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Abstract 

In engineering applications and reliability literature, stress-strength models play a crucial role. 

The goal of this study is to develop more accurate stress-strength models by addressing the 

reliability estimation in multi-component systems with non-identical component strengths and 

stress. In the context of lower record values, the system's reliability is assessed using both 

classical and Bayesian approaches. In classical estimation, the maximum likelihood estimator of 

the reliability function is constructed, and a simulation study based on measurements of 

precision is used to assess the behavior of various estimates. The Bayesian estimators of 

reliability under general entropy, logarithmic and precautionary loss functions are computed. 

The suggested Bayesian estimates are calculated using the Markov Chain Monte Carlo method 

through a simulation study because there is no one particular way to do it. We found through 

simulated research that the accuracy of measurements decreases as the number of records rises. 

The theoretical results are validated using an example from actual data sets. 

Keywords: Exponentiated Pareto model; Lower record data; Bayesian inference; 

General entropy loss function. 
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1. Introduction

Record values are crucial when collecting observations is challenging or when they are lost 

during experimental operations. Real-world problems needing destructive stress testing, industrial 

quality control trials, and statistics on the weather, the economy, and sports all depend critically on 

record values. Only observations that exceed or fall below the most recent extreme values are 

recorded in this case. The total number of observations is frequently much lower than the overall 

sample size and only successive severe items are measured. Suppose that  , 1,2,...iU i  is an

unlimited sequence of independent and identically distributed (iid). An observation Ui is called a 

lower record value (LRV) if i jU U  for each i j . 

The stress-strength (SS) model is a fundamental of reliability testing. When a stress Y 

surpasses strength X , the SS framework ( )P X Y   indicates the possibility of failure. In other 

words, the system keeps functioning as long as the stress does not outweigh its ability. Reference 

[1] was the author who initially presented this idea, and [2] later developed it. Many studies have
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addressed inferences based on various methods and distributional presumptions; for some recent 

works, see [3-10]. 

To build a system with two or more components, the basic idea of ( )P X Y   can be 

changed. Reliability in a multi-component SS (MSS) model was first created in [11], who 

investigated the MSS model under the assumption that c  out of t  system components, where, 
(1 )c t   components survive a common random stress .Y  The MSS is applicable to several 

fields, including communications, logistics, military, and manufacturing operations. For 

illustration, if only four of a car's eight cylinders are burning, it might be possible to drive the 

vehicle. It can therefore be expressed as 4 out of 8: G system. 

Assume that if c (1 )c t   or more of the components cooperate, a system with t  similar 

components will function. In its operational setting, the system is subjected to a stress Y  that is a 

random variable with cumulative distribution function (cdf)  G y . The component strengths, or

the minimal stresses necessary to manufacture failure, are iid random variables with cdf  F x ,

then the reliability of the c-out-of-t system is represented by 
,c t which is developed in [12], is

given by: 

 , 1 2

0

( , ,..., )

[1 ( )] ( ) ( ).

c t t

t
i t i

i c

P at least cof X X X exceed Y

t
F x F x dG x

i







 

 
  

 
 

For various SS distributions and sampling procedures, many authors addressed the 

estimation of reliability in MSS models based on different sampling scheme, for example, see [13-

19]. 

Due to the different topologies of system components, the assumption of comparable strength 

distributions may not be feasible in many actual circumstances. With systems that have backup 

components, this is frequently the situation. The strengths of different items, even those 

constructed of the same material, can vary. For instance, heat treating metals to acquire desired 

mechanical properties in the field of mechanics can lead to various types of breaking when the 

metal is quenched or cooled. As a result, the strengths of the components vary. Another example, if 

two different ropes are used to consolidate a rope, the tensile strengths of both ropes may not be 

evenly distributed. A model that at least incorporates non-identical random strengths for system 

components appears to be more realistic, see [20]. 

Assume a system has t  components, of which 1t are of kind 1, 2t are of kind 2,…, and the 

remainder 
1

1

n

n i

i

t t t




  components are of kind n . Let (.),   1,  2, ,  iF i n  , be the cdf of the 

random strengths for components of the ith kind. Assume that Y  is a common stress with cdf  .Q

that all components are subjected to. The system will function as long as the c-out-of-the-t 

components can resist the stress. Reference [21] presented the system reliability 
1 1,..., , ,...,n nc c t t with

non-identical component strengths as follows: 

1

1 1

1 1

,..., , ,...,

1 10

... (1 ( )) ( ( )) ( ),
n

i i i

n n

n n

tt n n
i j t j

c c t t i i

j c j c i ii

t
F x F x dQ x

j





   

  
     

  
               (1) 

where summation ranges over all possible combinations  1 2,  , ,  nj j j with 0 i ij t  for 

  1,  2,  ... ,  i n such 
1

n

i

i

c j t


  . Each ic indicates the minimal number of components of the

ith  type that the system needs to function.

Considering the investigation of a system with two different sorts of components, the model 

(1) can be expressed as follows:
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1 2

1 1 1 2 2 2

1 2 1 2

1 1 2 2

1 2

, , , 1 1 2 2

1 2 0

(1 ( )) ( ( )) (1 ( )) ( ( )) ( ).
t t

j t j j t j

c c t t

j c j c

t t
F x F x F x F x dQ x

j j



 

 

  
     

  
        (2) 

In order to construct more realistic models, The Bayesian estimation of 
1 2 1 2, , ,c c t t assuming

the Weibull and exponential distributions on the strength and stress variates, respectively, was 

taken into consideration in [22] and [23]. The exponentiated Pareto distribution (EPD) was used to 

estimate 
1 2 1 2, , ,c c t t for non-identical MSS in [24]. Recently, [25] studied the case of non-identical

component-strengths from the family of Kumaraswamy generalized distributions under upper 

record data. Reference [26] examined the estimation of 
1 2 1 2, , ,c c t t when component strengths and

stress follow inverse Lomax distribution based on complete sample. Reference [27] proposed the 

estimation of 
1 2 1 2, , ,c c t t when component strengths and stress follow Weibull distributions under

generalized progressive hybrid censoring scheme. 

It is important to note that the majority of the work on the estimate of the SS reliability 

conducted to date requires to employ complete or censored samples and that record values are 

rarely used. Particularly in the estimation of MSS systems of non-identical component-strengths, 

we are interested in developing MSS models within the record scheme in the case of non-identical 

component-strengths, where component strengths and stress follow an EPD. A maximum 

likelihood estimator (MLE) of 
1 2 1 2, , ,c c t t is derived under LRV and a simulation study is

investigated. The general entropy loss function (GELF), the logarithmic loss function (LLF), and 

the precautionary loss function (PLF) are used to derive the Bayesian estimator of 
1 2 1 2, , , .c c t t  Since 

these estimators are incapable of being reduced to simple closed forms, we use the Markov Chain 

Monte Carlo (MCMCO) approach for Bayesian estimates of 
1 2 1 2, , , .c c t t  To show the relevance of our 

work, we also examined real data sets. 

The following is how the rest of the essay is presented. The formulation of 
1 2 1 2, , , ,c c t t and

its MLE under LRV along with a numerical analysis is provided in Section 2. Section 3 discusses 

the Bayesian estimators of 
1 2 1 2, , , ,c c t t  through GELF, LLF, and PLF. The MCMCO technique is 

presented in Section 4. For the purposes of illustration, Section 5 includes real data sets. Final 

remarks are included in Section 6. 

2. Model Description and Classical Estimation of 
1 2 1 2, , ,c c t t

In this section, a model description of 
1 2 1 2, , ,c c t t is provided. The MLE of

1 2 1 2, , ,c c t t is obtained

in the presence of LRV. Numerical analysis is also carried out. 

2.1. Expression of 
1 2 1 2, , ,c c t t

Here, expression of 
1 2 1 2, , ,c c t t is provided when the strength and stress random variables

follow the EPD. 

The EPD may be successfully used to assess numerous lifetime data sets, as argued in [28]. 

The EPD has a very flexible structure as a result of its decreasing or upside-down bathtub shape 

failure rates depending on shape parameters. This property provides advantages for modeling 

extreme events, particularly in hydrology. Furthermore, the EPD is a reasonable equivalent to the 

exponential distribution because of its heavier or lighter tail features. A variety of lifetime data 

might seem nice in the EPD. The EPD 's cdf is expressed by  

 ( ) 1 1  ,  0,  0, 0,F x x x


 


  


  


where   and   are the shape parameters. The associated probability density function (pdf) is 

given by: 

     RT&A, No 2 (73) 

  Volume 18, June 2023 

515



Amal S. Hassan, Doaa M. Ismail, and Heba F. Nagy 
ANALYSIS OF A NON-IDENTICAL COMPONENT-STRENGTHS 

   
1

( 1)
( ) 1 1  1  ,  0,  0, 0.f x x x x

 
  


  

    
 

 

Several scholars addressed the EP's research and applications, for instance see [29]. 

From the total of t system components in the model (2), let the first 
1t  of first kind component 

strengths follow EPD 1( , )  , while the remaining 2 1t t t  of kind 2 component strengths follow

EPD 2( , )  . Also, suppose that Y follows EPD 3( , )  independently. The respective distribution 

functions are as below: 

 ( ) 1 1  ,  , , 0, 1,2,  
i

i iF x x x i


 



    


  (3) 

 
3

3( ) 1 1  ,  , , 0.Q y y y


 


  
 

     (4) 

By replacing 
1 2,  ,  F F Q given in (2) by (3) and (4), the formula of

1 2 1 2, , ,c c t t for such a system is as

follows: 
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Let  1 1 ,z x


    
1

1 ,dz x



 

   then 
1 2 1 2, , ,c c t t is as follows
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Using the binomial expansion for 11(1 )
j

z


 and 22(1 )
j

z


 leads to the following 
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where 
1 2 1 2

1 2

1 1 2 2

1 2 1 2

, , ,

0 0 1 2

( 1) .
t t j j

m n

j j m n

j c j c m n

t t j j
E
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Note that expression (5) depends on the parameters 1 , 2 and 3 .

2.2. The MLE of 
1 2 1 2, , ,c c t t under LRV

In order to find the MLE of 
1 2 1 2, , ,c c t t based on LRV, we first need to obtain the MLE of the

parameters 1 , 2  and 3 assuming   is given known. So, let  1 ,..., nr r r  1 ,..., mp p p and 

 1 ,..., ws s s  be three independent sets of LRV of sizes  n, m, and w from EPD 1( , )  , EPD 2( , ) 

and EPD 3( , )  respectively. The likelihood function of the observed records, according to [30], is 

defined by: 
1

1

1

( ; )
( ) , ... .(

( ; )
| )

d
i

d d

i i

L
h u

h u u u
H u

u









            (6) 

Hence, the observed LRV data ,r p  and ,s  given  , based on (6), are given as below: 
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where 1 (1 ,)i ir
    1 (1 ,)j jp     and 1 (1 ,)u us

    1,..., ,i n 1,..., ,j m

1,..., .u w

Consequently, the joint log-likelihood function, denoted by ln ,  is derived as:
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Given that  is a known, the following are the partial derivatives of ln  with respect to 1 2,   and 

3  respectively 

1 1

ln
ln[ ],n
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Then, the MLEs of 1 2,   and
3 denoted by 1 2

ˆ ˆ,   and 3̂  are obtained by setting 1ln   , 

2ln   and 3ln   to be zero. Hence 
1 2
ˆ ˆ,  and 

3̂ are obtained as 

1 2 3, , .
ln[ ] ln[ ] ln[

ˆ ˆ ˆ
]n m w

n m w

 



 

  
    (8) 

Therefore, based on invariance property, we obtain the MLE of 
1 2 1 2, , ,c c t t by inserting 1 2

ˆ ˆ, 

and 
3̂ in (5) as follows 

1 2

1 2 1 2

, , , 3

, , ,

1 1 1 2 2 2 3

ˆ
ˆ .

ˆ ˆ ˆ( ) ( )

j j m n

c c t t

E

m t j n t j



  
 

     
 (9) 

2.3. Numerical Study 

The MLE for the MSS variables is thoroughly numerically analysed in this subsection. In order to 

assess the accuracy of estimates for various parameter values and record numbers, two criteria are 

used: absolute biases (ABs) and mean squared errors (MSEs). The numerical research is performed 

in the following way: 

 Create LRV samples based on the parameter values provided.

 The parameters values are selected as 1 2 3( , , )   = (0.5,0.5,0.2), (1.1,0.5,0.2), (0.5,0.5,0.5) and

(1.1,1,0.2) for  1   in all situations. The specified values for c-out-of-t systems are  1 2 1 2,  ,  ,  c c t t  = 

(1,1,2,2), (1,2,2,2), (2,1,2,2) and (2,2,2,2). 

 The true values at  1 2 1 2,  ,  ,  c c t t = (1,1,2,2) are 0.533, 0.871, 0.758 and 0.809, at  1 2 1 2,  ,  ,  c c t t = 

(1,2,2,2) are 0.3, 0.746,0.573 and 0.591, at  1 2 1 2,  ,  ,  c c t t =(2,1,2,2) are 0.301, 0.760, 0.573 and 0.724, and 

at  1 2 1 2,  ,  ,  c c t t  = (2,2,2,2) are 0.2, 0.687, 0.477 and 0.562. 

 The sample sizes of LRV samples  ,  ,  n m w  are selected to be (2,2,2), (5,5,5), (7,7,7), (10,10,10),

(2,2,3), (5,5,6), (7,7,8) and (10,10,11).

 5000 repetitions are used to evaluate the ABs and MSEs of
1 2 1 2, , ,

ˆ
c c t t .
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 The simulated outcomes are shown in Table 1 and are illustrated in Figures 1–6.

 As the number of records increases, the MSEs of
1 2 1 2, , ,

ˆ
c c t t for all values of  1 2 1 2,  ,  ,  c c t t decrease 

(Figure 1). For all true value of parameters, the MSE of 
1 2 1 2, , ,

ˆ
c c t t decreases at  1 2 1 2,  ,  ,  c c t t = 

(2,2,2,2) when the number of records n = m (Figure 2). 

Figure1: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 1 2 1 2( , , , ) (1,1,2,2)c c t t   and n = m = w 

Figure 2: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 
1 2 1 2( , , , )c c t t = (2,2,2,2) and n=m 

 Figure 3 demonstrates that as the number of n, m and w increases, the ABs of
1 2 1 2, , ,

ˆ
c c t t for all

actual values of 1 2 3( , , )    are decreasing.

 Figure 4 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t at  1 2 1 2,  ,  ,  c c t t = (2,2,2,2) are larger than the MSEs 

of 
1 2 1 2, , ,

ˆ
c c t t for others values of  1 2 1 2,  ,  ,  c c t t . 

Figure 3: ABs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 
1 2 1 2( , , , )c c t t = (1,2,2,2) and n = m = w  

Figure 4: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different

1 2 1 2( , , , )c c t t

values at n = m = w and 1 2 3( , , ) (1.1,0.5,0.2)     

 Figure 5 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t at  1 2 1 2,  ,  ,  c c t t = (1, 1, 2, 2) are smaller than the 

MSEs of 
1 2 1 2, , ,

ˆ
c c t t for others values of  1 2 1 2,  ,  ,  c c t t . 

 Figure 6 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t decrease when the true value of

1 2 1 2, , ,c c t t

increases.
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Figure 5: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )   and

1 2 1 2( , , , )c c t t values at n = m = w =7

Figure 6: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for 1 2 3( , , )   = (1.1, 0.5, 0.2)

at n = m = w =2  

Table1: Numerical results of 
1 2 1 2, , ,

ˆ
c c t t for different values of 1 2 3( , , )    

1 2 3( , , ) (0.5,0.5,0.2)    1 2 3( , , ) (1.1,0.5,0.2)   

 1 2 1, 2, ,c c t t
Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE  1 2 1, 2, ,c c t t

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

(1,1,2,2) 0.758 

(2,2,2) 0.0303 0.0009 

(1,1,2,2) 0.809 

(2,2,2) 0.0772 0.0060 

(5,5,5) 0.0255 0.0006 (5,5,5) 0.0546 0.0029 

(7,7,7) 0.0197 0.0003 (7,7,7) 0.0506 0.0025 

(10,10,10) 0.0182 0.0002 (10,10,10) 0.0394 0.0015 

(2,2,3) 0.0244 0.0005 (2,2,3) 0.0284 0.0008 

(5,5,6) 0.0137 0.0002 (5,5,6) 0.0282 0.0007 

(7,7,8) 0.0075 0.0001 (7,7,8) 0.0205 0.0004 

(10,10,11) 0.0066 0.0001 (10,10,11) 0.0212 0.0004 

(1,2,2,2) 0.573 

(2,2,2) 0.0371 0.0013 

(1,2,2,2) 0.591 

(2,2,2) 0.0872 0.0076 

(5,5,5) 0.0372 0.0013 (5,5,5) 0.0664 0.0044 

(7,7,7) 0.0293 0.0008 (7,7,7) 0.0564 0.0031 

(10,10,10) 0.0233 0.0004 (10,10,10) 0.0530 0.0028 

(2,2,3) 0.0345 0.0011 (2,2,3) 0.0628 0.0039 

(5,5,6) 0.0307 0.0009 (5,5,6) 0.0484 0.0023 

(7,7,8) 0.0281 0.0007 (7,7,8) 0.0302 0.0009 

(10,10,11) 0.0118 0.0001 (10,10,11) 0.0305 0.0009 

(2,1,2,2) 0.573 

(2,2,2) 0.0306 0.0009 

(2,1,2,2) 0.724 

(2,2,2) 0.0863 0.0074 

(5,5,5) 0.0276 0.0007 (5,5,5) 0.0583 0.0034 

(7,7,7) 0.0238 0.0005 (7,7,7) 0.0364 0.0026 

(10,10,10) 0.0210 0.0003 (10,10,10) 0.0202 0.0004 

(2,2,3) 0.0233 0.0005 (2,2,3) 0.0303 0.0009 

(5,5,6) 0.0162 0.0003 (5,5,6) 0.0285 0.0008 

(7,7,8) 0.0128 0.0002 (7,7,8) 0.0272 0.0007 

(10,10,11) 0.0115 0.0001 (10,10,11) 0.0264 0.0007 

(2,2,2,2) 0.477 

(2,2,2) 0.0978 0.0095 

(2,2,2,2) 0.562 

(2,2,2) 0.1046 0.0109 

(5,5,5) 0.0530 0.0028 (5,5,5) 0.0794 0.0063 

(7,7,7) 0.0317 0.0010 (7,7,7) 0.0770 0.0059 

(10,10,10) 0.0305 0.0008 (10,10,10) 0.0619 0.0038 

(2,2,3) 0.0622 0.0038 (2,2,3) 0.0705 0.0049 

(5,5,6) 0.0437 0.0019 (5,5,6) 0.0629 0.0039 

(7,7,8) 0.0323 0.0010 (7,7,8) 0.0450 0.0020 

(10,10,11) 0.0211 0.0001 (10,10,11) 0.0346 0.0012 
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1 2 3( , , ) (0.5,0.5,0.5)    1 2 3( , , ) (1.1,1,0.2)   

 ,, ,c c t t1 2 1 2

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE  ,, ,c c t t1 2 1 2

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

(1,1,2,2) 0.533 

(2,2,2) 0.0972 0.0094 

(1,1,2,2) 0.871 

(2,2,2) 0.0267 0.0007 

(5,5,5) 0.0958 0.0091 (5,5,5) 0.0222 0.0005 

(7,7,7) 0.0922 0.0085 (7,7,7) 0.0190 0.0003 

(10,10,10) 0.0515 0.0026 (10,10,10) 0.0183 0.0001 

(2,2,3) 0.0707 0.0050 (2,2,3) 0.0173 0.0003 

(5,5,6) 0.0628 0.0039 (5,5,6) 0.0130 0.0002 

(7,7,8) 

(10,10,11) 

0.0395 

0.0251 

0.0015 

0.0010 

(7,7,8) 

(10,10,11) 

0.0122 0.0001 

0.0113 0.0001 

(1,2,2,2) 0.3 

(2,2,2) 0.1002 0.0100 

(1,2,2,2) 0.746 

(2,2,2) 0.0423 0.0017 

(5,5,5) 0.0984 0.0096 (5,5,5) 0.0296 0.0008 

(7,7,7) 0.0977 0.0095 (7,7,7) 0.0217 0.0004 

(10,10,10) 0.0728 0.0053 (10,10,10) 0.0176 0.0002 

(2,2,3) 0.0717 0.0049 (2,2,3) 0.0228 0.0005 

(5,5,6) 0.0684 0.0046 (5,5,6) 0.0216 0.0004 

(7,7,8) 

(10,10,11) 

0.0558 

0.0301 

0.0031 

0.0018 

(7,7,8) 

(10,10,11) 

0.0128 

0.0121 

0.0001 

0.0001 

(2,1,2,2) 0.301 

(2,2,2) 0.0957 0.0091 

(2,1,2,2) 0.760 

(2,2,2) 0.0396 0.0015 

(5,5,5) 0.0954 0.0091 (5,5,5) 0.0288 0.0007 

(7,7,7) 0.0947 0.0088 (7,7,7) 0.0215 0.0003 

(10,10,10) 0.0701 0.0049 (10,10,10) 0.0170 0.0001 

(2,2,3) 0.0720 0.0051 (2,2,3) 0.0222 0.0004 

(5,5,6) 0.0636 0.0040 (5,5,6) 0.0211 0.0002 

(7,7,8) 

(10,10,11) 

0.0422 

0.0288 

0.0017 

0.0011 

(7,7,8) 

(10,10,11) 

0.0121 

0.0118 

0.0001 

0.0001 

(2,2,2,2) 0.2 

(2,2,2) 0.1028 0.0105 

(2,2,2,2) 0.687 

(2,2,2) 0.0430 0.0020 

(5,5,5) 0.0530 0.0098 (5,5,5) 0.0317 0.0009 

(7,7,7) 0.0317 0.0085 (7,7,7) 0.0220 0.0005 

(10,10,10) 0.0301 0.0050 (10,10,10) 0.0178 0.0003 

(2,2,3) 0.0906 0.0082 (2,2,3) 0.0230 0.0006 

(5,5,6) 0.0437 0.0019 (5,5,6) 0.0235 0.0005 

(7,7,8) 

(10,10,11) 

0.0323 

0.0299 

0.0010 

0.0010 

(7,7,8) 

(10,10,11) 

0.0130 

0.0128 

0.0002 

0.0002 

3. Bayesian Estimation of 
1 2 1 2, , ,c c t t

We will look in this section at the Bayesian estimator of 
1 2 1 2, , ,c c t t under the assumption that

1 2,  and 
3 are random variables.

Following [31], the prior distributions for 1 2,  and 3 are assumed to have the gamma

distribution with the following pdfs 

  1 1 11

1 1 1 ,
a b

e
    

   2 2 21

2 2 2 ,
a b

e
    

 and   3 3 3

33

1

3 ,
a b

e
    



where, the hyper-parameters; a1, a2, a3, b1, b2 and b3 are considered to be known. The joint prior 

distribution of 1 2 3( , , )    , assuming parameters independence is as follows: 

3 1 1 2 2 3 31 2 1 ( )1 1

1 2 3( ) .
a b b ba a

e
          



Based on the observed samples, the joint density function of 1 2 3( , , )     and the data are: 
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As a result, the posterior density function of 1 2 3( , , )     can be expressed as 

 
   

   

*

1 2 3

0 0 0

, , |
| , , .

, , |

L r p s
r p s

L r p s d d d

  
 

     
 



 

The Bayesian estimator of 
1 2 1 2, , ,c c t t , based on GELF, indicated by

1 2 1 2, , ,c c t t is derived as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

1
1

, , , , , , , , 1,

0

*

3

0

2

0

[ ( ) ] ( ) .| , ,c c t t c c t t c c t tE r p s d d d


      


  

 

 
     

 
          (10) 

Additionally, the Bayesian estimator of
1 2 1 2, , ,c c t t , under LLF indicated by

1 2 1 2, , ,c c t t is as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

*

, , , , , , , , ,

0 0

1 2 3

0

exp( (log ) exp log .| , ,c c t t c c t t c c t t r p s d dE d    
  

     
 
       (11) 

The Bayesian estimator of 
1 2 1 2, , ,c c t t for PLF indicated by

1 2 1 2, , ,c c t t is as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

*

1 2

0.5

2 2

, , , , ,

0

3

0

, , , ,

0

|( ) ., ,c c t t c c t t c c t tE r p s d d d    
   

     
 
       (12) 

It is difficult to find an explicit formula for (10)–(12) because the posterior density function 

 * | , ,r p s  has a composite structure. In order to obtain Bayesian estimates, we calculate these 

integrations using the Metropolis-Hastings (M-H) technique using the MCMCO algorithm. 

4. MCMCO Methodology

The MCMCO simulation is used to investigate the behavior 
1 2 1 2, , ,c c t t ’s MSS. Bayes

estimates (BE) under different loss functions are produced using gamma priors. The 
1 2 1 2, , ,c c t t ’s BE

accuracy is measured using the ABs, and MSEs. The various LRV options are  ,  ,  n m w = (2, 2, 2), (5, 

5, 5), (7, 7, 7), (10, 10, 10), (2, 2, 3), (5, 5, 6), and (7, 7, 8). The possible sets of hyperparameter values 

are considered to be: Prior I: (2, 1.5, 3, 2, 1.5, 1.1) and Prior II:(1, 1.4, 1, 2, 2.5, 3).  

The outcomes are based on 5,000 replications. The M-H process is a popular subgroup of 

the MCMCO technique in the Bayesian literature for modeling departures from the posterior 

density and producing accurate anticipated results. The main difficulty with the MCMCO is 

getting the BEs of 
1 2 1 2, , ,c c t t from GELF, LLF, and PLF using the M-H approach after simulating

samples from the posterior density. It converges to the desired distribution using 

acceptance/rejection criteria. The M-H algorithm (see [32]) operates as follows: 

a) Set the starting parameter value of
1 2 1 2

0

, , ,c c t t and the sample number N.

b) For i = 2 to N, set 
1 2 1 2 1 2 1 2

1

, , , , , ,

i

c c t t c c t t

   . 

c) Create u using the uniform (0,1).

d) Choose a candidate parameter
1 2 1 2

*

, , ,c c t t from the proposal density.
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* *

*

g
u

g

   

   
 , then set 

1 2 1 2 1 2 1 2

*

, , , , , ,

i

c c t t c c t t  ; otherwise, set 
1 2 1 2 1 2 1 2, , , , , ,

i

c c t t c c t t  . 

f) Return to step (b) and perform the aforementioned actions N times using 1i i  .

Using the outputs of the study, which are shown in Tables 2, 3, and are illustrated by Figures 7–12, 

we come up with the following conclusions: 

 The MSEs and ABs of 
1 2 1 2, , ,c c t t estimates via the GELF, LLF and PLF decrease with increasing

the record numbers n, m, w rises for all true values of  1 2 1 2,  ,  ,  c c t t , (Tables 2, 3). 

 The ABs of 
1 2 1 2, , ,c c t t estimates via the GELF, LLF and PLF have the smallest values at

 1 2 1 2,  ,  ,  c c t t = (1, 1, 2, 2), (Tables 2, 3). 

 At true value 
1 2 1 2, , , 0.748c c t t  , the MSE of 

1 2 1 2, , ,c c t t via PLF take the smallest values in case of

prior I except at (7, 7, 8) (see Figure 7). 

 At true value 
1 2 1 2, , , 0.748c c t t  , the AB of 

1 2 1 2, , ,c c t t at PLF gets the fewest values for a distinct

number of records excepting at ( , , ) (7,7,8)n m w   via prior I (see Figure 8). 

Figure 7: MSEs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  at 

1 2 1 2( , , , )c c t t = (1, 2, 2, 2) for prior I

Figure 8: ABs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  at

1 2 1 2( , , , )c c t t = (1, 1, 2, 2) for prior I

 The MSEs of 
1 2 1 2, , , ,c c t t

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under the GELF, LLF and PLF, respectively, decrease 

as the number of records n = m = w increases via prior II (see Figure 9). 

 At true value 
1 2 1 2, , , 0.760c c t t  , the MSEs of 

1 2 1 2, , , ,c c t t  
1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under the GELF, LLF

and PLF, respectively, get the least values for similar record values of (n, m) via prior II (see 

Figure 10). 
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Figure 9: MSEs of  
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

1 2 1 2( , , , )c c t t = (2 ,1, 2, 2) for prior II

Figure 10: MSEs of  
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

true value 
1 2 1 2, , , 0.760c c t t   for prior II 

 At true value
1 2 1 2, , , 0.746c c t t  , the MSEs of 

1 2 1 2, , ,c c t t gets the smallest values compared to

1 2 1 2, , , ,c c t t and
1 2 1 2, , ,c c t t for similar record values except at    ,  ,  10,10,10n m w   via prior II (see

Figure 11). 

 Figure 12 illustrates that the ABs of
1 2 1 2, , , ,c c t t

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   decrease as true value of 

1 2 1 2, , ,c c t t increases for    ,  ,  2,2,2n m w  .

Figure 11: MSEs of 
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

1 2 1 2( , , , )c c t t =(1, 2, 2, 2) for prior II

Figure 12: The ABs for all true values of 
1 2 1 2, , ,c c t t at

2n m w    for prior II 

Table 2: Numerical results of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  for prior I 

1 2 1 2( , , , ) (1,2,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.871 

(2, 2, 2) 

0.02036 0.00041 0.746 

(2, 2, 2) 

0.04300 0.00184 

LLF 0.01541 0.00023 0.03373 0.00113 

PLF 0.006413 0.00004 0.01229 0.00015 

GELF 

(5,5,5) 

0.00542 2.9E-05 

(5,5,5) 

0.04175 0.00174 

LLF 0.00048 2.3E-07 0.03295 0.00108 

PLF 0.00067 4.5E-07 0.01169 0.00013 

GELF (7,7,7) 0.00314 9.9E-06 (7,7,7) 0.03750 0.00140 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014
M

e
an

 S
q

u
ar

e
 E

rr
o

r 

GELF LLF PLF

0

0.0002

0.0004

0.0006

M
e

an
 S

q
u

ar
e

 E
rr

o
r 

GELF LLF PLF

0

0.005

0.01

0.015

0.02

0.025

R=0.871 

R=0.746 R=0.760 
R=0.687 

A
b

so
lu

te
 B

ia
s 

GELF LLF PLF

0

0.005

0.01

0.015

0.02

0.025

(2,2,2) (5,5,5) (2,2,3) (5,5,7)

M
e

an
 S

q
u

ar
e

 E
rr

o
r 

GELF LLF PLF

     RT&A, No 2 (73) 

  Volume 18, June 2023 

523



Amal S. Hassan, Doaa M. Ismail, and Heba F. Nagy 
ANALYSIS OF A NON-IDENTICAL COMPONENT-STRENGTHS 

LLF 0.00036 1.3E-07 0.02955 0.00087 

PLF 0.00023 5.4E-08 0.01078 0.00011 

GELF 

(10,10,10) 

0.00293 8.6E-06 

(10,10,10) 

0.00323 1.0E-05 

LLF 0.00030 1.3E-07 0.00289 8.3E-06 

PLF 0.00020 4.2E-08 0.00005 3.2E-09 

GELF 

(2,2,3) 

0.02601 0.00067 

(2,2,3) 

0.03778 0.00142 

LLF 0.02085 0.00043 0.02893 0.00083 

PLF 0.00891 0.00007 0.01107 0.00012 

GELF 

(5,5,7) 

0.01449 0.00021 

(5,5,7) 

0.02832 0.00080 

LLF 0.00995 0.00009 0.02031 0.00041 

PLF 0.00407 1.6E-05 0.00797 6.3E-05 

GELF 

(7,7,8) 

0.000286 8.1E-06 

(7,7,8) 

0.00768 5.9E-05 

LLF 0.00103 1.0E-06 0.00161 2.6E-06 

PLF 0.00058 3.3E-07 0.00177 3.1E-06 

1 2 1 2( , , , ) (2,1,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.760 

(2,2,2) 

0.04292 0.00184 0.687 

(2,2,2) 

0.02976 0.00088 

LLF 0.03398 0.00115 0.019006 0.00036 

PLF 0.01359 0.00018 0.00830 6.8E-05 

GELF 

(5,5,5) 

0.03351 0.00112 

(5,5,5) 

0.01627 0.00026 

LLF 0.02530 0.00064 0.00513 2.6E-05 

PLF 0.00979 9.5E-05 0.00013 1.8E-08 

GELF 

(7,7,7) 

0.02497 0.00062 

(7,7,7) 

0.00552 3.0E-05 

LLF 0.01697 0.00028 0.00244 5.9E-06 

PLF 0.00664 4.4E-05 0.00016 2.6E-08 

GELF 

(10,10,10) 

0.01358 0.00051 

(10,10,10) 

0.00491 6.11E-10 

LLF 0.01511 0.00017 0.00235 2.04E-11 

PLF 0.00544 3.2E-05 0.00015 2.03E-10 

GELF 

(2,2,3) 

0.04676 0.00218 

(2,2,3) 

0.02680 0.01649 

LLF 0.04676 0.00144 0.01649 0.00027 

PLF 0.01530 0.00023 0.00663 4.41E-05 

GELF 

(5,5,7) 

0.02963 0.00087 

(5,5,7) 

0.00534 2.8E-05 

LLF 0.02181 0.00047 0.00193 3.7E-06 

PLF 0.01002 0.00010 0.00187 3.5E-06 

GELF 

(7,7,8) 

0.00357 1.2E-05 

(7,7,8) 

0.00017 3.11E-10 

LLF 0.00270 7.3E-06 0.00105 6.55E-11 

PLF 0.00031 9.9E-08 0.00135 3.44E-10 

Table 3: Numerical results of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  for prior II 

1 2 1 2( , , , ) (1,1,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.871 

(2,2,2) 

0.01134 0.00012 0.746 

(2,2,2) 

0.02343 0.00054 

LLF 0.00566 3.2E-05 0.01414 0.00020 

PLF 0.002903 8.4E-06 0.005499 3.0E-05 

GELF 

(5,5,5) 

0.00355 1.2E-05 

(5,5,5) 

0.02311 0.00047 

LLF 0.00161 2.6E-06 0.01241 0.00015 

PLF 0.00072 5.2E-07 0.00421 2.7E-05 

GELF 

(7,7,7) 

0.00206 4.2E-06 

(7,7,7) 

0.02277 0.00037 

LLF 0.00153 2.3E-06 0.01187 0.00011 

PLF 0.00103 1.8E-07 0.00365 1.1E-04 

GELF 
(10,10,10) 

0.00201 3.4E-06 
(10,10,10) 

0.02148 0.00029 

LLF 0.00140 1.2E-07 0.01099 3.0E-05 
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PLF 0.00099 5.2E-08 0.00301 1.0E-04 

GELF 

(2,2,3) 

0.02524 0.00164 

(2,2,3) 

0.03074 0.00426 

LLF 0.02358 0.00121 0.03009 0.00077 

PLF 0.00799 0.00080 0.00784 1.7E-05 

GELF 

(5,5,7) 

0.02470 0.00135 

(5,5,7) 

0.02457 0.00333 

LLF 0.02157 0.00117 0.02847 0.00051 

PLF 0.00630 0.00060 0.00780 1.1E-05 

GELF 

(7,7,8) 

0.02110 0.00124 

(7,7,8) 

0.01354 0.00251 

LLF 0.01110 0.00101 0.02147 0.00039 

PLF 0.00558 0.00038 0.00660 1.8E-06 

1 2 1 2( , , , ) (2,1,2,2)c c t t  1 2 1 2( , , , ) (2,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.760 

(2,2,2) 

0.02320 0.00136 0.687 

(2,2,2) 

0.02377 0.00056 

LLF 0.01312 0.00078 0.01288 0.00016 

PLF 0.00445 0.00008 0.00515 2.6E-05 

GELF 

(5,5,5) 

0.03524 0.00128 

(5,5,5) 

0.02228 0.00035 

LLF 0.02600 0.00071 0.01147 0.00012 

PLF 0.00931 8.1E-05 0.00478 1.8E-06 

GELF 

(7,7,7) 

0.03421 0.00088 

(7,7,7) 

0.02147 2.4E-05 

LLF 0.02387 0.00050 0.01133 2.9E-06 

PLF 0.00900 2.4E-05 0.00330 2.9E-08 

GELF 

(10,10,10) 

0.03321 0.00051 

(10,10,10) 

0.02140 6.1E-08 

LLF 0.02340 0.00044 0.01110 2.0E-07 

PLF 0.00875 3.2E-06 0.00250 2.0E-08 

GELF 

(2,2,3) 

0.03476 0.02336 

(2,2,3) 

0.02131 0.01356 

LLF 0.03554 0.00744 0.01109 0.00124 

PLF 0.02447 0.00037 0.00190 2.4E-05 

GELF 

(5,5,7) 

0.03124 0.01235 

(5,5,7) 

0.02110 0.01254 

LLF 0.02490 0.00625 0.01148 0.00120 

PLF 0.02300 0.00035 0.00166 1.4E-05 

GELF 

(7,7,8) 

0.03009 0.00147 

(7,7,8) 

0.01999 0.00124 

LLF 0.02370 0.00420 0.01122 0.00110 

PLF 0.02298 0.00021 0.00150 1.0E-06 

Note that: E-0k stands for 10-k, k is integer 

5. Actual Data Implementation

In this part, we illustrate our principles using three real datasets. We consider the real data 

sets reported in [33] where the data represent the time to break down (in minutes) of insulating 

fluids to electrodes at voltage levels 34 kV, 36 kV and 38 kV. The Kolmogorov-Smirnov (KS) test is 

used to separately fit each of the three datasets with the EPD along with the corresponding P-value 

(PV) (see Table 4). The empirical cdf and estimated pdf for these data are explained in Figure 13. 

At levels 34 kV, 36 kV and 38 kV, the times to break down are reported respectively as follows 

Data Group I 

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.5 8.27 33.91 

32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89 
Data Group II 

1.97 0.59 2.58 1.69 2.71 25.5 0.35 0.99 3.9 3.67 

2.07 0.96 5.35 2.9 13.77 
Data Group III 

0.47 0.73 1.4 0.74 0.39 1.13 0.09 2.38 
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Data K-S PV 

Group I 0.167 0.6013 

Group II 0.185 0.6127 

Group III 0.277 0.5013 

Data I 

Data II 

Data III 
Figure 13: Characteristics and limitations of K-S test for the three data groups 

We assume that electrical fluid of specimen considered being good if 1 out of 2 specimens are 

functioning properly at constant voltage. Form data group I, II and III, three sets of lower record 

values r = (0.96, 0.19), p = (1.97, 0.59, 0.35) and s = (0.47, 0.39, 0.09) are obtained, respectively. From 

,  r p , and s , we find that 2, 3, 3n m w   , then we calculate the estimates of 
1 2 1 2, , ,c c t t using

the ML and Bayesian approaches within GELF, LLF and PLF. Using the above LRVs, the MLE and 

BE of 
1 2 1 2, , ,c c t t , are calculated in Table 5.

Table 5: Bayes and ML estimates of 
1 2 1 2, , ,c c t t , for the real data

MLE of 
1 2 1 2, , ,c c t t


BE of

1 2 1 2, , ,c c t t


GELF LLF PLF 

0.5851 0.7673 0.7743 0.7956 
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Table 4: The K-S test and corresponding P-values for groups I, II and III 
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In the present work, we investigate the stress-strength reliability in a multi-component system 

with non-identical component strengths where both the stress and strength variables are the EPD. 

The ML and Bayesian procedures are used to analyse the reliability of MSS. Strength and stress 

distribution samples are used, and their measurements are presented in LRVs. We use MCMCO 

techniques in order to evaluate the accuracy of the various Bayesian estimates. The simulation 

study shows that for four choices of  1 2 1 2,  , ,  c c t t , the MSEs and ABs decrease with the number of 

records, supporting the MLE's consistency characteristic of 
1 2 1 2, , ,c c t t . Additionally, as the true

value of 
1 2 1 2, , ,c c t t increases, the MSEs of

1 2 1 2, , ,
ˆ

c c t t drop. Regarding the MCMCO approach, we

deduce that the MSEs and ABs of 
1 2 1 2, , ,c c t t via PLF generally hold the lowest values in majority of

cases. The ABs and MSEs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under different loss functions decrease as 

the number of records rises. The use of actual data demonstrates that our model's reliability 

estimates are very near to one, demonstrating its practical usefulness. 
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