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Abstract 

 

The aim of this paper is to introduce the relations for moments and characterizing results for the 

newly introduced modified Fréchet distribution based on generalized record values. Here, we used 

an ordered random variable approach like generalized record values for generating the results. We 

have established the recurrence relations for single and product moments of generalized record 

values from modified Fréchet distribution. These relations are also deduced for the lower record 

values and some specific distributions, which are the special cases of modified Fréchet distribution. 

Further, the characterization results for this distribution have been established by using recurrence 

relations for single and product moments and conditional expectation of a function of generalized 

record values and truncated moments. 
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1. Introduction 
 

The modified Fréchet distribution is an extension of the Fréchet distribution which was introduced 

by Tablada and Cordeiro [23] and pointed out that this distribution is quite effective to provide the 

best fits for real data sets. Since the results on real life data compared with other known 

distributions such as Fréchet, exponentiated Fréchet, Marshall–Olkin Fréchet, exponentiated 

Weibull, revealed that modified Fréchet distribution provides a better fit for modeling real life 

data. 

A random variable X follows modified Fréchet distribution, if it’s probability density function 

pdf is of the form 
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with the distribution function (df) 
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Where  , 𝛽 and  𝜆 are shape parameters. 

Note that 𝑓(𝑥) and 𝐹(𝑥) satisfy the relation. 
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The Fréchet and standard Gumbel distributions are the special cases of the modified Fréchet 

distribution, when 0=  and 0= , 1=  respectively. 

Initially, Chandler [8] was the first who laid down the concept of record values inspired by the 

extreme weather conditions. As a result, he designed the model for successive extremes values in a 

sequence of identically independently distributed ( iid ) continuous random variables. Dziubdziela 

and Kopociński [9]  have generalized the concept of record values by choosing random variables of 

more generalized nature and these random variables are called the 𝑘 −th record values. Later, the 

record values defined by Dziubdziela and Kopociński [9] have been called as generalized record 

values by Minimol and Thomas [15], since the −r th member of the sequence of the ordinary 

record values is also known as the −r th record value. Setting 𝑘 = 1, we obtain ordinary record 

statistics. 

Generally, the record values means the values which are not acquired before, e.g., fastest 

century in the one day cricket match, the longest winning streak in basketball, the world record in 

high jumping, the lowest time to cover a fixed distance in freestyle swimming and so on. The 

observation which is greater (or less) than the previous all observations is known as the record 

value. Record values arise naturally in many real life applications involving data relating to 

weather, sports, economics and life-tests. 

For more details on the applications of record values, see Ahsanullah [1], Ahsanullah and 

Nevzorov [2], Arnold et. al. [5]. 

Let }1,{ nX n  be a sequence of independently identically distributed )(iid  random variables 

with df  )(xF  and pdf  )(xf . The −r th order statistics of a random sample nXXX ...,,, 21  is 

denoted by nrX : . For fixed 𝑘 ≥ 1, we define the sequence }1),({ nnLk  of −k th record times of 

}1,{ nX n  as follows: 
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n k

XZ , ,2,1=n  is called the sequence of −k th 

lower record values of }1,{ nX n . For convenience, we shall also take and 0
)(

0 =
k

Z . Note that for 

1=k  we have )(
)1(

nLn XZ = , 1n . Then pdf  of )(k
nZ  and the joint pdf  )(k

mZ  and )(k
nZ  are as 

follows: 
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The conditional pdf  of )(k
nZ  given xZ k
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For some recent developments on generalized record values with special reference to those 

arising from NH, exponentiated Rayleigh, Kappa distribution, additive-Weibull lifetime, Power 

function, extended Erlang-truncated exponential, Kumaraswamy-log-logistic, Weibull-Rayleigh, 

Weibull-power function,  Fréchet distributions see, Alam et al. [4], Khan et al. ([12], [13]), Khan et 

al. [14], MirMostafaee et al. [16], Paul [17], Singh and Khan [19], Singh et al. ([20], [21], [22]) 

Thomas and Paul  [24], etc. In this paper we mainly studied the generalized lower record values 

arising from the modified Fréchet distribution. 

The plots represent the shapes of the pdf  of lower record values, arises from the modified 

Fréchet distribution. 

  
Figure. Plots of the pdf  of lower record values from modified Fréchet distribution for selected values of 

parameters. 

 

2.  Relations for single moments 

 
Theorem 2.1.  For the modified Fréchet distribution given in (2) and nk 1 , ...,1,0=j  
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Consequently for 1n , nk 1  and ...,1,0=j  
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Proof.   From (3) and (4), we get 
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In view of Bieniek and Szynal [7], note that 
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On substituting in (9), we get 
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On rewriting above expression, we derive the recurrence relation in (7). Then, by repeatedly 

applying the recurrence relation in (7), we simply derive the recurrence relation in (8). 

Remark 2.1.   For 1=k  in (7), the recurrence relation for single moments of lower record values 

from the modified Fréchet distribution given as 

 j
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Remark 2.2.  Putting 1=k , 0= , 1=  in (7), we deduced the recurrence relation for single 

moments of lower record values from the standard Gumbel distribution as obtained by 

Balakrishnan et al. [6]. 

Remark 2.3.  Setting 0=  in (7), we deduced the recurrence relation for generalized record values 

from inverse Weibull distribution as established by Pawlas and Szynal [18] for replacing n  by 

1−n . 

Table I   Moments of lower record values  

 
Table II   Variances of lower record values 

 

 
 

3.  Relations for product moments 

 
Theorem 3.1.  For the modified Fréchet distribution given in (2) and 1n , km  , ...,1,0, =ji  
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and for nm 1 , 2n , ...,1,0, =ji  

n  
5.1= ,   4=  2= ,   5=  

5.1=  5.2=  5.3=  5.1=  5.2=  5.3=  

1 1.45394 1.78177 2.02126 1.32077 1.68029 1.95621 

2 1.06968 1.44242 1.71475 1.00841 1.39679 1.69422 

3 0.90020 1.28891 1.57416 0.86681 1.26561 1.57166 

4 0.79618 1.19248 1.48489 0.77828 1.18208 1.49298 

5 0.72301 1.12323 1.42020 0.71510 1.12151 1.43553 

n  
5.1= ,   4=  2= ,   5=  

5.1=  5.2=  5.3=  5.1=  5.2=  5.3=  

1 0.28211 0.21581 0.17375 0.18045 0.14615 0.12349 

2 0.08176 0.06541 0.05419 0.05577 0.04695 0.04059 

3 0.04147 0.03480 0.02952 0.02950 0.02579 0.02271 

4 0.02588 0.02267 0.01960 0.01900 0.01718 0.01535 

5 0.01798 0.01638 0.01440 0.01355 0.01263 0.01142 
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Proof.  From (3) and (5), we have 
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where 
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After simplification, we obtain the required result as given in (11). 
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Proceeding in a similar manner for the case 1+=mn , the recurrence relation given in (10) can 

easily be established. 

On can also note that Theorem 2.1. can be deduced from Theorem 3.1. by putting 0=j . 

Remark 3.1.  Putting 1=k  in (11), the recurrence relations for product moments of lower record 

values is deduced for the modified Fréchet distribution in the form 
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Remark 3.2.  Setting 1=k , 0= , 1=  in (11), we get the recurrence relations for product 

moments of lower record values from the standard Gumbel distribution as obtained by 

Balakrishnan et al. [6]. 

Remark 3.3.  Assuming 0=  in (11), the recurrence relations for product moments of generalized 

record values is deduced for inverse Weibull distribution as established by Pawlas and Szynal 

[18]. 

4.   Characterizations 

 

Theorem 4.1.  If k  and j  be are positive integers. A necessary and sufficient condition for a 

random variable X  to be distributed with pdf  given by (2) is that 
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Proof.  The necessary part follows from Theorem 2.1. On the other hand if the recurrence relation 

(13) is satisfied, then on using Bieniek and Szynal [7], we have 
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Now applying a generalization of the Müntz-Szász theorem (see for example Hwang and Lin [11]) 

to above expression, we get 
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which proves the sufficiency part. 

Theorem 4.2.  For a positive integer 1k  and let i , j  are non-negative integers, a necessary and 

sufficient condition for a random variable X  to be distributed with pdf  given by (1) is that 
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Proof.  The necessary part follows from Theorem 3.1. On the other hand if the relation in (14) is 

satisfied, then (14) can be written as 
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Integrating by parts, treating bx  for differentiation and rest of the part for integration, we get 
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Now applying a generalization of the Müntz-Szász theorem (see for example Hwang and Lin [11]), 

we get 
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Hence the sufficiency part proved. 

Theorem 4.3.  Let X  be an absolutely continuous non-negative random variable having df  )(xF , 
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To prove the sufficient part, we have 
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Now integrating both the sides with respect to x , we get 
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which implies 
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Since , 0)( =xF  as 0→x  and CxF =)(  as →x . 

Thus, by definition of df  1)( =xF  as →x , this implies that 1=C . 

Hence the sufficiency part proved. 

Remark 4.3. If 1=k  in (17), we get the following characterization of lower record values for 

modified Fréchet distribution 

 mnxFxXXE mLnL −+−== )(ln]|([ )()( . 

Theorem 4.4.   Suppose X  be an absolutely continuous (with respect to Lebesque measure) 

random variable with the df )(xF  and pdf  )(xf     x0 , such that )(' xf  and )|( xXXE  , 

exist for all x ,  x0 , then 

 )()()|( xxgxXXE = ,                       (20) 
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Proof.   From (1), we have 
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Integrating by parts, taking 
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exp

)(
 for integration and rest of the 

integrand for differentiation, we get 
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Now dividing and multiplying by )(xf , we obtain the result as given in (20). 

For proving sufficient part, we have from (20) 

 )()()(
0

xfxgduufu
x

= .            

Differentiating on both sides with respect to x , we find that  

 )(')()()(')( xfxgxfxgxxf += . 

Therefore,  
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=   Ahsanullah et. al [24] 
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On integrating (21) both sides with respect to x , we get 
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Further, To obtain the value of C (constant of integration), we have used the property of pdf  that 

is 
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Thus, 
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which proves that 
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Remark 4.5.   Setting 1=  and 0= , Theorem 4.4 gives characterizing result for standard Gumbel 

distribution and for 0= , it gives the characterizing result for inverse Weibull distribution. 

Conclusion:  In this paper, we have presented the new results for the single and product moments 

of modified Fréchet distribution based on generalized lower record values. These results include 

some well-known results for standard Gumbel and inverse Weibull distributions as obtained by 
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Balakrishnan et al. [6] and Pawlas and Szynal [18]. Later, we established the characterizing results 

for this distribution by utilizing the relations for single and product moments and conditional 

expectation of a function of generalized lower record value, and using truncated moments. 
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