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Abstract

In engineering applications and reliability literature, stress-strength models play a crucial role.
The goal of this study is to develop more accurate stress-strength models by addressing the
reliability estimation in multi-component systems with non-identical component strengths and
stress. In the context of lower record values, the system'’s reliability is assessed using both
classical and Bayesian approaches. In classical estimation, the maximum likelihood estimator of
the reliability function is constructed, and a simulation study based on measurements of
precision is used to assess the behavior of various estimates. The Bayesian estimators of
reliability under general entropy, logarithmic and precautionary loss functions are computed.
The suggested Bayesian estimates are calculated using the Markov Chain Monte Carlo method
through a simulation study because there is no one particular way to do it. We found through
simulated research that the accuracy of measurements decreases as the number of records rises.
The theoretical results are validated using an example from actual data sets.

Keywords: Exponentiated Pareto model; Lower record data; Bayesian inference;
General entropy loss function.
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1. Introduction

Record values are crucial when collecting observations is challenging or when they are lost
during experimental operations. Real-world problems needing destructive stress testing, industrial
quality control trials, and statistics on the weather, the economy, and sports all depend critically on
record values. Only observations that exceed or fall below the most recent extreme values are
recorded in this case. The total number of observations is frequently much lower than the overall
sample size and only successive severe items are measured. Suppose that {Ui,i ZLZ,...} is an

unlimited sequence of independent and identically distributed (iid). An observation Ui is called a
lower record value (LRV) if U; <U; foreach i< j.

The stress-strength (SS) model is a fundamental of reliability testing. When a stress Y
surpasses strength X , the SS framework R =P(X >Y) indicates the possibility of failure. In other

words, the system keeps functioning as long as the stress does not outweigh its ability. Reference
[1] was the author who initially presented this idea, and [2] later developed it. Many studies have
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addressed inferences based on various methods and distributional presumptions; for some recent
works, see [3-10].

To build a system with two or more components, the basic idea of R=P(X >Y) can be
changed. Reliability in a multi-component SS (MSS) model was first created in [11], who
investigated the MSS model under the assumption that C out of t system components, where,
(1<c <t) components survive a common random stress Y. The MSS is applicable to several
fields, including communications, logistics, military, and manufacturing operations. For
illustration, if only four of a car's eight cylinders are burning, it might be possible to drive the
vehicle. It can therefore be expressed as 4 out of 8: G system.

Assume that if ¢ (1<c<t) or more of the components cooperate, a system with t similar
components will function. In its operational setting, the system is subjected to a stress Y thatis a
random variable with cumulative distribution function (cdf) G ( y) . The component strengths, or

the minimal stresses necessary to manufacture failure, are iid random variables with cdf F (X),
then the reliability of the c-out-of-t system is represented by ‘R, which is developed in [12], is
given by:

R, = P[atleastcof (X, X,,... X,) exceedY |

=i[§jof[1— FOOTF (9™ dG ().

0

For various SS distributions and sampling procedures, many authors addressed the
estimation of reliability in MSS models based on different sampling scheme, for example, see [13-
19].

Due to the different topologies of system components, the assumption of comparable strength
distributions may not be feasible in many actual circumstances. With systems that have backup
components, this is frequently the situation. The strengths of different items, even those
constructed of the same material, can vary. For instance, heat treating metals to acquire desired
mechanical properties in the field of mechanics can lead to various types of breaking when the
metal is quenched or cooled. As a result, the strengths of the components vary. Another example, if
two different ropes are used to consolidate a rope, the tensile strengths of both ropes may not be
evenly distributed. A model that at least incorporates non-identical random strengths for system
components appears to be more realistic, see [20].

Assume a system has t components, of which t; are of kind 1, t, are of kind 2,..., and the
n-1

remainder t, =t—zti components are of kind N. Let F(.), i =1 2,..., n, be the cdf of the
i1

random strengths for components of the i# kind. Assume that Y is a common stress with cdf Q()

that all components are subjected to. The system will function as long as the c-out-of-the-t

components can resist the stress. Reference [21] presented the system reliability R, . . with

Co ot
non-identical component strengths as follows:

4
1

R = 2 z":[]l[[tj)ﬁ]l[(l—E(X))j‘(':i(x))t‘j‘dQ(x), (1)

B ey \ il 0 il
where summation ranges over all possible combinations (jj, j,...., J,) with 0< j, <t for
n
i=12 ..,nsuch c< Z Ji <t. Bach C; indicates the minimal number of components of the
i1

ith type that the system needs to function.

Considering the investigation of a system with two different sorts of components, the model
(1) can be expressed as follows:
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R =d > [tf }m [@-F00)H (F00) - F,(0)" (F(0)" 2dQ(9. @)

h=c j=c; \ 1
In order to construct more realistic models, The Bayesian estimation of R .  , assuming

the Weibull and exponential distributions on the strength and stress variates, respectively, was
taken into consideration in [22] and [23]. The exponentiated Pareto distribution (EPD) was used to

estimate R for non-identical MSS in [24]. Recently, [25] studied the case of non-identical

C,C
component-strengths from the family of Kumaraswamy generalized distributions under upper

record data. Reference [26] examined the estimation of R, ., . ~when component strengths and

stress follow inverse Lomax distribution based on complete sample. Reference [27] proposed the

estimation of R when component strengths and stress follow Weibull distributions under

.8t
generalized progressive hybrid censoring scheme.

It is important to note that the majority of the work on the estimate of the SS reliability
conducted to date requires to employ complete or censored samples and that record values are
rarely used. Particularly in the estimation of MSS systems of non-identical component-strengths,
we are interested in developing MSS models within the record scheme in the case of non-identical
component-strengths, where component strengths and stress follow an EPD. A maximum
likelihood estimator (MLE) of R_ . = 1is derived under LRV and a simulation study is

investigated. The general entropy loss function (GELF), the logarithmic loss function (LLF), and

the precautionary loss function (PLF) are used to derive the Bayesian estimator of R Since

C.Coly 1 "
these estimators are incapable of being reduced to simple closed forms, we use the Markov Chain

Monte Carlo (MCMCO) approach for Bayesian estimates of R . . . To show the relevance of our

work, we also examined real data sets.

The following is how the rest of the essay is presented. The formulation of R and

GGty !
its MLE under LRV along with a numerical analysis is provided in Section 2. Section 3 discusses
the Bayesian estimators of R_ . ., through GELF, LLF, and PLF. The MCMCO technique is

presented in Section 4. For the purposes of illustration, Section 5 includes real data sets. Final
remarks are included in Section 6.

2. Model Description and Classical Estimation of R, _,

In this section, a model description of R . . is provided. The MLE of R is obtained

in the presence of LRV. Numerical analysis is also carried out.

GGyt

2.1. Expression of R

SRR

Here, expression of R . . is provided when the strength and stress random variables

follow the EPD.

The EPD may be successfully used to assess numerous lifetime data sets, as argued in [28].
The EPD has a very flexible structure as a result of its decreasing or upside-down bathtub shape
failure rates depending on shape parameters. This property provides advantages for modeling
extreme events, particularly in hydrology. Furthermore, the EPD is a reasonable equivalent to the
exponential distribution because of its heavier or lighter tail features. A variety of lifetime data
might seem nice in the EPD. The EPD 's cdf is expressed by

F(x)=[1—(1 + x)“yT, x >0, y>0,6>0,

where 0 and y are the shape parameters. The associated probability density function (pdf) is
given by:
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f (x):&y[l—(l + x)”T—l(l +x)Y? x>0, y>0,5>0.

Several scholars addressed the EP's research and applications, for instance see [29].
From the total of ¢ system components in the model (2), let the first t; of first kind component

strengths follow EPD (,,), while the remaining t, =t —t, of kind 2 component strengths follow
EPD (y,0,) . Also, suppose that Y follows EPD (,5;) independently. The respective distribution

functions are as below:

Fi(X)=|:l—(l + x)ﬁTi , %, 7,06, >0,i=12, 3)
—y 1%
QW) =[1-(1 +y)" ] v.rn6,>0. @
By replacing F, F,, Q given in (2) by (3) and (4), the formula of ERcl o1, for such a system is as
follows:
qcztltz — Z Z[ J( JJ'(]_ (1 1 + X) )51)11(1 (1 + X) )51(t1 Jl)(l (1 (1 + X) )52)1'2
h=a J2=c, Jl -l

(1 X)) T ) e

Let Z =1—(1 +x)7, dz=y(1 + X)_y_1 then R, . . isas follows

T
1

J1=t1 J2=C2
Using the binomial expansion for (1—z*)* and (1—2z%)* leads to the following

1
o J. 251(m+t1*j1)+52 (n”z*jz)*&a*ldz

Q.Culyt, T T jmin 73

®)

jl,jz,m,n53

S (M4t —j)+S8,(n+t,—j,)+6,

h £ _ LU S N t1 tz jl j2 1)mn
where £, , 0= 2 S 33| G
J1=¢ jo=C, m=0n=0 Jl JZ m n

Note that expression (5) depends on the parameters J,, 0, and 0.

2.2. The MLE of R_ ., , under LRV

Gt

In order to find the MLE of ‘R based on LRV, we first need to obtain the MLE of the

C.Culytp
parametersd,, 6, and O, assuming J is given known. So, let L:{rl,,_,,rn} E:{pl""' pm}and
s={s,,...s,} be three independent sets of LRV of sizes 1, m, and w from EPD (y,d,), EPD (y,5,)
and EPD (y,0;) respectively. The likelihood function of the observed records, according to [30], is
defined by:
h(u;;
Luln) = h(ud)HH((' 77)) —0<Uy <...<U, <o (6)

Hence, the observed LRV data r, p and s, given 7, based on (6), are given as below:
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I—(LE’§|77) = L1(£|7/151) LZ(E | 7/!52) L3(§|7/,§3)
— 51n52m53w (7)n+m+w (1+ I,n)—(erl) (1+ pm )—(y+1) (1+ SW)—(erl) [Tn ]51—1

o T L[ @) A p) ) ?

< []a+s) )™

where 7; =1-(1+1)7, ¢ =1-(1+ pj)_y,and &, =1-(@+s,)7,i=L..,n, j=1..m,
u=1...,w.
Consequently, the joint log-likelihood function, denoted by In¢, is derived as:

In?=nIn(s,) + mIn(S,) + win(d,) + (n+m+w)In(y) —(y +DInL+r,)+In(L+ p,) +In(L+s,)

+(6, =1 In[z,]+ (6, —DIn[g, ]+ (5 -1)In[Z, ]- E[(}/ +DIn(+ 1) +In(z)]

ST nins p) +inte)] - S0+ DI 5) <G,

Given that y is a known, the following are the partial derivatives of In/ with respect to 1,5, and
03 respectively
olnt _n olnt m olnt w
=—+In[z,], —=—+In[p,], —=—+1In[g,].
06, o 00, 0, 00, 0,
Then, the MLEs of 61,02 and &, denoted by &1, 6, and 5, are obtained by setting 8In/(/a5,,
0In?/d5, and 0In’/05, to be zero. Hence 5,5, and &, are obtained as
-n A -m i -w
0, = 0y = .
In[z,] In[¢,] In[¢.]

Therefore, based on invariance property, we obtain the MLE of R

5= ®)

by inserting 51, 5,

GGl b

and 53 in (5) as follows
{i{ — Ejl,jZ,m,n 53
C,Ch b 3 - A . s’
é‘l(m—i_ti - Jl)+§2 (n+t2 - Jz)+§3

2.3. Numerical Study

The MLE for the MSS variables is thoroughly numerically analysed in this subsection. In order to
assess the accuracy of estimates for various parameter values and record numbers, two criteria are
used: absolute biases (ABs) and mean squared errors (MSEs). The numerical research is performed
in the following way:

Create LRV samples based on the parameter values provided.

The parameters values are selected as (d1,02,83)= (0.5,0.5,0.2), (1.1,0.5,0.2), (0.5,0.5,0.5) and

(1.1,1,0.2) for y = 1 in all situations. The specified values for c-out-of-t systems are (¢, C,, t;, t,) =
(1,1,2,2), (1,2,2,2), (2,1,2,2) and (2,2,2,2).

The true values at (C, C,, t, t,)= (1,1,2,2) are 0.533, 0.871, 0.758 and 0.809, at (C, C,, t,, t,)=
(1,2,2,2) are 0.3, 0.746,0.573 and 0.591, at (c,, c,, t,, t,)=(2,1,2,2) are 0.301, 0.760, 0.573 and 0.724, and
at (Cl, C,, 1, t2) =(2,2,2,2) are 0.2, 0.687, 0.477 and 0.562.

The sample sizes of LRV samples (n, m, W) are selected to be (2,2,2), (5,5,5), (7,7,7), (10,10,10),
(2,2,3), (5,5,6), (7,7,8) and (10,10,11).

5000 repetitions are used to evaluate the ABs and MSEs of R

GGyt
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The simulated outcomes are shown in Table 1 and are illustrated in Figures 1-6.

As the number of records increases, the MSEs of R

(Figure 1). For all true value of parameters, the MSE of R

(2,2,2,2) when the number of records n = m (Figure 2).

Mean Square Error

0.01
0.005
0
N N \ S
) \ \ N
Q’\» @\ \’\\/\\ S Qv
NS
M (0.5,0.5,0.2) m(1.1,0.5,0.2)
[¥(0.5,0.5,0.5) m(1.1,1,0.2)

Figurel: MSEs of R, . . for different (31,52,8)
values at (C,,C,,t,t,)=112,2) andn=m=w

e Figure 3 demonstrates that as the number of n, m and w increases, the ABs of R

actual values of (d1,02,83) are decreasing.

e Figure 4 illustrates that the MSEs of R
of R

GGt

a,Clit

for all values of (c,, C,, t,, t,) decrease

oo, decreases at (C, G, b, b)) =

Mean Square Error
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0.005 -~
0 .
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N
| (0.5,0.5,0.2) M (1.1,0.5,0.2)
[@(0.5,0.5,0.5) m(1.1,1,0.2)

for others values of (c, c,, t,, t,).

Figure 2: MSEs of R, . for different (31,52,)
values at (c,,C,,t,t,) =(2,2,2,2) and n=m

e, forall

at (c, ¢, t,, t,)=(2,2,2,2) are larger than the MSEs

Absolute Bias

C,C b
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0.1 A
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De A S
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H(0.5,0.5,0.5) m(1.1,1,0.2)

Mean Square Error

0.015
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m(2,2,2) M(555)

m(7,7,7)

m(10,10,10)

Figure 3: ABs of ‘j{c.,cz.u,tz for different (61,62,3)
values at (c,,C,,t,t,)=(1,2,22)and n=m=w

Figure 4: MSEs of %, for different (c,,C,,t,,t,)
values at n =m =w and (1, 62,53) = (1.1,0.5,0.2)

o Figure 5 illustrates that the MSEs of 8’\{(31:0211& at (Cl, C,, t, tz) =(1, 1, 2, 2) are smaller than the

MSEs of R

GGty

e Figure 6 illustrates that the MSEs of R

increases.

GGyt
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3(0.5,0.5,0.2) B(1.1,0.5,0.2) oW Y Y
1(0.5,0.5,0.5) m(1.1,1,0.2)
Figure 5: MSEs of %, . for different (31,52,83) and Figure 6: MSEs of ®, ., for (61,62,8)= (1.1, 0.5,0.2)
(c..c,.t,t,) values at n=m=w =7 atn=m=w =2

Tablel: Numerical results of R ., for different values of (41,52,33)

C.Cots

(61,82,63) =(0.5,0.5,0.2) (61,62,63)=(1.1,05,0.2)

Real Real
(cl,cz,tl’tz) e oo t,t, (nm,w) AB MSE (cl,cz,tlytz) ot (nm,w) AB MSE
(2,2,2)  0.0303 0.0009 (2,22) 00772  0.0060
(555)  0.0255 0.0006 (555)  0.0546 0.0029
(7,7,7)  0.0197 0.0003 (7,7,7)  0.0506 0.0025
(10,10,10)  0.0182  0.0002 (10,10,10) 0.0394 0.0015

1,1,2,2) 0.758 1,1,2,2) 0.809
(2,2,3)  0.0244 0.0005 (2,2,3)  0.0284 0.0008
(556)  0.0137 0.0002 (556)  0.0282 0.0007
(7,78)  0.0075 0.0001 (7,7,8)  0.0205 0.0004
(10,10,11)  0.0066 0.0001 (10,10,11)  0.0212  0.0004
(2,2,2)  0.0371 0.0013 (2,22)  0.0872 0.0076
(555)  0.0372 0.0013 (555)  0.0664 0.0044
(7,7,7)  0.0293 0.0008 (7,7,7)  0.0564 0.0031
12,22) 0.573 (10,10,10)  0.0233  0.0004 1,2,22) 0.591 (10,10,10)  0.0530 0.0028
(2,2,3)  0.0345 0.0011 (2,2,3)  0.0628 0.0039
(556)  0.0307 0.0009 (556)  0.0484 0.0023
(7,78)  0.0281 0.0007 (7,7,8)  0.0302 0.0009
(10,10,11)  0.0118 0.0001 (10,10,11)  0.0305 0.0009
(2,2,2)  0.0306 0.0009 (2,22)  0.0863 0.0074
(5,55)  0.0276 0.0007 (555)  0.0583 0.0034
(7,7,7)  0.0238 0.0005 (7,7,7)  0.0364 0.0026
(2122) 0.573 (10,10,10)  0.0210  0.0003 2122) 0.724 (10,10,10)  0.0202  0.0004
(2,2,3)  0.0233 0.0005 (2,2,3)  0.0303 0.0009
(556)  0.0162 0.0003 (556)  0.0285 0.0008
(7,7,8)  0.0128 0.0002 (7,7,8)  0.0272  0.0007
(10,10,11)  0.0115 0.0001 (10,10,11)  0.0264 0.0007
(2,2,2)  0.0978 0.0095 (2,22) 01046 0.0109
(555)  0.0530 0.0028 (555)  0.0794 0.0063
(7,7,7)  0.0317 0.0010 (7,7,7)  0.0770  0.0059
(10,10,10)  0.0305 0.0008 (10,10,10) 0.0619 0.0038
2,2,2,2) 0.477 (2,2,3)  0.0622 0.0038 2,2,2,2) 0.562 (2,2,3)  0.0705 0.0049
(5,56)  0.0437 0.0019 (556)  0.0629 0.0039
(7,7,8)  0.0323 0.0010 (7,7,8)  0.0450 0.0020
(10,10,11)  0.0211  0.0001 (10,10,11) 0.0346 0.0012
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(61,82,63) = (0.5,0.5,0.5) (61,62,63) = (1.1,1,0.2)

Real

Real

(C11C21t1,t2) mcl,cz,tl,tz (n’m’W) AB MSE (O.I.'C21t1,t2) mCl,Czytl,tZ (n’mYW) AB MSE
(2,22)  0.0972  0.0094 (222)  0.0267 0.0007
(555  0.0958 0.0091 (555 00222 0.0005
(7,7,7)  0.0922 0.0085 (7,77)  0.0190 0.0003
(10,10,10)  0.0515  0.0026 (10,10,10) 0.0183 0.0001

(1,1,2,2) 0.533 1,1,2,2) 0.871
(2,2,3) 00707 0.0050 (223) 00173 0.0003
(556)  0.0628 0.0039 (556)  0.0130 0.0002
(7,78)  0.0395 0.0015 (7,7,8) 00122 0.0001
(10,10,11)  0.0251  0.0010 (10,10,11)  0.0113  0.0001
(222)  0.1002 0.0100 (222) 00423 0.0017
(555  0.0984 0.0096 (555  0.0296 0.0008
(7,7,7)  0.0977 0.0095 (7,77)  0.0217 0.0004
1222) 03 (10,1010) 0.0728 00053 |, o7ag  (1010,10) 00176 00002
(223) 00717 0.0049 (223)  0.0228 0.0005
(556)  0.0684 0.0046 (556)  0.0216 0.0004
(7,7,8)  0.0558 0.0031 (7,78)  0.0128 0.0001
(10,10,11)  0.0301 _0.0018 (10,10,11)  0.0121 _ 0.0001
(2,22)  0.0957 0.0091 (222)  0.039 0.0015
(555  0.0954 0.0091 (555  0.0288 0.0007
(7,77)  0.0947 0.0088 (7,77)  0.0215 0.0003
2122 0.301 (10,1010) 0.0701 00049 )., o760 (1010,10) 00170 00001
(223)  0.0720 0.0051 (2,2,3)  0.0222 0.0004
(556)  0.0636 0.0040 (556)  0.0211 0.0002
(7,7,8)  0.0422 0.0017 (7,78) 00121 0.0001
(10,10,11)  0.0288  0.0011 (10,10,11)  0.0118  0.0001
(222) 01028 0.0105 (222)  0.0430 0.0020
(555  0.0530 0.0098 (555 00317 0.0009
(7,77)  0.0317 0.0085 (7,77) 00220 0.0005
2222 02 (10,10,10) 0.0301 0.0050 ), 0ggy  (1010,10) 00178 00003
(22,3)  0.0906 0.0082 (223)  0.0230 0.0006
(556)  0.0437 0.0019 (556)  0.0235 0.0005
(7,7,8)  0.0323 0.0010 (7,7,8)  0.0130 0.0002
(10,10,11)  0.0299  0.0010 (10,10,11)  0.0128  0.0002

3. Bayesian Estimation of R,

We will look in this section at the Bayesian estimator of R

0,,0, and ¢, are random variables.

GGt

under the assumption that

Following [31], the prior distributions for 0,0, and 0, are assumed to have the gamma

distribution with the following pdfs

T (51) oc 51a1—1e—b151’ 7, ( 52) oc 52az—1e—b252 , and 17, ( 53) o 53&137164)353 |

where, the hyper-parameters; a1, a2, as, b1, b2 and bs are considered to be known. The joint prior
distribution of 77 = (1,52, 03) , assuming parameters independence is as follows:

72-(77) — 6‘131*15232*15333—1e—(b151+b252+b353).

Based on the observed samples, the joint density function of 7 =(d1,2,63) and the data are:
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”(77 | r, p’ S) 5 n+ai—15 m+az—15 w+ag—1 (b1($1+b202+b363)
x (]/)n+m+w (1+ r ) (7+1) (1+ pm)—(y+1) (1+ S )—(y+1) [T ](31—1

o P P A Y ) T s ) 0
[on]" . F_ll @) b1 @) o (©)

As a result, the posterior density function of 77 =(1,2,3) can be expressed as
L(r.p.sln)z(n)

”'—(LB'E|’7)7f(77)d61d52d53

00

based on GELF, indicated by RN

7 (nlr.ps)=

O ey 8

The Bayesian estimator of R ., is derived as follows:

C.Colyitp 7 GGyt

-1
-1 —

00 00 00 . é
R v =[EReens) ﬂf{j [[@en) 7 (77|L9,§)d51d52d53} .0
000

Additionally, the Bayesian estimator of R under LLF indicated by iﬁcl,cz,tl,tz is as follows:

C.Colyitp 7

{Rcl,cz,tl,tz =exp(E(logR, . . ,) =exp{f”logiﬁq ot ( |L_p,§)d§1d§2d53}. (11)
000
b

The Bayesian estimator of R is as follows:

0 90 00 05
iﬁcl,cz,tl,tz =\¢E(9{ch,c2,tl,tz) :|:J.J.J'Snzcl,cz,tl,tz7[*(77 |£!Bi§)dé‘ldé‘2dé‘3j| . (12)
000

It is difficult to find an explicit formula for (10)—(12) because the posterior density function

for PLF indicated by ‘R

C.Ch, b C,Couh 0t

T (77 lr,p,s ) has a composite structure. In order to obtain Bayesian estimates, we calculate these

integrations using the Metropolis-Hastings (M-H) technique using the MCMCO algorithm.

4. MCMCO Methodology

The MCMCO simulation is used to investigate the behavior R ., ’'s MSS. Bayes
estimates (BE) under different loss functions are produced using gamma priors. The R_ . 's BE

accuracy is measured using the ABs, and MSEs. The various LRV options are (n, m, w)=(2, 2, 2), (5,

5,5),(7,7,7),(10, 10, 10), (2, 2, 3), (5, 5, 6), and (7, 7, 8). The possible sets of hyperparameter values
are considered to be: Prior I: (2, 1.5, 3, 2, 1.5, 1.1) and Prior II:(1, 1.4, 1, 2, 2.5, 3).

The outcomes are based on 5,000 replications. The M-H process is a popular subgroup of
the MCMCO technique in the Bayesian literature for modeling departures from the posterior
density and producing accurate anticipated results. The main difficulty with the MCMCO is
getting the BEs of R from GELF, LLF, and PLF using the M-H approach after simulating

C1.Co bt
samples from the posterior density. It converges to the desired distribution using
acceptance/rejection criteria. The M-H algorithm (see [32]) operates as follows:

a) Set the starting parameter value of R°

b) Fori=2toN, set R =R

C.Couly b C.Cltp °
c) Create u using the uniform (0,1).
d) Choose a candidate parameter R’

60,0, and the sample number N

o.c,ue, (rom the proposal density.
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c ﬂ(g*)g(6’|g*) . o . . oth . i _
e) Ifu Si(g) (9|9* , then set R ot = R P otherwise, set R oty = iRcl,cz,tl,tz .
7(0)g )

f) Return to step (b) and perform the aforementioned actions N times using i=i+1.

Using the outputs of the study, which are shown in Tables 2, 3, and are illustrated by Figures 7-12,
we come up with the following conclusions:

e The MSEs and ABs of ‘R estimates via the GELF, LLF and PLF decrease with increasing

GGty
the record numbers 1, m, w rises for all true values of (Cl, C,, t,t ) , (Tables 2, 3).

o The ABs of R . estimates via the GELF, LLF and PLF have the smallest values at
(C, Gty t,)=(1,1,2,2), (Tables 2, 3).

wcnr, =0.748, the MSE of %

prior I except at (7, 7, 8) (see Figure 7).

oty =0-748, the AB of ER%Czrtptz

number of records excepting at (n,m,w) =(7,7,8) via prior I (see Figure 8).

e At true value R via PLF take the smallest values in case of

CRVRR)

e At true value R at PLF gets the fewest values for a distinct

0.002 -~ 0.03 1
- (7]
o 8
E 0.0015 g ]
v g 0.02
S 0.001 2
T o
uc't < 0.01 +
& 0.0005
= 0 -
0
DN A AN A
Q\ @\ Q ) 0"\9‘ W @\ Q \ \ \C \d \\Q"» N \C A
EGELF mLLFEPLF WMGELF  WLF  mPLF
Figure 7: MSEs of 92% bty SRcl,Cz,tl,tz ,ﬂiqy%,tz at Figure 8: ABs of g‘Rcl,cz ! mq,%,ﬁ,tz ’mcvathlvtz at
(c..c,.t.t,)=(1, 2,2, 2) for prior I (c..c,.t.t,)=(1,1, 2, 2) for prior I

o TheMSEsof R, o\ R oo
as the number of records n = m = w increases via prior II (see Figure 9).
6.cu, =0-760, the MSEs of mcpczmz, 9301'02 ot ’mwz,ﬁ,tz under the GELF, LLF

and PLF, respectively, get the least values for similar record values of (n, m) via prior II (see
Figure 10).

éﬁq . 1, under the GELF, LLF and PLF, respectively, decrease
V2002

e At true value R
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5 0.0012
L: 0.001 § 0.02 -
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c
S 0.0004 g 0.01 |
< 0.0002 c
0 < 0.005 -
0 4
(2,2,2) (55,5) (2,2,3) (5,5,7)
BGELF mLLF EPLF W GELF WLLF EPLF
Figure 9: MSEsof R, R, ., and R, at Figure 10: MSEsof R, ., R, .. .. and R at

(C.Cot.t,) = (2,1, 2, 2) for prior I

e At true value R =0.746, the MSEs of R

true value R

=0.760 for prior I

C.Cut

gets the smallest values compared to

decrease as true value of

C.Cotyty C.C
R ny, and R o for similar record values except at (n, m, w)= (10,10,10) via prior II (see
Figure 11).
 TFigure 12 illustrates that the ABs of R ., Re o\ R oo
R 1, iNcreases for (n, m w) = (2,2,2).
_ 0.0006 - 0.025
S
= 0.02
i 8
g 0.0004 7 ©0.015
© [
=] )
g 3 0.01
2 0.0002 - 2
s 20.005
=
0 - 0

3 P o > an N
\ \C \Q o
R
B GELF W LLF = PLF B GELF W LLF EIPLF
Figure 11: MSEs of i]ﬂ?%wlvtz ,Eﬁqlcz e and iﬁ%cm,tz at Figure 12: The ABs for all true values of R onn At
(c,.c,.t.1,) =(1, 2, 2, 2) for prior II Nn=m=w=2 for prior I
Table 2: Numerical results of E]A?Clyczmlytz , ‘ﬁ%cz'ﬁ,tz ,i}.{%czﬁytz for prior I
(c1,c2,t1,t2)=(1,2,2,2) (c1,c2,t1,t2)=(1,2,2,2)
Loss Real Real
function Re, 0oty (n, m,w) AB MSE Re, cotty (n, m’W) AB MSE
GELF 0.871 0.02036 0.00041 0.746 0.04300 0.00184
LLF (2,2,2) 0.01541 0.00023 (2,2,2) 0.03373 0.00113
PLF 0.006413  0.00004 0.01229 0.00015
GELF 0.00542 2.9E-05 0.04175 0.00174
LLF (5,5,5) 0.00048 2.3E-07 (5,5,5) 0.03295 0.00108
PLF 0.00067 4.5E-07 0.01169 0.00013
GELF (7,7,7) 0.00314 9.9E-06 (7,7,7) 0.03750 0.00140
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LLF 0.00036 1.3E-07 0.02955 0.00087
PLF 0.00023 5.4E-08 0.01078 0.00011
GELF 0.00293 8.6E-06 0.00323 1.0E-05
LLF (10,10,10)  0.00030 1.3E-07 (10,10,10) 0.00289 8.3E-06
PLF 0.00020 4.2E-08 0.00005 3.2E-09
GELF 0.02601 0.00067 0.03778 0.00142
LLF (2,2,3) 0.02085 0.00043 (2,2,3) 0.02893 0.00083
PLF 0.00891 0.00007 0.01107 0.00012
GELF 0.01449 0.00021 0.02832 0.00080
LLF (5,5,7) 0.00995 0.00009 (5,5,7) 0.02031 0.00041
PLF 0.00407 1.6E-05 0.00797 6.3E-05
GELF 0.000286  8.1E-06 0.00768 5.9E-05
LLF (7,7,8) 0.00103 1.0E-06 (7,7,8) 0.00161 2.6E-06
PLF 0.00058 3.3E-07 0.00177 3.1E-06
(c1,c2,11,t2) =(2,1,2,2) (c1,c2,t1,t2) =(1,2,2,2)
Loss Real Real
function  Rc ¢ (1, (n, m,w) Ll MSE Re oot ty (n, m,w) Ll MSE
GELF 0.760 0.04292 0.00184 0.687 0.02976 0.00088
LLF (2,2,2) 0.03398 0.00115 (2,2,2) 0.019006 0.00036
PLF 0.01359 0.00018 0.00830 6.8E-05
GELF 0.03351 0.00112 0.01627 0.00026
LLF (5,5,5) 0.02530 0.00064 (5,5,5) 0.00513 2.6E-05
PLF 0.00979 9.5E-05 0.00013 1.8E-08
GELF 0.02497 0.00062 0.00552 3.0E-05
LLF (7,7,7) 0.01697 0.00028 (7,7,7) 0.00244 5.9E-06
PLF 0.00664 4 4E-05 0.00016 2.6E-08
GELF 0.01358 0.00051 0.00491 6.11E-10
LLF (10,10,10)  0.01511 0.00017 (10,10,10) 0.00235 2.04E-11
PLF 0.00544 3.2E-05 0.00015 2.03E-10
GELF 0.04676 0.00218 0.02680 0.01649
LLF (2,2,3) 0.04676 0.00144 (2,2,3) 0.01649 0.00027
PLF 0.01530 0.00023 0.00663 4 41E-05
GELF 0.02963 0.00087 0.00534 2.8E-05
LLF (5,5,7) 0.02181 0.00047 (5,5,7) 0.00193 3.7E-06
PLF 0.01002 0.00010 0.00187 3.5E-06
GELF 0.00357 1.2E-05 0.00017  3.11E-10
LLF (7,7,8) 0.00270 7.3E-06 (7,7,8) 0.00105 6.55E-11
PLF 0.00031 9.9E-08 0.00135  3.44E-10
Table 3: Numerical results of iﬁcl,cz Gy it Gt ,iﬁ%cm’tz for prior 11
(c1,c2,t1,t2) =(1,1,2,2) (c1,c2,t1,t2)=(1,2,2,2)
Loss Real (n m W) AB i Real (n m W) NG i
function H¢ o ¢ 1, Y Re, ooty ity o
GELF 0.871 0.01134 0.00012 0.746 0.02343 0.00054
LLF (2,2,2) 0.00566 3.2E-05 (2,2,2) 0.01414 0.00020
PLF 0.002903  8.4E-06 0.005499  3.0E-05
GELF 0.00355 1.2E-05 0.02311 0.00047
LLF (5,5,5) 0.00161 2.6E-06 (5,55) 0.01241 0.00015
PLF 0.00072 5.2E-07 0.00421 2.7E-05
GELF 0.00206 4.2E-06 0.02277 0.00037
LLF (7,7,7) 0.00153 2.3E-06 (7,7,7) 0.01187 0.00011
PLF 0.00103 1.8E-07 0.00365 1.1E-04
GELF 0.00201 3.4E-06 0.02148 0.00029
LLF (10,10,10) 0.00140 1.2E-07 (10,10,10) 0.01099 3.0E-05
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PLF 0.00099  5.2E-08 0.00301 1.0E-04
GELF 0.02524  0.00164 0.03074  0.00426
LLF (2,2,3) 0.02358  0.00121 (2,2,3) 0.03009  0.00077
PLF 0.00799  0.00080 0.00784  1.7E-05
GELF 0.02470  0.00135 0.02457  0.00333
LLF (5,5,7) 0.02157  0.00117 (5,5,7) 0.02847  0.00051
PLF 0.00630  0.00060 0.00780  1.1E-05
GELF 0.02110  0.00124 0.01354  0.00251
LLF (7,7,8) 0.01110  0.00101 (7,7,8) 0.02147  0.00039
PLF 0.00558  0.00038 0.00660  1.8E-06
(c1,c2,t1,t2) =(2,1,2,2) (c1,c2,11,12) =(2,2,2,2)
Loss Real (n m W) A NIoT Real (n m W) N Vi
function % ¢ ¢ t, Y Re, ety ity o
GELF 0.760 0.02320  0.00136 0.687 0.02377  0.00056
LLF (2,2,2) 0.01312  0.00078 (2,2,2) 0.01288  0.00016
PLF 0.00445  0.00008 0.00515  2.6E-05
GELF 0.03524  0.00128 0.02228  0.00035
LLF (5,5,5) 0.02600  0.00071 (5,5,5) 0.01147  0.00012
PLF 0.00931  8.1E-05 0.00478  1.8E-06
GELF 0.03421  0.00088 0.02147  2.4E-05
LLF (7,7,7) 0.02387  0.00050 (7,7,7) 0.01133  2.9E-06
PLF 0.00900  2.4E-05 0.00330  2.9E-08
GELF 0.03321  0.00051 0.02140  6.1E-08
LLF (10,10,10)  0.02340  0.00044 (10,10,10)  0.01110  2.0E-07
PLF 0.00875  3.2E-06 0.00250  2.0E-08
GELF 0.03476  0.02336 0.02131  0.01356
LLF (2,2,3) 0.03554  0.00744 (2,2,3) 0.01109  0.00124
PLF 0.02447  0.00037 0.00190  2.4E-05
GELF 0.03124  0.01235 0.02110  0.01254
LLF (5,5,7) 0.02490  0.00625 (5,5,7) 0.01148  0.00120
PLF 0.02300  0.00035 0.00166  1.4E-05
GELF 0.03009  0.00147 0.01999  0.00124
LLF (7,7,8) 0.02370  0.00420 (7,7,8) 0.01122  0.00110
PLF 0.02298  0.00021 0.00150  1.0E-06

Note that: E-Ok stands for 10-k, k is integer

5. Actual Data Implementation

In this part, we illustrate our principles using three real datasets. We consider the real data
sets reported in [33] where the data represent the time to break down (in minutes) of insulating
fluids to electrodes at voltage levels 34 kV, 36 kV and 38 kV. The Kolmogorov-Smirnov (KS) test is
used to separately fit each of the three datasets with the EPD along with the corresponding P-value
(PV) (see Table 4). The empirical cdf and estimated pdf for these data are explained in Figure 13.
Atlevels 34 kV, 36 kV and 38 kV, the times to break down are reported respectively as follows

Data Group I

0.96 4.15 0.19 0.78
32.52 3.16 4.85 2.78
Data Group 11

1.97 0.59 2.58 1.69
2.07 0.96 5.35 2.9
Data Group III

0.47 0.73 1.4

8.01 31.75
4.67 1.31
2.71
13.77
0.74 0.39

7.35 6.5
12.06 36.71

8.27
72.89

25.5 0.35 0.99 3.9
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Data K-S PV
Group I 0.167 0.6013
Group II 0.185 0.6127
Group III 0.277 0.5013
- &
o
x _| [
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[ g - g ©°
o | 8
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Figure 13: Characteristics and limitations of K-S test for the three data groups

We assume that electrical fluid of specimen considered being good if 1 out of 2 specimens are
functioning properly at constant voltage. Form data group I, II and III, three sets of lower record
values r=(0.96, 0.19), p= (1.97,0.59, 0.35) and s=(0.47, 0.39, 0.09) are obtained, respectively. From

I, p,and s, we find that n = 0.t

the ML and Bayesian approaches within GELF, LLF and PLF. Using the above LRVs, the MLE and
BE of R

2, m = 3, w =3, then we calculate the estimates of R using

, are calculated in Table 5.
Table 5: Bayes and ML estimates of R

G,y
for the real data

C.Coutyty 7
BEofR_ _ .,
MLE of R oo =
GELF LLF PLF
0.5851 0.7673 0.7743 0.7956
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6. Concluding Remarks

In the present work, we investigate the stress-strength reliability in a multi-component system
with non-identical component strengths where both the stress and strength variables are the EPD.
The ML and Bayesian procedures are used to analyse the reliability of MSS. Strength and stress
distribution samples are used, and their measurements are presented in LRVs. We use MCMCO
techniques in order to evaluate the accuracy of the various Bayesian estimates. The simulation
study shows that for four choices of (¢, C,, t,, t,), the MSEs and ABs decrease with the number of

records, supporting the MLE's consistency characteristic of R . Additionally, as the true

GGyt

value of R_ . increases, the MSEs of R drop. Regarding the MCMCO approach, we

C.Couly

deduce that the MSEs and ABs of R 1, via PLF generally hold the lowest values in majority of

C.Chy
cases. The ABs and MSEs of ‘R , R VR under different loss functions decrease as
C1,C 0t .Gyt .Gyt

the number of records rises. The use of actual data demonstrates that our model's reliability
estimates are very near to one, demonstrating its practical usefulness.

Conflicts of Interest: The authors declare no conflict of interest.
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