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Abstract 

We often see that in a system, the energy is supplied to the system by 𝑝1 sources and its consumed 

through 𝑝2 sources and the sources are linearly dependent with vector 𝒂′ and 𝒃′. The overall

representation of the two sets are related to vectors 𝒂 and 𝒃, such that they are approximated by  𝒂′𝒙  

and 𝒃′𝒚 as in principal component analysis. In this article, a stress strength reliability model R= 

Pr(𝒂′𝒙 >  𝒃′𝒚), when 𝒙 and 𝒚 are distributed dependently multivariate normal distribution is 

proposed, with 𝒂 and 𝒃 are two known vectors. MVUE and MLE of R are obtained. Through 

simulation studies, their performances are compared using different measures. The two-sided 

confidence intervals and lower bounds of R are obtained through exact and asymptotic distribution 

of maximum-likelihood estimators and using bootstrap procedure. Through simulation studies, the 

performances of these confidence intervals are empirically checked using their coverage and the 

accuracy. In this study, we proposed to choose the optimal sample size for an experiment assures an 

adequate power and level. Finally, we applied these interval estimators to a real data set. 

Keywords: Stress-strength, Principal component, Maximum Likelihood Estimator (MLE), 

Minimum Variance Unbiased Estimator (MVUE), Confidence Intervals. 

1. Introduction

The stress-strength model consists in estimating R=Pr(X>Y), the lifetime of a component which has 

a random strength X and it’s subjected to random stress Y. In stress-strength model, the system fails 

if and only if, at any time, the stress is greater than its strength. Birnbaum was first introduced to 

this model [1] and was developed by Birnbaum and McCarty [2]. There has been a huge number of 

works in estimation of the reliability R= P(X>Y) in the field of stress-strength models. It has several 

applications particularly in engineering ideas, like structures, deterioration of rocket motors, static 

fatigue of ceramic parts, fatigue failure of craft structures, and also in mechanical, civil engineering. 

The R=Pr(X>Y) has been formulated for the huge majority of the well-known statistical distributions 

when X and Y are independent random variables belonging to the univariate family and (X,Y) 

follows bivariate distribution with dependence between X and Y. The R has been established for the 

bulk of well-known statistical distributions, including Normal, uniform, exponential, gamma, beta, 

extreme value, Weibull, Laplace, etc [3-7]. 

This stress-strength reliability model may also be useful in clinical trial. Particularly when 

comparing two treatment effects, it may be more useful to draw conclusions regarding the unit's free 

measure, rather than comparing the means [8]. Simonoff, Hochberg and Reiser also used this 

function to find the effect of the treatment, if Y is the response for a control group, and X refers to a 
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treatment group [9].  A numerical procedure obtained by Birnbaum and McCarty based  on  the 

asymptotic distribution to find the sample size needed for setting  up an upper confidence  bound  

with the defined width and confidence coefficient [2]. Using this procedure Owen, Craswell and 

Hanson considered  the same problem in case of bivariate normal distribution to obtained the sample 

size  needed  for specified confidence  bound  and  the  confidence  coefficient [10]. Sen obtained the 

non parametric confidence bounds for P(X<Y) based on independent samples [11]. Govindarazulu 

obtained two-sided confidence intervals for R when X and Y are independent and also dependent 

normal variates [12]. Church and Harris obtained confidence intervals for R in case of independent 

normal varieties [13]. Under the same assumptions, Downton derived the minimum variance 

unbiased estimator (MVUE) of R [14]. They are suggested that an alternative approximation to 

obtained the “best” estimate of R and its confidence intervals by Church and Harris.  Woodward 

and Kelley obtained the uniformly minimum variance unbiased estimator (UMVUE) of R based on 

infinite series [15].  Mukherjee and Sharan obtained the UMVUE for R under the bivariate normal 

distribution [16] and also obtained their asymptotic variance when parameters other than the means 

are known and they proposed an estimator R based on maximum likelihood estimators when all the 

five parameters are unknown. Hor and Seal derived an alternative estimator viz. UMVUE of R under 

the same case of bivariate normal distribution [17].  

All these above works were done under the univariate or bivariate setup. Gupta and Gupta 

first estimated the reliability under multivariate normal setup [18]. They considered the forms of R 

when (𝒙𝑝1x1, 𝒚𝑝2x1) follows multivariate normal distribution with dependence vector between 𝒙𝑝1x1
and 𝒚𝑝2x1. Then, the reliability as R= Pr(𝒂′𝒙 >  𝒃′𝒚) , where 𝒂′ and 𝒃′ are two vectors. This problem

arises when a system in the energy is supplied to the system by 𝑝1 sources and is consumed through 

𝑝2 sources and the sources of energy supplied and consumed are linearly dependent with known 

vector 𝒂′ and 𝒃′. Under this set up, they obtained and compared the MVUE and MLE estimate of R 

with some interesting special cases. Enis and Geisser have demonstrated that, how to obtain the 

exact confidence bounds for R [19]. In this multivariate setup, Reiser and Farragi derived the lower 

confidence bounds for R=P(a'x>b'y) [20] and solved it iteratively and also derived an approximate 

lower confidence bounds for R. In a clinical trial require sample size calculations to determine the 

optimal number of participants (patients) to be included in the trial. Reiser and Guttman introduced 

the method to obtain the sample size for experiments concerned with inference on R, based on 

acceptance sampling theory in the univariate normal setup [21].  

These two vectors 𝒂 and 𝒃 are to be chosen such that the multivariate behaviours are 

approximated by  𝒂′𝒙  and 𝒃′𝒚 as in principal component analysis. Thus, the Principal component 

analysis used to estimate the 𝒂′ and  𝒃′where as Gupta and  Gupta considered only spatial cases of 

𝒂′  and 𝒃′ and compare the MVUE and MLE estimates of R using given mean vector and dispersion 

matrix [18]. The study is carried out on real data set. We do simulation studies to compare the 

performance of MVUE and MLE in teams of variance (VAR), mean square error (MSE) and mean 

absolute error (MAE). Then, it is shown that MVUE of R performs better than MLE. 

We estimate R=P(a'x>b'y) under the multivariate normal setup, whereas Hor and Seal 

derived this under the bivariate normal distribution setup [17]. We choose some set of μ1, μ2, Σ11, Σ12, 

Σ22 and to compute L1 distance between the two distribution functions of MVUE and MLE. We may 

take different choices of parameters to obtain the L1 distance, where the parameter is √𝑛𝛿 =
−√𝑛(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃−𝒃

′𝜮𝟐𝟐𝒃)
1
2

 . In this connection, the distributions function of the two estimators MVUE 

and MLE are derived in section 3. L1 distance between two functions to compare two estimators is 

given in section 4. In section 6, we can deal with the problem to obtain two-sided confidence limits 

and lower bounds for R under the multivariate normal set up. Based on MVUE and MLE, we 

compare the performance between bootstrap and empirically interval estimator in terms of coverage 

and accuracy using simulation study. Finally, we applied these interval estimators to a real data set. 

Finally, in Section 7, we consider the problem of sample size determination. 
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2. Derivation of the Point Estimation of R

2.1. Maximum Likelihood Estimator of R 

Let, xp1x1 and yp2x1  be two random vector such that the distribution of (
𝐱
𝐲) ~ 𝑁𝑝1+𝑝2(µ, ∑)

Where, µ =

1 2

1

2 ( ) 1p p x+

 
 
 

µ

µ
and     ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

 

Suppose we have known vectors  𝒂′ and 𝒃′. Then, we want to find the reliability in terms of linear 

combination of 𝒂′𝒙 and 𝒃′𝐲 as R= Pr(𝒂′𝒙 > 𝒃′𝒚) =  Pr(𝒂′𝒙 − 𝒃′𝐲 > 0) 

Now, the distribution of 𝑢 = 𝒂′𝒙 − 𝒃′𝐲  follows 𝑁(µ𝑢, 𝜎𝑢
2),

where,  𝜇𝑢=𝐸 (𝒂′𝒙 − 𝒃′𝐲) = 𝒂′𝝁𝟏 − 𝒃
′𝝁𝟐

and 𝜎𝑢
2 = 𝑉𝑎𝑟(𝒂′𝒙 − 𝒃′𝐲) = 𝒂′∑𝟏𝟏𝒂 − 𝟐𝒂

′∑𝟏𝟐 𝒃 +  𝒃
′∑𝟐𝟐 𝒃

Now, R= Pr(𝒂′𝒙 − 𝒃′𝐲 >  0) = Pr(𝑢 >  0)  

 = ∫
1

√2𝜋𝜎𝑢

∞

0
exp {−

1

2
(
𝑢−𝜇𝑢

𝜎𝑢
)
2

} 𝑑𝑢=∫
1

√2𝜋

∞

− 
𝜇𝑢
𝜎𝑢

exp {−
1

2
𝑧2} 𝑑𝑧= Φ(

𝜇𝑢

𝜎𝑢
) 

The maximum likelihood estimator of µ =

1 2

1

2 ( )p xp

 
 
 

µ

µ
 and  ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

 

define as  (
𝒙
𝒚,̅
̅
)  and 𝑺 = (

𝑺𝟏𝟏  𝑺𝟏𝟐 
𝑺𝟐𝟏  𝑺𝟐𝟐 

) respectively. 

We have, 𝜇�̂� = 𝒂
′𝒙 − 𝒃′�̅�  and 𝜎𝑢2̂ = 𝒂

′𝑺𝟏𝟏𝒂 − 𝟐𝒂
′𝑺𝟏𝟐 𝒃 +  𝒃

′𝑺𝟐𝟐 𝒃

So, the maximum likelihood estimate of R is define as R*= Φ(
μû

σu
2̂
)  (1) 

2.2. Principal Component Estimation 

Let us, compute the estimate of 𝒂′ 𝑎𝑛𝑑 𝒃′ by Principal component analysis. Principal component 

analysis explaining the variance-covariance structure ∑𝟏𝟏 𝑎𝑛𝑑 ∑𝟐𝟐 of a set of variables 𝒙 𝑎𝑛𝑑 𝐲 

through a linear combination (𝒂′ 𝑎𝑛𝑑 𝒃′)  of these variables, i.e, explain maximum variability. It is 

noted that, the first principal component has the largest possible variance (that is, accounts for as 

much of the variability in the data as possible), and each succeeding component in turn has the 

highest variance possible under the constraint that it is orthogonal to the preceding components. 

We take the maximum likelihood estimate of ∑𝟏𝟏  as 𝑺𝟏𝟏  and  𝒂′ as 𝒆𝟏
′  normalized eigenvectors of

𝑺𝟏𝟏 corresponding to 𝜆1 eigen value. Similarly, we have estimate of  ∑𝟐𝟐 as 𝑺𝟐𝟐  and  𝒃′ as 𝒍𝟏
′

normalized eigenvectors of 𝑺𝟐𝟐 corresponding to 𝜆1 eigen value. Then from (1) the estimate of R 

define as R*= Φ(
μû

σu
2̂), where 𝜇�̂� = 𝒆𝟏

′ 𝒙 − 𝒍𝟏
′ �̅�  and 𝜎𝑢2̂ = 𝒆𝟏

′ 𝑺𝟏𝟏𝒆𝟏 − 𝟐𝒆𝟏
′ 𝑺𝟏𝟐 𝒍𝟏 + 𝒍𝟏

′ 𝑺𝟐𝟐 𝒍𝟏  .

2.3. Minimum Variance Unbiased Estimator (MVUE) of R 

Now, let us find out Minimum Variance Unbiased Estimator (MVUE) of R=Pr(𝒂′𝒙 − 𝒃′𝐲 > 0). Here, 

it is assumed that the random sample (
𝐱𝛂
𝐲𝛂
) , α = 1,2, … , n are from multivariate normal distribution

i.e. (
𝐱𝛂
𝐲𝛂
)~ 𝑁𝑝1+𝑝2(µ, ∑).

Then, 𝑢𝛂 = (𝒃
′𝒚𝛂 − 𝒂

′𝒙𝛂) ~
2( , )u uN   , α=1,2,….,n be the random sample of size n. Now, (𝑢,̅ 𝑆𝑢

2) 

is a complete sufficient statistic for (𝜇𝑢 , 𝜎𝑢
2), where 𝑢

−
=
1

𝑛
∑ 𝑢𝑖
𝑛
𝛼=1  and 𝑠𝑢

2 =
1

𝑛
∑ (𝑢𝑖 − 𝑢

−
)2𝑛

𝛼=1 , the 

MVUE of R [22] is  
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𝑅
^

= ∫
Γ(
𝑛−1

2
)

Γ(
1

2
)Γ(

𝑛−2

2
)

1

𝑐
(1 − 𝑧2)

𝑛−2

2
−1𝑑𝑧, where  𝑐 =

𝑢
−

(√(𝑛−1)𝑠𝑢

Then the MVUE of  R=Pr(𝒂′𝒙 − 𝒃′𝐲 > 0)  [18] is 

𝑅
^

=

(

0 if 𝑐 > 1
1

2
(1 − 𝐵 (𝑐2;

1

2
,
𝑛−2

2
)) if 0 < 𝑐 ≤ 1

1

2
(1 + 𝐵 ((−𝑐)2;

1

2
,
𝑛−2

2
)) if −1 < 𝑐 ≤ 0

1 if 𝑐 ≤ −1 )

  (2) 

where, 𝑐 =
(𝒆1
′ �̅�−𝒍1

′ �̅�)

(√(𝑛−1)(𝒆1
′ 𝑺11𝒆1−2𝒆1

′ 𝑺12 𝒍𝟏+ 𝒍1
′ 𝑺22 𝒍1)

and  𝐵(𝑘; 𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1
𝑘

0
𝑑𝑥 

2.4. Simulation Study 

The simulation study we performed aim to compare the behaviors of two estimators of R, i.e. �̂�, the 

MVUE and R*= Φ(
μû

σu
2̂) , the estimator based on maximum likelihood estimate of µ =

1 2

1

2 ( )p xp

 
 
 

µ

µ
and 

 ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

  . 

For this purpose we compute the following measures:

(i) Mean of �̂� 𝑎𝑛𝑑 𝑅∗

(ii) Variance of �̂� and 𝑅∗ : 𝐸(�̂� − 𝑅)2 and 𝐸(𝑅∗ − 𝑅)2

(iii) Mean square error of �̂� and 𝑅∗ : Var(�̂� )+Bias(�̂� ,R)2 and Var(𝑅∗)+Bias(𝑅∗,R)2 

(iv) Mean absolute error of �̂� and 𝑅∗ : 𝐸(|�̂� − 𝑅|) and 𝐸(|𝑅∗ − 𝑅|)

It is difficult to obtain the analytical form of above expressions for different values of ‘R’. So, we

figure out these by using simulation study. Hence, we generate the random samples of size n from 

(
𝐱
𝐲) ~ 𝑁𝑝1+𝑝2(µ, ∑). For each of sample drown of size n, we compute the above measures by taking

500 replications each time.  

For this purpose, here, R programming language is used. 

Suppose, 

(

𝑥1
𝑥2
𝑦1
𝑦2
𝑦3)

 ~𝑁5(µ, ∑), where , µ′ = (2,4,2,1,2)  ; ∑ =

(

3.61 2.23 −0.10 0.16 2.32
2.23 4.74 3.32 −0.69 1.76
−0.10 3.32 5.68 −2.34 −1.23
0.16 −0.69 −2.34 3.05 1.53
2.32 1.76 −1.23 1.53 4.45 )

Therefore, the estimated values of two known vectors based on first principal component are 𝒂′ = 

(0.614, 0.789) and 𝒃′=(0.737, -0.491, -0.465). Now, we want to estimate R= Pr(𝒂′𝒙 > 𝒃′𝒚) , then the 

exact value of stress strength reliability R is 0.886. We take the sample size of n up to 100 in order to 

achieved exact value for the reliability.  Using (1) and (2), calculated mean, variance MSE and MAE 

of �̂�  and R* based on 500 repetitions are reported in Table 1. It can be observed that Variance of  �̂�  

is lesser than the Variance of R* in each sample size. Also, it is noted that the MSE’s and MAE’s of 

�̂�  are less than MSE’s and MAE ‘s of R*. However, the sample mean of �̂�  is less than the R* in each 

case. But, �̂�  and R* are under-estimates the true value of R, when sample size are small. It is also 

interesting to observe that, the Variance, MSE and MAE of �̂�  and R* are reduces as the sample size 

increases: when n=200 and almost achieved the true value of R. 
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Table 1: Sample Mean, Variance, MSE and MAE of �̂�  and 𝑅∗ 

Sample 

Size 

Sample Mean Variance MSE MAE 

�̂� 𝑹∗ �̂� 𝑹∗ �̂� 𝑹∗ �̂� 𝑹∗ 

10 0.672281 0.675052 0.105394 0.109709 0.150902 0.154031 0.247465 0.250765 

20 0.730188 0.732219 0.094903 0.096861 0.119021 0.120346 0.190329 0.192359 

30 0.755041 0.756586 0.082294 0.083551 0.099306 0.100158 0.152352 0.163332 

40 0.793484 0.795067 0.059074 0.059788 0.067533 0.067956 0.11029 0.11728 

50 0.804974 0.806287 0.054406 0.054921 0.060878 0.061181 0.097016 0.104556 

60 0.812637 0.813826 0.048111 0.048495 0.053412 0.053621 0.909735 0.092666 

70 0.838157 0.839244 0.032573 0.032796 0.034807 0.034926 0.066746 0.068149 

80 0.844905 0.84585 0.030538 0.030711 0.032174 0.03227 0.062998 0.063118 

90 0.84874 0.849622 0.026384 0.026519 0.027727 0.027797 0.055342 0.055777 

100 0.855952 0.856766 0.021074 0.02117 0.021941 0.021988 0.04756 0.04864 

200 0.881041 0.881482 0.003745 0.003751 0.003763 0.003765 0.018152 0.018332 

3. Distribution Function of  𝑅
^

 and 𝑅∗

In this section, we derive the distributions function of 𝑅
^

 and 𝑅∗. We have 

𝑅 =

(

 

0 if 𝑐 > 1
1

2
(1 − 𝐵 (𝑐2;

1

2
,
𝑛−2

2
)) if 0 < 𝑐 ≤ 1

1

2
(1 + 𝐵 ((−𝑐)2;

1

2
,
𝑛−2

2
)) if −1 < 𝑐 ≤ 0

1 if 𝑐 ≤ −1 )

 , 

where 𝐵(𝑥;
1

2
,
𝑛−2

2
) is c.d.f 𝐵(

1

2
,
𝑛−2

2
) and it is clear that 0 ≤ 𝑅

^

≤ 1 for any real number of c. 

Let the distribution function of 𝑅
^

 be 𝐹
𝑅
^(𝑥)  , then 

 𝐹
𝑅
^(𝑥) = 0 if 𝑥 < 0 and 𝐹

𝑅
^(𝑥) = 1 if 𝑥 ⩾ 1 

If 0 ⩽ 𝑥 ⩽
1

2
, then the distribution function of 𝑅

^

 is given by 

𝐹
𝑅
^(𝑥) = 𝑃(𝑅

^

⩽ 𝑥) = 𝑃[(𝑅
^

⩽ 𝑥)⋂{(𝑐 > 0)⋃(𝑐 ⩽ 0)}]   = 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 > 0)] + 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 ⩽ 0)] 

 = 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 > 0)]𝑃[𝑐 > 0] + 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 ⩽ 0)]𝑃[𝑐 ⩽ 0]   

= 𝑃[
1

2
−
1

2
𝐵(𝑐2;

1

2
,
𝑛−2

2
) ⩽ 𝑥]𝑃[

(𝒃′𝒚
_
−𝓪′𝒙

_
)

√(𝑛−1)(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

> 0]

= 𝑃[𝐵(𝑐2;
1

2
,
𝑛−2

2
) ⩾ 1 − 2𝑥]𝑃[(𝒃′𝒚

_
− 𝓪′𝒙

_
) > 0] 

,where (𝒃′𝒚
_
− 𝓪′𝒙

_
)~𝑁1((𝒃

′𝝁𝟐 − 𝓪
′𝝁𝟏),

1

𝑛
(𝓪′𝜮𝟏𝟏𝓪 − 𝟐𝓪

′𝜮𝟏𝟐𝒃 + 𝒃
′𝜮𝟐𝟐𝒃))

= 𝑃[𝑐2 ⩾ 𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥)]𝛷(
√𝑛(𝒃′𝝁𝟐 − 𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪 − 𝟐𝓪
′𝜮𝟏𝟐𝒃 + 𝒃

′𝜮𝟐𝟐𝒃)
1
2

) 

= {𝑃[𝑐 ⩾ (𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))

1
2

] + 𝑃[𝑐 ⩽ −(𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))

1
2

]}𝛷(−√𝑛𝛿) 

,where 𝛿 =
−(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃+𝒃

′𝜮𝟐𝟐𝒃)
1
2
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 = {𝑃[
(𝒃′𝒚

_
− 𝓪′𝒙

_
)

√(𝑛 − 1)(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩾ (𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))
1
2] +

 𝑃[
(𝒃′𝒚

_
− 𝓪′𝒙

_
)

√(𝑛 − 1)(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩽ −(𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))
1
2]} 𝛷(−√𝑛𝛿) 

 = {𝑃[−√𝑛𝛿
^

⩾ (𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2] +𝑃[−√𝑛𝛿
^

⩽ −(𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2]}𝛷(−√𝑛𝛿) 

    ,where 𝛿
^

=
−√(𝑛−1)(𝒃′𝒚

_
−𝓪′𝒙

_
)

√𝑛(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

 = {𝑃[√𝑛𝛿
^

⩽ −(𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2] +  1 − 𝑃[√𝑛𝛿
^

⩽ (𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2]}𝛷(−√𝑛𝛿) 

 = {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)   (3) 

Using the standard distribution theory [23], if 𝒙~ 𝑁𝑝(µ, ∑) then 𝒂′𝒙~𝑁1(𝒂
′µ, 𝒂′∑𝒂 ). Let, 𝒙

_
 and S be

the unbiased estimator of µ and ∑  respectively, then 𝒂′𝒙
_
~𝑁1(𝒂

′µ,
𝟏

𝒏
(𝒂′∑𝒂) ) and 𝑺~ 𝑊𝑝(𝑛 − 1, ∑). 

Thus, we can write, 
𝒂′𝑺𝒂

𝒂′∑𝒂
~𝝌𝒏−𝟏

𝟐 , hence √𝑛 − 1𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′ where 𝑡(𝑛−1),√𝑛𝛿

′   denotes the non - central 

t - distribution with (n - 1) d.f. We use the unbiased estimator of ∑  instead of MLE, then 

√𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′  with non-centrality parameter√𝑛𝛿 and 𝐹𝑡

(𝑛−1),√𝑛𝛿
′ (. ) be the cdf of non - central t - 

distribution. 

If 
1

2
< 𝑥 < 1,  then the distribution function of 𝑅

^

 is given by 

𝐹
𝑅
^(𝑥) = 𝑃(𝑅

^

⩽ 𝑥)  = 𝑃[(𝑅
^

⩽ 𝑥)⋂{(𝑐 > 0)⋃(𝑐 ⩽ 0)}]  = 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 > 0)] + 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 ⩽ 0)] 

 = 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 > 0)]𝑃[𝑐 > 0] + 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 ⩽ 0)]𝑃[𝑐 ⩽ 0]   

= 𝑃[
1

2
−
1

2
𝐵(𝑐2;

1

2
,
𝑛−2

2
) ⩽ 𝑥]𝑃[

(𝒃′𝒚
_
−𝓪′𝒙

_
)

√(𝑛−1)(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

> 0] +

 𝑃[
1

2
+
1

2
𝐵((−𝑐)2;

1

2
,
𝑛 − 2

2
) ⩽ 𝑥]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[𝐵(𝑐2;
1

2
,
𝑛 − 2

2
) ⩽ 2𝑥 − 1]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[𝑐2 ⩽ 𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1)]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[−(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩽ 𝑐 ⩽ (𝐵

(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

= 𝛷(−√𝑛𝛿) + 𝑃[−(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩽ −√𝑛𝛿

^

⩽ (𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

= 𝛷(−√𝑛𝛿) + 𝑃[(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩾ √𝑛𝛿

^

⩾ −(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

 = Φ(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )  − 
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 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]Φ(√𝑛𝛿) 

Thus, the distribution function of 𝑅
^

 is given by 

 𝐹
𝑅
^(𝑥) = 0 if 𝑥 < 0 and 𝐹

𝑅
^(𝑥) = 1 if 𝑥 ⩾ 1 

If 0 ⩽ 𝑥 ⩽
1

2
, 

𝐹
𝑅
^(𝑥) = {𝐹𝑡

(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}Φ(−√𝑛𝛿) 

If 
1

2
< 𝑥 < 1 , 

𝐹
𝑅
^(𝑥) = Φ(−√𝑛𝛿) + [𝐹𝑡

(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )  − 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]Φ(√𝑛𝛿)   (4) 

The MLE estimate of R, 𝑅∗ = 𝛷(
−(𝒃′𝒚

_
−𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃−𝒃

′𝑺𝟐𝟐𝒃)
1
2

) 

Let the distribution function of 𝑅∗ be 𝐹𝑅∗(𝑥) , then 𝐹𝑅∗(𝑥) = 0 if 𝑥 < 0 and 𝐹𝑅∗(𝑥) = 1 if 𝑥 ⩾ 1,

𝐹𝑅∗(𝑥) = 𝑃(𝑅
∗ ⩽ 𝑥) = 𝑃[𝛷(

−(𝒃′𝒚
_
− 𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

) ⩽ 𝑥] 

 = 𝑃[
−(𝒃′𝒚

_
− 𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩽ 𝛷−1(𝑥)]  = 𝑃[√𝑛𝛿
^

⩽ √(𝑛 − 1)𝛷−1(𝑥)] 

 = 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)𝛷−1(𝑥))   (5) 

4. Distance Between 𝐹
𝑅
^(. ) and 𝐹𝑅∗(. )

Let us calculate the distance between two functions (𝐿1) 𝐹
𝑅
^(𝑥) and 𝐹𝑅∗(𝑥) [17], 

𝑈(𝑛, 𝛿) = ∫ |𝐹𝑅∗(𝑥) − 𝐹
𝑅
^(𝑥)|dx

1

0

, for different values of n, μ1, μ2, Σ11, Σ12, Σ22. 

According to this method, this can be taken as a measure of deviation or equal deviation between 𝑅
^

and 𝑅∗. 

Let, 𝑅
−

 be any other estimator of  R, then the maximum deviation between distribution of 𝑅
−

 and 𝑅
^

 as 

𝑀(𝑛, 𝛿) = sup
𝑅
−∫ |𝐹

𝑅
−(𝑥) − 𝐹

𝑅
^(𝑥)|

1

0

dx = ∫ 𝐹
𝑅
^(𝑥)dx

1

0

, if ∫ 𝐹
𝑅
^(𝑥)dx

1

0

>
1

2
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  = 1 − ∫ 𝐹
𝑅
^(𝑥)dx

1

0

, if ∫ 𝐹
𝑅
^(𝑥)dx

1

0

⩽
1

2

The ration 𝑅(𝑛, 𝛿) =
𝑈(𝑛,𝛿)

𝑀(𝑛,𝛿)
 has to be taken as a relative measure of deviation between 𝑅

^

 and 𝑅∗ , the 

maximum deviation between any other estimator of R, i.e. 𝑅
−

 and 𝑅
^

. It' s difficult to get the exact 

expression of this above measures. So, we compute these measure values numerically using R - 

programming. Here we take different choices of 𝛿 for n = 20. The results are reported in table 2. The 

results show that the overall output of MVUE and MLE of R are not too distant and the values for 

these differences are show in columns U(.), M(.) and R(.) of this table. From this table, it is seen that 

empirical values of the parameters and the performance of MVUE of R is better than MLE and also 

Figure 1 shows that, MVUE estimator of R is better than the other estimators, i.e. 𝑅∗. Also, 𝐿1 distance

and graphical impression show this. 

5. Derivation of Var(𝑅
^

) and MSE(𝑅∗)

Now, 𝑉𝑎𝑟( 𝑅 
^

) and 𝑀𝑆𝐸(𝑅∗) are obtained by using equations (3), (4) and (5) as follows: 

Since, 0 <𝑅 
^

<1, then 𝐸 (𝑅 
^

)= ∫ {1 − 𝐹
𝑅
^(𝑥)}dx

1

0

 

If 0 ⩽ 𝑥 ⩽
1

2
, then we have 

𝐸1 (𝑅 
^

)=∫ [1 − {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +
1

0

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)] dx 

If 
1

2
< 𝑥 < 1, then we have 

𝐸2 (𝑅 
^

) = ∫ [1 − {Φ(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )   −
1

0

 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]𝛷(√𝑛𝛿)}] dx 

So, 𝑉𝑎𝑟( 𝑅 
^

)= ∫ 2x{1 − 𝐹
𝑅
^(𝑥)}dx

1

0

 – {E(𝑅
^

)} 2= ∫ 2x[1 − {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +
1

0

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)] dx 

+∫ 2x[1 − {𝛷(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )   −
1

0

 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]𝛷(√𝑛𝛿)}] dx  − {𝐸1 (𝑅 
^

) + 𝐸2 (𝑅 
^

)}2 

Similarly, we can determine 𝑀𝑆𝐸(𝑅∗) = ∫ 2x {1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)Φ−1(𝑥))} dx

1

0

 – 

 [∫ {1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)Φ−1(𝑥)) } dx

1

0

]2 
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From Figure 2 and 3 it is observe that the, values of Var(𝑅
^

) and MSE(𝑅∗) are  almost close to zero of 

𝛿. Values of Var(𝑅
^

)  are less as compared to other values of MSE(𝑅∗). Thus, the performance of MVUE 

of R is better than MLE.   

Table 2: Performance of point estimators: 𝛿  and 100* {𝑈(𝑛, 𝛿),𝑀(𝑛, 𝛿), 𝑅(𝑛, 𝛿) } 

Non-negative values of 𝜹 Negative values of 𝜹 

𝜹 𝑼(𝒏, 𝜹) 𝑴(𝒏, 𝜹) 𝑹(𝒏, 𝜹) 𝜹 𝑼(𝒏, 𝜹) 𝑴(𝒏, 𝜹) 𝑹(𝒏, 𝜹) 

3 0.087 99.865 0.087 -3 0.087 99.865 0.087 

2.898 0.101 99.812 0.101 -2.898 0.101 99.812 0.101 

2.797 0.115 99.742 0.115 -2.797 0.115 99.742 0.115 

2.695 0.128 99.648 0.129 -2.695 0.128 99.648 0.129 

2.593 0.141 99.525 0.141 -2.593 0.141 99.525 0.141 

2.492 0.151 99.364 0.152 -2.492 0.151 99.364 0.152 

2.39 0.157 99.157 0.158 -2.39 0.157 99.157 0.158 

2.288 0.158 98.894 0.16 -2.288 0.158 98.894 0.16 

2.186 0.153 98.561 0.155 -2.186 0.153 98.561 0.155 

2.085 0.139 98.145 0.142 -2.085 0.139 98.145 0.142 

1.983 0.116 97.632 0.119 -1.983 0.116 97.632 0.119 

1.881 0.082 97.004 0.084 -1.881 0.082 97.004 0.084 

1.78 0.036 96.243 0.038 -1.78 0.036 96.243 0.038 

1.678 0.021 95.332 0.022 -1.678 0.021 95.332 0.022 

1.576 0.089 94.252 0.094 -1.576 0.089 94.252 0.094 

1.475 0.166 92.984 0.179 -1.475 0.166 92.984 0.179 

1.373 0.25 91.511 0.273 -1.373 0.25 91.511 0.273 

1.271 0.338 89.817 0.376 -1.271 0.338 89.817 0.376 

1.169 0.424 87.89 0.482 -1.169 0.424 87.89 0.482 

1.068 0.503 85.719 0.587 -1.068 0.503 85.719 0.587 

0.966 0.571 83.3 0.685 -0.966 0.571 83.3 0.685 

0.864 0.623 80.629 0.772 -0.864 0.623 80.629 0.772 

0.763 0.663 77.702 0.853 -0.763 0.663 77.702 0.853 

0.661 0.715 74.501 0.959 -0.661 0.715 74.501 0.959 

0.559 0.843 70.977 1.188 -0.559 0.843 70.977 1.188 

0.458 1.144 67.052 1.706 -0.458 1.144 67.052 1.706 

0.356 1.635 62.739 2.606 -0.356 1.635 62.739 2.606 

0.254 2.057 58.331 3.527 -0.254 2.057 58.331 3.527 

0.153 1.877 54.406 3.45 -0.153 1.877 54.406 3.45 

0.051 0.779 51.323 1.518 -0.051 0.779 51.323 1.518 
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  Figure 1:  𝛿  vs  100 ∗ 𝑅(𝑛, 𝛿) 

    Figure 2:  𝛿  vs  100 ∗ 𝑉𝑎𝑟( 𝑅 )
^

 

  Figure 3:  𝛿  vs  100 ∗ 𝑀𝑆𝐸(𝑅∗) 
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6. Confidence Intervals for R

6.1. Exact Two Sided Confidence Intervals for R 

Here, we have √𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′ , then the tradition approach for finding the lower limit of R , we use 

the probability 𝑝𝛿𝐿 that 𝑡(𝑛−1),√𝑛𝛿
′  exceeds the value of √𝑛𝛿

^

 as 

𝑝𝛿𝐿 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ > √𝑛𝛿

^

)  = 𝛼/2 

or, 𝑝𝛿𝐿 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 1 − 𝛼/2  (6) 

Similarly, we get the upper limit of 𝛿 as 

𝑝𝛿𝑈 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 𝛼/2  (7) 

Equation (6) and (7) can be solved numerically. Finally we get the (1-α) level confidence Intervals 

for 𝛿 as (𝛿𝐿 , 𝛿𝑈). 

Then, the  (1-α) level confidence Intervals for R as (Φ(𝛿𝐿 ), Φ(𝛿𝑈 )). 

6.2. Exact Lower Confidence bound for R 

In order to obtain the lower bound of the lower bound of R, we use the probability 𝑝𝛿𝐿𝐵  that 𝑡(𝑛−1),√𝑛𝛿
′

exceeds the value of √𝑛𝛿
^

 as 

𝑝𝛿𝐿𝐵 = 𝑃𝑟 (𝑡(𝑛−1),√𝑛𝛿
′ > √𝑛𝛿

^

)  = 𝛼 

or, 𝑝𝛿𝐿𝐵 = 𝑃𝑟 (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 1 − 𝛼   (8) 

Thus, the (1-α) level confidence lower bound for 𝛿 can be obtained by solving equation (8). Then, 

the  (1-α) level confidence lower bound for R is (Φ(𝛿𝐿𝐵 ). 

6.3. Approximate Two Sided Confidence Intervals for R 

From section 3, we have 𝑃𝑟(𝒂′𝒙 > 𝒃′𝒚) = Φ [
−(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃−𝒃

′𝜮𝟐𝟐𝒃)
1
2

] = 𝛷(𝛿) , 

 where  √𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′   with non-centrality parameter√𝑛𝛿 

. 

In order to determine the two sided confidence Intervals, we use following well known 

approximation for large n [24] as  

RT&A, No 2 (73) 
Volume 18, June 2023 

555



A. Goswami, B. Seal
STRESS-STRENGTH RELIABILITY MODEL UNDER MULTIVARIATE

Z =
[𝑡(𝑛−1),√𝑛𝛿
′ − √𝑛𝛿]

[1 + 
(𝑡
(𝑛−1),√𝑛𝛿
′ )2

2(𝑛 − 1)
]

1
2

 ~𝑁(0,1) 

Using this, 

 𝑃𝑟[−𝑧𝛼/2 ⩽ 
[√𝑛𝛿

^
 − √𝑛𝛿]

[1 + 
(√𝑛𝛿

^
)2

2(𝑛−1)
]

1
2

 ⩽  𝑧𝛼/2] = 1-α 

or, 𝑃𝑟[−𝑧𝛼/2 ⩽ 
[𝛿
^
 − 𝛿]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

 ⩽  𝑧𝛼/2] = 1-α 

or, 𝑃𝑟[𝛿
^

− 𝑧𝛼/2 [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

 ⩽ 𝛿 ⩽  𝛿
^

+ 𝑧𝛼/2 [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

] = 1-α 

Thus, an approximate (1-α) level confidence Intervals for 𝛿 is given by 

(𝛿𝐿 ,𝛿𝑈 ) =  {𝛿
^

− 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

 , 𝛿
^

+ [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

𝑧𝛼/2} 

Then, an approximate (1-α) level confidence Intervals for R is represented by 

 (Φ(𝛿𝐿 ), Φ(𝛿𝑈 )) =  {Φ(𝛿
^

− 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

)  , Φ(𝛿
^

+ 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

)} 

Where, 𝑧𝛼/2 upper critical value for the standard normal distribution 

6.4. Approximate Lower Confidence bound for R 

The lower bounds based on approximate results is given by 

 𝑃𝑟(𝛿𝐿𝐵 ⩽ 𝛿 ) =  1 − α 

or, 𝑃𝑟

(

[𝛿𝐿𝐵  − 𝛿
^
]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

⩽
[𝛿 − 𝛿

^
]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α 

or, 𝑃𝑟

(

[𝛿
^
 − 𝛿]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

⩽
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α 
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or, 𝑃𝑟

(

z ⩽
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α ,        or, 
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

= 𝑧1−α 

or, 𝛿𝐿𝐵 =  𝛿
^

− 𝑧1−α  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

So, an approximate (1-α) confidence lower bound for R as 

 Φ(𝛿𝐿𝐵 ) = Φ( 𝛿
^

− 𝑧1−α  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

) 

6.5. Bootstrap confidence Intervals for R

In this subsection, we use the confidence intervals based on percentile bootstrap method. Efron 

suggests the procedure to find out the confidence intervals for a parameter [25] and corrects bias of 

percentile of bootstrap confidence intervals for R proposed by Efron [26]. It works as follows 

(1) Draw random sample (
𝐗𝛂
𝐘𝛂
) , α = 1,2, … , n from multivariate normal distribution, 

where  (
𝐗
𝐘
) ~ 𝑁𝑝1+𝑝2(µ, ∑) 

(2) Generate bootstrap samples (
𝐱𝛂
∗

𝐲𝛂
∗) , α = 1,2, … , n , by using random sample of (

𝐗𝛂
𝐘𝛂
) , α = 1,2, … , n. 

(3) Compute the bootstrap estimates of linear dependent vectors 𝒂′ and 𝒃′ using PC1, say 𝒆′∗ and 𝒍′∗

respectively. Also, Compute the bootstrap MLE estimates of μ1, μ2, Σ11, Σ12, Σ22  by

𝒙∗, 𝒚,̅∗ 𝑺𝟏𝟏
∗ , 𝑺𝟏𝟐,

∗ 𝑺𝟏𝟐
∗ . Using these estimates compute the bootstrap estimate of R, say 𝑅𝐵

∗ .

(4) Repeat steps 2 and 3, number of boot time B (B sufficiently large, i.e. 1000), thus we obtain the

bootstrap distribution of {𝑅𝐵
∗ }.

(5) Estimate (1 − α) bootstrap percentile confidence intervals for R from{𝑅𝐵
∗ }  by taking the

(
α

2
) and (1 −

α

2
) quantiles as (𝑅

𝐵,
α

2

∗ ,  𝑅
𝐵,(1−

α

2
)

∗ ) .

or, (1 − α) bootstrap percentile lower bound for R as 𝑅𝐵,α
∗ .

6.5. Simulation Study 

In this section, we present simulation study to investigate the statistical properties of the interval 

estimators using the given matrix in section 2.4. The simulation study define as follows 

(1) Draw the random samples of size n from (
𝐱
𝐲)~ 𝑁𝑝1+𝑝2(µ, ∑). For each of sample drown of

size n, considered different sample sizes (n=50, 100, 150,….etc). We compute the above 

measures by taking 500 replications each time. 

(2) Estimate MLE estimate of R using PC1 for different sample size and a Confidence Intervals

(two-sided and lower bound) for R.

(3) Compute exact, approximate and bootstrap confidence intervals using step 2, where number

of boot time B=1000.

The results of the simulation study are recorded in Table 3-5. Figure 4-6, represent the exact, 

approximate and bootstrap confidence belt at 90%, 95% and 99% levels. It has been observed that for 
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a small sample size, the estimate of R is getting high and also confidence intervals. The results get 

better as the sample sizes increase and the reliability R gets closer to true value. The same 

phenomenon is observed for the exact, approximate and bootstrap confidence intervals. The overall 

band of exact and approximate confidence intervals is almost same, whereas bootstrap confidence 

intervals give the large confidence band for small sample size. But, exact, approximate confidence 

intervals and Bootstrap confidence intervals all are almost same for large sample size at 90%, 95% 

and 99% levels. All most the same variation found in confidence belt of exact, approximate Cls, but 

irregular variation in bootstrap CIs shows in Figure 4-6.  

Table 3: Exact Confidence Intervals 

Sample 

size 
R* 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8954 0.8738 0.9349 0.8820 0.8664 0.9394 0.8738 0.8511 0.9473 0.8574 

100 0.8953 0.8782 0.9227 0.8838 0.8731 0.9262 0.8782 0.8629 0.9328 0.8671 

150 0.8948 0.8785 0.9139 0.8828 0.8746 0.9168 0.8785 0.8669 0.9224 0.8701 

200 0.8898 0.8751 0.9128 0.8797 0.8710 0.9159 0.8751 0.8627 0.9218 0.8661 

250 0.8888 0.8743 0.9197 0.8800 0.8692 0.9233 0.8743 0.8588 0.9300 0.8631 

300 0.8887 0.8732 0.9133 0.8782 0.8688 0.9166 0.8732 0.8599 0.9228 0.8636 

350 0.8883 0.8703 0.9070 0.8747 0.8663 0.9101 0.8703 0.8583 0.9159 0.8616 

400 0.8876 0.8653 0.9068 0.8704 0.8608 0.9103 0.8653 0.8517 0.9167 0.8554 

450 0.8874 0.8677 0.9048 0.8722 0.8637 0.9079 0.8677 0.8556 0.9138 0.8589 

500 0.8874 0.8676 0.9047 0.8721 0.8636 0.9079 0.8676 0.8556 0.9138 0.8589 

550 0.8868 0.8688 0.9028 0.8729 0.8652 0.9057 0.8688 0.8579 0.9112 0.8609 

600 0.8864 0.8640 0.9028 0.8729 0.8595 0.9057 0.8688 0.8503 0.9111 0.8609 

Table 4: Approximate Confidence Intervals 

Sample 

size 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8741 0.9352 0.8823 0.8666 0.9395 0.8741 0.8512 0.9474 0.8576 

100 0.8783 0.9228 0.8840 0.8732 0.9263 0.8783 0.8629 0.9328 0.8672 

150 0.8786 0.9139 0.8829 0.8747 0.9169 0.8786 0.8669 0.9224 0.8701 

200 0.8752 0.9129 0.8798 0.8711 0.9160 0.8752 0.8627 0.9218 0.8661 

250 0.8744 0.9198 0.8802 0.8693 0.9234 0.8744 0.8589 0.9300 0.8632 

300 0.8733 0.9134 0.8783 0.8689 0.9167 0.8733 0.8600 0.9228 0.8636 

350 0.8704 0.9071 0.8748 0.8664 0.9101 0.8704 0.8584 0.9159 0.8616 

400 0.8655 0.9069 0.8706 0.8609 0.9103 0.8655 0.8517 0.9167 0.8555 

450 0.8678 0.9049 0.8723 0.8637 0.9080 0.8678 0.8556 0.9138 0.8590 

500 0.8677 0.9048 0.8722 0.8637 0.9079 0.8677 0.8556 0.9138 0.8589 

550 0.8689 0.9029 0.8730 0.8653 0.9057 0.8689 0.8580 0.9112 0.8609 

600 0.8689 0.9028 0.8730 0.8652 0.9057 0.8689 0.8579 0.9112 0.8609 

Table 5: Bootstrap Confidence Intervals 

Sample 

 size 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8591 0.9592 0.8701 0.8495 0.9688 0.8591 0.8307 0.9876 0.8383 

100 0.8804 0.9264 0.8855 0.8760 0.9308 0.8804 0.8674 0.9395 0.8709 

150 0.8806 0.9149 0.8844 0.8773 0.9182 0.8806 0.8709 0.9246 0.8735 

200 0.8518 0.9419 0.8617 0.8432 0.9505 0.8518 0.8263 0.9674 0.8331 

250 0.8787 0.9188 0.8832 0.8749 0.9227 0.8787 0.8674 0.9302 0.8704 

300 0.8757 0.9137 0.8799 0.8720 0.9174 0.8757 0.8649 0.9245 0.8678 

350 0.8218 0.9629 0.8373 0.8082 0.9764 0.8218 0.7818 0.9896 0.7925 

400 0.8676 0.9073 0.8720 0.8638 0.9111 0.8676 0.8564 0.9185 0.8594 
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450 0.8695 0.9059 0.8735 0.8660 0.9094 0.8695 0.8592 0.9162 0.8619 

500 0.8692 0.9045 0.8731 0.8658 0.9079 0.8692 0.8592 0.9145 0.8619 

550 0.8703 0.9038 0.8740 0.8671 0.9070 0.8703 0.8608 0.9133 0.8633 

600 0.8705 0.9033 0.8741 0.8674 0.9065 0.8705 0.8612 0.9126 0.8637 

 Figure 4: Exact Confidence Intervals 

 Figure 5: Approximate Confidence Intervals 
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 Figure 6: Bootstrap Confidence Intervals

6.6. Application on real data set 

In this section, the above methods are applied to sample data set taken from Morrison [27]. This data 

set represent the level of three biochemical compounds found in the brain of twenty mice of the same 

strain in ten pairs. Both mice in each pair were in the same condition in terms of diet and care and 

one in each pair was randomly selected and received periodic administrations of the drug. The 

outcome of tests of the brains of the mice and consists of the amount of the compounds in 

micrograms per gram of the brain tissue. So, we want to determine the effect of the drug for changes 

in the level of three bio-chemical compounds found in the brain by estimating the probability.  

          Here, it is assumed that the (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3) ~𝑁6(µ, ∑). For the given data sets, proportion 

of variance of 𝒙 = (𝑥1, 𝑥2, 𝑥3) and 𝒚 = (𝑦1, 𝑦2, 𝑦3)  for PC1: 0.9996 and 0.8662 respectively, then the 

MVUE of 𝑅 is �̂� = 0.6219 and MLE of 𝑅 is 𝑅∗ = 0.6325. Also, we calculate that the above measure 

by principal component analysis as 𝛿 = 0.3386, 𝑈(𝑛, 𝛿) = 3.266, 𝑀(𝑛, 𝛿)= 60.846,  𝑅(𝑛, 𝛿)= 5.367, Var(𝑅
^

) 

= 0.0216 and MSE(𝑅∗) = 0.0226. The exact, approximate and bootstrap confidence intervals, using the 

sample data set reported in Table 6 and it is shows that that, the exact and approximate CIs are 

almost same band, but confidence band of bootstrap CIs is less than these. 

Table 6: Confidence Intervals for the mice dataset 

Confidence 

Intervals 

90% 95% 99% 

L U LB L U LB L U LB 

Exact 0.4183 0.8067 0.4649 0.3788 0.8336 0.4183 0.3054 0.8790 0.3344 

Approx. 0.4216 0.8092 0.4684 0.3819 0.8359 0.4216 0.3080 0.8807 0.3372 

Bootstrap 0.3846 0.7381 0.4236 0.3507 0.7720 0.3846 0.2845 0.8382 0.3113 
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7. Sample Size Determination for Reliability

In a clinical study, the sample size calculation is to determine the number of subjects needed to have 

a desired power for detecting a clinically meaningful effect, i.e. the significant changes in clinical 

parameters. A study conducted with limited budget and/or some medical facilities, to choose the 

small number of subjects in respect of cost effectiveness and power. Suppose, we are intersected in 

determining the minimum sample size before the study for effect of the drug of three bio-chemical 

compounds of mice [27].  

In this above context, the hypotheses of interest are 

𝐻0 : 𝑅 = 𝑅0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅 = 𝑅1(> 𝑅0)  

or,     𝐻0 : 𝛿 = Φ
−1(𝑅0) = 𝛿0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿 = Φ

−1(𝑅1) = 𝛿1(> 𝛿0)

Then, the test statistic defined as 𝑡 = √𝑛𝛿
^

 where, 𝑡~𝑡(𝑛−1),√𝑛𝛿
′  , α = Type I error and 1-β = power of 

the test. Therefore, there exists an UMP invariant test [28], we rejects 𝐻0 when 𝑡 > 𝑐, where ‘c’ is 

determined by  

𝑃𝐻0 ( 𝑡 > 𝑐) =  α

or, 𝑃𝐻0 ( 𝑡 < 𝑐) = 1 − α

or, 𝑐 = 𝑡(1−α),(𝑛−1),√𝑛𝛿0
′  (9) 

Then the power of test, 

𝑃𝐻1 ( 𝑡 > 𝑐) =  1 − β

or, 𝑃𝐻1 ( 𝑡(𝑛−1),√𝑛𝛿1
′ < 𝑡(1−α),(𝑛−1),√𝑛𝛿0

′  ) =  β          (10) 

We can get the sample size (n) by solving the equation (10) numerically for given value of α and β.  

The values of sample size n are reported in Table 7, in order to calculate sample size for two groups 

(i.e. treatment or control) are effect or not, we set the null hypothesis as  𝐻0 : 𝑅0 = 0.5  against the 

𝑅0 > 0.5. 

Again, we consider the hypotheses, 

𝐻0 : 𝑅 = 𝑅0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅 = 𝑅1(< 𝑅0) 

or, 𝐻0 : 𝛿 = 𝛿0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿 = 𝛿1(< 𝛿0) 

We get, 

𝑃𝐻0 ( 𝑡 < 𝑐) =  α

or, 𝑐 = 𝑡α,(𝑛−1),√𝑛𝛿0
′  (11) 

and, 𝑃𝐻1 ( 𝑡(𝑛−1),√𝑛𝛿1
′ < 𝑡α,(𝑛−1),√𝑛𝛿0

′  ) =  1 − β  (12) 

In order to calculate the sample size, Reiser and Guttman used an approximation of a non-central t-

distribution by a standard normal distribution [21], valid for large n as    
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𝑛 =
𝑧β
2(1+𝛿𝑐

2/2)

(𝛿𝑐 − 𝛿1)
2 =

𝑧(1−α)
2 (1+𝛿𝑐

2/2)

(𝛿𝑐 − 𝛿0)
2 , where 𝛿𝑐 = 

𝛿0𝑧𝛽+𝛿1𝑧𝛼

𝑧𝛽+𝑧𝛼
 (13) 

Example 1.  Suppose the objective of the study is to compare a test drug with a control for changes 

in the level of three bio-chemical compounds found in the mice brain. 

Suppose the hypotheses of interest are 

𝐻0 : 𝑅0 = 0.5  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅1 = 0.7(> 𝑅0) 

or, 𝐻0 : 𝛿0 = 0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿1 = 0.524(> 𝛿0) 

There is no meaningful effect between test drug and control under 𝐻0  and drug has an effect under 

𝐻1 . Then, by choosing α= 5%, and β= 20%, we find n≈24 using (9) and (10). Thus, a total number of 

24 subjects are required for achieving a 80% power for detection of a clinically meaningful effect at 

the 5% level of significance. 

Example 2. Consider the example of Reiser and Guttman to determine sample size (n) [21] for the 

case 

Prodicer’s risk=consumer’s risk=0.05 

To test, 
𝐻0 : 𝑅0 = 0.95  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅1 = 0.90(< 𝑅0) 

or,     𝐻0 : 𝛿0 = 1.645  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿1 = 1.282(> 𝛿0) 

Here, Prodicer’s risk and consumer’s risk are equal, i.e. 𝑧𝛼 = 𝑧𝛽 = 𝑧0.05 = 1.645, then we find n≈170 

using (11) and (12). Similarly, we get the same result using (13).  

Table 7: Sample Size Calculation table 

R0:0.5 

R1

𝑷𝒐𝒘𝒆𝒓 = 𝟏 − 𝛃 

70% 80% 90% 

𝑳𝒆𝒗𝒆𝒍 𝒐𝒇 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕 = 𝜶 

0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

0.51 12934 9823 7489 15972 12491 9839 20715 16722 13628 

0.55 517 393 299 638 499 393 827 667 544 

0.6 129 98 75 159 124 98 206 166 135 

0.65 57 44 33 70 55 43 90 73 59 

0.7 32 24 19 39 31 24 50 40 33 

0.75 21 16 12 25 19 15 31 25 20 

0.8 14 11 8 17 13 10 21 17 14 

0.85 10 8 6 12 9 7 15 12 10 

0.9 8 6 5 9 7 5 11 9 7 

0.95 6 4 3 7 5 4 8 6 5 

7. Conclusions

Under the multivariate normal setup, MVUE of stress-strength model of reliability R is obtained, 

although the estimator based on MLE of μ1, μ2, Σ11, Σ12, Σ22. Simulation studies illustrate that, the 

Variance and MSE of two estimators reduces as the sample size increases and they almost achieved 

the true value of R. An application to the given real data set is described and shows that the same 

result as above. So, that the performance of MVUE of R is better than MLE in this case. In addition, 

the L1 distance between distribution functions we see the improvement of such estimators. A 

difference in terms of MSE is much less as the values are given after multiplying by 100, though 

detailed calculations are required for other parametric values. Therefore, we may conclude that our 
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recommend estimator performs better. 

The exact confidence intervals are preferable for marginally short band of confidence 

intervals than the approximate confidence intervals. The performance of bootstrap CIs is slightly 

worse than the exact and approximate CIs in terms of confidence band for small sample size. But the 

performance of bootstrap confidence intervals and other methods of CIs are almost same for large 

sample. Thus, the overall performance of the confidence interval is quite good for exact confidence 

intervals. 

The sample size plays the important role using the stress strength reliability model in order 

to achieve minimum number of observation to evaluate the effectiveness of a new drug. The sample 

size should be massive enough to adequately answer the analysis question. The determination of 

the acceptable sample size involves applied statistical criteria additionally as in clinical studies. In 

order to calculate the sample size, it was necessary to choose the power, the significance level, to 

produce results that are clinically or experimentally meaningful. Under approximation, with 𝛿𝑐 we 

can calculate the sample size easily. But, it better to choose the exact method to get sample size.     
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