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Abstract

Load sharing systems have the ability to distribute the workload among its components. For analyzing
a two component parallel load sharing system, the accelerated failure time (AFT) based model with
component lifetimes as linear failure rate distribution have been recently proposed in the literature. In the
present study, the component lifetimes are assumed to follow a modified Weibull distribution, which is the
generalization of many standard lifetime distributions such as exponential, Weibull, Rayleigh, and linear
failure rate. The use of modified Weibull distribution leads to a new family of bivariate distributions for
ordered random variables. We have also looked into the associated inference techniques for the proposed
model. In order to evaluate the effectiveness of the suggested estimating approaches, we conducted a
simulation study. In order to provide a practical application and better understanding, we carefully
examine a dataset related to motors.

Keywords: accelerated failure time model, conditional distribution, load sharing, modified
Weibull distribution, order statistics

1. Introduction

Load sharing systems are characterized by their ability to distribute the workload among multiple
components, such that if one component fails, the remaining components bear the additional
workload. This can either increase or decrease the load on each surviving component. Load
sharing systems have been extensively investigated in various engineering domains, such as soft-
ware and hardware reliability, power plants, computing workload analysis, and fiber composites
(Wang et al. [1]).

Liu [2] presents various instances that illustrate the concept of load sharing systems. These
include scenarios like electric generators distributing an electrical load within a power plant, CPUs
operating in a multiprocessor computer system, cables supporting a suspension bridge, bolts
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fastening a wheel assembly onto a truck, and valves or pumps functioning in a hydraulic system.
When any of these components fail, the remaining components must bear an additional load,
which can elevate their failure rates. In an intriguing study by Drummond et al. [3] conducted
on vertebrate species, it was observed that when a litter mate dies due to food shortage, the
surviving offsprings receive a larger portion of the available food supply, leading to improved
growth. This finding highlights how the failure of one individual can inadvertently benefit the
surviving members. Furthermore, in the realm of software testing, the detection of a fault can
uncover previously undetected critical faults. This demonstrates that a component’s failure can
facilitate the discovery of other hidden issues, thereby enhancing the overall reliability of the
system. These examples collectively illustrate that when a component fails, it can actually enhance
the remaining components’ remaining lifespan, resulting in a higher growth rate for the surviving
components.

Daniels [4] conducted the first study on the phenomenon of load sharing and load sharing
systems. A thorough analysis of load sharing systems up till 2009 is present in Dewan and
Naik-Nimbalkar [5]. Deshpande et al. [6], Park [7], Singh and Gupta [8], Park [9], Gurov and
Utkin [10], Sutar and Naik-Nimbalkar [11]-[12], Krivtsov et al. [13], Wang et al. [1] and Sutar and
Naik-Nimbalkar [14] have all published studies and modeled the load sharing phenomenon since
then.

The study of load-sharing systems with a k-out-of-m configuration was suggested by Sutar
and Naik-Nimbalkar [11] with modelling strategy based on the accelerated failure time (AFT)
model. They concentrated on a particular configuration, a parallel load sharing system consisting
of two components with baseline as the linear failure rate distribution. The associated inference
techniques were also covered by the researchers. The distributions used there in for the ordered
random variables are a subset of a larger family of distributions known as sequential order
statistics. Kamps [15] first described this family of distributions and Cramer and Kamps [16]
further developed them.

This study utilizes the load sharing model based on accelerated failure time (AFT), proposed
by Sutar and Naik-Nimbalkar [11], to examine the load sharing phenomenon within a parallel
system consisting of two components. We adopt a modified Weibull distribution (MWD) as
the baseline distribution for the components in the system, which is characterized by three
parameters: λ1, λ2, and λ3. The introduction of this three-parameter MWD was done by Sarhan
and Zaindin [17].

It is important to highlight that the three-parameter MWD provides a comprehensive repre-
sentation of various distributions, including exponential, Weibull, Rayleigh and linear failure rate.
Thus, the MWD serves as a versatile baseline distribution for the component lifetime in any load
sharing system. The subsequent sections of this paper are organized as follows.

In Section 2, we address the AFT-based load-sharing model for a parallel load sharing system
consisting of two components and with a modified Weibull distribution for component lifetimes.
In Section 3, the inference procedures are thoroughly examined, while Section 4 focuses on the
simulation study. Section 5 demonstrates an application using real data, and the last section
presents the concluding remarks.

2. Proposed AFT based Load sharing model

We investigate a parallel system consisting of two components. The cumulative distribution
function (c.d.f.) of the components follows a MWD characterized by three parameters: λ1, λ2,
and λ3. The probability density function (p.d.f.), survival function (s.f.), and hazard rate function
of the MWD with parameters λ1, λ2, and λ3 are provided as follows.

f (u) =
(

λ1 + λ2λ3uλ3−1
)

exp
{
−
(

λ1u + λ2uλ3
)}

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0 (1)
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F̄(u) = exp
{
−
(

λ1u + λ2uλ3
)}

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0

h(u) =
(

λ1 + λ2λ3uλ3−1
)

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0

The three-parameter modified Weibull distribution, denoted as MWD(λ1, λ2, λ3), serves as a
generalization of the following distributions.

(a) It represents the Exponential distribution, ED(λ1), when λ2 is set to 0 and λ3 is finite.

(b) It encompasses the Weibull distribution, WD(λ2, λ3), when λ1 is set to 0.

(c) It corresponds to the Rayleigh distribution, RD(λ2), when λ3 is set to 2 and λ1 is set to 0.

(d) It encompasses the Linear failure rate, LFR(λ1, λ2), when λ3 is set to 2.

For more details on MWD(λ1, λ2, λ3), one can refer Sarhan and Zaindin [17] and references cited
therein.

The load sharing behavior observed in a system comprising two components is captured by
the AFT model, which was introduced by Sutar and Naik-Nimbalkar [11]. We denote the lifetimes
of the two components in the system as V1 and V2. These lifetimes are considered independent
and identically distributed random variables. The baseline densities of V1 and V2 are denoted as
f1(·) and f2(·), respectively, while their corresponding baseline survival functions are denoted as
F̄1(·) and F̄2(·). Let X = min(V1, V2) denote time of the first failure and Y = max(V1, V2) denote
the time of the second failure or the system failure time. Consequently, the marginal density of
the first failure can be expressed as follows.

g(x) =
(

2λ1 + 2λ2λ3xλ3−1
)

exp
{
−
(

2λ1x + 2λ2xλ3
)}

, x > 0, λ1 > 0, λ2, λ3 ≥ 0, λ1 + λ2 > 0.
(2)

It is worth mentioning that the distribution of the first failure is identical to the baseline
distribution, which is a modified Weibull distribution with parameters (2λ1, 2λ2, λ3). Following
the AFT load sharing model, the conditional density of variable Y given that X = x, as well as
the joint density of the variables X and Y, can be expressed in the following manner.

g(y|x) =
{

λ1

β
+

λ2λ3yλ3−1

βλ3

}
exp

{
−λ1

β
(y− x)− λ2

βλ3
(yλ3 − xλ3)

}
, (3)

0 < x < y < ∞, β > 0, λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, λ1 + λ2 > 0,

g(x, y) = 2
(

λ1 + λ2λ3xλ3−1
){λ1

β
+

λ2λ3yλ3−1

βλ3

}
× exp

{
−λ1

β
(y− x)− λ2

βλ3
(yλ3 − xλ3)−

(
2λ1x + 2λ2xλ3

)}
, (4)

0 < x < y < ∞, β > 0, λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, λ1 + λ2 > 0,
It is important to note that when the parameter β is equal to 1, the joint density described in

equation (4) simplifies to the joint density of independent random variables X and Y. Essentially,
when β = 1, it indicates no load sharing effect, and hence the occurrences of the two failures (first
and second) are independent of each other. The parameter β is referred to as the load sharing
parameter in this context. In the following section, we will delve into the inference procedures
associated with this concept.
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3. Inference procedures

In this section, we examine different methods for estimating the unknown parameters and
introduce a testing procedure to assess the presence of the load sharing effect.

3.1. Direct estimation procedure

The complete data, denoted as (x, y) = {(xi, yi) : xi ≤ yi; i = 1, 2, ..., n}, represents the set of
observations. The log-likelihood function based on this complete data can be expressed as
follows.

log L = n log 2 +
n

∑
i=1

log
(

λ1 + λ2λ3xλ3−1
i

)
+

n

∑
i=1

log
(

λ1βλ3 + λ2λ3βyλ3−1
i

)
− n(λ3 + 1) log β

− λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )− 2λ1

n

∑
i=1

xi − 2λ2

n

∑
i=1

xλ3
i .

We observe that, the log-likelihood equations ∂ log L
∂β = 0, ∂ log L

∂λ1
= 0, ∂ log L

∂λ2
= 0 and ∂ log L

∂λ3
= 0 do

not have explicit solutions for the parameters λ1, λ2, λ3, β. The mathematical expressions for
the score functions, specifically ∂ log L

∂β = 0, ∂ log L
∂λ1

= 0, ∂ log L
∂λ2

= 0, and ∂ log L
∂λ3

= 0, can be found in
Appendix (A).

In the following subsection, we outline a two-step approach for determining the values of the
unknown parameters λ1, λ2, λ3, and β.

3.2. Two-step parameter estimation procedure

The process of estimating the values of λ1, λ2, λ3, and β has been conducted using a two-step
methodology.
Step 1. We observe the first failure, X, and estimate baseline parameters, namely, λ1, λ2 and λ3
by using the MCEM procedure proposed by Sutar [18].
Step 2. In order to estimate the load sharing parameter β, we utilize the conditional distribution
of Y given X = x, as expressed in equation (3). The estimates of λ1, λ2, and λ3 obtained in Step
1 are then substituted into that equation to perform the estimation. We refer to this estimation
process as a two-step estimation procedure, and the subsequent subsections outline these two
steps in detail.

3.2.1 Estimation of λ1, λ2 and λ3 (Step 1)

It is worth noting that the distribution of the first failure, X, is also a modified Weibull distribution
(MWD) with parameters 2λ1, 2λ2, and λ3. Let us denote 2λ1 = γ1, 2λ2 = γ2, thus distribution of
X is MWD with parameters γ1, γ2 and λ3. We use the MCEM algorithm proposed by Sutar [18]
for finding the estimates of γ1, γ2 and λ3. To implement the proposed MCEM algorithm, we take
two independent random variables U1 and U2, which has exponential (γ1) and Weibull (γ2, λ3)
distributions, with their respective survival functions as exp(−γ1u1) and exp(−γ2uλ3

2 ). Let γ̂1,
γ̂2 and λ̂3 be the MLEs of γ1, γ2 and λ3 obtained through MCEM algorithm, then the MLEs of
λ1, λ2 and λ3 can be obtained as λ̂1 = γ̂1

2 , λ̂2 = γ̂2
2 and λ̂3.

3.2.2 Estimation of β (Step 2)

To estimate the load sharing parameter β, we utilize the conditional distribution of Y given X = x
as described in equation (3). In this study, two methods are proposed for estimating β, which are
discussed as follows.
Method I : It can be noted, the conditional distribution of Y given X = x as truncated MWD
with parameters λ1

β = θ1(say), λ2
βλ3

= θ2 (say), λ3 = θ3 (say) truncated at X = x. Furthermore, the

conditional distribution mentioned is equivalent to the distribution of the minimum value between
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two independent random variables, denoted as W1 and W2. Specifically, W1 follows a truncated
exponential distribution, which is truncated below x and has a parameter θ1. On the other hand,
W2 follows a truncated Weibull distribution, also truncated below x, with parameters θ2 and θ3.
The survival functions of W1 and W2 are exp{−θ1(w1− x)} and exp{−θ2(wθ3

2 − xθ3)}, respectively.
Let us consider the complete data for i = 1, 2, ..., n as a set of 2n independent random variables
denoted as (W1i, W2i). The random variables W1i represent truncated exponential distributions,
truncated below xi, with a parameter θ1, while W2i represent truncated Weibull distributions,
truncated at xi, with parameters (θ2, θ3). Additionally, we define Z2i as the minimum value
between W1i and W2i. Consequently, Z2i follows a truncated MWD (Minimum of Weibull and
Exponential Distribution) distribution, characterized by a probability density function (p.d.f)

g(z2i) =
(

θ1 + θ2θ3zθ3−1
2i

)
exp

{
−θ1(z2i − xi)− θ2(zθ3

2i − xθ3
i )
}

,

0 < xi < z2i < ∞, β > 0, θ1 > 0, θ2 ≥ 0, θ3 ≥ 0, θ1 + θ2 > 0.
We can regard the observed values y ≡ (y1, y2, ..., yn) as corresponding to the values of Z2 ≡
(Z21, Z22, ..., Z2n).

The joint density of W1 and W2 given X = x(≡ (x1, x2, ..., xn)) can be written as

g(w1, w2|x) = {θ1, θ2, θ3}n
n

∏
i=1

wθ3−1
2i exp

{
−θ1(w1i − xi)− θ2(wθ3

2i − xθ3
i )
}

, (5)

The log-likelihood can be expressed in the following manner.

log L = n log (θ1θ2θ3) + θ3

n

∑
i=1

log(u2i)− θ1

n

∑
i=1

u1i − θ2

n

∑
i=1

uθ3
2i .

In order to perform the E step, it is necessary to calculate the conditional expectation of
Ec [log L|Z2]. This can be represented as follows.

Ec [log L|Z2] = n log (θ∗1 θ∗2 θ∗3 ) + θ∗3 Ec

[
n

∑
i=1

log(U2i)|Z2

]

− θ∗1 Ec

[
n

∑
i=1

U1i|Z2

]
− θ∗2 Ec

[
n

∑
i=1

Uθ∗3
2i |Z2

]
. (6)

Remark 1. For i equal to 1, 2, and 3, the variables θi and θ∗i represent the values of θi at the
current iteration and the next iteration of the MCEM (Monte Carlo Expectation-Maximization)
algorithm. Specifically, if θi = θ

(p)
i represents the estimated value of θi at the p-th iteration,

and θ∗i = θ
(p+1)
i represents the estimated value of θi at the (p + 1)-th iteration, then θi and θ∗i

respectively denote the values of θi at the p-th and (p + 1)-th iterations of the MCEM algorithm.

The conditional density of W11 given X = x and Z21 = z21 is a mixed probability density
function (p.d.f.) and can be expressed as follows.

g(w1|x, z21) =
θ1(

θ1 + θ2θ3zθ3−1
21

) {I(w1=z21) + θ2θ3zθ3−1
21 exp {−θ1(w1 − z21)} I(w1>z21)

}
.

where, IA(·) is indicator function defined on set A. The details regarding the same are Appendix
(B). Thus, the conditional expectation of W11 given X and Z21 can be obtained as

E(W1|X, Z21) =
∫

w1g(w1|x, z21)dw1

=
θ1(

θ1 + θ2θ3zθ3−1
21

) {Z21 + θ2θ3Zθ3−1
21 exp {θ1Z21}

∫ ∞

Z21

w1 exp {−θ1w1} dw1

}
.

  RT&A, No.3 (74)  
Volume 18, September 2023  

712



Santosh S. Sutar, Chandrakant G. Gardi, Somnath D. Pawar
ANALYZING LOAD SHARING SYSTEM RELIABILITY: MWD APPROACH

By using the result, ∫ ∞

Z21

w1 exp{−θ1w1}dw1 =
(θ1Z21 + 1) exp {−θ1Z21}

θ2
1

,

we get

E(W1|X, Z21) =
θ1(

θ1 + θ2θ3zθ3−1
21

) {Z21 + θ2θ3Zθ3−1
21

exp{θ1Z21}(θ1Z21 + 1) exp{−θ1Z21}
θ2

1

}

=
1
θ1

+
{

Z21 −
(

θ1 + θ2θ3Zθ3−1
21

)−1
}

= K(Z21)(say),

and hence

E

(
n

∑
i=1

W1i|X, Z2

)
=

n
θ1

+
n

∑
i=1

Z2i −
n

∑
i=1

1(
θ1 + θ2θ3Zθ3−1

21

) .

Thus, given {Z2i = yi, i = 1, 2, ..., n} and {Xi = xi, i = 1, 2, ..., n}, we get

E

(
n

∑
i=1

W1i|x, y

)
=

n
θ1

+
n

∑
i=1

yi −
n

∑
i=1

1(
θ1 + θ2θ3yθ3−1

i

) .

Likewise, the conditional density function of W21 given X = x, Z21 = z21, and the corresponding
conditional expectation can be expressed as follows.

g(w2|x, z21) =
θ2θ3(

θ1 + θ2θ3zθ3−1
21

){zθ3−1
21 I(w2=z21) + θ1wθ3−1

2 e{−θ2(W
θ3
2 −z

θ3
21)} I(w2>z21)

}

and

Ec

{
Wθ∗3

21 |X, Z21

}
=

θ2θ3Zθ∗3 +θ3+1
21(

θ1 + θ2θ3Zθ3−1
21

) +
θ1θ2θ3eθ2Z

θ3
21(

θ1 + θ2θ3Zθ3−1
21

) ∫ ∞

Z1

Wθ∗3 +θ3−1
2 e−θ2W2

θ3 dW2.

After simplification, we get,

Ec

{
Wθ∗3

21 |X, Z21

}
=

θ2θ3Zθ∗3 +θ3+1
21(

θ1 + θ2θ3Zθ3−1
21

) +
θ1θ
− θ∗3

θ3
2(

θ1 + θ2θ3Zθ3−1
21

) ∫ ∞

0

(
u + θ2Zθ3

21

) θ∗3
θ3 e−udu

Let

T =
∫ ∞

0

(
u + θ2Zθ3

21

) θ∗3
θ3 e−udu = E

[
V + θ2Zθ3

21

] θ∗3
θ3 ,

where V has an exponential distribution with mean 1. By employing the Monte Carlo technique,
we can replace T with a Monte Carlo sum, which is given as follows.

T = E
[
V + θ2Zθ3

21

] θ∗3
θ3 =

1
m

m

∑
j=1

(
vj + θ2Zθ3

21

) θ∗3
θ3 ,

where, {v1, v2, ..., vm} is random sample of size m (sufficiently large) from exponential distribution
with mean 1. Thus, we get

Ec

{
n

∑
i=1

Wθ∗3
2i |X, Z2

}
=

n

∑
i=1

 θ2θ3Zθ∗3 +θ3−1
2i(

θ1 + θ2θ3Zθ3−1
2i

) +
θ1θ
− θ∗3

θ3
2

m
(

θ1 + θ2θ3Zθ3−1
2i

) m

∑
j=1

(
vj + θ2Zθ3

2i

) θ∗3
θ3


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and hence {Z2i = yi, i = 1, 2, ..., n}, that is Z2 = y, we get

Ec

{
n

∑
i=1

Wθ∗3
2i |x, y

}
=

n

∑
i=1

 θ2θ3yθ∗3 +θ3−1
i(

θ1 + θ2θ3yθ3−1
i

) +
θ1θ
− θ∗3

θ3
2

m
(

θ1 + θ2θ3yθ3−1
i

) m

∑
j=1

(
vj + θ2yθ3

i

) θ∗3
θ3

 .

By applying similar arguments to calculate Ec

{
∑n

i=1 log (W2i) |x, y
}

, we obtain

Ec

{
n

∑
i=1

log (W2i) |x, y

}
=

n

∑
i=1

 θ2θ3 log yi(
θ1 + θ2θ3yθ3−1

i

)


+
n

∑
i=1

 θ1

mθ2

(
θ1 + θ2θ3yθ3−1

i

) ( m

∑
j=1

(
vj + θ2yθ3

i

)
− log θ2

) .

To carry out the M-step, we obtain the following expression from equation (6).

∂Ec [log L|X, Z2]
∂θ∗1

=
n
θ∗1
− Ec

[
n

∑
i=1

W1i|X, Z2

]
, (7)

∂Ec [log L|X, Z2]
∂θ∗2

=
n
θ∗2
− Ec

[
n

∑
i=1

Wθ∗3
2i |X, Z2

]
, (8)

∂Ec [log L|X, Z2]
∂θ∗3

=
n
θ∗3
− Ec

[
n

∑
i=1

log(W2i)|X, Z2

]
− θ∗2

∂Ec

[
∑n

i=1 Wθ∗3
2i |X, Z2

]
∂θ∗3

. (9)

From (7) and (8), we get

∂Ec [log L|X, Z2]
∂θ∗1

= 0⇒ θ∗1 =
n

Ec [∑n
i=1 W1i|X, Z2]

, (10)

∂Ec [log L|X, Z2]
∂θ∗2

= 0⇒ θ∗2 =
n

Ec

[
∑n

i=1 W
θ∗3
2i |X, Z2

] . (11)

Based on the expression (5), it can be inferred that t(W1) = ∑n
i=1 W1i serves as the sufficient

statistic for θ1. In order to carry out the M-step, we equate the sufficient statistic to its expectation,
which takes the following form in our scenario.

E[W1] =
1
θ1

. (12)

The EM iterations alternate between expressions (12) and (10). Let θ
(p)
1 represent the estimate

of θ1 at the p-th iteration step of the MCEM algorithm. The updated estimate θ
(p+1)
1 is determined

by the following equation.

θ
(p+1)
1 =


1

θ
(p)
1

+
1
n

 n

∑
i=1

(yi − xi)−
n

∑
i=1

1(
θ
(p)
1 + θ

(p)
2 θ

(p)
3 y

θ
(p)
3 −1

i

)


−1

. (13)

To estimate θ3, we substitute equation (11) into equation (9), resulting in a nonlinear equation in
terms of θ3. This equation can be expressed as follows.

∂Ec

[
log L|x, y

]
∂θ∗3

=
n
θ∗3
− Ec

[
n

∑
i=1

(log(W2i)) |x, y

]
− n

 ∂Ec

[
log W

θ∗3
2i |x,y

]
∂θ∗3


Ec

[
∑n

i=1 W
θ∗3
2i |x, y

] .
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We employ the Newton-Raphson iterative method to estimate θ∗3 . Let θ
(r)
3 denote the estimate of θ3

at the r-th iteration of the Newton-Raphson method. The updated estimate θ
(r+1)
3 is determined

by the following equation.

θ
(r+1)
3 = θ

(r)
3 −

{
∂Ec[log L|x,y]

∂θ
(r)
3

}
{

∂2Ec[log L|x,y]
∂(θ

(r)
3 )2

} . (14)

The detailed expressions used in equation (14) can be found in Appendix (C). The process should
be iterated until the convergence criterion is satisfied. The value of θ3 at the (p + 1)-th iteration
of MCEM, denoted as θ∗3 = θ

(p+1)
3 , represents the stabilized value of θ3 obtained through the

Newton-Raphson method. Once we get the estimate of θ3, we can obtain θ2 at (p + 1)th iteration
by substituting (14) in (11). That is θ

(p+1)
2 is given by

θ
(p+1)
2 =

n

Ec

[
∑n

i=1 W
θ
(p+1)
3

2i |x, y
] . (15)

Thus, we get the estimates θ̂1 = (̂λ1/β), θ̂2 = ̂(λ2/βλ3) of (λ1/β) and
(
λ2/βλ3

)
respectively.

Now, we have the two estimates of β as β̂1 = (λ̂1/θ̂1) and β̂2 = (λ̂2/θ̂2)1/λ̂3 .Here, λ̂1, λ̂2, and λ̂3
represent the estimates of λ1, λ2, and λ3, respectively, obtained in Step 1. The estimate of β is
obtained by taking the average of β̂1 and β̂2. This estimation method is referred to as the ’average
method’ for estimating β.
Method II : The likelihood, based on the conditional density of Y given X = x, can be expressed
as follows.

L =
n

∏
i=1

{
λ1

β
+

λ2λ3yλ3−1
i

βλ3

}
exp

{
−λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )

}
.

Then the log-likelihood can be written as

log L =
n

∑
i=1

log

{
λ1

β
+

λ2λ3yλ3−1
i

βλ3

}
− λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i ).

Then we have,

∂

∂β
log L = −

n

∑
i=1

{
λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}
{

λ1
β + λ2λ3y

λ3−1
i

βλ3

} +
λ1

β2

n

∑
i=1

(yi − xi)−
λ2λ3

βλ3+1

n

∑
i=1

(yλ3
i − xλ3

i ),

∂2

∂β2 log L = −
n

∑
i=1

{
λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}{
2λ1
β3 + λ2λ2

3(λ3+1)y
λ3−1
i

βλ3+2

}
+
{

λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}2

{
λ1
β + λ2λ3y

λ3−1
i

βλ3

}2

−2λ1

β3

n

∑
i=1

(yi − xi)−
λ2λ3(λ3 + 1)

βλ3+2

n

∑
i=1

(yλ3
i − xλ3

i ).

To estimate the load sharing parameter β, we substitute the maximum likelihood estimates
(MLEs) λ̂1, λ̂2, and λ̂3 of λ1, λ2, and λ3, respectively, into the aforementioned expressions. The
Newton-Raphson iteration method is then employed to obtain the estimate of β. Let β(m) be the
estimate of β at mth iteration. The estimate of β at (m + 1)th iteration is given by

β(m+1) = β(m) −

(
∂

∂β log L
)
|(λ̂1,λ̂2,λ̂3)(

∂2

∂β2 log L
)
|(λ̂1,λ̂2,λ̂3)

.
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We termed this procedure to estimate β as the ‘iteration method’. The subsequent section presents
the test procedure used to assess the presence of the load sharing effect.

3.3. Test Procedure

To test the load sharing effect, we set up the null hypothesis H0 stating that the failure of a
component does not affect the survival components, and the alternative hypothesis H1 stating that
there exists a load sharing phenomenon. Specifically, we express the null hypothesis as H0 : β = 1,
indicating no load sharing effect, and the alternative hypothesis as H1 : β 6= 1, indicating the
presence of a load sharing effect. To test these hypotheses, we employ a score type test, as used
by Sutar and Naik-Nimbalkar [11]. The test statistic follows an asymptotic χ2 distribution with 1
degree of freedom.

In the subsequent section, we present a simulation study to evaluate and compare the
performance of two estimation methods: the average method and the iterative method. The
simulation study aims to assess the accuracy and efficiency of these methods under various
scenarios and conditions. By conducting simulations and analyzing the results, we can gain
insights into the strengths and limitations of each method and make informed decisions about
their suitability for practical applications.

4. Simulation study

In this section, we performed a simulation study to assess the performance of the proposed
estimation procedure in estimating unknown parameters. We generated a total of 10,000 samples
from the joint density described in equation (4) for different combinations of sample sizes (n)
and parameter values. This allowed us to examine the behavior and accuracy of the estimation
procedure under various scenarios and conditions.

For sample sizes of n = 20, 30, 50, and 100, we considered different parameter combina-
tions, namely (λ1, λ2, λ3, β) as (1,2,0.5,0.5), (1,2,0.5,1), (1,2,0.5,1.5), (1,2,1,0.5), (1,2,1,1), (1,2,1,1.5),
(1,2,2,0.5), (1,2,2,1), (1,2,2,1.5), (2,2,0.5,0.5), (2,2,0.5,1), (2,2,0.5,1.5), (2,2,1,0.5), (2,2,1,1), (2,2,1,1.5),
(2,2,2,0.5), (2,2,2,1), and (2,2,2,1.5).

The average estimates of the unknown parameters (λ1, λ2, λ3, β) obtained through Method-I
(Two-step Procedure), denoted as (λ̂1, λ̂2, λ̂3, β̂), along with their corresponding standard errors
(SE), i.e., SE(λ̂1), SE(λ̂2), SE(λ̂3), and SE(β̂), are presented in Table 1 and Table 2. The simulation
results reveal a clear pattern: as the sample size grows larger, the standard errors exhibit a
decreasing trend. This indicates that larger sample sizes lead to enhanced precision in estimating
the parameters, implying that the estimates become more accurate and reliable.

We also conducted a simulation study for the iterative method. We generated 10,000 samples
with sizes n = 30, 50, and 100 from the joint density given in equation (4). We considered different
parameter combinations as (1,2,0.5,0.5), (1,2,0.5,1), (1,2,0.5,1.5), (1,2,1,0.5), (1,2,1,1), (1,2,1,1.5),
(1,2,2,0.5), (1,2,2,1), (1,2,2,1.5).

The estimates of the unknown parameters (λ1, λ2, λ3, β), where the estimate of β obtained
through the Method-II (iterative method), along with their corresponding standard errors (SE(λ̂1),
SE(λ̂2), SE(λ̂3), and SE(β̂)), are reported in Table 3. We observed that compared to the estimates
obtained by the average method, the estimates obtained by the iterative method had higher
standard errors and tended to be overestimated.

Same phenomenon is observed for the simulation for study corresponding to the parameter
combination (λ1, λ2, λ3, β) as (2,2,0.5,0.5), (2,2,0.5,1), (2,2,0.5,1.5), (2,2,1,0.5), (2,2,1,1), (2,2,1,1.5),
(2,2,2,0.5), (2,2,2,1) and (2,2,2,1.5). Hence, we decided not to report the simulation results
corresponding to these parameter combination.
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Table 1: The average estimates of (λ1, λ2, λ3, β) obtained through the two-step procedure.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 1 2 0.5 0.5 1.6347 3.2042 1.4232 0.7157 0.0798 0.0854 0.0693 0.0516

50 1 2 0.5 0.5 1.5741 2.5862 1.0873 0.6217 0.0759 0.0871 0.0669 0.0463

100 1 2 0.5 0.5 1.2432 2.3124 0.7554 0.5482 0.0748 0.0854 0.0675 0.0454

30 1 2 0.5 1 1.6865 3.256 1.8661 1.4245 0.0981 0.0847 0.0775 0.0611

50 1 2 0.5 1 1.4885 2.5789 1.0832 1.3029 0.0868 0.1001 0.0798 0.0579

100 1 2 0.5 1 1.1941 2.2879 0.7286 1.1229 0.0782 0.0861 0.0692 0.0461

30 1 2 0.5 1.5 1.8624 3.2677 1.9431 1.8289 0.1031 0.0962 0.0885 0.0721

50 1 2 0.5 1.5 1.5765 2.4989 0.9867 1.7110 0.0887 0.1042 0.0875 0.0598

100 1 2 0.5 1.5 1.2299 2.3093 0.7589 1.5603 0.0798 0.0954 0.0781 0.0476

30 1 2 1 0.5 1.8921 3.2776 2.4102 0.7372 0.0986 0.0865 0.0703 0.0627

50 1 2 1 0.5 1.5132 2.5867 1.5305 0.6134 0.0764 0.0967 0.0686 0.0511

100 1 2 1 0.5 1.2389 2.3123 1.2397 0.5623 0.0831 0.0876 0.0779 0.0467

30 1 2 1 1 1.7868 3.2682 2.3405 1.4321 0.1031 0.0881 0.0832 0.0684

50 1 2 1 1 1.5105 2.6105 1.5193 1.3139 0.0872 0.0989 0.0794 0.0673

100 1 2 1 1 1.1962 2.2961 1.2204 1.1283 0.0864 0.0872 0.0689 0.0551

30 1 2 1 1.5 1.8611 3.2692 2.3952 1.8382 0.1084 0.1051 0.0967 0.0685

50 1 2 1 1.5 1.5902 2.5156 1.4734 1.7102 0.0972 0.1098 0.0935 0.0637

100 1 2 1 1.5 1.2346 2.3203 1.2087 1.5589 0.0876 0.0971 0.0798 0.0472

30 1 2 2 0.5 1.9614 3.2658 3.4231 0.7267 0.0889 0.0847 0.0704 0.0542

50 1 2 2 0.5 1.5837 2.5991 2.5237 0.6079 0.0769 0.0885 0.0679 0.0476

100 1 2 2 0.5 1.2437 2.2984 2.2389 0.5472 0.0768 0.0853 0.0672 0.0462

30 1 2 2 1 1.8773 3.2674 3.4212 1.4298 0.0974 0.0869 0.0773 0.0616

50 1 2 2 1 1.4932 2.5813 2.5326 1.2998 0.0867 0.0983 0.0795 0.0568

100 1 2 2 1 1.2167 2.2916 2.2193 1.1183 0.0792 0.0851 0.0693 0.0463

30 1 2 2 1.5 1.8823 3.2593 3.4261 1.8672 0.1006 0.0975 0.0869 0.0578

50 1 2 2 1.5 1.5824 2.5139 2.4934 1.6672 0.0891 0.1092 0.0879 0.0573

100 1 2 2 1.5 1.2305 2.3027 2.1979 1.5723 0.07967 0.0945 0.0797 0.0493
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Table 2: The average estimates of (λ1, λ2, λ3, β) obtained through the two-step procedure.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 2 2 0.5 0.5 2.9587 3.2681 1.9672 0.7361 0.0893 0.0842 0.0669 0.0578

50 2 2 0.5 0.5 2.5831 2.5951 1.0851 0.6138 0.0765 0.0879 0.0677 0.0456

100 2 2 0.5 0.5 2.2360 2.3013 0.7542 0.5479 0.0754 0.0851 0.0679 0.0442

30 2 2 0.5 1 2.8476 3.2821 1.8567 1.4310 0.0981 0.0843 0.0774 0.0621

50 2 2 0.5 1 2.4881 2.5813 1.0829 1.3021 0.0870 0.0995 0.0792 0.0582

100 2 2 0.5 1 2.1933 2.2929 0.7300 1.1232 0.0798 0.0856 0.0686 0.0450

30 2 2 0.5 1.5 2.8621 3.2713 1.9413 1.8348 0.1116 0.0961 0.0873 0.0635

50 2 2 0.5 1.5 2.5855 2.5018 0.9964 1.7027 0.0877 0.1030 0.0862 0.0604

100 2 2 0.5 1.5 2.2320 2.3058 0.7542 1.5590 0.0802 0.0934 0.0770 0.0482

30 2 2 1 0.5 2.9745 3.2799 2.3941 0.7416 0.0971 0.0845 0.0689 0.0618

50 2 2 1 0.5 2.5941 2.5979 1.5238 0.6156 0.0771 0.0962 0.0690 0.0504

100 2 2 1 0.5 2.2468 2.3015 1.2416 0.5601 0.0815 0.0860 0.0758 0.0485

30 2 2 1 1 2.8891 3.2801 2.3407 1.4392 0.1028 0.0871 0.0817 0.0671

50 2 2 1 1 2.4932 2.5918 1.5262 1.3124 0.0881 0.0998 0.0811 0.0656

100 2 2 1 1 2.2003 2.3056 1.2185 1.1273 0.0841 0.0887 0.0694 0.0529

30 2 2 1 1.5 2.8601 3.2713 2.4006 1.8425 0.1061 0.1027 0.0946 0.0684

50 2 2 1 1.5 2.5888 2.5139 1.4866 1.7073 0.0926 0.1115 0.0915 0.0630

100 2 2 1 1.5 2.2387 2.3117 1.2032 1.5622 0.0857 0.0965 0.0831 0.0490

30 2 2 2 0.5 2.9601 3.2589 3.4098 0.7244 0.0862 0.0818 0.0671 0.0512

50 2 2 2 0.5 2.5785 2.5853 2.5164 0.6021 0.0741 0.0861 0.0664 0.0447

100 2 2 2 0.5 2.2351 2.2937 2.2336 0.5423 0.0727 0.0815 0.0639 0.0413

30 2 2 2 1 2.8744 3.2701 3.4189 1.4251 0.0948 0.0841 0.0751 0.0591

50 2 2 2 1 2.4821 2.5784 2.5261 1.2982 0.0836 0.0971 0.0783 0.0555

100 2 2 2 1 2.1927 2.2891 2.2164 1.1153 0.0774 0.0816 0.0683 0.0436

30 2 2 2 1.5 2.8513 3.2587 3.4228 1.8294 0.0987 0.0939 0.0849 0.0611

50 2 2 2 1.5 2.5751 2.4992 2.4839 1.6982 0.0838 0.1018 0.0839 0.0572

100 2 2 2 1.5 2.2194 2.2943 2.1926 1.5468 0.0782 0.0896 0.0744 0.0451
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Table 3: The average estimates of (λ1, λ2, λ3, β) obtained through the iterative method.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 1 2 0.5 0.5 1.9887 3.3081 1.9873 0.8154 0.0893 0.0902 0.0678 0.0603

50 1 2 0.5 0.5 1.6912 2.6332 1.0923 0.7385 0.0782 0.0893 0.0691 0.0472

100 1 2 0.5 0.5 1.3497 2.3213 0.7743 0.6293 0.0772 0.0869 0.0695 0.0449

30 1 2 0.5 1 1.9534 3.3109 1.9576 1.4734 0.1023 0.0953 0.0867 0.0703

50 1 2 0.5 1 1.5934 2.6156 1.0921 1.3921 0.0899 0.1012 0.0823 0.0612

100 1 2 0.5 1 1.3173 2.4679 0.7591 1.1581 0.0823 0.0897 0.0728 0.0499

30 1 2 0.5 1.5 1.9727 3.3278 1.9825 1.9568 0.1792 0.1034 0.0957 0.0684

50 1 2 0.5 1.5 1.7455 2.5357 0.9764 1.8627 0.0893 0.1125 0.0897 0.0692

100 1 2 0.5 1.5 1.5671 2.3513 0.7934 1.6193 0.0934 0.1045 0.0842 0.0502

30 1 2 1 0.5 1.9834 3.2895 2.4231 0.8245 0.1034 0.0957 0.0725 0.0769

50 1 2 1 0.5 1.6761 2.6281 1.5482 0.7372 0.0821 0.0993 0.0723 0.0584

100 1 2 1 0.5 1.3182 2.3756 1.2949 0.6429 0.0902 0.0931 0.0784 0.0521

30 1 2 1 1 1.9233 3.2956 2.3756 1.5334 0.1342 0.0913 0.0882 0.0705

50 1 2 1 1 1.5421 2.6492 1.5849 1.4294 0.0917 0.1034 0.0942 0.0736

100 1 2 1 1 1.2951 2.3682 1.2735 1.2661 0.0879 0.0921 0.0704 0.0569

30 1 2 1 1.5 1.9349 3.2937 2.4623 1.9173 0.1236 0.1412 0.1034 0.0756

50 1 2 1 1.5 1.5923 2.5634 1.4954 1.8728 0.1054 0.1532 0.1031 0.0713

100 1 2 1 1.5 1.3681 2.3542 1.2348 1.6212 0.0886 0.0993 0.0902 0.0534

30 1 2 2 0.5 1.9789 3.2782 3.4267 0.8178 0.0921 0.0941 0.0714 0.0589

50 1 2 2 0.5 1.5845 2.5936 2.5372 0.6912 0.0797 0.0901 0.0686 0.0484

100 1 2 2 0.5 1.3383 2.3417 2.2756 0.6389 0.0810 0.0889 0.0725 0.0467

30 1 2 2 1 1.8972 3.2852 3.4462 1.5343 0.1034 0.0872 0.0792 0.0602

50 1 2 2 1 1.4939 2.5789 2.5319 1.4014 0.0913 0.0989 0.0810 0.0579

100 1 2 2 1 1.3214 2.2973 2.2682 1.2314 0.0824 0.0901 0.0713 0.0498

30 1 2 2 1.5 1.9344 3.2604 3.4610 1.9282 0.1083 0.0991 0.0892 0.0659

50 1 2 2 1.5 1.6952 2.5021 2.4934 1.8317 0.0884 0.1153 0.0897 0.0604

100 1 2 2 1.5 1.3156 2.3023 2.2103 1.7116 0.0816 0.0927 0.0829 0.0523

5. Illustration

In this section, we have applied the AFT based load sharing model and estimation procedures to
motor data obtained from Reliability Edge Home [19]. The dataset consists of 18 systems, each
consisting of two motors operating continuously in parallel. The failure times of both motors,
along with their identification labels A and B, were recorded.

Our objectives were twofold. Firstly, we aimed to determine whether the modified Weibull
distribution (MWD) is an appropriate baseline distribution for modeling the lifetimes of both
components. Secondly, we aimed to test whether there exists a load sharing phenomenon, where
the failure of one motor affects the working of the other.

To assess the appropriateness of the MWD as the baseline distribution, we conducted a
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Kolmogorov-Smirnov type test, which confirmed its suitability. However, it should be noted that
the test was conservative due to the estimation of unknown parameters. We utilized a two-step
estimation procedure, with the estimation of β being conducted using the ’average method’. The
estimated values of λ1, λ2, λ3, and β were found to be 0.0028, 2.08168× 1016, 31.6118, and 1.9847,
respectively.

To investigate the presence of load sharing among the motor failure times, we employed
a score-type test proposed by Sutar and Naik-Nimbalkar [11]. The computed test statistic
value was 19.564, which surpassed the critical values at both the 1% and 5% significance levels.
Consequently, we can infer that the failure of one motor has a significant impact on the lifetime
of the other. This finding supports the existence of a load sharing phenomenon, where the
failures of individual components influence the performance of the remaining components in the
system. This conclusion is further supported by the estimated value of β̂ being 1.9847 (significatly
different than 1), suggesting that these 18 parallel systems exhibit load sharing or a load sharing
phenomenon among the component failures.

6. Conclusions

In our study, we focused on a two-component parallel load sharing system and utilized the
accelerated failure time based load sharing model to capture the load sharing behavior observed
in this system. We chose the modified Weibull distribution as the baseline distribution for the
component lifetime. We proposed two procedures for estimating the model parameters within
this framework and also discussed a test procedure for assessing the presence of load sharing
in such systems. Furthermore, we conducted a simulation study to evaluate the performance
of the proposed estimation procedures, which demonstrated satisfactory results. To illustrate
the practical applicability of the load sharing system, we analyzed a specific dataset. It is worth
mentioning that the modeling and analysis of load sharing phenomena can be extended to more
complex systems, such as a k-out-of-m system.
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Appendix (A): Expressions involved in Score functions

∂ log L
∂β

=
n

∑
i=1

(
λ1λ3βλ3−1 + λ2λ3yλ3−1

i

)
(

λ1βλ3 + λ2λ3βyλ3−1
i

) − n(λ3 + 1)
β

+
λ1

β2

n

∑
i=1

(yi − xi)

− λ2λ3

βλ3+1

n

∑
i=1

(yλ3
i − xλ3

i ) = 0, (16)

∂ log L
∂λ1

=
n

∑
i=1

βλ3−1(
λ1βλ3 + λ2λ3βyλ3−1

i

) +
n

∑
i=1

1(
λ1 + λ2λ3xλ3−1

i

)
− 1

β

n

∑
i=1

(yi − xi)− 2
n

∑
i=1

xi = 0,

∂ log L
∂λ2

=
n

∑
i=1

βλ3yλ3−1
i(

λ1βλ3 + λ2λ3βyλ3−1
i

) +
n

∑
i=1

λ3xλ3−1
i(

λ1 + λ2λ3xλ3−1
i

)
− λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )− 2λ2

n

∑
i=1

xλ3
i = 0,

and

∂ log L
∂λ3

=
n

∑
i=1

(
λ1βλ3 log β + λ2βyλ3−1

i + λ2λ3βyλ3−1
i log yi

)
(

λ1βλ3 + λ2λ3βyλ3−1
i

)
+

n

∑
i=1

λ2xλ3−1
i + λ2λ3xλ3−1

i log(xi)(
λ1 + λ2λ3xλ3−1

i

) − n log β− λ2

n

∑
i=1

(
yi
β

)λ3

log
(

xi
β

)

− λ2

n

∑
i=1

(
xi
β

)λ3

log
(

yi
β

)
− 2λ2

n

∑
i=1

xλ3
i log(xi) = 0.
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Appendix (B): The information pertaining to the conditional density of

W11 given X = x and Z21 = z21

Consider

Ḡ(w1, z21|X = x) = P(Z21 > z21, W11 > w1|X = x)
= F̄W1|X=x(max(z21, w1))F̄W2|X=x(z21)

= exp
{
−θ1[max(z21, w1)− x]− θ2(zθ3

21 − xθ3)
}

.

Due to ordering in z21 and w1, we have following three cases-

1. z21 > w1 i.e. max(z21, w1) = z21.

2. z21 < w1 i.e. max(z21, w1) = w1.

3. z21 = w1 i.e. max(z21, w1) = z21 or w1.

When, z21 > w1 we have,

Ḡ(w1, z21|X = x) = exp
{
−θ1(z21 − x)− θ2(zθ3

21 − xθ3)
}

.

Thus, we have

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) = 0, z21 > w1 > 0.

When, z21 < w1 we have,

Ḡ(w1, z21|X = x) = exp
{
−θ1(w1 − x)− θ2(zθ3

21 − xθ3)
}

, w1 > z21 > 0,

and hence

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) , w1 > z21 > 0.

That is

g(w1, z21|X = x) = θ1θ2θ3zθ3−1
21 exp

{
−θ1(w1 − x)− θ2(zθ3

21 − xθ3)
}

, w1 > z21 > 0.

When, z21 = w1 we have,

Ḡ(w1, z21|X = x) = exp{−θ1(z21 − x)− θ2(zθ3
21 − xθ3)} , w1 = z21 > 0.

Thus, we have

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) , w1 = z21 > 0

= θ1 exp
{
−θ1(z21 − x)− θ2(zθ3

21 − xθ3)}
}

, z21 = w1 , w1 = z21 > 0.

Thus, by combining all the above cases, we can write the joint density as

g(w1, z21|X = x) = θ1θ2θ3zθ3−1
21 exp{−θ1(w1 − x)− θ2(zθ3

21 − xθ3)}I(z21 = w1)

+θ1 exp{−θ1(z21 − x)− θ2(zθ3
21 − xθ3)}I(z21 < w1).

Hence, the conditional density of W11 given X = x, Z21 = z21 can be obtained as

g(w1|x, z21) =
g(w1, z21|X = x)

g(z21|X = x)

=
θ1(

θ1 + θ2θ3zθ3−1
21

) {I(w1=z21) + θ2θ3zθ3−1
21 exp {−θ1(w1 − z21)} I(w1>z21)

}
.
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Appendix (C): Expressions involved in (14)

∂2Ec

[
log L|x, y

]
∂(θ

(r)
3 )2

= − n

(θ
(r)
3 )2

− n
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3

2i |x, y
] ∂2Ec
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(r)
3

2i |x,y

]
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3 )2

−


∂Ec

[
W

θ
(r)
3

2i |x,y

]
∂(θ

(r)
3 )2
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Ec
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W

θ
(r)
3

2i |x, y
]}2 ,
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∂Ec
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i=1 W
θ
(r+1)
3

2i |x, y
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(r)
3

=
n

∑
i=1

θ2θ3y
θ
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3 +θ3−1

i log(yi)(
θ1 + θ2θ3yθ3−1

i
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−
n

∑
i=1

m
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j=1

θ
(r)
1 θ
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2

−
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(r+1)
3

θ
(r)
3

(
vj + θ
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2 yθ3

i

) θ
(r+1)
3

θ
(r)
3

mθ
(r)
3

(
θ1 + θ2θ3yθ3−1

i

)

+
n

∑
i=1

m
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j=1

θ
(r)
1 θ

(r)
2

−
θ
(r+1)
3

θ
(r)
3

(
vj + θ

(r)
2 yθ3

i

) θ
(r+1)
3
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(
vj + θ

(r)
2 yθ3
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(r)
3

(
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∂2Ec
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3
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∂(θ
(r)
3 )2
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θ2θ3y
θ
(r+1)
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−
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3

θ
(r)
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log θ
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(r)
2 yθ3

i

) θ
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3
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(r)
3
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(
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