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Abstract

Regression Analysis is statistical technique to model data. But the presence of outliers and influential
points affect data modelling and its interpretation. Robust regression analysis is an alternative choice
to this. Here we made an attempt to study different robust estimators and propose a new robust
reweighted Sn covariance based regression estimator. We have evaluated the performance empirically
and the simulation study shows our proposed estimator is preferable to OLS and other robust regression
estimators in terms of the MSE criteria. Also, proposed robust Sn covariance regression estimator produce
outperforming results for regression equivaraince and breakdown criterion. Robustness of the proposed
estimator is proved empirically. The proposed method is innovatively used to model fluid data. R software
is used for simulation and study.

Keywords: robust Sn regression,influential observations, modelling,data analysis,

1. Introduction

One of the most essential statistical methods in data modelling is regression analysis. It helps in
the prediction of a link between the predictors and the response variable. All academic disciplines,
including social science, health science, engineering, physical science, and others, frequently use
it. Regression Analysis mainly rely on ordinary least squares method, which is very vulnerable in
the midst of the outliers. Informally outlier can be defined as those observations which lie out of
the place with respect to other observations in the data set. Thus, when there are polluted points
in the data set, robust regression was created as an improved and effective alternative to least
squares. There are numerous robust regression techniques; among them some are resistant too.
In this paper, we discuss about some of the mainstream and efficient robust regression techniques
for contaminated data in multiple linear regression models. Apart from that, multiple regression
can achieve efficiently through expressing classical normal equations in covariance matrix form.
In this paper, apart from discussing robust regression estimators, we propose a robust reweighted
regression based on Sn covariance matrix. The main inherent idea is to compare the techniques
using simulated data set, and determine the properties of the proposed estimator through vast
empirical simulations alone. Simulation is done and evaluated by using Monte Carlo technique.
Section 2 briefly describes about the OLS method, necessity of robust techniques and important
robust estimators developed over years and propose a new reweighted regression estimator based
on robust covariance matrix technique. Section 3 of this paper presents different simulation
methods for comparing proposed estimator and other robust regression estimators, along with
that, properties of the proposed estimator studied through wide simulation. Section 4 provides
the real life data application and conclusion of the paper.
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2. Ordinary Least Squares

Linear regression model is about estimating the parameter β ∈ Rp

yi = xiβ + ϵi i = 1, 2, 3..., n. (1)

where (xi, yi) ∈ (Rp, R) comprise the data and β is the p- dimensional unknown vector and ϵi are
unknown errors. The best-known estimator of β is the least square estimators obtained by:

min
n

∑
i=1

(yi − xiβ)
2

The least square estimators are very popular because of Gauss Markov theorem and very easy to
use. These classical estimators are the best when their assumptions are met by the data. Whenever
there are outliers in the data, OLS results in unstable estimate prediction and are renowned
for misbehaving. The data may contain outliers for a number of reasons, including incorrect
data entry, incorrect scoring, and unusual sample data. In regression, outliers can be classified
according to their location and effect. Observations would be unusual with respect to y values
or x values. They are categorised as outliers, leverages and influential points based on how
they affect the model. The impact of these observations depends on the location where they
occur. Extreme values in the predicted variables are called as leverages. Leverages measure
how far an independent variable deviates from its mean. The direction of the distance between
the remaining data points is not taken into account by leverages. Leverages do not affect the
estimates of the regression coefficients. It affects the model summary statistics, standard errors
of regression coefficient etc. Influential points are those points with unusual x coordinate and
the unusual y value. The regression coefficients are noticeably affected by influential points.
Influential points pull the regression model in its direction. Outliers in either the x or y directions
constitute a significant hazard to least square estimators. Statistical or graphical methods can
be used to identify outliers. Mahalanobis distance is a statistical procedure used to locate the
outliers in the x direction. We cannot say Mahalanobis distance as a perfect method, as it fails
to detect the outliers in y direction. Other statistical outlier diagnostics works on the idea of
erasing one observation at a time and recalculates the regression coefficients; they are called as
regression diagnostics, in which diagnostic quantities are obtained using the data with aim of
identifying influential points. Following the identification, they are either eliminated or corrected,
and then the least squares analysis is performed. As a result, such statistics estimate the change in
regression coefficients that would occur if a single observation were removed following analysis.
These statistics are also known as deletion statistics, useful for pinpointing influential points.
Cook distance, Studentised residuals, DFFITS, DFBETAS and Jacknife residuals are some of
such deletion statistics. Calculation of these diagnostic statistics become complicated when
there are multiple unusual observations. Robust regression estimation is alternative strategy
for handling outliers. Robust methods aim to create estimators that are immune to outliers.
Diagnostic tools remove outliers before fitting the data using the least square approach, whereas,
Robust regression, on the other hand, fits a regression model to the great majority of the data
before identifying outliers as regions with substantial residuals. The breakdown point, concept
of bounded influence and relative efficiency are ideas that are pertinent to the study of robust
regression. The presence of single outlier can completely invalidate the OLS estimator. Contrast
to it; we will see estimators that can handle certain percentage of outliers. This particular concept
is called as breakdown point and [3] provided the first explanation of a breakdown point.It’d
only evaluate location in a single dimension.Also,[5] provided broad description of braekdown,
but it was highly mathematical in nature and asymptotic.It was [4], suggested a limited sample
version of breakdown point.
For a sample Z of n observations,

Z = (x11, ..., x1p, y1), ...., (xn1, ....xnp, yn)
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Let T represents a regression estimator. When T is applied to such a sample, the result is a
regression coefficient vector as T(Z) = β̂. Let j of the sample data points swapped by arbitrary
values and call them as corrupted sample Z

′
. The maximal bias generated by such contamination

is then calculated as:
bias(j; T, Z) = supZ′ ∥T(Z

′
)− T(Z)∥,

Where the supremum is over all possible Z′. If the bias is infinite, j outliers have a significant
impact on the estimator. Thus, breakdown of the estimator T at the sample Z is defined as

ϵ∗n(T, Z) = min(
j
n

; bias(j; T, Z) is in f inite).

Or the least amount of contamination that an estimator can tolerate is known as the breakdown
point. The breakdown point of ordinary least estimator is ϵ∗n(T, Z) = 1

n . That is, even the presence
of single outlier in the data set can affect least square estimators.

2.1. Proposed Method

OLS estimator can express as solution to 2 proposed by [8] in the following way. Let z = (x, y)
be the joint variable of independent and dependent variables. Letµ be the location and Σ be the
scatter matrix of z. Partitioning µ and Σ yields the notation

µ =

(
µx
µy

)
and Σ =

(
Σxx Σxy
Σxy Σyy

)
(2)

Generally the estimates µ̂ and Σ̂ are estimated in empirical way.The least square estimates of β
and α can be written as function of µ̂ and Σ̂,namely,

β̂ = Σ̂−1
xx Σ̂xy, α̂ = µ̂y − β̂T µ̂x. (3)

Major drawback of the above mentioned estimators is, classical estimators of location and scatter
are sensitive to the presence of the outliers. Robustification of the classical estimators of scatter
and location improve the performance of the estimators and [9] in their paper proposed a robust
method for detecting multiple outliers and thus robust covariance matrix estimation in multidi-
mensional data set denoted as Sn method. Another objective of our paper is to propose a robust
reweighted regression estimator based on Sn covariance estimator in equation (4). In this paper
the performance of the proposed robust reweighted Sn regression estimator of the joint variable z
is evaluated and studied through empirical simulations. The performance and properties of the
estimator is investigated through wide range of simulations and Mean Squared error is used to
compare the performance of proposed estimator with other estimators in different scenarios.
Let X = X1, X2, X3, . . . ., Xp be a n × p matrix of size n and p being the number of variables. The
robust covariance matrix based on Sn method of the matrix X is defined as:

Sn(Xi, Xj) = medimedj ̸=i[(xi − xj)(yi − yj)] , i, j = 1, 2, 3, ...p, (4)

where med is an abbrevation for low median ([ n+1
2 ]th order statistic ). Inner median will be taken

up by [n/2]th order statistic for odd value of n. The corresponding correlation matrix of equation
4 is defined as:

δSn(X) = DCOVSn(X)Dt (5)

where D is the diagonal matrix with diagonals 1/Sn(xi), i = 1, 2, 3, .., p. Here Sn(xi) is nothing
but robust scale estimator of univariate random variable X and is defined as,

Sn(X) = 1.1926 medi medj|xi − xj|

The covariance matrix mentioned in equation 4 is non-positive semi definite and [7] in their
paper describe procedure to solve non positive semi definite and obtain positive semi definite
and approximately affine equivariant estimators. The following steps provide us positive semi
definite dispersion matrix and robust estimates:
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• Let ej be the eigen vector corresponding to the eigen value λj of correlation matrix δSn . Let
E be p × p matrix with columns ej for j = 1, 2, . . . , p.

• Let R = D−1E and zi = R−1Xi and Z be an orthogonalised matrix with rows zT
i (i =

1, 2, 3 . . . .n) and columns Zj(j = 1, 2, . . . , p).
The resulting robust Sn estimate of location and scatter is defined as:

µ̂Sn = Rv and Σ̂Sn = RΓRT (6)

where v = (med(Z1), med(Z2), ..., med(Zp))Tand Γ = diag(Sn(Z1)
2, ..., Sn(Zp)2). Here med

stands for median and Sn is the univariate robust scale estimate. The process can be iterate to
enhance the estimates by replacing covariance estimator used in equation 5 with above Σ̂Sn . Let
us call the robust estimator 6 of location and scatter as initial Sn estimator of z. The associated
robust squared Mahalanobis distance of each observation zi is defined as The resulting robust Sn
estimate of location and scatter is defined as:

RD(zi) = (zi − µ̂Sn)
tΣ̂−1

Sn
(zi − µ̂Sn)

Robust Mahalanobis distance is an efficient outlier detection method. Let wi be a weighted
function based on the above Mahalanobis distance defined as wi = w(RD(zi)).The reweighted
estimators take over the robustness properties of initial estimators with increasing their efficiency
([6]). Therefore the reweighted Sn location and scatter matrix be obtained as:

µ̂wSn =
∑n

i=1 wizi

∑n
i=1 wi

and Σ̂wSn =
∑n

i=1 wi(zi − ˆµwSn)(zi − ˆµwSn)
T

∑n
i=1 wi

. (7)

The weights above are computed as wi = w(RD(zi)) = I(RD(zi) ≤ c), which assign weight 1 to
the zi for i = 1, 2, .., n, where

c = χ2
0.95,p if p < 15

χ2
0.95,pmed(rd1, ...rdn)

χ2
0.5,p

if p ≥ 15 (8)

Based on µ̂wSn and Σ̂wSn we obtain β̂wSn and α̂wSn the robust reweighted Sn regression estimator
defined as:

β̂Sn = (Σ̂wSn)
−1
xx (Σ̂wSn)xy and α̂Sn = (µ̂wSn)y − (β̂Sn)

T(µ̂wSn)x. (9)

The efficiency, breakdown and affine equivariant property of the proposed estimator 9 is evaluated.

3. Simulation Study

Simulation study is done to evaluate the performance of the proposed robust reweighted Sn
regression estimator. And the results are compared with ordinary least squares and some of the
other robust regression estimators like: LTS, LMS, S, and MM estimator. The simulations are
done in R and all the values are reported in tables at the end of the paper. Consider the linear
regression model form:

y = α + Xβ + ϵ

where X is n × p matrix, β = (β1, .., βp)T is the unknown regression coefficient vector of size
p × 1,α is the unknown intercept of the model and ϵ is the i.i.d error term and are independent
from X. The X variables are distributed as N(0p, Ip), where Ip is the p- dimensional identity
matrix. Following sets of dimensions and sample sizes are considered in this study respectively:
p=5, 10, and 20 with n=50,100,500. The simulations are repeated 1000 times and each time
parameter estimates are noted.
Mainly three simulation scenarios, as that found in the literature [2] are considered here.
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• The dependent variable is generated from standard normal distribution with corresponding
regression coefficients including intercept equals zero, and standard normal errors are
considered [NES].

• The dependent variable is simulated from t distribution with 3 degrees of freedom with
corresponding regression coefficients including intercept equals zero and heavy tailed errors
(t distribution with 3 degrees of freedom) [HTS].

• Regression with normal error, some percentage(δ) of randomly selected observation in
independent variable replaced as N(λ

√
χ2
(0.99,p), 1) and the dependent variables were re-

placed as N(k
√

χ2
(0.99,1), 1)where λ,k=0.5,1,1.5,2,3,5,7,8,10. The percentage of contamination

considered in this scenario is 10% and 20%.

3.1. Efficiency

It is a well-known fact that ordinary least squares have maximum efficiency under normal errors.
Thus under normal error case, the efficiency of each robust method is calculated relative to OLS.
Let Φ = (βT , α)Tbe the joint vector of regression parameters, intercept and slope. Dimension of Φ
is (p + 1)× 1. The finite efficiency for the joint estimator Φ̂Re of a robust method (Re) is defined
as:

E f f =
1/1000 ∑1000

i=1 ∥Φ̂i
OLS − Φ∥2

2

1/1000 ∑1000
i=1 ∥Φ̂i

Re − Φ∥2
2

Table1 exhibit the simulated efficiency of Φ̂, of proposed robust reweighted Sn estimator and
other robust regression estimators, with respect to the classical least square estimator, under
normal error scenario described above. In the table, bold letters in each row represents the highest
efficiency and italic letters represent the lowest efficiency. Estimators with higher efficiencies are
represented in bold and lowest efficiencies are represented in italics. Among the estimators under
consideration, proposed reweighted Sn estimator exhibits highest efficiency throughout all the
randomly chosen dimensions and sample size considered. MM estimator also possesses efficiency
greater than 90% in some of the cases under consideration. Among the estimators LMS perform
poorly. The proposed estimator has highest efficiency for all randomly chosen sample sizes and
dimensions considered.
In the second scenario, we are considering heavy tailed error distribution. Thus least square
estimators cannot be maximum efficient estimator. Hence we consider the Mean Squared Error of
the estimators instead of E f f . The table 2 results shows that proposed estimator out perform
in all scenarios with mean squared error lower than other estimators. Also, as the sample size
increases the mean squared error decreases for all the robust methods.

3.2. Robustness

To study the robustness, simulations accordingly in third scenario [CS] defined above are carried
out. Here we have randomly considered different dimensions (p=5 and 10) with sample size
(50 and 500). The criteria used here to compare the different estimators is mean squared error
of the estimated joint parameter vector Φ̂, averaged over 1000 simulation runs, similar criteria
considered in [2].Tables 3 to 9 below shows the maximum (across λ and k) MSE for both estimated
intercept and slope for different combination of dimension and sample size. We are considering
the maximum value of mean squared error obtained over all considered k values, for each value
of lambda.

i.e.MSEλ(.) = maxkϵ[0.5,1,1.5,2,3,5,7,8,10]MSEλ,k(.)

Lowest value of MSE in each row is notated in bold letter in the tables.Tables 3 to 9 gives MSEλ(.)
of different robust estimators and proposed estimator. Among the values, proposed estimator
shows minimum MSE in all cases considered. For higher dimensions, proposed estimator possess
very low MSE than other estimators, even when percentage of contamination increases, proposed
estimator shows low MSE and consistently maintain low error throughout different level of
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contamination. Here we can see for same dimension, when number of observations increases,
mean squared error of reweighted Sn estimator decreases. Thus the performance of proposed
estimator increases with increase in the number of observations. Proposed estimator out perform
in all the scenarios constantly. MM and S estimators mainly collapse for λ,k =0.5, 1, 1.5, 2, 3 of
contamination. And for other values of (λ,k), MM and S estimators perform moderately with MSE
values mostly greater than proposed estimator. LTS and LMS estimators performs consistently
for all values of λ,k, but the mean squared error obtained is higher than proposed estimator
in all scenarios. Among all the scenarios, OLS possess highest mean squared error than other
estimators.

3.3. Breakdown Property

The breakdown point evaluates the maximum percentage of outliers an estimator can tolerate.
50% is the highest breakdown value an estimator can attain. Even though high contamination
level occurs rarest of rare in general, here we propose to study the performance of the estimators
in extreme contamination and evaluate the consistency in their performance. It has shown that
repeated median regression estimator has 50% asymptotic breakdown point through simple
mathematical induction by [11] . The same lemma quoted in [11] is applicable for reweighted
Sn estimator, since the estimator is nothing but nested median of observations. For this, a
criterion [CS] is used with percentage of contamination 30%, 35%, 40%. Dimensions consid-
ered here are 5 and 30. And we consider the maximum MSE across all combinations of λ,k.
i.e.MMSE(.) = maxλϵ[0.5,1,1.5,2,3,5,7,8,10]MSEλ(.). The results are shown in table 10.
In general, robust estimators like LTS, S, and MM have high breakdown point, but their compu-
tations are challenging. In all these mentioned methods regression estimators are obtained by
resampling algorithm. Resampling algorithms are used to obtain number of subsamples, and then
robust regression estimators are obtained by making use of an initial high breakdown estimator.
Thus all these established methods depend purely on number of subsamples and initial estimates.
Reweighted Sn estimator proposed here is not dependant on resampling and initial estimates.
Also, proposed estimator possess high empirical breakdown even to large contamination and
higher dimension.
Based on all simulation results, we can observe that all robust estimators, except our suggested
estimator, have a constant increase in mean square error value, which reaches a maximum as
the fraction of outliers in the vertical direction reaches a maximum for a certain lambda value.
Although both MM and S estimators are stated to have a high breakdown, S estimator performs
poorly as the dimension of the variable grows. MM estimator could be consider to be as reason-
ably good robust estimator, shows low MSE among other established robust estimators. However,
the MSE of MM estimator is much higher than that of proposed reweighted Sn estimator. As
the percentage of outliers in the data increases, LTS perform poorly. Even though LTS has a 50%
breakdown point, the performance of LTS estimator depends merely on the correct choice of
tuning constant h, here we used default value h=0.5. Throughout various levels of contamination,
our suggested reweighted Sn estimator consistently maintains a low MSE. Also, even in higher
dimensions, the proposed estimator has a lower MSE than other well-known robust estimators,
indicating that proposed estimator is more resistant to large numbers of outliers, which can be
termed as high empirical breakdown point.

3.4. Equivariance Property

Rather than theoretical goodness, practical usefulness of an estimator is determined by equivari-
ance, breakdown and robustness properties. These three qualities are considerable properties of a
regression estimator and discussed in our paper. Breakdown property is described in the above
section. For regression estimators three types of equivariance are considered:

1. Regression equivariance is defined as: if we transform the dependent variable by adding a
linear function of independent variables, is equal to adding the coefficients of this linear
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function to the estimators.

2. y- equivariance is defined as, if the dependent variable is transformed linearly, then the
estimators get transformed in the same manner.
Let Φ̂(X, Y) = (β̂T , α̂)T , where X is n × p matrix and Y is n × 1 matrix. Then (1) and (2) can
be combined to form: Φ̂(X, Yb + Xg + u) = Φ̂(X, Y)b + (gT , u)T , where bϵR, a non-zero
constant, g is p× 1 vector and uϵR is any constant. Keeping X as same and transforming the
dependent variable as Yb + Xg + u, then the resulting estimator would be: β̂new = b(β̂) + g
and α̂new = bα̂ + u.

3. x- equivariance is defined as, if the independent variables are linearly transformed, then the
equivalent transformed estimator is: Φ̂(XA, Y) = (β̂T(A−1)T , α̂)T .

That is, if the independent variables are transformed as XA, with a non-singular p × p matrix A,
the resulting new estimators are β̂new = A−1 β̂and α̂new = α̂.It is not possible to explore available
transformations, so, [7] and [10] proposed in their papers, to generate A matrices randomly for
the purpose of checking x-equivariance as A = TD, where T a random orthogonal matrix and D
is a p × p diagonal matrix with diagonal entries are independently and uniformly distributed.
The methods outlined above are employed in our paper to investigate the suggested estimator’s
equivariance property. When the above mentioned transformations are performed on simulated
data sets, the MSE of the suggested estimator is examined. Here we consider two dimensions,
p=5 and p=30. Also, we consider contaminated scenario [CS] with contamination of 10% and 20%.
First the estimator is applied to untransformed data and the estimator obtained Φ̂Sn is recorded.
The above mentioned transformed data is then used to estimate x-equivariance, y-equivariance,
regression equivariance, and the resulting new estimator Φ̂Snnewis stored. The MSE is calculated
between Φ̂Snnew and estimator value which has to be obtained if the above properties hold. The
estimator consistently performs and maintains low MSE. Even when the contamination increases
with increase in dimension, the estimator exhibits low MSE. Low MSE indicates that the model
can be predicted more accurately. The suggested estimator is essentially affine equivariant since
the model’s error is managed and kept low.
Table 11 shows MMSE results for x- equivariance. From the table, we can see that the error
remains controlled and low for varied proportion of vertical outliers and leverage points. The
error value increases as the dimension increases, but in a regulated manner. The suggested
estimator is nearly x-equivariant since the errors are controlled.
Table 12shows the MMSE for y-equivariance and regression equivariance. The mean square error
remains very low throughout for different proportion of vertical outliers and leverage points. Also,
we can see mean square error shows decreasing pattern as dimension increases. Though mean
square error increases with increase in the percentage of contamination level, the increments are
very small and close to zero. As a result, we can state that the mean square error is well-controlled
and kept to a minimum in all scenarios evaluated. Thus the proposed estimator is approximately
y-equivariant and regression equivariant. We have empirically demonstrated three equivariance
features using simulated samples with contamination at various degrees and dimensions.

4. Real life data application

4.1. Fluid Dynamics

A substance capable of flowing is termed as a fluid. Fluids are of two types, namely liquids and
gases. The study of fluid’s behaviour at rest (termed fluid statics) and in motion (termed fluid
dynamics) is jointly known as fluid mechanics. Many real-world applications, including cancer
treatment, car radiators, air conditioning, refrigeration, microwave ovens, blow moulding, and
petrochemical processing, heavily rely on heat and mass transmission. Through extensive studies
scientists have been successful in improving these transmission qualities. Choi and Eastman were
the first to notice that the introduction of nano sized particles in a conventional fluid was able to
bring a significant improvement in these transmission qualities. Internal heat sources play an
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important role in various heat transfer applications.
For its vital role in photo thermal and photodynamic therapy, the dynamics of water-based TiO2
nano liquid over an elongated nonlinear surface was elucidated by [1]. The flow problem was
modeled using partial differential equations which were solved using finite-difference based bvp5c
technique with the help of apposite similarity transformations. Further, the authors employed
response surface methodology and sensitivity analysis to elucidate the heat transfer rate for
the consequence of magnetic field (0.5 ≤ M ≤ 1.5), thermal radiation (0.5 ≤ Rd ≤ 1.5) and
exponential heat source (0.2 ≤ QE ≤ 0.4). The optimal heat transfer rate was observed when
M=0.5,Rd =1.5, and QE =0.2.
Recently, researchers have examined the influence of effectual parameters on the engineering
quantities using statistical methods like regression analysis, and response surface methodology.
By establishing a quantitative relationship between the independent (relevant characteristics) and
dependent (physical process of interest) variables, the inclusion of these statistical techniques
tends to broaden perception. Typographical errors while handling such data is a possibility,
owing to those outliers could occur in such datasets, which should be tackled scientifically.
In this paper, the fluid data for conducting multiple linear regression analysis has been derived
from Areekara et al. The derived data has been analyzed using proposed regression estimator
along with other robust regression estimators. The data consist of 20 observations with three
independent variables and one independent variable. Initially we analyze the performance in
original data without outlier and then we conduct the same procedure by replacing 10th and
19th observation into outliers. The results are reported in tables 13 and 14 below.Proposed
estimator performs in normal scenario and outlier injected data as that of other existing robust
estimator like MM, S estimators. We have also reported the OLS estimated values, from which
it is clear that classical method fails in the performance of outliers. Also, LTS, LMS regression
methods fail to perform in these data sets due to their computational complexity. Thus we have
shown in our paper that, for conducting linear regression analysis in such fluid data sets, it is
always better to use robust regression methods; even there are no outliers in the data set. Also,
proposed estimator works well even without outliers in the datasets. In this paper, the fluid data
for conducting multiple linear regression analysis has been derived from Areekara et al. The
derived data has been analyzed using proposed regression estimator along with other robust
regression estimators. The data consist of 20 observations with three independent variables and
one independent variable. Initially we analyze the performance in original data without outlier
and then we conduct the same procedure by replacing 10th and 19th observation into outliers. The
results are reported in tables 13 and 14 below.Proposed estimator performs in normal scenario
and outlier injected data as that of other existing robust estimator like MM, S estimators. We have
also reported the OLS estimated values, from which it is clear that classical method fails in the
performance of outliers. Also, LTS, LMS regression methods fail to perform in these data sets
due to their computational complexity. Thus we have shown in paper that, for conducting linear
regression analysis in such fluid data sets, it is always better to use robust regression methods;
even there are no outliers in the data set. Also, proposed estimator works well even without
outliers in the datasets.

4.2. Belgian Phone Call Data

Belgian phone calls data was published by Belgium Statistical Survey and [[6]] used the data
in their work. The data consists of annual count of international calls from Belgium during the
period 1950 to 1973. The data comprise of two variables, the year (X) and the number of call
received (Y). The data contains six outliers in Y direction. From the table 9 below, it is clear
that, OLS provides highly misleading estimates in the presence of anomalies. Also, M and LMS
performances are not remarkable. MM, S and LTS don’t exhibits remarkable performance in
outlier detection and in providing estimates. Among them, Sn estimator detects the outlying
observations as (15th, 16th, 17th, 18th, 19th, 20th, and 24th observation) and MM estimator detects
outlying observations as (15th, 16th, 17th, 18th, 19th, 20th, and 21st observation). Thus, proposed
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estimator performs well and detects outliers correctly as that of MM estimator and it can be
considered as an add-on to the covariance based regression method.

5. Conclusion

Classical regression analysis is very sensitive to the presence of contaminated observations.
Several robust alternative methods are available in the literature. In this paper, we propose
an improved robust reweighted Sn regression estimator. Here we are proposing a new robust
regression technique using alternative form of OLS. We propose a new robust reweighted robust
Sn regression estimator. The properties and performance of our proposed estimator are inferred
through wide range of empirical simulation methods. Also, the performance of proposed
estimator in fluid dynamics data and Belgian phone call data is evaluated. Proposed estimator
exhibit a consistent performance in all the cases considered. The robustness property, affine
equivariance and breakdown property of the proposed estimator is compared with OLS, MMS,
LTS, LMS, S estimators using simulation study. And in all scenarios considered, proposed
estimator outperforms other existing robust estimators. The results are tabulated below. Although
many robust regression estimators have already been proposed in the literature, we could add
proposed estimator to the list of available regression estimators, since proposed estimator exhibit
excellent performance than other estimators. A thorough comparison has done and we can
conclude that proposed estimator possess high breakdown, robustness equivariance property.
Also, the proposed estimator is suitable for multiple regression estimation and is a good alternative
to the classical estimator. Developing theoretical properties of the proposed estimator is the future
aim of our work.

Table 1: Table showing efficiency in case of Normal error scenario

p n Sn MM S LTS LMS
5 30 0.9684 0.9309 0.2813 0.6708 0.0873

50 0.9286 0.9228 0.2814 0.4639 0.1797
100 0.9235 0.8951 0.2312 0.5166 0.1299
500 0.9857 0.9309 0.2728 0.7414 0.0509

10 50 0.9466 0.9832 0.2520 0.6917 0.0292
100 0.9429 0.8461 0.2888 0.4819 0.1211
500 0.9852 0.8706 0.1992 0.6314 0.0315

1000 0.9283 0.9321 0.2123 0.7119 0.0163
30 100 0.8751 0.7409 0.2617 0.7157 0.0033

500 0.9628 0.8706 0.1992 0.6314 0.0315
1000 0.9335 0.9321 0.2123 0.7119 0.0163
5000 0.9817 0.7409 0.2617 0.7157 0.0033
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Table 2: Table showing the MSE in case of t tailed error distribution

p n Sn MM S LTS LMS
5 30 0.4530 0.5326 1.1059 0.9081 2.0202

50 0.2429 0.2501 0.5465 0.3708 0.8954
100 0.1083 0.1192 0.2059 0.1391 0.4232
500 0.0196 0.0203 0.0349 0.0224 0.1449

10 50 0.5387 0.5307 2.3917 0.8783 2.4023
80 0.2996 0.3984 0.6684 0.3959 1.3699

100 0.2111 0.3667 0.4762 0.2979 0.9966
500 0.0396 0.1467 0.0629 0.0421 0.5392

30 100 0.3448 0.8933 2.2357 1.2430 6.2807
150 0.4834 0.5339 0.8678 0.6666 4.2174
500 0.0254 0.0971 0.2479 0.1269 3.2732

Table 3: Table 3(1) showing MSEλ(.) for n=500,p=5,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.1595 2.7088 1.7421 0.4396 0.8785 91.915

1 0.1158 2.2949 1.8572 1.7479 1.0189 37.916
1.5 0.1166 1.7354 1.8309 1.7042 1.0428 18.686

2 0.1158 2.6151 2.6478 1.8624 1.0528 10.881
3 0.1114 2.7446 2.5763 1.8506 1.0556 4.9069
5 0.1139 1.7846 1.8011 2.6581 1.0500 1.7826
7 0.1122 0.9074 0.9328 2.4172 1.0560 0.9135
8 0.1142 0.6917 0.7117 2.6076 1.0563 0.6882

10 0.1162 0.4473 0.4600 1.8004 1.0519 0.4438

Table 4: Table 3(2) showing MSEλ(.) for n=500,p=5,δ=20%

λ Sn MM S LTS LMS OLS
0.5 1.6434 7.3536 7.4798 7.5241 1.0062 134.02

1 0.1488 10.669 9.9103 9.7256 1.0749 42.848
1.5 0.1216 10.811 9.7874 9.7707 1.0882 19.762

2 0.1217 7.2620 10.175 10.198 1.0854 11.196
3 0.1209 4.9965 5.0651 5.0491 1.0857 4.9839
5 0.1169 1.7835 1.8156 1.8243 1.0707 1.7938
7 0.1195 0.9116 0.9263 0.9398 1.0579 0.9109
8 0.1207 0.4474 0.7124 0.7150 1.0662 0.6961

10 0.1153 0.4455 0.3032 0.3072 1.0812 0.4463

Table 5: Table 3(3) showing MSEλ(.) for n=50,p=5,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.6232 3.0231 2.8642 3.2983 1.1107 99.802

1 0.4038 2.6021 2.8603 3.0759 1.1709 38.799
1.5 0.3998 2.6271 2.7735 3.4003 1.1968 18.827

2 0.3867 2.6629 2.8132 3.6539 1.1950 11.005
3 0.3904 2.8386 2.7222 3.3677 1.2375 4.9652
5 0.3834 1.6583 1.7868 1.6814 1.2058 1.8273
7 0.3945 0.9234 0.6863 0.9836 1.2035 0.9278
8 0.3804 0.7253 0.8329 0.7483 1.1877 0.7016

10 0.3995 0.4704 0.5515 0.5209 1.1998 0.4827

     RT&A, No 2 (73) 

  Volume 18, June 2023 

475



Lakshmi R, Dr. Sajesh T A
Robust Sn Covariance Regression

Table 6: Table 3(4) showing MSEλ(.) for n=50,p=5,δ=20%

λ Sn MM S LTS LMS OLS
0.5 1.1457 11.154 12.784 18.499 99.802 139.16

1 0.4178 12.066 12.407 18.179 38.799 42.948
1.5 0.4215 12.643 12.710 20.576 18.827 19.915

2 0.4124 10.342 10.441 11.408 11.005 11.268
3 0.4169 5.0657 5.2375 5.2001 4.9652 5.0114
5 0.4113 1.1892 1.8959 1.8915 1.8273 1.8074
7 0.4014 0.9862 1.0382 0.9977 1.5036 0.9311
8 0.4133 0.7476 0.8552 0.8458 1.1879 0.7362

10 0.4158 0.3324 0.6009 0.5703 1.1999 0.4736

Table 7: Table 3(5) showing MSEλ(.) for n=50,p=10,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.4056 6.8755 7.5017 8.4836 1.1244 1.0269

1 0.4073 7.8391 7.6248 9.9929 1.1958 1.1821
1.5 0.4216 7.8541 7.1342 9.2994 1.2212 12.714

2 0.3726 6.2529 6.1745 6.6639 1.2174 7.1902
3 0.3356 3.6121 3.2540 3.2603 1.2399 3.2836
5 0.3475 1.2000 1.2886 1.2639 1.2546 1.1877
7 0.3509 0.6345 0.4943 0.6841 1.2516 0.6207
8 0.3512 0.4756 0.5748 0.5516 1.2623 0.4852

10 0.3568 0.3197 0.2922 0.3760 1.2248 0.4229

Table 8: Table 3(6) showing MSEλ(.) for n=50,p=10,δ=20%

λ Sn MM S LTS LMS OLS
0.5 0.7139 42.630 37.898 7.5892 1.1537 108.34

1 0.4418 28.875 28.031 7.1634 1.1952 28.931
1.5 0.4239 13.086 13.160 7.2613 1.2349 12.923

2 0.4079 7.4023 7.5233 6.2072 1.2334 7.2643
3 0.4008 3.3492 2.2409 3.1659 1.2526 1.5981
5 0.4797 1.2284 1.3222 1.2963 1.2698 1.1756
7 0.4125 0.6363 0.7376 0.7444 1.2424 0.6244
8 0.4533 0.5037 0.4316 0.5726 1.2968 0.4769

10 0.4229 0.2499 0.4273 0.3948 1.2854 0.3298

Table 9: Table 3(7) showing MSEλ(.) for n=500,p=10,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.1655 4.0859 4.5578 0.2901 1.0055 90.827

1 0.1626 5.8239 4.5036 1.1616 1.0425 27.440
1.5 0.1598 5.9110 5.3589 2.6196 1.0638 12.582

2 0.1603 5.8077 4.6791 4.5252 1.0524 7.1467
3 0.1618 3.1899 3.2266 2.6401 1.0529 3.1912
5 0.1622 1.1576 1.1758 4.6335 1.0474 1.1535
7 0.1612 0.5905 0.4584 5.3122 1.0526 0.5885
8 0.1558 0.4490 0.3022 4.5747 1.0559 0.4499

10 0.1589 0.2865 0.3001 4.6989 1.0422 0.2879
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Table 10: Table.4 showing the MMSE(.)for checking breakdown property

Method 5 30
δ=30 % δ=35 % δ=40 % δ=30 % δ=35 % δ=40 %

OLS 12.438 12.721 12.934 8.6068 10.133 11.681
Sn 0.5108 1.5456 1.7754 0.9073 1.0807 2.1518
MM 6.3341 9.2566 6.1267 7.4952 9.2222 12.584
S 6.8982 8.6637 13.662 36.451 34.157 30.675
LTS 47.399 48.661 206.54 886.55 1055.6 1033.1

Table 11: Table 5 showing the MMSEλ(Φ̂Snnew) for checking x-equivariance

p=5 p=30
λ δ=10% δ=20% δ=10% δ=20%

0.5 0.01953 0.03739 0.10566 0.13301
1 0.05469 0.03865 0.29562 0.32564

1.5 0.03992 0.03566 0.11913 0.17027
2 0.03909 0.01530 0.13167 0.25173
3 0.03842 0.01900 0.16799 0.28351
5 0.03488 0.03279 0.16283 0.18638
7 0.03771 0.03911 0.19997 0.25546
8 0.01948 0.03119 0.10239 0.10734

10 0.02028 0.02552 0.12871 0.27826

Table 12: Table.6 showing the MMSEλ(Φ̂Snnew)for checking y-equivariance and regression equivariance

p=5 p=30
λ δ=10% δ=20% δ=10% δ=20%

0.5 0.00319 0.00216 0.00067 0.00276
1 0.00145 0.00173 0.00013 0.01238

1.5 0.00102 0.00814 0.00039 0.01591
2 0.00056 0.00139 0.00039 0.00005
3 0.00109 0.00135 0.00050 0.00073
5 0.00178 0.00106 0.00141 0.00077
7 0.00021 0.00020 0.00024 0.00038
8 0.00012 0.00062 0.00064 0.00082

10 0.00011 0.00000 0.00438 0.00034

Table 13: Table 7 showing output of fluid data without outlier

Sn OLS MM S LMS
β0 1.1056 1.9304 1.8018 1.7995 2.0497
β1 -0.1617 -0.1614 -0.1036 -0.0899 -0.2098
β2 0.5713 0.5711 0.6274 0.6297 0.5077
β3 -2.1968 -2.1954 -2.2016 -2.2424 -2.2676

Table 14: Table 8 showing output of fluid data with outliers

Sn OLS MM S LMS
β0 1.1109 0.6438 1.95204 2.0321 1.7494
β1 -0.1547 0.0015 -0.1748 -0.2001 -0.1914
β2 0.5688 0.9332 0.5556 0.5163 0.6315
β3 -2.1839 0.2489 -2.2495 -2.2708 -1.7389
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Table 15: Table 9 showing results on Belgian Phone Call data

Method Intercept Coefficient of X MSE
OLS 58.566 0.587 78.1372
Sn 2.986 6.062 5001.829
MM 47.931 8.831 10041.74
S 48.060 8.894 10228.44
LTS 47.769 9.094 10717.14
LMS 48.439 8.658 9674.762
M 57.412 0.626 92.58984
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