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Abstract 

In this research paper, two sided Bayesian interval is proposed for Poisson type length biased 

exponential class software reliability growth model. The failure intensity function, mean time to failure 

function and likelihood function are derived. Bayesian interval estimation has been done for the 

parameters using non informative priors. The performance of proposed Bayesian interval is obtained by 

using Monte Carlo simulation technique. Average length and coverage probability of Bayesian interval 

for the parameters are calculated. From the obtained intervals it is concluded that Bayesian interval of 

parameters perform better for appropriate choice of execution time and certain values of parameters.  

Keywords: Length biased exponential distribution, Non informative priors, 

Software reliability growth model (SRGM), Bayesian interval, average length, 

coverage probability.  

 

1. Introduction 

This paper considers Poisson type length biased exponential class model according to classification 

scheme of Musa and Okumoto [9]. Poisson execution time models are based on the premise that 

execution time is the best time domain for expressing reliability. Execution is the most practical 

measure of the failure inducing stress being placed on a program. Musa et al [8] have suggested that 

it is convenient to divide the program into number of runs. The run depends on the function executed 

by program. The time required for run is depends upon size of run. As the size of run varies the 

number of failure observed in single run may vary. Fisher [2] defined length biased and further 

formulated by Rao [12] Gupta and Keating [6]developed relationship between survival function, the 

failure rate and mean residual life function using length biased distribution. Patil and Rao [10] have 

given a table for some distribution and their size biased forms. Rao and Cunha [13] estimated credible 

interval and confidence interval through MLE for lognormal distribution and also compared average 

length and coverage probability of the calculated interval. Tamak [16] estimated reliability of web 

application using Goel-Okumoto Software Reliability Growth models (SRGM). Shreshtha and Kumar 

[14] computed MLE and Bayesian estimate for Rayleigh distribution using gamma prior. Singh et al 

[15] introduced length biased distribution as Software Reliability Growth models (SRGM). Fitrilia et 

al [3] estimate the failure rate by E-Bayesian estimation method. E-Bayesian estimation is an 
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expectation of Bayes estimation, in order to obtain Bayes estimation expectations is by calculating the 

mean of Bayes estimator. Rabie and Li [11] studied the Bayesian and E-Bayesian approaches under 

squared error and LINEX loss functions. Also construct Confidence intervals for maximum likelihood 

estimates, as well as credible intervals for the E-Bayesian and Bayesian estimates. Andure and Ade [1] 

proposed length biased quasi lindley distribution and discussed different properties of proposed 

distribution. Gupta et al [5] obtained Bayesian and non-Bayesian estimators under symmetric 

(squared error) and asymmetric (linex and precautionary) loss functions using a non-informative 

prior. And compared risk efficiencies of Bayes estimators with maximum likelihood estimators. 

In this paper, it is considered that the time to failure of an individual fault following length biased 

exponential distribution and the failure experienced by time t is distributed as Poisson type. In this 

model it is assumed that the software failures are independent of each other but depend on length of 

the time interval which contains the software failures. 

The structure of the paper is such that section 2 presents derivation of failure intensity and expected 

number of failures using length biased exponential distribution, derivation of likelihood function, 

selection of priors, and derives joint and marginal posterior distribution of model. Section 3 presents 

derivation of two sided Bayesian interval for the parameters θ0 and θ1. Results and discussion is given 

in the section 4 while concluding remarks are provided in section 5.  

      

2. Model Formulation 

Consider that software is tested for its performance and observed the time of failure occurs during 

software system performance. Let the number of failures present in software be 𝜃0,and  te be the 

execution time i.e. time during which CPU is busy and me be the number of failures observed up to 

execution time te. Consider time between the failures ti (i=1,2,………me ) follows the exponential 

distribution with parameter θ1. The length biased exponential distribution is given as 

𝑓∗(𝑡) =  {𝑡𝜃1
2𝑒−𝜃1𝑡           , 𝑡 > 0, 𝜃1 > 0, 𝐸[𝑡]  ≠ 0

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
                                                                  (1) 

Where 𝑓∗(𝑡) denotes the length biased exponential distribution. 

The failure intensity function is obtained by using equation (1)  

𝜆(𝑡) = 𝜃0𝑡𝜃1
2𝑒−𝜃1𝑡  , 𝑡 > 0, 𝜃0 > 0                                                   (2)  

Where θ0 express the number of failures and θ1 express the for failure rate. 

The mean failure function i.e. expected number of failures at time te can be obtained by using 

equations (2)  

𝜇(𝑡𝑒) = 𝜃0𝜃1
2𝐼1                                                         (3) 

Where, 𝐼1 =  ∫ 𝑡𝑖𝑒
−𝜃1𝑡𝑖

𝑡𝑒

0
 𝑑𝑡  and by solving (see Gradshteyn and Ryzhik [4] p. 357) we get, 

𝜇(𝑡𝑒) = 𝜃0 [1 − (1 + 𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]  , 𝑡 > 0, 𝜃0 > 0, 𝜃1 > 0                                                                             (4) 

Behavior of failure intensity and expected number of failure of length biased exponential class model 

has been studied by Singh et al [15]. They have compared the maximum likelihood estimates i.e. 

MLE's and Bayesian estimators on the basis of risk efficiencies. 

Now for a system, considering that me software failures are observed at times ti , i = 1,2,……,me  up to 

execution time is te (≥ tme) and the likelihood function of  parameters θ0 and θ1 with the help of failure 

intensity and mean failure function can be  obtained as (cf. Singh et al [15]) 
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𝐿(𝜃0, 𝜃1) = 𝜃0
𝑚𝑒𝜃1

2𝑚𝑒[∏ 𝑡𝑖
𝑚𝑒
𝑖=1 ] 𝑒−𝑇𝜃1𝑒−𝜃0 [1−(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]                                                              (5) 

 

3. Bayesian interval Estimation of parameters θ0 and θ1 

Bayesian estimation is done by combining prior information with information obtained from sample 

data. While testing the software, the experimenter have very little knowledge relative to the total 

number of failures present in the software.. Here insufficient prior information is not available about 

parameters θ0 and θ1, hence non- informative priors are considered. The following non informative 

prior distributions g (θ0) and g (θ1) are considered for parameters θ0 and θ1 as follows: 

𝑔(𝜃0)  ∝  {
𝜃0

−1        , 𝜃0𝜖 [0, ∞)

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                            (6) 

and 

𝑔(𝜃1)  ∝  {
𝜃1

−1        , 𝜃1𝜖 [0, ∞)

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (7) 

The joint posterior of θ0 and θ1 given t (=ti, i = 1, 2,………, me ) is obtained by using equations (5),(6) 

and (7) is as follows:   

𝜋(𝜃0, 𝜃1|𝑡) = 𝐷−1𝜃0
𝑚𝑒−1

𝜃1
2𝑚𝑒−1

𝑒−𝑇𝜃1𝑒−𝜃0 𝑒[𝜃0(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]   𝑚𝑒 < 𝜃0 < ∞ ,0 < 𝜃1 < ∞                (8

       

Where, D is normalizing constant. 

𝐷 =  ∑ ∑ (
𝑘

𝑟
)

𝑘

𝑟=0

∞

𝑘=0

[
𝛤(2𝑚𝑒 + 𝑟)𝛤(𝑚𝑒 + 𝑘, 𝑚𝑒)  𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
] 

Where,  𝑇∗ = 𝑇 + 𝑘𝑡𝑒,  𝑇 = ∑ 𝑡𝑖
𝑚𝑒
𝑖=1  

The marginal posterior distribution of  𝜃0 given 𝑡 is, 

𝜋(𝜃0|𝑡) = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 [𝜃0
𝑚𝑒+𝑘−1

𝑒−𝜃0 ], 𝜃0 > 𝑚𝑒                                               (9) 

The marginal posterior of 𝜃1, say 𝜋(𝜃1|𝑡) can be obtained as  

𝜋(𝜃1|𝑡) = 𝐷−1 ∑ [
𝛤(𝑚𝑒+𝑘,𝑚𝑒)

𝑘!
]∞

𝑘=0 [𝜃1
2𝑚𝑒−1

(1 + 𝜃1𝑡𝑒)𝑘𝑒−𝜃1𝑇∗
],𝜃1 > 0                                              (10) 

 A symmetric 100(1- α) % two sided Bayes probability interval (θL, θU) is given as   

∫ 𝜋(𝜃|𝑡)
𝜃𝐿

−∞

𝑑𝑡 = 𝛼/2 

∫ 𝜋(𝜃|𝑡)
∞

𝜃𝑈

𝑑𝑡 = 𝛼/2 

Where 𝜋 (𝜃|𝑡)   is the marginal posterior distribution of θ for details see Martz and Waller [7] 

Now, to obtain two sided Bayes interval for the parameter θ0 and θ1 by integrating equation (9) and 

(10) w.r.t. θ0 and θ1 respectively can be given as: 

�̃�0𝐿  =  𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 𝛤(𝑚𝑒 + 𝑘, 𝜃0∗)  

�̃�0𝑈 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 𝛤(𝑚𝑒 + 𝑘, 𝜃0
∗)  

�̃�1𝐿 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0
∞
𝑘=0 [

𝛤(𝑚𝑒+𝑘,𝑚𝑒) 

𝑘!
] 𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟 𝛾(2𝑚𝑒 + 𝑟, 𝑇∗𝜃1∗)  

�̃�1𝑈 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0
∞
𝑘=0 [

𝛤(𝑚𝑒+𝑘,𝑚𝑒) 

𝑘!
] 𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟𝛤 (2𝑚𝑒 + 𝑟, 𝑇∗𝜃1
∗)   

Where, 𝛤(𝑚𝑒 + 𝑘, 𝜃0
∗), 𝛤 (2𝑚𝑒 + 𝑟, 𝑇∗𝜃1

∗)  are  incomplete gamma functions. 
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∫ 𝑥𝑣−1∞

𝑢
𝑒−𝜇𝑥𝑑𝑥 =  𝜇−𝑣𝛤(𝑣, 𝜇𝑢)                                                           [𝑅𝑒 𝑢 > 0, 𝑅𝑒 𝜇 > 0, 𝑛 > 0]   

is known as incomplete gamma function. The details about the incomplete gamma function can be 

seen from Gradshteyn and Ryzhik [7]. Therefore, (�̃�0𝐿 , �̃�0𝑈) and (�̃�1𝐿 , �̃�1𝑈) are the Bayesian interval 

estimates for parameter θ0 and θ1 respectively. 

4. Results and Discussion 

 Here, two sided Bayesian interval are obtained for the parameter total number of failures i.e. θ0 and 

the parameter θ1. The interval estimate is the posterior probability distribution about the parameter. 

To study the performance of two sided Bayesian interval, sample of different sizes (say me) was 

generated from the length biased exponential distribution and it is repeated 1000 times. Monte Carlo 

simulation technique is used for simulation and the result is presented in the tables given below. The 

credible interval depends upon the values of execution time i.e. te and number of failures experienced 

at times ti, i = 1, 2…, me. Average length and coverage probability of the proposed Bayesian interval 

have been calculated for different values of parameters θ0 and θ1 and for certain execution time. Here, 

it is assumes that  two sided Bayesian interval maintains the credible level if the estimated coverage 

probability is  found in between the range of 0.940 to 0.960 i.e. (1-α)±0.01 where, α = 0.05. 

Here tables (1) to (4) give average length and coverage probability for Bayesian interval for parameter 

θ0 i.e. total number of failures. Average length have been obtained by assuming parameter θ0 (=1(1)5), 

 𝜃1(= 0.6(0.1)1). From tables, we can see that Average length is computed for Bayesian interval for 

parameter θ0 is shorter. Average length increases as the values of θ0 increases for fixed execution time 

i.e. te. It is also observes that as the values of θ1 increases average length decreases. From table, we can 

see that coverage probability increases as the θ0 increases and coverage probability decreases as the θ1 

increases. From the table it also observes that as execution time increases average length decreases. 

Table (5) to (8) gives average length and coverage probability for Bayesian interval for parameter the 

θ1.  The Average length have been calculated by assuming values θ0 (=1(1)5) and  𝜃1(= 0.6(0.1)1). 

Average length increases as the values of θ0 increases for fixed execution time i.e. te and it is decreases 

as θ1 increases. From table, it can be seen that coverage probability increases as the θ0 increases and 

coverage probability decreases as parameter θ1 increases. From the table it also observes that average 

length decreases as execution time increases. 

Table 1:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 5 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
2.12412 

(0.994) 

2.95254  

(0.994) 

5.07429  

(0.994) 

5.39784 

(0.995) 

6.45182  

(0.995) 

0.7 
2.06795  

(0.993) 

2.18189  

(0.994) 

4.17136 

 (0.994) 

5.07228  

(0.995) 

6.69461  

(0.995) 

0.8 
1.90843 

 (0.993) 

2.98570  

(0.993) 

3.93268  

(0.994) 

4.72848 

(0.994) 

6.42171  

(0.995) 

0.9 
1.42513  

(0.993) 

2.26186  

(0.993) 

3.56985  

(0.994) 

4.40744 

 (0.994) 

5.06234  

(0.995) 

1 
1.40031 

(0.993) 

2.04029 

(0.993) 

2.28113  

(0.993) 

3.85033 

(0.994) 

4.29281  

(0.994) 

*The values in the parenthesis are coverage probability of true value of parameter. 

 

310



Rajesh Singh,  Pritee Singh, Preeti Badge 

BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS OF 

POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL  

RT&A, No 2 (73) 

Volume 18, June 2023   

 
Table 2:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 7  

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.723187  

(0.994) 

1.544598   

(0.994) 

1.58816 

(0.994) 

3.681955  

(0.995) 

4.526929  

(0.995) 

0.7 
0.476033   

(0.993) 

1.222565   

(0.994) 

1.236041   

(0.994) 

2.442999  

(0.994) 

3.921342  

(0.995) 

0.8 
0.470561   

(0.993) 

0.847506  

(0.993) 

1.191867 

(0.994) 

1.889722  

(0.994) 

2.520656   

(0.995) 

0.9 
0.463198  

(0.993) 

0.71856 

(0.993) 

1.092366  

(0.994) 

1.828802   

(0.994) 

2.504829   

(0.994) 

1 
0.375691  

(0.993) 

0.570903  

(0.993) 

0.795695   

(0.993) 

1.412542   

(0.994) 

2.446384   

(0.994) 

*The values in the parenthesis are coverage probability of true value of parameter. 

Table 3:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿, �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 10  

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.267986  

(0.993) 

0.324152   

(0.993) 

0.465934  

(0.993) 

0.57678 

(0.994) 

1.019986   

(0.994) 

0.7 
0.260624   

(0.993) 

0.322248  

(0.993) 

0.353603  

(0.993) 

0.431857   

(0.993) 

0.906414 

(0.994) 

0.8 
0.260624  

(0.993) 

0.282712  

(0.993) 

0.34624 

(0.993) 

0.421758   

(0.993) 

0.868347  

(0.994) 

0.9 
0.260624  

(0.993) 

0.275349  

(0.993) 

0.338877 

(0.993) 

0.412504  

(0.993) 

0.801439  

(0.994) 

1 
0.257986  

(0.993) 

0.267986  

(0.993) 

0.316789   

(0.993) 

0.402406    

(0.993) 

0.718558   

(0.993) 

 *The values in the parenthesis are coverage probability of true value of parameter. 

Table 4:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 12 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.260624  

(0.993) 

0.260624  

(0.993) 

0.309427  

(0.993) 

0.368328   

(0.993) 

0.667052 

(0.993) 

0.7 
0.258620  

(0.993) 

0.275349  

(0.993) 

0.280105  

(0.993) 

0.34624 

(0.993) 

0.591506   

(0.993) 

0.8 
0.256715  

(0.993) 

0.267986  

(0.993) 

0.275349  

(0.993) 

0.331515   

(0.993) 

0.402406   

(0.993) 

0.9 
0.253609  

(0.993) 

0.264624  

(0.993) 

0.267986   

(0.993) 

0.319525   

(0.993) 

0.380318  

(0.993) 

1 
0.252286  

(0.993) 

0.260624   

(0.993) 

0.260624  

(0.993) 

0.309427   

(0.993) 

0.365592  

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter. 

311



Rajesh Singh,  Pritee Singh, Preeti Badge 

BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS OF 

POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL  

RT&A, No 2 (73) 

Volume 18, June 2023   

 
Table 5:  Average length and coverage probability of Bayesian interval (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for different 

values of parameters 𝜃0 and   𝜃1  when execution time te = 5 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.00605 

(0.994) 

0.01269 

(0.994) 

0.02099 

(0.994) 

0.02412 

(0.995) 

0.02947 

(0.995) 

0.7 
0.00543 

(0.993) 

0.01146 

(0.994) 

0.01713 

(0.994) 

0.02134 

(0.994) 

0.02700 

(0.995) 

0.8 
0.00474 

(0.993) 

0.00859 

(0.993) 

0.01511 

(0.994) 

0.02037 

(0.994) 

0.02694 

(0.995) 

0.9 
0.00387 

(0.993) 

0.00710 

(0.993) 

0.01386 

(0.994) 

0.01912 

(0.994) 

0.02613 

(0.994) 

1 
0.00348 

(0.993) 

0.00616 

(0.993) 

0.01001 

(0.993) 

0.01895 

(0.993) 

0.02599 

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter 

.Table 6:  Average length and coverage probability of Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 7 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.00049 

(0.994) 

0.00158 

(0.994) 

0.00252 

(0.994) 

0.00572 

(0.994) 

0.00908 

(0.994) 

0.7 
0.00046 

(0.993) 

0.00106 

(0.994) 

0.00229 

(0.994) 

0.00498 

(0.994) 

0.00890 

(0.994) 

0.8 
0.00041 

(0.993) 

0.00093 

(0.993) 

0.00149 

(0.993) 

0.00401 

(0.994) 

0.00771 

(0.994) 

0.9 
0.0007 

(0.993) 

0.00082 

(0.993) 

0.00139 

(0.993) 

0.00248 

(0.994) 

0.00358 

(0.994) 

1 
0.0002 

(0.992) 

0.00067 

(0.993) 

0.00109 

(0.993) 

0.00143 

(0.993) 

0.00245 

(0.994) 

 *The values in the parenthesis are coverage probability of true value of parameter. 

Table 7:  Average length and coverage probability of Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 10 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.000066 

(0.992) 

0.000102  

(0.992) 

0.001163 

(0.993) 

0.00227 

(0.992) 

0.00265 

(0.993) 

0.7 
0.000066  

(0.992) 

0.000071   

(0.992) 

0.00025 

(0.992) 

0.000219  

(0.992) 

0.00184 

(0.993) 

0.8 
0.000065  

(0.992) 

0.000067  

(0.992) 

0.00022 

(0.992) 

0.000207  

(0.992) 

0.00159 

(0.993) 

0.9 
0.000063 

(0.992) 

0.000060  

(0.992) 

0.00021 

(0.992) 

0.000130 

(0.992) 

0.000249  

(0.993) 

1 
0.000062 

(0.992) 

0.000052  

(0.992) 

0.000041  

(0.992) 

0.000062 

(0.992) 

0.000109 

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter. 
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Table 8:  Average length and coverage probability of   Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 12 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.000063  

(0.992) 

0.000594   

(0.992) 

0.000603  

(0.992) 

0.00064 

(0.992) 

0.00151 

(0.993) 

0.7 
0.0000532   

(0.992) 

0.0000599   

(0.992) 

0.0000608  

(0.992) 

0.000541 

(0.992) 

0.000179  

(0.992) 

0.8 
0.0000330   

(0.992) 

0.0000466    

(0.992) 

0.0000607     

(0.992) 

0.000116 

(0.992) 

0.000462 

(0.992) 

0.9 
0.0000204    

(0.992) 

0.0000229    

(0.992) 

0.0000385   

(0.992) 

0.0000602  

(0.992) 

0.000220 

(0.992) 

1 
0.0000128  

(0.991) 

0.0000193   

(0.992) 

0.0000359  

(0.992) 

0.0000596  

(0.992) 

0.000124 

(0.992) 

*The values in the parenthesis are coverage probability of true value of parameter. 

 

5. Conclusion 
         

In this paper, two-sided Bayesian interval has been obtained for length biased exponential class 

model with parameters i.e. total number of failures θ0 and scale parameter θ1. Bayesian interval is 

obtained and studied on the basis of average length and coverage probability.  It is found that 

Bayesian interval has shorter average length and high coverage probability. As execution time 

increases average length decreases and coverage probability increases. From results it is concluded 

that the proposed Bayesian interval preferred for parameter total number of failures i.e. θ0 and θ1. 

 

References: 

[1] Andure, N.W. and Ade R.B. (2021). The new Length biased quasi Lindley distribution and its 

applications, Reliability theory and Applications, 16:331-345.  

[2] Fisher, R. A. (1934).The effects of methods of ascertainment upon the estimation of 

frequencies, Ann. Eugenics, 6:13-25 

[3] Fitrilia A., Fithriani I. and Nurrohmah1 S. (2018).Parameter estimation for the Lomax 

distribution using the E Bayesian method, Journal of Physics. 

[4] Gradshteyn, I. S and Ryzhik, I. M., Table of Integrals, Series, and Products, Alan Jeffrey 

(editor) 5th Ed., Academic Press, New York, (1994). 

[5] Gupta, I. and Gupta, R. (2018). Bayesian and Non Bayesian Method of Estimation of Scale 

Parameter of Gamma Distribution under Symmetric and Asymmetric Loss Functions, World Scientific 

News, 101:172-191. 

[6] Gupta, R. C. and Keating, J. P. (1986). Relations for reliability measures under length biased 

sampling; Scandinavian Journal of Statistics, 13: 49-56. 

      [7] Martz, H.F and Waller, R.A. Bayesian Reliability Analysis, New York Wiley (1982). 

      [8] Musa, J. D. Iannino, A. and Okumoto K., Software Reliability: Measurement, Prediction, 

Application, New York, McGraw-Hill (1987). 

[9] Musa, J.D. and Okumoto, K. (1984).A logarithmic Poisson execution time model for software 

reliability measurement, Proc. 7th International Conference on Software Engineering, Orlando, Florida, 230–

238. 

[10] Patil, G.P. and Rao, C.R. (1978). Weighted distributions and Size biased Sampling with 

Applications to Wildlife Populations and Human Families, Biometrics 34179-34189. 

313



Rajesh Singh,  Pritee Singh, Preeti Badge 

BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS OF 

POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL  

RT&A, No 2 (73) 

Volume 18, June 2023   

 
[11] Rabie Abdalla and Junping Li (2019) “E-Bayesian Estimation Based on Burr-X Generalized 

Type-II Hybrid Censored Data” Symmetry 2019, 11, 626;  

[12] Rao, C.R. (1965). On discrete distributions arising out of method of ascertainment in classical 

and contagious discrete, Pergamum Press and Statistical publishing society, Calcutta. 320 -332. 

       [13] Rao. K. A. and. D’cunha, J.G. (2014). Bayesian Inference for Mean of the Lognormal 

Distribution, International Journal of Scientific and Research Publications, 4: 195-203. 

      [14] Shreshtha, S.K. and Kumar, V. (2014). Bayesian Analysis for the Generalized Rayleigh 

Distribution, International Journal of Statistika and Mathematika, 9: 118-131. 

      [15] Singh, R., Singh, P. and Kale, K. (2016). Bayes Estimators for the parameters of Poisson type 

length biased exponential class model using non- informative priors, Journal of Reliability and Statistical 

Studies, 9: 21-28. 

       [16] Tamak, J. (2013). Use of software reliability growth model to estimates the reliability of web 

applications, International Journal of Advanced Research in Computer and Software Engineering, 3(6) 53-59. 

        

 

 

 

 

314




