
Bilal, Sultan and Baig 
WEIGHTED GENERALIZED ENTROPY: PROPERTIES AND… 

RT&A, No 3 (74)
Volume 18, September 2023 

WEIGHTED GENERALIZED ENTROPY: PROPRTIES 

AND APPLICATION 

Bilal Ahmad Bhat1*, M. Sultan Shah2 and M.A.K Baig3

• 
Department of Statistics, University of Kashmir, Srinagar, J&K-190006, India 

 bhatbilal3819@gmail.com 

msultanshahh01@gmail.com 

baigmak@gmail.com 
*Corresponding Author

Abstract 

Recently, the measurement of uncertainty has attracted the attention of researchers. In this article, 

we introduce a new weighted uncertainty measure known as weighted generalized entropy. We also 

study its dynamic (residual) version which is known as weighted generalized residual entropy. 

These are length-biased shift-dependent uncertainty measures. It is shown that the proposed 

dynamic uncertainty measure uniquely determines the survival function. The various significant 

properties and the relationship with other well-known reliability measures of the proposed dynamic 

uncertainty measure are also studied. Finally, a real life data set is used to illustrate the usefulness 

of our proposed uncertainty measures. 

Keywords: Weighted entropy, weighted residual entropy, hazard rate function 

and characterization results. 

1. Introduction

The notion of entropy that was introduced by Shannon [1] is a very important and well known 

concept in the area of information theory. For an absolutely continuous non-negative r.v U  having 

p.d.f 𝑔(𝑢), the Shannon’s entropy (SE) is defined as

𝐻𝑈(𝑔) = − ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 = −𝐸[log(𝑈)]
∞

0
.    (1) 

Throughout this article, the notations r.v and p.d.f stands for an absolutely continuous non-

negative random variable and the probability density function respectively. 

If a lifetime component has survived up to an age 𝑡, then the SE is not useful for measuring 

the uncertainty about its remaining life. To overcome this problem, Ebrahimi [2] has introduced 

the concept of residual entropy and is defined as 

𝐻𝑈(𝑔; 𝑡) = − ∫
𝑔(𝑢)

�̅�(𝑡)

∞

𝑡
log

𝑔(𝑢)

�̅�(𝑡)
𝑑𝑢,    (2) 

where, �̅�(𝑡) = 1 − 𝐺(𝑡) is the survival function (s.f) of the r.v 𝑈. 

It is clear that the SE is well-known by means of its applications in the area of information 

theory, but it is a shift-independent uncertainty measure (UM) because it remains unchanged, if for 

instance 𝑈 is uniformly distributed in (𝑐, 𝑑) or (𝑐 + ℎ, 𝑑 + ℎ) for any ℎ ∈ ℛ. However, in some 

applied contexts, such as reliability or mathematical neurobiology, the shift-dependent UM’s are 
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desirable. To fulfill this requirement, Belis and Guiasu [3] have introduced the concept of weighted 

entropy (a shift-independent UM) and is defined as 

𝐻(𝑈,𝑤)(𝑔) = − ∫ 𝑤(𝑢)𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢
∞

0
 

   = −𝑢𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 ,                  (3) 

where, the coefficient 𝑢 (i.e the length of the system or component under consideration) represents 

the weight function of the elementary events.  

Similarly, Di Crescenzo and Longobardi [4] have introduced the weighted version of residual 

entropy (2) and is given by 

𝐻(𝑈,𝑤)(𝑔; 𝑡) = − ∫ 𝑢
𝑔(𝑢)

�̅�(𝑡)

∞

𝑡
log

𝑔(𝑢)

�̅�(𝑡)
𝑑𝑢 .    (4) 

In the recent literature, it is seen that the study of weighted UM’s have attracted the attention 

of researchers for introducing the new flexible weighted UM’s. For more details see Misagh et al. 

[5], Misagh and Yari [6], Nourbakhsh and Yari [7], Mirali and Baratpour [8], Kayal [9], Nair et al. 

[10], Rajesh et al. [11], Khammar and Jahanshahi [12], Bhat and Baig [13] and Bhat et al. [14] etc. 

Motivated with this research literature, here in this article, our objective is to introduce a new 

weighted UM and its dynamic (residual) version on the basis of the following new generalization 

of SE 

𝐻𝑈
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (∫ 𝑔

2
𝜂

𝜇
−1

(𝑢)𝑑𝑢
∞

0
) ,

𝜇

2
 < 𝜂 < 𝜇, 𝜇 ≥ 1,    (5) 

where, 

𝐻𝑈
(𝜂,𝜇)

𝜂→1
𝜇=1

𝑙𝑖𝑚 (𝑔) = − ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢
∞

0
, which is the SE given in (1). 

Analogous to (2) and on the basis of (5), the generalized residual entropy can be defined as 

𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log (∫ (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
) ,

𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1.    (6) 

The rest of the article is organized as follows: In section 2, we discuss the weighted 

generalized entropy (WGE) of order 𝜂 and type 𝜇 in the form of its definition and some properties. 

The section 3 presents the weighted generalized residual entropy (WGRE) and also some of its 

significant characterization results. In section 4, we study the various important properties of 

WGRE and also its relationship with other well-known reliability measures. In section 5, an 

application of the WGE and WGRE by using a real life data set is presented. Finally, we illustrate 

some concluding remarks in section 6.  

2. Weighted Generalized Entropy (WGE)

In this section, we introduce the weighted version of (5) which is known as weighted generalized 

entropy (WGE) of order 𝜂 and type  𝜇. 

Definition 2.1 For a r.v 𝑈 having p.d.f 𝑔(𝑢), the WGE of order 𝜂 and type 𝜇 denoted by 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) is

defined as 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (∫ (𝑢𝑔(𝑢))

2
𝜂

𝜇
−1

𝑑𝑢
∞

0
) ,

μ

2
< 𝜂 < 𝜇 ≥ 1,    (7) 

where, the coefficient 𝑢 in the integrand denotes the weight function as in (3). 

In the following example, we illustrate the importance of WGE. 

Exumple 2.1. Let 𝑈 and 𝑉 be two r.v’s distributed as 

𝑔𝑈(𝑢) = {
2𝑢, 0 < 𝑢 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,       𝑔𝑉(𝑣) = {
2(1 − 𝑣), 0 < 𝑣 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . 

Here, we can see that 

𝐻𝑈
(𝜂,𝜇)

(𝑔) = 𝐻𝑉
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (

𝜇2
2(

𝜂
𝜇−1)

𝜂
), 
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But, the WGE’s of 𝑈 and 𝑉 are different with each other as follows 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (

𝜇2
2

𝜂
𝜇−1

4𝜂−𝜇
) 

and 

𝐻(𝑉,𝑤)
(𝜂,𝜇)

=
1

2𝜂(𝜇−𝜂)
log (2

2
𝜂

𝜇
−1

Β (2
η

μ
, 2

η

μ
)), 

where, 

Β(𝑐, 𝑑) = ∫ 𝑦𝑐−1(1 − 𝑦)𝑑−1, 𝑐, 𝑑
1

0
> 0 =

Γ(𝑐)Γ(𝑑)

Γ(𝑐+𝑑)
. 

Thus, even though 𝐻𝑈
(𝜂,𝜇)

(𝑔) = 𝐻𝑉
(𝜂,𝜇)

(𝑔), but 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) ≠ 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔), ∀ 
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1. 

Example 2.2. Let 𝑔(𝑢) be the p.d.f of a r.v 𝑈 distributed as: 

(a) Exponentially with 𝑔(𝑢) = 𝛽𝑒−𝛽𝑢, 𝑢 > 0, 𝛽 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

Γ(2
𝜂

𝜇
)

𝛽(2
𝜂

𝜇
−1)

2
𝜂
𝜇

]. 

(b) Gamma with 𝑔(𝑢) =
1

Γ(𝛽)
𝑒−𝑢𝑢𝛽−1, 0 < 𝑢 < ∞, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

Γ(𝛽(2
𝜂

𝜇
−1)+1)

(Γ(𝛽))
2

𝜂
𝜇−1

(2
𝜂

𝜇
−1)

𝛽(2
𝜂
𝜇−1)+1

]. 

(c) Lomax with 𝑔(𝑢) =
𝑚

(1+𝑢)1+𝑚 , 𝑢 > 0, 𝑚 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

𝑚
2

𝜂
𝜇−1

Γ(2
𝜂

𝜇
)Γ(𝑚(2

𝜂

𝜇
−1)−1)

Γ((2
𝜂

𝜇
−1)(𝑚+1))

] , 𝑚 (2
𝜂

𝜇
− 1) > 1 .

(d) Rayleigh with 𝑔(𝑢) = 𝛽𝑢𝑒−
𝛽

2
𝑢2

, 𝑢 ≥ 𝑜, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

2
2

𝜂
𝜇−

3
2Γ(2

𝜂

𝜇
−

1

2
)

√𝛽(2
𝜂

𝜇
−1)

2
𝜂
𝜇+

3
2

]. 

Lemma 2.1. If 𝑍 = 𝑚𝑈, with 𝑚 > 0, then 

𝐻(𝑍,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log 𝑚 + 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔). 

Theorem 2.1. For a r.v 𝑈 having SE 𝐻𝑈(𝑔), we obtain 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) ≥
1

𝜂𝜇
[𝐻𝑈(𝑔) − (

𝜇−2𝜂

2(𝜇−𝜂)
) 𝐸(log 𝑈)]. 

Proof. By applying the log-sum inequality, we obtain 

∫ 𝑔(𝑢)
∞

0
log

𝑔(𝑢)

(𝑢𝑔(𝑢))
2

𝜂
𝜇−1

𝑑𝑢 ≥ ∫ 𝑔(𝑢)𝑑𝑢 log
∫ 𝑔(𝑢)𝑑𝑢

∞
0

∫ (𝑢𝑔(𝑢))
2

𝜂
𝜇−1

𝑑𝑢
∞

0

∞

0

= − log ∫ (𝑢𝑔(𝑢))
2

𝜂

𝜇
−1

𝑑𝑢
∞

0
. 

Due to (7), the desired result is satisfied. 

3. Weighted Generalized Residual Entropy (WGRE)

In this section, we introduce the dynamic (residual) version of (7) which is known as weighted 

generalized residual entropy (WGRE) of order 𝜂 and type 𝜇. Some important characterization 

results of this UM are also discussed. 

Definition 3.1 Let 𝑈 be a r.v with p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), then the WGRE of order 𝜂 and type 𝜇 is 

defined as 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
] ,

𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1 .    (8) 

Here, we evaluate the WGRE of some lifetime distributions. 
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Example 3.1. Let a r.v 𝑈 be distributed as: 

(a) Exponentially with p.d.f 𝑔(𝑢) = 𝛽𝑒−𝛽𝑢, 𝑢𝛽 > 0, 𝛽 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[𝑅𝛽𝑡 + log (

Γ(𝑅+1,𝑅𝛽𝑡)

𝛽𝑅𝑅+1 )], 

(b) Gamma with p.d.f 𝑔(𝑢) =
1

Γ(𝛽)
𝑒−𝑢𝑢𝛽−1, 0 < 𝑢 < ∞, 𝛽 > 0, 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [

Γ(𝑅𝛽+1,𝑅𝑡)

𝑅𝑅𝛽+1(Γ(β,t))
R], 

(c) Weibull with p.d.f 𝑔(𝑢) =
1

𝑚
𝑒−(

𝑢−𝑛

𝑚
)
, 𝑢 > 𝑛, 𝑚 > 0, 𝑛 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[𝑅

𝑡

𝑚
+ log (

𝑚Γ(𝑅+1,𝑅
𝑡

𝑚
)

𝑅𝑅+1 )], 

(d) Rayleigh with p.d.f 𝑔(𝑢) = 𝛽𝑢𝑒−
𝛽

2
𝑢2

, 𝑢 ≥ 0, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[

𝑅𝛽𝑡2

2
+ log {

2
𝑅−

1
2Γ(𝑅+

1

2
,
𝑅𝛽𝑡2

2
)

√𝛽𝑅
𝑅+

1
2

}], 

where, Γ(𝑛, 𝑚𝑧) = 𝑚𝑛 ∫ 𝑒−𝑚𝑥𝑥𝑛−1𝑑𝑥,
∞

𝑧
 𝑚, 𝑛 > 0 is an upper incomplete gamma function and 𝑅 =

2
𝜂

𝜇
− 1 respectively.

Theorem 3.1 If 𝐻𝑈
(𝜂,𝜇)

(𝑔) and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) denotes the GRE and WGRE of a r.v 𝑈, then for all 𝑡 > 0, 

we have 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [𝑡

2
𝜂

𝜇
−1

𝑒𝑥𝑝 (2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡))

+ (2
𝜂

𝜇
− 1) ∫ 𝑥

2(
𝜂

𝜇
−1)

(
�̅�(𝑥)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑒𝑥𝑝 (2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑥)𝑑𝑥)
∞

𝑥=𝑡
]. 

Proof. From (8), we have 

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 = ∫ [∫ (2
𝜂

𝜇
− 1) 𝑦

2(
𝜂

𝜇
−1)

𝑑𝑦
𝑢

0
] (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡

∞

𝑡
 

= (2
𝜂

𝜇
− 1) ∫ [∫ 𝑦

2(
𝜂

𝜇
−1)

𝑑𝑦 + ∫ 𝑦
2(

𝜂

𝜇
−1)

𝑑𝑦
𝑢

𝑡

𝑡

0
] (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
 

= 𝑡
2

𝜂

𝜇
−1

∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 + (2
𝜂

𝜇
− 1) ∫ [𝑦

2(
𝜂

𝜇
−1)

(∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑢=𝑦
)] 𝑑𝑦

∞

𝑦=𝑡

∞

𝑡
.         (9) 

From (6), we have 

∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 = 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡)]
∞

𝑡
.    (10) 

and 

∫ 𝑔
2

𝜂

𝜇
−1

𝑑𝑢 = �̅�
2

𝜂

𝜇
−1

(𝑡)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡)]
∞

𝑡
 .   (11) 

Using (9), (10) and (11) in (8), we obtain the required result. 

Here, we show that �̅�(𝑡) is uniquely determined by 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡).

Theorem 3.2. Let 𝑈 be a r.v having p.d.f 𝑔(𝑢), s.f �̅�(𝑡) and WGRE 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) < ∞,
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1  

respectively. If  𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is increasing in 𝑡, then 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) uniquely determines �̅�(𝑡). 

Proof. Rewriting (8) as 

𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)] = ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
.  (12) 

Differentiating (12) w.r.t 𝑡, we have 

𝜕

𝜕𝑡
𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = (2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) ∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 − (𝑡𝜆𝐺(𝑡))
2

𝜂

𝜇
−1∞

𝑡
],    (13) 

where, 𝜆𝐺(𝑡) =
𝑔(𝑡)

�̅�(𝑡)
 represents the hazard rate of 𝑈. Using (12), we can rewrite (13) as 

(𝑡𝜆𝐺(𝑡))
2

𝜂

𝜇
−1

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)𝜆𝐺(𝑡)]
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2𝜂(𝜇 − 𝜂)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)]
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = 0.    (14) 

Hence for fixed 𝑡 > 0, 𝜆𝐺(𝑡) is a solution of 𝜓(𝑢𝑡) = 0, where 

𝜓(𝑢𝑡) = 𝑡
2

𝜂

𝜇
−1

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)] 𝑢𝑡 

+2𝜂(𝜇 − 𝜂)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)]
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡). 

Differentiating both sides w.r.t 𝑢𝑡, we have 

𝜕

𝜕𝑢𝑡
𝜓(𝑢𝑡) = (2

𝜂

𝜇
− 1) 𝑡

2
𝜂

𝜇
−1

𝑢𝑡

2(
𝜂

𝜇
−1)

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)]. 

Also, 

𝜕2

𝜕𝑢𝑡
2 𝜓(𝑢𝑡) = (2

𝜂

𝜇
− 2) (2

𝜂

𝜇
− 1) 𝑡

2
𝜂

𝜇
−1

𝑢𝑡

2
𝜂

𝜇
−3

. 

Now, 
𝜕

𝜕𝑢𝑡
𝜓(𝑢𝑡) = 0 gives 

𝑢𝑡 = [
𝑒𝑥𝑝(2𝜂(𝜇−𝜂))𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)

𝑡
2

𝜂
𝜇−1

]

2(1−
𝜂

𝜇
)

= 𝑢0 (say). 

For 
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1, 

𝜕2

𝜕𝑢𝑡
2 𝜓(𝑢0) < 0. Thus, 𝜓(𝑢𝑡) attains maximum at 𝑢0. Also, 𝜓(0) > 0 and 

𝜓(∞) = −∞. Further it can be easily observed that 𝜓(𝑢𝑡) first increases for 0 < 𝑢𝑡 < 𝑢𝑜 and then 

decreases for 𝑢𝑡 > 𝑢𝑜. So, the unique solution to 𝜓(𝑢𝑡) = 0 is given by 𝑢𝑡 = 𝜆𝐺(𝑡). Thus, 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) uniquely determines 𝜆𝐺(𝑡) which in turns determines �̅�(𝑡).

4. Properties and Inequalities of WGRE

This section presents some interesting properties and inequalities of weighted generalized residual 

entropy . 

Definition 4.1. Let 𝑈 and 𝑉 be two r.v’s having WGRE’s 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) and 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡), then 𝑈 is said

to be smaller than 𝑉 in WGRE of order 𝜂 and type 𝜇 (denoted by VU
WGRE

 ), if𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤

𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡), ∀ 𝑡 > 0. 

Definition 4.2. A r.v 𝑈 or a s.f �̅� will be said to have increasing (decreasing) WGE for residual life 

of order 𝜂 and type 𝜇 IWGERL (DWGERL), if 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is increasing (decreasing) in 𝑡, 𝑡 > 0. 

Lemma 4.1. If 𝑌 = 𝑎𝑈, with 𝑎 > 0 is a constant, then 

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log 𝑎 + 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔,

𝑡

𝑎
). 

Proof.  

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log ∫ (𝑦

𝑔(𝑦)

𝑃𝑟(𝑌>𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑦
∞

𝑡
. 

Setting 𝑌 = 𝑎𝑈, a strictly increasing function of 𝑈, we have 

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [𝑎 ∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡

𝑎

]. 

By using (8), the desired result is obtained. 

Theorem 4.1. For two r.v’s 𝑈 and 𝑉, let us define 𝑌1 = 𝑎1𝑈 and 𝑌2 = 𝑎2𝑉 with 𝑎1, 𝑎2 > 0. Let 

𝑈 𝑊𝐺𝑅𝐸
≤

𝑉 and 𝑎1 ≤ 𝑎2 . Then 𝑌1
𝑊𝐺𝑅𝐸

≤
𝑌2 

21 YY
WGRE

  if 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) or 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is decreasing in 𝑡 > 0. 

Poof.  Suppose 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is decreasing in 𝑡. 

Now,  𝑈 𝑊𝐺𝑅𝐸
≤

𝑉 implies 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎2
) ≤ 𝐻(𝑉,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).  (15) 

Further, since 
𝑡

𝑎1
≥

𝑡

𝑎2
 , we have 
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𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎1
) ≤ 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).   (16) 

Combining (15) and (16), we obtain 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎1
) ≤ 𝐻(𝑉,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).    (17) 

Using Lemma 4.1 in (17), we have 𝑌1
𝑊𝐺𝑅𝐸

≤
𝑌2 . 

Theorem 4.2. For a r.v 𝑈 having support (0, 𝑘], 𝑘 > 0 , p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), 𝑡 > 0, then for 
𝜇

2
<

𝜂 < 𝜇, 𝜇 ≥ 1, the following upper bound of 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) holds 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤
1

2𝜂(𝜇−𝜂)
[

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

log(𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

+ log(𝑘 − 𝑡)].

Proof.  From log-sum inequality and (8), we have 

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

log (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 ≥ ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 log
∫ (𝑢𝑔(𝑢))

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

∫ (�̅�(𝑡))
2

𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

𝑘

𝑡

𝑘

𝑡

= ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) − log(𝑘 − 𝑡)]
𝑘

𝑡
. 

After simplification, we get the desired result. 

Theorem 4.3. Let �̅� be a IWGRE (DWGRE) and 𝜇 > 𝜂, then 

𝜆𝐺(𝑡) ≤ (≥) [
(2

𝜂

𝜇
−1)𝑒𝑥𝑝{2𝜂(𝜇−𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)}

𝑡
2

𝜂
𝜇−1

]

𝜇

2(𝜂−𝜇)

. 

Proof. From (14), we have 

2𝜂(𝜇 − 𝜂)
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = (2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) − 𝑒𝑥𝑝 {2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)} (𝑡𝜆𝐺(𝑡))

2
𝜂

𝜇
−1

. 

Since �̅� is IWGERL (DWGERL), therefore, we have 

𝜆𝐺(𝑡) [(2
𝜂

𝜇
− 1) − 𝑡

2
𝜂

𝜇
−1

𝜆𝐺

2(
𝜂

𝜇
−1)

(𝑡)𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}] ≥ (≤)0. 

which leads to 

𝜆𝐺(𝑡) ≤ (≥) [
(2

𝜂

𝜇
−1)𝑒𝑥𝑝{2𝜂(𝜇−𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)}

𝑡
2

𝜂
𝜇−1

]

𝜇

2(𝜂−𝜇)

. 

Theorem 4.4. If 𝑈 is IWGERL (DWGERL), then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤ (≥)
1

2𝜂(𝜇−𝜂)
log [

𝑡
2

𝜂
𝜇−1

2
𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2(
𝜂

𝜇
−1)

], 

where 𝑚𝐺(𝑡) is the mean residual life function of 𝑈. 

Proof. From (14), we have 

𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) =

1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) − (𝑡𝜆𝐺(𝑡))

2
𝜂

𝜇
−1

𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}]. 

Using 𝜆𝐺(𝑡) =
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
, we have 

𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) =

1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) (

1+
𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
) 

−𝑡
2

𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2
𝜂

𝜇
−1

𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}]. 

Since, �̅� is IWGERL (DWGERL), therefore, after simplification, we have 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≥ (≤) log [
𝑡

2
𝜂
𝜇

−1

2
𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2(
𝜂

𝜇
−1)

]. 
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Theorem 4.5.  Let 𝑈 be the lifetime of a system with p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), 𝑡 > 0, then 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) 

attains a lower bound as follows 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≥
1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) ∫

𝑔(𝑢)

�̅�(𝑡)
log 𝑢𝑑𝑢 + 2 (1 −

𝜂

𝜇
) 𝐻𝑈(𝑔; 𝑡)

∞

𝑡
].  (18) 

Proof. From log-sum inequality, we have 

∫ 𝑔(𝑢) log
𝑔(𝑢)

(𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢 ≥ ∫ 𝑔(𝑢)𝑑𝑢 log
∫ 𝑔(𝑢)𝑑𝑢

∞
𝑡

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
∞

𝑡

∞

𝑡

∞

𝑡

= �̅�(𝑡) [log �̅�(𝑡) − log {2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}].  (19) 

where (19) is obtained from (8). 

The L.H.S of (19) leads to 

2 (1 −
𝜂

𝜇
) ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 − (2

𝜂

𝜇
− 1)

∞

𝑡
∫ 𝑔(𝑢) log 𝑢𝑑𝑢 + (2

𝜂

𝜇
− 1) �̅�(𝑡) log �̅�(𝑡)

∞

𝑡
.  (20) 

Using (20) in (19), we obtain (18). 

5. Application

To illustrate the effectiveness and importance of our proposed UM’s, we consider a real life data 

set. The data set represents the remission times (in months) of a random sample of 128 bladder 

cancer patients given in Lee and Wang [15] and is given as follows: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 

5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 

9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

Afaq et al. [16] have shown that the length biased Lomax distribution (LD) provides a better fit 

for this data. Now, in order to compute the entropy of this data set, it is necessary to apply the 

weighted entropy technique rather than the simple entropy. For the weighted entropy, we need to 

consider the basic model (i.e LD) of the length biased LD. The MLEs of the parameters of LD from 

this data set are obtained as: 𝜃 = 8.431393(shape parameter) and 𝜆 = 70.289624(scale parameter) 

respectively. Now, for 𝜂 = 1.5, 𝜇 = 2.5 and 𝑡 = 10, we have 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) = 1.638 and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =

1.694. Similarly, 𝜂 = 2.5, 𝜇 = 3 and 𝑡 = 20, we obtain 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) = 1.164 and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) = 1.481 

respectively. 

6. Conclusion

In this article, we have introduced the concepts of weighted generalized entropy and also its 

dynamic (residual) version which is known as weighted generalized residual entropy. It has been 

shown that the proposed residual entropy uniquely determines the survival function. The various 

important properties and the relationship with other well-known reliability measures of the 

proposed residual entropy are also obtained. Finally, a real data set has been used to investigate 

the usefulness of the proposed entropy functions. 
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