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Abstract 

This article introduces a new four-parameter probability distribution called the q-Exponential-Weibull 

distribution based on the q-Exponential-G family of distribution. The proposed new distribution has to 

decrease and increase failure rates which are more common in reliability scenarios and can be used 

instead of Weibull and the exponential distribution. It also includes some sub-models like q-

Exponential-Exponential, q-Exponential-Rayleigh, Exponential-Weibull, Exponential-Exponential 

and Exponential-Rayleigh lifetime distributions.  Various Mathematical and statistical Properties are 

investigated, which include Limiting behavior, Moments and Moment Generating functions, Quantile 

function and Order Statistics. The Maximum Likelihood estimator is used for estimating the model 

parameters. This new distribution is compared with other lifetime distributions using different kinds 

of real-life failure time data. 

Keywords: q-Exponential-Weibull, Quantile, Reliability Measures, Maximum 

Likelihood Estimation, failure time data. 

1. Introduction

Lifetime distributions are very useful statistical tool for analyzing the various characteristics of 

lifetime data. The developments and applications of lifetime distribution are essential in numerous 

fields. Hence, the major aspects of generating new families of probability distributions are they offer 

greater flexibility and a better fit at the expense of one or more extra parameters. 

The non-extensive statistical mechanism plays a vital growth in the past few years. This new 

formulation is not based on the usual statistical mechanism, provided that will give a better 

description of the complex system developed by [26]. In the recent decade’s probability distribution, 

which emerge from the non-extensive statistical mechanism called q-type distribution attracted 

several statisticians to develop new distribution [11], [20] and [23]. Studying this type of distribution 

is quite interesting because of its complex system and power-law behavior. The application of this 

type of distribution has been found in many research areas like Physics, Biology, Mathematics, 

Chemistry, Economics, Medicine etc. 
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The q-Exponential distribution emerged from maximizing the non-extensive statistical 

mechanism under appropriate constraints [26]. This theory is a generalization of the classical 

Boltzmann-Gibbs (BG) statistical mechanism. So, the q-Exponential distribution has found varieties 

of applications in the research field including in the field of complex systems. This article introduces 

a new four-parameter probability distribution called the q-Exponential Weibull distribution. 

The well-known q-distributions are q-Exponential distributions discussed by Malacarne et 

al. [15], q-Gamma distribution due to Duarte et al. [7], q-Weibull distribution due to Picoli et al. [21], 

q-Gaussian distribution due to Adrian et al. [1]. Picoli J.R. et al. [22] discussed q-distribution in

complex systems. Ana Claudia souza [3] studied the reliability data analysis of systems in the wear-

out phase using q-Exponential likelihood. Fode Zhang et al. [9] discovered the information geometry

on the curved q-Exponential family with application to survival analysis. Shalizi [25] express the

Maximum Likelihood Estimation for q-Exponential distribution. The geometry of q-exponential

distribution with dependent competing risk and accelerated life testing is given by Fode Zhang et

al. [10]. Keith Briggs [12] demonstrates the modelling train delay with the q-Exponential distribution.

The reliability of stress strength and its estimation of exponentiated q-Exponential distribution is

given by Mohammed et al [18]. Modelling censored survival data with q-Exponential distribution

discussed by Sundaram [19].

 In reliability and survival analysis most commonly, used distributions are Exponential and 

Weibull distributions [16], q-Exponential is an alternative one. The q-Exponential distribution is a 

higher version of an Exponential distribution. It has two parameters: 𝑞 and α, where 𝑞 is the shape 

parameter (entropy index/control parameter) and α is the scale parameter. As compared to the 

Exponential distribution that has just one parameter (α), the q-Exponential distribution has more 

flexibility regarding the decay of the pdf [3].  Indeed, the Exponential probability distribution is a 

special case of the q-Exponential when    𝑞 → 1. Another feature of this distribution is that it does 

not have the limitation of a constant hazard rate as the Exponential one, thus allowing the modelling 

of either system improvement (1 < 𝑞 < 2) or degradation (𝑞 < 1).  The pdf of q-Exponential distribution 

[26], is given by 

 𝑓q(x) = (2−𝑞) α [1− (1−𝑞) αx] 1/ (1-q)   for x, α > 0 ,q<2     (1) 

   This can also be rewritten as 

𝑓q(x) =(2-q) α eq (-αx) 

Where   eq(x) =  [1 + (1 − q) x]
1

1−𝑞

Which is the q-exponential if q ≠ 1. When q = 1, eq(x) is just exp(x). 

The cumulative distribution function (cdf) of the q-Exponential-generated family is given by. 

     F(x) = ∫ (2 − 𝑞)𝛼[1 − (1 − 𝑞)𝛼𝑥]
1

1−𝑞
𝐺(𝑥)/(1−𝐺(𝑥))

0
 (2) 

The simplified form of (2) is. 

      F(X) = 1 − [1 − (1 − q) α 
𝐺(𝑋)

1−𝐺(𝑋)
] 

2−𝑞

1−𝑞  x, α >0, q<2  (3) 

where 𝑞 is the shape parameter (entropy index) and α is the scale parameter. The corresponding 

probability density function is given by 

       f(x) = (2 − q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
 [1 − (1 − q) α 

𝐺(𝑋)

1−𝐺(𝑋)
]

1

1−𝑞  (4) 

where X>0, α >0, q<2. 
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The rest of the paper are as follows. In Section 2, The new class q-Exponential-Weibull 

distribution is introduced and presented its particular cases. The mathematical and statistical 

properties are discussed in section 3 and in section 4, the maximum likelihood estimation method 

and their asymptotic behaviors have been discussed. Simulation techniques has been explained in 

section 5. Real life failure time data has been applied and the results are presented in section 6. In 

section 7, we have discussed the conclusion of the new class of q-Exponential Weibull distribution. 

2. The q-Exponential-Weibull Distribution

The q-Exponential distribution combined with Weibull distribution gives the q-Exponential Weibull 

distribution. Here the q-exponential is the generator distribution, and the two-parameter Weibull 

distribution (Waloddi Weibull, 1951) is a parent distribution whose pdf and cdf are given by 

g (x, λ, γ) = λγxγ-1𝑒−𝜆𝑥𝛾
 x,𝛾, 𝜆 >0  (5) 

G (x, λ, γ) = 1 - 𝑒−𝜆𝑥𝛾
(6) 

using (6) in (3), we get the new cdf of q-Exponential-Weibull distribution. The simplified form of q-

Exponential-Weibull distribution is 

F (x, Ω) = 1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞  (7) 

where Ω = {q, α, λ, γ}be the set of parameters, here q and γ are the shape parameters and α, λ are the 

scale parameters. The equation (7) is called the cdf of q-Exponential-Weibull distribution. 

Substituting (5) and (6) in (4), we get the new pdf. The new pdf is, 

f (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1[1 −  (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
1

1−𝑞       (8) 

Rewriting the above equation (8), we get 

f (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1 eq [- α (𝑒𝜆𝑥𝛾

 – 1)]  (9) 

The equation (8) and (9) are called the pdf of q-Exponential-Weibull distribution (q-EW). The 

particular case of our new q-Exponential-Weibull distribution is presented in Table 1. 

Table 1: The particular case of q-Exponential-Weibull distribution 

Model 𝑞 𝛼 𝜆 𝛾 Cdf References 

q-Exponential-Exponential 𝑞 𝛼 𝜆 1 1- [1− (1−𝑞) α (𝑒𝜆𝑥– 1)] ^
2−𝑞

1−𝑞
New 

q- Exponential-Rayleigh 𝑞 𝛼 𝜆

2
2 

1- [1− (1−𝑞) α (𝑒
𝜆𝑥2

2 – 1)] ^ 
2−𝑞

1−𝑞

New 

Exponential – Weibull 1 𝛼 𝜆 𝛾 
1-𝑒−𝛼(𝑒𝜆𝑥𝛾

−1) New 

Exponential – Exponential 1 𝛼 𝜆 1 
1-𝑒−𝛼(𝑒𝜆𝑥−1)

Elgarhy et al. 

(2017) 

Exponential- Rayleigh 1 𝛼 𝜆

2
2 

1-𝑒−𝛼(𝑒
𝜆
2𝑥2

−1)

Kawsar Fatima 

and, S.P Ahmad 

(2017) 
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2.1 Reliability Measures: Survival function: (survivor function) 

The survivor function for the new distribution S(x) is defined to be the probability that the survival 

time is greater than or equal to t, and it is given by 

S(x) = 𝑃 (𝑋 ≥ 𝑡) = 1- F(x) 

S (x, Ω) =[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞  (10) 

2.2 Hazard function: 

The hazard function is used to express the risk or hazard of an event such as death occurring at some 

time t, and it is given by 

h (x) = 
𝑓(𝑥)

𝑠(𝑥)

Substituting (8) and (10) we get the hazard function of q-Exponential-Weibull distribution. which 

is defined below.  

h (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
−(1+𝑞)

(1−𝑞)  (11) 

2.3 Reverse hazard rate function 

The reverse hazard function of q-Exponential-Weibull distribution is defined by  

r (x) = 
𝑓(𝑥)

𝐹(𝑥)

r (x, Ω) = 
(2−q) αλγ 𝑒𝜆𝑥𝛾

𝑥𝛾−1[1− (1−q) α (𝑒𝜆𝑥𝛾
– 1)] 

1
1−𝑞

1−[1− (1−q) α (𝑒𝜆𝑥𝛾
 – 1)] 

2−𝑞
1−𝑞

 (12) 

2.4 Cumulative hazard function 

 Cumulative hazard function is presented below, 

H (x, Ω) = -log (1-F(x)) 

H (x, Ω) = -ln (s (x, Ω)) = -ln [[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)] 

2−𝑞

1−𝑞  ]                                           (13)

The above equation is known as cumulative hazard function of q-Exponential-Weibull distribution. 

2.5 Graphical Study of q-Exponential Weibull distribution under various functions: 

In this section, we studied the structure of the cdf, pdf, S(x) and h(x) of q-Exponential-Weibull 

distribution using different values of the parameters. The illustrative figures are presented below. 
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Figure 2.a cumulative density plot demonstrates the validity of the distribution as a 

probability distribution. The probability density function graphs (2.b1,2. b2 and 2.b3) shows that it 

is skewed and more adaptable for various parameter values. The graph of the hazard function (2.d) 

demonstrates that it can take on various shapes, including constant, increasing, and decreasing. As 

a result, fitting data sets of different forms may be done and which was quite well using the q-

Exponential Weibull distribution. 

Figure 2.a: The graph of the cdf of the q-EW distribution 

with different values of the parameter 

Figure 2.b1: Graph of the pdf of the q-EW distribution 

when all the parameters are changed 

Figure 2.b2:The graph of  the pdf of the q-EW 

distribution when changing first shape parameter (q) 

values and other parameters are fixed 

Figure 2.b3: The graph of the  pdf the of q-EW 

distribution when changing second shape parameter 

(𝛾)values and other parameters are fixed 

Figure 2.c: The graph of the survival function 

of the q-EW distribution with different 

parameter values 

Figure 2.d: The graph of the Hazard rate of the   q-EW 

distribution for with different parameter values 
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3.Properties

In this section we study some mathematical and statistical properties of q-Exponential-Weibull 

distribution. 

3.1 Mixture Representation: 

Several properties of the new distribution can be derived using the concept of exponentiated 

distribution. The mixture representation of q-exponential-Weibull distribution is derived in the 

following sections. 

Using the generalized binomial theorem, where β>0 is real non integer and |z|<1, 

(1 − 𝑧)𝛽−1 = ∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(𝑧)𝑘 

f(x) =(2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
[1 − (1 − q) α 

𝐺(𝑋)

1−𝐺(𝑋)
]

2−𝑞

1−𝑞
−1

since β = 
2−𝑞

1−𝑞

 = (2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
∑ (−1)𝑘∞

𝑘=0 (𝛽−1
𝑘

)(1-q) k αk [
𝐺(𝑋)

1−𝐺(𝑋)
]

𝑘

      = (2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
∑ (−1)𝑘∞

𝑘=0 (𝛽−1
𝑘

)(1-q) k αk 
[𝐺(𝑥)]𝑘

[1−𝐺(𝑥)]𝑘

  =∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q)  

𝑔(𝑥)  [𝐺(𝑥)]𝑘

[1−𝐺(𝑥)]𝑘+2

Generalized binomial theorem 

[1 − 𝐺(𝑥)]−(𝑘+2) = ∑
ᴦ(k+j+2)

𝑗! ᴦ(𝑘+2)

∞
𝑗=0  [𝐺(𝑥)]𝑗 

     = ∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q) ∑

ᴦ(k+j+2)

𝑗! ᴦ(𝑘+2)

∞
𝑗=0 g(x) [𝐺(𝑥)]𝑘+𝑗+1−1 

=∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q) ∑

ᴦ(k+j+2)

𝑗!(𝑘+𝑗+1) ᴦ(𝑘+2)

∞
𝑗=0  (k+j+1) g(x) [𝐺(𝑥)]𝑘+𝑗+1−1 

    f (x, Ω) =  ∑ 𝑊𝑗,𝑘
∞
𝑗,𝑘=0 h(k+j+1) (x, Ω)    (14) 

where  𝑊𝑗,𝑘=  (−1)𝑘  (𝛽−1
𝑘

)(1-q) k αk+1 (2-q)
ᴦ(k+j+2)

𝑗!(𝑘+𝑗+1) ᴦ(𝑘+2)

ha (x, Ω) = a g (x, Ω) [ G (x, Ω)] a-1 

The q-Exponential Weibull density can be expressed as an infinite linear combination of 

exponentiated – G density function.  

Then, [𝐹(𝑥)]𝑅  = [1 − [1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)] 

2−𝑞

1−𝑞 ]𝑅 

Using the generalized binomial theorem, where β>0 is real non integer and |z|<1, 

(1 − 𝑧)𝛽−1 = ∑ (−1)𝑙∞
𝑙=0 (𝛽−1

𝑙
)(𝑧)𝑙 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙∞
𝑙=0 (𝑅

𝑙
) [1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
(2−𝑞)𝑙

(1−𝑞)
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Which can also be written as, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚=0 (𝑅

𝑙
)( 𝜗

𝑚
)(1-q) m αm (𝑒𝜆𝑥𝛾

 –  1)𝑚    where 𝜗 =  
(2−𝑞)𝑙

(1−𝑞)

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)   [

1−𝑒−𝜆𝑥𝛾

1−(1−𝑒−𝜆𝑥𝛾
)
]

𝑚

Using Generalized binomial theorem, the above equation can be written as, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚,𝑛=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)[1 − 𝑒−𝜆𝑥𝛾

]
𝑚+𝑛

Simply further we get, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚+𝑟∞
𝑙,𝑚,𝑛,𝑟=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)(𝑚+𝑛

𝑟
) (𝑒−𝜆𝑥𝛾

)𝑟

     [𝐹(𝑥)]𝑅    =    ∑ 𝑊𝑙,𝑚,𝑛,𝑟(𝑒−𝜆𝑥𝛾
)𝑟∞

𝑙,𝑚,𝑛,𝑟=0  (15) 

Where 𝑊𝑙,𝑚,𝑛,𝑟 = (−1)𝑙+𝑚+𝑟  (1-q) m αm (𝑅
𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)(𝑚+𝑛

𝑟
) 

3.2 Limiting Behavior: 

  Lemma 1:  The limit of the cdf of the q-Exponential-Weibull, F(x) as X approaches infinity, x→ is 

equal to one and limit of the cdf of the q-Exponential-Weibull, F(x) as X tends to zero, x → 0 is 

equal to zero. 

lim
𝑥→∞

𝐹(𝑥)  = 1 

Proof: The cdf of the q-Exponential Weibull F(x) as X approaches infinity (x → ), from 7 we get 

Using equation (9) 

lim
𝑥→∞

  F (x, Ω) =  lim
𝑥→∞

1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞

=    1-[1 − (1 − q) α (𝑒𝜆(∞)𝛾
 –  1)]

2−𝑞

1−𝑞

   =    [1 – 0 ]   = 1 

Hence, the lemma is proved under limiting property. 

lim
𝑥→0

𝐹(𝑥)  = 0 

lim
𝑥→0

  F (x, Ω)     =  lim
𝑥→0

1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞

= 1- [1− (1−𝑞) α (𝑒𝜆(0)𝛾
 – 1)] ^2-q/ (1-q) 

   = 1- [ 1- 0] = 0 

  Lemma 2: In probability theory, of a continuous random variable has the following property 

(i) f(x) ≥ 0; where -∞<x<∞

(ii) ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
   = 1

Using above definition, the validity of the model f(x) is checked. In our survival model the range of 

x is 0<x<∞.  

∫ 𝑓(𝑥)𝑑𝑥
∞

0
   = 1 
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=  ∫ (2 − q) αλγ 𝑒𝜆𝑥𝛾
𝑥𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)] 
1

1−𝑞𝑑𝑥
∞

0
 

= (2 − q) αλγ ∫  𝑒𝜆𝑥𝛾
𝑥𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)] 
1

1−𝑞𝑑𝑥
∞

0
 

Now y = [1 − (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

  𝑑𝑦

𝑑𝑥
= 0 – (1-q)αλγ𝑒𝜆𝑥𝛾

𝑥𝛾−1

𝑑𝑦

(1−q)αλγ𝑒𝜆𝑥𝛾
𝑥𝛾−1

   =    dx 

=  (2 − q) αλγ ∫
𝑒𝜆𝑥𝛾

𝑥𝛾−1

[1 − (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

1

1−𝑞

∞

0
 ∗

𝑑𝑦

(1−q)αλγ𝑒𝜆𝑥𝛾
𝑥𝛾−1

 

=    - 
2−𝑞

1−𝑞
 ∫ 𝑦1/(1−𝑞)   dy

∞

0
 

∫ 𝑓(𝑥)𝑑𝑥
∞

0
      =   -[𝑦(2−𝑞)/(1−𝑞)]0

∞

= -{  [[1 − (1 − q)α (𝑒𝜆𝑥𝛾
 –  1)](2−𝑞)/(1−𝑞)]𝑥=∞  - [[1 −  (1 − q)α (𝑒𝜆𝑥𝛾

 –  1)](2−𝑞)/(1−𝑞)]𝑥=0 }

∫ 𝑓(𝑥)𝑑𝑥
∞

0
       = - [ 0 – 1] = 1 

 Hence q-Exponential-Weibull distribution is a valid pdf. 

3.3 Quantile Function: 

The quantile function of X= Q(u) = 𝐹−1(𝑢) can be obtained by inverting equation (7) as follows, 

Q(u) = [ 
1

𝜆
ln [1 +

1

(1−𝑞)𝛼
[1 − (1 − 𝑢)

1−𝑞

2−𝑞]]]
1

𝛾  (16) 

    Simulation of q-Exponential-Weibull random variable is straightforward. Let u be the 

uniform variable on the interval [0,1], then the random variable X = 𝐹−1(𝑢) follows q-Exponential-

Weibull distribution given in equation (8) with the parameters (q, α, λ, γ). By using equation (20), 

we can obtain the first, second and third quantiles by replacing u as 0.25, 0.5 and 0.75, respectively. 

3.4 Moments: 

This section provides the moment and moment generating function of q-Exponential-Weibull 

distribution.  The moments of the functions are quantitative measures related to the shape of the 

function. The first four moments, skewness and kurtosis of q-Exponential-Weibull distribution can 

be obtained as 
𝜇𝑟

′  = E [ xr]    =    ∫ 𝑥𝑟𝑓(𝑥, Ω)𝑑𝑥
∞

−∞
 

Using equation (13) we have, 

      𝜇𝑟
′   =  ∫ 𝑥𝑟 ∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1) (x, Ω)  𝑑𝑥

∞

−∞
 

  = ∑ 𝑊𝑗,𝑘
∞
𝑗,𝑘=0 ∫ 𝑥𝑟ℎ(𝑘+𝑗+1)(𝑥, Ω)𝑑𝑥

∞

−∞

Where 𝐼𝑗,𝑘( x,Ω) = ∫ 𝑥𝑟ℎ(𝑘+𝑗+1)(𝑥, Ω)𝑑𝑥
∞

−∞
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  𝜇𝑟
′  = E(xr) =  ∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (17) 

The mean, variance, skewness and kurtosis can be obtained from equation (14). 

when r =1 gives mean = E(x) 

variance = E(x2) – [E(x)]2 

skewness =  
𝜇3(𝜃)– 3 𝜇3(𝜃)𝜇2(𝜃)+2 𝜇1

3(𝜃)

[𝜇2(𝜃)− 𝜇1
2(𝜃)]3/2

kurtosis   = 
𝜇4(𝜃)– 4 𝜇1(𝜃)𝜇3(𝜃)+6𝜇1

2(𝜃)𝜇2(𝜃)− 3𝜇1
4(𝜃)

[𝜇2(𝜃)− 𝜇1
2(𝜃)]2

Generally, the moment generating function of q-Exponential-Weibull distribution is obtained 

through the following relation 

 𝑀𝑥(t, Ω) =∑
𝑡𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥

∞

0
 =  ∑

𝑡𝑟

𝑟!

∞
𝑟=0  E(xr) = ∑

𝑡𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (18) 

The Characteristic function of q-Exponential-Weibull distribution is obtained through the 

following relation 

  𝜙𝑥(t, Ω) =∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥

∞

0
 =  ∑

(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0  E(xr) = ∑

(𝑖𝑡)𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (19) 

The cumulant generating function of q-Exponential-Weibull distribution is given by 

𝑘𝑥(t, Ω) = 𝑙𝑜𝑔[[∑
(𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥]

∞

0
 = log [ ∑

(𝑡)𝑟

𝑟!

∞
𝑟=0  E(xr)] 

 = 𝑙𝑜𝑔[∑
(𝑡)𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0 𝐼𝑗,𝑘( x, Ω)]  (20) 

3.5 Order Statistics: 

Let 𝑋1:𝑛< 𝑋2:𝑛<𝑋3:𝑛<…<𝑋𝑛:𝑛 be the order statistics of a random sample of size n following 

q-Exponential-Weibull distribution with the parameter α, q, λ, γ then the probability density

function of 𝑝𝑡ℎ order statistic can be written as,

     𝑓(𝑥𝑝)[𝑥(𝑝)] = 
𝑓(𝑥𝑝)

𝐵(𝑝,𝑛−𝑝+1)
 ∑ (−1)𝑣 (

𝑛 − 𝑝
𝑣

)
𝑛−𝑝
𝑣=0 [𝐹(𝑥𝑝)]𝑣+𝑝−1  (21) 

Substituting (13) and (14) in (18) and replacing R= (𝑣 + 𝑝 − 1) we get 

𝑓(𝑥𝑝)[𝑥(𝑝)] = 
∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1)(X,Ω)  

𝐵(𝑝,𝑛−𝑝+1)
 ∑ (−1)𝑣 (

𝑛 − 𝑝
𝑣

)
𝑛−𝑝
𝑣=0 ∑ 𝑊𝑙,𝑚,𝑛,𝑟(𝑒−𝜆𝑥𝛾

)𝑟∞
𝑙,𝑚,𝑛,𝑟=0

  𝑓(𝑥𝑝)[𝑥(𝑝)]  = 
1  

𝐵(𝑝,𝑛−𝑝+1)
  ∑ ∑ ∑ 𝜔∗∞

𝑙,𝑚,𝑛,𝑟=0
𝑛−𝑝
𝑣=0

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1)(X, Ω)(𝑒−𝜆𝑥𝛾

)𝑟   (22) 

      Where  𝜔∗ = (−1)𝑣 (
𝑛 − 𝑝

𝑣
) 𝑊𝑗,𝑘𝑊𝑙,𝑚,𝑛,𝑟 

4. Method of Estimation

In this section, the maximum likelihood estimates (MLE) of the unknown parameters for the 

q-Exponential-Weibull distribution are determined based on complete samples. Let x1, x2…xn be a

random sample from q-Exponential-Weibull distribution with unknown parameter vector Ω = {q, α,

λ, γ}. The likelihood function for the proposed distribution ℒ is given by
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ℒ(x, Ω) = (2 − 𝑞)𝑛𝛼𝑛𝜆𝑛𝛾𝑛 ∏ 𝑒𝜆𝑥𝑖
𝛾

𝑥𝑖
𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝑖

𝛾
 –  1)]

1

1−𝑞𝑛
𝑖=1

Then the log likelihood of the equation is 

ℓ (Ω) = log ℒ(t, Ω) = n log (2-q) + n log α + n log λ + n log γ + λ ∑ 𝑥𝑖
𝛾𝑛

𝑖=1 + (γ -1)

∑  log 𝑥𝑖
𝑛
𝑖=1 +(

1

1−𝑞
)  ∑  log [1 − (1 − q) α (𝑒𝜆𝑥𝑖

𝛾
 –  1)]𝑛 

𝑖=1
  (23) 

The maximum likelihood estimates of the parameters (q, α, λ, γ) are found by taking a partial 

derivative of ℓ (Ω)  with respect to q, α, λ, γ, equating the derivatives to zero, and evaluating them 

at 𝑞̂, 𝛼̂, 𝜆̂, 𝛾. 

𝜕ℓ (Ω)

𝜕𝑞
 = 

𝑛

2−𝑞
+ ∑

1

1−𝑞
[

𝛼(𝑒𝜆𝑥𝑖
𝛾

−1)

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1   - ∑ log [1 −  (1 − q)α (𝑒𝜆𝑥𝑖
𝛾

 –  1)𝑛
𝑖=1  (24) 

𝜕ℓ (Ω)

𝜕𝛼
= 

𝑛

𝛼
- ∑

1

1−𝑞
[

(1−𝑞)(𝑒𝜆𝑥𝑖
𝛾

−1)

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1             (25) 

𝜕ℓ (Ω)

𝜕𝜆
= 

𝑛

𝜆
+ ∑ 𝑥𝑖

𝛾𝑛
𝑖=1 -∑

1

1−𝑞
[

𝛼(1−q) 𝑥𝑖
𝛾𝑒𝜆𝑥𝑖

𝛾

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1          (26) 

𝜕ℓ (Ω)

𝜕𝛾
= 

𝑛

𝛾
+ ∑  log 𝑥𝑖  

𝑛
𝑖=1 + ∑ 𝜆 𝑥𝛾 log 𝑥𝑖

𝑛
𝑖=1 - ∑

1

1−𝑞
[

𝛼𝜆(1−q) 𝑥𝑖
𝛾𝑒𝜆𝑥𝑖

𝛾
∗log 𝑥𝑖

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
] 𝑛

𝑖=1  (27) 

For solving these non-linear equation’s, we can use any iteration method such as Newton-Raphson 

technique. 

5. Generating random samples from q-Exponential Weibull distribution

The Inverse CDF method is used for generating random numbers from a particular distribution. In 

this method, random numbers from a particular distribution are generated by solving the equation 

obtained on equating CDF of a distribution to a number u. The number u is itself being generated 

from u~𝑈(0,1). In this section we made an attempt to q-Exponential-Weibull distribution to generate 

the random number using equation 16 at a fixed values of parameters (𝑞, 𝛼, 𝜆, 𝛾). 

X   =    𝐹−1(𝑢) 

X = [
1

𝜆
ln [1 +

1

(1−𝑞)𝛼
[1 − (1 − 𝑢)

1−𝑞

2−𝑞]]]

1

𝛾

 (28) 

 For uniform over (0,1) then x~𝑞 − 𝐸𝑊(1.2,2,1.1,1.7) can be generated random sample of size 50 are 

presented below. 

   0.2471, 0.8991, 0.9387, 1.5307, 0.6133, 0.8110, 0.8077, 0.7611, 0.8320, 1.5590,  

   1.0539, 1.7640, 1.4155, 0.8662, 1.2408, 1.9081, 1.0625, 0.6137, 0.5943, 0.7125, 

   0.9593, 0.3809, 0.1623, 0.2987, 0.9664, 1.31036, 0.6269, 1.3524, 0.6302, 1.0810, 

   2.1260, 1.4057, 1.1020, 0.6074, 1.7022, 1.1539, 1.1613, 0.5775, 0.1133, 0.9533, 

   1.1283, 1.2516, 1.6930, 0.9185, 1.3880, 0.8035, 0.9471, 0.1955, 2.4077, 0.7141 

Here we have used one of the goodness of fit tests “Kolmogorov-Smirnov (KS)” test for the 

above-generated data for testing the q-Exponential-Weibull distribution. The null hypothesis is that 
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the samples are drawn from the q-Exponential-Weibull distribution against the alternative 

hypothesis is that the samples are not drawn from the q-Exponential-Weibull distribution. The test 

statistic value of the KS test for the generated samples is (D value) 0.097 at 5% level of significance 

with the p-value of 0.76. Since the p-value is greater than 0.05, the null hypothesis is accepted. Hence, 

the samples are drawn from the proposed distribution. Therefore, the q-Exponential-Weibull 

distribution has satisfied the goodness of fit test. 

6. Application to real life data

In this section, we have used different kinds of real-life failure time data to show the suitability of 

the q-Exponential Weibull distribution, also we have compared to some other related distributions 

namely Exponentiated Weibull-Exponential (EWE) and Generalized Exponential-Weibull (GEW) 

distributions. The pdf of the respective distributions is represented below: 

• The Exponentiated Weibull-Exponential (EWE) distribution introduced by Elgarhy et.al [8],

with pdf

𝑓(𝑥) = 𝑞𝛼𝛾𝜆[𝑒𝜆𝑥 − 1]𝛾−1 exp[−{𝛼[𝑒𝜆𝑥 − 1]
𝛾

− 𝜆𝑥}] [ 1 − 𝑒𝑥 𝑝(−𝛼[𝑒𝜆𝑥 − 1]
𝛾

)]
𝑞−1

 x,𝑞, 𝛼, 𝜆, 𝛾 >0           (29) 

• The Generalized Exponential-Weibull (GEW) distribution introduced by Dikko and Faisal

[6], with the pdf

𝑓(𝑥) =  𝑞(𝛼 + 𝛾𝜆𝑥𝜆−1)𝑒−(𝛼𝑥+𝛾𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛾𝑥𝜆)]𝑞−1  x,𝛼, 𝛾, 𝜆, 𝑞 >0   (30) 

In order to assess the flexibility of the proposed distribution, we have considered some model 

selection criteria like, -2loglikelihood and AIC (Akaike Information Criterion) are used and analyses 

performed with the aid of R software. 

Dataset1:  The first data set is the failure times of 84 aircraft windshields. This failure time data set 

is available in Murthy et al’s book “Weibull Models” (2004, page 297). A large aircraft’s windscreen 

is a sophisticated piece of equipment made up of multiple layers of material, including a very touchy 

outer skin with a heated layer just behind it, all laminated under high temperature and pressure. 

These failures do not cause aircraft damage, but they do require the repair of the windscreen. The 

failure times of 84 aircraft windshields are given below: 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 

1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 

1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 

1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376, 4.663 

Table 2: Estimates of fitted distribution for aircraft windshield failure data 

Model 
    Estimated Parameters Model Selection 

𝑞̂ 𝛼̂ 𝜆̂ 𝛾 -2LL AIC 

q-EW 1.729287 4.629657 0.006168 1.539852 251 259 

EWE 15.46262 1.38606 4.08592 0.07846 253 261 

GEW 0.04796 0.31873 0.43050 0.68102 419 427 
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Dataset 2:  The second data set represents the survival times (in days) of 72 guinea pigs infected with 

virulent tubercle bacilli, observed and reported by Bjerkedal. The data is presented below: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 

1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 

1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 

2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55. 

Table 3: Estimates of fitted distribution for guinea pig failure data 

Model 
    Estimated Parameters Model Selection 

       𝑞̂ 𝛼̂ 𝜆̂ 𝛾 -2LL AIC 

q-EW 1.54493 33.49094 0.01988 2.98777 184 192 

EWE 1.08287 83.46078 0.01628 2.99604 187 195 

GEW 0.66675 0.07983 0.27917 0.45848 242 250 

We observed from the above tables 2 and 3, the -2LL and AIC values of the q-Exponential-

Weibull distribution have the smallest among the other distributions. Therefore, the q-Exponential-

Weibull distribution has performed well than the other distributions. So, we conclude from this 

section, the q-Exponential-Weibull distribution has achieved the goal of the suitability of the 

different kinds of real-life failure time data. 

8. Conclusion

In this research article, we have introduced a new class of four-parameter distribution referred to as 

“q-Exponential-Weibull distribution” by taking the Weibull distribution as the base distribution and 

the q-Exponential distribution as the generator distribution by using the generator technique. The 

q-Exponential-Weibull density can be expressed as a linear combination of exponentiated - G

densities. For checking the model properties, we have derived survival, hazard, cumulative hazard

and reverse hazard functions from q-Exponential-Weibull distribution, and also studied graphically.

In the graphical study of the q-Exponential-Weibull distribution under various functions with

different parameter values, the proposed distribution has achieved the properties of the density

function. The mathematical and statistical properties are applied to q-Exponential-Weibull

distribution. The q-Exponential-Weibull distribution has satisfied the above said properties. The

parameters of the q-Exponential-Weibull distributions are estimated using the maximum likelihood

estimation method. The random samples have been generated from the q-Exponential-Weibull

distribution and the goodness of fit test has been verified using Kolmogorov-Smirnov (KS) test, also

we have studied the application of real-time failure time data to q-Exponential-Weibull distribution.

The proposed distribution performed well than the other distribution based on the model selection

criteria. Based on the above-said results, the q-Exponential-Weibull distribution is more adaptable

and more flexible to fit the real-life failure time data. We hope that the proposed distribution would

draw more widespread applications in different areas of research such as reliability analysis,

medicine engineering and economics etc.

  RT&A, No.3 (74)  
Volume 18, September 2023  

593



N. Sundaram, G. Jayakodi
A STUDY ON STATISTICAL PROPERTIES OF A NEW CLASS OF
Q-EXPONENTIAL-WEIBULL DISTRIBUTION
WITH APPLICATION TO REAL-LIFE FAILURE TIME DATA

References 

[1] Adrian, A. Budini. (2015). Extended q-Gaussian and q-exponential distributions from

Gamma random variables. Physical Review E,91,052113. 

[2] Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating families of

continuous distributions. Metron, 71 (1):63-79. 

[3] Ana Claudia Souza Vidal de Negreirosa, Isis Didier Lins, Marcio Jose das Chagas Moura

and Enrique Lopez Droguettc. (2020). Reliability data analysis of systems in the wear-out phase 

using a (corrected) q-Exponential likelihood. Reliability Engineering and System Safety,197,106787. 

[4] Bourguignon, M., Silva, R.B. and Cordeiro, G.M. (2014). The Weibull-G family of probability

distributions. Journal of Data Science, 12(1):53-68. 

[5] Collett D. modelling survival data in medical Research, chapman and hall, London,2003.

[6] Dikko, H.G. and Faisal, A.M. (2017). A New generalized Exponential-Weibull distribution:

Its properties and application. Bayero Journal of Pure and Applied Sciences, 10(2):29-37. 

[7] Duarte Queiros, S.M., L. G. Moyano, J. de Souza, and Tsallis. C. (2007). A non-extensive

approach to the dynamics of financial observables. The European Physical Journal B, 55, 161 

[8] Elgarhy.M., Shakil.M., and Golam Kibria B.M. (2017). Exponentiated Weibull-Exponential

distribution with applications. An International journal Applications and applied mathematics, 12(2):710-

725.      

[9] Fode Zhang, Hon Keung Tony Ng and Yimin Sh. (2018). Information geometry on the

curved q-exponential family with application to survival data analysis. Physica A, 512:788–802. 

[10] Fode Zhang, Yimin Shi and Ruibing Wang. (2017). Geometry of the q-exponential

distribution with dependent competing risks and accelerated life testing. Physica A, 468:552–565. 

[11] Islam, B and AI-Talib, M. (2019). Exponentiated Q-Exponential distribution proceedings

the 6th International Arab Conference on mathematics and computations (IACMC 2019). 

[12] Keith Briggs and Christian Beck. (2007). Modelling train delays with q-exponential

functions. Physica A: Statistical mechanics and its applications, 378(2):498–504. 

[13] Lawless, J.F. Statistical Models and Methods for Lifetime Data, John Wiley & sons, New

York, 1982. 

[14] Lee, E.T. and Wang, J.W., Statistical methods for survival data analysis, 3rd Edition, John

Wiley and Sons, New York, ISBN: 9780471458555; pages:534. 

[15] Malacarne, l.c., mende, r.s. and lenzi, e.k. (2001). q-exponential distribution in urban

agglomeration. Physical Review E,65:017106. 

[16] Marshall, A., Olkin, I. (1997). A new method for adding a parameter to a family of

distributions with applications to the exponential and Weibull families. Biometrika, 84:641– 652. 

[17] Moeschberger. (2006). Survival Analysis: Techniques for Censored and Truncated Data.

Second edition, springer, ISBN 978-0-387-21645-4. 

[18] Mohammed. S. Jalal and Ferash. M. Batol. (2023). Reliability of stress-strength and its

estimation of Exponentiated exponential distribution. Iraqi journal of science, 64(3):1299-1306. 

[19] Narayanaswamy Sundaram (2019). Modelling Censored Survival Data With q-Exponential

Distributions. Global Journal for Research Analysis, 8 (7). 

[20] Nicy Sebastian, Jeena Joseph and Princy T. (2022). Type 1 Topp-Leone q−Exponential

Distribution and its Applications. Reliability Theory & Applications, 3 (69), 17:361-375. 

[21] Picoli Jr., R.S. Mendes and L.C. Malacarne. (2003). q-exponential, Weibull, and q-Weibull

distributions: an empirical analysis. Physica A, 324:678–688. 

[22] Picoli Jr., R.S. Mendes, L. C. Malacarne, R. P. B. Santos. (2009). q-distributions in complex

systems: a brief review. Brazilian Journal of Physics, 39:468-474. 

[23] Sebastian, N. Rasin, R. S. and Silviya, P. O. (2019). Topp-Leone Generator Distributions and

its Applications. Proceedings of National Conference on Advances in Statistical Methods, 127-139. 

  RT&A, No.3 (74)  
Volume 18, September 2023  

594



N. Sundaram, G. Jayakodi
A STUDY ON STATISTICAL PROPERTIES OF A NEW CLASS OF
Q-EXPONENTIAL-WEIBULL DISTRIBUTION
WITH APPLICATION TO REAL-LIFE FAILURE TIME DATA

[24] Sales Filho R, Lopes Droguett E, Lins I, Moura M. C, Azevedo R. (2016). Stress-strength

reliability estimation based on the q-Exponential distribution. Quality and Reliability Engineering 

International, 4:51. 

[25] Shalizi c.r. (2007), Maximum likelihood estimation for q-exponential (Tsallis) distributions,

http://arxiv.org/abs/math/0701854. 

[26] Tsallis. C, Introduction to Non-extensive Statistical Mechanics- Approaching a Complex

World, Springer, New York (2009). 

  RT&A, No.3 (74)  
Volume 18, September 2023  

595

http://arxiv.org/abs/math/0701854



