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Abstract

A single server retrial queueing model with non-preemptive priority was examined in this research. The
arrival of priority consumers follow a marked Markovian arrival pattern, and both high priority and
low priority service times are according to phase type distribution. Matrix analytic method are used to
examine the steady state analysis of this model. Various system performance measures, cost analysis and
busy period analysis also examined in this model. In additionally, by using some system performance
measures we provide the numerical illustration with numerically and graphically.
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1. Introduction

Retrial queues in queueing theory have gained attention recently as a significant topic of study
as a result of its numerous applications. System manufacturing, designing of local area com-
munication networks and data communication networks are the most common examples. The
customers are bound to be impatient in general. From the real-life experience, we can observe
that the customers who require service must form a queue. However, some customers decide
not to wait in queue due to time restrictions, and some customers who do wait in queue get
impatient and leave the queue before receiving service.

The Markovian Arrival Process (MAP) is considered to be the most significant process tool in
this theory. Neuts [26] pioneered the Versatile Markovian Point Process (VMPP). He has used the
concept of point process which is Markovian arrival process. Chakravarthy [10] have analysed the
MAP which is represented by n-dimensional parameter matrices (D0, D1) where D0 governing
the transition for no arrival and D1 governing arrivals.

There are two types of priority services such as preemptive and non-preemptive. The arrival
of priority customers have to wait until the regular customers service completed such as non-
preemptive priority. The low priority consumers should be interrupted by the preemptive priority,
also known as the high priority customers. Isotupa and Stanford [17] looked into a single server
queue that takes connections that arrive from N classes of clients in a non-preemptive priority
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manner. They found R matrix and waiting time distribution. Numerical results also provided in
their model. Baek et al. [9] investigated a single server priority queueing system with two types of
customers and consumable additional items. Additionally, they looked at buffer systems with zero
buffers for type 1 customers, infinite buffers for type 2 customers, and buffers with K capacities
for additional items. Krishnamoorthy and Divya [19] examined a single server queueing model
with working vacation, non-preemptive priority, and two distinct N-policies. Their concept states
that when the server is on vacation, responses to high priority (type I) clients continue, while
responses to low priority (type II) clients must wait until the server resumes normal operations.
Also they found busy period analysis, waiting time distribution and numerical illustrations.

A queueing model with two different kinds of clients in which arrival follows Markovian
arrival process which was investigated by Chakravarthy and Dudin [13]. The steady state
probability vector, waiting time distribution and several numerical illustrations are also found in
their model. Sleptchenko et al. [28] has developed a single server queueing model along with
arbitrary N client classes, class-dependent service rates, and priority classes. Krishnamoorthy
et al. [20] looked into a multi-server queue with self-generated priorities and non-preemptive
priority services. The arriving customer to a C-server counter follows MAP and service time
follows PH for both priority customers. They found cost analysis and performance measures in
their model. Nair et al. [24] analysed a M/M/1 queue with priority loss through feedback. They
took into consideration the arrival of consumers with different priorities P1 and P2 in accordance
with a marked Markovian arrival process and phase type distribution is used for service time.
They discussed two types of model such as model 1 and 2. In model 1 was considered as
non-preemptive service for P2 customers and in model 2 was considered as preemptive policy of
P2 customers. Also they find waiting time analysis and system performance measures.

In real life situations, every working place and offices vacations are essential. Here we
considered single and emergency vacation. The server can take the vacation after completion of
service and also during the service time, the server can take emergency vacation. In many working
places, the servers may take the vacation during the busy time and continue the remaining service
of that customers. A queueing model with priority services was investigated by Ayyappan and
Udayageetha [7]. They considered two types of vacation such as modified Bernoulli vacation
and emergency vacation. After completing the requested service, the server goes on Bernoulli
vacation if there are no high priority clients in the system; otherwise, the server is idle. During
the service time of high priority customers, the server take emergency vacation. They presents
some numerical examples and performance measures.

The arrival of negative consumers should detract the positive customers who gets the services
from the server and they exit the system without the service being completed which is called as
negative arrival. M/M/1 retrial queue with preemptive priority and a maximum of J vacations
has been studied by Yuvarani and Saravanarajan [31]. They considered negative arrival of
customer occurs in the busy period of positive customer. Due to the negative arrival, the positive
customer spoiled their service and leave the system. Some performance measures and numerical
illustrations are also given. A multi server queueing model with negative customer and partial
protection of service has been done by Klimenok and Dudin [18]. A non-preemptive priority
queue with server’s walking process was done by Fukagawa et al. [15]. The stationary probability
vector, queue waiting time and evaluation measures of the queue also done by them. A Single-
server Discrete-time Retrial G-queue with server Breakdowns and Repairs was done by Wang
and Zhang [30].

Ayyappan and Thilagavathy [6] accomplishes a single-server priority retrial queue with stand
by server, breakdown, repair, vacation, negative arrival, balking and reneging. They used the
concept of negative arrival while the main server is in busy. The negative arrival are affected to
the positive customer those who gets the service to be removed completely from the system and
server moved into repair process. Busy period analysis, cost analysis and graphical illustrations
are all given. Retrial queueing model MMAP/M2/1 with two orbits have been studied by
Avrachenkov et al. [8]. They considered two orbits, one is an infinite capacity and another
one is finite capacity. Some of the performance measures and numerical illustrations are also
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provided. A multichannel queueing model with quasi-random input retrial times and phase type
services has investigated by Artalejo and Corral [2]. By solving Quasi birth and death process, the
stationary probability vector has been evaluated and some performance measures also evaluated.

The concept of optional secondary service is that after completion of primary customer service,
the customer may need a secondary service with probability p or the customer leaves the system
completely with probability q. A queue with single server subject to second optional service has
been done by Madan [22]. They considered two types of service such as essential and optional
service. The essential service are given to all the customers in the system while second optional
service are provided only for some customers those who need the service once again. Waiting
time distribution and particular cased are also derived.

Chakravarthy [11] looked into a MAP/PH(1), PH(2)/1 queueing structure whereby services
were given on a first come, first served basis subject to vacations and optional secondary services.
A single server queueing model with N-policy and second optional services have been evaluated
by Das et al. [14]. They presented the cost analysis and various performance measures of
their model. A single server queue with setup, closedown, multiple vacation, standby server,
breakdown, repair and reneging was studied by Ayyappan and Thilagavathy [5]. Chakravarthy
and Agarwal [12] explored a machine repair problem with Unreliable server. In their model, they
considered phase type distribution for the service and repair time of server. They also determine
the performance measures and some numerical illustrations. A single server retrial queueing
model with Bernoulli vacation, feedback, breakdown and repair was analysed by Ayyappan and
Gowthami [3]. Also they found the cost analysis, some performance measures and by using the
performance measures they evaluate the numerical results.

There are two types of breakdown such as active and passive breakdown. The active break-
down occurs while the busy period of server and the passive breakdown occurs during the server
idle period. Gao et al. [16] examined two kinds of breakdown and delayed repairs in an unreliable
retry queue. They employed passive and active breakdowns in the periods of idle and busy,
respectively. When a passive breakdown happens, the server cannot be repaired immediately
and must wait for consumers to arrive from the outside or from orbit because the server lacks a
monitoring system during idle times. They provided a few performance measures based on the
likelihood that a server would be busy, idle, or undergoing maintenance, among other factors.
By using performance measures they find the numerical values. A queueing model with single
server subject to working vacation and two type of server breakdown have been analysed by
Agarwal et al. [1]. They considered the server breakdown while server is in working vacation or
normal busy period. Numerical illustrations are also examined by them.

Niu et al. [27] investigated a vacation queue with Setup and Closedown periods, as well
as batch Markovian Arrival Processes. In their model after completion of service, the server
closedown the system and setup the system when the server return from vacation. The arrival
process follows Markovian arrival process and service time follows phase type distribution
with the random variables Bernoulli vacation, setup, Bernoulli feedback, breakdown, repair and
impatient customers was investigated by Ayyappan and Gowthami [4]. Now-a-days, in many
places, most of the peoples does not prefer to wait a line at long time. Here we consider balking
such as the customer does not enter into the system due to impatient. Swathi et al. [29] examined
a queueing system with balking and reneging. In their model, they included the concept of
customer balking and reneging as a result of the server’s unavailability during vacation and
breakdown times. The steady state analysis of the system and several performance measures
were also derived by them.

The remainder of the article is organised as follows: The narration for our model is located in
section 2. Section 3 discusses the matrix generating procedure and some notations. The system
stableness, the invariant probability vector, and R matrix are all obtained in section 4. The busy
period analysis is presented in section 5. Section 6 contains performance measures. Section 7
presents the cost analysis. Section 8 contains some numerical and graphical outcomes. Section 9
contains the conclusion part.
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2. Narration of the Model

• In this article, we analyse a single server classical retrial policy with preemptive priority
queue, differentiate breakdown, second optional service, phase type repair, two types of
vacation, closedown, setup and balking.

• Arrival of both high priority and low priority (HP and LP) clients in accordance with
MMAP, which is a generic version of MAP with parameter matrices of order (D0, D1, D2)
of order m2. The D0 matrix denotes the absence of positive customer arrivals, while the D1
and D2 matrix denotes customer arrivals.

• While low priority customers only have a "L" size finite buffer, high priority customers
have an infinite capacity. The negative arrival of customers are also follows MAP with
representation (C0, C1) of order m1, where C0 represents to no arrival and C1 represents to
arrival of customers.

• The service offered to the customers in the basis of first come first service. The customers
receive the service immediately if server becomes idle. In idle time, the server may struck
due to breakdown to starts the service and then moves to repair process.

• During the service period, the server experiences a breakdown owing to a negative arrival
and immediately enters the repair process. At the same time, positive customer who receive
service from the server will abandon the system totally.

• When a low priority client attempts to join an orbit that is already full, the action is deemed
unsuccessful. If any low priority customers retrial from the orbit while the server is idle,
the low priority customers will receive service from the server successfully.

• The duration of service time of both (HP/LP) customers which follows PH type distribution
with the notations (α, T) of order n1 where T0 + Te = 0 such that T0 = −Te and the optional
service of HP customers also follows PH type distribution with notation (α1, T1) of order n2
where T0

1 + T1e = 0 such that T0
1 = −T1e.

• The server repair time follows a PH type distribution with representation (β, S) of order s
where S0 + Se = 0 and S0 = −Se.

• During the service time of LP customers, the server takes emergency vacation and the
customers those who are receives the service have to join the orbit and will get the service
after the vacation completion by server. When the service is finished, the server shuts down
the system and goes on vacation.

• The server will startup the system after completion of vacation. When on vacation, the
customer may join the system with probability (1 − b) or balk the system because of
impatience with probability b.

• Inter-retrial times, emergency vacation, single vacation, breakdown times, closedown and
setup times are all based on exponential distribution and its parameters as δ, η1, η2, τ, ϕ
and ψ respectively. (see Figure 1).

3. The QBD process infinitesimal generation matrix

Let us narrate the few notation of this model which followed by generator matrix of the QBD
process as follows:
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Figure 1: Representations of our model in schematic form

Notations:

• ⊗ - Two matrices with varying orders are combined in a Kronecker product.

• ⊕ - Two matrices with different orders are combined in a Kronecker sum.

• Im - Represents the identity matrix of order m × m.

• e - Each entry in a column vector has the required dimension, which is 1.

• 0 - It denotes an appropriate order of zero matrices.

• The fundamental arrival rate λi, where i=1,2 which is specified as λi = πDiem2 , π represents
the stationary probability vector of the generator matrix D0 + D1 + D2 which determines
MMAP transitions.

• The negative arrival rate be λ3 which is specified as λ3 = π1C1em1 , where π1 is the steady
state probability vector of generator matrix C = C0 + C1.

• The rate of normal service of server is indicated as µ = [α(−T−1)en1 ]
−1.

• The rate of optional service of server is indicated as µ1 = [α1(−T−1
1 )en2 ]

−1.

• The repair rate for normal/optional service of server as represented by σ = [β(−S−1)es]−1.

• N1(t) indicates the total number of customers with high priority in the system at time t.

• N2(t) indicates the total number of customers with low priority in the orbit.

• C(t) stands for the server status at time t.
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C(t) =



0, server is in idle.
1, server is busy in HP normal Serivce.
2, server is busy in HP optional service.
3, server is busy for LP normal service.
4, server is in repair process.
5, sever is in emergency vacation.
6, server is in closedown.
7, server is in vacation
8, server is in setup.

• S(t) represents the service phase of server.

• K(t) represents the repair phase of server.

• Ai(t) stands for the arrival phase of negative and positive customers, where i=1,2.

Let
{

N1(t), N2(t), C(t), S(t), K(t), A1(t), A2(t), t ≥ 0
}

is the CTMC with the state space as
follows,

Ω = l(0)
∞⋃

i=1

l(i),

where
l(0)={(0, i2, 0, a2) : 0 ≤ i2 ≤ L, 1 ≤ a2 ≤ m2}

∪{(0, i2, 3, k1, a1, a2) : 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(0, i2, 4, b, a2) : 0 ≤ i2 ≤ L, 1 ≤ b ≤ s, 1 ≤ a2 ≤ m2}
∪{(0, i2, j, a2) : 0 ≤ i2 ≤ L, j = 5, 6, 7, 8, 1 ≤ a2 ≤ m2},

and for i ≥ 1,

l(i)={(i1, i2, 1, k1, a1, a2) : i1ϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 2, k2, a1, a2) : i1ϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k2 ≤ n2, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 3, k1, a1, a2) : iϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 4, b, a2) : iϵZ+, 0 ≤ i2 ≤ L, 1 ≤ b ≤ s, 1 ≤ a2 ≤ m2}
∪{(i1, i2, j, a2) : iϵZ+, j = 5, 6, 7, 8, 0 ≤ i2 ≤ L, 1 ≤ a2 ≤ m2}.

3.1. The Infinitesimal Matrix Generation

The quasi birth and death process has the generating matrix Q, is as follows:

Q =



B00 B01 0 0 0 0 0 0 . . .
B10 A1 A0 0 0 0 0 0 . . .
0 A2 A1 A0 0 0 0 0 . . .
0 0 A2 A1 A0 0 0 0 . . .
0 0 0 A2 A1 A0 0 0 . . .
...

...
...

. . . . . . . . . . . . . . . . . .


,

where
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B00 =



B1
00 B2

00 B3
00 0 0 0 0

B4
00 B5

00 B6
00 B7

00 B8
00 0 0

B9
00 0 B10

00 0 0 0 0
0 B11

00 0 B12
00 0 0 0

0 0 0 0 B13
00 B14

00 0
0 0 0 0 0 B15

00 B16
00

B17
00 0 0 0 0 0 B18

00


,

where B1
00 = diag(D0 − τ Im2 , D0 − (τ + δ)Im2 , ..., D0 − (τ + kδ)Im2)

B2
00 =


e′ ⊗ α ⊗ D2 0 0 . . . 0

e′ ⊗ δα ⊗ Im1 e′ ⊗ α ⊗ D2 0 . . . 0
. . . . . . . . .

...
0 e′ ⊗ Lδα ⊗ Im1 e′ ⊗ α ⊗ D2 . . . 0

 ,

B3
00 = I(L+1) ⊗ e′ ⊗ τ Im2 , B4

00 =


0 0 0 . . . 0
0 em1 ⊗ T0 ⊗ Im2 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . em1 ⊗ T0 ⊗ Im2

 ,

B5
00 =


f1 f2 0 . . . 0
0 f1 f2 . . . 0

. . . . . .
0 0 0 . . . f1 + f2

 , where f1 = T ⊕ D0 ⊕ C0 − η1 Inm1m2 , f2 = In ⊗ Im ⊗ D2,

B6
00 = I(L+1) ⊗ In1 ⊗ C1 ⊗ em2 , B7

00 = I(L+1) ⊗ enm1 ⊗ η1 ⊗ Im2 ,

B8
00 =


en ⊗ T0 ⊗ Im2 0 0 . . . 0

0 0 0 . . . 0
. . . . . .

0 0 0 . . . 0

 , B9
00 = I(L+1) ⊗ R0 ⊗ Im2 ,

B10
00 =


f3 f4 0 . . . 0
0 f3 f4 . . . 0

. . . . . .
0 0 0 . . . f3 + f4

 , where f3 = D0 ⊕ R, f4 = Is ⊗ D2,

B11
00 = I(L+1)⊗ e′ ⊗ α1η1 Im2 ,

B12
00 =


f5 f6 0 . . . 0
0 f5 f6 . . . 0

. . . . . .
0 0 0 . . . f5 + f6

 , where f5 = (D0 + b(D1 + D2))− η1 Im2 , f6 = D2(1 − b)

B13
00 =


f7 f8 0 . . . 0
0 f7 f8 . . . 0

. . . . . .
0 0 0 . . . f7 + f8

 , where f7 = (D0 + b(D1 + D2))− ϕ1 Im2 , f6 = f8,

B15
00 =


f9 f10 0 . . . 0
0 f9 f10 . . . 0

. . . . . .
0 0 0 . . . f9 + f10

 , where f9 = (D0 + b(D1 + D2))− η2 Im2 , f10 = f6,

B14
00 = I(L+1) ⊗ ϕIm2 , B16

00 = I(L+1) ⊗ η2 Im2 , B17
00 = I(L+1) ⊗ ψIm2 ,
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B18
00 =


f11 f12 0 . . . 0
0 f11 f12 . . . 0

. . . . . .
0 0 0 . . . f11 + f12

 , where f11 = D0 − ψIm2 , f12 = D2,

B01 =



B1
01 0 0 0 0 0 0 0
0 0 B2

01 0 0 0 0 0
0 0 0 B3

01 0 0 0 0
0 0 0 0 B4

01 0 0 0
0 0 0 0 0 B5

01 0 0
0 0 0 0 0 0 B6

01 0
0 0 0 0 0 0 0 B7

01


, where B1

01 = I(L+1) ⊗ e′ ⊗ α ⊗ D1,

B2
01 = I(L+1) ⊗ In1 ⊗ D1 ⊗ Im1 , B3

01 = I(L+1) ⊗ Is ⊗ D1, B4
01 = B5

01 = B6
01 = I(L+1) ⊗ D1(1 − b),

B7
01 = I(L+1) ⊗ D1,

B10 =



B1
10 0 B2

10 0 B3
10 0 0

B4
10 0 B5

10 0 B6
10 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, where B1

10 =


0 0 0 . . . 0
0 em1 ⊗ qT0 ⊗ Im2 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . em1 ⊗ qT0 ⊗ Im2

 ,

B2
10 = I(L+1) ⊗ es ⊗ Im2 ,

B3
10 =


em1 ⊗ qT0 ⊗ Im2 0 0 . . . 0

0 0 0 . . . 0
. . . . . . . . .

...
0 0 0 . . . 0

 , B4
10 =


0 0 0 . . . 0
0 em1 ⊗ T0

1 ⊗ Im2 0 . . . 0
. . . . . . . . .

...
0 0 0 . . . em1 ⊗ T0

1 ⊗ Im2

 ,

B5
10 = I(L+1) ⊗ es ⊗ C1 ⊗ Im2 , B6

10 =


em1 ⊗ T0

1 ⊗ Im2 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . 0

 ,

A0 =



A1
0 0 0 0 0 0 0 0

0 A2
0 0 0 0 0 0 0

0 0 A3
0 0 0 0 0 0

0 0 0 A4
0 0 0 0 0

0 0 0 0 A5
0 0 0 0

0 0 0 0 0 A6
0 0 0

0 0 0 0 0 0 A7
0 0

0 0 0 0 0 0 0 A8
0


where A1

0 = I(L+1) ⊗ In1 ⊗ Im1 ⊗ D1,

A2
0 = I(L+1) ⊗ In2 ⊗ Im1 ⊗ D1, A3

0 = I(L+1) ⊗ In1 ⊗ Im1 ⊗ D1, A4
0 = I(L+1) ⊗ Is ⊗ D1,

A5
0 = I(L+1) ⊗ D1(1 − b), A6

0 = A7
0 = A5

0, A8
0 = I(L+1) ⊗ D1,
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A1 =



A1
1 A2

1 0 0 0 0 0 0
0 A3

1 0 0 0 0 0 0
A4

1 0 A5
1 A6

1 A7
1 0 0 0

A8
1 0 0 A9

1 0 0 0 0
0 0 A10

1 0 A11
1 0 0 0

0 0 0 0 0 A12
1 A13

1 0
0 0 0 0 0 0 A14

1 A15
1

A16
1 0 0 0 0 0 0 A17

1


, where A1

1 =


f13 f14 0 . . . 0
0 f13 f14 . . . 0

. . . . . . . . .
...

0 0 0 . . . f13 + f14

 ,

where f13 = (T ⊕ D0)⊕ C0, f14 = D2 ⊗ Im1n1 .

A3
1 =


f15 f16 0 . . . 0
0 f15 f16 . . . 0

. . . . . . . . .
...

0 0 0 . . . f15 + f16

 , where A2
1 = I(L+1) ⊗ α1 ⊗ pT0 ⊗ Im1m2 ,

f15 = (T1 ⊕ D0)⊕ C0, f16 = D2 ⊗ Im1n2 , A4
1 = I(L+1) ⊗ α ⊗ T0 ⊗ Im1m2 ,

A5
1 =


f17 f18 0 . . . 0
0 f17 f18 . . . 0

. . . . . . . . .
...

0 0 0 . . . f17 + f18

 where f17 = ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ,

f18 = D2 ⊗ Im1n1 ,

A6
1 = I(L+1) ⊗ en1 ⊗ C1 ⊗ Im2 , A7

1 = I(L+1) ⊗ en1 ⊗ em1 ⊗ η1 Im2 , A8
1 = I(L+1) ⊗ e

′
m1

⊗ S0α ⊗ Im2 ,

A9
1 =


f19 f20 0 . . . 0
0 f19 f20 . . . 0

. . . . . . . . .
...

0 0 0 . . . f19 + f20

 where f19 = S ⊕ D0, f20 = Is ⊗ D2,

A10
1 = I(L+1) ⊗ e

′
n1
⊗ e

′
m1

⊗ η1 Im2 , A11
1 =


f21 f22 0 . . . 0
0 f21 f22 . . . 0

. . . . . . . . .
...

0 0 0 . . . f21 + f22

 ,

where f21 = (D0 + b(D1 + D2))− η1 Im2 , f22 = D2(1− b), A12
1 =


f23 f24 0 . . . 0
0 f23 f24 . . . 0

. . . . . . . . .
...

0 0 0 . . . f23 + f24

 ,

where f23 = (D0 + b(D1 + D2))− φIm2 , f24 = D2(1 − b), A13
1 = I(L+1) ⊗ φIm2 ,

A14
1 =


f25 f26 0 . . . 0
0 f25 f26 . . . 0

. . . . . . . . .
...

0 0 0 . . . f25 + f26

 , where f25 = (D0 + b(D1 +D2))− η2 Im2 , f26 = D2(1− b),

A15
1 = I(L+1) ⊗ η2 Im2 , A16

1 = I(L+1) ⊗ e
′ ⊗ α ⊗ ψIm2 ,

A17
1 =


f27 f28 0 . . . 0
0 f27 f28 . . . 0

. . . . . . . . .
...

0 0 0 . . . f27 + f28

 , where f27 = D0 − ψIm2 , f28 = D2,
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A2 =



A1
2 0 0 A2

2 0 0 0 0
A3

2 0 0 A4
2 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, where A1

2=I(L+1) ⊗ α ⊗ qT0 ⊗ Im1m2 ,

A2
2=I(L+1) ⊗ es ⊗ C1 ⊗ Im2 , A3

2=I(L+1) ⊗ α ⊗ T0
1 ⊗ Im1m2 , A4

2=I(L+1) ⊗ es ⊗ C1 ⊗ Im2 .

4. System Analysis

We evaluate this model, beneath of the certain conditions to ensure that the system to be stable.

4.1. Stability condition for the system

Let A be the matrix , where A = A0 + A1 + A2. The invariant probability vector ς, which is
referred to as a generator matrix and its satisfying

ςA = 0, ςe = 1.

The vector ς represents the states which is partitioned by
ς=(ς0, ς1, ς2, ς3, ς4, ς5, ς6, ς7) and it is subdivided by (ς00, ς01, ..., ς0K, ς10, ς11, ..., ς1K, ς20, ς21, ..., ς2K,
ς30, ς31, ..., ς3K, ς40, ς41, ..., ς4K, ς50, ς51, ..., ς5K, ς60, ς61, ..., ς6K, ς70, ς71, ..., ς7K) which is evaluated by
the aid of subsequent equation:

ς00[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2)] + ς10[α ⊗ T0
1 ⊗ Im1m2 ]

+ ς20[α ⊗ T0 ⊗ Im1m2 ] + ς30[e′m1
⊗ S0α ⊗ Im2 ] + ς70[e′ ⊗ α ⊗ ψIm2 ] = 0,

ς0(i−1)[D2 ⊗ Im1n1 ] + ς0i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2 ]

+ ς1i[α ⊗ T0
1 ⊗ Im1m2 ] + ς2i[α ⊗ T0 ⊗ Im1m2 ] + ς3i[e′m1

⊗ S0α ⊗ Im2 ]

+ ς7i[e′ ⊗ α ⊗ ψIm2 ] = 0, 1 ≤ i ≤ K.

ς0K[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2) + D2 ⊗ Im1n1 ] + ς1K[α ⊗ T0
1 ⊗ Im1m2 ]

+ ς2K[α ⊗ T0 ⊗ Im1m2 ] + ς3K[e′m1
⊗ S0α ⊗ Im2 ] + ς7K[e′ ⊗ α ⊗ ψIm2 ] = 0,

ς00[α1 ⊗ pT0 ⊗ Im1m2 ] + ς10[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0)] = 0,

ς0i[α1 ⊗ pT0 ⊗ Im1m2 ] + ς1(i−1)[D2 ⊗ Im1n2 ] + ς1i[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0)] = 0, 1 ≤ i ≤ K − 1.

ς0K[α1 ⊗ pT0 ⊗ Im1m2 ] + ς1K[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0) + (D2 ⊗ Im1m2)] = 0,

ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.

ς2K[(In1 ⊗ Im1 ⊗ D1) + (((T ⊕ D0)⊕ C0)− η1 In1m1n2) + D2 ⊗ Im1n1 ] + ς4K[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.
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ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.

ς2K[(In1 ⊗ Im1 ⊗ D1) + (((T ⊕ D0)⊕ C0)− η1 In1m1n2) + D2 ⊗ Im1n1 ] + ς4K[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς00[es ⊗ C1 ⊗ Im2 ] + ς10[es ⊗ C1 ⊗ Im2 ] + ς20[en1 ⊗ C1 ⊗ Im2 ] + ς30[(Is ⊗ D1) + (S ⊕ D0)] = 0,

ς0i[es ⊗ C1 ⊗ Im2 ] + ς1i[es ⊗ C1 ⊗ Im2 ] + ς2i[en ⊗ C1 ⊗ Im2 ]

+ ς3(i−1)[Is ⊗ D2] + ς3i[(Is ⊗ D1) + (S ⊕ D0)] = 0, 1 ≤ i ≤ K − 1.

ς0K[es ⊗ C1 ⊗ Im2 ] + ς1K[es ⊗ C1 ⊗ Im2 ] + ς2K[en ⊗ C1 ⊗ Im2 ]

+ ς3K[(Is ⊗ (D1 + D2)) + (S ⊕ D0)] = 0,

ς20[en1 ⊗ em1 ⊗ η Im2 ] + ς40[(D0 + D1) + bD2 − η1 Im2 ] = 0,

ς2i[en1 ⊗ em1 ⊗ η Im2 ] + ς4(i−1)[D2(1 − b)] + ς4i[(D0 + D1) + bD2 − η1 Im2 ] = 0, 1 ≤ i ≤ K − 1.

ς2K[en1 ⊗ em1 ⊗ η Im2 ] + ς4K[(D0 + D1 + D2)− η1 Im2 ] = 0,

ς50[(D0 + D1) + bD2 − π Im2 ] = 0,

ς5(i−1)[D2(1 − b)] + ς5i[(D0 + D1) + bD2 − πIm2 ] = 0, 1 ≤ i ≤ K − 1.

ς5K[(D0 + D1 + D2)− π Im2 ] = 0,

ς50[π Im2 ] + ς60[(D0 + D1) + bD2 − η2 Im2 ] = 0,

ς5i[π Im2 ] + ς6(i−1)[D2(1 − b)] + ς6i[(D0 + D1) + bD2 − η2 Im2 ] = 0, 1 ≤ i ≤ K − 1.

ς5K[π Im2 ] + ς6K[(D0 + D1 + D2)− η2 Im2 ] = 0,

ς60[η2 Im2 ] + ς70[(D0 + D1)ψIm2 ] = 0,

ς6i[η2 Im2 ] + ς7(i−1)[D2] + ς7i[(D0 + D1)− ψIm2 ] = 0,

ς6K[η2 Im2 ] + ς7K[(D0 + D1 + D2)− ψIm2 ] = 0,

subject to

[
K

∑
i=0

ς0i +
K

∑
i=0

ς2i]en2m1m2 + [
K

∑
i=0

ς1i]en2m1m2 + [
K

∑
i=0

ς3i]esm2 + [
7

∑
r=4

K

∑
i=0

ςri]em2 = 1.

The necessary and sufficient condition of a QBD process which satisfy the condition ςA0e <
ςA2e that system to be stay in stable.
Therefore,

ς00[en1 ⊗ em1 ⊗ D1em2 ] + ς01[en1 ⊗ em1 ⊗ D1em2 ] + ... + ς0K[en1 ⊗ em1 ⊗ D1em2 ]

+ ς10[en2 ⊗ em1 ⊗ D1em2 ] + ς11[en2 ⊗ em1 ⊗ D1em2 ] + ... + ς1K[en2 ⊗ em1 ⊗ D1em2 ]

+ ς20[en1 ⊗ em1 ⊗ D1em2 ] + ς21[en1 ⊗ em1 ⊗ D1em2 ] + ... + ς2K[en1 ⊗ em1 ⊗ D1em2

+ ς30[es ⊗ D1em2 ] + ς31[es ⊗ D1em2 ] + ... + ς3K[es ⊗ D1em2 ]

+ ς40[D1(1 − b)] + ς41[D1(1 − b)] + ... + ς4K[D1(1 − b)]

+ ς50[D1(1 − b)] + ς51[D1(1 − b)] + ... + ς5K[D1(1 − b)]

+ ς60[D1(1 − b)] + ς61[D1(1 − b)] + ... + ς6K[D1(1 − b)]

+ ς70[D1] + ς71[D1] + ... + ς7K[D1]< ς00[qT0 ⊗ em1 ⊗ em2 ] + ς10[T0
1 ⊗ em1 ⊗ em2 ]

+ς01[qT0 ⊗ em1 ⊗ em2 ] + ς11[T0
1 ⊗ em1 ⊗ em2 ] + ... + ς0K[qT0 ⊗ em1 ⊗ em2 ]

+ ς1K[T0
1 ⊗ em1 ⊗ em2 ] + ς00[es ⊗ C1em1 ⊗ em2 ]

+ ς10[es ⊗ C1em1 ⊗ em2 ] + ς01[es ⊗ C1em1 ⊗ em2 ]

+ ς11[es ⊗ C1em1 ⊗ em2 ] + ... + ς0K[es ⊗ C1em1 ⊗ em2 ] + ς1K[es ⊗ C1em1 ⊗ em2 ]
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4.2. The Invariant Probability Vector

Let X represents the infinitesimal generator matrix Q and which is split by X = (X0, X1, X2, ...).

For X0 is of dimension ((L + 1)m2 + (L + 1)n1m1m2 + (L + 1)sm2 + 4(L + 1)m2) and X′
i s are

of dimension (2(L + 1)n1m1m2 + (L + 1)n2m1m2 + (L + 1)sm2 + 4(L + 1)m2), i ≥ 1.
As X is a vector of Q satisfies the relation

XQ = 0, Xe = 1.

After satisfying the stability criterion, use the below equation to find the invariant probability
vector X,

Xi = X1Ri−1, i = 2, 3, ...

where R is the matrix created by solving the quadratic matrix equation, also known as the rate
matrix.

R2 A2 + RA1 + A0 = 0.

With the aid of succeeding equation we can find the vectors namely X0, X1 and X2,

X0B00 + X1B10 = 0,

X0B01 + X1[A1 + RA2] = 0,

subject to normalizing condition

X0e((L+1)m2+(L+1)n1m1m2+(L+1)sm2+4(L+1)m2)
+X1[I −R]−1e(2(L+1)n1m1m2+(L+1)n2m1m2+(L+1)sm2+4(L+1)m2)

= 1.

Therefore, the logarithmic reduction algorithm can be used to find the rate matrix R with the help
of Latouche and Ramaswami [21].

5. Busy Period Analysis

• Under the busy period of MMAP/PH/1 queuing model, we will understand the epoch of
the time interval starts from a new arrival which find the empty system and ends when the
system becomes empty again at the completion of service.

• A busy cycle which is defined by the initial passage time of the level between 1 and 0 and
the time return to level 0, requiring at least one visit to any other level.

• From level i to level i − 1, where i = 2, 3, 4, ... which is the initial passage time under the
consideration of the QBD process. In the boundary states namely, i = 0, 1 which deals
separately.

• For all the level i, where i = 1, 2, 3, ..., we seen that there are (2(L + 1)n1m1m2 + (L +
1)n2m1m2 + (L + 1)sm2 + 4(L + 1)m2) states.

Notations:

• Let Gj,j′(k, x) represent the conditional probability that the QBD process, starting at time
t = 0 in the state (i, j) t = 0 and ends up in the state (i, j′) by making meticulously k left
jumps and obtaining both stages at the same period.

• Let the joint transform matrix

G̃j,j′(z, s) =
∞

∑
k=1

zk
∫ ∞

0
e−sxdGj,j′(k, x); |z| ≤ 1, Re(s) ≥ 0

.
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• The matrix G̃(z, s) = G̃j,j′(z, s). [ Neuts [25]]

• Except for the boundary states, the matrix G = Gjj′ = G̃(1, 0) be concerns the initial passage
times.

• At time t = 0, when returning from stage 1 to stage 0, the conditional probability that
described in the first return time and it is denoted as G(1,0)

jj′ (k, x).

• At time t = 0, when returning to stage 0, the conditional probability that described and it is
denoted as G(0,0)

jj′ (k, x).

• At time t = 0, let S1j represent the process’s average initial passage time between stages i
and i − 1 and in the state (i, j).

• At time t = 0, in the initial passage procedure between levels i and i − 1, which starts in the
state (i, j), let S2j be the average number of consumers that received service.

• S̃1, S̃2 be the column vectors along with S1j and S2j as their entries respectively.

• The expected first return time between stage 1 and stage 0 is represented by S̃(1,0)
1 .

• In the first return period from stage 1 to stage 0, the expected number of services completed
and it is represented by S̃(1,0)

2 .

• The expected initial return time to stage 0 is represented by S̃(0,0)
1 .

• During the initial return time to stage 0, the expected number of services were rendered
and it is represented by S̃(0,0)

2 .

We evaluate G̃(z, s) matrix which satisfies the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s).

After found the rate matrix R, we can evaluate G matrix by using logarithmic reduction algorithm
method which is given by Latouche and Ramaswami [21]

G = −(A1 + RA2)
−1 A2.

In the boundary states namely 1 and 0 and the equations represented by G̃(1,0)(z, s) and G̃(0,0)(z, s).

G̃(1,0)(z, s) = z(sI − B11)
−1B10 + (sI − B11)

−1B12G̃(2,1)(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(1,0)(z, s).

The matrices G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are stochastic.

The instants can be calculated as obeys:

S̃1 = −∂G̃(z, s)
∂s

∣∣
s=0,z=1e = −[A0(G + I) + A1]

−1e,

S̃2 =
∂G̃(z, s)

∂z
∣∣
s=0,z=1e = −[A0(G + I) + A1]

−1]A2e,

S̃(1,0)
1 = −∂G̃(1,0)(z, s)

∂s
∣∣
s=0,z=1 = −[B11 + B12G̃(2,1)(1, 0)]−1[e + B12S̃(2,1)

1 ],

S̃(1,0)
2 =

∂G̃(1,0)(z, s)
∂z

∣∣
s=0,z=1e = −[B12G̃(2,1)(1, 0) + B11]

−1[B12S̃(2,1)
2 + B10e],

S̃(0,0)
1 = −∂G̃(0,0)(z, s)

∂s
∣∣
s=0,z=1e = −B−1

00 [B01S̃(1,0)
1 + e],

S̃(0,0)
2 =

∂G̃(0,0)(z, s)
∂z

∣∣
s=0,z=1e = −B−1

00 [B01S̃(1,0)
2 ].
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6. Performance Measure

• Probability of server being idle:

PSI =
L

∑
i2=0

m2

∑
a2=1

X0i21a2 .

• Probability of server to be busy with HP customers:

PBH =
∞

∑
i1=1

L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i21k1a1a2 .

• Probability of server to be busy with LP customers:

PBL =
L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

X0i23k1a1a2 +
∞

∑
i1=1

L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i23k1a1a2 .

• Probability of server to be busy with optional service of HP customers:

PBHOS =
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i22k2a1a2 .

• Probability of server being emergency vacation:

PEV =
L

∑
i2=0

m2

∑
a2=1

X0i25a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i25a2 .

• Probability of server being normal vacation:

PNV =
L

∑
i2=0

m2

∑
a2=1

X0i27a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i27a2 .

• Probability of server being closedown:

PCD =
L

∑
i2=0

m2

∑
a2=1

X0i26a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i26a2 .

• Probability of server being setup:

PSU =
L

∑
i2=0

m2

∑
a2=1

X0i28a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i28a2 .

• Expected number of HP customers in the system:

ESystem =
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

i1Xi1i21k1a1a2 +
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

i1Xi1i22k2a1a2

+
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

i1Xi1i23k2a1a2 +
∞

∑
i1=1

L

∑
i2=0

8

∑
j=4

m2

∑
a2=1

i2Xi1i2 ja2

= X1(I − R)−2e2(L+1)n1m1m2+(L+1)n2m1m2+(L+1)sm2+4(L+1)m2
.
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• Expected number of LP customers in the orbit:

EOrbit =
L

∑
i2=1

m2

∑
a2=1

i2X0i20a2 +
L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2X0i23k1a1a2 +
L

∑
i2=1

s

∑
b=1

m2

∑
a2=1

i2X0i24ba2

+
L

∑
i2=1

8

∑
j=5

m2

∑
a2=1

i2X0i2 ja2 +
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i21k1a1a2

+
∞

∑
i1=1

L

∑
i2=1

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i2k2a1a2 +
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i23k1a1a2

+
∞

∑
i1=1

L

∑
i2=1

s

∑
b=1

m2

∑
a2=1

i2Xi1i24ba2 +
∞

∑
i1=1

L

∑
i2=1

8

∑
j=5

m2

∑
a2=1

i2Xi1i2 ja2 .

7. Analysis of cost model

In this section, we introduce a cost function TC with the following assumption:

• TC - Total cost per unit time.

• CHh - Holding cost of each HP customer in the system at per unit time.

• CHl - Holding cost of each LP customer in the orbit at per unit time.

• CSI - Per unit time cost during the server is in idle period.

• CBH - Per unit time cost during the server is busy with HP customers.

• CBL - Per unit time cost during the server is busy with LP customers.

• CBHOS - Per unit time cost during the server is busy with optional service of HP customers.

• CR - Per unit time cost during the server is in under repair process.

• CEV - Per unit time cost during the server is in emergency vacation.

• CNV - Per unit time cost during the server is in normal vacation.

• CCD - Per unit time cost during the server is in closedown.

• CSU - Per unit time cost during the server is in setup.

• C1 - Cost obtained by the server in carrying out the normal service to HP/LP customers.

• C2 - Cost obtained by the server in carrying out the optional service to HP customers.

• C3 - Cost obtained by the server in carrying out the repair process.

• C4 - Cost obtained by the server in carrying out the breakdown.

• C5 - Cost obtained for the arrival of negative customers.

• C6 - Cost obtained by the server in carrying out the emergency vacation.

• C7 - Cost obtained by the server in carrying out the normal vacation.

• C8 - Cost obtained in carrying out the closedown process.

• C9 - Cost obtained by the server carrying out the setup process.

The total average cost per unit time is given by

TC = CHh ESystem + CHl EOrbit + CSI PSI + CBH PBH + CBLPBL + CBHOSPBHOS

+ CRPR + CEV PEV + CNV PNV + CCDPCD + CSU PSU + µC1 + µ1C2

+ σC3 + τC4 + λ3C5 + η1C6 + η2C7 + ϕC8 + ψC9.
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8. Numerical Results

From this part, we determine the results of our model by representing numerically and graphically.
The representations of MAP are distinct with the following variance and correlation structures,
each of which has a mean value of 1. The arrival process as ERL − A, EXP − A and HYP − A
correspond with renewal process, thus correlation is zero. This values are taken from Chakravarthy
[10].

Positive Arrival in Erlang of order 2 (ERL-A):

D0 =

[
−4 4
0 −4

]
, D1 =

[
0 0

2.8 0

]
, D2 =

[
0 0

1.2 0

]
Positive Arrival in Exponential (EXP-A):

D0 = [−1], D1 = [0.6], D2 = [0.4]

Positive Arrival in Hyper exponential (HYP-EXP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.026 0.114

0.1026 0.0114

]
, D2 =

[
0.684 0.076
0.0684 0.0076

]
Negative Arrival in Erlang of order 2 (ERL-A):

C0 =

[
−0.5 0.5

0 −0.5

]
, C1 =

[
0 0

0.5 0

]
Negative Arrival in Exponential (EXP-A):

C0 = [−0.1], C1 = [0.1]

Negative Arrival in Hyper exponential (HYP-EXP-A):

C0 =

[
−0.190 0

0 −0.019

]
, C1 =

[
0.1710 0.0190
0.0171 0.0019

]
Let us consider the service and repair process as PH-distributions and these values are in-

curred from Chakravarthy [10] which are as follows:

ERL-S (Normal Service in Erlang of order 2):

α = (1, 0), T =

[
−25 5

8 −25

]
ERL-S (Optional Service in Erlang of order 2):

α = (1, 0), T =

[
−2 2
0 −2

]
ERL-R (Repair in Erlang of order 2):

β = (1, 0), S =

[
−2 2
0 −2

]
EXP-S (Normal Service in Exponential):

α = (1), T = [−1]
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EXP-S (Optional Service in Exponential):

α1 = (1), T1 = [−1]

EXP-R (Repair in Exponential):

β = (1), S = [−1]

HYP-EXP-S (Normal Service in Hyper exponential):

α = (0.3, 0.7), T =

[
−9 7
8 −10

]
HYP-EXP-S (Optional Service in Hyper exponential):

α1 = (0.4, 0.6), T1 =

[
−12 6

5 −10

]
HYP-EXP-R (Repair in Hyper exponential):

β = (0.4, 0.6), S =

[
−6 4
3 −4

]

8.1. Illustration 1

In tables 1,2 and 3, we determine the outcome of the repair rate of server (σ) on the expected
system size (ES).
Fix λ1 = 0.8, λ2 = 0.2, λ3, µ = 45, µ1 = 40, η1 = 4, η2 = 3, φ = 12, ψ = 12, τ = 2, p = 0.5,
q = 0.5, b = 0.05, δ = 3, L = 3.

Table 1: Repair rate (σ) vs ES - EXP-S

σ EXP-A ERL-A HYP-A
10 0.351226 0.119414 0.000351

10.5 0.351418 0.119473 0.000358
11 0.351632 0.119539 0.000365

11.5 0.351862 0.119609 0.000371
12 0.352100 0.119681 0.000376

12.5 0.352343 0.119756 0.000381
13 0.352588 0.119831 0.000385

13.5 0.352832 0.119906 0.000389
14 0.353074 0.119980 0.000392

14.5 0.353312 0.120054 0.000396

Table 2: Repair rate (σ) vs ES - ERL-S

σ EXP-A ERL-A HYP-A
10 0.211804 0.350087 0.042376

10.5 0.211885 0.350782 0.042475
11 0.211978 0.351445 0.042566

11.5 0.212078 0.352002 0.042650
12 0.212182 0.352487 0.042728

12.5 0.212289 0.352955 0.042800
13 0.212397 0.353404 0.042867

13.5 0.212504 0.353836 0.042930
14 0.212612 0.354250 0.042989

14.5 0.212717 0.354647 0.043044
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Table 3: Repair rate (σ) vs ES - HYP-EXP-S

σ EXP-A ERL-A HYP-A
10 0.211852 0.112162 0.137225

10.5 0.211920 0.112284 0.137312
11 0.211995 0.112400 0.137393

11.5 0.212073 0.112509 0.137468
12 0.212154 0.112613 0.137538

12.5 0.212236 0.112712 0.137604
13 0.212319 0.112805 0.137666

13.5 0.212401 0.112893 0.137724
14 0.212481 0.112977 0.137779

14.5 0.212561 0.113057 0.137831

We observe that from the following tables 1,2, and 3.

• ES values rise for various combinations of arrival and service times as the server repair rate
(σ) increases.

• When comparing the values of various service times, it can be seen that the expected system
size increases more quickly for hyper exponential service times and slowly for Erlang
service times.

8.2. Illustration 2

Using the two-dimensional graphs 2 − 10, we investigate the impact of the normal service rate (µ)
on the possibility that the server will be busy with high-priority customers (PBH). Fix λ1 = 0.8,
λ2 = 0.2, λ3, µ1 = 40, σ = 10, η1 = 4, η2 = 3, τ = 2, φ = 12, ψ = 12, p = 0.5, q = 0.5, b = 0.05,
δ = 3, L = 3.

45 46 47 48 49 50 51 52 53 54
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P
B
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Figure 2: Normal service rate (µ) vs. PBH
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Figure 3: Normal service rate (µ) vs. PBH
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Figure 4: Normal service rate (µ) vs. PBH
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Figure 5: Normal service rate (µ) vs. PBH
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Figure 6: Normal service rate (µ) vs. PBH
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Figure 7: Normal service rate (µ) vs. PBH
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Figure 8: Normal service rate (µ) vs. PBH
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Figure 9: Normal service rate (µ) vs. PBH
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Figure 10: Normal service rate (µ) vs. PBH

According to Figures 2 − 10, as the normal service rate (µ) is raised, the probability that
the server is busy with service (PBH) increases for different arrival and service patterns. When
increasing normal service rate (µ) on PBH size increases much slower in Erlang arrival rather than
hyper-exponential arrival.

8.3. Illustration 3

We investigate the impact of the normal service rate (µ) and breakdown rate (τ) on the proba-
bility that the server is busy with the normal service of high priority clients (PBH) by using the
three-dimensional graphs 11 − 19. Fix λ1 = 0.8, λ2 = 0.2, λ3, µ1 = 40, σ = 10, η1 = 4, η2 = 3,
φ = 12, ψ = 12, p = 0.5, q = 0.5, b = 0.05, δ = 3, L = 3.
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Figure 11: (Service (normal) (µ) and Breakdown (τ)
rates) vs. PBH
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Figure 13: (Service (normal) (µ) and Breakdown (τ) rates) vs. PBH
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Figure 14: (Service (normal) (µ) and Breakdown (τ)
rates) vs. PBH
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rates) vs. PBH
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Figure 16: (Service (normal) (µ) and Breakdown (τ) rates) vs. PBH
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Figure 17: (Service (normal) (µ) and Breakdown (τ)
rates) vs. PBH
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rates) vs. PBH
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Figure 19: (Service (normal) (µ) and Breakdown (τ) rates) vs. PBH

The probability that the server is busy with the normal service (PBH) reduces for different
arrival and service patterns when both the normal service rate (µ) and the breakdown rate (τ) are
raised, as shown in Figures 11 − 19. Rather than increasing at a hyper-exponential arrival, the
Erlang arrival grows quickly. Similar to hyper-exponential services, the increment rate decreases
for Erlang services.

9. Conclusion

In this paper, we have developed the queueing model with non preemptive priority queue,
optional service, negative arrival, single vacation, emergency vacation, differentiate breakdown,
repair, closedown , setup and balking. A queue with two categories of consumers with positive
arrivals following MMAP, while negative arrival follows MAP and service times follows to be
phase type distribution. By using matrix analytic method, we found the stationary probabil-
ity since the queueing systems are Quasi Birth-Death process. The stability condition for the
MMAP/PH/1 queuing system has analyzed and some performance measures for queueing
system was selected and implemented in numerical illustrations by using three dimensional
graphs. For further work, the model can be investigate with batch arrival and batch service which
follows Markovian arrival process and various service rates with N-policy.
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