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Abstract 

This paper presented a study of the failure rate by introducing the effect of influencing variables. 

These variables have a random effect which depends on the external environment of the system. 

There are a multitude of variables and their modeling is difficult. The perturbation, to the failure 

rate, caused by external factors, has a direct impact on the time scale by the acceleration (or 

deceleration) of the degradation of the system. Therefore, the adopted methodology consists in 

introducing a perturbation on the Weibull parameters and studying its effect on the failure rate. 

Weibull parameters are considered random variables with a Gaussian distribution. The failure rate 

formulation in a random environment is offered through Weibull distribution. A case study of the 

hemodialysis machine is offered to illustrate the proposed approach and validate the results. The 

simulations presented show the failure rate statistics for different configurations of the Weibull 

distribution. The validation of the results was done using Monte Carlo simulations.  

Keywords: Failure rate, Uncertain Factor, Gaussian perturbation, Weibull distribution 

1. Introduction

Reliability is the probability that a system will perform a required function for a given period of 

time, under specified operating conditions [1, 2]. The conditions are all external constraints, 

whether mechanical, chemical, atmospheric, human, others. Dynamic reliability expands the static 

concept of failure by considering it dynamically over time [3]. This development may be due to 

variations in parameters influencing dysfunctional behavior (dynamic process, aging, etc.), 

modification of the system structure or environmental constraints [4].  

The reliability and the functioning safety of the medical material are essential to ensure that a 

machine functions in accord with constructor instructions and assurances the patients and 

operators security. Damage of medical equipment may touch the healthcare services efficiency and 

causes severe harm to the patients and troubles the environment [5]. Scientific research plays an 

important role in today's society faced with major global challenges such as climate change, 

eradicating poverty and improving the quality of healthcare. 
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There are several methods and procedures employed to develop the reliability of the medical 

equipment. Dhillon [6] defined the maintenance of medical equipment as all actions necessary for 

retaining in, or returning to, a specified functioning condition. The aim of the study presented by 

Bahreini [7] is the extraction of the factors affecting the medical equipment reliability. The objective 

of the work presented by Khalaf [8] is the development of a mathematical approach that studies 

the influence of maintenance on the survival probability of medical equipment based on operating 

history and useful life. 

Failure is a partial or total loss of the properties of an element which significantly decrease 

and leads to the total loss of its operating capacity. This failure may be due to its design, 

manufacture, installation, or even maintenance [9, 10, 11, 12]. Any production systems are subject 

to aging and wear [13]. These physical phenomena cause the failure, which has a significant impact 

on the cost of operating the system or on security. 

In the literature, several authors have presented numerous classifications of failures. For 

example, Rausand [14] classified failures by cause, time, detectability, and degree. Deloux [15] 

categorized failures according to cause, on the one hand, and the impact on system performance, 

on the other. The classification of failures by cause differentiates between random and systematic 

failures. Classification of failures based on their impact on system performance distinguishes 

intermittent failures from extensive failures.  

It is found that the failure rate in the different reliability databases vary significantly [16]. The 

causes of these discrepancies are numerous, for example, because of the characteristics of the 

equipment, the operating conditions, and the operating environment, the lack of precision in the 

information supplied and the increasing complexity of a reliable evaluation of equipment 

comparable to that of a component. 

Stochastic degradation models are mathematical models that describe the degradation of the 

system over time. Degradation models were proposed as a tool to describe the state of a 

production system, to constitute a maintenance policy, to measure system availability and to 

obtain optimal maintenance periods [17]. 

The mechanisms of component degradation (operating conditions, fatigue, vibrations and 

other stresses, etc.) lead to time-dependent modeling of failure rates. Many studies show the 

impact that aging mechanical systems have on reliability as demonstrated [18]. Mechanical 

components are characterized by multiple, often complex degradation mechanisms of various 

origins (cracking, creep, wear, fatigue cracking, etc.) [19, 20]. These degradation modes include 

several parameters like material and dimensional characteristics, external stresses, etc. [21].  

In some studies [22], two main types of models associated with the effects of aging factors are 

identified: physical models and empirical models. Booher [23] destined three models of 

degradation: shock model, wear model and hybrid model which combines the two processes 

(shock and wear). Degradation models may also be classified, according to Deloux [15], in two 

categories: discrete degradation models and continuous degradation models. 

Influence factors are either internal or external factors that affect the reliability of the system. 

The influence can be positive by causing a reduction in the number of failures or, on the contrary, 

have negative effects on reliability. Depending on the type of system studied (human, electric/ 

electronic, mechanical), observed factors are generally different (human or organizational factors, 

system intrinsic or extrinsic factors). A classification of these factors, based on the life stages of the 

system under consideration, was proposed by Brissaud [24]: design factors, manufacturing factors, 

system installation factors, factors which influence system usage and maintenance factors. We can 

add to this list human and organizational factors that generally have a broader impact on the 

system [25]. 
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The influence coefficients are calculated using physical relations, which are functions of many 

parameters like temperature, pressure, dimensions, properties of fluids and materials, etc. For 

many electrical and electronic components, failure rates, constant over time, are expressed 

analytically based on defined parameters. Couallier [26] developed a model adapted to the 

aeronautical maintenance data of on-board systems, some components of which are reliable 

according to the condition of other components. Without a priori knowledge of the physical 

relationships which link influencing factors to failure rates, statistical methods try to express 

correction coefficients. Ouakki [27] presented (figure 1) a cause-effect diagram (Ishikawa diagram) 

in order to better describe the different factors that cause the reliability varies. 

 

 

Figure 1: Cause and effect diagram of the reliability 

 

The failure rate of mechanical systems is not constant and continually changes over time as a 

result of degradation phenomena such as wear, aging, etc. Any system is related to its external 

environment, the consideration of external influence variables allows a more robust modeling of 

the failure rate of the system. Several researchers proposed a failure rate model taking into account 

deterioration over time and influence factors where a Cox model is integrated to study the effect of 

the stress [24, 28, 29]. This is a semi-parametric model which describes the failure rate as a function 

of the basic failure rate of the system, which depends only on the time, and the influence function 

which depends only on the state of the influencing factors, it is independent of time. Several 

researchers have adopted the Cox model to estimate the influence function [24, 29, 30, 31, 32, 33]. 

The construction of this model requires the collection of input data, the preparation of a coding for 

the states of the influence factors, the determination of the parameters of the influence function, the 

determination of the parameters of the base failure rate and finally the synthesis of the results. It 

should be noted that in this model, the measures are always subject to a certain degree of 

uncertainty, such that the states of the influence factors can vary over time. The effectiveness of 

this model is closely associated with the quantity and quality of information available for the 

study. An analysis of the material is then required to select the influencing factors to consider. 

In engineering studies, the distribution that best characterizes a set of data should be chosen 

[34]. In industry area, the Weibull distribution is one of the most used probability density 

functions. According to Lyonnet [35], the Weibull model is the best appropriate when carrying out 

reliability analysis for mechanical components. The main advantage of this distribution is its 

ability to account for small samples of failure data. Nevertheless the graphical method is 
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recommended in case of little model size data in terms of the estimation precision and accuracy 

[36]. The flexibility in fitting different failure modes and in simulating many other statistical 

distributions is one of the important attractions of the mentioned distribution [37]. The Weibull 

probability analysis is widely employed for studying the life data and can be applied to several 

situations. Weibull distribution is used in various domains [38] such as aerospace, electronics, 

materials, automotive industries and civil aviation [39].  This statistical approach can be an 

important way to analysis the reliability of semi-conductors, ball bearings, engines, spot weldings, 

biological organisms… [40]. Ahsan [41] studied the reliability of gas turbine using three 

parameters Weibull distribution based on historical data. 

This paper presented a study of failure rate in stochastic environment by introducing the 

effect of influential variables. These variables have a random effect that depends on the external 

environment of the system. The external factors, which can influence the reliability of a system, are 

much diversified and their modeling is difficult. An approach to characterize the failure rate is 

proposed, that takes into account the consequences of these factors without modeling them. Our 

methodology consists in introducing a perturbation on the Weibull parameters and studying its 

effect on the failure rate. This perturbation is the result of influence variables. Weibull parameters 

are considered random variables with a Gaussian distribution. The formulation of the failure rate 

in a stochastic environment is developed through the Weibull distribution. A case study is offered 

to illustrate the proposed approach and validate the results. The simulations presented show the 

failure rate statistics for different configurations of the Weibull distribution. 

 

2. Failure rate estimation by Weibull distribution in stochastic environment 
 

The two-parameter Weibull distribution is a continuous probability distribution widely used for 

analyzing reliability and lifetime data [42]. The Weibull distribution is characterized by two 

parameters β and η, where β is the shape parameter and η is the scale parameter. 

The failure rate is expressed through the Weibull distribution by the following function: 

    𝜆(𝑡) =
𝛽

𝜂
(

𝑡−𝛾

𝜂
)

𝛽−1

                                                                      (1) 

The Weibull distribution is characterized by two parameters (β, η):  

β:  is the shape parameter, (β >0). This parameter gives indications on the failure mode and on 

the evolution of the failure rate over time. 

η:  is the scale parameter, Which specifies the order of magnitude of the average lifespan.    

The reliability analysis is based on a deterministic approach. In fact, all reliability parameters, 

which are uncertain, are described by unfavorable characteristic values. This often leads to 

unwarranted modeling and dimensioning. In that sense, behavioral prediction should preferably 

be in terms of probabilities. Uncertainties are related to variability in physical and geometric 

parameters, to fluctuations in load conditions, to stress boundary conditions and also to physical 

laws and simplifying assumptions used in the modeling process [21]. It is therefore the analysis of 

reliability by probabilistic approaches, taking into account the dispersion of the variables described 

by probabilistic distributions. Several factors contribute to the degradation of the component or 

entity. Consequently, the lifetimes must be explained by the different variables (degradation 

factors) contributing to the failure. 

Several researchers [22, 29] have considered that the influencing variables mainly affect the 

weibull parameters. Their effect is to slow down or accelerate the degradation. The influence of 

these variables is random and hardly modelable. In this work, we will introduce a perturbation in 

the weibull parameters due to the influencing variables that contribute to the degradation and our 

objective is to estimate the effect of this perturbation on the failure rate. The shape and scale 
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parameters are modeled by random variables which follow Gaussian distributions and written in 

the following form: 

 

𝛽 = 𝛽 + 𝜎𝛽𝜀                                                                            (2) 

ɳ̃ = ɳ + 𝜎ɳ𝜀                                                                            (3) 

Where 

• β̃, ɳ̃ ∶  Random Weibull parameters following a Gaussian distribution, 

• β, ɳ:  The mean of the random weibull parameters, 

• σβ, σɳ: The standard deviation of the weibull parameters (disturbance around the mean), 

• ε: Reduced centered Gaussian variable, 

The deterministic weibull parameters are represented by their means β and ƞ. The 

perturbation caused by several external influencing factors is characterized by their standard 

deviation σβ and σƞ. Hence, our study consists of estimating the effect of this perturbation on the 

failure rate using the Weibull distribution. The random failure rate is expressed as a random 

function following a Gaussian distribution as follow: 

�̃�(𝑡) = 𝜆(𝑡) + 𝜎𝜆(𝑡)𝜀                                                                    (4) 

Where λ and σλ  are the mean and the standard deviation of the failure rate, respectively.  

 According to Weibull distribution, the random failure rate is offered by the following 

expression:  

    �̃�(𝑡) =
�̃�

�̃�
(

𝑡

�̃�
)

�̃�−1

                                                                         (5) 

In order to formulate the mean and the standard deviation of the failure rate, we can write: 

𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝑙𝑜𝑔(�̃�) + (𝛽 − 1)[𝑙𝑜𝑔(𝑡) − 𝑙𝑜𝑔(�̃�)]                                   (6) 

  𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(�̃�) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)                                        (7) 

To linearize the failure rate equation, we will use the first-order Taylor series expansion of 

log ( λ̃(t)), log (β̃) and log (η̃) in the vicinity of their mean, we obtain: 

𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝜆(𝑡)) +
𝜎𝜆(𝑡)

𝜆(𝑡)
𝜀                                                          (8) 

𝑙𝑜𝑔(𝛽) = 𝑙𝑜𝑔(𝛽) +
𝜎𝛽

𝛽
𝜀                                                                (9) 

𝑙𝑜𝑔(ɳ̃) = 𝑙𝑜𝑔(ɳ) +
𝜎ɳ

ɳ
𝜀                                                              (10) 

Introducing equations (8), (9) and (10) in equation (7), we can write: 

 𝑙𝑜𝑔(𝜆(𝑡)) +
𝜎𝜆(𝑡)

𝜆(𝑡)
𝜀 = [𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(𝜂) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)] + [

𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)] 𝜀 

(11) 

The identification of the different terms in equation (11) leads to extract the mean and the 

standard deviation of the failure rate as: 

𝑙𝑜𝑔(𝜆(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(𝜂) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)                                           (12) 

And 
𝜎𝜆(𝑡)

𝜆(𝑡)
=

𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)                                                 (13) 

Finally, we obtain: 

    𝜆(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

                                                                  (14) 

𝜎𝜆(𝑡) = 𝜆(𝑡) [
𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)]                                        (15) 
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3. Numerical results and discussion 

 

3.1. Case study: Weibull distribution analysis of the Hemodialysis machine 
 

Hemodialysis machines are one of the important medical equipment which is directly responsible 

for the patient’s life, used to treat kidney failure. The reliability of hemodialysis machines is very 

important for nephrologists to guarantee not only patient safety but also efficiency and continuity 

of treatment.  Weibull distribution is very flexible and can, through an appropriate choice of 

parameters, model many types of failure rate behaviors.  

In this paragraph, the failure rate of a group of 3 hemodialysis machines (M1, M2 and M3) 

will be studied. The data of the failure history of the 3 machines was collected during the period 

from 2013 to 2022. The data of the failure history of the 3 devices was collected and summarized in 

table 1. 

 

Table 1: The failure history (TBF) of hemodialysis machines. 

 

Failure 

number 

M1 M2 M3 

Date of failure TBF Date of failure TBF Date of failure TBF 

1 29/01/2014 1085 05/06/2015  2450 29/05/2013 413 

2 04/01/2016 1904 29/05/2017 2040.5 12/07/2013 101.5 

3 19/10/2016 609 07/08/2017 192.5 01/09/2014 1130.5 

4 24/10/2016 10.5 28/02/2018 549.5 05/06/2015 763 

5 29/05/2017 605.5 03/08/2018 311.5 09/11/2015 427 

6 06/03/2020 2792 06/03/2020 584.5 07/08/2017 1750 

7 12/11/2020 392 03/08/2020 280 31/10/2018 1228.5 

8     09/08/2019 780.5 

9     06/03/2020 560 

10     29/07/2020 255.5 

11     07/01/2022 1456 

 

The shape and scale parameter will be extracted in order to characterize the failure rate 

behavior. The cumulative density function (CDF) is formulated using Weibull distribution in the 

following form: 

F(t) = 1 − exp (−
t

η
)

β

                                                                   (16) 

In order to extract the weibull parameters (β and ɳ), we use the linearization of the cumulative 

density function given in equation (16) as follow: 

 F(t) − 1 = −exp (−
t

η
)

β

                                                                (17) 

ln(1 − F(t)) = − (
t

η
)

β

                                                                  (18) 

ln(− ln(1 − F(t))) = ln (
t

η
)

β

                                                           (19) 

ln (ln (
1

1−F(t)
) = β ln(t) − βln (η)                                                         (20) 

The CFD equation can be written in the following linear form with a slop of β and an intercept 

of  βln (η) : 

y = βx − βln (η)                                                                      (21) 

Where  y =  ln (ln (
1

1−F(t)
)  and  x = ln(t) 

Failure times of Hemodialysis Machine were collected and arranged in ascending order to 
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calculate the cumulative density function (CFD), denoted by F(ti), by using the Bernard’s formula 

to assign median ranks to each failure given as:   

F(ti) =
i−0.3

n+0.4
                                                                        (22) 

Where i is the order of failure and n is the total number of data  

The necessary calculation steps performed to determine the Weibull parameters (β, ƞ) are 

summarized in table 2.  

The linear form of the cumulative density function given in equation (21) is presented in 

figure 2 for the 3 hemodialysis machines. The shape and scale parameters can be calculated from 

the linear equation offerred in figure 2. Table 3 shows the Weibull parameters β and ƞ for the 3 

studied devices (M1, M2 and M3). 

 

Table 2: The necessary calculation steps 

 

Failure 

number 

M1 M2 M3 

TBFi F(ti) TBFi F(ti) TBFi F(ti) 
1 10.5 0,09459459 192,5 0,09459459 101,5 0,061403 

2 392 0,22972973 280 0,22972973 255,5 0,149122 

3 605.5 0,36486486 311,5 0,36486486 413 0,236842 

4 609 0,5 549,5 0,5 427 0,324561 

5 1085 0,63513514 584,5 0,63513514 560 0,412280 

6 1904 0,77027027 2040,5 0,77027027 763 0,5 

7 2792 0,90540541 2450 0,90540541 780,5 0,587719 

8     1130,5 0,675438 

9     1228,5 0,763157 

10     1456 0,850877 

11     1750 0,938596 

 

 

 

 

Figure 2: Weibull probability plot of hemodialysis machines 

 

Table 3: The shape and scale parameters of hemodialysis machines 

 

Machine  β ɳ 

M1 0,543 1294 

M2 1.012 986 

M3 1,323 928 

 

The uncertainties in the determination of the Weibull parameters lead to introduce a 

perturbation in the shape and scale parameters. In this part, the effect of this perturbation on the 

behavior of the failure rate will be studied. The mean and the standard deviation of the failure rate 

will be presented in many configurations. The shape and scale parameters, according to the 

equations (2) and (3), follow a Gaussian distribution as β̃ = β + σβε and ɳ̃ = ɳ + σɳε .  
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The simulations are performed for the 3 hemodialysis machines. Figure 3 presents the mean of 

the failure rate λ(t) expressed using the Weibull distribution by the equation (14). According to this 

study, the failure rate λ(t) of M3 increases significantly with time. M3 is in the aging life (β>1) and 

must be supervised continuously. The failure rate of M2 is constant during the time, the machine is 

in the useful life (β=1). The machine M1, which is in the early-life (β<1), have a decreasing failure 

rate.  

Figure 4 presents the standard deviation of the failure rate for the 3 hemodialysis machines. 

The simulations were done, according to the equation (15), with a standard deviation introduced 

in the shape and scale parameters equivalent to:  σβ = 10%β and σɳ = 10%ɳ . The curves 

presented in figure 4 illustrate the evolution of the uncertainties in the failure rate for the different 

phases of the lifetime of the hemodialysis machine. The standard deviation for aging life (M3) is 

more significant and increases during this mature phase.  

To highlight these interpretations, the correlation between the standard deviation and the 

mean of the failure rate for the 3 hemodialysis machines is studied. According to figure 5, the 

standard deviation evolves linearly according to the mean, which makes it possible to estimate the 

variation of the failure rate through the evaluation of the mean. In the aging phase, the effect of the 

perturbation introduced in the Weibull parameters is more serious and affect perilously the failure 

rate. 

The uncertainty, introduced in the shape parameter, is related to the influencing factors which 

are ambiguous and described by unfavorable characteristic values. Many case studies are 

presented in order to illustrate the behavior of the failure rate following different level of 

uncertainty introduced in the shape parameter. Figure 6 shows the influence of the standard 

deviation of the shape parameter on the failure rate in the case of the aging life. 

 

 

 

Figure 3: The mean of the failure rate for the hemodialysis machines 
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Figure 4: The standard deviation of the failure rate for the hemodialysis machines 

 

 

 

Figure 5: Correlation between the standard deviation and the mean 

 

 

 

Figure 6: Influence of the standard deviation of the shape parameter on the failure rate  
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In conclusion, the results provide evidence of the propagation of errors that can affect a 

system and their significant influences on the failure rate. The presence of influencing factors can 

affect the determination of Weibull parameters and then the failure rate will be significantly 

affected, in particular, at aging phase. To avoid the inconvenient impact of the uncertainties in the 

failures on the dialysis system, it is recommended to upgrade the operation management. 

Moreover, the maintenance strategy must initially focus on the M3 and then at M2, which are on 

aging phase. 

 

3.2. Validation of the results 
 

The objective of this part is the validation of the results obtained by our proposed method in which 

the statistics of the failure rate were estimated using the Weibull distribution with uncertain 

parameters that follow a Gaussian distribution because of various external factors. 

Validation will be ensured by comparing the obtained results with Monte Carlo simulations. 

The Monte Carlo (MC) method can be used as a reference for statistical methods. It consists of 

producing a Gaussian distribution of time and simulating several draws of the failure rate using 

the Weibull distribution and deducing the mean by: 

λ(t) =
1

N
∑ λi(t)N

i=1                                                                    (23) 

Where λi(t) is the failure rate for the ith draw at time (t) and N is the total number of draws. 

The standard deviation of the failure rate is given by:  

σλ(t) = √∑ (λi(t)−λ(t))2N
i=1

N
                                                               (24) 

During the MC simulations, we performed N=10000 draws to ensure the convergence of the 

results.  

Figure 7 and Figure 8 illustrate the validation of the mean and standard deviation of the 

failure rate by MC simulations. The simulations were prepared in the case of aging life which 

presents the most critical case. 

To further our research, the probability function of the failure rate was estimated following a 

Gaussian perturbation introduced into the Weibull parameters. This study is accomplished for the 

aging life (M3) and at a time corresponding to 1500 hours. According to figure 9, the probability 

function of the failure rate follows a Gaussian distribution. This numerical result confirms the 

analytical formulations proposed in this work. The MC simulations show the validity of the 

results. 

 

 
 

Figure 7: Validation of the mean of the failure rate for the hemodialysis machine 
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Figure 8: Validation of the standard deviation of the failure rate for the hemodialysis machine 

 

 
 

Figure 9: Probability function of the failure rate 
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The methodology adopted consists in introducing a perturbation on the Weibull parameters 
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Gaussian distribution. The formulation of the failure rate in a stochastic environment is detailed 

using Weibull distribution. The simulations presented show the statistics of the failure rate for 

several configurations of the Weibull distribution. A case study is offered to illustrate the proposed 

approach and validate the results. The validation of the results was accomplished through Monte 

Carlo simulations.  

This work can be extended along several lines of research such as the study of the reliability of 

a system in a stochastic environment taking into account external factors, as well as the study of 

availability in the presence of uncertain external influencing factors. The development of the 
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failure rate following a second-order perturbation introduced in the Weibull parameters can be the 

subject of an in-depth and precise study. 
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