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Abstract

There are situations in which the experimenter has some information about the components of the
operating system and he/she wants to use this information for better assessment or operating of the
underlying system. In such cases the notion of conditional probability may help the operator to use that
information and improve his/her task. In the present study this notion has been examined, and some
conditional stress-strength parameters have been introduced for s of k systems. The multi-component
conditional stress-strength parameter (MCCSSP) and its maximum likelihood estimator have been
calculated when the strength and stress random variables are exponentially distributed. In the case of
having extra information about the parameters, a closed form has been derived for the Bayes estimator of
MCCSSP and has been calculated by using an algorithm together with Monte Carlo method. For the case
of non-exponential stress or strengths, the nonparametric estimator of the defined parameter has also been
derived. Finally, some simulation study on the MLE and Bayes estimator, as well as real data analysis for
nonparametric estimators have been done to verify the analytic results.

Keywords: Conditional Reliability, Exponential Distribution, Maximum Likelihood Estimator,
Multi-Component Systems, Stress-Strength Parameter

1. Introduction

The effects of resistance and shocks which enter to a system are usually studied via a stress-
strength model. The term stress-strength was first introduced by [1]. Since then the stress-strength
models have been inspected by many researchers due to their applicability in different fields,
such as engineering, economics, psychology, medicine and so on. In such models, when the
stress that experienced by the system have been represented by a random variable (RV) X and
the strength of system by a RV Y, the stress-strength parameter is denoted by R = P(X > Y), it
measures the chance that the system fails. It should be mentioned that 1 − R is the chance that
the considered system operates well and is known as the reliability function or parameter of the
system. For the majority of the well-known distributions, including Normal, Exponential, Pareto,
Uniform, Weibull, Gamma, Beta, logistic, and Laplace, R has been studied by [2]. Some of the
recent studies about R can be seen in [3], [4], [5], [6] and [7]
There are situations that one have some information about the stress and strength RV’s and knows
that they are greater than some pre-specified values, or one wants to know how much a system
can be reliable when stress and strength increase or decrease. Considering conditions like these,
the conditional stress-strength parameter was introduced by [8] as:

R|a,b = P(X > Y | X > a, Y > b). (1)
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Nowadays in the real life and industries most of the operating systems have become complex
with more than one active component, i.e., a lot of working systems are multi-component rather
than simple and uni-component. The reliability of a multi-component stress-strength model
was first developed by [9]. Afterwards, applications and studies on different characteristics of
multi-component stress-strength models grow up rapidly. Some of the recent studies can be seen
in [10],[11], [12], [13], [14] and [15].
By developments in most technologies, in many situations there are a lot of information about the
working mechanisms which will be precise and helpful, if they have been employed corrected, e.g.
in the case of second hand and used devices. For example, consider a large drilling machine in a
mine. This machine uses several gears or drills simultaneously for drilling, which are the most
important parts of this machine and are often iteratively replaced by another one. Therefore, a lot
of information about the amount of stress and strength experienced by this part of the machine
can be collected . In this article, we have focussed on the notion of conditional stress-strength
parameter to extend, generalize and employ such information in multi-component systems.
In order to prepare a complete pack about MCCSSP, it has been calculated and estimated by
using different methods for employing it in different real situations of practice. For exponential
distribution as the first and most exploited candidate of the lifetimes of components in operating
systems, the MCCSSP has been calculated, its MLE has been estimated through samples and
its asymptotic behaviors has been studied, as well. For the circumstances that we have extra
information about the varying structure of exponentially distributed stress and strengths random
variables, the Bayes estimators of MCCSSP has been also derived based on the information
included in samples of stress and strength. For the case of non-exponential or unknown life time
distributions the non-parametric estimators have been also derived.
The structure of this article is as follows: A general formula for computing MCCSSP will have been
provided in Section 2. In Section 3, the MCCSSP has been computed in the case of exponential
distributions as well as its maximum likelihood estimator and asymptotic distribution of the
later. The Bayes estimator of this parameter has been obtained in Section 4, by adopting an
algorithm and using the Monte Carlo method. The corresponding nonparametric estimator of
this parameter has been obtained in Section 5. Section 6 is devoted to the presentation of some
simulation studies on the MLE, Bayesian and nonparametric estimators and their comparison.
Some numerical results for a real data-set have been presented in Section 7. Finally in Section 8,
some concluding remarks have been given.

2. The MCCSSP

In this section, the MCCSSP will have been introduced and a general formula have been presented
to compute it.

Definition 1. Consider the independent RV’s X1, ..., Xk with common continuous distribution
function F(·), independent of continuous RV Y with distribution function G(·). The MCCSSP is
defined as:

R|a,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a, ..., Xk > a, Y > b). (2)

The particular cases s = 1 and s = k correspond to parallel and series systems, respectively.
Note that a special case of this quantity for a = b = −∞ is

Rs,k = P( at least s of X1, ..., Xk exceed Y) =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
(1 − F(y))i(F(y))k−idG(y) (3)

which is introduced by [9] as the multi-component stress-strength parameter.
Suppose that there a lot of information about one of the stress RV’s Xz, some specified z, 1 ≤
z ≤ k,. For example, in some systems, one of the parts wears out more and is replaced more
often, such as drilling machines, where the drill bit is very important and is replaced a lot, and
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the other parts are replaced less often. Therefore, there are more information about the lifetime of
a specified part than the other parts. For this case R|(z),a,b

s,k as the MCCSSP when Xz > a is defined
as:

Definition 2.
R|(z),a,b

s,k = P(at least s of X1, ..., Xk exceed Y | Xz > a, Y > b) (4)

Note that (3) is again a special case of (4). A formula for computing (2) has been presented in
the following theorem.

Theorem 1. If R|s,k
a,b is defined by (2), then

R|a,b
s,k =


∑k

i=s (
k
i)
∫ ∞

b [1−F(y)]i [F(y)−F(b)]k−idG(y)
[1−F(a)]k [1−G(b)] a ≤ b

∑k
i=s (

k
i)(

∫ ∞
a [G(x)−G(b)]dF(x))i(

∫ ∞
a [1−G(x)]dF(x))k−i

[1−F(a)]k [1−G(b)] a > b
(5)

Proof. First, we write (2) as follows:

R|a,b
s,k =

P(at least s of X1, ..., Xk exceed Y, X1 > a, ..., Xk > a, Y > b)
P(X1 > a, ..., Xk > a, Y > b)

.

Since X1, ..., Xk and Y are independent, the dominator is (1 − F(a))k(1 − G(b)). To compute the
numerator, first we write it as follows:

P(at least s of Xi exceed Y, X1 > a, ..., Xk > a, Y > b) = P((X1, ..., Xk, Y) ∈ A)

=
∫

...
∫

A
dF(x1)...dF(xk)dG(y),

where A = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > a, ..., xk > a,y > b}. To compute
this integral, partition A into two regions A1 and A2 for the cases a ≤ b and a > b, where:

A1 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > a, ..., xk > a, y > b, a ≤ b}
= {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, a < x1 < b, ..., a < xk < b, y > b, a ≤ b}⋃

{(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > b, ..., xk > b, y > b, a ≤ b}

= B1
⋃

B2,

and

A2 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, y > b, x1 > a, ..., xk > a, a > b}
= {(x1, ..., xk, y) | at least s of (b, x1), ..., (b, xk) contain y, y > b, x1 > a, ..., xk > a, a > b}.

where

B1 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, a < x1 < b, ..., a < xk < b, y > b, a ≤ b},

B2 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > b, ..., xk > b, y > b, a ≤ b}.

Let
R1 =

∫
A1

dF(x1)...dF(xk)dG(y), (6)

and
R2 =

∫
A2

dG(y)dF(x1)...dF(xk) (7)

then

R1 =
∫

B1

dF(x1)...dF(xk)dG(y) +
∫

B2

dF(x1)...dF(xk)dG(y)

=
∫

B2

dF(x1)...dF(xk)dG(y)

=
k

∑
i=s

(
k
i

) ∫ ∞

b
[1 − F(y)]i[F(y)− F(b)]k−idG(y)
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The first integral becomes zero because P(Xi > Y, a < Xi < b, Y > b) = 0 for i = 1, ..., k, and

R2 = P(at least s of (b, X1), ..., (b, Xk) contain Y, Y > b, X1 > a, ..., Xk > a, a > b)

=
k

∑
i=s

(
k
i

)[∫ ∞

a
[G(x)− G(b)]dF(x)

]i[ ∫ ∞

a
[1 − G(x)]dF(x)

]k−i,

This completes the proof. ■

Remark 1. Consider an s of k multi-component system, which their strengths are denoted by
iid RV’s X1, X2, . . . , Xk with common continuous distribution function F(·). Also suppose that
each component experiences a random stress Y with continuous distribution function G(·),
independent of the strengths. Note that the system stays alive only if at least s of k strengths be
greater than the stress. Then the conditional reliability of the multi-component system has the
following form:

R|a,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a, ..., Xk > a, Y > b). (8)

In this model, the conditional reliability of the system is represented by (5).

Remark 2. In practice the information in hand and given condition may not have exactly the
form {x1 > a, ..., Xk > a, Y > b}, but be as {X1 ∈ A1, ..., Xk ∈ Ak, Y ∈ B} where A1, ...,Ak and B
are linear Borel sets on (0, ∞). In this case, by applying some procedure similar to the approach
of Theorem 1, one can compute this generalized MCCSSP. Based on the structure of A1, ...,Ak
and B, it is expected that the analytic derivations may be complicated. In this situation and more
general case some non-parametric method similar to that given in section 5 as well as Monte
Carlo simulation may be applied.

Remark 3. By formula (5), one may show that for the case a ≤ b, the MCCSSP R|a,b
s,k is an

increasing function of a, which is expected trivially. Note that in this case:

∂R|a,b
s,k

∂a
=

k f (a)(1 − F(a))k−1 ∑k
i=s (

k
i)
∫ ∞

b [1 − F(y)]i[F(y)− F(b)]k−idG(y)
[1 − F(a)]2k[1 − G(b)]

= kR|a,b
s,k

f (a)
1 − F(a)

≥ 0.

According to the calculations resulting in the formula (5), it can be seen that if X1, . . . , Xk have
different distributions, it is not easy to calculate the analogous of this formula. In what follows,
the formula (5) has been calculated when X1, . . . , Xk and Y have the same distributions.

Corollary 1. Suppose that the continuous RV’s X1, ..., Xk and Y are independent and identically
distributed with probability density function(pdf) f (.) and cumulative distribution function(cdf)
F(.). Then,

R|a,b
s,k =


∑k

i=s (
k
i)
∫ 1

F(b) [1−y]i [y−F(b)]k−idy

[1−F(a)]k [1−F(b)] , a ≤ b

( 1
2 )

k ∑k
i=s (

k
i)[1−2F(b)+F(a)]i [1−F(a)]k−i

[1−F(b)] , a > b.
(9)

Remark 4. Put R|(z)1,a,b
s,k = P(at least s of X1, ..., Xk exceed Y, Xz ≥ Y | Xz > a, Y > b) and

R|(z)2,a,b
s,k = P(at least s of X1, ..., Xk exceed Y, Xz < Y | Xz > a, Y > b) for some z, 1 ≤ z ≤ k.

According to the approach of the proof for Theorem 1, after some computation, we have:

R|(z)1,a,b
s,k =


∑k

i=s (
k
i)
∫ ∞

b [1−F(y)]i F(y)k−idG(y)
[1−F(a)][1−G(b)] a ≤ b

∑k
i=s (

k
i−1,k−i)

[ ∫ ∞
0 [G(x)−G(b)]dF(x)

]i−1[ ∫ ∞
a [G(x)−G(b)]dF(x)

][ ∫ ∞
0 [1−G(x)]dF(x)

]k−i

[1−F(a)][1−G(b)] a > b,
(10)

R|(z)2,a,b
s,k =


∑k−1

i=s ( k
i,k−i−1)

∫ ∞
b [1−F(y)]i [F(y)−F(b)]F(y)k−(i+1)dG(y)

[1−F(a)][1−G(b)] a ≤ b

∑k−1
i=s ( k

i,k−i−1)[
∫ ∞

0 [G(x)−G(b)]dF(x)]i
[ ∫ ∞

a [1−G(x)]dF(x)
][ ∫ ∞

0 [1−G(x)]dF(x)
]k−(i+1)

[1−F(a)][1−G(b)] a > b.
(11)
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Therefore

R|(z),a,b
s,k =

{
R|(z)1,a,b

s,k Xz ≥ Y

R|(z)2,a,b
s,k Xz < Y.

(12)

3. Estimation for Exponential Distribution

In this section, the measure (5) has been evaluated for the Exponentially distributed stresses and
strength RV’s with different parameters. The probability density and cumulative distribution
functions of a random variable X ∼ E(α) are denoted by: f (x) = αe−αx, and F(x) = 1 − e−αx

where x ≥ 0, α > 0. Suppose that Xi ∼ E(λ1) for i = 1, . . . , k and Y ∼ E(λ2) are independent, we
have:

R1 = λ2e−b(λ1k+λ2)
k

∑
i=s

k−i

∑
j=0

(
k

i, j

)
(−1)j

λ1(i + j) + λ2
,

and

R2 = e−ak(λ1+λ2)

[
λ1

λ1 + λ2

]k k

∑
i=s

(
k
i

)[
λ1 + λ2

λ1
e−λ2(b−a) − 1

]i

,

by dividing the above equations by [1 − F(a)]k[1 − G(b)] = e−(akλ1+bλ2) we have:

R|a,b
s,k =

λ2e−λ1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

λ1(i+j)+λ2
a ≤ b

e−λ2(ak−b)[ λ1
λ1+λ2

]k ∑k
i=s (

k
i)[

λ1+λ2
λ1

e−λ2(b−a) − 1]i a > b.
(13)

Remark 5. From (13), we conclude that R|a,b
s,k for a ≤ b in Exponential distribution depends only

on the difference between a and b. In other words , if b1 − a1 = b2 − a2 then R|a1,b1
s,k = R|a2,b2

s,k for
a1 ≤ b1 and a2 ≤ b2.

Figure 1 show the effect of changes in the values a and b in (13). These figures show what
happens when the values a and b increase or decrease, in all Figures (s, k) = (1, 3).

(a) b=600, (λ1, λ2) =
(0.0049, 0.0005)

(b) a = 0.1, (λ1, λ2) =
(0.0049, 0.0005)

(c) b = 0.1, (λ1, λ2) =
(1.4, 1.7)

(d) a = 2, (λ1, λ2) =
(1.4, 1.7)

Figure 1: MCCSSP

By assuming the Exponential distributions for stresses and strength, from (10) and (12), after
some calculation it follows that for the case Xz ≥ Y, we have:

R|(z),a,b
s,k =

∑k
i=s ∑k−i

j=0 (
k
i,j)

λ2(−1)je−λ1(b(k−j)−a)

λ1(k−j)+λ2
a ≤ b

e−λ2(a−b)[ λ1
λ1+λ2

]k ∑k
i=s (

k
i)[

λ1+λ2
λ1

e−λ2b − 1]i−1[ λ1+λ2
λ1

e−λ2(b−a) − 1] a > b,
(14)

and for the case Xz < Y :

R|(z),a,b
s,k =

{
λ2e−λ1(b−a)[ ∑k−1

i=s ∑k−i
j=0 (

k
i)(

k−i
j )(−1)je−λ1(b(i+j))[ 1

λ1(i+j)+λ2
− e−λ1(b−a)

λ1(i+j+1)+λ2
]
]

a ≤ b

e−λ2(a−b)[ λ1
λ1+λ2

]k
[

∑k−1
i=s (k

i)[
λ1+λ2

λ1
e−λ2b − 1]i

]
a > b.

(15)
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Indeed, as in (13) to (15), the stress-strength parameters R|a,b
s,k and R|(z),a,b

s,k are functions of λ1 and
λ2. Therefore, it is rational that for evaluating the maximum likelihood estimators of MCCSSP,
the first step to be calculating the MLE’s of λ1 and λ2.

3.1. Maximum Likelihood Estimation

Suppose that X1, ..., Xn and Y1, ..., Ym are two independent random samples from E(λ1) and E(λ2).
Then the likelihood function is

L(λ1, λ2) = λn
1 λm

2 e−λ1 ∑n
1 xi e−λ2 ∑m

1 yj (16)

and the MLE’s of the parameters λ1 and λ2 are λ̂1 = 1
X

and λ̂2 = 1
Y

, respectively. Therefore, by
using the invariance property for MLE’s, and substituting λ̂1 and λ̂2 instead of λ1 and λ2 in (14)
and (15), one may write the MLE of (13) by:

R̂|a,b
s,k =

λ̂2e−λ̂1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

λ̂1(i+j)+λ̂2
a ≤ b

e−λ̂2(ak−b)[ λ̂1
λ̂1+λ̂2

]k ∑k
i=s (

k
i)[

λ̂1+λ̂2
λ̂1

e−λ̂2(b−a) − 1]i a > b.
(17)

3.2. Asymptotic Distribution

In this subsection the asymptotic distribution of R̂|a,b
s,k will have been obtained by using the

asymptotic normality of the MLE’s and the multivariate delta method. By the fact that λ̂ →
N2(λ, Σ) as n, m tend to infinity, n

m → d for some 0 < d < ∞, where λ̂ = (λ̂1, λ̂2)
T , λ =

(λ1, λ2)
T and Σ is the inverse of Fisher’s information matrix I(λ), it is easy to see that

I(λ) =

[ n
λ2

1
0

0 m
λ2

2

]
, and so Σ =

[
λ2

1
n 0

0 λ2
2

m

]
.

The well-known delta method enables us to derive the asymptotic behaviour of functions of
an estimator, whenever the estimator is itself asymptotically normal. The delta method have been
present and applied in different forms, we have used the following presentation.

Proposition 1. Let g(.) be a mapping g(.) : Rd → R , such that g(.) is continuous in a neighbor-
hood of µ ∈ Rd. If Xn is a sequence of d-dimensional random vectors such that Xn → Nd(µ, Σ) in
distribution, then g(Xn)−g(µ)

τ → N(0, 1) in distribution, where τ2 = ∇TΣ∇ > 0 and ∇ = ∂g(µ)
∂µ .

We will apply Proposition 1 to Xn = λ̂ and

g(x1, x2) =

x2e−x1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

x1(i+j)+x2
a ≤ b

e−x2(ak−b)[ x1
x1+x2

]k ∑k
i=s (

k
i)[

x1+x2
x1

e−x2(b−a) − 1]i a > b.

The asymptotic distribution of R̂|ab
s,k may be obtained as below:

(R̂|a,b
s,k − R|a,b

s,k ) → N(0,∇TΣ∇) , (18)

where

∇ = (
∂g(λ1, λ2)

∂λ1
,

∂g(λ1, λ2)

∂λ2
)T ,

∇TΣ∇ = [
∂g(λ1, λ2)

∂λ1
]2

λ2
1

n
+ [

∂g(λ1, λ2)

∂λ2
]2

λ2
2

m
, (19)

For the cases a ≤ b and a > b, denote (19) by σ2
1 and σ2

2 respectively. Put ψ = ∂g(λ1,λ2)
∂λ1

|a≤b,

ν = ∂g(λ1,λ2)
∂λ1

|a>b, θ = ∂g(λ1,λ2)
∂λ2

|a≤b, κ = ∂g(λ1,λ2)
∂λ2

|a>b, we arrive at:

σ2
1 = ψ2 λ2

1
n

+ θ2 λ2
2

m
, (20)
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σ2
2 = ν2 λ2

1
n

+ κ2 λ2
2

m
. (21)

Therefore, the asymptotic normalized distribution of R̂|a,b
s,k for different values of a and b are as

follow:
R̂|a,b

s,k − R|a,b
s,k

σi
→ N(0, 1) i = 1, 2, (22)

where σ1 and σ2 stands for the cases a ≤ b and a > b respectively. The above statistics can be used
for constructing confidence intervals for R|a,b

s,k . By employing a similar approach and performing

some steps like the above, using lemma 1 and asymptotic normality of R̂|(z),a,b
s,k , one may arrive at

the asymptotic distribution of R|(z),a,b
s,k .

4. Bayes Estimation

In this section, the Bayesian estimation of the reliability parameter (13) has been considered.
Suppose that the parameters λ1 and λ2 are RV’s, and have independent Gamma prior distributions
with parameters (αi, βi), i = 1, 2 respectively. The pdf of a random variable X ∼ Gamma(αi, βi) is
denoted by

π(x) =
β

αi
i

Γ(αi)
xαi−1e−βix x > 0, αi > 0, βi > 0. (23)

The joint posterior density function of the parameters based on this prior density and the
likelihood function can be written as follows:

π∗(λ1, λ2 | x, y) =
π(λ1, λ2, x, y)∫ ∞

0

∫ ∞
0 π(λ1, λ2, x, y)dλ1dλ2

(24)

where

π(λ1, λ2, x, y) = π(λ1)π(λ2)L(λ1, λ2) ∝ λα1+n−1
1 e−λ1(β1+∑n

i=1 xi)λα2+m−1
2 e−λ2(β2+∑m

j=1 yj).

It is easily seen that the posterior density functions of λ1 and λ2 are respectively

π∗(λ1|λ2, x, y) ∝ Γ(α1 + n, β1 +
n

∑
i=1

xi), (25)

π∗(λ2|λ1, x, y) ∝ Γ(α2 + m, β2 +
m

∑
j=1

yj). (26)

The Bayes estimator of R|a,b
s,k under the squared error loss (SEL) is obtained as

R̃|a,b
s,k = E(R|a,b

s,k |x, y) =
∫ ∞

0

∫ ∞

0
R|a,b

s,k π∗(λ1, λ2 | x, y)dλ1dλ2. (27)

It is not possible to calculate equation (27) analytically. Therefore, to compute the Bayes estimate
of reliability parameter R|a,b

s,k , a Monte Carlo (MC) method has been adopted as follows:
Step 1: Set l=1.
Step 2: Generate X1, . . . , Xn from Exp(λ1).
Step 3: Generate Y1, . . . , Ym from Exp(λ2)
Step 4: Generate λl

1 from Gamma(α1 + n, β1 + ∑n
i=1 xi).

Step 5: Generate λl
2 from Gamma(α2 + m, β2 + ∑m

j=1 yj).

Step 6: Compute Rl|a,b
s,k at (λl

1, λl
2).

Step 7: l=l+1.
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Step 8: Repeat Steps 2 to 7, M times and obtain the posterior sample Rl|a,b
s,k for l = 1, ..., M.

Now the Bayes estimate of R|a,b
s,k with respect to SEL will be obtained as follows:

R̃|a,b
s,k =

1
M

M

∑
l=1

Rl|a,b
s,k . (28)

5. Nonparametric Estimation

In this section a nonparametric method for estimating R|a,b
s,k has been presented. In many situations,

we may have no information about the distribution of data or computing R|a,b
s,k via 1 may require

complex computations, or even may not have a definite answer. Therefore, employing the
nonparametric method, in which the structure of the model may have been determined from
data, can lead us to better results or at least be more applicable. Let n(.) be the counting measure.
For the sample space S and the event D as a subset of S the nonparametric estimator of P(D) is
defined as P̂(D) = n(D)

n(S) . To obtain the nonparametric estimator of MCCSSP, one may write (2) in
the form:

R|a,b
s,k =

P(at least s of X1, . . . , Xk exceed Y, X1 > a, . . . , Xk > a, Y > b)
P(X1 > a, . . . , Xk > a, Y > b)

(29)

where P(X1 > a, . . . , Xk > a, Y > b) > 0. Since X1, . . . , Xk and Y are independent, equation (29)
can be written as follows:

R|a,b
s,k =

P(at least s of X1, . . . , Xk exceed Y, X1 > a, . . . , Xk > a, Y > b)
P(X1 > a, . . . , Xk > a)P(Y > b)

, (30)

where P(X1 > a, . . . , Xk > a)P(Y > b) > 0.
Let A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a, . . . , xk > a, y > b}, B =
{(x1, . . . , xk) | x1 > a, . . . , xk > a} and C = {y | y > b}. The nonparametric estimator of (30) can
be written as follows:

RNp|a,b
s,k =

n(A)

n(B)n(C)
. (31)

Let X1i, ..., Xki ∼ X for i = 1, ..., n and Y1, ..., Ym ∼ Y be independent random samples. Also, let
I(E) be the indicator function of the event E, that is a RV that takes value 1 when the event E
happens and 0 when the event does not happen. By assuming n(.) as the counting measure, we
have:

n(B) =
n

∑
i=1

I(X1i > a, . . . , Xki > a), (32)

n(C) =
m

∑
j=1

I(Yj > b), (33)

and by the properties of the indicator function:

n(A) =
n

∑
i=1

m

∑
j=1

I(s of X1i, ..., Xki exceed Yj)I(X1i > a, . . . , Xki > a)I(Yj > b) + . . .

+
n

∑
i=1

m

∑
j=1

I(k of X1i, ..., Xki exceed Yj)I(X1i > a, . . . , Xki > a)I(Yj > b).
(34)

Let Xi = (X1i, . . . , Xki) for i = 1, . . . , n. Those observations Xi and Yj for them both Xi ≤ a and
Yj ≤ b simultaneously, have been removed in calculating n(A) , since in details of calculating

P(A) or RNP|a,b
s,k = n(A)

n(B)n(C)
, the numerator is an strict subset of denominator. Note that in this
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case the values of the second and third indicators will automatically equal one in n(A), (34). It is
worth noting that the number of reminded samples of Xi and Yj are n(B) and n(C), so n(A) can
be written as follows:

n(A) =
n(B)

∑
i=1

n(C)

∑
j=1

I(s of X1i, ..., Xki exceed Yj) + · · ·+
n(B)

∑
i=1

n(C)

∑
j=1

I(k of X1i, ..., Xki exceed Yj)

In the case of n = m, the formula (31) may have simpler form and computations, since we only
keep those (X1i, ..., Xki, Yi) i = 1, ..., n which for them (X1i > a, ..., Xki > a, Yi > b) and remove
the rest and also, n(B) = n(C). In what follows, we introduce a definition and representation
for non-parametric estimator of multi-component stress-strength parameter. To the best of our
knowledge, interestingly this estimator has not been defined till now.

Definition 3. The nonparametric estimator of Rs,k is defined as follows:

RNP
s,k =

n(A)

n(B)n(C)
(35)

where n(B) = n, n(C) = m and

n(A) =
n

∑
i=1

m

∑
j=1

I(s of X1i, ..., Xki exceed Yj) + · · ·+
n

∑
i=1

m

∑
j=1

I(k of X1i, ..., Xki exceed Yj).

Note that (35) can be obtained from (31) by assuming a = b = 0.

Remark 6. (i): By (31), and according to the definitions of n(A), n(B) and n(C), it can be
concluded that for fixed values of a, a ≤ b, the estimator RNP|a,b

s,k is a decreasing function of b.
(ii): By (31), and according to the definitions of n(A), n(B) and n(C), it can be concluded that for
fixed values of b, a > b, the estimator RNP|a,b

s,k is an increasing function of a.

In applications, the data observed for different stresses may differ greatly in their values.
Therefore, selecting a minimum value of a, w.r.t. it all stresses in MCCSSP through definition 1,
satisfy the corresponding condition Xi > a, may be not useful. So, in what follows, the MCCSSP
has been defined in some general way to be more realistic and applicable.

Definition 4. The generalized conditional multi-component stress-strength parameter is defined
as follows:

R|a1,...,ak ,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a1, ..., Xk > ak, Y > b) (36)

where the RV’s Y, X1, ..., Xk are independent, G(·) is the continuous distribution function of Y
and F(·) is the common continuous distribution function of X1, ..., Xk.

Theorem 2. If Xri > max(a1, . . . , ak) for r = 1, . . . , k; i = 1, . . . , n and Yj > b for j = 1, . . . , m then

RNP|a1,...,ak ,b
s,k = RNP

s,k .

Proof. Replace I(X1i > a1, . . . , Xki > ak) with I(X1i > a, . . . , Xki > a) in (32) and (34).
Since I(X1i > a1, . . . , Xki > ak) = 1 and I(Yj > b) = 1 we have n(B) = n, n(C) = m and
n(A) = ∑n

i=1 ∑m
j=1 I(s of X1i, ..., Xki exceed Yj) + · · ·+ ∑n

i=1 ∑m
j=1 I(k of X1i, ..., Xki exceed Yj). ■

Of course, a special case of (36) is (2). In parametric case (MLE method) when a1, . . . , ak are closed
in values, a can be considered as the minimum or maximum of a1, . . . , ak and approximate (36)
through (4). In some situations, a1, . . . , ak are very different, and using (36) is not very helpful or
may not be accurate. In these cases, the non-parametric method is more practical and it is enough
to consider A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a1, . . . , xk > ak, y > b}, and
B = {(x1, . . . , xk) | x1 > a1, . . . , xk > ak} in (31). It is easy to see that the results of nonparametric
estimation of (29) can also be used for nonparametric estimation of (36), where ai is substituted
instead of a for i = 1, . . . , k. Note that in this case, one advantage of the nonparametric method
is that the assumption of common distribution for stress RV’s may be relaxed. The later makes
this method much more practical. If B = {(x1, . . . , xk, y) | x1 > a1, . . . , xk > ak, y > b}, then the
nonparametric estimator of the generalized MCCSSP where stresses and strength RV’s are not
independent, can also be easily computed through the same method.
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6. Simulation

In this section, a simulation study has been done to assess the quality and the efficiency of
performance of R|ab

s,k , its MLE, Bayes and nonparametric estimators. The performances of the MLE,
Bayes and nonparametric estimators have been studied by using their biases. The performances
of the confidence intervals for MLE are studied by using average confidence lengths (ACL’s)
and coverage probabilities (CP’s). It would be mentioned that, the proportion of the times that
the intervals contain the true value of interest is called the coverage probability of a confidence
interval. The simulations have been only done for a ̸= b since for a = b the conditional and
unconditional cases have the same results.
The results for R|ab

s,k , MLE’s, Biases, MSE’s, ACL’s and CP’s and different values of m and n where
the other parameters are fixed, have been shown in the Tables 1 for λ1 = 1, λ2 = 2 and shown
in 2 for λ1 = 1.5, λ2 = 0.7. According to these tables larger sample sizes have more reliable
results. A comparison among MLE, RNP|a,b

1,3 and R̃|a,b
1,3 assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4

for different values of a and b, n = m = 100, λ1 = 0.0003 and λ2 = 0.0005 has been done and
the results presented in Tables 3 and 4. A comparison among R̂|a,b

2,4 and R̃|a,b
2,4 assuming λ1 = 3,

λ2 = 2, α1 = 5, β1 = 0.8, α2 = 4, β2 = 0.2 for different sample sizes has been done and the results
presented in Table 5. A nonparametric simulation for different values of a1, a2, a3, λ1 = 0.004
and λ2 = 0.002 has been done and the results are presented in Table 6.

Table 1: Comparison of estimators, R|0.7,1
1,3 = 0.3659, R|0.7,1

2,4 = 0.2409

n 15 20 35 50 85 100
(s,k) m 15 25 35 50 75 100

(1,3)

R̂|0.7,1
1,3 0.3556 0.3577 0.3612 0.3628 0.3632 0.3646

MSE 0.0439 0.0256 0.0180 0.0125 0.0083 0.0062
Bias -0.0102 -0.0082 -0.0046 -0.0030 -0.0026 -0.0013
ACL 0.6889 0.5202 0.4425 0.3674 0.2990 0.2588
CP 0.9384 0.9498 0.9736 0.9802 0.9818 0.9844

(2,4)

R̂|0.7,1
2,4 0.2372 0.2357 0.2390 0.2393 0.2400 0.2400

MSE 0.0243 0.0139 0.0100 0.0069 0.0046 0.0034
Bias -0.0036 -0.0052 -0.0018 -0.0015 -0.0008 -0.0008
ACL 0.5145 0.3879 0.3296 0.2741 0.2228 0.1921
CP 0.8988 0.9012 0.938 0.9518 0.9640 0.9690

Table 2: Comparison of estimators, R|1.2,0.5
1,3 = 0.4603, R|1.2,0.5

2,4 = 0.2798

n 15 20 35 50 75 100
(s,k) m 15 25 35 50 75 100

(1,3)

R̂|1.2,0.5
1,3 0.4404 0.4481 0.4551 0.4537 0.4562 0.4567
MSE 0.0391 0.0225 0.0097 0.0096 0.0060 0.0046
Bias -0.0199 -0.0122 -0.0052 -0.0065 -0.0041 -0.0035
ACL 0.5655 0.4581 0.3110 0.3085 0.2481 0.2183
CP 0.9374 0.9696 0.9826 0.9838 0.9876 0.9932

(2,4)

R̂|1.2,0.5
2,4 0.2608 0.2679 0.2718 0.2742 0.2758 0.2771
MSE 0060 0.0045 0.0025 0.0017 0.0010 0.0008
Bias -0.0197 -0.0118 -0.0079 -0.0056 -0.0040 -0.0027
ACl 0.2349 0.2079 0.1600 0.1351 0.0.0104 0.0964
CP 0.9156 0.9548 0.9620 0.9690 0.9712 0.9837
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Table 3: Comparison of R̂|a,b
1,3 , RNP|a,b

1,3 , R̃|a,b
1,3 for a ≤ b

a 10 25 70 78 170 215 300
b 20 40 74 120 190 260 310

R|a,b
1,3 0.8607 0.8568 0.8653 0.8362 0.8530 0.8340 0.0.8607

R̂|a,b
1,3 0.8555 0.8516 0.8602 0.8311 0.8478 0.8327 0.8555

R̃|a,b
1,3 0.8598 0.8559 0.8646 0.8349 0.8519 0.8321 0.8598

RNP|a,b
1,3 0.8657 0.8655 0.8697 0.8681 0.8691 0.8646 0.8668

Bias(R̂|a,b
1,3 ) -0.0051 -0.0051 -0.0051 -0.0051 -0.0051 -0.0013 -0.0051

Bias(R̃|a,b
1,3 ) -0.0008 -0.0009 -0.0007 -0.0013 -0.0010 -0.0019 -0.0008

Bias(RNP|a,b
1,3 ) 0.0049 0.0087 0.0043 0.0618 0.0161 0.0305 0.0061

Table 4: Comparison of R̂|a,b
1,3 , RNP|a,b

1,3 , R̃|a,b
1,3 for a > b

a 7 22 45 67 100 120 240
b 4 11 38 65 90 70 230

R|a,b
1,3 0.9437 0.9377 0.9124 0.8877 0.8664 0.8867 0.7532

R̂|a,b
1,3 0.9397 0.9338 0.9088 0.8844 0.8633 0.8836 0.7514

R̃|a,b
1,3 0.9372 0.9313 0.90559 0.8812 0.8598 0.8805 0.7466

RNP|a,b
1,3 0.8654 0.8658 0.8658 0.8653 0.8674 0.8686 0.8680

Bias(R̂|a,b
1,3 ) -0.0039 -0.0038 -0.0036 -0.0033 -0.0030 -0.0030 -0.0017

Bias(R̃|a,b
1,3 ) -0.0064 -0.0063 -0.0064 -0.0065 -0.0065 -0.0062 -0.0065

Bias(RNP|a,b
1,3 ) -0.0782 -0.0719 -0.0466 -0.0224 0.0097 -0.0181 0.1147

Table 5: Comparison of R̂|a,b
2,4 , R̃|a,b

2,4 , exact values R|0.6,0.8
2,4 = 0.0430, R|0.9,0.6

2,4 = 0.0243

n 10 20 30 60 95 100 150
m 10 22 30 58 100 120 150

R̂|0.6,0.8
2,4 0.0505 0.0475 0.0457 0.0443 0.0437 0.0436 0.0434

R̃|0.6,0.8
2,4 0.0360 0.0407 0.0405 0.0418 0.0419 0.0421 0.0424

Bias(R̂|0.6,0.8
2,4 ) -0.0075 -0.0045 -0.0027 -0.0013 -0.0007 -0.0006 -0.0004

Bias(R̃|0.6,0.8
2,4 ) 0.0069 0.0022 0.0024 0.0011 0.0010 0.0008 0.0005

R̂|0.9,0.6
2,4 0.0269 0.0260 0.0254 0.0249 0.0246 0.0246 0.0245

R̃|0.9,0.6
2,4 0.0342 0.0301 0.0290 0.0271 0.0261 0.0257 0.0252

Bias(R̂|0.9,0.6
2,4 ) -0.0026 -0.0016 -0.0010 -0.0006 -0.0003 -0.0002 -0.0001

Bias(R̃|0.9,0.6
2,4 ) -0.0098 -0.0057 -0.0046 -0.0027 -0.0017 -0.0013 -0.0008
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Table 6: Values of RNP|a1,a2,a3,b
1,3 for λ1 = 0.004 and λ2 = 0.002

a1 1 1 8 27 40 40 95 100 100
a2 3 5 14 60 40 42 98 100 100
a3 7 7 28 90 40 47 100 100 100
b 5 3 19 43 30 30 110 110 180

RNP|a1,a2,a3,b
1,3 0.532 0.535 0.532 0.540 0.546 0.549 0.510 0.509 0.468

7. Real Data Analysis

In this section the numerical results of the parameters estimation for a real data set with Expo-
nential distribution have been presented. This data set was used for the first time by [16] and
can be find in it. Also, it have been used by many other authors, e.g., [17], [18] and [19].These
data present the tensile properties of the jute fibres at different gauge lengths 5, 10, 15 and 20 mm
which measured in MPa. The data sets corresponding to the breaking strength of jute fibres with
10mm and 15mm gauge lengths have been considered as the stresses measurement and 20mm in
gauge lengths, which represents the strength measurement.
Each data has been separately fitted to the some Exponential distribution and examined by using
the Kolmogorov-Smirnov goodness-of-fit test, the results have been reported in Table 7. The
Kolmogorov-Smirnov statistics and the corresponding P-values indicate that the Exponential
distribution fits the data sets. The estimation of MCCSSP for different values of a and b by MLE,
nonparametric methods and Bayesian approach assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4 for
parameters of prior distributions have been presented in Table 8. The estimation of MCCSSP for
different values of a1, a2 and b by nonparametric methods have been presented in Table 9. The
estimation of (4) for a1 = 0 or a2 = 0 by nonparametric methods have been presented in Table 10.
The data set consisting of the breaking strength of jute fiber 5 mm in gauge length have been
fitted with the Normal distribution with mean 384.37 and standard deviation 188.77 using the
Kolmogorov-Smirnov goodness-of-fit test. For this data, the Lilliforce significance correction
criteria (modified Kolmogorov-Smirnov test to check the normality of the data) and the P-value
are 0.143 and 0.122. Note that by adding this length to the model, the assumption of exponentially
for all stresses fails and the MLE method may not be employed. The nonparametric estimators of
MCCSSP for real data and different values of a1, a2, a3 and b have been presented in Table 11
where X1 has Normal distribution, X2 and X3 have Exponential distribution.

Table 7: Estimate of parameters, K-S test for strength of jute fiber data

data Mean λ̂ K-S p-value
10 mm 365.72 0.0027 0.958 0.317
15 mm 367.87 0.0027 0.999 0.271
20 mm 340.74 0.0029 0.727 0.666

Table 8: Values of estimates of MCCSSP for real data

a 30 45 45 78 85 100 220
b 25 50 40 90 75 80 245

R̂|a,b
1,2 0.7200 0.6680 0.6893 0.6432 0.6280 0.6288 0.5996

R̃|a,b
1,2 0.7431 0.6737 0.6458 0.6207 0.6477 0.5970 0.6151

RNP|a,b
1,2 0.6744 0.6760 0.6886 0.6462 0.6485 0.6485 0.6944
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Table 9: Values of RNP|a1,a2,b
1,2 for real data

a1 20 30 90 180 202 200 300
a2 40 100 70 170 200 250 280
b 30 70 80 175 201 225 290

RNP|a1,a2,b
1,2 0.674 0.640 0.654 0.755 0.755 0.694 0.760

Table 10: Values of RNP|(z),a,b
1,2 for real data

a1 0 0 90 160 0 190 0
a2 30 50 0 0 150 0 280
b 45 35 40 145 160 255 290

RNP|a1,a2,b
1,2 0.663 0.670 0.679 0.608 0.663 0.617 0.640

Table 11: Values of RNP|a1,a2,a3,b
1,3 for real data

a1 10 42 80 111 150 215 300
a2 30 58 90 121 160 221 400
a3 60 71 100 171 170 240 100
b 34 54 85 154 165 220 340

RNP|a1,a2,a3,b
1,3 0.730 0.736 0.705 0.750 0.859 0.625 0.750

8. Conclusion

The MCCSSP (R|a,b
s,k ) as an appropriate extension of multi-component stress-strength parameter

has been introduced. A general formula for computing R|a,b
s,k in the case of continuous RV’s has

been presented. The maximum likelihood estimator of R|a,b
s,k for Exponential distribution has

been estimated. The asymptotic distribution of maximum likelihood estimator has been obtained
and been used to obtain asymptotic confidence intervals of R|a,b

s,k . A Formula for estimating the
MCCSSP by nonparametric method has also been presented. Some numerical computation and
simulation studies have been done for illustrating the inferential procedures.
In the past decades, a lot of researches have been done for studying the behavior of reliability
function in multi-component stress-strength models, many of similar works can be done for the
conditional case. As an specific idea, R|a,b

s,k can be obtained and estimated for other distributions.
As another idea, one may interested in the amounts of information which are measurable, lost,
unpredictable, etc.
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