.58e-05 0.9806086 - 97.954 199.908 204.194 201.594
WED 1.717e-5 6.537e-01 - 110.35 224.696 228.983 226.382

ED 3.05930 - - 133.45 268.892 271.035 269.734

Models
Goodness-o f - f it Tests

σ̂ θ̂ ρ̂ CVM AD KS p-value

LBIvED 1.87153 0.50522 1.00011 0.06424 0.42637 0.10492 0.4919
IvED 1.87408 0.59253 1.00026 0.06944 0.46604 0.11296 0.3975
LBED 1.58e-05 0.9806086 - 0.05891 0.36294 0.33488 1.4e-06
WED 1.717e-5 6.537e-01 - 0.05890 0.36281 0.39019 9.3e-09

ED 3.05930 - - 0.05885 0.36229 0.48600 2.3e-13

From Table 2 and Table 3, it is visible that all the existing distributions lack superiority against
the new LBIvED, the information measures and the goodness-of-fit test results displayed are
relatively lower for LBIvED with a higher significant p-value. Hence, the LBIvED is treated as
the best-fitted model.

Conclusion

In this article, the WIvED, a generalization of the IvED that may be used to describe time-to-event
data sets as a lifetime distribution is presented and examined. The length biased variant of
the IvED is derived as a special instance of the WIvED and its model applicability features are
thoroughly examined. We find that the LBIvED may be used as a flexible model in place of
the traditional lifetime models taken in comparison that are commonly used in the literature
to describe real-life time-to-event data. As evidenced by its excellent distributional, reliability,
and survival qualities, we anticipate that the proposed WIvED and the length-biased variant of
IvED will function as a competitive model for representing data from reliability analysis, survival
analysis, and other domains of the statistics.
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