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Abstract 

The continuous Bernoulli distribution is a one-parameter probability distribution which is 

useful in analysis on machine learning. A handful of studies has been done to generalize 

the continuous Bernoulli distribution. In this paper, we introduced a wider extension of the 

continuous Bernoulli distribution by considering its distribution function as a generator. 

We referred to the proposed family as the continuous Bernoulli-generated family of 

distributions. Basic statistical treatments of the proposed family such as the density and 

cumulative distribution functions, survival and hazard rate functions, quantile, moments, 

moment generating function, and Renyi entropy are derived. The method of maximum 

likelihood is employed to estimate the unknown parameters of the family and the asymptotic 

behaviour of the parameter estimates is investigated via Monte Carlo simulation study. The 

waiting time (in minutes) of 100 Bank customers and the tensile strength measured in 

GPa, of 69 carbon fibers data sets formed the basis for real-life data fittings. Results obtained 

from the fitting of the two data sets when compared with some existing non-nested models 

revealed that the fittings were in favor of the continuous-Bernoulli Weibull distribution 

over the rest competing distributions. 

Keywords: Continuous Bernoulli Distribution; Moments; Quantile; Monte Carlo 

Simulation Study 

1. INTRODUCTION

The cumulative distribution function (cdf) of the one-parameter continuous Bernoulli distribution 

has been defined by [13] as 
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with the probability density function (pdf) associated to (1) obtained as 
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where the normalizing constant C  is defined as
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and ( ) ( ) ( )12 tanh 1 2 ln 1 ln  − − = − − , using the relation ( )1 1
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We denote a random variable X following the continuous Bernoulli distribution as ( )~X CB  . The 

continuous Bernoulli distribution has special application in machine learning. Particularly, in 

simulating the pixel intensities of natural images in deep learning and computer vision, mostly in 

the development of variational autoencoders. Similar to the one-parameter Topp-Leone and power 

distributions, the ( )CB   distribution is also a one-parameter distribution with support on a unit-

interval.  

In the theory of statistical analysis of lifetime data, bounded distributions have found a wide variety 

of applications ranging from the field of engineering, actuarial sciences, economics, biological 

sciences, etc. Particularly, when the data are recorded in rates, percentages and proportions. Over 

the years, the beta and Kumaraswamy distributions are the topmost bounded distributions to be 

reckon with in regards to fitting [0,1]-valued data sets, until the advent of several methodologies in 

developing unit-interval distributions. Notable among these distributions are the log-Lindley 

distribution proposed by [10], unit-logistic distribution developed by [14], log-Xgamma distribution 

introduced by [2], Marshall-Olkin Topp-Leone distribution developed by [17], unit-Burr XII 

distribution studied by [11], Marshall-Olkin extended unit-Gompertz distribution studied by [15], 

transmuted Marshall-Olkin extended Topp-Leone Distribution introduced by [18], Kumaraswamy 

unit-Gompertz distribution proposed by [1], etc. It is noteworthy to mention that the power 

continuous Bernoulli distribution due to [3] and transmuted continuous Bernoulli distribution due 

to [4], apparently the only extensions of the classical continuous Bernoulli distribution belong to this 

list. The goal of this paper is to develop a novel family of distributions based on the continuous 

Bernoulli distribution, which is hoped to birth more tractable and flexible lifetime distributions in 

analyzing real data sets. 

The rest of the paper is organized in the following sections. Section 2 is devoted to model 

formulation. Section 3 provides some sub-models from the proposed family of distributions. General 

mathematical treatments for the proposed family of distributions, the parameter estimation as well 

as the investigation of the asymptotic behaviour of the parameter estimates of the model via a Monte 

Carlo simulation are discussed in Section 4. Section 5 provides the applicability of the proposed 

family of distributions in real-life data fitting. Section 6 concludes the paper. 

2. MODEL FORMULATION

Suppose a random variable T follows a known probability distribution with pdf ( )f t , [20] adopted

the beta-generated technique developed by [6] to introduce the Topp-Leone-generated family of 
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distributions with cdf defined by 
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and the associated pdf obtained as 
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As an alternative to the technique in (4), [5] introduced the so-called type II Topp-Leone generated 

(TIITL-G) family of distributions based on the methodology of [19] who introduced an alternative 

gamma-generator reported in [22]. The cdf and pdf of TIITL-G family are, respectively, defined by  
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Motivated by the simplicity of the technique in (6) and using the ( )CB   distribution defined in (3)

as the generator, we develop a novel class of distributions with the cdf defined by 
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The pdf corresponding to (8) is obtained as 
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A random variable T having the cdf and pdf defined in (8) and (9), respectively, is said to follow the 

continuous Bernoulli-generated ( ( ),CB G  − ) family of distributions. 

The survival and hazard rate functions of ( ),CB G  −  family of distributions are defined in (10) 

and (11), respectively, as 
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Furthermore, the quantile function of the ( ),CB G  −  family of distributions is obtained as 
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Whereas substituting 0.5u =  in (12), the median of the ( ),CB G  −  family of distributions is 

obtained as 
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The utility of (12) is in generating random numbers from the ( ),CB G  −  family of distributions, 

where u is generated from the uniform distribution satisfying 0 1.u 

3. SUB-MODELS OF THE ( ),CB G  − FAMILY OF DISTRIBUTIONS 

This section is concerned with the formulation of tractable models from the ( ),CB G  −  family of 

distributions based on the Weibull, Topp-Leone, Kumaraswamy and Burr XII distributions as the 

baseline distribution in (8). 

3.1 The continuous Bernoulli Weibull ( ), ,CBW     distribution 

Let T be a random variable following the Weibull distribution with cdf, ( ), , 1 tG t e
  −= −  and pdf, 

( ) 1, , , 0, , 0.tg t t e t
     − −=   We defined the cdf and pdf of the ( ), ,CBW     

distribution, respectively, as follows 
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3.2 The continuous Bernoulli Topp-Leone ( ),CBTL    distribution 

The one-parameter Topp-Leone distribution is defined by the density function 
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By inserting the pdf and cdf in (16) and (17) into (8) and (9), we defined the cdf and pdf of the 

( ),CBTL    distribution, respectively, as
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3.3 The continuous Bernoulli Kumaraswamy ( ), ,CBK    distribution 

The Kumaraswamy distribution developed by [12] is a bounded distribution with 2 shape 

parameters having the cdf, ( ) ( )1 1G t t


= − −  and pdf, ( ) ( )
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By this information, the cdf and pdf of the ( ), ,CBK    distribution is defined, respectively, as 
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3.4 The continuous Bernoulli Burr XII ( ), ,CBBXII     distribution 

A random variable T is said to follow the two-parameter Burr XII distribution, if the density function 

of T is defined by 
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By inserting (22) and (23) into (8) and (9), we defined the cdf and pdf of the ( ), ,CBBXII   

distribution, respectively, as follows 
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4. MATHEMATICAL PROPERTIES OF THE ( ),CB G  − FAMILY OF 

DISTRIBUTIONS 

In this section, the mathematical properties of the ( ),CB G  −  family of distributions such as the

rth non-central moments, moment generating function (mgf) and Renyi entropy are discussed. The 

method of maximum likelihood estimation is employed to estimate the model parameters and the 

asymptotic behaviour of the parameter estimates are investigated through a Monte Carlo simulation 

study. 

4.1 The rth non-central moments 

Let T be a random variable having the density function of the ( ),CB G  −  family of distributions, 

then the rth non-central moments of T is defined by 
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Evaluating (26) yields the following results 
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Applying the Maclaurin’s series expansion of the exponential function, 
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 are, respectively, the density function and rth 

non-central moments of the exp-G family of distributions with power parameter ( )1 .n+

Thus, we can express the rth non-central moments of the ( ),CB G  − family of distributions as a 

linear combination of the rth non-central moments of the exp-G family of distributions with power 

parameter ( )1 .n+  

For the purpose of numerical computation, we consider the two-parameter Weibull distribution as 

the baseline distribution. Hence, we compute the first four raw moments, variance, measures of 

skewness and kurtosis of the continuous Bernoulli Weibull ( ), ,CBW     distribution in Table 1. 

Table 1: The Moments of the ( ), ,CBW     distribution for selected values of the Parameters

   '

1
'

2
'

3
'

4
2 S K

0.4 0.5 3 1.1721 1.5417 2.2068 3.3774 0.1679 0.0905 2.7315 

5 1.0822 1.2283 1.4485 1.7636 0.0571 -0.3259 2.9750 

7 1.0524 1.1367 1.2549 1.4119 0.0292 -0.5465 3.4994 

3.0 3 0.6450 0.4669 0.3678 0.3098 0.0509 0.0889 2.7397 

5 0.7563 0.5999 0.4944 0.4206 0.0279 -0.3265 2.8830 

7 0.8147 0.6812 0.5822 0.5072 0.0175 -0.5310 3.6310 

0.8 0.5 3 0.9696 1.0912 1.3758 1.9007 0.1511 0.4223 2.9993 

5 0.9616 0.9824 1.0551 1.1827 0.0577 -0.0428 2.9123 

7 0.9659 0.9640 0.9896 1.0415 0.0310 -0.2721 3.2045 

3.0 3 0.5336 0.3305 0.2293 0.1743 0.0458 0.4181 2.9976 

5 0.6720 0.4798 0.3601 0.2821 0.0282 -0.0523 3.0015 

7 0.7478 0.5778 0.4592 0.3741 0.0186 -0.2719 3.0701 

Information from Table 1 shows that the CBW distribution exhibits a left-skewed, right-skewed, 

platykurtic and leptokurtic properties which are essential in modeling heavy-tailed distributions.  

4.2 The moment generating function 

The moment generating function (mgf) of a random variable T with density function ( )f t  is defined

by 

( ) ( ) ,qt qt
TM q E e e f t dt



−

 = =
   (29) 

Using similar approach in (29), we defined the mgf of the ( ),CB G  − family of distributions as
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( )
( )

( )

1

1

0 0

2 tanh 1 2
.

! 1 !

n
p

p
T n

n p

q
M q C E Y

n n p





− 

+

= =

 −
   =

 +
  (30) 

Since, 
( )

0

.
!

p

qt

p

qt
e

p



=

=

4.3 The Renyi entropy 

An entropy of a random variable say T, measures the degree of randomness associated with the 

random variable T. The Renyi entropy of T is defined by [18] as 

( ) ( )
1

log , 0, 1.
1

R f t dt   




−
=  

−   (31) 

By substituting (9) into (31), we defined the Renyi entropy of a random variable T following the 

( ),CB G  − family of distributions as follows 

( ) ( ) ( ) ( )
( , )1 ( , )1

log ( , ) 1 ,
1

G tG t
R C g t dt

   
    




−

−

 
= − −  

( ) ( ) ( )( )
1

log ( , ) exp ( , ) ln 1 ln ,
1

C g t G t dt
  

      




−

 
 = − −  −  

( ) ( )( )11
log ( , ) exp ( , ) 2 tanh 1 2 .

1
C g t G t dt

  
     




−

−

  = −  −   (32) 

Again, applying the Maclaurin’s series expansion of the exponential function, 

( ) ( )
 

1
1

( , ) 2 tanh 1 2

0

2 tanh 1 2
( , ) ,

!

n
n

G t n

n

e G t
n

    


−
−

 −
 

=

 −
 

=

so that (32) now becomes, 

( ) ( )
( )

 
1

0

2 tanh 1 21
log ( , ) ( , ) .

1 !

n
n

n

R

n

C g t G t dt
n

  


 
    



− 

−
=

  −  
=  −

 
 

                 (33) 

Two major properties of the Renyi entropy of a random variable T were identify by [9]. These include 

(i) The Renyi entropy of T can assume a negative value;

(ii) For any 
2 11 2 , R R     and equality holds if and only if T is a uniform random variable. 

Again, we compute the Renyi entropy of the ( ), ,CBW     distribution for selected values of the

parameters as shown in Table 2. 

Table 2: Numerical computation of the Renyi entropy of the ( ), ,CBW    distribution ( 0.8 = ) 

i
i

0.9, 0.5 = = 0.9, 3.0 = = 1.5, 3.0 = = 1.5, 0.5 = =

1 0.1 3.5600 1.5691 0.8868 2.0813 

2 0.3 2.4724 0.4815 0.3213 1.5158 

3 0.5 1.9849 -0.0060 0.0923 1.2869 

4 0.7 1.6766 -0.3142 -0.0433 1.1513 

5 0.9 1.4573 -0.5336 -0.1356 1.0589 

6 2 0.8522 -1.1387 -0.3746 0.8199 

7 4 0.4451 -1.5458 -0.5180 0.6765 

8 6 0.2343 -1.7565 -0.5793 0.6152 

9 8 0.0647 -1.9262 -0.6147 0.5799 
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The result in Table 2 validates the aforementioned properties of the Renyi entropy as suggested by 

[9]. 

4.4 Parameter estimation 

4.4.1 Maximum likelihood estimation 

The maximum likelihood estimation method is employed to estimate the parameters of the 

( ),CB G  − family of distributions. Suppose ( )1 2, , .... nt t t  are random samples of size n from the 

( ),CB G  − family of distributions, then the likelihood function is obtained as 

( ) ( ) ( )
( , )1 ( , )

1

, ( , ) 1 , , .

n
G t TG t

i

L t g t
      −

=

 = − =
    (34) 

By taking the natural logarithm of both sides of (34), the log-likelihood function is obtained as 

( )   ( )  
1 1 1

, ln ( , ) ln 1 ( , ) ln 1 ( , ) .

n n n

i i i

i i i

t g t G t G t     
= = =

= + − + −      (35) 

The maximum likelihood estimate, say ( )ˆ ˆˆ ,
T

  =  is obtained by differentiating the log-likelihood 

function in (35) with respect to the parameters and equating the corresponding function to zero as 

shown below 

( )
( )( ) ( )

1 1

, 1 1
1 , , 0

1

n n

i i

i i

t
G t G t


 

  
= =


= − − =

 −
 

Further simplification yields, 

( )( )
1

1ˆ 1 , ,

n

i

i

G t
n

 
=

= −

( ) ( )

( )
( ) ( ) ( ) ( )

'

1 1 1

,,
ln 1 , ln , 0.

,

n n n
i

i i

ii i i

g tt
g t g t

g t


   

 
= = =


= + − − =


  

Where ( )
( )'

,
,

i

i
i

g t
g t







=


and j is the thj element of the vector of parameter .

It is clear from these expressions that the parameters ̂  can be solved analytically, whereas the

parameter(s) ˆ
j may require the use of software program such as R program for estimation.

4.4.2 Simulation study 

In this subsection, we investigate the asymptotic behaviour of the parameter estimates of the 

( ), ,CBW     distribution. Random samples of size ( )15, 25,50,75,100n =  are generated from the 

( ), ,CBW     distribution at randomly fixed values of the parameters. A Monte Carlo simulation is

repeated 1000 times and the following quantities are computed: 

i) bias ( )
1

1
ˆ ,

N

i

i
N

 
=

= −
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ii) root mean square error (RMSE) ( ) 2

1

1
ˆ .

N

i

i
N

 
=

= −

iii) Coverage Probability of the 95% confidence interval of the estimates ˆ
i  given by

( ) ( ) ( )( )
2 2

0

1

1
ˆ ˆ ˆ ˆ ˆvar var .

N

i i

i

CP I Z Z
N

      
=

= −   +

Where ( ).I  is an indicator function and ( )̂  is the standard error of the estimate .i  

Table 3: Simulation results for bias, RMSE and CP of parameter estimates of ( ), ,CBW    distribution 

Parameters n Bias RMSE CP 

        

15 0.0042 0.3614 -0.2437 0.0752 0.5992 0.3598 0.986 0.988 0.908 
0.3 = 25 -0.0215 0.3395 -0.2522 0.0623 0.5566 0.3558 0.958 0.972 0.888 
0.6 = 50 -0.0578 0.3019 -0.2781 0.0527 0.4956 0.3441 0.948 0.970 0.864 
0.8 = 75 -0.0704 0.2741 -0.2996 0.0477 0.4877 0.3253 0.938 0.940 0.878 

100 -0.0961 0.2210 -0.3323 0.0421 0.4231 0.2926 0.958 0.964 0.910 

15 0.0324 0.1972 -0.1020 0.1422 0.2625 0.2880 0.978 0.958 0.918 
0.5 = 25 0.0093 0.1887 -0.1074 0.1057 0.2472 0.2808 0.988 0.986 0.890 
0.3 = 50 -0.0154 0.1628 -0.1158 0.0832 0.2404 0.2749 0.964 0.978 0.876 
0.6 = 75 -0.0184 0.1017 -0.1356 0.0828 0.2361 0.2741 0.942 0.966 0.872 

100 -0.0209 0.0772 -0.1648 0.0724 0.2227 0.2578 0.944 0.952 0.878 

15 0.1085 0.3271 0.0496 0.3043 1.2171 0.2746 0.956 0.998 0.914 
0.9 = 25 0.0599 0.1131 0.0401 0.2177 0.9368 0.2645 0.964 0.990 0.904 
3.0 = 50 0.0174 0.1082 0.0192 0.1920 0.8197 0.2632 0.926 0.956 0.852 
0.4 = 75 0.0026 0.0824 0.0186 0.1619 0.7159 0.2586 0.914 0.942 0.824 

100 -0.0043 0.0531 0.0079 0.1615 0.6676 0.2499 0.904 0.940 0.814 

15 0.0932 0.0618 0.0485 0.2758 0.3681 0.2862 0.978 0.940 0.910 
0.9 = 25 0.0439 0.0527 0.0468 0.2190 0.3658 0.2812 0.966 0.938 0.858 
0.6 = 50 0.0266 0.0523 0.0293 0.1871 0.3382 0.2702 0.938 0.928 0.818 
0.4 = 75 0.0082 0.0470 0.0256 0.1551 0.3023 0.2532 0.950 0.938 0.844 

100 0.0073 0.0452 0.0180 0.1524 0.3007 0.2521 0.922 0.912 0.828 

From Table 3, we observe that the bias and root mean square errors of the parameter estimates 

decrease as the sample size n increases. Moreover, the coverage probability of the parameter 

estimates approaches the nominal level of 95% confidence interval. 

5. REAL-LIFE DATA FITTINGS

The applicability of the proposed family of distributions is investigated in this section. To achieve 

this, two data sets including the waiting time (in minutes) of 100 Bank customers and the tensile 

strength measured in GPa, of 69 carbon fibers data sets are employed for data fittings. Some well-

known non-nested models such as the Kumaraswamy Weibull ( ( ), ,KW    ), Kumaraswamy

inverse Weibull ( ( ), ,KIW    ), Topp-Leone inverse Weibull ( ( ), ,TLIW    ), transmuted Weibull 

( ( ), ,TW    ) and the two-parameter Weibull distributions are employed alongside with the

proposed continuous-Bernoulli Weibull ( ( ), ,CBW    ) distribution to fit the two data sets. The

data sets for the analysis are given below. 
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Data set 1: The first data set represents the waiting time (in minutes) of 100 Bank customers reported 

in [16]. The data set was first used by [8] to illustrate the flexibility of the Lindley distribution over 

the exponential distribution in data fittings. The data are given as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9 

,1.9, 2.1, 2.6, 2.7,2.9, 3.1, 3.2, 3.3 ,3.5, 3.6, 4.0, 4.1, 4.2, 4.2,4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9,5.0, 

5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0,8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 

8.9, 8.9, 9.5, 9.6,9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 

13.6, 13.7, 13.9,14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0,19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 

31.6, 33.1, 38.5. 

Data set 2: The second data set comprises of the tensile strength measured in GPa, of 69 carbon fibers 

tested under tension at gauge length of 20mm reported in [21]. This data set was also employed by 

[7] to demonstrate the applicability of the power Lindley distribution. The data are represented as

follows: 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,

2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,

2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648,

2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090,

3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

Some popularly used model selection criteria such as the maximized log-likelihood (LL), Akaike

Information Criteria (AIC), and some goodness of fit test statistics such as the Komolgorov-Smirnov

(K-S), Crammer von Mises (W*) and Anderson Darling (A*) test statistics with their corresponding p-

value are considered to access the appropriate model for analyzing the two data sets. Tables 4 and 5

present the summary statistics for the fit of the distributions for the two data sets, respectively.

Table 4: Summary statistics for the waiting time data set 

Models Estimates       LL    AIC K-S W* A* 

(p-value) (p-value) (p-value) 

CBW 1.7229 = -317.3098 640.6196 0.0423 0.0248 0.1682 

0.0071 = (0.994) (0.9904)  0.9968) 

0.9356 =

KW 1.3727 = -317.6755 641.3510 0.0508 0.0414 0.2578 

0.2015 = (0.9587)  (0.9263)  (0.9660) 

1.3379 =

KIW 2.6384 = -332.9531 671.9062 0.1099 0.4051 2.6255 

1.1424 = (0.1785)  (0.0698)  (0.0427) 

1.5224 =−

TLIW 0.5235 = -327.1056 641.2112 0.0891 0.2449 1.6727 

12.5524 = (0.4044)  (0.1951)  (0.1402) 

0.9569 =

TW 1.5692 = -317.8896 641.7791 0.0481 0.0384 0.2599 

0.0157 = (0.9746)  (0.9420)  (0.9648) 

0.6181 =

Weibull 1.4584 = -318.7307 641.4614 0.0577 0.0609 0.4051 

0.0305 = (0.8929)  (0.8095)  (0.8433) 
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Table 5: Summary statistics for tensile strength data set 

Models Estimates       LL    AIC K-S W* A* 

(p-value) (p-value) (p-value) 

CBW 2.7806 = -49.0740 104.1481 0.0400 0.0142 0.1210 

0.1778 = (0.9999)  (0.9998)  (0.9998) 

0.0026 =

KW 3.9464 = -49.9210 105.8421 0.0675 0.0581 0.3901 

0.1690 = (0.9112)  (0.8276)  (0.8580) 

0.1312 =−

KIW 4.2588 = -56.2704 118.5408 0.1061 0.1995 1.3439 

2.8719 = (0.4193)  (0.2688)  (0.2185) 

3.7556 =−

TLIW 0.5468 = -58.0304 122.0608 0.1176 0.2617 1.7344 

34.8898 = (0.2960)  (0.1741)  (0.1294) 

3.4115 =

TW 5.9303 = -49.1325 104.2650 0.0433 0.0191 0.1714 

0.0021 = (0.9995)  (0.9979)  (0.9963) 

0.6363 =

Weibull 5.5045 = -49.5961 104.1923 0.0560 0.0343 0.2739 

0.0046 = (0.9819)  (0.9611)  (0.9563) 

From Tables 4 and 5, based on the conditions to measure superiority of models, the continuous-

Bernoulli ( ), ,CBW     distribution having the maximized log-likelihood value, least value in

terms of the AIC, K-S, W* and A* test statistics with the corresponding highest p-value, outperforms 

the competitor distributions in analyzing the two data sets, and thus becomes the most appropriate 

model in fitting the data sets.  

6. CONCLUSION

In this paper, we have developed a new class of probability distributions based on the continuous 

Bernoulli distribution. The proposed family is called the continuous Bernoulli-generated family of 

distributions. Mathematical derivation of some basic properties of the proposed family such as the 

density and cumulative distribution functions, survival and hazard rate functions, quantile, 

moments, moment generating function, and Renyi entropy were obtained. The method of maximum 

likelihood was employed to estimate the unknown parameters of the family and the asymptotic 

behaviour of the parameter estimates was investigated via Monte Carlo simulation study. Two real-

life data sets including the waiting time (in minutes) of 100 Bank customers and the tensile strength 

measured in GPa, of 69 carbon fibers data sets were employed to illustrate the applicability of the 

proposed family. Existing non-nested models such as the Kumaraswamy Weibull, Kumaraswamy 

inverse Weibull, Topp-Leone inverse Weibull, transmuted Weibull and the two-parameter Weibull 

distributions were employed alongside the proposed continuous-Bernoulli Weibull distribution to 
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fit the two data sets.  Results obtained from the fitting of the two data sets when compared using 

some model selection criteria and goodness of fit test statistics, revealed that the fittings were in 

favor of the continuous-Bernoulli Weibull distribution over the rest competing distributions. 
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