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Abstract

This research work focuses on Bayesian inference in this study to detect a change in the rate of a Maxwell
distribution model with independent random variables. The paper specifically analyzes a single rate shift
and demonstrates how the Bayesian framework can be used to efficiently solve this problem. To produce
samples from Maxwell distribution and evaluate the datasets, simulation techniques were used, and the
R programming language was used. Although the model looks to be simple, no analytical solutions are
available for parameter inference, necessitating the use of approximations. The study emphasizes the Gibbs
sampler’s applicability for change-point analysis using a Markovian updating approach. The simulation
research findings show that the predicted rate is near to the true value, confirming the consistency and
stability of the Bayesian estimator.

Keywords: Gibbs sampling, Change-point, Bayes factor, Bayesian method, Conjugate prior distri-
bution

1. Introduction

Change-point analysis (CPA) is a statistical technique for detecting and quantifying changes in
data across time. CPA identifies data points when there is a significant shift in the underlying
structure or behavior of the process producing the data. CPA finds applications in various
domains. It is utilized in fault detection and reliability [1], insurance, econometric timeseries,
and malware software detection [2]. Furthermore, it plays a role in signal detection, surveillance,
security systems, meteorology, and climatology [3] . Changepoint analysis is also employed in
graphical models [4], gynecology [5], communication network evolution [6, 7, 8], oceanography
[9], sparse VAR models [10, 11], macrosociological processes and historical changes [12], medicine
[13], and functional magnetic resonance recordings [14, 15] , among others.

CPA can be traced back to the work of [16, 17, 18], where cumulative sums (CUMSUM)
approach was used to identify points of change in a sequence of normally distributed observations.
Since then, several methods have been proposed for performing CPA, including Bayesian methods
(see [19, 20, 21, 22, 23, 24, 25], likelihood-based methods ( see [26, 27, 28, 29, 30, 31] and non-
parametric methods (see [32, 33, 34, 35] ). These techniques involve various statistical models
and algorithms to estimate the change points accurately. The choice of method depends on the
characteristics of the data and the specific objectives of the analysis.

In their study,[36] investigated the change point analysis (CPA) in the Maxwell distribution
using Bayesian methods. They examined both informative and non-informative prior distributions
and utilized two distinct loss functions, namely Linex LF and General Entropy LP, to detect the
change point and estimate its magnitude. However, the present work introduces a novel approach
by utilizing Bayes’ factor techniques to detect a single change point in a series of observations
following a Maxwell distribution. The method utilizes a conjugate prior distribution and employs
a Monte Carlo Gibbs sampling approach to estimate the parameters involved.
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2. Method

2.1. Bayesian Techniques

The definition of a change-point, as proposed by [16, 17, 18] and [26], involves a test to determine
whether a sequence of independent observations, arranged in a successive order x1, x2, . . . , xn, are
drawn from the same probability density function F(x|θ), which is characterized by the likelihood
function.

L(x; θ) =
n

∏
i=1

f (x; θ) (1)

as against set of observations with a single change-point k represented as x1, x2, . . . xk and
xk+1, xk+2, . . . xn before and after the change having two distinct probability density functions
F(x|θ1) and F(x|θ2), where θ1 ̸= θ2. The likelihood function for the alternate hypothesis can be
expressed as

L(x; θ1, θ2) =
k

∏
i=1

f (x; θ1)
n

∏
i=γ+1

f (x; θ2) (2)

In the Bayesian perspective, a joint prior distribution p(θ1, θ2) is assumed for the parameters.
Bayes theorem then provides the joint posterior distribution

p(θ1, θ2, γ|x, y) =
p(x, y|θ1, θ2)p(θ1, θ2)∫ ∫

p(x, y|θ1, θ2)p(θ1, θ2)∂θ1∂θ2
(3)

The prior distribution p(θ1, θ2) reflects the beliefs about the parameters before experimentation,
whereas the posterior distribution p(θ1, θ2, k|x) reflects the updated beliefs about the parameters
after observing the sample data.

2.2. Bayes’ Factor

Bayesian statisticians perceive hypothesis testing as a process of comparing models ([37], [38])
rather than focusing on whether a specific hypothesis is true, the emphasis is placed on deter-
mining which model, described under one hypothesis, is more favorable compared to another.
The Bayesian approach to hypothesis testing was initially developed by [39, 40] as a fundamental
component of scientific inference. A central aspect of Jeffreys’ framework involved the concept
of the Bayes factor, which represents the posterior odds of the null hypothesis when the prior
probability on the null is one-half. Jeffreys employed this approach to compare predictions made
by two competing scientific theories. In this methodology, statistical models are introduced to
represent the likelihood of the observed data according to each theory, and Bayes’ theorem is
utilized to compute the posterior probability that one theory is correct.

In their study, [37] consider a dataset D, which is assumed to be generated under two
hypotheses: H1 and H2. The probability densities ζ(D/H1) and ζ(D/H2) describe the data under
each hypothesis, respectively. Prior probabilities, ζ(H1) and ζ(H2) = 1 − ζ(H1), are assigned to
H1 and H2, respectively. By applying Bayes’ theorem, the authors obtain the posterior probabilities
ζ(H1/D) and ζ(H2/D) as follows:

ζ(Hi/D) =
ζ(D/Hi)ζ(Hi)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)
, (i = 1, 2) (4)

ζ(H1/D) =
ζ(D/H1)ζ(H1)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)

ζ(H2/D) =
ζ(D/H2)ζ(H2)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)
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In certain applications, such as testing hypotheses regarding the presence of a change-point, it is
often more informative to consider the odds in favor of H2 compared to H1 ([41, 42]).

ζ(H2/D)

ζ(H1/D)
=

ζ(D/H2)

ζ(D/H1)
× ζ(H2)

ζ(H1)
(5)

and the transformation is simply multiplication of the prior odds by

B12 =
ζ(D/H2)

ζ(D/H1)
=

∫
θ2

ζ(D/θ2)ζ(θ2)dθ2∫
θ1

ζ(D/θ1)ζ(θ1)dθ1
(6)

which is the baye’s factor. Thus,in words,
posterior odd = bayes factor × prior odds
and the bayes factor is the ratio of the posterior odd of H1 to its prior odds, regardless of the
value of the prior odds.

By analogy with the likelihood ratio obtained from Equation (6) (i.e the quantity log B12)
is often used to summarize the evidence for H2 compare to H1, with the rough interpretation
shown in Table 1. This contrasts with the interpretation of a likelihood ratio, whose null χ2

distribution for nested models would depend on the difference in their degree of freedom p
([37, 39, 40, 41, 42]). The log Bayes factor 2 log B12 is sometimes called the weight of evidence

Table 1: Rough Interpretation of Bayes factor B12 given by Davison(2003) and Peter(2006)

B12 2loge B12 Interpretation
Under 1 Negative Supports model 1

1 - 3 0 - 2 Weak support for model 2
3 - 20 2 - 6 Support for model 2

20 - 150 6 - 10 Strong evidence for model 2
Over 150 Over 10 Very strong support for model 2

2.3. The Proposed Change Point Model

This section introduces a change-point model based on the Maxwell distribution. Consider a
series of observations of size n (n>3) drawn from a Maxwell distribution with parameter θ whose
null hypothesis H1 can be stated as

H1 : θ1 = θ2 = θ (7)

whose likelihood function can be expressed as

f (x | θ) =
n

∏
i=1

π

2θ2/3 x2e−2θx2
θ > 0 (8)

This means that the there is no shift in the parameter θ of the model.
Also, consider a series of observations x1, x2, . . . xk, xk+1, . . . xn with a single shift at point k drawn
from different population with parameters θ1 and θ2. The alternate hypothesis can be stated as

H2 : θ1 ̸= θ2 (9)

having the likelihood function

f (x | θ) =
k

∏
i=1

π

2θ2/3
1

x2e−2θ1x2
k

∏
i=1

π

2θ2/3
2

x2e−2θ2x2
(10)
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2.4. Bayesian Analysis for the Change-Point Model

For the no change-point model (8), we consider a conjugate prior distribution for the parameter θ
having Gamma(θ|a, b) with probability density function and uniform prior for the parameter k
with parameter value Uniform(1,n).

π(θ) =
ba

(n − 1)Γ(a)
θa−1e−bθ a > 0, b > 0 (11)

The posterior distribution for the null hypothesis model (7) can be obtained by combining the
likelihood function (8) with the prior distribution (11) given in Equation (3) as

π(θ|x) ∝

(
b + ∑n

i=1 x−i2

2

) 3n
2 +a

Γ(a)

Γ
( 3n

2 + a
)

ba
(12)

Also, for the alternate hypothesis model (9), we consider a conjugate prior distribution for θ1 and
θ2 having Gamma(θ1|a2, b2) and Gamma(θ2|a2, b2) having probability density function

π(θ1θ2) =
ba1

1
Γ(a1)

θa1−1e−b1θ1
ba2

2
Γ(a2)

θa2−1e−b2θ2 a1 > 0, b1 > 0, a2 > 0, b2 > 0 (13)

The posterior density function can be derived by combining the likelihood function (10) and prior
distribution (13) and thus we have

π(θ1, θ2|x) ∝

(
b1 +

∑k
i=1 x2

i
2

) 3k
2 +a1

Γ(a1)

(
b2 +

∑n
i=k+1 x2

i
2

) 3(n−k)
2 +a2

Γ(a2)

Γ
(

3k
2 + a1

)
ba1

1 Γ
(

3(n−k)
2 + a2

)
ba2

2

(14)

3. Results and Discussions

In this section, we carried out a simulation studies to demonstrate the proposed change-point
model. To conduct the diagnostic successfully, we generated five sequences (chains), each
consisting of 30,000 elements. A burn-in period of 10,000 observations was implemented, and
thinning was applied, considering every 100th observation, using the Markov Chain Monte Carlo
(MCMC) scheme.

3.1. Simulation Study

We simulated datasets having a single shift in the parameter θ drawn from a Maxwell distribution
with predefined values expressed in model (15)

xi ∼
{

dMax(1.5) 1 ≤ i ≤ 41
dMax(0.5) 41 < i ≤ 80

(15)

Table 2: Summary Statistics for the Posterior Quantities

Parameters Mean SD Mc_Error
97.5% Credible

Interval
k 41.1 1.137 0.0038 [0.000002–0.0000002]
θ1 1.77 0.2321 0.0019 [1.348 – 2.255]
θ2 0.564 0.0743 0.0005 [0.427 – 0.7194]
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Figure 1: Line plot for the simulation study

Figure 2: Bayes Factor Plot for the simulated dataset

Figure 3: Posterior densities for the parameter θ1, θ2 and k
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Figure 4: Autocorrection plot for the Posterior densities for the parameter θ1, θ2 and k

Figure 5: Brooks-Gelman-Rubin plot for the Posterior densities for the parameter θ1, θ2 and k

Figures 1 and 2 depict the line plot and the Bayes’ factor plot for the simulated dataset. From
Figure 2, we determined that the shift point was detected at the predefined point 41. Summary
statistics from the Gibbs sampling MCMC are shown in Table 2, revealing that the change point k
was identified at approximately 41. Posterior densities for all parameters are displayed in Figure 3,
confirming that the density of k indicates a change occurring around point 41. The autocorrelation
plot in Figure 4 demonstrates noticeable autocorrelation in lag 1 for all parameters. In Figure 5,
the Brooks-Gelman plot for the posterior quantities suggests that the chain moves randomly from
one iteration to the next, with the Brooks-Gelman-Rubin (BGR) plot for each parameter closely
approaching 1. According to Gelman (2003), an acceptable limit is 1.1. Therefore, the BGR plots
indicate excellent results. Considering the evidence from Figures 4 and 5, we conclude that the
results obtained from the Gibbs sampler exhibit convergence to the posterior distribution and are
accurate.
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4. Discussion

In this paper, we introduce a single change-point model for datasets that follow a Maxwell
distribution, using informative Bayes’ Factor techniques. We employ the Bayesian method to
detect the time at which a shift occurs in the dataset and apply this approach to both simulated
datasets. One key advantage of the Bayesian approach over the frequentist approach is its
ability to estimate uncertainty without relying on asymptotic sampling arguments that require
large sample sizes. The main objective of this research is to develop a change-point model for
detecting a single change-point in a series of observations that follow a Maxwell distribution. We
accomplish this using a Bayesian method, which provides a more objective approach compared
to subjective methods.
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