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Abstract 

In this paper, a new continuous probability distribution called a new exponentiated extended 

inverse exponential distribution with four parameters is introduced. The mathematical and 

statistical properties of the proposed distribution, such as the quantile function, moments, 

moment generating function, survival function, hazard function, odds function, and 

reversed hazard function, were studied to understand its nature. The probability density 

function of the order statistics for this distribution was also obtained. The parameters of the 

model were estimated using the maximum likelihood method of estimation. The proposed 

model was applied to two real datasets relating to the relief times of twenty patients 

receiving an analgesic and the sum of skin folds in 202 athletes collected at the Australian 

Institute of Sports. The results showed that the new model outperformed its comparators and 

provides better fit than Topp-Leone exponentiated inverse exponential, Topp-Leone inverse 

exponential, exponentiated inverse exponential, inverse exponential and exponential 

distributions. 

Keywords: Akaike information criterion, breast cancer, skin fold, inverse 

exponential, adequacy model 

I. Introduction

The creation of novel, all-encompassing statistical models is an important field of study in 

distribution theory. Such distributions, which are extremely valuable in forecasting and simulating 

real-world phenomena, are abundant in the literature. The modeling of data in various practical 

domains, such as bio-medical analysis, reliability engineering, economics, forecasting, astronomy, 

demography, and insurance, has extensively used a number of classical distributions throughout 

the past few decades. 

The majority of exponential distribution generalizations have constant, non-increasing, 

non-decreasing, and bathtub hazard rates. However, in real-world situations, it is possible for the 

data to display a unimodal (first increasing and then decreasing) inverted bathtub hazard rate. In 

the analysis of breast cancer data, we found that the mortality rises early, reaches a peak after some 

time, and then drops gradually; the related hazard rate is thus inverted bathtub-shaped or notably 

unimodal. For this type of data, the one parameter inverted exponential (IEx) distribution, which 
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has the inverted bathtub hazard rate, has been proposed as another extension of the exponential 

distribution in statistical literature. 

In the literature, an inverted exponential distribution which was introduced in [1]. The 

distribution has an inverted bathtub hazard rate and can be used to simulate real-world events that 

have inverted bathtub failure rates. [2] have also addressed an example of its use with breast 

cancer data. According to [3], it has also been described as a model that is helpful in survival 

analysis. 

To increase the modeling flexibility of current probability distributions utilizing various 

families of distributions, recent research in this field has focused on extending existing probability 

distributions. Some families of distributions proposed in literature include Kumaraswamy 

generalized family of distributions by [4], Topp Leone generalized family of distributions by [5], 

exponentiated extended generalized family of distributions by [6], Power Lindley generalized 

family of distributions by [7], Topp Leone exponentiated generalized family of distributions by [8], 

Topp Leone Kumaraswamy generalized family of distributions by [9], Odd Chen generalized 

family of distributions by [10], Modi generalized family of distributions by [11], A new generalized 

family of distributions by [12], Type I half-Logistic exponentiated generalized family of 

distributions by [13], Type II half-Logistic generalized family of distributions by [14], etc.  

In line with this, some of the recent developments and extensions of the inverse 

exponential distribution using generalized families of continuous distribution can be found in [15], 

[16], [17], [18], [19].  

In this context, we developed a generalization of the inverse exponential distribution based on [6], 

which is derived from the following general construction: if G denotes the baseline of a cumulative 

distribution function, then a generalized family of distributions can be defined with cumulative 

distribution function and probability density function give respectively as 




          
( ; , , ) 1 1 ( ; )F x G x  (1) 

and 

 


 

      


             

1
1

( ; , , ) ( ; ) 1 ( ; ) 1 1 ( ; )f x g x G x G x  (2) 

where  is the vector of parameters of the baseline distribution. 

where ( ; )G x   is the cumulative distribution function (cdf) of the baseline distribution with vector 

of parameter  . 

for     0, , , , 0x , where equations (1) and (2) are the cumulative distribution function and 

probability density function (pdf) of the family of distributions proposed by [6].  

The cdf and pdf of the inverse exponential (IEx) distribution are given by 




 
 
 ( ; ) xG x e  (3) 






 
 
 

2
( ; ) xg x e

x
 (4) 

The major goal of this study is to build a more flexible model by adding three more shape 

parameters to the inverse exponential distribution to increase its goodness-of-fit to real-world data 

sets. The main reasons for creating the NEtEIEx distribution in practice are to make the kurtosis 

more flexible compared to the baseline inverse exponential model, to produce skewness for 

symmetrical distributions, to build heavy-tailed distributions that are not longer-tailed for 

modeling real data, to have distributions with symmetric, left-skewed, right-skewed, and inverted 

bathtub shapes, and to consistently offer better fits than other generated models under certain 

conditions. 
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II. Methods

2.1. A New Exponentiated Extended Inverse Exponential (NEtEIEx) 

Distribution 

This section developed a new continuous probability distribution function called new 

exponentiated extended inverse exponential (NEtEIEx) distribution and provide some plots of its 

pdf, cdf survival function and hazard rate function (hrf) in order to assess the shape of the new 

distribution. The cdf of the NEtEIEx distribution is obtained by inserting (3) into (1) given as: 





   
 
 
 

   
      
      

( ; , , , ) 1 1 xF x e  (5) 

Figure 1: Plots of CDF of the NEtEIEx distribution for different parameter values 

On differentiating equation (5) with respect to x, we obtained the pdf of a NEtEIEx distribution 

given in equation (6) 


 
  


    




     
       
     

       
                 

        

1
1

2
( ; , , , ) 1 1 1x x xf x e e e

x
(6)
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Figure 2: Plots of PDF of the NEtEIEx distribution for different parameter values 

Where 0x  , 0  is the scale parameter and , , 0    are the shape parameters respectively. 

2.1.1. Expansion of Density 

In this section the pdf in equation (6) is expanded using binomial expansion.  Expanding the last 

term in equation (6), we have 

 

1

0

1

1 1 1 1

i

ix x

i

ie e


 

 


   
    

   



                                        



 


 

 
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   



  
     
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 
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
 


   


 



    
    
      
       

  



1

2
, 0

1 1 1

( ; , , ) 1

j
i j

x

i j

i

i jf x e
x

 (7) 

Equation (7) is the expansion of equation (6) which will be used to derive some of the properties of 

the distribution. 
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2.1.2.  Properties of the New Exponentiated Extended Inverse Exponential 

(NEtEIEx) Distribution 

In this section, some of the mathematical and statistical properties of NEtEIEx distribution such as 

the quantile function, moments, moment generating function, reliability measure, odds function, 

reversed hazard function and order statistics are derived. 

2.1.2.1.    Moments 



 0( ) ( )r rE X x f x dx  (8) 

   
 


 





   
 



    
   
     
       

  

 

1

2
, 0 0

1 1 1

1

j

i j xr r

i j

i

i jE X x e
x

 (9) 

Consider the integral part of equation (9), we have 




   
 

 
 
 
 



1

0

j

xrx e

Let 
 



   
      

   

2

(1 ) ; (1 ) anddx=
(1 )

dyx
y j x j

x y j

   
 

 
 

 
 










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     
       
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2

2
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1 1
1
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 
 
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    
  
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  
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  
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Where  
0

1r yy e dy r


   

Therefore 

     
 

 

 




 



    
  
      
  

  
  


1

, 0

1 1

1 1 1
r i jr r

i j

i j

i jE X j r  (10) 

Equation (10) is the moments of NEtEIEx distribution. To obtain the mean, we set r = 1 in equation 

(10). 

2.1.2.2.    Moment Generating Function (mgf) 



 0( ) ( )tx

x
M t e f x dx (11)
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   
 

 
1

, 0

1 1

1 1 1
!
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m i jm

x
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 
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

 



    
  
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  

  
 







where the expansion of 





0 !

m m
tx

m m
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e

and following the process of moments above, we have 

 
 


 





   
 



    
   
    
       

  

  

1

2
, 0 0

1 1

1)

1

(

j

i j xtx

i
x

j

M

i

i e
x

t j e  (12) 

2.1.2.3.    Quantile Function 

Quantile function has a significant position in probability theory and it is the inverse of the cdf. 

The quantile function is obtained using  
 1( ) ( )Q u F u   (13) 

Using the inverse of equation (5), we have the quantile function given as 








  
    

    

1

1

log 1 1

x

u

  (14) 

The median is obtained by setting u = 0.5 in equation (14) given as 








  
    

    

1

1

log 1 1 0.5

median
x  (15) 

2.1.2.4.    Hazard Function 

Hazard function is given as 

   
    

   


( ; , , , )
( ; , , , )

( ; , , , )

f x
x

R x
 (16) 

The hazard function of the NEtEIEx distribution is given as 


 
  









    




     
       
     

 
 
 

       
                

        


   
        

    

1
1

2
1 1 1

( ; , , , )

1 1 1

x x x

x

e e e
x

x

e

(17)
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Figure 3: Plots of hazard function of the NEtEIEx distribution for different parameter values 

2.1.2.5.    Survival Function 

The reliability function is also known as survival function, which is the probability that a system 

will survive beyond a specified time [20]. It can be defined as 

        ( ; , , , ) 1 ( ; , , , )R x F x
 (18) 

The survival function of the NEtEIEx distribution is given as 





   

 
 
 

   
         

    

( ; , , , ) 1 1 1 xR x e    (19)
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Figure 4: Plots of survival function of the NEtEIEx distribution for different parameter values 

2.1.2.6.    Reversed Hazard Function 

Reversed hazard function of a random variable x is given as 

   
   

   
 

( ; , , , )
( ; , , , )

( ; , , , )

f x
x

F x
 (20) 

The reverse hazard rate function of the NEtEIEx distribution is given as 


 
  







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

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     
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 

       
                

        
 

   
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1 1
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x

e e e
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e

 (21)

2.1.2.7.    Odds Function 

The odds function of the NEtEIEx distribution is given as 










   

 
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2.2. Order Statistics 

Let 
1 2
, ,...,

n
X X X be n  independent random variable from the NEtEIEx distributions and let

  
(1) (2) ( )

...
n
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Equation (24) is the rth order statistics of the NEtEIEx distribution. To obtain the maximum and 

minimum order statistics, we set r = 1and r = n in equation (24) respectively. 

2.3.    Estimation Method 

The method of maximum likelihood estimation (MLE) is used in this section to estimate the 

parameters of the NEtEIEx distribution. For a random sample,
1 2
, ,...,

n
X X X of size n  from the 

NEtEIEx( , , , )    , the log-likelihood function L( , , , )     of (6) is given as 
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Differentiating the log-likelihood with respect to , , ,    and equating the result to zero, we have 
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Now, equations (26), (27), (28) and (29) do not have a simple analytical form and are therefore not 

tractable. As a result, we have to resort to non-linear estimation of the parameters using iterative 

method. 

III. Results

3.1.   Applications 

This section tests the new distribution's flexibility against a few other existing distributions using 

two actual data sets. AdequacyModel, a package in the R software, is used to produce the analyses' 

results in this study. Using the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC), respectively, the performance of the distribution was compared to other existing 

distributions that were consistent with the baseline distribution in terms of providing good 

parametric fit to the data sets. 

  2 2AIC ll k  (30) 

  2 log( )BIC ll k n  (31) 

The model selection is carried out using the AIC and the BIC. Where ll denotes the log-

likelihood function evaluated at the maxinum likelihood estimates, k  is the number of parameters, 

and n is the sample size from the data. The model with minimum value of AIC and BIC is chosen 

as the best model to fit the data set. The comparators presented are Topp-Leone exponentiated 

inverse exponential (TLExIEx), Topp-Leone inverse exponential (TLIEx), exponentiated inverse 

exponential (ExIEx), inverse exponential (IEx) and exponential (Ex) distributions. 

The first data set represents the relief times of twenty patients receiving an analgesic. This 

data set has been used by [21]. The data set is given as 

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0. 

The second data set represents the sum of skin folds in 202 athletes collected at the 

Australian Institute of Sports, has been used by [22]. The data set is given as 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 

77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9,59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 

75.6, 76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 

54.0, 54.2, 30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2,70.0, 97.2, 123.6, 

181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 

96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 
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Table 1: The ML estimates and goodness of fit measurement for the first data set. 

Models ̂ ̂ ̂ ̂ l AIC BIC 

NEtEIEx 3.735 1.832 13.235 1.831 15.575 39.150 43.133 

TLExIEx 2.772 0.322 1.791 - 46.038 98.077 101.064 

ExIEx 1.309 1.317 - - 32.669 69.337 71.329 

TLIEx - 12.432 0.526 - 22.432 49.984 51.976 

IEx - 1.725 - - 32.669 67.337 68.333 

Ex - 0.526 - - 32.837 67.674 68.670 

Figure 5: Histogram and fitted pdfs for the NetEIEx, TLIEx, ExIEx, TLExIEx, IEx and Ex models for the first data set 

Table 2: The ML estimates and goodness of fit measurement for the second data set 

Models ̂ ̂ ̂ ̂ l AIC BIC 

NEtEIEx 0.096 13.103 79.636 30.736 955.251 1918.502 1931.735 

TLExIEx 3.883 1.789 6.995 - 1521.690 3049.381 3059.305 

ExIEx 9.867 5.771 - - 1055.772 2115.544 2122.160 

TLIEx - 25.015 6.607 - 980.481 1964.962 1971.578 

IEx - 56.953 - - 1055.772 2113.544 2116.852 

Ex - 0.014 - - 1057.353 2116.707 2120.015 
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Figure 6: Histogram and fitted pdfs for the NetEIEx, TLIEx, ExIEx, TLExIEx, IEx and Ex models for the second data 

set 

IV. Discussion

The estimated values for each parameter and the models' goodness of fits are shown in Tables 1 

and 2. AIC and BIC are two metrics for goodness of fits. The model performs better when the AIC 

and BIC values are lower. Tables 1 and 2 show that the NEtEIEx distribution has the lowest AIC 

and BIC, respectively. This property makes the new model more adaptable and suitable for 

handling biomedical data sets. 

The new model's forms, fit, and adaptability in connection to the data sets under 

consideration are shown in Figures 5 and 6. The black line, which represents the new model, more 

closely matched the data's pattern than the competitors. The histogram and fitted plots make it 

clear that the black line, which represents the NEtEIEx distribution, matches the two data sets 

under consideration better. 

This study extends the inverse exponential distribution by creating a new continuous 

distribution known as the new exponentiated extended inverse exponential distribution. It was 

possible to obtain the survival function, hazard rate function, quantile function, inverted hazard 

function, odds function, and order statistics from the new distribution. Plotting the pdf and hazard 

rate function graphs revealed the contours of the suggested distribution. It was discovered that the 

hazard function is shaped like an upside-down bathtub. Adequacy Model is a package in R that 

was used to estimate the model parameters using the maximum likelihood method. The proposed 

distribution was applied to two real life data sets, and the outcomes are shown in Tables 1 and 2. 

The findings demonstrated that the new extended inverse exponential distribution with 

exponentiation is much more potent and superior at fitting the two data sets under consideration. 

The density graphs in figures 5 and 6 for the two data sets further show how adaptable the new 

model is. 
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