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performing a successful brute force attack, confusion and diffusion properties, and avalanche criterion 
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distribution with four parameters is introduced. The mathematical and statistical properties of the proposed 
distribution, such as the quantile function, moments, moment generating function, survival function, hazard 
function, odds function, and reversed hazard function, were studied to understand its nature. The probability 
density function of the order statistics for this distribution was also obtained. The parameters of the model were 
estimated using the maximum likelihood method of estimation. The proposed model was applied to two real 
datasets relating to the relief times of twenty patients receiving an analgesic and the sum of skin folds in 202 
athletes collected at the Australian Institute of Sports. The results showed that the new model outperformed its 
comparators and provides better fit than Topp-Leone exponentiated inverse exponential, Topp-Leone inverse 
exponential, exponentiated inverse exponential, inverse exponential and exponential distributions.  
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TECHNIQUES .................................................................................................................................................. 73 
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This research work focuses on Bayesian inference in this study to detect a change in the rate of a Maxwell 
distribution model with independent random variables. The paper specifically analyzes a single rate shift and 
demonstrates how the Bayesian framework can be used to efficiently solve this problem. To produce samples from 
Maxwell distribution and evaluate the datasets, simulation techniques were used, and the R programming 
language was used. Although the model looks to be simple, no analytical solutions are available for parameter 
inference, necessitating the use of approximations. The study emphasizes the Gibbs sampler’s applicability for 
change-point analysis using a Markovian updating approach. The simulation research findings show that the 
predicted rate is near to the true value, confirming the consistency and stability of the Bayesian estimator. 
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Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy 

Extropy is a complimentary dual of Shannon’s entropy, which has many applications. The maximum likelihood 
and Bayesian approaches are used in this article to explore the weighted extropy and weighted residual extropy 
of the Pareto type II distribution. Using unified hyper-censoring data, we calculate the maximum likelihood 
estimation of weighted extropy and its residual measures. Based on symmetric and asymmetric loss functions, 
Bayesian estimators of weighted extropy and its residual measure are developed based on unified hyper censoring 
data. To do some complex calculations, Markov chain Monte Carlo methods are used. To test the performance of 
the estimators, a Monte Carlo simulation study and an illustration using real data sets were carried out. The 
outcomes of the study showed that as the sample size increases, maximum likelihood and Bayesian estimators of 
the weighted extropy and its residual measure perform well. Also, Bayesian estimators of the weighted extropy 
and its residual under the general entropy loss function are superior to the Bayesian estimators under the others 
in most cases. Theoretical and empirical findings are generally in good agreement. 
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APPLICATION ................................................................................................................................................. 97 

Anthoni Amali A, J.Jesintha Rosline 

Fuzzy graph and Fuzzy soft graph are indispensable computing modules for presenting membership and non - 
membership values in the world of uncertain situations and incidents. In this research article, we introduce the 
new module of Alternate Quadra Submerging Polar Fuzzy Soft Graph with four co –ordinates with membership 
and non – membership values. The aim of this new fuzzy soft graph is to find the single output from different 
uncertain parametric sets of subjects and events, between the range [-1, 1]. The submerge level of fixed four co 
ordinates is a tool to find the precise and reliable membership degree values from uncertain problems and 
outcomes. In this artifact, we also investigate the different types of Alternate Quadra Submerging Polar Fuzzy 
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Soft Graphs, corresponding parametric fuzzy values and submerge membership and non – membership values. 
We discussed Strong, Complete, Complement and m complement properties of Alternate Quadra Submerging 
Polar Fuzzy Soft Graphs. We use this fuzzy soft graph in the Analysis of water related diseases to find the result 
of most and least affected diseases with the symptoms among the hostel students in the same locality. We find the 
maximum and minimum membership and non - membership value of the water related diseases in an unique way 
by using this Alternate Quadra Submerging Polar Fuzzy Soft Graph score function values. 
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Recently, the measurement of uncertainty has attracted the attention of researchers. In this article, we introduce 
a new weighted uncertainty measure known as weighted generalized entropy. We also study its dynamic 
(residual) version which is known as weighted generalized residual entropy. These are length-biased shift-
dependent uncertainty measures. It is shown that the proposed dynamic uncertainty measure uniquely 
determines the survival function. The various significant properties and the relationship with other well-known 
reliability measures of the proposed dynamic uncertainty measure are also studied. Finally, a real life data set is 
used to illustrate the usefulness of our proposed uncertainty measures.  
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In the present investigation, we consider a bulk queue model with the assumption that the server may stop 
working due to random failure during any stage of the service. As soon as the server fails, it is immediately sent 
for repair. The server offers all incoming units the first mandatory service and any one of the optional services as 
per the unit's requirements. For computation purposes, we assume that the server offers m+1 services, of which 
the first one is essential and the remaining are optional. The server may take a vacation in accordance with the 
Bernoulli vacation schedule with probability p as soon as both service phases of a unit are completed. As the 
system empties, the server idles and needs some time to set up before initiating the next service. In order to analyse 
the model and derive various steady-state queue length distributions, we incorporated the supplementary 
variables corresponding to service time, vacation time, and repair time and applied the probability generating 
function technique to determine the various system state distributions. Using these probability distributions, we 
derive the explicit form of various performance indices. To discuss the validity of the present model, we obtained 
some well-known results from the queueing literature as a special case of the present model by setting appropriate 
parameters. Finally, to analyse the sensitivity of several performance indices, a numerical demonstration is 
provided. 
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In this research, we present an approach to model lifetime data by a weighted three-parameter probability 
distribution utilizing the exponential and gamma distributions. We have presented some of the essential 
characteristics such as the shapes of pdf, cdf, moments, incomplete moments, survival function, hazard function, 
mean residual life, stochastic ordering, and order statistics of the proposed distribution. Furthermore, we also 
presented the Bonferroni index and Lorenz curve of the proposed distribution. The maximum likelihood approach 
is used to estimate the parameters of the distribution. Finally, the proposed probability distribution is compared 
to goodness of fit with Lindley, Akash, exponential, two-parameter Lindley, cubic transmuted Rayleigh, and 
Exponential-Gamma distributions for the real-time data set. 
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In this communication, we proposed two parametric generalized divergence measures. The well-known 
divergence measures available in the literature are a particular case of our new proposed divergence measure. We 
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A bivariate version of the Bilal distribution has been proposed in the literature, called the Farlie-Gumbel-
Morgenstern bivariate Bilal (FGMBB) distribution. In this article, we have dealt with the problem of estimation 
of the scale parameter associated with the study variable Z of primary interest, based on the ranked set sample 
defined by ordering the marginal observations on an auxiliary variable W, when (W, Z) follows a FGMBB 
distribution. When the dependence parameter f is known, we have proposed the following estimators, viz., an 
unbiased estimator based on the Stoke’s ranked set sample and the best linear unbiased estimator based on the 
Stoke’s ranked set sample for the scale parameter of the variable of primary interest. The efficiency comparison of 
the proposed estimators with respect to the maximum likelihood estimator have been carried out. 

COST-REVENUE ANALYSIS AND ANFIS COMPUTING OF HETEROGENEOUS QUEUING 
MODEL WITH A SECOND OPTIONAL SERVICE WITH FEEDBACK UNDER HYBRID 
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Divya K, Indhira K 

This research article examines an M/M/2 heterogeneous queueing model that provides two services: a mandatory 
first essential service (FES) and an optional second optional service (SOS). The model incorporates breakdown, 
feedback, and a hybrid vacation policy. Matrix expressions are structured to evaluate the stationary probability 
distribution of the number of customers in the system and system performance measures using the matrix-
geometric approach (MGA). Additionally, formulas are being developed to estimate the model’s performance 
indicators. The cost function is being evaluated to determine the best values of the system’s decision variables, 
and an adaptive neural fuzzy inference system (ANFIS) based on soft computing technology is being utilized to 
validate the obtained results. Keywords: Markovian queue, Breakdown, Hybrid vacation, Matrix geometric 
approach, ANFIS. 

EVALUATION OF RELIABILITY’ INDICES AND CHARACTERISTICS OF THE POWER 
SYSTEM QUIPMENT AND DEVICES BY NON TRADITIONAL METHOD  .................................. 196 

Farzaliyev Y.Z., Farhadzadeh E.M. 

In the paper considered the research expediency classification of statistical data according to the given varieties 
of signs. The researching carried out based on modeling of small and multidimensional samples to statistical 
distribution functions. A discrepancy found in the estimation of the mathematical expectation of the average 
values of sample implementation, to overcome this inconsistency, a new method for modeling samples of random 
variables is proposed. It established that the classification in the literature data carried out according to the 
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varieties of signs accepted in the classifiers without control of expediency. The causes of errors arising in the 
evaluation of Kolmogorov statistics as the largest in absolute deviation are analyzed the deviation between 
statistical distribution functions of the population and sample using simulation modeling, fiducially intervals 
and the theory of testing statistical hypotheses. These erroneous calculations with a small number and 
multidimensionality of sampling implementations double increases of the Type II Error. Finally, the result 
showed the advantages of the new method in comparison with Kolmogorov’ criterion via checking 
representativeness of sample.  

AN ATTRIBUTE CONTROL CHART FOR TIME TRUNCATED LIFE TESTS USING 
EXPONENTIATED INVERSE KUMARASWAMY DISTRIBUTION  .................................................. 206 

B. Srinivasa Rao, M. Rami Reddy, K. Rosaiah

In this article an attribute control chart is designed for the Exponentiated Inverse kumaraswamy distribution 
under a time truncated life test by assuming the life-time of the item follow the selected Exponentiated Inverse 
Kumaraswamy distribution with known parameters. In order to limit the cost of checking the quality of an item 
in any industrial process with time truncation, this process is much useful. By considering the average number 
of defective items from a specified lot that are failed before the time limit, the attribute control limits are 
constructed. The control chart is determined using Binomial distribution based on the Upper and Lower control 
limits. The functioning of the designed control chart is examined with the average run length (ARL) values. The 
control chart constants and limits are calculated for specific ARL values with assumed parameters at different 
sample sizes for an in-control process. These control chart constants are obtained by considering different 
combinations of parameters of the assumed distribution. With these in-control limits the ARL values are observed 
by shifting the parameter values. A simulation analysis is developed by taking a specific number of observations 
in each sample and the average number of failures from each sample is considered as a statistic to establish the 
execution of the control chart for a specified ARL at a particular shift in parameter. With that statistic of average 
number of failures from the samples the control chart is prepared. It is observed a specific change in defective 
number when there is shift in parameter values. The results are illustrated with an example.  

A TYPE I HALF -LOGISTIC EXPONENTIATED WEIBULL DISTRIBUTION: PROPERTIES 
AND APPLICATIONS  ................................................................................................................................... 218 

Olalekan Akanji Bello, Sani Ibrahim Doguwa, Abukakar Yahaya, Haruna Mohammed Jibril 

In the area of distribution theory, statisticians have proposed and developed new models for generalizing the 
existing ones so as to make them more flexible and to aid their application in a variety of fields. In this article, we 
present a new distribution called the Type I Half-Logistic Exponentiated Weibull (TIHLEtW) Distribution with 
four positive parameters, which extends the Weibull distribution by two parameters. Some statistical properties 
of the TIHLEtW distribution, such as explicit expressions for the quantile function, probability weighted 
moments, moments, generating function, Reliability function, hazard function, and order statistics are discussed. 
A maximum likelihood estimation technique is employed to estimate the model parameters and the simulation 
study is presented. The superiority of the new distribution is illustrated with an application to two real data sets. 
The results showed that the new distribution fits better in the two real data sets amongst the range of distributions 
considered.  

ESTIMATION OF RELIABILITY AND LIFETIME OF COMPOSITE OVERWRAPPED 
PRESSURE VESSELS ADOPING POTENTIAL FAILURES ASSESSMENT AND 
ACCELERATED TESTS APPROACH  ........................................................................................................ 234 

Maryam Gholami Arjenaki, Dr. Mahdi Karbasian, Amin Kazemi Manesh, Mohammadreza Jafari 

Aim. Compressed air vessels are responsible for injecting compressed air to the mechanical flying device. It should 
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be noted that the pressure level inside these vessels is very important in conducting all operational stages 
successfully; therefore, it is of high significance to be assured of the quality of the vessels being used. This study 
was done in 2017 in order to calculate and estimate the reliability of compressed air vessels in mechanical flying 
device system with proposing a potential failures assessment and accelerated test approach taking into 
consideration the current methods. Methods. The paper uses methods of Fault Tree Analysis, Failure Mode & 
Effect Analysis and Accelerator tests. Initially, the interactions among the components were identified using the 
Design Structure Matrix in order to design a matrix to help estimate the reliability; consequently, improve 
equipment performance. Next, failures root recognition was done using Fault Tree Analysis diagram, then, 
failures reasons prioritization was done using Failure Mode & Effects Analysis tables. Accelerator tests were 
designed and applied on failure mechanisms such as leakage by pressure on vessels, corrosions on steal head, 
nipples, O-ring creeping, O-ring ozone cracking and liner chemical degradation. After that, the average of failure 
rates was calculated within the taking after stage for each test. Within the conclusion, the result of failure rates 
from the accelerator tests was compared with the result of failure rates from the process approach. Consequently, 
the most elevated amount of these two approaches was defined as the total failure rate; product reliability and 
lifetime were calculated utilizing this amount. Results. The following finding were obtained using the proposed 
methods. When Windy Liner was used, vessel lifetime was six years and half and vessel reliability in ten years 
was 0/22. Whereas, when Rotational Liner was used, vessel lifetime was eight years and three months and vessel 
reliability in ten years was 0/3. Conclusion.The approach proposed in the paper allows accelerator degradation 
test can also be used instead of accelerated test in order to calculate the reliability of failure mechanisms. In the 
event that high-quality and legitimate O-rings are used, vessel reliability and lifetime can be increased.  

CERTAIN RESULTS OF ALEPH- FUNCTION BASED ON NATURAL TRANSFORM OF 
FRACTIONAL ORDER  .................................................................................................................................. 245 

Farooq Ahmad, D.K. Jain, Ajjaz Maqbool, Aafaq A. Rather, Maryam Mohiuddin, Priya Deshpande, 
Madhulika Mishra, Shaikh Sarfaraj  

The paper introduces a new type of fractional integral transform called the N-transform of fractional order. This 
transform is utilized to derive various results for a more generalized function of fractional calculus known as the 
Aleph-function. The authors present several useful findings and explore the relationship between the N-transform 
and other existing fractional transforms. Additionally, the paper discusses the relationship between the N-
transform of fractional order and other existing fractional transforms. It likely explores how this new transform 
relates to established transforms in fractional calculus. The authors have also examined special cases or specific 
examples to further illustrate the applications and properties of the N-transform of fractional order. These cases 
could involve particular functions or parameter values that offer insight into the behavior of the transform.  

RELIABILITY TEST PLAN FOR THE POISSON-POWER LINDLEY DISTRIBUTION .................. 252 

Alphonsa George, Dais George 

In this article, we introduce a new member to Poisson-X family namely, the Poisson-power Lindley distribution. 
The statistical as well as the distributional properties of the new distribution are studied. The flexibility of the 
distribution is illustrated by means of real data sets. We also introduce a reliability test plan for acceptance or 
rejection of a lot of products submitted for inspection when lifetimes follow the new distribution. The minimum 
sample size using binomial and Poisson approximations, operating characteristic values and minimum ratios of 
the true value and the required value of the parameter with a given producer’s risk are also developed with respect 
to the newly introduced sampling plans. A real data example is also given to illustrate the sampling plan 
developed. 
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CREATION AND ANALYSIS OF MULTIMODAL EMOTION RECOGNITION CORPUS 
WITH INDIAN ACTORS  .............................................................................................................................. 269 

Komal Anadkat, Dr. Hiteishi Diwanji, Dr. Shahid Modasiya, Mihir Mehta 

Emotion recognition plays an important role in many real-life application areas of artificial intelligence like 
human-computer interactions, autism detection, stress and depression detection, measuring mental health, and 
suicide prevention. Emotion state of a person can be decided by the facial expression, tone of voice, words of 
speech, and body gestures when they are having a face-to-face conversation. People widely use social media 
platforms to post their feelings and mood through status. So, the status text can be used to identify the emotional 
state of a person. Physiological signals (EEG, ECG, and EDA) can identify the emotional state more accurately 
as people cannot be faked during the data collection but it is difficult to collect data. Many unimodal and 
multimodal datasets are publicly available but still, there is a strong need to create a multimodal dataset that 
consists of all the important modalities for the identification of emotional state. In this paper, first, we have 
reviewed all the available unimodal and multimodal datasets, then in the next section, we discuss the method to 
prepare the multimodal dataset. The data of four different modalities like facial expressions, audio, social media 
text, and EEG have been collected from seven different actors of different age groups and of different demographic 
regions. The dataset is non-spontaneous and contains discrete emotion labels like happy, sad, and angry. The 
procedure to create a dataset of different modalities include steps like capturing data, pre-processing, feature 
extraction, and storing to the relevant format. In last, to observe effect of different emotions, analysis of proposed 
multimodal database is carried out using efficient image, speech and text parameters.  

THE EFFICACY OF TRAPEZOIDAL FUZZY NUMBERS AND ITS APPLICATION  ...................... 284 

Ajjaz Maqbool Dar, Aafaq A. Rather, Rushika Kinjawadekar, Abhay Deshpande, Maryam 
Mohiuddin, Rashid A. Ganaie, Khursheed Ahmad  

Numerous fields, including engineering, agriculture, and management sciences, have been using trapezoidal 
fuzzy numbers. In this study, we first develop Trapezoidal Fuzzy Number (TFN) and then attempt to formulate 
a model to handle element uncertainty in order to solve a linear programming problem. Making good decisions 
will only require this type of approximation.  

A NOVEL THREE - PARAMETER VERSION OF THE AILAMUJIA DISTRIBUTION ................... 288 

Idzhar A. Lakibul 

In this paper, a novel three - parameter continuous distribution is introduced. This novel distribution is an 
extented version of the Exponenentiated Ailamujia distribution. This extended version called as Exponentiated 
Generalized Ailamujia (EGA) distribution. The Exponentiated Generalized class is used to derive the proposed 
distribution by considering Ailamujia distribution as a baseline distribution. A special case of the EGA 
distribution called Generalized Ailamujia (GA) distribution is also derived. Properties of the proposed 
distribution such as moments, mean, variance, harmonic mean, moment generating function, survival function, 
hazard function, reverse hazard rate, Mills ratio and order statistics are derived. In addition, maximum likelihood 
approach is used to estimate the proposed distribution parameters. Finally, the proposed distribution is applied 
to two real datasets and compare with the Exponentiated Ailamujia and the Ailamujia Inverted Weibull 
distributions. Results reveal that the proposed distribution provides better estimate as compared to the said 
distributions for the given two real datasets. 
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THE EFFICIENCY OF ESTIMATING A POPULATION AVERAGE USING INDEX-TYPE 
ESTIMATORS IN SEQUENTIAL SAMPLING ......................................................................................... 299 

Srinivasa Rao Kolli, U.V.Adinarayana Rao, Adilakshmi Siripurapu, Taviti Naidu Gongada 

This paper discusses the difficulty of approximating the population average of a variable y by knowledge about a 
supplementary variable x in the context of two successive (rotation) sampling occasions. The paper proposes a 
group of exponential-class estimators that includes the regular balanced estimator, produce-class estimator, and 
proportion-class estimator and suggests that these estimators are superior to existing estimators. The paragraph 
also mentions that the paper discusses optimal substitute statements and then the implementation of the 
recommended estimators, which may be important considerations for practical applications of the proposed 
methods. Finally, an empirical study is mentioned as supporting evidence for the research.  

A TWO NON-IDENTICAL UNIT PARALLEL SYSTEM WITH PRIORITY IN REPAIR ................. 308 

Alka Chaudhary, Shivali Sharma 

The paper deals with a system composed of two-non identical units (unit-1 and unit-2). Initially both the units 
are arranged in parallel configuration. Each unit has two possible modes- Normal (N) and Total Failure (F). The 
first unit gets priority in repair. System failure occurs when both the units stop functioning. A single repairman 
is always available with the system to repair a totally failed unit and repair discipline is first come, first served 
(FCFS).If during the repair of a failed unit the other unit also fails, then the later failed unit waits for repair until 
the repair of the earlier failed unit is completed. The repair times of both the units are exponential distribution 
with different parameters. Each repaired unit works as good as new. Using regenerative point technique, various 
important measures of system effectiveness have been obtained. 

DEEP LEARNING APPROACH FOR EVENT RECOGNITION IN FIELD HOCKEY VIDEOS  .... 316 

Suhas H. Patel, Dr. Dipesh Kamdar, Dr. D. D. Vyas, Dr. Prakash P. Patel 

The objectives of this research are to develop a deep learning approach for event recognition in field hockey videos, 
construct a dataset that includes important activities in field hockey such as goals, penalty corners, and penalty, 
and evaluate the performance of the approach using the constructed dataset. By achieving these objectives, the 
research aims to improve the accuracy and effectiveness of event recognition in the fast-paced and complex domain 
of field hockey videos. The methods employed in this research involve utilizing a pretrained convolutional neural 
network (CNN) to train a classifier specifically designed for event recognition in field hockey videos. To facilitate 
this process, a dataset is constructed, consisting of labeled instances of key activities in field hockey, namely goals, 
penalty corners, and penalty. The performance of the approach is then evaluated using this carefully prepared 
dataset, providing insights into the effectiveness and accuracy of the proposed method for event recognition in 
the context of field hockey videos. The findings of this research reveal that the proposed deep learning approach 
for event recognition in field hockey videos achieves a remarkable accuracy of 99.47%. This high level of accuracy 
highlights the effectiveness of the approach in accurately identifying and classifying events in field hockey. 
Furthermore, the results demonstrate the potential of this approach in various field hockey applications, including 
performance analysis, coaching, and video replay. The accurate recognition of events opens new possibilities for 
leveraging field hockey videos for enhanced analysis, coaching strategies, and engaging video presentations. The 
novelty of this research lies in the introduction of a deep learning approach specifically designed for event 
recognition in field hockey videos. Unlike traditional methods, this approach leverages the power of deep learning, 
particularly a pretrained CNN, to improve the accuracy of event recognition. Additionally, the construction of a 
domain-specific dataset addresses the limitation of existing field hockey datasets and enhances the effectiveness of 
the approach. The remarkable accuracy achieved in event recognition further emphasizes the novelty and potential 
of this approach in the field of field hockey video analysis.  
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RELIABILITY AND PROFITABILITY ANALYSIS OF UTENSILS MANUFACTURING 
INDUSTRY WITH EFFECT OF TEMPERATURE AND PREVENTIVE MAINTENANCE .............. 333 

Manisha, Dalip Singh, Kajal Sachdeva, Sheetal 

The production stage of the manufacturing process contains numerous subsystems, and the failure of one might 
have an impact on the entire system. Thus, a manufacturing plant needs to be reliable and well-maintained. This 
paper examines the profitability and reliability of a production plant for utensils while taking the effect of 
temperature into account. The plant processes raw materials through several subsystems in series including 
cutting, pressing, spinning, and polishing & packing. Winter production requires a significant amount of heat 
which could damage the machinery. As a result, production is low and preventive maintenance is carried out 
during the winter. For both the summer and winter seasons, many system measures have been assessed. The time 
distributions have been assumed to be exponential. The model has been analysed using the Markov and 
Regenerative processes. The production fluctuation between the summer and winter seasons have been illustrated 
using a numerical example with specific values for the parameters. 

ANALYSIS OF A FLEXIBLE GROUP SERVICE MAP\PH\1 QUEUEING MODEL WITH, 
IMMEDIATE FEEDBACK, BALKING AND RENEGING  ..................................................................... 345 

G. Ayyappan, S. Kalaiarasi

Queueing models in which the services are provided in groups (or blocks or batches) have found to be very useful 
in real-world applications and such queues been extensively analysed in the literature. In this paper we see one 
such group service queueing model with balking, reneging and immediate feedback. The arrival processes is a 
Markovian arrival , where, the arriving customer may balk the system while the server is idle and the pool is 
empty. Customers are provided service in groups of varying size from 1 to the fixed constant, say, N. The service 
time of a batch follows the phase type distribution corresponding to the each size of the group. A group’s service 
time is taken as the highest of the service times of each customers who make up the group. The group of customers 
who are dissatisfied with the service then that group will get the service immediately. Here, the feedback of a 
group is defined as the average of the feedback of each customers who make up the group. During the admission 
period the customers may renege. We calculated the steady state probabilities by using the matrix geometric 
method, then, by using it we computed few performance measures. We have studied the busy period and the 
distribution of waiting time is derived. Results are illustrated with some graphical representations. 

A STATISTICAL ANALYSIS OF FRACTIONAL FACTORIAL DESIGN USING A FUZZY 
PROBABILISTIC APPROACH ..................................................................................................................... 363 

Sri Devi, P., Pachamuthu, M. 

In factorial experiments, treatment combinations increase as the number of factors increases. While handling a 
large number of factors, many difficulties are encountered. Moreover, mechanical errors like mistaken 
identification of plots, wrong labeling of treatments, etc., may creep in. To overcome these difficulties, only a 
fraction of treatment combinations can be tested. This technique is known as fractional replication. The design 
with fractional replication is known as fractional factorial design (FFD). In FFD, the choice of the fraction of 
treatment depends on what type of information is sacrificed. Usually, the interactions with higher-order are 
omitted, and all main effects and two-factor interactions are estimated without loss of information. The procedure 
for the layout of FFD is closely related to the concept of confounding. The analysis of fractional factorials is similar 
to the analysis of full factors. FFD is used to reduce treatment combinations by a fraction. FFD plays a significant 
role when the experiment is too large. When compared to classical designs, FFD yields a cost-benefit relationship. 
Fuzzy theory is used to deal with the imprecise observations in this design. This paper proposes the statistical 
analysis of fuzzy fractional factorial design with numerical illustration.  
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ON THE PROPERTIES OF GENERALIZED RAYLEIGH DISTRIBUTION WITH 
APPLICATIONS  .............................................................................................................................................. 374 

Sule Omeiza Bashiru, Ibrahim Ismaila Itopa, Alhaji Modu Isa 

In this study, a new three-parameter lifetime distribution called the generalized Rayleigh distribution was 
introduced. The new model is an extension of classical Rayleigh distribution. An extension of density of the 
generalized Rayleigh distribution was derived from which some of the statistical and mathematical properties 
were derived. Some mathematical properties of the distribution were presented such as moments, moment 
generating function, quantile function, survival function, hazard function, reversed hazard function and odd 
function. The distribution of order statistic was obtained in which the maximum and minimum order statistics 
were derived. Estimation of the parameters by maximum likelihood method was discussed. Two real-life 
application of the distribution was presented and the analysis showed the fit and flexibility of the generalized 
Rayleigh distribution over odd Lindley Rayleigh distribution and Rayleigh distribution. The analysis showed 
that the generalized Rayleigh distribution is more effective and robust in fitting the data sets.  

HALF CAUCHY - EXPONENTIAL DISTRIBUTION: ESTIMATION AND APPLICATIONS ....... 387 

K.Jayakumar, Fasna.K

In this paper, we introduce a new two-parameter distribution called the new Half Cauchy – exponential 
distribution (HCE) for modeling lifetime data. The structural properties of the new distribution are discussed. 
Expressions for the quantiles, mode, mean deviation, and distribution of order statistics are derived. The model 
parameters of HCE distribution are estimated by the method of maximum likelihood, method of least square, 
method of Cramer-von-Mises, and Anderson-Darling methods. The existence and uniqueness of maximum 
likelihood estimates are proved. The importance of the new distribution is proved empirically by real-life data set. 

ANALYSIS OF ENCOURAGED ARRIVAL MULTIPLE WORKING VACATION QUEUING 
MODEL UNDER THE STEADY STATE CONDITION  .......................................................................... 402 

Ismailkhan Enayathulla Khan, Rajendran Paramasivam 

Businesses typically entice customers with alluring offers and discounts. Encouraged arrivals is the name given 
to these curious clients. In certain situations, the service offered by queuing models, notably in transportation 
networks, enables the simultaneous serving of several consumers. In general, closed-form solutions to bulk service 
queuing models with idle servers are difficult to find. By coordinating the operations at each workstation using 
the Chapman-Kolmogorov research technique, the main objective of this study is to assess the performance of the 
car assembly line in order to reduce waiting times. The server is in a busy state, is idle, is regularly busy, and is 
in a busy state when it breaks down. Performance metrics are being tracked using a multiple working vacation 
approach. In this study, analysis of encouraged arrival multiple working vacation queuing model under the 
steady state condition. In this model, we included encouraged arrival. By resolving difference equations and 
Chapman Kolmogorov balancing equations, the steady state queue size problem is found. Additionally, the server 
is in the busy, idle state, regular, and breakdown busy states, and performance metrics are conducted. The server 
was sent for repair and is now completely repaired to avoid the crash at any time. After that, the server continues 
to offer the service. It is evidently identified that the efficiency level increased while the encouraged arrival is 
incorporated. The main contribution of this paper is to show the server is in the busy, idle state, regular, and 
breakdown busy states, and performance metrics efficient level increases. It is found that they offer more efficient 
results when compared with the Poisson process method  
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TECHNICAL DEVICE WEAR-OUT PERIOD INFLUENCE ON QUANTITATIVE RISK 
ASSESSMENT RESULTS  .............................................................................................................................. 408 

Yuriy D. Kuznetsov, Evgeniy Yu. Kolesnikov 

Hazardous production facilities contain numerous technical devices, the reliability assessment of which is a part 
of quantitative risk assessment. The paper considers the pressure valve as a safety system element of equipment 
operating under excessive pressure and evaluates its reliability (survival function value) during the operational 
period. Valve reliability during the wear-out period has been modeled to assess wear-out period influence on this 
element failure probability. Modeling was carried out by approximating the failure rate tabular values obtained 
based on statistical data. Approximation was carried out by: a second-degree polynomial, the Weibull distribution 
law and a power function. Comparison of the obtained quantitative estimates with the element failure probability, 
calculated without taking into account the wear-out period, showed necessity of wear-out period influence 
consideration in risk assessment procedure.  

BEHAVIOR ANALYSIS OF WASHING UNIT IN A PAPER PLANT EMPLOYING FUZZY 
APPROACH  ..................................................................................................................................................... 416 

Mamta, Seema Sharma 

Aim. The purpose of this research is to employ a fuzzy approach to assess the system behavior of the washing unit 
in a paper plant using vague, uncertain and inaccurate data. The washing unit is the main operational part of a 
paper plant for which analysis of system behavior is important to choose an appropriate maintenance strategy. 
The analysis has been carried out for washing unit of a paper plant situated in northern India. Methods. The 
proposed approach comprises qualitative and quantitative analysis. In qualitative analysis, the basic arrangement 
of the washing unit is modelled by Petri Net model. In quantitative analysis, the fuzzy λ-τ approach has been 
used for analyzing the systems' failure behavior more accurately. Uncertainties in failure/repair data of every 
subsystem/component of the washing unit are quantified using trapezoidal fuzzy numbers. Results. To assess the 
performance and failure dynamic behavior of the washing unit quantitatively, six reliability parameters including 
failure rate, repair time, mean time between failure, expected number of failures, reliability and availability at 
three different spread levels have been evaluated employing trapezoidal fuzzy numbers. The fuzzified values of 
these reliability parameters of washing unit have been defuzzified employing center of area defuzzification 
technique. Further, crisp values and defuzzified values of these parameters using triangular fuzzy numbers have 
also been obtained. The results obtained by the proposed methodology have been compared with those obtained by 
fuzzy λ-τ approach based on triangular fuzzy numbers. The information/results obtained through the fuzzy λ-τ 
approach with trapezoidal fuzzy number are conservative in nature, therefore, these results may be used by system 
specialist/system analysts for the future plan of implementation. Conclusion. Using this approach, six reliability 
parameters are evaluated and the trend (increase or decrease) of these reliability parameters is examined for 
performance analysis of washing unit in a paper plant. Based on these investigations, suitable maintenance policy 
can be established that will assist maintenance manager/system analysts/engineers in improving system 
performance by implementing appropriate preventive maintenance procedures. As a result, it will help in 
achieving a long time system availability and maximizing overall productivity of the paper plant. The 
implications of this fuzzy reliability approach to industry maintenance and operation planning are quite 
beneficial.  

THE CONTINUOUS BERNOULLI-GENERATED FAMILY OF DISTRIBUTIONS: THEORY 
AND APPLICATIONS  ................................................................................................................................... 428 

Ngozi O. Ubaka, Friday Ewere 

The continuous Bernoulli distribution is a one-parameter probability distribution which is useful in analysis on 
machine learning. A handful of studies has been done to generalize the continuous Bernoulli distribution. In this 
paper, we introduced a wider extension of the continuous Bernoulli distribution by considering its distribution 
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function as a generator. We referred to the proposed family as the continuous Bernoulli-generated family of 
distributions. Basic statistical treatments of the proposed family such as the density and cumulative distribution 
functions, survival and hazard rate functions, quantile, moments, moment generating function, and Renyi 
entropy are derived. The method of maximum likelihood is employed to estimate the unknown parameters of the 
family and the asymptotic behaviour of the parameter estimates is investigated via Monte Carlo simulation study. 
The waiting time (in minutes) of 100 Bank customers and the tensile strength measured in GPa, of 69 carbon 
fibers data sets formed the basis for real-life data fittings. Results obtained from the fitting of the two data sets 
when compared with some existing non-nested models revealed that the fittings were in favor of the continuous-
Bernoulli Weibull distribution over the rest competing distributions.  

A NEW EXPONENTIAL TYPE RATIO ESTIMATOR FOR THE POPULATION MEAN IN 
SYSTEMATIC SAMPLING  .......................................................................................................................... 442 

Ayed AL e’damat, Khalid Ul Islam Rather 

Utilizing auxiliary information effectively in sample surveys can enhance the accuracy of estimations by 
capitalizing on the relationship between the main variable under study and the auxiliary variable. Estimators 
such as ratio, product, exponential, and regression estimators are frequently employed either during the 
estimation process, the design phase, or both. In everyday situations, it is common to incorporate information 
from one or two auxiliary variables to improve the precision of estimators. Auxiliary information has been in 
practice in sampling theory since the advent of modern sample surveys. Information on auxiliary variable having 
high correlation with the variable under study is quite useful in improving the sampling design. Cochran (1940) 
used the highly positively correlated study and auxiliary variable to propound the ratio estimator. Product 
estimator requires a high negative correlation between study and auxiliary variable. By reviewing the literature, 
it is concluded that applying the auxiliary information enhances the efficiencies of the estimators for estimating 
any parameter under consideration. So it is well established fact that the use of auxiliary variable technique 
improves the estimation process for target population. It is also noticed that ratio method of estimation is 
relatively simple and one of the commonly used methods of estimation. Due to limitations in terms of time and 
cost, sample surveys are often preferred over census surveys for collecting primary data. In these sample surveys, 
the ratio, product, and regression estimators are frequently employed to estimate the mean or other parameters of 
interest for the variable under study. To assess their efficiency, these estimators are compared based on their 
approximate mean squared errors. In this paper we proposed an exponential ratio type estimator for the estimation 
of finite population mean under systematic sampling. The mean square error of the proposed estimator is 
computed up to the first order of approximation and we find proposed estimator is efficient as compared to other 
existing estimators. Furthermore this theoretical result is supported by numerical examples as well.  

FAILURE RATE ESTIMATION BY WEIBULL DISTRIBUTION IN A STOCHASTIC 
ENVIRONMENT: APPLICATION TO THE HEMODIALYSIS MACHINE  ...................................... 450 

Sofiene Fenina, Souheyl Jendoubi, Faker Bouchoucha, 

This paper presented a study of the failure rate by introducing the effect of influencing variables. These variables 
have a random effect which depends on the external environment of the system. There are a multitude of variables 
and their modeling is difficult. The perturbation, to the failure rate, caused by external factors, has a direct impact 
on the time scale by the acceleration (or deceleration) of the degradation of the system. Therefore, the adopted 
methodology consists in introducing a perturbation on the Weibull parameters and studying its effect on the 
failure rate. Weibull parameters are considered random variables with a Gaussian distribution. The failure rate 
formulation in a random environment is offered through Weibull distribution. A case study of the hemodialysis 
machine is offered to illustrate the proposed approach and validate the results. The simulations presented show 
the failure rate statistics for different configurations of the Weibull distribution. The validation of the results was 
done using Monte Carlo simulations.  
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ROBUST CLASSIFICATION USING MINIMUM REGULARIZED COVARIANCE 
DETERMINANT ESTIMATOR  ................................................................................................................... 464 

R Muthukrishnan, Surabhi S Nair 

The association between a categorical variable and a group of interconnected factors is the main objective of the 
classification procedure. The linear discriminant analysis (LDA) aims to provide a method for classifying 
populations and dividing up forthcoming observations among the groups that have already been identified. Under 
the suppositions of normality and homoscedasticity, the LDA produces the best discriminant rule for two or more 
groups. Outliers have a significant impact on the parameters of the LDA, mean, and covariance matrix. Robust 
methods are resistant to outliers. This paper explores the robust methods, namely the Minimum Covariance 
Determinant (MCD) estimator and Minimum Regularized Covariance Determinant (MRCD) estimators in the 
context of discriminant analysis under real environments. The MCD technique is used to estimate the location 
and dispersion matrix using the subset of the given size that has the lowest sample covariance determinant. Its 
fundamental problem is that it doesn’t provide a reliable result when the features/dimension is greater than the 
size of the subset. As a result, the MRCD method is employed and the efficiency is studied by computing the 
Apparent Error Rate (AER). In this paper, an attempt has been made to review the existing theory and methods 
of RLDA.  

DESIGN OF MULTIPLE DEPENDENT STATE SAMPLING PLAN USING ZECH 
DISTRIBUTION WITH APPLICATION TO REAL LIFE DATA  .......................................................... 471 

Sunday J. Adeyeye, Ademola J. Adewara, Rao S. Gadde, Samuel K. Adekeye, Adedayo F. 
Adedotun,  Lawrence O. Aako  

In this work, a multiple dependent state sampling plan, which is an inspection procedure that determines whether 
an attribute is conforming or non-conforming to a specific requirement, in which the decision criterion for each 
lot dictates whether to accept the lot; reject the lot; or conditionally accept or reject the lot based on the disposition 
of future related lots, is introduced. This plan has some advantages over other acceptance sampling plans, like 
increased efficiency, improved ability to discriminate between acceptable and non – acceptable lots or batches, 
flexibility in designing the sampling process, and improved cost-effectiveness. To reject a lot, the plan made use 
of the properties of the sampled current and preceding lots. The study aims to reduce the average sampling number 
by using a non-linear optimization problem that is subjected to some constraints. With regards to a life test that 
is truncated in time, the product’s median life was used for the proposed sampling plan assuming that the lifetime 
of the product follows Zech distribution. The usage of median life was necessitated because Zech distribution is 
an asymmetric distribution with longer tail to the right. Two points on the operating characteristic curve were 
used for the proposed sampling plan and the following parameters were found; number of preceding lots which is 
required for deciding if the current lot should be accepted or rejected, the size of the sample, rejection number, 
and acceptance number. For different shape parameters, we constructed tables for various combinations of 
consumers’ and producers’ risks. A real example was provided which showed that a multiple dependent state 
sampling plan is a good sampling plan for fitting the datasets. Comparing the proposed plan with a single 
sampling plan, the results reveal that the proposed plan is more effective at securing the consumer and the 
producer with less inspection. The approach introduced in this study provides an ample opportunity for the 
manufacturers to reduce the cost and time of inspection by having the sample size reduced without compromising 
the decision-making accuracy. By implementing the findings of this study, the consumers are confident that their 
hard-earned money is not used to purchase sub-standard goods.  

19



Table of Contents RT&A, No 3 (74) 
Volume 18, September 2023 

 

MULTIBAND COMPACT MICROSTRIP PATCH ANTENNA FOR WIRELESS 
COMMUNICATION APPLICATIONS ...................................................................................................... 482 

Dr.Shahid Modasiya, Dr.Balvant Makwana, Anil Poriya 

In this paper, a multiband compact microstrip patch antenna for different communication frequencies has been 
presented. The proposed design of the microstrip patch antenna consists of a slotted patch, a quarter-wave feed 
line, and a ground with a cross-edge slot. The antenna can operate from 2.1 GHz to 3.4 GHz with a bandwidth 
of 1.3 GHz; this band corresponds to applications such as Mobile WiMax (2110 MHz-2200 MHz, 2300 MHz-
2400 MHz, 2500 MHz-2690 MHz), Bluetooth (2400 MHz-2497 MHz), and RFiD. (2400 MHz -2483 MHz). 
The higher band, 4.7 GHz to 7.4 GHz, covers C-band, WLAN, and sub-6GHz 5G applications and has a gain 
factor of about 2.15 dB. The antenna is fabricated, and measurements of the radiation pattern and return loss are 
made. The comparison of observed results with those from simulations reveals excellent symmetry. Furthermore, 
the 70× 40 mm2 size of the proposed antenna makes it appropriate for use in lower 5G bands.  

DETECTION OF CERVICAL CANCER RISK FACTORS IN VENEZUELA USING DECISION 
TREE ALGORITHM ........................................................................................................................................ 492 

Oladapo M. Oladoja, Taiwo M. Adegoke 

Cervical cancer, a threat to female existence is one of major cancer affecting women in the developing countries 
of the world. Several factors are responsible which humans didn™t take cognizance of. These factors are 
numerous and can at times be difficult to explain using linear regression because it can™t handle many dummy 
variables that are not necessary to create qualitative predictors. This study uses decision trees to classify and 
identify the major risk factors causing cervical cancer in women depending on their age since it closely mirrors 
human decision making than the classical regression approach. A regression tree was constructed from the 
training data using recursive binary splitting. There was a minimum number of observations required for each 
terminal node before it stopped. Then cost complexity pruning to the large tree in order to obtain a sequence of 
best sub trees was applied. By using decision trees as building blocks, we can construct more powerful predictions 
for decision trees, bagging, random forests, and boosting. 858 cervical cancer patients were observed using 34 
risk factor attributes from University Hospital of Caracas, Venezuela. Using classification trees, 14.22% of errors 
are produced during training. Based on the test data set, 91.5% of the predictions are correct. Based on the data 
set’s pruned data, 91.75% of the observations can be classified correctly. Test predictions generated by this model 
are within 67 years of the true median age of patients, based on regression trees. Bagging and Random forest 
show improvement on the regression trees by setting a reduced mean square error. There are four most significant 
variables among all trees examined by the random forest, including age at first sexual intercourse, number of 
pregnancies, number of sexual partners, and hormonal contraceptives. The same goes for boosting, as a result of 
the relative influence statistics. 

ASSESSMENT OF WATER QUALITY USING MULTIVARIATE TECHNIQUES ........................... 501 

Olamiji T. Onafowokan, Kazeem O. Obisesan, Oladapo M. Oladoja 

When deciding if water is suitable for a particular usage, its quality ”which includes its chemical, physical, and 
biological characteristics” is referred to. The quality of the water is influenced by many natural and human 
influences. Despite being in equilibrium, the natural ecosystem and water quality would certainly be disturbed 
by any large changes in the water quality. In order to assess the levels of water pollution in the Asejire and Eleyele 
reservoirs, this study conducted a Physico-chemical analysis of the two reservoirs. It also used multivariate 
techniques to identify the causes of water pollution in the two reservoirs under investigation, used a generalized 
linear model to analyze the variability in turbidity levels, and suggested regulatory solutions to address water 
pollution in the two reservoirs under study. In Ibadan, which has a population of about four million, the two 
main sources of pipe-borne water are the Eleyele and Asejire reservoirs. Between January 2003 and August 2019, 
water samples were taken from both locations and analyzed for 13 Physico-chemical parameters using the 
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Principal Component Analysis and Cluster Analysis for feature extraction and finally a Generalized Linear 
model for prediction. Basic Tables and descriptive plots, Principal Component Analysis, Factor Analysis, and 
Generalized Linear Models were employed. Results: In the Asejire and Eleyele reservoirs, respectively, the PCA 
yields 5 significant main components explaining 76.56% and 60.97% of the variance, while the FA yields 5 
significant major components explaining 94.90% and 79.97%. A generalized linear model (GLM) was used to 
study the variability in turbidity level, and the results indicate that two parameters ”Iron and Silicon” in the 
Asejire reservoir are crucial for understanding turbidity variation and four ”Colour, Alkaline, Silica, and Solids 
”contribute significantly to turbidity in the water level in the Eleyele Reservoir. With the exception of dissolved 
oxygen from either reservoir (Eleyele or Asejire) and iron from Eleyele Reservoir, many metrics in Asejire are 
within SON and WHO acceptable limits. This suggests that the water in the Eleyele reservoir is more 
contaminated than the Asejire reservoir. 

ON SOME STATISTICAL PROPERTIES AND APPLICATIONS OF THREE-PARAMETER 
SUJATHA DISTRIBUTION  .......................................................................................................................... 514 

Hosenur Rahman Prodhani, Rama Shanker 

In this paper some important statistical properties of three-parameter Sujatha distribution including descriptive 
measures based on moments, reliability properties, mean deviations, stochastic ordering and Bonferroni and 
Lorenz curves have been discussed. The estimation of parameters using maximum likelihood estimation has been 
discussed. Finally, the goodness of fit of the distribution has been presented for two real lifetime datasets and 
compared with several one and two-parameter well- known lifetime distributions.  

ANALYSIS OF MMAP/PH/1 CLASSICAL RETRIAL QUEUE WITH NON-PREEMPTIVE 
PRIORITY, SECOND OPTIONAL SERVICE, DIFFERENTIATE BREAKDOWNS, PHASE TYPE 
REPAIR, SINGLE VACATION, EMERGENCY VACATION, CLOSEDOWN, SETUP AND 
DISCOURAGEMENT ..................................................................................................................................... 528 

G. Ayyappan, G. Archana @ Gurulakshmi

A single server retrial queueing model with non-preemptive priority was examined in this research. The arrival 
of priority consumers follow a marked Markovian arrival pattern, and both high priority and low priority service 
times are according to phase type distribution. Matrix analytic method are used to examine the steady state 
analysis of this model. Various system performance measures, cost analysis and busy period analysis also 
examined in this model. In additionally, by using some system performance measures we provide the numerical 
illustration with numerically and graphically. 

EXPONENTIAL - POISSON DISTRIBUTION IN RELIABILITY ACCEPTANCE SAMPLING 
PLAN FOR LIFE TESTING  ........................................................................................................................... 552 

Dr. V.Kaviyarasu, A.Nagarajan 

Statistical Quality Control is an important field in production and maintenance of quality product in 
manufacturing environments. Reliability sampling plans (RSP) were widely employed in the sectors of 
manufacturing to monitor the quality of products in order to safe guard the producer as well as the consumer 
also the experimental costs and time can be saved. This article is developed on the reliability sampling plan when 
the evaluating life of the product is set to be truncated at pre-determined time follows Exponential-Poisson (EP) 
distribution. The probability of acceptance criteria for the single sampling is designed to achieve the lowest sample 
size for such proposed two parameter probability distribution with the corresponding decision rule. This study is 
conducted to design plan parameters on the basis of desired quality levels such as Acceptable Reliability Quality 
Level (ARQL), Indifference Reliability Quality Level (IRQL) and Rejectable Reliability Quality Level (RRQL). 
This study computes the median life for the specified producer's risk, its OC curve is provided along with the 
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minimum ratio values. Furthermore, it determines the minimum size of the samples and the acceptance number. 
Table values have been obtained and provided for single sampling plan. Additionally, suitable examples are 
provided to conduct a study on a real time situations.  

CHARACTERIZATION OF POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS 
SOFTWARE RELIABILITY GROWTH MODEL AND PARAMETER ESTIMATION  .................... 560 

Rajesh Singh , Kailash R. Kale , Pritee Singh 

The authors of this study set out to build a software reliability growth model (SRGM). Software reliability is a 
crucial attribute that has to be quantified and evaluated. In most cases, software errors happen at unpredictable 
times. In this article, the failure intensity of the single parameter length-biased exponential class SRGM has been 
characterized taking into account the Poisson process of the incidence of software faults. The parameters of the 
proposed SRGM under investigation are the scale parameter (𝜃1) and the total number of failures (𝜃0). It is 
considered that the experimenter may have previous knowledge of the parameters from past or earlier experiences 
in the form of gamma priors. The posterior probability may be obtained by combining the prior probability with 
the likelihood of the data, and Bayes estimators can then be suggested.  

POWER WEIGHTED SUJATHA DISTRIBUTION WITH PROPERTIES AND APPLICATION 
TO SURVIVAL TIMES OF PATIENTS OF HEAD AND NECK CANCER  ........................................ 568 

Rama Shanker, Kamlesh Kumar Shukla 

In this paper a power weighted Sujatha distribution, which includes power Sujatha distribution, weighted 
Sujatha distribution and Sujatha distribution as particular cases, has been proposed. Its statistical properties 
including behavior of density function, moments, hazard rate function, and mean residual life function have been 
discussed. Estimation of parameters has been discussed using the method of maximum likelihood. A simulation 
study has been presented to know the performance of maximum likelihood estimates of parameters. Application 
of the proposed distribution have been explained with a real lifetime data relating to patients suffering from head 
and neck cancer and goodness of fit shows quite satisfactory fit.  

A STUDY ON STATISTICAL PROPERTIES OF A NEW CLASS OF Q-EXPONENTIAL-
WEIBULL DISTRIBUTION WITH APPLICATION TO REAL-LIFE FAILURE TIME DATA  ........ 582 

N. Sundaram, G. Jayakodi

This article introduces a new four-parameter probability distribution called the q-Exponential-Weibull 
distribution based on the q-Exponential-G family of distribution. The proposed new distribution has to decrease 
and increase failure rates which are more common in reliability scenarios and can be used instead of Weibull and 
the exponential distribution. It also includes some sub-models like q-Exponential-Exponential, q-Exponential-
Rayleigh, Exponential-Weibull, Exponential-Exponential and Exponential-Rayleigh lifetime distributions. 
Various Mathematical and statistical Properties are investigated, which include Limiting behavior, Moments 
and Moment Generating functions, Quantile function and Order Statistics. The Maximum Likelihood estimator 
is used for estimating the model parameters. This new distribution is compared with other lifetime distributions 
using different kinds of real-life failure time data.  
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RELIABILITY ACCEPTANCE SAMPLING PLAN FOR ONE PARAMETER POLYNOMIAL 
EXPONENTIAL DISTRIBUTION ................................................................................................................ 596 

Anumita Mondal, Sudhansu S. Maiti 

In this study, we construct a reliability acceptance sampling inspection plan to decide whether to accept or reject 
a lot of products where the One Parameter Polynomial Exponential (OPPE) family of distributions governs the 
lifetimes. The OPPE distribution has infinite support. To utilise finite support, it has transformed into its unit 
form, i.e. having the support (0, 1). The design of the plan, Operating characteristic curve, and Sampling 
procedure are discussed. Determination of the plan parameters using an algorithm is stated. The optimal sample 
size is determined to protect the consumer’s confidence level. Two simplest particular choices of the OPPE family 
- the exponential and the Lindley are chosen as examples, and optimal plan parameters are tabulated and
compared. The plan is executed with three real-life data sets.

TWO-CLASSES FOR REGRESSION TYPE OF ESTIMATORS FOR THE RATIO OF TWO 
POPULATION MEANS IN TWO-PHASE SAMPLING IN THE PRESENCE OF NON-
RESPONSE FOR STRATIFIED POPULATION ........................................................................................ 610 

Manish Mishra, B. B. Khare, Sachin Singh 

Utilizing the auxiliary information in stratified population, in the current study, we have discussed two classes 
for the regression type of estimators to estimate the ratio of two population means in the presence of non-response 
with the unknown population mean of the auxiliary variable. To estimate the unknown value of the population 
mean of auxiliary variable, we have used two-phase sampling method. For the suggested classes of estimators, we 
have considered two situations for the use of auxiliary information along with the non-response in the study 
variable such as incomplete information on the study variable and incomplete information on the corresponding 
units of the auxiliary variable and in another situation we have considered incomplete information on the study 
variable and complete information on the auxiliary variable. To estimate the non-response in study variable and 
auxiliary variables, we have used the Hansen and Hurwitz method of sub-sampling from the non-respondents. 
For the suggested classes of estimators, some members have been recognized. Using large sample approximation, 
the expressions for bias and mean square error have been derived for the suggested classes. The optimum values 
of the constants involving in the expression of mean square error have also been calculated. Mean square errors 
of the Suggested classes are found to be equal in theoretical study and real data study. An empirical study has 
been conducted with the help of a real data set (The Primary Census Abstract-2011 published by the Office of the 
Registrar General & Census Commissioner, India.) in order to compare the proposed classes of estimators with 
the conventional estimator for the different rates of non-response and different choices of sub-sampling fraction. 
The Suggested classes are found to be most efficient with respect to the conventional estimator for the different 
rates of non-response and different choices of sub-sampling fraction in empirical study. 

DISTRIBUTIONAL PROPERTIES OF ORDER STATISTICS AND RECORD STATISTICS 
FROM ERLANG-TRUNCATED EXPONENTIAL FAMILY OF DISTRIBUTION AND ITS 
CHARACTERIZATIONS ............................................................................................................................... 621 

Imtiyaz A. Shah 

Erlang Truncated Exponential Distributions are characterized by distributional properties of order statistics. 
These characterizations include known results for ordinary order statistics based on two non-adjacent order 
statistics coming from two independent Erlang truncated exponential distributions. Using this method and 
compared with an efficient recent method given, three examples of real lifetime data-sets are analyzed by that 
deals with non-random samples. Such type of examples predicts the accumulative new cases per million foe 
infection of the new COVID-19. Corollaries for Pareto and power function distributions are also derived. 
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ESTIMATION OF FRECHET PARAMETERS WITH TIME-CENSORED DATA IN 
ACCELERATED LIFE TESTING UTILISING THE GEOMETRIC PROCESS .................................... 631 

Abdul Kalam, Cheng Weihu, Ahmadur Rahman, Mohammad Ahmad 

The geometric process (GP) has been applied to estimate constant stress accelerated life testing for the Frechet 
failure item with time-censored data. A geometric process (GP) is developed by the failure time of tested items 
when stress levels are constantly rising. The estimates of the various parameters are calculated using the 
maximum likelihood estimation procedure. The asymptotic variance of estimates is obtained using a Fisher 
information matrix. The asymptotic variance is then used to calculate the distribution parameter asymptotic 
interval values. The statistical properties and confidence intervals of the required parameters are then illustrated 
using a simulation technique. 

RELIABILITY ANALYSES OF AN INDUSTRIAL SYSTEM BASED ON HERMITE 
POLYNOMIAL AND 2-PARAMETER WEIBULL  .................................................................................... 642 

Anas Sani Maihulla, Michael Khoo Boon Chong, Ibrahim Yusuf 

The current study aims to assess the structure's reliability using stochastic Hermite surface methodology. This 
approach uses series expansion of standard normal random variables to model uncertainty. (i.e., polynomial chaos 
expansion). The coefficients of the polynomial chaos expansion are found through stochastic collocation, which 
only requires a few performance function evaluations. After determining the order of the polynomial and its 
coefficients, first order methods calculates the reliability index. To demonstrate the applicability of the suggested 
based reliability analysis, failure rates were used and the duration for the evaluated were set to be 360 days. 
Numerical result are provided on monthly basics. On the other hand, to achieve our goal, we proposed the 2-
parameter modified Weibull distribution. The simulation was performed using Maple software. The evaluation 
for each subsystem was displayed in the result and analyses section. The conclusion, however, draws a broad 
conclusion about the study.  

COMPLETELY RANDOMIZED DESIGN IN FUZZY OBSERVATIONS  .......................................... 649 

Kirthik VairaMariappan A, Manigandan P 

The real world is vague, unclear and full of ambiguity, and are inevitable. The classical statistics disregards the 
extreme, aberrant, uncertain values, and hence a new appropriate tool had to surface. The Analysis of Variance 
(ANOVA) method is used to compare the response variable's means between several groups that are specified by 
the factor variable. Another method of data analysis offered by ANOVA is one that is based on statistics and is 
experimental design-driven, or Design of Experiment (DOE). In DOE, there are single and two-factor 
experimental designs depending on, observing the effect of number of factor(s) on output variable as a primary 
interest. Among all the single factor experimental designs, Completely Randomized Design (CRD) is the simplest 
and flexible design. In this design, treatments are randomly allocated to the experimental units over the entire 
experimental material. Each treatment is repeated to increase the efficiency of the design. CRD is more 
appropriate to use when the data is homogenous. The objective that deals with the preparation and analysis of 
experiments is experimental design. The treatments are apportioned to the exploratory units at random in the 
fully randomized experimental design. When the observed data are fuzzy observations rather than precise 
numerical values, the CRD is expanded in this study. In this paper, an innovative Triangular Fuzzy Number 
(TFN) in the fuzzy Completely Randomized Design (FCRD) analysis statistical method for evaluating CRD 
model hypotheses on fuzzy data is presented. To convert the fuzzy totally randomized design model into two 
crisps CRD models using the suggested way, and then convert to lower and upper models are used in fuzzy 
hypothesis. Determine the fuzzy hypothesis for the fuzzy CRD model based on the hypotheses of the two crisp 
CRD models using the decision rules. The fuzzy test appears to be a competitive tool in circumstances with 
ambiguous data, particularly linguistic ambiguity because it is more adaptable than the conventional test of 
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significance. This paper presents and illustrates a novel fuzzy triangular number-based approach to fuzzy CRD 
analysis. This paper also explores how flexible a CRD may be when handling uncertain elements. This study 
provides an example of a new method for fuzzy CRD analysis employing TFN.  

A COLD STANDBY SYSTEM WITH IMPERFECT SWITCH AND PREVENTIVE 
MAINTENANCE: A STOCHASTIC STUDY  ............................................................................................ 659   

R.K. Bhardwaj, Purnima Sonkar 

The aim of this paper is to develop a probabilistic model for a cold standby system that consists of an imperfect 
switching device and a servicing facility. The model aims to address the issue of unexpected random failures of 
the switch by implementing preventive maintenance measures. The system has two identical units. It starts with 
one unit in active operation and another unit in cold standby mode. In standby mode the unit remains in perfect 
state. No failure is allowed in standby mode. As the operating unit fails, the standby unit needs to be switched 
into operation, to keep the system working. A servicing facility is present in the system to perform necessary 
servicing related tasks. The servicing facility referred to as the server, also takes care of all necessary remedial 
activities like preventive maintenance and repairs. The switch used as switching mechanism to place the standby 
unit into operation may found imperfect when needed. Similarly, the server too can fail while doing job. A 
preventive maintenance scheme is used for the switch whereas treatment is given to server. The method of semi-
Markov process and regenerative point technique is used for model developing and solving, respectively. The 
expressions are derived to determine different system performance measures such as mean time to system failure, 
availability, busy period, expected number of preventive maintenances and the profit. The distributions of random 
time elapsed in repairs, replacements, preventive maintenances and treatments are general. This study highlights 
the usefulness of switch’s preventive maintenance in long run. To study the asymptotic behavior of the system 
model, all the expressions for system performance measures are obtained in steady state. A simulation study is 
conducted using a presumed data set and assuming a Weibull probability distribution. The numerical results are 
shown in tabular form. The simulation results serve to highlight the significance of preventive maintenance for 
the switch. The findings of the paper can provide guidelines to the people engaged in designing, framing and 
implementing standby switching systems in real applications.  

MOVING BLOCK BOOTSTRAP METHOD WITH BETTER ELEMENTS REPRESENTATION 
FOR UNIVARIATE TIME SERIES DATA  ................................................................................................. 671 

Kayode Ayinde, James Daniel, Akinola Adepetun, Olusegun S. Ewemooje 

Bootstrap method was initially used to determine accuracy measures for sample estimates of independent and 
identical distributions (i.i.d.). In order to apply bootstrap method to time-dependent data, blocking technique is 
introduced to preserve serial correlation of the original time series data. In the past, resampling techniques for 
time-dependent data were implemented using Non-overlapping Block Bootstrap (NBB) method but its 
dichotomous block arrangement restricts the number of blocks. As a result, improvement becomes necessary. 
Although the Moving Block Bootstrap (MBB) method improves upon NBB with regard to many more blocks, it 
introduces an uneven representation of the time series elements which eventually influences its accuracy. In this 
paper, an innovative method called Moving Block Bootstrap Method with better element Representation (MBBR) 
is developed to ensure that the time series elements within the block are better represented with minimum number 
of elements. To compare MBB and MBBR, simulated studies were carried out on some set time series data 
following each classes of Autoregressive Moving Average (ARMA) model with different parameters, sample sizes 
and standard deviation using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Results 
show that by improving the representation of time series data in the blocking arrangement, the accuracy of the 
proposed method (MBBR) consistently outperforms the existing one (MBB) and thus, provides more efficient 
estimates of the dependent variable. 
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RELIABILITY AND SENSITIVITY ANALYSIS OF A SYSTEM WITH CONDITIONAL AND 
EXTENDED WARRANTY .............................................................................................................................. 689 

Kajal Sachdeva, Gulshan Taneja, Amit Manocha 

System reliability and maintenance cost are the most crucial and decisive factors influencing consumers’ buying 
behaviour. The manufacturer attempts to address the consumer concern by offering a warranty in accordance 
with the reliability of the system and maintenance costs. This study aims to examine the stochastic behaviour of 
a single unit system operating in three different time frames, namely normal, extended and expired warranty 
time duration. The system user can prolong the normal warranty period at an extra cost. This prolonged warranty 
is termed an ‘Extended Warranty’. However, the manufacturer provides a warranty on a system with certain 
conditions. If the failures are covered under the warranty conditions, the repair/replacement is done free of cost; 
otherwise, all charges are borne by the system user. Markov and regenerative processes are used to derive the 
system’s reliability and other performability measures. Time distributions used in the study are taken as 
arbitrary. The profit function for the manufacturer and the user is formulated and analysed. Sensitivity analysis 
for system availabilities in different time zones and profit functions is also done. Numerical examples for 
exponential, Weibull and Erlang time distributions are discussed to illustrate the derived measures. 

ANALYZING LOAD SHARING SYSTEM RELIABILITY: A MODIFIED WEIBULL 
DISTRIBUTION APPROACH ...................................................................................................................... 708 

Santosh S. Sutar, Chandrakant G. Gardi, Somnath D. Pawar 

Load sharing systems have the ability to distribute the workload among its components. For analyzing a two 
component parallel load sharing system, the accelerated failure time (AFT) based model with component lifetimes 
as linear failure rate distribution have been recently proposed in the literature. In the present study, the 
component lifetimes are assumed to follow a modified Weibull distribution, which is the generalization of many 
standard lifetime distributions such as exponential, Weibull, Rayleigh, and linear failure rate. The use of modified 
Weibull distribution leads to a new family of bivariate distributions for ordered random variables. We have also 
looked into the associated inference techniques for the proposed model. In order to evaluate the effectiveness of the 
suggested estimating approaches, we conducted a simulation study. In order to provide a practical application 
and better understanding, we carefully examine a dataset related to motors. 

RANDOMIZED BLOCK DESIGN IN FUZZY ENVIRONMENTS  ...................................................... 725 

A. Kirthik VairaMariappan, Manigandan Palanisamy

On the basis of the statistics, ANOVA also provides a method of data analysis that is motivated by consideration 
of the experimental design or Design of Experiment (DOE). Experimental design plays an essential part in 
statistical analysis and data interpretation. One factor of criteria forms the basis of a one-way classification. Two 
factors or two criteria form the basis of two-way classification. Innovations and creations require experimentation 
as their foundation. Replication, randomization, and local control are the three fundamental tenets of 
experimental designs, which are used to determine the cause and effect of interactions. The error of any treatment 
can be isolated and any number of treatments may be omitted from the analysis without complicating it. The data 
provided in this study are vague and need an extended version of the RBD to investigate these vague observations. 
The simplest of all designs based on the principles of randomization and replication are Completely Randomized 
Designs (CRD). When the experimental materials aren't uniform in some circumstances. Divide the 
experimental region into smaller, homogeneous blocks in RBD. The treatment is applied at random to each block, 
and each block is reproduced. Since uncertainty is a common feature of all real-world issues and denotes fuzziness 
and unpredictability, Randomized Block Design has long been widely used in the agricultural and industrial 
sectors. It is therefore impossible to avoid using statistical RBD analysis with fuzzy observations. The objective 
of this study was to develop the problem of a Randomized Block Design (RBD) test for Triangular Fuzzy Numbers 
(TFN) is discussed in this paper. However, in a scenario that is actual, the underlying relationship is not a clear-
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cut function of a particular form; it has some ambiguity or imprecision. The estimated numbers are very similar 
to the actual ones. This approach may generally be used for any real-time triangle fuzzy number calculation. In 
this proposed methodology, it is obvious that if the value of the observed fuzzy test statistics is similar to real 
numbers in the testing crisp hypotheses, then fuzzy RBD is very sensitive for making the determinations as to 
whether to accept or reject the fuzzy null hypotheses and also debates the application of the method for example.  

A NEW CLASS OF SIN-G FAMILY OF DISTRIBUTIONS WITH APPLICATIONS TO 
MEDICAL DATA ............................................................................................................................................. 734 

Laxmi Prasad Sapkota, Pankaj Kumar And Vijay Kumar 

This article is dedicated to the study of the new class of distributions and one of its particular members. Based on 
the ratio of CDF G(x) and 1+G(x) of the baseline distribution, we have developed the new trigonometric family 
of distributions by transforming the sine function, and we named it the new class sin-G (NCS-G) family of 
distributions. The general properties of the suggested family of distributions are provided. Using the inverted 
Weibull distribution as a baseline distribution, we have introduced a member of the suggested family having a 
reverse-j or increasing, or inverted bathtub-shaped hazard function. Some statistical properties of this NCS-IW 
distribution are explored. The associated parameters of the new distribution are estimated through the MLE 
method. To assess the estimation procedure, we conducted a Monte Carlo simulation and found that even for 
small samples, biases and mean square errors decreased as the size of the sample increased. Two real medical data 
sets are considered for the application of the NCS-IW distribution. Using some criteria for model selection and 
goodness of fit test statistics, we empirically proved that the suggested model performs better than six other 
existing models (most of which have more parameters). 

STUDY OF THE FUNCTIONING OF A MULTI-COMPONENT AND MULTI-PHASE 
QUEUING SYSTEM ON THE EXAMPLE OF A VEHICLE REPAIR ENTERPRISE  ......................... 751 

M.D. Katsman, V.I. Matsiuk, V.K. Myronenko

The purpose of the work is to build, on the basis of multi-component and multi-phase models of queuing systems 
(QS), mathematical models of maintenance and repair of vehicles by repair enterprises to increase the efficiency 
of their use. Results. The article considers multi-component and multi-stage mathematical models of QSs with 
the distribution of the arrival flow simultaneously between the system components, which consist of a certain 
number of service channels and waiting places in the queue. The same service channels can have different 
performance depending on the type of customers which they serve. Customers go through several stages of service 
and waiting. Considered are service of customers without a lack of time to stay in the service channel and waiting 
and with a lack of such time. The service process in the QS of each component consists of several (𝑘𝑒) stages with 
the corresponding duration, the full-service period will be equal to the sum of such time intervals. Stage durations 
have certain probability distributions with appropriate parameters, then the total duration of the service process 
will have a generalized Erlang distribution with parameters of probability distributions of stages of order 𝑘𝑒. The 
number of components and their parameters correspond to the similar characteristics of the production divisions 
of the repair enterprise. The study of the effectiveness of the repair enterprise operation as a multi-component and 
multi-stage QS consists in determining the probability of service and the probability of failure of QS components 
and the system as a whole, the number of service channels, the number of customers in components, the number 
of customers in component queues, the duration of maintenance of customers in components and the system, the 
duration of being customers in queues of components and QSs, duration of stay of requirements in QSs and 
duration of customer waiting in QS queues. The model is implemented using Any Logic University Researcher. 
The AnyLogic University Researcher development environment allowed to combine the principles of system 
dynamics with the paradigms of agent and discrete-event modeling. In addition, thanks to the built-in Java SE 
compiler, a library of ready-made solutions is available, including generators of random variables, which 
significantly expands the possibilities of developing and implementing experiments. In particular, experiments 
on optimization (relative to a defined criterion), sensitivity of the model, stability of the model, etc. are available. 
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MATHEMATICAL MODELING OF AVERAGE WEIGHTED RENYI’S ENTROPY MEASURE  . 768 

Savita, Rajeev Kumar  

A weighted entropy measure of information is provided by a probabilistic experiment whose basic events are 
described by their objective probabilities and some qualitative (objective or subjective) weights. Weighted entropy 
has also been applied to equity the amount of information and degree of homogeneity related with a partition of 
data in classes. These measures have tremendous applications and are found to be quite helpful in many fields. In 
the present paper, a new weighted Renyi’s entropy measure is proposed for the discrete distributions when 
probabilities are unknown and weights are known. The various characteristics of the measure are investigated. 
The measure is also studied taking into a particular case. In the last, numerical computation and graphical 
analysis is also done. Based on the graphical analysis, it is concluded that the proposed measure varies with values 
of weights and is concave in nature. The developed weighted information measure is useful for the discrete 
distribution when probabilities are unknown and weights are known.  

REDUCTION IN WAITING TIME OF SINGLE SERVER MARKOVIAN QUEUING 
ENCOURAGED ARRIVAL MODEL  .......................................................................................................... 776 

Ismailkhan Enayathulla Khan, Rajendran Paramasivam 

There are several other methods for improving efficiency in a control chart. The use of a control chart alone is not 
advised. Other process improvement methods should always be used in addition to control charts. To trace the 
evolution of a process variable across time, use a control chart. The variable is applicable to all industries, 
including service, manufacturing, non-profit, and healthcare. It illustrates how a process variable changes over 
time and provides information on the kinds of variations that deal with ongoing improvement. Having a solid 
understanding of variation is necessary for effective control chart usage. Queuing models with constant or 
variable sizes are extensively used in the modeling of road and transport systems, sophisticated information and 
computer systems, and inventory replenishment systems. The control chart technique helps in tracking the 
performance of these queues, because of the single-server Markovian queue with encouraged arrival (SSMQEA 
model) the company which is running with fewer customers can increase the number of customers and hence the 
company finance level increase also this SSMQEA method will improve the points in share market. The major 
measurable performance characteristics of any queuing system are average queue length and average waiting 
time. Control limits are defined in this study for the 𝑀[𝑋]/M/1 encouraged arrival queuing model where the 
batch size follows a geometric distribution. To highlight its uses, numerical observations are also included. Little' 
s law is also satisfied.  

THEORY AND APPLICATIONS OF THE ALPHA POWER TYPE II TOPP-LEONE- 
GENERATED FAMILY OF DISTRIBUTIONS  ......................................................................................... 785 

Jacob C. Ehiwario, John N. Igabari, Peter E. Ezimadu 

This paper introduces a composition of two single parameter generalized family of distributions: the alpha power 
transform and type II Topp-Leone-G families of distributions. Some basic mathematical treatments of the family 
of distributions are studied. The parameter estimates of the proposed family of distributions are derived via 
maximum likelihood estimation method and a Monte Carlo simulation study was conducted to examine the 
asymptotic behaviour of the parameter estimates of sub-model belonging to the proposed family of distributions. 
To illustrate the applicability of the proposed family of distributions in real world data fittings, two data sets 
consisting of the daily recovery and mortality rates of Covid-19 patients in Nigeria, from May 1 to June 30, 2020, 
was employed. The APTIITLK distribution arising from the proposed family of distributions, alongside with some 
bounded non-nested distributions was used to fit the two data sets and results obtained from the analysis clearly 
revealed that the APTIITLK distribution outperformed all the non-nested distributions used in fitting the two 
data sets. Some informative graphical plots for goodness of fit test were investigated to further validate the 
flexibility of the APTIITLK distribution over the competing distributions.  
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NOVEL DISTRIBUTION FOR MODELING UNCENSORED AND CENSORED SURVIVAL 
TIME DATA AND REGRESSION MODEL ............................................................................................... 808 

Adubisi O. D., Adubisi C. E. 

This work proposes a new one-parameter model titled the type II Topp Leone half logistic (TIITLHL) model which 
is characterized by an increasing and decreasing hazard rate function quite dependent on the shape parameter. 
Some structural properties and basic functions used in reliability analysis are derived. Simulations are carried 
out for both uncensored and censored samples. The uncensored simulation results indicated that the estimators 
perform quite well in producing good parameter estimates at finite sample sizes. However, the Anderson Darling 
estimator (ADE) average estimate tend to the true parameter value faster than other methods with minimum 
bias. More so, simulation based on censored samples using different censoring proportions showed that the bias, 
MSE and MRE values decrease as the sample size increases for the different censoring proportions. Two 
uncensored and censored datasets from the medical and environmental sciences were analysed to show the 
relevance, flexibility and adaptability of the TIITLHL model, and the new model achieved the best performance 
when compared with six other competing lifetime models. In addition, the log-TIITLHL regression model 
constructed and compared with two existing models showed that this model will be a useful option in survival 
investigation. 

MOVING AVERAGE AND DOUBLE MOVING AVERAGE CONTROL CHARTS FOR 
PROCESS VARIABILITY USING AUXILIARY INFORMATION  ....................................................... 825 

Vikas Ghute, Sarika Pawar 

The memory type control charts based on auxiliary information have been introduced in the literature for 
improved monitoring of the process parameters for normally distributed process. In this paper, we design moving 
average and double moving average control charts based on auxiliary information for efficient monitoring the 
shifts in the process variability. Regression estimator of process variance in the form of auxiliary and study 
variables is considered to construct charting statistics for the proposed charts. The average run length (ARL) and 
standard deviation of run length (SDRL) performance of the proposed charts is investigated using simulation 
study and is compared with the originally proposed Shewhart control charts based on auxiliary information and 
without auxiliary information. The proposed auxiliary information based moving average and double moving 
average charts are found to be efficient for monitoring the process variance of normally distributed process. An 
illustrative example based on simulated data set is provided to show the implementation of the proposed charts 
in detecting shifts in the process standard deviation.  

A NEW ZERO-INFLATED COUNT MODEL WITH APPLICATIONS IN MEDICAL SCIENCES 841 

Zehra Skinder, Peer Bilal Ahmad, Na Elah 

Inflated models are used whenever there are too many frequencies at a given count. In this regard, Poisson 
moment exponential distribution and a distribution to a point mass at zero are used to create a zeroinflated model 
namely Zero-Inflated Poisson Moment Exponential Distribution. Its distributional and reliability characteristics 
are investigated in some detail. A simulation exercise is undertaken to evaluate the effectiveness of the maximum 
likelihood estimators. The adaptability of the suggested distribution is demonstrated using three real datasets 
from various domains (e.g., vaccine adverse events, medical science data, epileptic seizure counts). The suggested 
distribution and the Poisson moment exponential distribution are distinguished by using the two different test 
procedures. 
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Abstract

This study examines a two-way communication retrial queue with collision and working breakdown.
Retrial incoming calls may interfere with service if the server is busy with primary incoming calls.
Arriving primary incoming calls are sent to the orbit while the server is busy or enter for service if the
server is discovered to be idle. The server places calls while it is idle. Incoming calls are given high
priority, and outgoing calls are given low priority. During regular service, the system may fails at
any time. The server will continue to provide service after a breakdown even though at a slower rate
rather than shutting down completely. We assume that outgoing calls and service time distributions are
modelled in terms of various PH distributions, while incoming calls are assumed to follow a Markovian
arrival process (MAP). The matrix-analytic approach will be used to investigate the resulting QBD
process in steady state. Some of the performance metrics’ calculations have been figured out. At the end,
the results are presented in both numerical and graphical form.

Keywords: Retrial queues, Priority queue, Two way communication, Working breakdown, Colli-
sion.

1. Introduction

This study examines a queueing model of the form MAP, PH/PH, PH/1 beneficial in the call
centre service sector. If the server is idle and a call comes on connectivity issues, a change in the
network, etc., the customer will receive service right away. If not, the server will enter orbit and

30

mailto:somu.b92@gmail.com
mailto:archanagurulakshmi@gmail.com
mailto:ayyappanpec@hotmail.com


the customer will have to attempt again afterward. The server may also call customers to inform
them of the special offers during idle period.

Neuts [21] made a significant contribution to stochastic process theory.He created the adaptable
Markovian point process, which made it feasible to create the Markovian arrival process (MAP)
and batch Markovian arrival process (BMAP). The two arrival mechanisms were further extended
by Lucantoni [19]. The most important MAP properties are those that allow for a matrix
analytic solution to a stochastic model. [7] has also enhanced this useful tool to make it a more
understandable in the encyclopaedia of operations research and management science. There are
definitions for MAP’s discrete and continuous situations. The parameters for MAP are D0 and
D1 of dimension "m" in continuous time, where D0is a non-singular stable matrix governing
the transition corresponding to no arrival and D1 regulates the transition corresponding to
arrival. Take into consideration the generating matrix D, which is represented by the equation
D = D0 + D1.

Retrial queues are given a lot of attention in recent years because they can be used to analyse
the operation of many different systems, including telephone, call centres, computer networks,
and communications systems. When customers who arrive but are unable to receive service enter
the orbit and execute later, arbitrary time. The majority of queuing systems offer customers the
option to leave the service area temporarily and join an orbit before returning to complete their
request after a set amount of time. A customer’s orbit is the time in between trials. The server
solely serves incoming arrivals made by regular customers, according to the most of literature on
retrials queues. Then there are real situations where servers can make outgoing phone calls while
not conversing, simulating, for example, two-way communication.

Artalejo and Gomez-Correl [1] have analyzed the comparison of classical and retrial queues
as well as advance retrial queues. Chakravarthy and Dudin [9] have examined a retrial queuing
system in single server which are two types of customers arrives according to Markovian arrival
process and service times follows exponential distribution. A retrial queues in finding a various
kind of important problems has investigated by Falin and Templeton [12]. Ke and Chang [14] has
examined the multi-server retrial queuing system with vacation and balking.

Artalejo and Phung-Duc [2] have examined single server M/G/1 retrial queues with two-way
communication. During their analysis of the M/G/1 retrial queue, they found that the inward and
outward service time distributions changed. An M/G/1-type mixed priority retrial queue with
two-way communication, Bernoulli vacation, and discussions of collisions, working breakdown,
negative arrival, repair, immediate feedback, and reneging was described by Ayyappan and
Udayageetha [6]. The MAP, PHO

2 /PH I
1, PHO

2 /1 retrial queue with vacation, feedback, two-way
communication, and dissatisfied customers has been investigated by Ayyappan and Gowthami
[4]. [20] . Krishnamoorthy et al. [16] has been investigated the multi server queueing system
that has infinite capacity in which waiting customers generate into priority and non-preemptive
service discipline.

The M/M/1 retrial queue with two-way communication and exponential service time distri-
butions of ingoing and outgoing calls has been thoroughly examined by Artalejo and Phung-Duc
[3], who also expanded their analysis to two-way communication for multi-server retrial queueing
models. A multi-server queuing model with Markovian arrivals and multiple thresholds was
researched by Chakravarthy [8]. A multi-server retrial queue with two types of customers arriving
in accordance with MAP with type 1 customers having preemptive priority over type 2 customers
was investigated by Kumar et al, [17]. A queueing model for automatic teller machines was
created by Chakravarthy and Subramanian, [10]. These service systems are subject to failure
because of catastrophic events. In this study, the effectiveness and accessibility of an ATM
system during failures, repairs, and replacement were examined. Jeganathan [13] investigated a
M1, M2/M/1 retrial inventory system with non-preemptive priority service.

Ayyappan and Thilagavathy [5] have investigated the MAP/PH/1 queueing model, consisting
of setup, closedown, multiple vacations, standby servers, breakdown, repair, and reneging. They
assume two different types of servers, especially main and standby server. For their model,
standby server carries over the service at lower rates than main server. A queueing model with
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server breakdowns, repairs, vacations and backup server has been examined by Chakravarthy et
al [11]. In their model, used two types of server, one is main server and another one is backup
server, customers arrive as MAP. Suganya et al [22] explored a perishable inventory system with
a limited waiting capacity. A multi-server retrial queue with batch Markovian arrival process and
breakdowns have examined by Kim et al [15]. They considered the flow of breakdowns according
to MAP and the repair period has PH type distributions.

2. Model Description

A single server retrial queueing model with two different categories of arrivals is explored.
Some of the arrival as incoming calls that comes after a MAP which contains the parameters of
matrices D0 and D1 in the order m1. The server that places the outgoing calls follows the PH
type distribution (α, R) in order m2 while it is idle. At the arriving incoming calls get the service
immediately, if the server is available. Whenever the server is busy, those calls are enter into the
orbit. Both incoming and outgoing call service times are distributed corresponding to the PH
type with (β, S) and (γ, T) in the positions n1 and n2, respectively. The server may struck with
breakdown during the busy period with rate η. When the service is broken down, customers
using the server will pay a lower rate (θ) for the service. The server will instantly begin the repair
operation with the ξ parameter. If server is available, an arriving retrial customer receives the
service immediately with probability π. When the server is busy, the arriving retrial customer
which collides the current customer who are getting service and the customers enter into the
orbit with probability p.

3. The Steady-State Analysis

The queueing model’s steady-state analysis is discussed in this section. We need to start with a few
notations. Let N(t) denote number of customers in the orbit, Y1(t) denoted working mode of the
server (if Y1(t) = 0 normal working mode and if Y(t) = 1 slower working mode), Y2(t) denoted
status of the server (if Y2(t) = 0 server is idle, Y2(t) = 1- server busy with incoming call, Y2(t) = 2-
server busy with outgoing call), S1(t) and S2(t) represented for the phases of service when the
server was busy with incoming calls and outgoing calls, respectively. A1(t) and A2(t) represented
for the phases of arrival of incoming calls and outgoing calls, respectively. A continuous-time
Markov chain (CTMC) is applied in the process

{
N(t), Y1(t), Y2(t), S1(t), S2(t), A1(t), A2(t)

}
,

where the state space is provided by

Ω = {(i, j, 0, 0, 0, a1, a2) : iϵZ+, j = 0 or 1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}⋃
{(i, j, 1, s1, 0, a1, 0) : iϵZ+, j = 0 or 1, 1 ≤ s1 ≤ n1, 1 ≤ a1 ≤ m1}⋃
{(i, j, 2, 0, s2, a1, 0) : iϵZ+, j = 0 or 1, 1 ≤ s2 ≤ n2, 1 ≤ a1 ≤ m1}

3.1. The Infinitesimal Generator Matrix

The infinitesimal generator matrix Q has the following structure of level dependent quasi birth-
and-death (LDQBD).

Q =


A00 A01 0 0 0 0 . . .
A10 B1 B0 0 0 0 . . .
0 B2 B1 B0 0 0 . . .
0 0 B2 B1 B0 0 . . .
...

... 0
. . . . . . . . . . . .


where the (block) matrices appearing in Q are as follows.
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A00 =


R
⊕

D0 em2

⊗
β
⊗

D1 R0
⊗

γ
⊗

I 0 0 0
α
⊗

S0
⊗

I (S
⊕

D0)− η I 0 0 η I 0
α
⊗

T0
⊗

I 0 (T
⊕

D0)− η I 0 0 η I
ζ I 0 0 (R

⊕
D0)− ζ I em2

⊗
β
⊗

D1 R0
⊗

γ
⊗

I
0 ζ I 0 α

⊗
(θS0)

⊗
I θS

⊕
D0 − ζ I 0

0 0 ζ I α
⊗

θT0
⊗

I 0 θT
⊕

D0 − ζ I



A01 =



0 0 0 0 0 0
0 I

⊗
D1 0 0 0 0

0 0 I
⊗

D1 0 0 0
0 0 0 0 0 0
0 0 0 0 I

⊗
D1 0

0 0 0 0 0 I
⊗

D1



A10 =



0 (1 − p)π(em2

⊗
β
⊗

I) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 (1 − p)π(em2

⊗
β
⊗

I) 0
0 0 0 0 0 0
0 0 0 0 0 0



B1 =


(R

⊕
D0)− (π I) em2

⊗
β
⊗

D1 R0
⊗

γ
⊗

I 0 0 0
α
⊗

S0
⊗

I (S
⊕

D0)− η I 0 0 η I 0
α
⊗

T0
⊗

I 0 (T
⊕

D0)− η I 0 0 η I
ζ I 0 0 (R

⊕
D0)− (ζ + π)I em2

⊗
β
⊗

D1 R0
⊗

γ
⊗

I
0 ζ I 0 α

⊗
(θS0)

⊗
I θS

⊕
D0 − ζ I 0

0 0 ζ I α
⊗

θT0
⊗

I 0 θT
⊕

D0 − ζ I



B0 =



0 0 0 0 0 0
pπ(en1

⊗
α
⊗

I) I
⊗

D1 0 0 0 0
0 0 I

⊗
D1 0 0 0

0 0 0 0 0 0
0 0 0 pπ(en1

⊗
α
⊗

I) I
⊗

D1 0
0 0 0 0 0 I

⊗
D1



B2 =



0 (1 − p)π(em2

⊗
β
⊗

I) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 (1 − p)π(em2

⊗
β
⊗

I) 0
0 0 0 0 0 0
0 0 0 0 0 0


The boundary blocks B1 and B2 are of order 2mn. A0, A1 and A2 are square matrices of order

mn.

4. System Analysis

4.1. Stability Condition

Using the definitions B = B0 + B1 + B2 and δ as the steady-state probability vector of the
irreducible matrix B, it can be confirmed that the vector δ satisfies

δB = 0, δe = 1

The vector δ, partitioned as delta = (δ0, δ1, δ2, δ3, δ4, δ5)is evaluated with the assistance of the
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following equations:

δ0[(R ⊕ D0)− π I] + δ1[α ⊗ S0 ⊗ I] + δ2[α ⊗ T0 ⊗ I] + δ3[ζ I] = 0

δ0[em2 ⊗ β × (D1 + (1 − p)πI)] + δ1[(S ⊕ D)− η I] + δ4[ζ I] = 0

δ0[R0 ⊗ γ ⊗ I] + δ2[(T ⊕ D)− η I] + δ5[ζ I] = 0

δ3[(R ⊕ D0)− (ζ + π)I] + δ4[(α ⊗ θS0 ⊗ I) + pπ(en1 ⊗ α ⊗ I)] + δ5[α ⊗ θT0 ⊗ I] = 0

δ1[η I] + δ3[em2 ⊗ β ⊗ (D + (1 − p)π I)] + δ4[(θS ⊕ D)− ζ I] = 0

δ2[η I] + δ3[R0 ⊗ γ × I] + δ5[(θT ⊕ D)− ζ I] = 0

subject to
δ0em1m2 + δ1em1n1 + δ2em1n2 + δ3em1m2 + δ4em1n1 + δ5em1n2 = 1

The condition δB0e < δB2e, require to maintain the queueing model’s stability. i.e.,

δ1[en1 ⊗ (pπαem1 + D1em1)] + δ2[en2 ⊗ em1 D1] + δ4[en1 ⊗ (pπαem1 + D1em1)] + δ5[en2 ⊗ em1 D1]

< δ0[(1 − p)πem2 ⊗ βem1 ] + δ3[(1 − p)πem2 ⊗ βem1 ]

4.2. The Invariant Probability Vector

Let x indicate the infinitesimal generator Q’s transition probability vector. The dimensions of this
probability vector’s subdivisions are xi(i > 0) = 2(m1m2 + m1n1 + m1n2), which can be written
as x = x0, x1, x2.

If x is a transition probability vector for Q, then it will also satisfy the following two require-
ments:

xQ = 0 and xe = 1

Once stability has been reached the following equations can be solved to determine the steady-
state probability vector x.

xi+1 = x1Ri, i ≥ 1

When R is the least non-negative solution to the equation,

R2B2 + RB1 + B0 = 0

Then the final two vectors, x0 and x1, can be obtained by resolving the following equations:
x0 A00 + x1 A10 = 0,
x0 A01 + x1[B1 + RB2] = 0
with the normalizing condition

x0e2(m1m2+m1n1+m1n2)
+ x1[I − R]−1e2(m1m2+m1n1+m1n2)

= 1

The "Logarithmic Reduction Algorithm" described by Latouche et al. [18] may be used to generate
the rate matrix R.

5. Busy Period Analysis

The length of time between customers entering a system that is void and the first time the system
becomes empty again is referred to as the busy period. As a result, it is the first instance where the
QBD process has considered a transition from level i to level i − 1, i ≥ 2. It is necessary to discuss
both i = 0 and i = 1 individually for the boundary states. There are (m1m2 + n1m1 + n2m1) states
for every level i, where i is 1. Thus, the jth state of level i may be denoted as (i, j) when the states
are arranged in lexicographic order. Notations:

1. Gj,j′(k, x) Given that it started in the state (i, j) at time t = 0, the conditional probability that
starts in the state (i, j) at time t = 0 entered the level (i − 1) by making precisely k transitions
to the left.
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2. G̃j,j′(z, s) = ∑∞
k=1 zk ∫ ∞

0 e−sxdGj,j′(k, x); |z| ≤ 1, Re(s) ≥ 0

3. The matrix G̃(z, s) = G̃j,j′(z, s)

4. The matrix that concerns the initial flow of time without taking into consideration boundary
states is G = G̃(1, 0).

5. G(1,0)
i,j′ (k, x) - The conditional probability that, given that the QBD process began in level 1 at

time t = 0, it will make precisely k transitions to the left to attain level 0.

6. G(0,0)
j,j′ (k, x)- conditional probability that was described for the initial return to level 0.

7. E1j - Expected initial passage time from level i to level i − 1, assuming a time t = 0 and the
process in the state (i,j).

8. E1 -column vector with E1j as its entries.

9. E2j -Number of customers who should have been served during the first passage time from
level i to level i − 1, assuming that the first passage time starts in the state (i,j).

10. E2 -column vector with E2j as its entries.

11. E1,0
1 - The vector which indicates expected initial passage times between level 1 and level 0.

12. E1,0
2 - The vector that indicates the expected amount of service completions during the initial

passage from level 1 to level 0.

13. E(0,0)
1 - The expected initial return to level 0 time.

14. E(0,0)
2 - The expected amount of services to be completed during the first return time to

level 0.

It can be easily seen that the matrix G̃(z, s) satisfies the following equations

G̃(z, s) = z(sI − B1)
−1B2 + (sI − B1)

−1B0G̃2(z, s)

once the rate matrix R is evaluated, we can easily find the matrix G by making the result

G = −(B1 + RB2)
−1B2.

Another method for evaluating the matrix G is the logarithmic reduction algorithm. The following
equations are satisfied by G̃(1,0)(z, s) and G̃(0,0)(z, s), respectively, when it comes to the boundary
states, which are 0 and 1.

G̃(1,0)(z, s) = Z(sI − B1)
−1 A10 + (sI − B1)

−1B0G̃(z, s)G̃(1,0)(z, s)

G̃(0,0)(z, s) = (sI − A00)
−1 A01G̃(1,0)(z, s).
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Therefore following the three matrices namely, G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are stochastic, we
may easily calculate the following moments

Ẽ1 = −∂G̃(z, s)
∂s

∣∣∣
s=0,z=1

= −(B1 + B0(G + I))−1e

Ẽ2 =
∂G̃(z, s)

∂z

∣∣∣
s=0,z=1

= −(B1 + B0(G + I))−1e

Ẽ(1,0)
1 = −∂G̃(1,0)(z, s)

∂s

∣∣∣
s=0,z=1

= −(B1 + B0G)−1(B0E1 + e)

Ẽ(1,0)
2 =

∂G̃(1,0)(z, s)
∂z

∣∣∣
s=0,z=1

= −[B1 + B0G]−1[A10e + B0E2]

Ẽ(0,0)
1 = −∂G̃(0,0)(z, s)

∂s

∣∣∣
s=0,z=1

= −A−1
00 (e + A01E(1,0)

1 )

Ẽ(0,0)
2 =

∂G̃(0,0)(z, s)
∂z

∣∣∣
s=0,z=1

= −A−1
00 A01E(1,0)

2

6. Performance Measure

• Probability that making outgoing calls by the server

PMOA =
∞

∑
i=0

m2

∑
a2=1

m1

∑
a1=1

xi00a2 a1

• Probability that busy with incoming calls by the server in regular service rate

PBIS =
∞

∑
i=0

n1

∑
s1=1

m1

∑
a1=1

xi01s1 a1

• Probability that server is busy with outgoing calls in regular service rate

PBOS =
∞

∑
i=0

n2

∑
s2=1

m1

∑
a1=1

xi02s2 a1

• Probability that busy with incoming calls by the server in slower service rate

PWIS =
∞

∑
i=0

n1

∑
s1=1

m1

∑
a1=1

xi11s1 a1

• Probability that server is busy with outgoing calls in slower service rate

PWOS =
∞

∑
i=0

n2

∑
s2=1

m1

∑
a1=1

xi12s2 a1

• Expected number of customers in the orbit

EN =
∞

∑
i=0

1

∑
j=0

m2

∑
a2=1

m1

∑
a1=1

ixij0a2 a
1
+

∞

∑
i=0

1

∑
j=0

n1

∑
s1=1

m1

∑
a1=1

ixij1s1 a1
+

∞

∑
i=0

1

∑
j=0

n2

∑
s2=1

m1

∑
a1=0

ixij2s2 a1
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7. Particular case

We consider an exponential distribution of both arriving calls such as incoming and outgoing
and service times. Consider the following

D0 = [−λ], D1 = [λ], α = [1], R = [δ],

β = [1], S = [µ1], γ = [1], T = [µ2].

From this assumption, the infinitesimal generator matrix becomes

Q =


A00 A01 0 0 0 0 . . .
A01 B1 B0 0 0 0 . . .
0 B2 B1 B0 0 0 . . .
0 0 B2 B1 B0 0 . . .
...

...
...

. . . . . . . . . . . .


The entries of the Q matrix are defined by

A00 =


−λ − δ λ δ 0 0 0

µ1 −µ1 − λ − η 0 0 η 0
µ2 0 −µ2 − λ − η 0 0 η
ζ 0 0 −λ − δ − ζ λ δ
0 ζ 0 θµ1 −θµ1 − λ − ζ 0
0 0 ζ θµ2 0 θµ2 − λ − ζ



A01 =



0 0 0 0 0 0
0 λ 0 0 0 0
0 0 λ 0 0 0
0 0 0 0 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ



A10 =


0 π(1 − p) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 π(1 − p) 0
0 0 0 0 0 0
0 0 0 0 0 0



B0 =



0 0 0 0 0 0
πp λ 0 0 0 0
0 0 λ 0 0 0
0 0 0 0 0 0
0 0 0 πp λ 0
0 0 0 0 0 λ



B1 =


−λ − δ − π(1 − p) λ δ 0 0 0

µ1 −µ1 − λ − η − πp 0 0 η 0
µ2 0 −µ2 − λ − η 0 0 η
ζ 0 0 −λ − δ − ζ − π(1 − p) λ δ
0 ζ 0 θµ1 −θµ1 − λ − ζ − πp 0
0 0 ζ θµ2 0 θµ2 − λ − ζ
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B2 =


0 π(1 − p) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 π(1 − p) 0
0 0 0 0 0 0
0 0 0 0 0 0



In this sequel, the generator matrix B becomes

B =


−λ − δ − π(1 − p) λ − π(1 − p) δ 0 0 0

µ1 + πp −µ1 − η − πp 0 0 η 0
µ2 0 −µ2 − η 0 0 η
ζ 0 0 −λ − δ − ζ − π(1 − p) λ − π(1 − p) δ
0 ζ 0 θµ1 + πp −θµ1 − ζ − πp 0
0 0 ζ θµ2 0 θµ2 − ζ



8. Numerical Result

In this section, we examine the outcome of our system with aid of numerical and graphical
illustrations. For the arrival process, let us take four different MAP representations have same
mean value, which is 1.
Arrival of incoming call in Erlang (ERL-A):

D0 =

[
−2 2
0 −2

]
D1 =

[
0 0
2 0

]
Arrival of incoming call in Exponential (EXP-A):

D0 = [−1] D1 = [1]

Arrival of incoming call in Hyper exponential (HYP-A):

D0 =

[
−2.8 0

0 −0.28

]
D1 =

[
2.24 0.56
0.224 0.056

]
Arrival of incoming call in MAP-Negative Correlation (MAP-NC):

D0 =

 −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

 D1 =

 0 0 0
0.01002 0 0.99220

223.4925 0 2.2575


Arrival of outgoing call in Erlang (ERL-A):

α = [1, 0] R =

[
−2 2
0 −2

]
Arrival of outgoing call in Exponential (EXP-A):

α = [1] R = [−1]

Arrival of outgoing call in Hyper exponential (HYP-A):

α = [0.8, 0.2] R =

[
−2.8 0

0 −0.28

]
For service times let us consider phase type distribution as follows:
Service of incoming call in Erlang (ERL-S):

β = [1, 0] T =

[
−2 2
0 −2

]
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Service of incoming call in Exponential (EXP-S):

β = [1] T = [−1]

Service of incoming call in Hyper exponential (HYP-S):

β = [0.8, 0.2] T =

[
−2.8 0

0 −0.28

]
Service of outgoing call in Erlang (ERL-S):

γ = [1, 0] S =

[
−2 2
0 −2

]
Service of outgoing call in Exponential (EXP-S):

γ = [1] S = [−1]

Service of outgoing call in Hyper exponential (HYP-S):

γ = [0.8, 0.2] S =

[
−2.8 0

0 −0.28

]

8.1. Illustrative Example 1

From Tables 1,2, 3 and 4 explore the effectiveness of the breakdown rate (η) on the traffic intensity
(ρ) and expected queue size (EN). We fix λ = 0.1, δ = 0.01, µ1 = 2, µ2 = 1, ζ = 2, θ = 0.6, π = 0.9
and p = 0.4. We observe from tables 1, 2, 3 and 4 as increasing breakdown rate (η), the traffic
intensity increases and also mean queue length (EN) increases for various arrival and service
distributions.

Table 1: Breakdown rate (η) vs ρ and EN - EXP − A

EXP − S ERL − S HYP − S

η ρ EN ρ EN ρ EN

1.1 0.3641 1.16678 0.33822 1.16428 0.49312 1.18627

1.2 0.3666 1.16913 0.34063 1.16661 0.49634 1.18903

1.3 0.3691 1.17142 0.34297 1.16889 0.49943 1.19170

1.4 0.3715 1.17364 0.34523 1.17110 0.50238 1.19431

1.5 0.3738 1.17581 0.34742 1.17325 0.50522 1.19684

1.6 0.3761 1.17791 0.34954 1.17535 0.50794 1.19930

1.7 0.3782 1.17996 0.35160 1.17739 0.51055 1.20170

1.8 0.3803 1.18196 0.35359 1.17938 0.51306 1.20403

1.9 0.3824 1.18391 0.35553 1.18132 0.51548 1.20631
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Table 2: Breakdown rate (η) vs ρ and EN - ERL − A

EXP − S ERL − S HYP − S

η ρ EN ρ EN ρ EN

0.1 0.40496 2.60789 0.36928 2.61353 0.55800 2.60590

0.2 0.40742 2.61448 0.37161 2.62046 0.56098 2.61231

0.3 0.40978 2.62088 0.37385 2.62722 0.56382 2.61855

0.4 0.41207 2.62712 0.37603 2.63381 0.56655 2.62462

0.5 0.41427 2.63321 0.37813 2.64023 0.56915 2.63055

0.6 0.41640 2.63913 0.38017 2.64650 0.57165 2.63632

0.7 0.41846 2.64491 0.38215 2.65261 0.57405 2.64196

0.8 0.42044 2.65055 0.38407 2.65858 0.57635 2.64745

0.9 0.42237 2.65605 0.38593 2.66440 0.57856 2.65282

Table 3: Breakdown rate (η) vs ρ and EN - HYP − A

EXP − S ERL − S HYP − S

η ρ EN ρ EN ρ EN

0.1 0.26239 3.54972 0.25352 3.57397 0.31647 3.47495

0.2 0.26460 3.56408 0.25560 3.58893 0.31926 3.48861

0.3 0.26674 3.57805 0.25761 3.60351 0.32195 3.50192

0.4 0.26881 3.59165 0.25957 3.61772 0.32454 3.51488

0.5 0.27082 3.60490 0.26147 3.63157 0.32704 3.52751

0.6 0.27276 3.61780 0.26331 3.64507 0.32944 3.53982

0.7 0.27465 3.63038 0.26510 3.65824 0.33177 3.55182

0.8 0.27648 3.64264 0.26683 3.67109 0.33401 3.56354

0.9 0.27825 3.65460 0.26852 3.68363 0.33618 3.57497

Table 4: Breakdown rate (η) vs ρ and EN - NCM − A

EXP − S ERL − S HYP − S

η ρ EN ρ EN ρ EN

0.1 0.76028 3.06864 0.73819 3.08255 0.85856 3.09657

0.2 0.76097 3.07762 0.73880 3.09144 0.86000 3.10642

0.3 0.76165 3.08634 0.73940 3.10009 0.86139 3.11597

0.4 0.76230 3.09483 0.73998 3.10851 0.86271 3.12526

0.5 0.76293 3.10308 0.74054 3.11670 0.86398 3.13427

0.6 0.76354 3.11111 0.74109 3.12469 0.86519 3.14304

0.7 0.76413 3.11893 0.74162 3.13246 0.86635 3.15157

0.8 0.76471 3.12655 0.74214 3.14004 0.86746 3.15988

0.9 0.76526 3.13397 0.74264 3.14743 0.86853 3.16796
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8.2. Illustrative Example 2

Two dimensional graphs are illustrated in the Figure 1. we fix λ = 1, δ = 0.1, µ1 = 2, µ2 = 1,
ζ = 3, θ = 0.4, π = 0.6 and p = 0.5. The illustration shows that the effect of the breakdown rate
increase then the mean queue length is increase for various arrival and service distributions.

EXP-A Erl-A

Hyp-A NCM-A

Figure 1: Breakdown rate (η) vs Mean queue length (EN) with various arrival distributions

8.3. Illustrative Example 3

Three dimensional graphs are illustrated in the Figure 2. We examine the influence of the
breakdown rate (η) and collision probability (p) on the mean queue length. We fix λ = 0.1,
δ = 0.01, µ1 = 2, µ2 = 1, ζ = 6, θ = 0.6, and π = 0.3. we could observe that the surface
denotes upward trend as expected to propagate the values of breakdown rate (η) and the collision
probability (p) against the expected queue size (EN) for various arrival and service times.
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MM/MM/1 MM/EE/1

MM/HH/1 EE/MM/1

EE/EE/1 EE/HH/1

HH/MM/1 HH/EE/1

HH/HH/1 NC/MM/1

Figure 2: Breakdown and collision vs mean queue length
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Abstract 

Today, Internet of Things (IoT) systems are being employed in a wide variety of domains, such as 
education, healthcare, industrial equipment automation, etc. With gigabytes of data being generated 
and processed by even the average IoT system, securing this generated data is crucial task. It requires 
a low-cost, high-performance encryption system for constrained IoT systems. The Advanced 
Encryption Standard (AES) is widely used for many cryptographic domains because of its strong 
security characteristics. AES is designed for general-purpose symmetric encryption algorithm but 
there is a need for a lighter algorithm that is specifically tuned for the needs of IoT devices with limited 
computation capabilities. Aim: This paper is proposing Lightweight Symmetric Algorithm (LSA) as 
a faster and lighter alternative to the standard AES-128 for IoT applications. The primary objective 
of its design was to minimize the time and memory usage required for encryption and decryption 
processes while retaining the strong security characteristics. Method: The research also demonstrates 
the comparative analysis of LSA and AES based on efficiency and resource usage. It also proves the 
difficulty of performing a successful brute force attack, confusion and diffusion properties, and 
avalanche criterion satisfiability are identical for AES and LSA algorithms. Findings: The 
comparison analysis of LSA and AES suggests a 14.68% lower memory usage for encryption and 
decryption as well as more than a 50% decrease, on average, in the required time for encryption or 
decryption of differently-sized files consisting of the same 128 bit data blocks. The comparisons and 
empirical observations show that AES and LSA are both almost identical in terms of their security 
characteristics such as the difficulty of performing a successful brute force attack, confusion and 
diffusion properties, and avalanche criterion satisfiability. Conclusion: The proposed LSA algorithm 
is compared with various available lightweight cipher technologies with respect to time, memory, and 
security properties suggests the suitability of LSA for resource constrained IoT devices with strong 
security requirements. 

Keywords: IoT, Data security, Cryptography, Lightweight Algorithms, Security 
Encryption. 
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1. INTRODUCTION

The Internet of Things (IoT) is becoming an increasingly significant aspect of daily life as more and 
more devices with digital identities are connected to the Internet. The IoT paradigm is based on the 
connection between widely used and extremely diverse networked "things" like sensors, actuators, 
smartphones, etc., whose widespread use is due to recent advances in communication, sensor 
technologies, networking capabilities, mobile devices, cloud computing, etc. Data security is now a 
major necessity for many organisations. Security and privacy needs must be met because the IoT 
devise are integrated in users' daily lives [1-2]. 
However, due to the multiple standards and communication technologies involved, the IoT does 
not directly support conventional security measures. The term "lightweight cryptography" refers to 
a branch of cryptography that aims to create algorithms for use on hardware without the necessary 
resources like memory, power, and operational capacity to carry out the operation [3]. Only a few 
reliable hybrid cryptosystems are available to protect IoT smart devices. The objective is to create 
hybrid cryptosystems that can match the high performance demands of these constrained 
environments while possessing similar encryption capabilities. Even though many other new 
lightweight algorithms have been developed, there is always potential for development in terms of 
security and overhead reduction. [4-6]. 
The encryption of IoT data can be achieved by two ways, Symmetric and Asymmetric Cryptography. 
Symmetric encryption techniques are effective at protecting data, but communicating a secret key 
requires a separate mechanism. The key distribution issue is solved by asymmetric encryption 
techniques, although they are slower and consume far more resources than symmetric encryption. 
According to NIST, information security, like any other information technology management 
system, relies on three fundamental aspects: confidentiality, availability, and integrity. [8-10].  
In this research, LSA aims to enhance the time and memory efficiency of AES without compromising 
the security features. The remaining sections of this paper are organized as follows: Section 2 
provides an overview of current lightweight symmetric algorithms suitable for IoT environments. 
Section 3 outlines the design of the LSA algorithm being proposed. Section 4 showcases the 
performance and security analysis of the implemented algorithms, along with a comparison based 
on specific key parameters. At last, in Section 5, the paper is concluded by proving the security 
requirements of IoT system along with communication efficiency, resource utilization and strong 
encryption methodology. 

2. RELATED WORKS

This section presents an overview of the existing lightweight symmetric encryption algorithms and 
offers a comparative analysis among them. Additionally, it investigates the suitability of the AES 
algorithm for enhancement, specifically to cater to the requirements of resource-constrained devices. 

2.1 Lightweight Cryptography 

Embedded systems, Internet of Things, and mobile computing devices are used across many 
industries [13], which is lacking the security mechanism for resource-constrained network. 
Lightweight cryptography is a trade-off between communication efficiency and data security. Due 
to its applicability to IoT systems with limited battery life, space, and memory size, lightweight 
cryptography has gained popularity [11-12]. Different approaches can be taken to implement 
lightweight cryptographic techniques, with some relying on software while others on hardware. 
Hardware-based lightweight cryptography aims to address performance limitations such as device 
size and power consumption. On the other hand, software-based lightweight cryptography focuses 
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on reducing CPU/memory usage, calculation complexity, and energy/power consumption [14]. 
Lightweight cryptography can be achieved through various methods, such as modifying or 
enhancing existing algorithms or creating new algorithms with lightweight characteristics. [15]. 

2.2. Overview of AES Algorithm 

The AES algorithm [20] is built upon the SPN (substitution-permutation network) structure and 
incorporates key features such as high sensitivity to initial round and control parameters, random-
like behaviors, and simplicity [18]. In the SPN structure, even slight modifications in the initial state 
and parameter configurations within the round function can result in significant and unpredictable 
changes in the final state [18][20]. AES operates on 128-bit (16-byte) blocks for both encryption and 
decryption of data. Figure 1 illustrates the basic block diagram of the AES algorithm. AES supports 
three key sizes: 128, 192, or 256 bits. For 128-bit keys, AES employs 10 rounds, for 192-bit keys it uses 
12 rounds, and for 256-bit keys, it utilizes 14 rounds. Each round, except the final one, incorporates 
the SubBytes, ShiftRows, AddRoundKey, and MixColumns operations [17], [18], and [19]. It is worth 
noting that in this context, the term AES specifically refers to AES-128. 
Key Expansion Routine: 
The Key Expansion Routine of the standard AES-128 is used without any modification, which 
generates 11 keys of 128 bit from one single encryption/decryption key. It generates an array of 11 
keys from the original seed key, which now becomes key 0. For our variations with a reduced 
number of rounds (7, instead of 10), only the first 8 keys are used. As each key consists of 4 words 
of 4 bytes each, we need 44 words in total for 10 rounds of encryption or decryption. 

Figure 1: Block diagram of AES-128 [16] 

AES-128 Key Expansion  
______________________________________________ 
for (i = 0 ; i < 4 ; i++)  

w[i] = key[i]; 
for (i = 4; i < 44 ; i++)  
temp = w[i – 1];  
if (i Mod 4 == 0)  
temp = SBox ( RotWord ( temp ) )  Xor  Rcon[i / 4];  
w[i] = w[i – 4]  Xor temp 
RotWord(): Performs right shift on the word by 1 byte (0, 1, 2, 3 => 1, 2, 3, 0). 
SBox(): Substitution from the Rijndael S-Box. 
Xor: Bitwise Xor. 
Rcon: The round constant array consists of successive powers of 2, one value for each round. 
1 word = 4 bytes. 
4 words -> 16 bytes -> the key for one round. 
______________________________________________ 
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2.3. Study of other lightweight algorithms 

Examples of some lightweight symmetric algorithms include AES [21], CAST-128 [22], PRESENT 
[23], TEA [24], HIGHT [25], BCC [26], MCBB [27], RC5 [28] etc. With the least amount of resource 
usage possible, lightweight cryptography strives to provide proper security levels. TEA's initial 
release was followed by a subsequent version that included additional features aimed at improving 
its security. Meanwhile, Block TEA was introduced as a complement to XTEA, and it operates on 
blocks of any size, unlike the original's 64-bit blocks [24] TEA exhibits some vulnerability, primarily 
its susceptibility to equivalent keys. In other words, each key is interchangeable with three other 
keys, reducing the effective key size to just 126 bits. Consequently, TEA is not suitable for use as a 
cryptographic method. Several researchers, including in [28], [29], and [30], focused on reducing the 
complexity of common algorithms, and based on their findings, these approaches can be applied in 
an IoT environment. Since the S-Box is crucial to AES and causes confusion during the encryption 
process, numerous researchers, including those in [31] and [32], have attempted to develop new S-
Boxes to replace the old ones to increase the security of the AES algorithm. The IoT often uses a high 
number of resource-constrained nodes, necessitating the adoption of lightweight cryptographic 
primitives [33]. PRESENT employs bit-oriented permutations, which make it hardware-oriented and 
less suitable for software implementations. Bit permutations can be easily accomplished in hardware 
through straightforward wiring, whereas software implementations struggle to achieve similar 
performance. The FELICS (Fair Evaluation of Lightweight Cryptographic Systems) benchmarking 
framework is used to assess the performance of PRESENT when executed on microcontroller 
software environments. However, the results of software-only implementations may be significantly 
slower due to the inherent hardware orientation of the algorithm [34]. A hybrid approach was 
employed in [35] to merge the symmetric cipher AES, asymmetric cipher RSA, and the hashing 
function MD5 to provide confidentiality, data integrity, and authentication. However, the use of 
AES in processing occupies a considerable amount of ROM and RAM, while the MD5 algorithm is 
vulnerable to differential attacks and the RSA key requires a significant amount of memory for 
processing. 

Table 1: Comparison of Lightweight Algorithms for IoT Devices 

Lightweight 
Algorithms 

Structure No of Rounds Key Size Block Size 

AES SPN 10 128 128 
PRESENT SPN 32 80 64 

TEA Feistel 32 128 64 
HEIGHT GFS 32 128 64 

RC5 ARX 20 16 32 

To address the limitations of the cryptographic models outlined in Tab 1, the research explores a 
variety of suggested cryptosystems that incorporate various mathematical calculations. 
Subsequently, it also proposes a resilient and secure lightweight symmetric algorithm that offers 
efficient protection for IoT smart devices, as detailed in the upcoming sections. 

3. THE PROPOSED ALGORITHM: LSA

In this paper, we propose a lightweight, secure, and fast symmetric encryption algorithm – 
Lightweight Symmetric Algorithm (LSA), to provide confidentiality in resource constrained IoT 
Devices. LSA can encrypt and decrypt data more quickly than AES.  
In the context of the IoT environment, the importance of time and memory usage is on par with 
security considerations. This research focuses on reducing the time complexity of the algorithm 
while maintaining its security measures. The proposed algorithm aims to provide a lower-
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complexity encryption method compared to AES, making it suitable for resource-constrained 
wireless devices. Additionally, it offers enhanced resilience against attacks compared to PRESENT 
and TEA. The proposed lightweight symmetric encryption algorithm adopts a substitution-
permutation structure and builds upon the widely-used AES algorithm. By reducing the number of 
rounds and replacing the mixcolumn operation with junction jumping in the proposed LSA, 
performance improvements are achieved without compromising the security properties of the 
algorithm. Further details of the LSA are discussed in the following subsections. 
Considering the constraints and requirements of IoT, there is a need to improve the AES algorithm 
in terms of time and energy consumption. With this objective in mind, we conducted tests and 
evaluations to identify the most time-consuming parts of the AES algorithm, which could be 
potential areas for optimization. 
Each round of the AES algorithm involves four operation calls: Substitution, Shift Rows, Mix 
Columns, and Add Round Key. While AES can be implemented efficiently and cost-effectively in 
hardware [36], its software implementation tends to be more computationally intensive in terms of 
processing time. 
Analysis of Modification in AES Algorithm: 
To improve the performance of the algorithm, we developed three different versions of each 
operation of AES with the following variations. The research shows modified compute-intensive 
operations to make them lighter and examined nine more versions of modified AES. 

Three different versions of SubBytes (Disabling ShiftRows and MixColumns). 
● SubBytes_v0>  Substitution bytes with 100% Substitution (Original)
● SubBytes_v1> Substitution bytes with 50% Substitution (checkerboard pattern)
● SubBytes_v2>  Substitution bytes with 25% Substitution (only 1 in every four elements in the

block)
depicts execution time analysis of different variants of SubBytes operation from which SubBytes_v2 
is a relatively lightweight operation as per the performance. 

Three different versions of ShiftRows (Disabling SubBytes and MixColumns) 
● ShiftRows_v0> keep the 1st row unchanged and shift 2nd, 3rd and 4th row by 1,2 and 3 bytes

subsequently (Original)
● ShiftRows_v1> keep the 1st and 3rd row unchanged and shift the 2nd and 4th row by 1 byte
● ShiftRows_v2> Let us keep the 1st, 2nd and 3rd row unchanged and shift the 4th row by 1 byte
The experiment shows the execution time analysis of different variants of ShiftRows operation from
which SubBytes_v2 is a relatively lightweight operation.

Three different versions of MixColumns (Disabling ShiftRows and SubBytes). 
● MixColumns_v0> Matrix Multiplication with the constant matrix (Original)
MixColumns_v1> Matrix Addition with the constant
● matrix
● MixColumns_v2> Matrix Subtraction with the constant matrix
This demonstrates that MixColumns_v1 is a lightweight component as per the experimental analysis
of MixColumns variants. The constant matrix, here, refers to the AES Multiplication Matrix [19]. For
V0, the Inverse Multiplication Matrix [19] is also required, while for V1 and V2, the same matrix is
used during decryption as well.

Based on the various performed variations we have developed AES with combination of the fastest 
versions of all the 3 operations (SubBytes, ShiftRows & MixColumns) along with AddRoundKey) 
which incorporates V2_SubBytes (Substitution bytes with 25% Substitution), V1_ShiftRows (keeps 
the 1st and 3rd row unchanged and shift the 2nd and 4th row by 1 byte), V1_MixColumn (Matrix 
Addition with the pre-defined constant and simple XORing with the key in the AddRoundKey 
operation. It definitely reduces execution time, but at the same time, compromises certain level of 
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security. 
Optimization Operations: Lightweight Security Algorithm for IoT 
Reducing the complexity of operations in the proposed algorithm can potentially compromise its 
security level. To address this, the next improvement focuses on enhancing the security measures. 
The analysis of this test primarily serves the purpose of benchmarking and facilitating future 
experimentation. In the context of this research, the proposed algorithm is denoted as LSA-v1, 
which integrates the fastest versions of all the stages in AES002E 

To investigate the effect of various operations on the encryption time, the experiment removes the 
operations one by one from the encryption process in AES.  
First of all, to find heavy components, AES is modified and created the following variations:  
● Only keeping ShiftRows and MixColumns and disabling SubBytes
● Only keeping SubBytes and MixColumns and  disabling ShiftRows
● Only keeping SubBytes and ShiftRows and disabling MixColumns

The experiment depicts that execution time will be decreased if we remove MixColumns operation 
from AES. 
The Mix Columns operation is generally the most resource-intensive operation in AES, and its 
removal leads to an overall improvement in the algorithm's execution time. The results demonstrate 
a significant reduction in encryption time for 1024-byte data, decreasing from 70 milliseconds to 15 
milliseconds. Additionally, the Shift Rows operation is identified as the second most time-
consuming operation after Mix Columns. Consequently, it becomes necessary to either remove or 
optimize the Shift Rows operation to make the algorithm more lightweight. 

For this reason, the research extended experiment by further removing two operations. 
● Only keeping SubBytes and disabling ShiftRows and MixColumns
● Only keeping ShiftRows and disabling SubBytes and MixColumns
● Only keeping MixColumns and disabling ShiftRows and SubBytes

In the optimization mentioned earlier, if all the operations are executed in isolation, it becomes 
apparent that MixColumns consumes the most time compared to other operations, reaffirming its 
heavyweight nature. Therefore, to enhance execution time performance, the most effective solution 
is to exclude MixColumns from the main core of the encryption operation. To generate lighter 
versions of the AES algorithm and for the replacement of the mixcolumn operation, we have 
introduced one more operation - Junction Jumping, which plays an important role to make the 
algorithm lightweight in terms of processing needs and to achieve a certain level of security.  

Junction Jumping 
This stage’s main objective is propagating change from one byte to the next, thus introducing 
interdependence and linkage. Unlike the Mix Columns Operation, which is inherently exponential, 
this operation is linear, and primarily uses one of the most cost-effective CPU operations, bitwise 
XOR [29]. Fig. 2 shows the overall functioning of the newly introduced Junction Jumping operation 
on the 128 bits of input data. ‘U’ and ‘L’ refer to the upper and lower nibbles (4 bit groups) of all the 
bytes. For this stage, we consider the current state as an array of 16 bytes rather than a 4x4 matrix. 
Its main objective is propagating change from one byte to the next, thus introducing 
interdependence and linkage. Unlike the MixColumns Operation, which is inherently exponential, 
this operation is linear. It primarily uses one of the most cost-effective CPU operations, bitwise XOR. 
The proposed algorithm incorporates all the standard operations except MixColumns. It replaces 
MixColumns operation with Junction Jumping. The research achieved an improvement in the 
security characteristics, whereas the time complexity of the algorithm increases. Fig. 2 exhibits the 
process of AES with JJ, which for the research is referred as LSA-v2. 
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The Jumping Junction Algorithm 
______________________________________________ 
Prev ← Initial State of the 16 byte Word. 
Next ← The Resultant State. 
For ‘i’ in range(16): 
Next[i] = Lower_Nibble(Prev[i]) + Xor(Upper_Nibble(Prev[i]), Lower_Nibble(Prev[i – 1])); 
Since, only one half of every byte changes, there are no actual additional memory requirements as 
Prev is just a temporary state. 
The process is also cyclic (1→2, ..., n – 1→n, n→1). 

Figure 2: Junction Jumping Operation 

The evaluations indicate that by replacing mixcolumn with JJ, time consumption has only decreased 
by 15%. To further explore the experimental possibilities, the proposed algorithm removes the 
shiftrow operation and reduces the number of rounds from 10 to 7, while maintaining the same block 
size of 128 bits. This modification improves the time complexity; however, it comes at the cost of 
compromised confusion and diffusion characteristics. The findings of the investigation into time 
consumption are depicted in Figure 7. It is important to note that while the round key generation 
process in the proposed algorithm resembles that of AES, it possesses inferior security properties. 
As a result, the enhanced version of LSA is denoted as LSA-v3. 

In order to broaden the range of the experiments, and to maintain the trade-off between security and 
performance, a new additional operation - Parity Transformation is introduced which improves 
confusion and diffusion characteristics and is performed just after Round 0 during encryption, that 
is, once per the encryption / decryption process for a block. Parity Transformation plays an 
important role to make the algorithm lightweight in terms of processing needs and to achieve a 
certain level of security. It adds non-linearity to the system so that we can improve security 
measures, specifically the Average Avalanche Criteria that improved significantly from 32.5% to 
43.33%. 

Figure 3: Parity Transformation Operation  
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Parity Transformation 
This stage is performed only once and is incorporated in Round 0 to add non-linearity to the system 
so that we can improve security measures. It works on the principle that if an even number of bits 
are flipped, the resultant parity remains the same. This ensures that the transformation remains 
reversible. Fig. 3 shows the functioning of it. 

The Steps: Parity Transformation Operation 
_____________________________________________ 
Run a loop to find the parity of the word. 
Run another loop and 1s complement those bytes whose indices Mod 2 = The_Original_Parity. 
Mod here refers to the modulo operation (the remainder). 
The_Original_Parity will be 1 if the number of bits in the input block were odd; otherwise it would 
be 0. 
Basically, if the parity is 1, the bytes at odd indices will be flipped and if it is even, then the bytes at 
even indices will be flipped. 
______________________________________________ 

The research has advanced with the reduced number of rounds (seven), but because of the Parity 
Transformation operation there is a huge improvement in the confusion and diffusion characteristics 
of the algorithm. In this version it reached the required result, and so the paper is proposing it as 
LSA - Lightweight Symmetric Algorithm. The process of proposed LSA is displayed in Fig. 4 for 
visualization and clarity purposes. Execution time to process average 20MB data is 1.8s, 1.3s, 1.5s, 
0.9s and 0.95s for AES, AES-fastest operations(LSA-v1), AES-JJ(LSA-v2) , AES-JJ-7 rounds(LSA-v3) 
and LSA, respectively. Fig. 5 and Fig. 6 illustrate the performance comparison of LSA with 
experimental versions. It has also compared with various lightweight symmetric algorithms like 
PRESENT and TEA, respectively; which shows that LSA performs better among all in terms of 
execution time. The proposed encryption process in LSA is designed and executed as shown in Fig. 
4.  

Figure 4: Process of LSA 
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The encryption process in LSA is outlined and illustrated in Figure 4. It closely resembles the 
encryption process in AES with some notable differences. In LSA, a parity transformation operation 
is conducted on the initial state during Round-0, and the resulting output becomes the input for the 
subsequent stages. In each encryption round of LSA, a round key is applied to encrypt a data block, 
similar to the Add Round Key operation in AES. However, instead of using MixColumns and 
ShiftRows as in AES, LSA employs the junction jumping operation as replacements. 

LSA: Lightweight Security Algorithm 

LSA-v1: The research has created a new AES variation with each of the 3 standard stages being 
replaced by a version of them from above with the ‘best’ performance characteristics. This version 
is used mostly for the purposes of benchmarking and further experimentation. While exhibiting 
impressive time complexity and average runtime characteristics, it had dismal security properties.  
LSA-v2: In this version, a single modification has made to the Standard AES algorithm, replacing 
the high-cost Mix Columns Stage, which happens to be the most time-expensive stage, with the 
Junction Jumping Stage. This greatly improved the security characteristics but came at the cost of 
significantly longer runtimes and greater time complexity than LSA-v1. 
LSA-v3: In this version, the number of rounds is reduced by 3 (7 instead of 10) because of expected 
early obfuscation (of a satisfactory level) and to do away with the mixcolumns and shiftrows stages 
in LSA-v2. Instead, it is replaced with junction jumping. This, as expected, came at the cost of the 
algorithm’s security properties. 

Figure 5: Performance of different Versions of Lightweight Symmetric Algorithm (LSA) 

Figure 6: Comparison of LSA with other lightweight symmetric algorithms 

LSA: This is the final algorithm that is proposed as an optimised solution. It is introduced in one 
new stage, Parity Transformation, into LSA-v3 for better confusion and diffusion characteristics 
(specifically the Average Avalanche Criteria that improved significantly from 32.5% to 43.33%). 
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4. IMPLEMENTATION RESULT ANALYSIS

Cryptographic algorithms are commonly implemented as hardware modules on sensor nodes. 
However, for off-the-shelf nodes lacking hardware security implementation, software 
implementation or hardware/software co-design approaches are considered suitable alternatives. It 
is often impractical to add new hardware circuitry to these nodes, making software implementation 
and evaluation of encryption algorithms more feasible. In software implementations, the primary 
design objectives are to minimize memory usage and optimize processor throughput and power 
efficiency. Consequently, the focus lies on reducing memory occupation while achieving improved 
performance and power savings. The forthcoming sections will delve into the analysis and results 
of performance and security metric comparisons between LSA, AES, PRESENT, and TEA 
algorithms. These discussions will shed light on the achieved performance and security levels of 
these algorithms. 

4.1. Performance Metrics

Performance metrics hold significance in the comparison of various cipher algorithms. 
Consequently, it is essential to establish a consistent platform and mutually agreed-upon metrics. 
As part of our study, we have successfully implemented the proposed LSA algorithm and conducted 
a comparative analysis with existing algorithms, namely AES, PRESENT, and TEA. Given the 
limitations imposed by memory, power, and processing resources in wireless nodes, our evaluation 
primarily focuses on measuring time and memory consumption parameters. These metrics allow us 
to assess the overall performance of the implemented encryption algorithms in the context of 
wireless node constraints. 
1) Encryption Time
The performance of an algorithm improves as its speed increases. Based on the findings presented
in Figure 7, it is observed that PRESENT requires the longest time to execute the encryption
operation, followed by AES. However, by reducing the number of rounds from 10 to 7 and replacing
the ShiftRows and MixColumn operations with Junction Jumping, the LSA algorithm demonstrates
a substantial improvement in time complexity. In this section, a more detailed analysis of the LSA
algorithm's security properties will be conducted.
2) Memory Usage
IoT devices, particularly sensors, often have limited storage capacity. This storage space is primarily
allocated to the operating system and the data collected by the sensors. Consequently, there is little
room available for implementing security algorithms. Due to these constraints, it is not feasible to
employ complex encryption algorithms on IoT nodes. In this study, we evaluate the RAM and ROM
usage of each of the aforementioned algorithms. ROM usage refers to the space occupied by
permanent code on the sensor nodes. On the other hand, RAM usage pertains to the space required
for runtime code, including the storage of the stack and variables for intermediate calculation results.
Since RAM directly impacts sensor performance during runtime, it holds greater significance than
ROM [38].
The set up of a test bed for experiments and implemented these algorithms in raspberry pi to observe
the usage of memory. Fig. 7 shows the memory use records for the encryption and decryption
techniques. Compared to other algorithms, the PRESENT algorithm uses the most ROM. LSA uses
less RAM and ROM than AES, PRESENT, and TEA do but less RAM and ROM than TEA do as well.
The implementation of the RAM involves sophisticated technology and is more expensive than the
ROM memory [38].  In LSA compared to AES, round-key generation is reduced, resulting in
decreases in ROM and RAM utilisation of 13.15% and 14.68%, respectively. According to [39], low-
cost implementations call for up to 4 KB ROM and 8 KB RAM, and lightweight implementations call
for up to 4 KB ROM and 256 bytes RAM.

RT&A, No 3 (74) 
Volume 18, September 2023 

53



Amita Shah, Sanjay Shah, Hiren Patel, Namit Shah 
LSA: A LIGHTWEIGHT SYMMETRIC ENCRYPTION ALGORITHM 

4.2. Security Metrics

The energy consumption and latency of the encryption operation are increased when the packet size 
is increased [37]. As the data packets transmitted by sensor nodes are typically small in size, the 
performance evaluation metrics focus on these small-sized packets. For the purpose of evaluating 
performance, we consider 10,000 randomly generated blocks, each sized at 128 bits. The encrypted 
outputs produced by each algorithm are then used for the analysis of security metrics. 
1) Key Size (Length)
The size of the initial key plays a crucial role in determining the security level of encryption
algorithms, particularly in their resistance against brute force attacks. The longer the key size, the
more secure the encryption algorithm becomes. However, longer key sizes also result in increased
key processing time and memory space requirements. Thus, selecting an appropriate key size
depends on the desired security levels and the available resources. According to Table 1, PRESENT
and TEA have a key size of 64 bits, while AES and LSA employ a key size of 128 bits. Among the
algorithms discussed in this paper, LSA has a significantly lower likelihood of a successful brute
force attack due to its larger key size compared to the other algorithms.
2) Information Entropy Analysis
Information entropy is a measure of the probability distribution of random events and can be
utilized to assess diffusion characteristics. A higher level of system diffusion corresponds to a greater
entropy value. In the analysis of entropy, random events can be represented as sequence values in
bytes. In our case, the ideal entropy value is 4, which indicates that the values of the encrypted string
are fully distributed [40]. To calculate the system entropy, we consider each nibble in the output as
a unique symbol, resulting in a total of 24 possible symbols. The Shannon entropy value reflects the
prevalence of diffusion, with a maximum possible value of 4 in our setup. Table 2 presents the results
of the security are parameters for LSA, which comparable to those of AES. These security parameter
results are obtained from the evaluation of 10,000 randomly generated data blocks.
Shannon Entropy equation:

 𝐻(𝑋) =  − ∑ (𝑝 . 𝑙𝑜𝑔 (𝑝 ))    (1) 
Where Pi is the probability of every symbol. 

Table 2: Comparison of LSA and AES in term of Security metrics 

Algorithm Hamming 
Distance 

Shannon 
Entropy 

Avalanch
e Effect 

AES 50% 3.611 49% 
LSA 50% 3.612 46.66% 

In the results achieved similarly with the character frequency distribution domain metric, AES and 
LSA are the two algorithms with almost equivalent entropy. 
3) Diffusion and Confusion Analysis
The design of ciphers incorporates two fundamental principles: diffusion and confusion [41]. These
principles aim to complicate the statistical relationship between the key and the ciphertext, ensuring
that each input bit affects multiple ciphertext bits [42]. Confusion and diffusion serve to prevent the
deduction of secret data and secret keys, and their effectiveness disrupts statistical and other
cryptanalytic methods. Confusion obscures the connection between the ciphertext and the key, while
diffusion conceals the relationship between the plaintext and the ciphertext. Furthermore, the
properties of diffusion and confusion in AES and LSA will be investigated in relation to text
sensitivity. This investigation will consider metrics such as completeness, the avalanche effect, and
the strict avalanche effect. These metrics provide insights into the extent to which AES and LSA
exhibit diffusion and confusion properties.
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4) Avalanche Effect
The avalanche effect metric measures the extent to which a change in a single input bit influences
the output of an encryption algorithm. A secure algorithm is expected to exhibit an avalanche effect
where a single bit change in the input causes approximately half of the output bits to change,
reflecting the desired confusion and diffusion properties. In the multi-order avalanche effect
analysis, LSA demonstrates slightly less growth compared to AES. This decline in metric growth in
LSA can be attributed to the reduction in the number of rounds, which results in lower energy
consumption. The nth order avalanche criterion quantifies the change in the output when n bits are
altered in the input. For AES, the avalanche metric values remain at 49% for the 1st order, 2nd order,
and 3rd order avalanche criteria. On the other hand, LSA exhibits metric values of 49% for the 1st
order, 42% for the second order, and 49% for the 3rd order avalanche criteria. The average avalanche
criterion value for LSA is extremely close to the optimal value of 50%, indicating a high level of
diffusion and confusion in the algorithm.
5) Hamming Distance
The Hamming Distance metric is employed to determine the number of bits that change when data
is transformed. When more than 50% of the bits are flipped, the complement percentage is
considered. This is because any value above 50% (denoted as x%) is equivalent to (100 - x)%. Thus,
50% represents the maximum possible value. The Hamming Distance metric is utilized to assess
confusion and observe the degree of obfuscation in the relationship between the input and output.
Both AES and LSA exhibit results that align with the optimal expectations for secure algorithms in
terms of the Hamming Distance metric.

4.3. Trade-Off Points

The fair trade-off between security and performance is crucial in identifying effective solutions based 
on specific applications. In the case of the proposed LSA algorithm, modifications have been made 
to AES to improve time complexity and memory utilization. While there are other encryption 
algorithms like PRESENT and TEA that are designed for energy-limited systems, they are 
susceptible to certain types of security attacks. In comparison, LSA aims to provide better security 
in specific areas compared to PRESENT and TEA. LSA demonstrates a higher level of security 
against statistical attacks, as indicated by the tested security metrics including entropy, balance 
analysis, avalanche effect, and Hamming distance, similar to AES. Moreover, LSA's use of a 
nonlinear structure in the substitution box and the Junction Jumping operation enhances its 
resistance against differential attacks. Although AES may have slightly stronger security 
characteristics, LSA's security properties are very close and only marginally weaker. As depicted in 
Figure 7, LSA exhibits significantly lower time and memory overhead compared to the AES 
algorithm, while maintaining nearly the same level of security. Furthermore, when compared to 
low-energy algorithms such as PRESENT and TEA, the security improvements offered by LSA 
outweigh the associated increase in time and memory consumption. Therefore, LSA can be 
considered as a suitable encryption algorithm for battery-operated sensors and other resource-
constrained IoT nodes, offering robust security properties. 

5. CONCLUSION

Encryption techniques play a crucial role in safeguarding data privacy in IoT devices. However, due 
to the limited resources of IoT nodes, it is essential to use algorithms that are energy and memory 
efficient. In this paper, we propose LSA, a lightweight symmetric encryption algorithm that is based 
on the well-known AES algorithm. Our initial observations indicate that LSA exhibits improved 
resistance against specific differential and statistical attacks compared to algorithms like PRESENT 
and TEA. This is mainly attributed to the inclusion of nonlinear elements and a larger key space in 
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LSA. The algorithm leverages junction jumping and parity transformation stages to reduce the 
overall operation time when compared to AES. In terms of performance, LSA demonstrates a 
significant decrease in encryption and decryption execution time, averaging over 50% improvement 
compared to AES, for a variety of file sizes. Considering the resource consumption and performance 
of sensor network nodes, LSA appears to be a more suitable choice than AES. In our security attack 
analysis, we evaluated the avalanche effect, which measures the sensitivity of algorithms to changes 
in plaintext. The results indicate that AES exhibits slightly higher sensitivity than LSA. Additionally, 
LSA shows a marginally higher vulnerability to differential attacks compared to AES. To further 
enhance the proposed algorithm, future studies could focus on conducting performance analyses of 
the security metrics at different rounds and stages within LSA.  
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Abstract 

In this paper, a new continuous probability distribution called a new exponentiated extended 

inverse exponential distribution with four parameters is introduced. The mathematical and 

statistical properties of the proposed distribution, such as the quantile function, moments, 

moment generating function, survival function, hazard function, odds function, and 

reversed hazard function, were studied to understand its nature. The probability density 

function of the order statistics for this distribution was also obtained. The parameters of the 

model were estimated using the maximum likelihood method of estimation. The proposed 

model was applied to two real datasets relating to the relief times of twenty patients 

receiving an analgesic and the sum of skin folds in 202 athletes collected at the Australian 

Institute of Sports. The results showed that the new model outperformed its comparators and 

provides better fit than Topp-Leone exponentiated inverse exponential, Topp-Leone inverse 

exponential, exponentiated inverse exponential, inverse exponential and exponential 

distributions. 

Keywords: Akaike information criterion, breast cancer, skin fold, inverse 

exponential, adequacy model 

I. Introduction

The creation of novel, all-encompassing statistical models is an important field of study in 

distribution theory. Such distributions, which are extremely valuable in forecasting and simulating 

real-world phenomena, are abundant in the literature. The modeling of data in various practical 

domains, such as bio-medical analysis, reliability engineering, economics, forecasting, astronomy, 

demography, and insurance, has extensively used a number of classical distributions throughout 

the past few decades. 

The majority of exponential distribution generalizations have constant, non-increasing, 

non-decreasing, and bathtub hazard rates. However, in real-world situations, it is possible for the 

data to display a unimodal (first increasing and then decreasing) inverted bathtub hazard rate. In 

the analysis of breast cancer data, we found that the mortality rises early, reaches a peak after some 

time, and then drops gradually; the related hazard rate is thus inverted bathtub-shaped or notably 

unimodal. For this type of data, the one parameter inverted exponential (IEx) distribution, which 
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has the inverted bathtub hazard rate, has been proposed as another extension of the exponential 

distribution in statistical literature. 

In the literature, an inverted exponential distribution which was introduced in [1]. The 

distribution has an inverted bathtub hazard rate and can be used to simulate real-world events that 

have inverted bathtub failure rates. [2] have also addressed an example of its use with breast 

cancer data. According to [3], it has also been described as a model that is helpful in survival 

analysis. 

To increase the modeling flexibility of current probability distributions utilizing various 

families of distributions, recent research in this field has focused on extending existing probability 

distributions. Some families of distributions proposed in literature include Kumaraswamy 

generalized family of distributions by [4], Topp Leone generalized family of distributions by [5], 

exponentiated extended generalized family of distributions by [6], Power Lindley generalized 

family of distributions by [7], Topp Leone exponentiated generalized family of distributions by [8], 

Topp Leone Kumaraswamy generalized family of distributions by [9], Odd Chen generalized 

family of distributions by [10], Modi generalized family of distributions by [11], A new generalized 

family of distributions by [12], Type I half-Logistic exponentiated generalized family of 

distributions by [13], Type II half-Logistic generalized family of distributions by [14], etc.  

In line with this, some of the recent developments and extensions of the inverse 

exponential distribution using generalized families of continuous distribution can be found in [15], 

[16], [17], [18], [19].  

In this context, we developed a generalization of the inverse exponential distribution based on [6], 

which is derived from the following general construction: if G denotes the baseline of a cumulative 

distribution function, then a generalized family of distributions can be defined with cumulative 

distribution function and probability density function give respectively as 




          
( ; , , ) 1 1 ( ; )F x G x  (1) 

and 

 


 

      


             

1
1

( ; , , ) ( ; ) 1 ( ; ) 1 1 ( ; )f x g x G x G x  (2) 

where  is the vector of parameters of the baseline distribution. 

where ( ; )G x   is the cumulative distribution function (cdf) of the baseline distribution with vector 

of parameter  . 

for     0, , , , 0x , where equations (1) and (2) are the cumulative distribution function and 

probability density function (pdf) of the family of distributions proposed by [6].  

The cdf and pdf of the inverse exponential (IEx) distribution are given by 




 
 
 ( ; ) xG x e  (3) 






 
 
 

2
( ; ) xg x e

x
 (4) 

The major goal of this study is to build a more flexible model by adding three more shape 

parameters to the inverse exponential distribution to increase its goodness-of-fit to real-world data 

sets. The main reasons for creating the NEtEIEx distribution in practice are to make the kurtosis 

more flexible compared to the baseline inverse exponential model, to produce skewness for 

symmetrical distributions, to build heavy-tailed distributions that are not longer-tailed for 

modeling real data, to have distributions with symmetric, left-skewed, right-skewed, and inverted 

bathtub shapes, and to consistently offer better fits than other generated models under certain 

conditions. 
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II. Methods

2.1. A New Exponentiated Extended Inverse Exponential (NEtEIEx) 

Distribution 

This section developed a new continuous probability distribution function called new 

exponentiated extended inverse exponential (NEtEIEx) distribution and provide some plots of its 

pdf, cdf survival function and hazard rate function (hrf) in order to assess the shape of the new 

distribution. The cdf of the NEtEIEx distribution is obtained by inserting (3) into (1) given as: 





   
 
 
 

   
      
      

( ; , , , ) 1 1 xF x e  (5) 

Figure 1: Plots of CDF of the NEtEIEx distribution for different parameter values 

On differentiating equation (5) with respect to x, we obtained the pdf of a NEtEIEx distribution 

given in equation (6) 
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Figure 2: Plots of PDF of the NEtEIEx distribution for different parameter values 

Where 0x  , 0  is the scale parameter and , , 0    are the shape parameters respectively. 

2.1.1. Expansion of Density 

In this section the pdf in equation (6) is expanded using binomial expansion.  Expanding the last 

term in equation (6), we have 
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Equation (7) is the expansion of equation (6) which will be used to derive some of the properties of 

the distribution. 
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2.1.2.  Properties of the New Exponentiated Extended Inverse Exponential 

(NEtEIEx) Distribution 

In this section, some of the mathematical and statistical properties of NEtEIEx distribution such as 

the quantile function, moments, moment generating function, reliability measure, odds function, 

reversed hazard function and order statistics are derived. 

2.1.2.1.    Moments 



 0( ) ( )r rE X x f x dx  (8) 
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Consider the integral part of equation (9), we have 
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Equation (10) is the moments of NEtEIEx distribution. To obtain the mean, we set r = 1 in equation 

(10). 

2.1.2.2.    Moment Generating Function (mgf) 



 0( ) ( )tx

x
M t e f x dx (11)
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and following the process of moments above, we have 
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2.1.2.3.    Quantile Function 

Quantile function has a significant position in probability theory and it is the inverse of the cdf. 

The quantile function is obtained using  
 1( ) ( )Q u F u   (13) 

Using the inverse of equation (5), we have the quantile function given as 
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The median is obtained by setting u = 0.5 in equation (14) given as 
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2.1.2.4.    Hazard Function 

Hazard function is given as 
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The hazard function of the NEtEIEx distribution is given as 
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Figure 3: Plots of hazard function of the NEtEIEx distribution for different parameter values 

2.1.2.5.    Survival Function 

The reliability function is also known as survival function, which is the probability that a system 

will survive beyond a specified time [20]. It can be defined as 

        ( ; , , , ) 1 ( ; , , , )R x F x
 (18) 

The survival function of the NEtEIEx distribution is given as 
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Figure 4: Plots of survival function of the NEtEIEx distribution for different parameter values 

2.1.2.6.    Reversed Hazard Function 

Reversed hazard function of a random variable x is given as 
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 (20) 

The reverse hazard rate function of the NEtEIEx distribution is given as 
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2.1.2.7.    Odds Function 

The odds function of the NEtEIEx distribution is given as 
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2.2. Order Statistics 

Let 
1 2
, ,...,

n
X X X be n  independent random variable from the NEtEIEx distributions and let

  
(1) (2) ( )

...
n

X X X be their corresponding order statistic. Let
:
( )

r n
F x and 

:
( )

r n
f x , 1,2,3,...r n

denote the cdf and pdf of the rth order statistics 
:r n

X respectively. The pdf of the rth order statistics 

of 
:r n

X is given as 
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Equation (24) is the rth order statistics of the NEtEIEx distribution. To obtain the maximum and 

minimum order statistics, we set r = 1and r = n in equation (24) respectively. 

2.3.    Estimation Method 

The method of maximum likelihood estimation (MLE) is used in this section to estimate the 

parameters of the NEtEIEx distribution. For a random sample,
1 2
, ,...,

n
X X X of size n  from the 

NEtEIEx( , , , )    , the log-likelihood function L( , , , )     of (6) is given as 
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Differentiating the log-likelihood with respect to , , ,    and equating the result to zero, we have 
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Now, equations (26), (27), (28) and (29) do not have a simple analytical form and are therefore not 

tractable. As a result, we have to resort to non-linear estimation of the parameters using iterative 

method. 

III. Results

3.1.   Applications 

This section tests the new distribution's flexibility against a few other existing distributions using 

two actual data sets. AdequacyModel, a package in the R software, is used to produce the analyses' 

results in this study. Using the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC), respectively, the performance of the distribution was compared to other existing 

distributions that were consistent with the baseline distribution in terms of providing good 

parametric fit to the data sets. 

  2 2AIC ll k  (30) 

  2 log( )BIC ll k n  (31) 

The model selection is carried out using the AIC and the BIC. Where ll denotes the log-

likelihood function evaluated at the maxinum likelihood estimates, k  is the number of parameters, 

and n is the sample size from the data. The model with minimum value of AIC and BIC is chosen 

as the best model to fit the data set. The comparators presented are Topp-Leone exponentiated 

inverse exponential (TLExIEx), Topp-Leone inverse exponential (TLIEx), exponentiated inverse 

exponential (ExIEx), inverse exponential (IEx) and exponential (Ex) distributions. 

The first data set represents the relief times of twenty patients receiving an analgesic. This 

data set has been used by [21]. The data set is given as 

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0. 

The second data set represents the sum of skin folds in 202 athletes collected at the 

Australian Institute of Sports, has been used by [22]. The data set is given as 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 

77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9,59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 

75.6, 76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 

54.0, 54.2, 30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2,70.0, 97.2, 123.6, 

181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 

96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 
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Table 1: The ML estimates and goodness of fit measurement for the first data set. 

Models ̂ ̂ ̂ ̂ l AIC BIC 

NEtEIEx 3.735 1.832 13.235 1.831 15.575 39.150 43.133 

TLExIEx 2.772 0.322 1.791 - 46.038 98.077 101.064 

ExIEx 1.309 1.317 - - 32.669 69.337 71.329 

TLIEx - 12.432 0.526 - 22.432 49.984 51.976 

IEx - 1.725 - - 32.669 67.337 68.333 

Ex - 0.526 - - 32.837 67.674 68.670 

Figure 5: Histogram and fitted pdfs for the NetEIEx, TLIEx, ExIEx, TLExIEx, IEx and Ex models for the first data set 

Table 2: The ML estimates and goodness of fit measurement for the second data set 

Models ̂ ̂ ̂ ̂ l AIC BIC 

NEtEIEx 0.096 13.103 79.636 30.736 955.251 1918.502 1931.735 

TLExIEx 3.883 1.789 6.995 - 1521.690 3049.381 3059.305 

ExIEx 9.867 5.771 - - 1055.772 2115.544 2122.160 

TLIEx - 25.015 6.607 - 980.481 1964.962 1971.578 

IEx - 56.953 - - 1055.772 2113.544 2116.852 

Ex - 0.014 - - 1057.353 2116.707 2120.015 
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Figure 6: Histogram and fitted pdfs for the NetEIEx, TLIEx, ExIEx, TLExIEx, IEx and Ex models for the second data 

set 

IV. Discussion

The estimated values for each parameter and the models' goodness of fits are shown in Tables 1 

and 2. AIC and BIC are two metrics for goodness of fits. The model performs better when the AIC 

and BIC values are lower. Tables 1 and 2 show that the NEtEIEx distribution has the lowest AIC 

and BIC, respectively. This property makes the new model more adaptable and suitable for 

handling biomedical data sets. 

The new model's forms, fit, and adaptability in connection to the data sets under 

consideration are shown in Figures 5 and 6. The black line, which represents the new model, more 

closely matched the data's pattern than the competitors. The histogram and fitted plots make it 

clear that the black line, which represents the NEtEIEx distribution, matches the two data sets 

under consideration better. 

This study extends the inverse exponential distribution by creating a new continuous 

distribution known as the new exponentiated extended inverse exponential distribution. It was 

possible to obtain the survival function, hazard rate function, quantile function, inverted hazard 

function, odds function, and order statistics from the new distribution. Plotting the pdf and hazard 

rate function graphs revealed the contours of the suggested distribution. It was discovered that the 

hazard function is shaped like an upside-down bathtub. Adequacy Model is a package in R that 

was used to estimate the model parameters using the maximum likelihood method. The proposed 

distribution was applied to two real life data sets, and the outcomes are shown in Tables 1 and 2. 

The findings demonstrated that the new extended inverse exponential distribution with 

exponentiation is much more potent and superior at fitting the two data sets under consideration. 

The density graphs in figures 5 and 6 for the two data sets further show how adaptable the new 

model is. 
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Abstract

This research work focuses on Bayesian inference in this study to detect a change in the rate of a Maxwell
distribution model with independent random variables. The paper specifically analyzes a single rate shift
and demonstrates how the Bayesian framework can be used to efficiently solve this problem. To produce
samples from Maxwell distribution and evaluate the datasets, simulation techniques were used, and the
R programming language was used. Although the model looks to be simple, no analytical solutions are
available for parameter inference, necessitating the use of approximations. The study emphasizes the Gibbs
sampler’s applicability for change-point analysis using a Markovian updating approach. The simulation
research findings show that the predicted rate is near to the true value, confirming the consistency and
stability of the Bayesian estimator.

Keywords: Gibbs sampling, Change-point, Bayes factor, Bayesian method, Conjugate prior distri-
bution

1. Introduction

Change-point analysis (CPA) is a statistical technique for detecting and quantifying changes in
data across time. CPA identifies data points when there is a significant shift in the underlying
structure or behavior of the process producing the data. CPA finds applications in various
domains. It is utilized in fault detection and reliability [1], insurance, econometric timeseries,
and malware software detection [2]. Furthermore, it plays a role in signal detection, surveillance,
security systems, meteorology, and climatology [3] . Changepoint analysis is also employed in
graphical models [4], gynecology [5], communication network evolution [6, 7, 8], oceanography
[9], sparse VAR models [10, 11], macrosociological processes and historical changes [12], medicine
[13], and functional magnetic resonance recordings [14, 15] , among others.

CPA can be traced back to the work of [16, 17, 18], where cumulative sums (CUMSUM)
approach was used to identify points of change in a sequence of normally distributed observations.
Since then, several methods have been proposed for performing CPA, including Bayesian methods
(see [19, 20, 21, 22, 23, 24, 25], likelihood-based methods ( see [26, 27, 28, 29, 30, 31] and non-
parametric methods (see [32, 33, 34, 35] ). These techniques involve various statistical models
and algorithms to estimate the change points accurately. The choice of method depends on the
characteristics of the data and the specific objectives of the analysis.

In their study,[36] investigated the change point analysis (CPA) in the Maxwell distribution
using Bayesian methods. They examined both informative and non-informative prior distributions
and utilized two distinct loss functions, namely Linex LF and General Entropy LP, to detect the
change point and estimate its magnitude. However, the present work introduces a novel approach
by utilizing Bayes’ factor techniques to detect a single change point in a series of observations
following a Maxwell distribution. The method utilizes a conjugate prior distribution and employs
a Monte Carlo Gibbs sampling approach to estimate the parameters involved.
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2. Method

2.1. Bayesian Techniques

The definition of a change-point, as proposed by [16, 17, 18] and [26], involves a test to determine
whether a sequence of independent observations, arranged in a successive order x1, x2, . . . , xn, are
drawn from the same probability density function F(x|θ), which is characterized by the likelihood
function.

L(x; θ) =
n

∏
i=1

f (x; θ) (1)

as against set of observations with a single change-point k represented as x1, x2, . . . xk and
xk+1, xk+2, . . . xn before and after the change having two distinct probability density functions
F(x|θ1) and F(x|θ2), where θ1 ̸= θ2. The likelihood function for the alternate hypothesis can be
expressed as

L(x; θ1, θ2) =
k

∏
i=1

f (x; θ1)
n

∏
i=γ+1

f (x; θ2) (2)

In the Bayesian perspective, a joint prior distribution p(θ1, θ2) is assumed for the parameters.
Bayes theorem then provides the joint posterior distribution

p(θ1, θ2, γ|x, y) =
p(x, y|θ1, θ2)p(θ1, θ2)∫ ∫

p(x, y|θ1, θ2)p(θ1, θ2)∂θ1∂θ2
(3)

The prior distribution p(θ1, θ2) reflects the beliefs about the parameters before experimentation,
whereas the posterior distribution p(θ1, θ2, k|x) reflects the updated beliefs about the parameters
after observing the sample data.

2.2. Bayes’ Factor

Bayesian statisticians perceive hypothesis testing as a process of comparing models ([37], [38])
rather than focusing on whether a specific hypothesis is true, the emphasis is placed on deter-
mining which model, described under one hypothesis, is more favorable compared to another.
The Bayesian approach to hypothesis testing was initially developed by [39, 40] as a fundamental
component of scientific inference. A central aspect of Jeffreys’ framework involved the concept
of the Bayes factor, which represents the posterior odds of the null hypothesis when the prior
probability on the null is one-half. Jeffreys employed this approach to compare predictions made
by two competing scientific theories. In this methodology, statistical models are introduced to
represent the likelihood of the observed data according to each theory, and Bayes’ theorem is
utilized to compute the posterior probability that one theory is correct.

In their study, [37] consider a dataset D, which is assumed to be generated under two
hypotheses: H1 and H2. The probability densities ζ(D/H1) and ζ(D/H2) describe the data under
each hypothesis, respectively. Prior probabilities, ζ(H1) and ζ(H2) = 1 − ζ(H1), are assigned to
H1 and H2, respectively. By applying Bayes’ theorem, the authors obtain the posterior probabilities
ζ(H1/D) and ζ(H2/D) as follows:

ζ(Hi/D) =
ζ(D/Hi)ζ(Hi)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)
, (i = 1, 2) (4)

ζ(H1/D) =
ζ(D/H1)ζ(H1)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)

ζ(H2/D) =
ζ(D/H2)ζ(H2)

ζ(D/H1)ζ(H1) + ζ(D/H2)ζ(H2)
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In certain applications, such as testing hypotheses regarding the presence of a change-point, it is
often more informative to consider the odds in favor of H2 compared to H1 ([41, 42]).

ζ(H2/D)

ζ(H1/D)
=

ζ(D/H2)

ζ(D/H1)
× ζ(H2)

ζ(H1)
(5)

and the transformation is simply multiplication of the prior odds by

B12 =
ζ(D/H2)

ζ(D/H1)
=

∫
θ2

ζ(D/θ2)ζ(θ2)dθ2∫
θ1

ζ(D/θ1)ζ(θ1)dθ1
(6)

which is the baye’s factor. Thus,in words,
posterior odd = bayes factor × prior odds
and the bayes factor is the ratio of the posterior odd of H1 to its prior odds, regardless of the
value of the prior odds.

By analogy with the likelihood ratio obtained from Equation (6) (i.e the quantity log B12)
is often used to summarize the evidence for H2 compare to H1, with the rough interpretation
shown in Table 1. This contrasts with the interpretation of a likelihood ratio, whose null χ2

distribution for nested models would depend on the difference in their degree of freedom p
([37, 39, 40, 41, 42]). The log Bayes factor 2 log B12 is sometimes called the weight of evidence

Table 1: Rough Interpretation of Bayes factor B12 given by Davison(2003) and Peter(2006)

B12 2loge B12 Interpretation
Under 1 Negative Supports model 1

1 - 3 0 - 2 Weak support for model 2
3 - 20 2 - 6 Support for model 2

20 - 150 6 - 10 Strong evidence for model 2
Over 150 Over 10 Very strong support for model 2

2.3. The Proposed Change Point Model

This section introduces a change-point model based on the Maxwell distribution. Consider a
series of observations of size n (n>3) drawn from a Maxwell distribution with parameter θ whose
null hypothesis H1 can be stated as

H1 : θ1 = θ2 = θ (7)

whose likelihood function can be expressed as

f (x | θ) =
n

∏
i=1

π

2θ2/3 x2e−2θx2
θ > 0 (8)

This means that the there is no shift in the parameter θ of the model.
Also, consider a series of observations x1, x2, . . . xk, xk+1, . . . xn with a single shift at point k drawn
from different population with parameters θ1 and θ2. The alternate hypothesis can be stated as

H2 : θ1 ̸= θ2 (9)

having the likelihood function

f (x | θ) =
k

∏
i=1

π

2θ2/3
1

x2e−2θ1x2
k

∏
i=1

π

2θ2/3
2

x2e−2θ2x2
(10)
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2.4. Bayesian Analysis for the Change-Point Model

For the no change-point model (8), we consider a conjugate prior distribution for the parameter θ
having Gamma(θ|a, b) with probability density function and uniform prior for the parameter k
with parameter value Uniform(1,n).

π(θ) =
ba

(n − 1)Γ(a)
θa−1e−bθ a > 0, b > 0 (11)

The posterior distribution for the null hypothesis model (7) can be obtained by combining the
likelihood function (8) with the prior distribution (11) given in Equation (3) as

π(θ|x) ∝

(
b + ∑n

i=1 x−i2

2

) 3n
2 +a

Γ(a)

Γ
( 3n

2 + a
)

ba
(12)

Also, for the alternate hypothesis model (9), we consider a conjugate prior distribution for θ1 and
θ2 having Gamma(θ1|a2, b2) and Gamma(θ2|a2, b2) having probability density function

π(θ1θ2) =
ba1

1
Γ(a1)

θa1−1e−b1θ1
ba2

2
Γ(a2)

θa2−1e−b2θ2 a1 > 0, b1 > 0, a2 > 0, b2 > 0 (13)

The posterior density function can be derived by combining the likelihood function (10) and prior
distribution (13) and thus we have

π(θ1, θ2|x) ∝

(
b1 +

∑k
i=1 x2

i
2

) 3k
2 +a1

Γ(a1)

(
b2 +

∑n
i=k+1 x2

i
2

) 3(n−k)
2 +a2

Γ(a2)

Γ
(

3k
2 + a1

)
ba1

1 Γ
(

3(n−k)
2 + a2

)
ba2

2

(14)

3. Results and Discussions

In this section, we carried out a simulation studies to demonstrate the proposed change-point
model. To conduct the diagnostic successfully, we generated five sequences (chains), each
consisting of 30,000 elements. A burn-in period of 10,000 observations was implemented, and
thinning was applied, considering every 100th observation, using the Markov Chain Monte Carlo
(MCMC) scheme.

3.1. Simulation Study

We simulated datasets having a single shift in the parameter θ drawn from a Maxwell distribution
with predefined values expressed in model (15)

xi ∼
{

dMax(1.5) 1 ≤ i ≤ 41
dMax(0.5) 41 < i ≤ 80

(15)

Table 2: Summary Statistics for the Posterior Quantities

Parameters Mean SD Mc_Error
97.5% Credible

Interval
k 41.1 1.137 0.0038 [0.000002–0.0000002]
θ1 1.77 0.2321 0.0019 [1.348 – 2.255]
θ2 0.564 0.0743 0.0005 [0.427 – 0.7194]
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Figure 1: Line plot for the simulation study

Figure 2: Bayes Factor Plot for the simulated dataset

Figure 3: Posterior densities for the parameter θ1, θ2 and k
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Figure 4: Autocorrection plot for the Posterior densities for the parameter θ1, θ2 and k

Figure 5: Brooks-Gelman-Rubin plot for the Posterior densities for the parameter θ1, θ2 and k

Figures 1 and 2 depict the line plot and the Bayes’ factor plot for the simulated dataset. From
Figure 2, we determined that the shift point was detected at the predefined point 41. Summary
statistics from the Gibbs sampling MCMC are shown in Table 2, revealing that the change point k
was identified at approximately 41. Posterior densities for all parameters are displayed in Figure 3,
confirming that the density of k indicates a change occurring around point 41. The autocorrelation
plot in Figure 4 demonstrates noticeable autocorrelation in lag 1 for all parameters. In Figure 5,
the Brooks-Gelman plot for the posterior quantities suggests that the chain moves randomly from
one iteration to the next, with the Brooks-Gelman-Rubin (BGR) plot for each parameter closely
approaching 1. According to Gelman (2003), an acceptable limit is 1.1. Therefore, the BGR plots
indicate excellent results. Considering the evidence from Figures 4 and 5, we conclude that the
results obtained from the Gibbs sampler exhibit convergence to the posterior distribution and are
accurate.

RT&A, No 3 (74) 
Volume 18, September 2023 

78



T.M. Adegoke & O.M. Oladoja
CHANGE-POINT ANALYSIS OF MAXWELL DISTRIBUTION

4. Discussion

In this paper, we introduce a single change-point model for datasets that follow a Maxwell
distribution, using informative Bayes’ Factor techniques. We employ the Bayesian method to
detect the time at which a shift occurs in the dataset and apply this approach to both simulated
datasets. One key advantage of the Bayesian approach over the frequentist approach is its
ability to estimate uncertainty without relying on asymptotic sampling arguments that require
large sample sizes. The main objective of this research is to develop a change-point model for
detecting a single change-point in a series of observations that follow a Maxwell distribution. We
accomplish this using a Bayesian method, which provides a more objective approach compared
to subjective methods.
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Abstract

Extropy is a complimentary dual of Shannon’s entropy, which has many applications. The maximum
likelihood and Bayesian approaches are used in this article to explore the weighted extropy and weighted
residual extropy of the Pareto type II distribution. Using unified hyper-censoring data, we calculate
the maximum likelihood estimation of weighted extropy and its residual measures. Based on symmetric
and asymmetric loss functions, Bayesian estimators of weighted extropy and its residual measure are
developed based on unified hyper censoring data. To do some complex calculations, Markov chain Monte
Carlo methods are used. To test the performance of the estimators, a Monte Carlo simulation study and
an illustration using real data sets were carried out. The outcomes of the study showed that as the sample
size increases, maximum likelihood and Bayesian estimators of the weighted extropy and its residual
measure perform well. Also, Bayesian estimators of the weighted extropy and its residual under the
general entropy loss function are superior to the Bayesian estimators under the others in most cases.
Theoretical and empirical findings are generally in good agreement.

Keywords: weighted extropy, weighted residual extropy, Bayesian estimate, Markov chain Monte
Carlo method.

1. Introduction

The Shannon entropy, or differential entropy of a random variable Z with the probability density
function (PDF) f (z) is a fundamental notion in measuring discrimination and information. It is
defined as

H(Z) = −
∫ ∞

−∞
f(z) log f (z)dz. (1)

Shannon’s entropy measure has become one of the most widely used uncertainty measurements,
with several applications in various fields like reliability, survival analysis, and actuarial sciences,
among others.
Entropy measurement has benefits in a variety of fields, including industrial engineering and
the financial performance of the companies (see Marvizadeh [1] and Liew et al. [2]). Estimation
studies for Shannon entropy with various censoring and distribution strategies can be found in
Cho et al. [3], Liu and Gui [4], Hassan and Zaky [5], and Yu et al. [6]. The Bayesian estimator
of dynamic residual entropy was investigated by Ahmadini et al. [7], Al-Babtain et al. [8], and
Almarashi et al. [9]. Some researchers have looked at estimating entropy measures based on
record data; see, for instance, Hassan and Zaki [10] and Al-Omari et al. [11]. Helmy et al. [12]
studied the Shannon entropy for Lomax distribution in the context of unified hybrid censored
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samples. Hassan et al. [13] studied estimation of information measures for power-function
distribution in the presence of outliers.
Lad et al. [14] recently demonstrated the complementary dual of entropy called extropy, a
different measure of uncertainty. The positive and negative pictures of a photographic film are
related to entropy and extropy metrics. Extropy is utilized in voice recognition and to score the
predicting distribution (see Becerra et al. [15]). Extropy, often known as differential extropy, is
defined as

J(Z) =
−1
2

∫ ∞

0
f 2(z)dz. (2)

Qiu [16] recently investigated the characterization results, lower bounds, monotone and symmetric
features of order statistics extropy, and record values. Extropy features of ranked set sampling
were investigated by Raqab and Qiu [17]. In terms of extropy, Qiu et al. [18] studied information
characteristics of mixed systems. Extropy, on the other hand, is ineffective for estimating the
remaining lifetime of a unit that has lived for some units of time, Zt = [Z − t|Z ≥ t] is the residual
life function of Z at time t. As a result, Qiu and Jia [19] suggested the residual extropy to assess
the residual uncertainty of Zt and described the characterization and monotonic features of order
statistics:

Jt(Z) =
−1

2F2(t)

∫ ∞

t
f 2(z)dz. (3)

where F(z) = 1 − F(z) is the survival function of Z. The fundamental disadvantage of the
preceding information measures is that they only consider the probability density of the random
variable rather than the values it takes. On the right side of (2), the integrand measure is shift-
independent since it is only reliant on z through f (z). This shift-independent quality, on the other
hand, appears to be a disadvantage in many applications, such as mathematical neurobiology
and reliability. In such cases, the random variable’s value, as well as the probabilities, should
be taken into consideration. Analogous to the weighted entropy see (Belis and Guiasu [20]), in
order to efficiently model statistical data Balakrishnan et al. [21] introduced a new measure of
information named weighted extropy (WEx). For a non-negative random variable Z with PDF is
f (z), the WEx is defined as

Jw(Z) =
−1
2

∫ ∞

0
z f 2(z)dz. (4)

Now we’ll look at two distributions that have the same extropy but differently weighted extropies.
Let X and Y be two random variables such that X ∼ U(a, b), Y ∼ U(2a, a + b), where a, b > 0.
We have fX(x) = 1

b−a , for x ∈ (a, b), and fY(y) = 1
b−a , for y ∈ (2a, a + b), and then

J(X) =
−1
2

∫ b

a

1
b − a

dx =
−1
2

, J(Y) =
−1
2

∫ b+a

2a

1
b − a

dx =
−1
2

.

and

Jw(X) =
−1
2

∫ b

a
x

1
b − a

dx =
−1

2(b − a)
[
b2

2
− a2

2
] =

−(b + a)
4

Jw(Y) =
−1
2

∫ b+a

2a
x

1
b − a

dx = − (b + a)2 − (2a)2

4(b − a)
=

−(b2 + 2ba − 3a2)

4(b − a)
.

Extropies are the same in the two cases, but weighted extropies are different, hence weighted
extropies can also be used as a measure of uncertainty. The concept of residual and the past life
of random variables were combined to create WEx, given the necessity of weighted measures as
previously described. When an item is working at time t, it may be worthwhile to investigate
its longevity beyond that time. The residual lifetime is the set of interest in such cases, thus the
concept of weighted residual extropy (WREx), which is defined as follows:

Jw
t (Z) =

−1

2F2(t)

∫ ∞

t
z f 2(z)dz. (5)

In the literature, we couldn’t find any research on WEx and WREx estimation problems using
a unified hyper censoring scheme (UHCS). In this paper, UHCS is used for estimating weighted
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extropy and its residual for Pareto II distribution (P-IID). The maximum likelihood (ML) and
Bayesian estimators are used to investigate WEx and WREx measures. The Bayesian estimator
is provided using symmetric and asymmetric loss functions and uses the Markov chain Monte
Carlo (MCMC) method to estimate the posterior distribution. Both the application to real data
and simulation concerns are covered.

The rest of the paper is organized in the following way. The WEx and WREx expressions of
the P-IID are produced in Section 2. In Section 3, using ML and Bayesian estimation methods to
assess WEx and WREx for P-IID using UHCS, the study in Bayesian happened under symmetric
and asymmetric loss functions using the MCMC method. Section 4 discusses the simulation
problem and its application to real data. The paper comes to a close with some concluding
comments in Section 5.

2. Model Description

One of the vital lifetime models is the P-IID. It was introduced by Lomax [22], which is valuable
in many fields, such as actuarial science and economics. It’s been beneficial in issues of reliability
and life testing (see Hassan and Al-Ghamdi [23]). Harris [24], and Atkinson et al. [25] used the
P-IID to analyze income and wealth data. A random variable Z has a P-IID if its PDF is given by:

f(z) =
θξθ

(z + ξ)(θ+1)
, θ > 0, ξ > 0, z ≥ 0. (6)

The cumulative distribution function (CDF) of Z is specified by:

F(z) = 1 − ξθ

(z + ξ)θ
. (7)

Several authors have published studies on P-IID in the literature. Balakrishnan and Ahsanullah
[26] investigated certain recurrence relations between the moments of record values from the
P-IID. Singh et al. [27] used Lindley’s approximation to investigate the Bayesian estimate of P-IID
under T-II HCS. Estimation of reliability for P-IID using ranked set sampling was provided by
Hassan et al. [28].
The WEx of the P-IID is calculated by substituting (6) in (4) as following:

Jw(z) =
−1
2

∫ ∞

0
z
[ θξθ

(ξ + z)θ+1

]2
dz

=
−θ2ξ2θ

2

∫ ∞

0
z(ξ + z)−2θ−2dz.

Using integration by parts, then Jw(z) is as follows

Jw(z) =
−θ2ξ2θ

2(2θ + 1)

∫ ∞

0
(ξ + z)−2θ−1dz =

−θ

4(2θ + 1)
. (8)

Furthermore, WREx of the P-IID is calculated by substituting (6) in (5) as below:

Jw
t (z) =

−(ξ + t)2θ

2ξ2θ
θ2ξ2θ

∫ ∞

t
z(ξ + z)−2θ−2dz. (9)

Using integration by parts, then Jw
t (z) is as follows

Jw
t (z) =

−θ2(ξ + t)2θ

2

[ z(ξ + z)−2θ−1

−2θ − 1
|∞t −

∫ ∞

t

(ξ + z)−2θ−1

−2θ − 1
dz
]

=
−θ2(ξ + t)2θ

2

[ t(ξ + t)−2θ−1

2θ + 1
+

1
2θ + 1

(ξ + t)−2θ

2θ

]
.

After simplification, then Jw
t (z) takes the following form:

Jw
t (z) =

−θ(2θt + t + ξ)

4(2θ + 1)(ξ + t)
. (10)
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3. Estimation Methods

In this section, we study two methods of estimations, namely the ML and Bayesian to investigate
WEx and WREx of the P-IID. In the Bayesian estimation method, we obtain the WEx and WREx
estimators under different types of loss functions and use the MCMC method to calculate these
estimators.

3.1. Maximum Likelihood Estimator

According to many life-testing experiments, censorship is crucial to lower the expense of the
experiment and to shorten the amount of time spent testing. Childs et al. [29] merged type-I
(T-I) and type-II (T-II) censoring and came up with a hybrid censoring system (HCS), which
includes two categories (T-I HCS & T-II HCS) and these two types have been used in many types
of research. The generalized T-I HCS and generalized T-II HCS were created by Chandrasekar
et al. [30] by combining these two types. The UHCS, developed by Balakrishnan et al. [31], is a
combination of generalized T-I and T-II hybrid censoring schemes.
Fix r1, r2 ∈ {1, 2, . . . , n} and the time points T1, T2 ∈ (0, ∞) in this scheme.

T∗ = min
(

max(xr2 :n, T1), T2

)
, if the rth

1 failure happened prior to time T1. T∗ = min(xr2 :n, T2)

if the rth
1 failure happens between T1 and T2, and T∗ = xr1 :n, if the rth

1 failure happens after T2.
Consequently, we now have six cases covered by the UHCS. We can confirm that the test will
be completed in time T2 with at least r1 failures using this scheme technique, if not, exactly r1
failures.
We obtain the ML estimator of the P-IID parameters under UHCS. Let Z1:n, Z2:n, . . . , Zn:n be n
identical ordered failure times have P-IID, with fixed integer r1, r2 ∈ 1, 2, ..., n where r1 < r2 < n
and time points T1, T2 ∈ (0, ∞) where T1 < T2. Then, the likelihood function of θ and ξ, under
UHCS for 6 situations is represented by

L(z|θ, ξ) =



n!
(n−D1)!

∏D1
i=1 f (zi:n)[1 − F(T1)]

n−D1 , for case 1
n!

(n−r2)!
∏r2

i=1 f (zi:n)[1 − F(r2)]
n−r2 for case 2 and 4

n!
(n−D2)!

∏D2
i=1 f (zi:n)[1 − F(T2)]

n−D2 for case 3 and 5
n!

(n−r1)!
∏r1

i=1 f (zi:n)[1 − F(r1)]
n−r1 for case 6

, (11)

where D1 and D2 are number of failures related to T1 and T2, respectively and D1 < D2. The
likelihood function (11) can be written as:

L(z|θ, ξ) =
n!

(n − m)!
[

m

∏
i=1

f (zi:n)][1 − F(C)]n−m, (12)

where C denotes the experiment’s end time and m denotes the number of observations made
until the experiment’s end time C and is given by:

(m, C) =


(D1, T1) at case 1
(r2, zr2 :n) at case 2 and 4
(D2, T2) at case 3 and 5
(r1, zr1 :n) at case 6

, (13)

From (6) and (7) by substituting in (12) we get likelihood function of P-IID under UHCS,

L(z|θ, ξ) =
n!

(n − m)!
[θmξmθ

m

∏
i=1

1
(ξ + zi)θ+1 ][

ξθ

(C + ξ)θ
]n−m. (14)
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Take the logarithm of both sides, denoted by l,

l ∝ m ln θ + mθ ln ξ − (θ + 1)
m

∑
i=1

ln(ξ + zi)

+ θ(n − m)[ln ξ − ln (C + ξ)].

(15)

Take derivatives of (15) with respect to θ and ξ, we can get

∂l
∂θ

=
m
θ
+ m ln ξ −

m

∑
i=1

ln(ξ + zi) + (n − m)[ln ξ − ln(C + ξ)], (16)

and
∂l
∂ξ

=
mθ

ξ
− (θ + 1)

m

∑
i=1

1
(ξ + zi)

+ θ(n − m)[
1
ξ
− 1

(C + ξ)
]. (17)

Set (16) & (17) to zero and solve them to get the ML estimator of θ and ξ. Then equation (16)
is written as:

θ̂ = A(ξ̂), (18)

where
A(ξ̂) =

−m
m ln ξ̂ − ∑m

i=1 ln(ξ̂ + zi) + (n − m)[ln ξ̂ − ln(C + ξ̂)]
.

By substituting from (18) into (17) after putting them equal zero to get

mA(ξ̂)

ξ̂
− (A(ξ̂) + 1)

m

∑
i=1

1
(ξ + zi)

+ (n − m)A(ξ̂)[
1
ξ̂
− 1

(C + ξ̂)
] = 0. (19)

We may acquire the ML estimator of θ using an iterative process by computing the ML estimator
from (19) and then substituting it into (18). As a result of the invariance property of ML estimation,
the estimator of Jw(z) and Jw

t (z), becomes

Ĵw(z) =
−θ̂

4(2θ̂ + 1)
, (20)

and

Ĵw
t (z) =

−θ̂(2θ̂t + t + ξ̂)

4(2θ̂ + 1)(ξ̂ + t)
. (21)

3.2. Bayesian Estimator

Here, we consider both θ and ξ unknown, indicating that there is no natural conjugate bivariate
prior distribution. As a result, we assume that the independent priors for θ and ξ are gamma
(a, b) and gamma (c, d), respectively, with a

b and c
d as means. The θ and ξ priors are written as

follows:
π1(θ) ∝

(
θa−1e−bθ

)
, θ > 0,

π2(ξ) ∝
(

ξc−1e−ξd
)

, ξ > 0,

where a, b, c, and d are positive hyperparameters that carry prior knowledge. As a result, the joint
prior distribution is as follows:

π(θ, ξ) ∝ θa−1ξc−1e−(bθ+dξ). (22)

The posterior distribution is given by

= E1θm+a−1ξmθ+c−1e−ξde−θ[b+∑m
i=1 ln(ξ+zi)−(n−m) ln( ξ

C+ξ )]e−∑m
i=1 ln(ξ+zi), (23)
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where E−1
1 =

∫ ∞
0

∫ ∞
0 L(z|θ, ξ)π(θ, ξ)dθdξ, is the normalizing constant.

Then, the marginal posterior distributions of θ and ξ, are given below

π∗
1 (θ|z) ∝ θm+a−1e−θb

∫ ∞

0
ξ(mθ+c−1)e−ξd−θ[∑m

i=1 ln(ξ+zi)−(n−m) ln( ξ
C+ξ )]e−∑m

i=1 ln(ξ+zi)dξ, (24)

and

π∗
2 (ξ|z) ∝ e−ξdξc−1e−∑m

i=1 ln(ξ+zi)
∫ ∞

0
θm+a−1ξmθe−θ[b+∑m

i=1 ln(ξ+zi)−(n−m) ln( ξ
C+ξ )]dθ. (25)

As seen from (23) and (25) that π∗
1 (θ|ξ) is calculated as following

π∗
1 (θ|ξ) ∝ θm+a−1e−θ[b−m ln ξ+∑m

i=1 ln(ξ+zi)−(n−m) ln( ξ
C+ξ )]. (26)

As a result, the gamma distribution with shape parameter (m + a − 1) and scale parameter
[b − m ln ξ + ∑m

i=1 ln(ξ + zi)− (n − m) ln( ξ
C+ξ )] is the posterior density function of θ given ξ. As

a result, any gamma-producing technique can be used to generate θ samples with ease.
From (23) and (24) we can calculate π∗

2 (ξ|θ), as following

π∗
2 (ξ|θ) ∝ ξmθ+c−1e−ξde−θ[∑m

i=1 ln(ξ+zi)−(n−m) ln( ξ
C+ξ )]e−∑m

i=1 ln(ξ+zi). (27)

Appropriate sampling techniques cannot be able to sample directly because this equation can
never be solved to very well distributions. To generate an estimator for the following loss
functions, use the MCMC approach.

3.2.1. Loss Functions

We will look at Bayesian estimators for both symmetric and asymmetric loss functions. The
squared error loss (SEL) function is one of the most extensively utilized symmetric loss functions.
The following is the SEL function:

L1(ϕ, δ) = (δ − ϕ)2,

where δ is an estimator of ϕ. The Bayesian estimator, based on the SEL function, is calculated as
follows:

ϕ̂SEL = E(ϕ|data). (28)

In terms of asymmetric loss functions, we chose the linear-exponential (LINEX) and the general
entropy (GE) loss functions, which are the two most often used asymmetric loss functions. The
following is a definition of the LINEX loss function:

L2(ϕ, δ) = e−h(δ−ϕ) − h(δ − ϕ)− 1,

where h is the sign presenting the asymmetry (see Parsian and Kirmani, [33]). Under the LINEX
loss function, the Bayesian estimator is provided by

ϕ̂LINEX =
−1
h

ln[E(e−hϕ|data)]. (29)

The following is the definition of the GE loss function:

L2(ϕ, δ) = (
δ

ϕ
)h − h(

δ

ϕ
)− 1.

In this case, the Bayesian estimator is:

ϕ̂GE = [E(ϕ−h|data)]−
1
h . (30)
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Under the SEL, LINEX, and GE loss functions, the Bayesian estimators of WEx and WREx are as
follows:

ĝ(θ, ξ)SEL = E1

∫ ∞

0

∫ ∞

0
g(θ, ξ)θm+a−1ξmθ+c−1e−ξd−∑m

i=1 ln(ξ+zi)e−θYi(θ,ξ,zi)dθdξ, (31)

ĝ(θ, ξ)LINEX =
−1
h

ln[E1

∫ ∞

0

∫ ∞

0
e−hg(θ,ξ)θm+a−1ξmθ+c−1e−ξd−∑m

i=1 ln(ξ+zi)e−θYi(θ,ξ,zi)dθdξ], (32)

ĝ(θ, ξ)GE =
[
E1

∫ ∞

0

∫ ∞

0
(g(θ, ξ))−hθm+a−1ξmθ+c−1e−ξd−∑m

i=1 ln(ξ+zi)e−θYi(θ,ξ,zi)dθdξ
]−1

h , (33)

where Yi(θ, ξ, zi) = [b + ∑m
i=1 ln(ξ + zi)− (n − m) ln( ξ

C+ξ )], E1 is the normalizing constant and to
calculate the WEx put g(θ, ξ) = Jw(z) and to find the WREx put g(θ, ξ) = Jw

t (z).
It should be observed that all Bayesian entropy estimators are expressed as a ratio of two integrals,
which cannot be simplified or directly computed. To compute the estimators, we use the MCMC
approach.

3.2.2. MCMC Method

Consider using the MCMC approach to produce samples from posterior distributions and then
using the (SEL, LINEx, GE) loss functions to compute Bayesian estimates (BEs) of WEx and
WREx. There are many different MCMC schemes to select from, and it can be difficult to decide
which one to use. Gibbs samplers as well as Metropolis-within-Gibbs samplers are key subclasses
of MCMC algorithms. The advantage of the MCMC technique over the ML method is that by
creating probability intervals based on the empirical posterior distribution, we can always obtain
an acceptable interval estimate of the parameters. ML estimation frequently lacks this feature.

Algorithm

1) ξ0 = ξ̂.
2) θ(l) is obtained from Gamma π∗

1 (θ|ξ) as shown in (26).
3) To generate ξ(l) from π∗

2 (ξ|θ) using Metropolis-Hastings (M-H) algorithm, see Metropolis et al.
[32].
4) Calculate θ(l) and ξ(l).
5) Repeat steps 2-4 N times.
6) Calculate the WEx and WREx via the loss functions using the Bayesian estimators of θ and ξ.

4. Simulation Investigation and Results

In this section, we study the performance of all previously proposed estimators for WEx and
WREx, so we can use a simulation study to estimate WEx and WREx and use an Illustrative
example.

4.1. Simulation Study

In this subsection, we look into the efficiency of the ML estimates (MLEs) and BEs of WEx and
WREx, for the P-IID in terms of mean squared errors (MSEs) under different loss functions by
using the Monte Carlo simulation.
• The UHCS from the P-IID are generated for sample sizes n = 200 and 100, using these samples,
the MSEs of MLEs and BEs are computed.
• The BEs using the suggested loss functions when (h = −1, 1) are calculated.
• The simulation runs N = 1, 000 times and for the WREx, take t = 0.5.
• The prior parameters used in Bayesian inference are selected (a, b, c, d) = (3.5, 5.5, 4, 2).
The MLEs and BEs of WEx and WREx were studied under the following cases where in (Table 1)
the results of WREx and in (Table 2) the results of WEx:
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1- Values of n, r2, T2 are taken as (n = 100, r2 = 50, T2 = 1.2) and r1 = (80, 70, 60) at differ-
ent values of T1, where T1 = (0.2, 0.9).
2- Values of n, r2, T2 are taken as (n = 200, r2 = 140, T2 = 1.2) and r1 = (190, 170, 150) at different
values of T1, where T1 = (0.2, 0.9).
3- Values of n, r2, T1 are taken as (n = 100, r2 = 50, T1 = 0.9) and r1 = (80, 70, 60) at different
values of T2, where T2 = (1.2, 3).
4- Values of n, r2, T1 are taken as (n = 200, r2 = 140, T1 = 0.9) and r1 = (190, 170, 150) at different
values of T2, where T2 = (1.2, 3).
5- Values of n, r1, T1 are taken as (n = 100, r1 = 80, T1 = 1.2) and r2 = (70, 50, 30) at T2 = 5.
6- Values of n, r1, T1 are taken as (n = 200, r1 = 170, T1 = 1.2) and r2 = (160, 150, 120) at T2 = 5.
The MSE for N samples is calculated using

MSE(ϕ̂) =
N

∑
i=1

(ϕ̂i − ϕ)2

N
, (34)

where ϕ̂ = Ĵw(z) and Ĵw
t (z). All results are given in Tables 1 and 2. Using tables, we may conclude

the following:

1-The results in Tables 1 and 2 reveal that for all proposed estimates, the MSEs generally
decrease with increasing value of n.
2- The MSE of weighted measures in ML and Bayesian estimates decreases as r1 increases while
the sample size n is fixed ( see Figures 1 and 2).
3- When both the sample size n and the number of failures r1 are fixed, the MSE of weighted
measures in ML and Bayesian estimates decrease as the specified observation number r2 increases
(Figures 3 and 4).
4-The MSE of weighted measures in ML and Bayesian estimates generally decreases when the
predetermined time T1 and the extended time T2 increase (see Figures 5 and 6).
5-The BEs of WEx and WREx viz LINEX loss function at h = −1 have a lot of information and
the BEs using GE loss function at h = 1 have a lot of information since they have a small value of
MSE.
6- The BEs of the Jw(z) and Jw

t (z) under the GE loss function are superior to the BEs under the
other loss functions in most of the cases (Figures 1 and 2).
7-The BE of WEx and WREx is the best value under the GE loss function in most cases.
8-The amount of data obtained under the GE loss function is more in BEs than obtained under
other loss functions.
9-By increasing the number of failures r1 or r2, the BEs of WEx and WREX are raised.

Figure 1: The MSE of WREx estimate for various values
of r1. Figure 2: MSE of WEx estimate for various values of r1.
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Figure 3: The MSE of WREx estimate for different val-
ues of r2.

Figure 4: The MSE of WEx estimate for various values
of r2.

Figure 5: The MSE of WREx estimate for various values
of T1 when n = 200, r1 = 190, r2 = 140.

Figure 6: The MSE of WEx estimate for various values
of T1 when n = 200, r1 = 190, r2 = 140.
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Table 1: MLEs and BEs of WREx and associated MSE.

(T1 = 0.2 T2 = 1.2)
n r1 r2 MLE SEL LINEX GE

h = (−1) h = (1) h = (−1) h = (1)
100 80 50 -0.16189 -0.32887 -0.32861 -0.32914 -0.32887 -0.32731

0.00015 0.02395 0.02387 0.02403 0.02395 0.02347
70 -0.2097 -0.36075 -0.36034 -0.36117 -0.36075 -0.3585

0.00127 0.03484 0.03468 0.03499 0.03484 0.034
60 -0.16821 -0.37014 -0.36963 -0.37066 -0.37014 -0.36745

0.00003 0.03843 0.038237 0.03863 0.03843 0.0373
200 190 140 -0.18586 -0.37053 -0.37032 -0.37073 -0.37053 -0.36944

0.00014 0.03858 0.0385 0.03866 0.03858 0.03816
170 -0.16035 -0.38768 -0.38744 -0.38792 -0.38768 -0.38647

0.00019 0.04561 0.04551 0.04571 0.04561 0.0451
150 -0.19091 -0.4324 -0.4321 -0.4327 -0.4324 -0.43103

0.00028 0.16672 0.16656 0.16687 0.16672 0.16601
(T1 = 0.9 T2 = 1.2)

100 80 50 -0.16824 -0.30625 -0.30601 -0.30649 -0.30625 -0.30472
0.00003 0.01746 0.0174 0.01753 0.01746 0.01706

70 -0.17107 -0.31911 -0.3188 -0.31942 -0.31911 -0.3172
0.00001 0.02103 0.02093 0.02112 0.02103 0.02047

60 -0.30542 -0.35315 -0.35282 -0.3534 -0.35315 -0.351
0.01724 0.03206 0.03194 0.03218 0.03206 0.0314

200 190 140 -0.7929 -0.73629 -0.73048 -0.74198 -0.73629 -0.71956
0.0665 0.01465 0.01424 0.01507 0.01465 0.01294

170 -0.64563 -0.5423 -0.5429 -0.54735 -0.54563 -0.53836
0.0486 0.03817 0.03388 0.04233 0.03817 0.02721

150 -0.58563 -0.48563 -0.4839 -0.48735 -0.48563 -0.47836
0.1487 0.13817 0.13388 0.14243 0.13817 0.12601

(T1 = 0.9 T2 = 3)
100 80 50 -1.11252 -1.01252 -1.00171 -1.02322 -1.01252 -0.99011

0.51982 0.41982 0.40594 0.4338 0.41982 0.39128
70 -1.1324 -1.03264 -1.02677 -1.06183 -1.03264 -1.0296

0.5188 0.4348 0.455 0.4903 0.4348 0.4112
60 -1.1564 -1.06564 -1.05777 -1.07383 -1.06564 -1.05096

0.5148 0.49148 0.4805 0.50303 0.49148 0.47112
200 190 140 -0.5662 -0.53222 -0.53067 -0.53375 -0.53222 -0.52614

0.0981 0.0281 0.02759 0.02862 0.0281 0.0261
170 -0.6997 -0.67367 -0.66779 -0.67942 -0.67367 -0.65475

0.09774 0.09554 0.09193 0.09912 0.09554 0.0842
150 -0.7897 -0.7767 -0.72779 -0.7752 -0.75367 -0.653

0.11674 0.11354 0.11093 0.11812 0.11354 0.10842

90

RT&A, No 3 (74) 
Volume 18, September 2023 



Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy
ANALYSIS OF UNCERTAINTY WEIGHTED MEASURES
FOR PARETO II DISTRIBUTION

Continue Table 1

(T1 = 1.2 T2 = 5)
n r1 r2 MLE SEL LINEX GE

h = (−1) h = (1) h = (−1) h = (1)
100 80 70 -0.999 -0.94699 -0.93012 -0.9638 -0.94699 -0.90949

0.3492 0.3392 0.31983 0.35908 0.3392 0.29693
50 -1.12431 -1.3531 -1.34752 -1.3638 -1.35631 -1.34385

0.5694 0.5544 0.5436 0.5774 0.5744 0.5352
30 -1.34631 -1.24631 -1.23852 -1.25438 -1.24631 -1.23385

0.7894 0.77744 0.76376 0.79174 0.77744 0.75562
200 170 160 -0.80514 -0.70514 -0.70141 -0.70881 -0.70514 -0.694

0.1348 0.11598 0.11345 0.11849 0.11598 0.10852
150 -1.6424 -1.4524 -1.4499 -1.4635 -1.4524 -1.4381

1.222 1.1322 1.1537 1.1752 1.13332 1.1145
120 -1.75824 -1.67524 -1.66099 -1.68935 -1.67524 -1.65781

1.882 1.71782 1.68067 1.75502 1.71782 1.67245

Table 2: MLEs and BEs of WEx and associated MSE.

(T1 = 1.2 T2 = 5)
n r1 r2 MLE SEL LINEX GE

h = (−1) h = (1) h = (−1) h = (1)
100 80 70 -0.1182 -0.1182 -0.11823 -0.11826 -0.11823 -0.11819

0.0002 0.0002 0.00022 0.00025 0.0002 0.0001
50 -0.1218 -0.1215 -0.1219 -0.1221 -0.1245 -0.1215

0.0003 0.00021 0.00023 0.00037 0.00033 0.00028
30 -0.1248 -0.12485 -0.12495 -0.12505 -0.12495 -0.12475

0.0004 0.00041 0.00043 0.00057 0.00043 0.00038
200 170 160 -0.1152 -0.1152 -0.11521 -0.11527 -0.11521 -0.11519

0.00012 0.00012 0.00012 0.00019 0.00012 0.00011
150 -0.1242 -0.12422 -0.12422 -0.12422 -0.12422 -0.12422

0.0004 0.0008 0.0005 0.0009 0.0008 0.0004
120 -0.1352 -0.13522 -0.13522 -0.1422 -0.1432 -0.12522

0.0014 0.0018 0.0014 0.0016 0.0014 0.0010
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Continue Table 2

(T1 = 0.2 T2 = 1.2)
n r1 r2 MLE LINEX GE

h = (−1) h = (1) h = (−1) h = (1)
100 80 50 -0.1276 -0.12482 -0.12482 -0.12492 -0.12482 -0.12470

0.00032 0.00023 0.00023 0.00027 0.00024 0.00021
70 -0.1015 -0.12494 -0.12494 -0.12497 -0.12494 -0.12491

0.00006 0.00097 0.00095 0.00099 0.00091 0.0009
60 -0.08959 -0.12476 -0.12476 -0.12478 -0.12476 -0.12465

0.00002 0.00096 0.00096 0.00116 0.00096 0.00082
200 190 140 -0.09573 -0.1238 -0.1248 -0.1252 -0.1248 -0.1242

0.00093 0.0009 0.00096 0.00098 0.00096 0.00091
170 -0.09744 -0.12471 -0.12477 -0.12482 -0.12477 -0.1241

0.00015 0.00086 0.00096 0.00106 0.00096 0.00043
150 -0.12133 -0.12122 -0.12138 -0.12144 -0.12134 -0.12132

0.00025 0.00025 0.00039 0.00029 0.00029 0.00027
(T1 = 0.9 T2 = 1.2)

100 80 50 -0.09412 -0.12491 -0.12493 -0.12498 -0.12493 -0.12492
0.00057 0.00094 0.00097 0.00099 0.00097 0.00095

70 -0.136 -0.1249 -0.12495 -0.12498 -0.12495 -0.12491
0.00037 0.00097 0.00097 0.00099 0.00097 0.00096

60 -0.11962 -0.12498 -0.12498 -0.12498 -0.12498 -0.1249
0.00067 0.00098 0.00098 0.00098 0.00098 0.00098

200 190 140 -0.1172 -0.11622 -0.11623 -0.11628 -0.11623 -0.11619
0.00013 0.00011 0.00012 0.00015 0.00015 0.00011

170 -0.119 -0.1097 -0.10972 -0.1097 -0.10982 -0.10968
0.00003 0.00003 0.00003 0.00004 0.00003 0.00002

150 -0.121 -0.1117 -0.1142 -0.1137 -0.11182 -0.11168
0.00013 0.00022 0.00019 0.00027 0.00015 0.00011

(T1 = 0.9 T2 = 3)
100 80 50 -0.13540 -0.12340 -0.12347 -0.12357 -0.12347 -0.12342

0.00041 0.0003 0.00037 0.00047 0.00037 0.00033
70 -0.1341 -0.12251 -0.12233 -0.12288 -0.12233 -0.12222

0.00042 0.0003 0.00035 0.00037 0.00035 0.00032
60 -0.1321 -0.12211 -0.12213 -0.12218 -0.12213 -0.12212

0.00043 0.00031 0.00032 0.00035 0.00032 0.00031
200 190 140 -0.1107 -0.11079 -0.1108 -0.11087 -0.11081 -0.11078

0.00004 0.00004 0.00004 0.00004 0.00004 0.00004
170 -0.1142 -0.11421 -0.1145 -0.1146 -0.1146 -0.1142

0.00008 0.00009 0.00008 0.00005 0.00009 0.00002
150 -0.1152 -0.11521 -0.11525 -0.11526 -0.11526 -0.1152

0.0001 0.00011 0.00012 0.00015 0.00012 0.00010
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4.2. Data Analysis

Consider the data from Lee and Wang [34], which represent the remission times (in months) of
a random sample of 128 bladder cancer patients. For these real data, the Kolmogorov-Smirnov
(K-S) test is used, and the p-value indicates that the P-IID best matches the data where (p-
value=0.336703 and K-S distance = 0.0820311). Figure 7 illustrates the estimated PDF and CDF of
P-IID.

Figure 7: Estimated PDF and CDF of P-IID

In this application, we assume that the distribution of this data is the P-IID based on the
UHCS. We take
Case 1: (r1 = 70, r2 = 80, T1 = 10, T2 = 15),
Case 2: (r1 = 70, r2 = 95, T1 = 10, T2 = 15),
Case 3: (r1 = 70, r2 = 115, T1 = 10, T2 = 15),
Case 4: (r1 = 93, r2 = 100, T1 = 10, T2 = 15),
Case 5: (r1 = 93, r2 = 115, T1 = 10, T2 = 15),
Case 6: (r1 = 120, r2 = 125, T1 = 10, T2 = 15).
We use a non-informative prior to calculating the BEs under (SEL, LINEX, GE) loss functions
with h = (−1, 1), because we don’t know anything about the priors, therefore we choose
a = 0, b = 0, c = 0, and d = 0. The results for the real data are listed in Tables 3 and 4.

Table 3: Estimation of WEx when (T1 = 10, T2 = 15).

Case n r2 r1 MLE BSL LINEX GE
h = (−1) h = (1) h = (−1) h = (1)

1 80 70 -0.125 -0.12183 -0.12184 -0.12183 -0.12175 -0.12183
2 95 70 -0.1252 -0.12183 -0.12184 -0.12183 -0.12175 -0.12183
3 128 115 70 -0.12 -0.12179 -0.1218 -0.12179 -0.12171 -0.12179
4 100 93 -0.125 -0.12179 -0.1218 -0.12179 -0.12171 -0.12179
5 115 93 -0.125 -0.12182 -0.12183 -0.12182 -0.12174 -0.12182
6 125 120 -0.1190 –0.11886 -0.11886 -0.11886 -0.11886 -0.11886
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Table 4: Estimation of WREx when (T1 = 10, T2 = 15).

Case n r2 r1 MLE BSL LINEX GE
h = (−1) h = (1) h = (−1) h = (1)

1 80 70 -1.5305 -0.82458 -1.05544 -0.59372 -0.22025 -0.82458
2 95 70 -1.46202 -0.79034 -1.00075 -0.57993 -0.21951 -0.79034
3 128 115 70 -1.40151 -0.76005 -0.95306 -0.56705 -0.21867 -0.76005
4 100 100 -1.42467 -0.77163 -0.97124 -0.57203 -0.21895 -0.77163
5 115 115 -1.41513 -0.76689 -0.96375 -0.57003 -0.21893 -0.76689
6 125 120 -0.8634 -0.84222 -0.84318 -0.84123 -0.83977 -0.84222

The trace plot and histogram of the first 1000 MCMC results for the posterior distribution of
WEx and WREx for case 1 are shown in Figures 8 and 9.

Figure 8: The posterior sample trace plot for case 1.

Figure 9: The posterior sample histogram for case 1.

We note from the study of this application that:
• The BE of WEx and WREx is less than the value of MLE in most cases.
• The BE of WEx and WREx via LINEX loss function at h = −1 have a small value. Furthermore,
the BEs via the GE loss function at h = −1 have a large value. Finally, we reach the conclusion
that the simulated research is supported by real data.

5. Conclusion

In this study, using UHCS, we investigated Bayesian and non-Bayesian estimators of WEx and
WREx for the P-IID. For the weighted extropies measures under study, we found ML and Bayesian
estimators for both symmetric and asymmetric loss functions. The MCMC techniques were used
to calculate the Bayes estimates based on the M-H algorithm. In terms of accuracy measures,
the performance of weighted extropy and its residual estimates for P-IID were explored. One
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application to real data was considered, as well as a simulation issue. In general, the MSE values
of ML and Bayesian estimators of weighted measures decrease as the number of failures rises
in most cases, according to the results of the study. When compared to different estimates, the
Bayesian estimate of WEx and WREx under the general entropy loss function performs well in the
majority of situations. By increasing the number of failures r1 or r2, the BEs of WEx and WREx
are raised.

Funding: Not applicable.
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Abstract

Fuzzy graph and Fuzzy soft graph are indispensable computing modules for presenting membership
and non - membership values in the world of uncertain situations and incidents. In this research article,
we introduce the new module of Alternate Quadra Submerging Polar Fuzzy Soft Graph with four co –
ordinates with membership and non – membership values. The aim of this new fuzzy soft graph is to
find the single output from different uncertain parametric sets of subjects and events, between the range
[-1, 1]. The submerge level of fixed four co ordinates is a tool to find the precise and reliable membership
degree values from uncertain problems and outcomes. In this artifact, we also investigate the different
types of Alternate Quadra Submerging Polar Fuzzy Soft Graphs, corresponding parametric fuzzy values
and submerge membership and non – membership values. We discussed Strong, Complete, Complement
and µ complement properties of Alternate Quadra Submerging Polar Fuzzy Soft Graphs. We use this
fuzzy soft graph in the Analysis of water related diseases to find the result of most and least affected
diseases with the symptoms among the hostel students in the same locality. We find the maximum and
minimum membership and non - membership value of the water related diseases in an unique way by
using this Alternate Quadra Submerging Polar Fuzzy Soft Graph score function values.

Keywords: AQSP fuzzy graph , AQSP Fuzzy Soft Graph, Strong and Complete AQSP
fuzzy soft graph, Complement and µ – Complement proprties of AQSP fuzzy soft graphs.

1. Introduction

The future is parametric uncertain universal set, but this uncertainty is at the very heart of human
creativity. Mathematicians and Scientists have a lot of experience with ignorance, doubt, and
uncertainty. In 1965 Prof.Lotfi.A.Zadeh[20], invented Fuzzy set theory with membership values
to solve uncertain subjects and events. The concept of fuzzy graph was first introduced by
Rosenfeld[16]. Kaufmann’s[10] initial definition of a fuzzy graph was based on Zadeh’s fuzzy
relations. Bhattacharya[6] gave some remarks on fuzzy graphs. In 1994, Moderson[14] and
Peng introduced several notations on fuzzy graphs and the concept of complement of fuzzy
graphs. In 1999, Molodtsov[12] introduced the concept of soft set theory to deal with uncertain-
ties. It has been applied in the field of Applied Mathematics, Artificial Computation intelligent,
Engineering, Smoothness of functions, Medical Science and Environment. Since the research
on soft fuzzy sets has been very active and received much attention from researchers in worldwide.

In this current computing era, a few research studies contributed into fuzzification of soft
set theory. Feng et al, combined soft sets with rough sets and fuzzy sets, obtaining three
types of hybrid models, rough, soft sets, soft, rough sets, and soft – rough fuzzy sets. In 2001,
Maji et al, initiated the concept of fuzzy soft sets which is a combination of soft sets. In 2002,
M.S.Sunitha [19] and Vijayakumar gave a modified definition of Complement of fuzzy graph.
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In 2006, Nagooorgani[8] and Chandrasekaran defined. µ – Complement of fuzzy graph, which
is different from the definition of M.S.Sunitha’s Complement of fuzzy graph.In 2015 , Samanta
and Mohinta[13] investigated the notions of fuzzy soft graphs, Operation of union,intersection of
two fuzzy soft graphs with properties related to this fuzzy soft graph module. Akram[1],[2] and
Nawaz introduced the notions of fuzzy soft graph, strong, complete fuzzy soft graph and regular
fuzzy soft graph with properties are investigated.

In this paper, we introduce certain types of Alternate Quadra Sub – merging Polar Fuzzy soft
graphs, µ – Complement of AQSP fuzzy soft graphs and some properties of µ – Complement
of AQSP fuzzy soft graphs. And we explore some results of strong and complete AQSP fuzzy
soft graphs and isolated AQSP fuzzy soft graphs with theorems, examples, and applications.
Using submerging level of fixation method in four quadrant membership and non - membership
values, [- 0.5, 0] ⊂ [-1, 0], [- 0.5, 0.5] ⊂ [ -1, 1], [0, 0.5] ⊂ [ 0,1] and [0.5, 0.5] ⊂ [ 1,1] will provide
the solution from uncertain membership values. It is the module of medical and psychological
studies to interpret a particular type of Uncertainty with parametric set.

2. Preliminaries

2.1. Fuzzy Graph[16].

Let V be a nonempty finite set and σ : V −→ [0, 1]. And, let µ : V × V −→ [0, 1] such that
µ(x, y) ≤ σ(x) ∧ σ(y), ∀(x, y) ∈ V ×V. Then the ordered pair G = (σ, µ) is called a fuzzy graph
over the set V, where σ and µ are fuzzy vertex and edge of fuzzy graph G = (σ, µ).

2.2. Fuzzy Soft Set[13].

Let X be an initial universe set and E be the set of parameters. Let A ⊂ E. A pair (F,A) is called
fuzzy soft set over X, where F is a mapping given by F : A −→ IX and IX denotes the collection
of all fuzzy subsets of X.

2.3. Complete Fuzzy Graph [14]

A Complete fuzzy graph is a pair of functions G : (σ, µ), where σ is a fuzzy subset of X and
µ is a symmetric fuzzy relation on σ. Here σ : X → [0, 1] and µ : X × X → [0, 1] such that
µ (x, y) = ∧(σ (x) , σ (y)) ∀ x, y ∈ σ∗.

2.4. Strong Fuzzy Graph [14]

A strong fuzzy graph is a pair of functions G : (σ, µ) where σ is a fuzzy subset of X and µ
is a symmetric fuzzy relation on σ . Here σ : X → [0, 1] and µ : X × X → [0, 1] such that
µ (x, y) = ∧(σ (x) , σ (y)) ∀ x, y ∈ µ∗

2.5. Complement of Fuzzy Graph [14]

Let G : (σ, µ) be a fuzzy graph. The complement of G is defined as Ḡ = (σ, µ̄), where µ̄(x, y) =
σ(x) ∧ σ(y)− µ(x, y)∀x, y ∈ V. When G is a fuzzy graph, G = (σ, µ) is complement of fuzzy
graph.

2.6. µ- Complement of Fuzzy Graph [19]

Let G : (σ, µ) be a fuzzy graph. The µ- complement of G is defined as Gµ = (σ, µ̄µ), where
µ̄µ(x, y) = σ(x) ∧ σ(y)− µ(x, y), i f µ(x, y) > 0, and µµ(x, y), i f µ(x, y) = 0.
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3. Method

The essential definition of AQSP fuzzy soft graph method is deliberated with an examples.

3.1. Alternate Quadra Sub - merging Polar(AQSP) Fuzzy Graph

An Alternate Quadra - Submerging Polar (AQSP) Fuzzy Graph G = (σAQSP, µAQSP) is a fuzzy
graph with crisp graph G∗ = (σ∗AQSP , µ∗AQSP ) is given as V = (σP (x) , σN (x) , ρP (x) , ρN (x))
which is the membership value of vertices along with the uncertain membership value of edges is
given as, E = V ×V = (µP (x, y) , µN (x, y) , γP (x, y) , γN (x, y)). Here the vertex set V is defined
with the given condition in a unique method which is an alternate contrast submerging polarized
uncertain transformation.Here σP = V → [0, 1] , σN = V → [−1, 0] , ρP = d

∣∣ 0.5, σP (x)
∣∣ and

ρN = −d
∣∣−0.5, σN (x)

∣∣ . Here (-0.5, 0.5) is the fixation of uncertain alternate contrast polarized
submerging transformation into certain consistent preferable position. And the edge set E satisfies
the following sufficient conditions.

(i) µP (x, y) ≤ min (σP (x) , σP (y) ), (ii) µN (x, y) ≥ max (σN (x) , σN (y) )

(iii) γP (x, y) ≤ min
(
ρP (x) , ρP (y)

)
(iv) γN (x, y) ≥ max (ρN (x) , ρN (y) ),

∀(x, y) ∈ E. By definition, µP = V × V → [0, 1]× [1, 0], µN = V × V → [−1, 0]× [0,−1]
and the submerging mappings, γP = V ×V → [0, 0.5]× [0.5, 0],

γN = V × V → [−0.5, 0] × [0,−0.5], which denotes the impact of the alternate quadrant
polarized fuzzy mapping. The maximum of submerging presumption to be at the level of
confidence [0, 0.5] ⊆ [0, 1] and the minimum of submerging presumption level of confidence is
[−0.5, 0] ⊆ [−1, 0] extension of the graph with its membership and non - membership values
portrait the unique level of submerging destination in an AQSP fuzzy graph.

Also it must satisfy the condition, −1 ≤ σP (x) + σN (x) ≤ 1 and |ρP (x) + ρN (x) | ≤ 1
with constrains 0 ≤ σP (x) + σN (x) +

∣∣ρP (x) + ρN (x)
∣∣ ≤ 2 such that the uncertain status of

submerging presumption, transform into its precise consistent level with fixation mid - value 0.5,
which implies that level of confidence 0.5 in an AQSP as the valuable membership of its position
which is real and valid in the fuzzification. The example of AQSP fuzzy graph is given in Fig.1.

Figure 1: AQSP Fuzzy Graph G = (σAQSP, µAQSP)
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3.2. AQSP Fuzzy Soft Graph

Let V = ((σP
1 (x), σN

1 (x), ρP
1 (x), ρN

1 (x)), (σP
2 (x), σN

2 (x), ρP
2 (x), ρN

2 (x))...(σP
n (x), σN

n (x), ρP
n (x), ρN

n (x)))
be a nonempty AQSP fuzzy set. E (Parameters set) and AAQSP ⊂ E. Also let,

(i) σP : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy subsets in V), e 7−→ σP
e , and

σP
e : V −→ [0, 1], vi 7−→ σP

e then (AAQSP, σP) : AQSP fuzzy soft vertex set.
(ii) σN : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy subsets in V), e 7−→ σN

e , and
σN

e : V −→ [−1, 0], vi 7−→ σN
e then (AAQSP, σN) : AQSP fuzzy soft vertex set.

(iii) ρP : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy submerge subsets in V), e 7−→ ρP
e ,

and ρP
e : V −→ [0, 0.5], vi 7−→ ρP

e then (AAQSP, ρP) : AQSP fuzzy soft vertex set.
(iv) ρN : AAQSP −→ FAQSP(V)(Collection of all fuzzy submerge subsets in V), e 7−→ ρN

e , and
ρN

e : V −→ [−0.5, 0], vi 7−→ ρN
e then (AAQSP, ρN) : AQSP fuzzy soft vertex set.

(v) µP : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ µP
e ,

µP
e : V ×V −→ [0, 1], (vi, vj) 7−→ µP

e (vi, vj) then (AAQSP, µP) :
AQSP fuzzy soft membership edge set.

(vi) µN : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ µN
e ,

and µN
e : V ×V −→ [−1, 0], (vi, vj) 7−→ µN

e (vi, vj) then (AAQSP, µN) : AQSP fuzzy soft
non - membership edge set.

(vii) γP : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ γP
e ,

and γP
e : V ×V −→ [0, 0.5], (vi, vj) 7−→ γP

e (vi, vj) then (AAQSP, γP) : AQSP fuzzy soft
submerge membership edge set.

(viii) γN : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ γN
e ,

and γN
e : V ×V −→ [−0.5, 0], (vi, vj) 7−→ γN

e (vi, vj) then (AAQSP, γN) : AQSP fuzzy soft
submerge membership edge set. Then the AQSP fuzzy soft graph is,
((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) if the conditions are satisfied

(a) µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y), (b) µN

e (x, y) ≥ σN
e (x) ∨ σN

e (y),

(c) γP
e (x, y) ≤ ρP

e (x) ∧ ρP
e (y), (d) γN

e (x, y) ≥ ρN
e (x) ∨ ρN

e (y), for all e ∈ AAQSP and
for all values of x, y = 1, 2, 3, ..., n and this AQSP fuzzy soft graph is denoted as GAQSP(A, V).

Figure 2: GAQSP(A, V) - Corresponding to the parameter e1
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Figure 3: GAQSP(A, V) - Corresponding to the parameter e2

Figure 4: GAQSP(A, V) - Corresponding to the parameter e3

3.3. Example of AQSP Fuzzy Soft Graph

Consider an AQSP fuzzy soft graph GAQSP(A, V), where V = (v1, v2, v3, v4) and
E = (e1, e2, e3). Here GAQSP(A, V) is described in Table.1. and
µe(vi, vj) = 0, ∀(vi, vj) ∈ V ×V {(v1, v2), (v2, v3), (v3, v4), (v1, v4), (v1, v3)} for all e ∈ E.

Table 1: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(σ, ρ) v1 v2 v3 v4

e1 ( 0.6, - 0.7, ( 0.7, - 0.8, ( 0.8, - 0.9, ( 0.6, - 0.7,
0.1,- 0.2) 0.2, -0.3) 0.3, - 0.4 ) 0.1,- 0.2)

e2 ( 0.7, - 0.6, ( 0.8, - 0.7, ( 0.9, - 0.8, ( 0.8, - 0.8,
0.2,- 0.1) 0.3, -0.2) 0.4, - 0.3 ) 0.3,- 0.3)

e3 ( 0.8, - 0.6, ( 0.9, - 0.7, ( 0.8, - 0.8, ( 0.9, - 0.9,
0.3,- 0.1) 0.4, -0.2) 0.3, - 0.3 ) 0.4,- 0.4)
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Table 2: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1, v2 v,v3 v3, v4 v4, v1 v1, v3

e1 ( 0.6, - 0.7, ( 0.7, - 0.8, ( 0.6, -0.7, ( 0.6, - 0.7, ( 0.6, - 0.7,
0.1,- 0.2) 0.2, -0.3) 0.1, - 0.2 ) 0.1,- 0.2) 0.1,- 0.2)

e2 ( 0.7, - 0.6, ( 0.7, - 0.7, ( 0.8, - 0.8, ( 0.7, - 0.6, ( 0.6, - 0.6,
0.2,- 0.1) 0.2, -0.2) 0.3, - 0.3 ) 0.2,- 0.1) 0.1,- 0.1)

e3 ( 0.8, - 0.6, ( 0.8, - 0.7, ( 0.8, - 0.7, ( 0.7, - 0.6, ( 0.8, - 0.6,
0.3,- 0.1) 0.3, -0.2) 0.3, - 0.2 ) 0.2,- 0.1) 0.3,- 0.1)

Table. 2. represents the AQSP fuzzy graph with parametric membership and non - membership
with submerge values.

4. Results of Complete and µ - Complement of AQSP Fuzzy Soft Graph

4.1. Crisp graph of AQSP Fuzzy Soft Graph

Let GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) be an
AQSP fuzzy soft graph with underlying crisp graph is, G∗ = (σ∗, µ∗), where
σ∗ = (vi ∈ V : σP

e (vi) > 0, σN
e (vi) < 0, ρP

e (vi) > 0, ρN
e (vi) < 0)

for some e ∈ E. µ∗ = (vi, vj ∈ V ×V : µP
e (vi, vj) > 0, µN

e ((vi, vj)) < 0,
γP

e ((vi, vj)) > 0, γN
e ((vi, vj)) < 0) , e ∈ E.

4.2. Strong and Complete AQSP Fuzzy Soft Graph

Let GAQSP(A, V) = ((AAQSP, (σP, σN , ρP, ρN)), ((AAQSP, (µP, µN , γP, γN)) is called as
strong and complete AQSP fuzzy soft graph if,

(i) µP
e (x, y) = σP

e (x) ∧ σP
e (y), (ii) µN

e (x, y) = σN
e (x) ∨ σN

e (y),
(iii) γP

e (x, y) = ρP
e (x) ∧ ρP

e (y), (iv) γN
e (x, y) = ρN

e (x) ∨ ρN
e (y), for all e ∈ AAQSP

and for all values of x, y ∈ µ∗ is for strong AQSP fuzzy soft graph and for complete
AQSP fuzzy soft graph is for all values of x, y ∈ σ∗.

4.3. Complement and µ- Complement of AQSP Fuzzy Soft Graph

Let GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN))
be the AQSP fuzzy soft graph. The complement of AQSP fuzzy soft graph GAQSP(A, V)
is defined as, GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), (AAQSP), (µP, µN , γP, γN)) ,
with the following sufficient conditions,

(i) µP
e (x, y) = σP

e (x) ∧ σP
e (y)− µP

e (x, y) , (ii) µN
e (x, y) = σN

e (x) ∨ σN
e (y) ∨− µN

e (x, y),
(iii) γP

e (x, y) = ρP
e (x) ∧ ρP

e (y)− γP
e (x, y) , (iv) γN

e (x, y) = ρN
e (x) ∨ ρN

e (y)− γN
e (x, y),

for all e ∈ AAQSP and for all values of x, y ∈ V, e ∈ AAQSP.

4.4. Example of µ- Complement of AQSP Fuzzy Soft Graph

Consider an AQSP fuzzy soft graph GAQSP(A, V), where V = (v1, v2, v3, v4) and

E = (e1, e2, e3). Here GAQSP(A, V) is described in Table.5. and µe(vi, vj) = 0,
∀(vi, vj) ∈ V ×V {(v1, v2), (v2, v3), (v3, v4), (v2, v4), (v1, v3)} for all e ∈ E.
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Table 3: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(σ, ρ) v1 v2 v3 v4

e1 ( 0.7, - 0.8, ( 0.8, - 0.8, ( 0.9, - 0.9, ( 0.9, - 0.6,
0.2,- 0.3) 0.3, -0.3) 0.4, - 0.4 ) 0.4,- 0.1)

e2 ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.8, - 0.8, ( 0.7, - 0.9,
0.1,- 0.1) 0.2, -0.2) 0.3, - 0.3 ) 0.2,- 0.4)

e3 ( 0.8, - 0.8, ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.9, - 0.9,
0.3,- 0.3) 0.1, -0.1) 0.2, - 0.2 ) 0.4,- 0.4)

Table 4: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1, v2 v2, v3 v3, v4 v4, v2 v1, v3

e1 ( 0.6, - 0.7, ( 0.8, - 0.7, ( 0.8, -0.5, ( 0.7, - 0.6, ( 0.7, - 0.7,
0.1,- 0.2) 0.3, -0.2) 0.3, 0.0 ) 0.2,- 0.1) 0.2,- 0.2)

e2 ( 0.5, - 0.6, ( 0.6, - 0.6, ( 0.6, - 0.7, ( 0.5, - 0.6, ( 0.5, - 0.5,
0.0,- 0.1) 0.1, -0.1) 0.1, - 0.2 ) 0.0,- 0.1) 0.0, 0.0)

e3 ( 0.6, - 0.6, ( 0.5, - 0.6, ( 0.6, - 0.6, ( 0.5, - 0.5, ( 0.6, - 0.6,
0.1,- 0.1) 0.0, -0.1) 0.1, - 0.1 ) 0.0, 0.0) 0.1,- 0.1)

Table. 5. represents the AQSP fuzzy graph with parametric membership and non - membership
with submerge values.

Figure 5: GAQSP(A, V) - Corresponding to the parameter e1

Figure 6: GAQSP(A, V) - Corresponding to the parameter e2
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Figure 7: GAQSP(A, V) - Corresponding to the parameter e3

4.5. Complement of AQSP Fuzzy Soft Graph

Consider an AQSP fuzzy soft graph GAQSP(A, V), where V = (v1, v2, v3, v4) and
E = (e1, e2, e3). Here GAQSP(A, V) is described in Figure 8,9,10 and we prove the Complement of
AQSP fuzzy soft graph. µe(vi, vj) = 0,
∀(vi, vj) ∈ V ×V {(v1, v2), (v2, v3), (v3, v4), (v2, v4), (v1, v3)} for all e ∈ E.

Theorem 1. Sum of the Size of (GAQSP) and the size of (GAQSP(A, V)) is equal to the result
to twice the sum of its minimum and maximum membership and non - membership
submerging AQSP fuzzy soft graph values.Then we prove the following result such as,

(i) S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y)),
(ii)S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(σ

N
e (x) ∨ σN

e (y)),
(iii) S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ

P
e (x) ∧ ρP

e (y)),
(iv)S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(ρ

N
e (x) ∨ ρN

e (y)),
∀x, y ∈ V, e ∈ AAQSP.

Proof. The order of the complement of AQSP fuzzy soft graph of S(GAQSP) is equal
to the order of the AQSP fuzzy soft graph GAQSP(A, V) is obvious.

µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y) ∀x, y ∈ V, e ∈ AAQSP (1)

µP
e (x, y) = σP

e (x) ∧ σP
e (y)− µP

e (x, y) ∀x, y ∈ V, e ∈ AAQSP

µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y) ∀x, y ∈ V, e ∈ AAQSP (2)

From (1) and (2), we get µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y) ∀x, y ∈ V, e ∈ AAQSP.

(i) ∑e∈AAQSP ∑x 6=y(µ
P
e (x, y) + µP

e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y))

∑e∈AAQSP ∑x 6=y(µ
P
e (x, y) + ∑e∈AAQSP ∑x 6=y µP

e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y)).

Hence, S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y)),

µN
e (x, y) ≥ σN

e (x) ∨ σN
e (y) ∀x, y ∈ V, e ∈ AAQSP (3)

µN
e (x, y) = σN

e (x) ∨ σN
e (y)− µN

e (x, y) ∀x, y ∈ V, e ∈ AAQSP

µP
e (x, y) ≥ σN

e (x) ∧ σN
e (y) ∀x, y ∈ V, e ∈ AAQSP (4)

From (3) and (4), we get µN
e (x, y) ≥ σN

e (x) ∨ σP
e (y) ∀x, y ∈ V, e ∈ AAQSP.
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(ii) ∑e∈AAQSP ∑x 6=y(µ
N
e (x, y) + µN

e (x, y)) ≥ 2 ∑e∈AAQSP ∑x 6=y(σ
(
e x) ∧ σN

e (y))

∑e∈AAQSP ∑x 6=y(µ
N
e (x, y) + ∑e∈AAQSP ∑x 6=y µN

e (x, y)) ≥ 2 ∑e∈AAQSP ∑x 6=y(σ
N
e (x) ∧ σN

e (y)).
Hence, S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(σ

N
e (x) ∨ σN

e (y)),

Similarly we get the result for submerging membership and non - membership values.
(iii) ∑e∈AAQSP ∑x 6=y(γ

P
e (x, y) + γP

e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ
P
e (x) ∧ ρP

e (y))

∑e∈AAQSP ∑x 6=y(γ
P
e (x, y) + ∑e∈AAQSP

∑x 6=y γP
e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ

P
e (x) ∧ ρP

e (y)).
Hence, S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ

P
e (x) ∧ ρP

e (y)),

(iv) ∑e∈AAQSP ∑x 6=y(γ
N
e (x, y) + γN

e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ
N
e (x) ∨ ρN

e (y))

∑e∈AAQSP ∑x 6=y(γ
N
e (x, y) + ∑e∈AAQSP ∑x 6=y γN

e (x, y)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ
N
e (x) ∨ ρN

e (y)).
Hence, S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(ρ

N
e (x) ∨ ρN

e (y)),

4.6. Example of Complement of AQSP fuzzy graph

Consider the AQSP fuzzy soft graph (GAQSP(A, V)) in Figure. 5,6,7. and its complement
of AQSP fuzzy soft graph S(GAQSP) Figure. 8,9,10. we get,the order of the complement of
AQSP fuzzy soft graph, S(GAQSP) is equal to the order of AQSP fuzzy soft graph
S(GAQSP(A, V)).i.e. O(GAQSP) = O(GAQSP(A, V)) = (9.1,−9.1, 3.1,−3.1)

And, S(GAQSP) = (0.4,−0.6, 0.4,−0.4), S(GAQSP(A, V)) = (6.1,−8.6, 1.6,−1.8)
(∑e∈AAQSP ∑x 6=y(σ

P
e (x) ∧ σP

e (y) = 2(10.2)), ∑e∈AAQSP ∑x 6=y(σ
N
e (x) ∨ σN

e (y) = 2(−9.2)),

∑e∈AAQSP ∑x 6=y(ρ
P
e (x) ∧ ρP

e (y) = 2(2.7)), ∑e∈AAQSP ∑x 6=y(ρ
N
e (x) ∨ ρN

e (y) = 2(2.7)).

Then we have 2( 10.2, - 9.2, 2.7, - 2.7) = ( 20.4, - 18.4, 5.4, - 5.4). Therefore,

(i) S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y)),
(ii)S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(σ

N
e (x) ∨ σN

e (y)),
(iii) S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(ρ

P
e (x) ∧ ρP

e (y)),
(iv)S(GAQSP) + S(GAQSP(A, V)) ≥ 2 ∑e∈AAQSP ∑x 6=y(ρ

N
e (x) ∨ ρN

e (y)) ∀x, y ∈ V, e ∈ AAQSP.

4.7. Complement of AQSP fuzzy soft graph

Figure 8: Complement of GAQSP(A, V) - Corresponding to the parameter e1
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Figure 9: Complement of GAQSP(A, V) - Corresponding to the parameter e2

Figure 10: Complement of GAQSP(A, V) - Corresponding to the parameter e3

4.8. Remark

The order of the complement of AQSP fuzzy soft graph GAQSP(A, V) is equal to the order of the
AQSP fuzzy soft graph GAQSP(A, V).

5. Properties of µ - Complement of AQSP Fuzzy Soft Graph

(i) The order of the complement AQSP fuzzy soft graph, O(GAQSP) is equal to the
order of AQSP fuzzy soft graph O(GAQSP(A, V)). And, O(Gµ

AQSP) = O(GAQSP(A, V)) is
presented in the Example.4.7. of AQSP fuzzy soft graph.

(ii) Vertex set of (Gµ
AQSP) = (GAQSP(A, V)

(iii) The number of elements to the edge set of Gµ is less than the number of elements
in the node set of (GAQSP(A, V).

(iv) µ
µP

e (x, y) > 0 if (x, y) ∈ µ∗, otherwise µ
µP

e (x, y) = 0

(v) µ
µN

e (x, y) < 0 if (x, y) ∈ µ∗, otherwise µ
µN

e (x, y) = 0

(vi) µ
γP

e (x, y) > 0 if (x, y) ∈ γ∗, otherwise γ
γP

e (x, y) = 0

(vii) µ
γN

e (x, y) < 0 if (x, y) ∈ γ∗, otherwise γ
γN

e (x, y) = 0

For the size of GAQSP(A, V) , µ complement AQSP fuzzy soft graph membership value is,
(viii) S(GAQSP(A, V) = ∑e∈AAQSP ∑x 6=y(µeµP(x, y))
= ∑e∈AAQSP

(∑x,y∈µ∗(σ
P
e (x) ∧ σP

e (y)− µP
e (x, y) ∀x, y ∈ V, e ∈ AAQSP))

= ∑e∈AAQSP
(∑x,y∈µ∗(σ

P
e (x) ∧ σP

e (y)−∑e∈AAQSP
(∑x,y∈µ∗ x, y ∈ µP

e (x, y)
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= ∑e∈AAQSP
(∑x,y∈µ∗(σ

P
e (x) ∧ σP

e (y)− S(GAQSP(A, V))

i.e. S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
P
e (x) ∧ σP

e (y)).

For the GAQSP(A, V) , µ complement AQSP fuzzy soft graph non - membership value is,

(ix) S(GAQSP(A, V) = ∑e∈AAQSP ∑x 6=y(µeµN(x, y))
= ∑e∈AAQSP

(∑x,y∈µ∗(σ
N
e (x) ∨ σN

e (y)− µN
e (x, y) ∀x, y ∈ V, e ∈ AAQSP))

= ∑e∈AAQSP
(∑x,y∈µ∗(σ

N
e (x) ∨ σN

e (y)−∑e∈AAQSP
(∑x,y∈µ∗ x, y ∈ µN

e (x, y)
= ∑e∈AAQSP

(∑x,y∈µ∗(σ
N
e (x) ∨ σN

e (y)− S(GAQSP(A, V))

i.e. S(GAQSP) + S(GAQSP(A, V)) ≤ 2 ∑e∈AAQSP ∑x 6=y(σ
N
e (x) ∨ σN

e (y))

For the size of GAQSP(A, V) , µ complement AQSP fuzzy soft graph membership value is,

(x) S(GAQSP(A, V) = ∑e∈AAQSP ∑x 6=y(γeγP(x, y))
= ∑e∈AAQSP

(∑x,y∈γ∗(ρ
P
e (x) ∧ ρP

e (y)− γP
e (x, y) ∀x, y ∈ V, e ∈ AAQSP))

= ∑e∈AAQSP
(∑x,y∈γ∗(ρ

P
e (x) ∧ ρP

e (y)−∑e∈AAQSP
(∑x,y∈µ∗ x, y ∈ γP

e (x, y)
= ∑e∈AAQSP

(∑x,y∈γ∗(ρ
P
e (x) ∧ ρP

e (y)− S(GAQSP(A, V)).

For GAQSP(A, V) , µ complement AQSP fuzzy soft graph submerging value is

(xi) S(GAQSP(A, V) = ∑e∈AAQSP ∑x 6=y(γeγN(x, y))
= ∑e∈AAQSP

(∑x,y∈γ∗(ρ
N
e (x) ∨ ρN

e (y)− γN
e (x, y) ∀x, y ∈ V, e ∈ AAQSP))

= ∑e∈AAQSP
(∑x,y∈γ∗(ρ

N
e (x) ∨ ρN

e (y)−∑e∈AAQSP
(∑x,y∈µ∗ x, y ∈ γN

e (x, y)
= ∑e∈AAQSP

(∑x,y∈γ∗(ρ
N
e (x) ∨ ρN

e (y)− S(GAQSP(A, V))

Theorem 2. The complement of a strong AQSP fuzzy soft graph GAQSP(A, V) is also
strong AQSP fuzzy soft graph GAQSP(A, V).

Proof. Let GAQSP(A, V) be an strong AQSP fuzzy soft graph by definition 4.3.of
the complement of a strong AQSP fuzzy soft graph for the membership values,

µP(x, y) = σP
e (x) ∧ σP

e (y)− µP
e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP,

= σP
e (x) ∧ σP

e (y)− (σP
e (x) ∧ σP

e (y)), µP
e (x, y) > 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0,

= 0, µP
e (x, y) > 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0,

= 0, µP
e (x, y) = 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) > 0.

µP(x, y) = σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0 ∀x, y ∈ V ×V,

where (x,y) is the edge ∀, (x, y) ∈ µ.

The complement of a strong AQSP fuzzy soft graph for the non - membership values,
µN(x, y) = σN

e (x) ∨ σN
e (y)− µN

e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP ,
= σN

e (x) ∨ σN
e (y)− (σN

e (x) ∨ σN
e (y)), µN

e (x, y) < 0,
σN

e (x) ∨ σN
e (y), µN

e (x, y) = 0,
= 0, µN

e (x, y) < 0,
σN

e (x) ∨ σN
e (y), µN

e (x, y) = 0,
= 0, µN

e (x, y) = 0,
σN

e (x) ∨ σN
e (y), µN

e (x, y) < 0.
µN(x, y) = σN

e (x) ∨ σN
e (y), µN

e (x, y) = 0 ∀x, y ∈ V ×V,
where (x,y) is the edge ∀, (x, y) ∈ µ.
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Similarly the complement of the submerging AQSP fuzzy soft graph membership values are,

γP(x, y) = ρP
e (x) ∧ ρP

e (y)− γP
e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP,

= ρP
e (x) ∧ ρP

e (y)− (ρP
e (x) ∧ ρP

e (y)), γP
e (x, y) > 0,

γP(x, y) = ρP
e (x) ∧ ρP

e (y), γP
e (x, y) = 0 ∀x, y ∈ V ×V,

where (x,y) is the edge ∀, (x, y) ∈ γ.

For the complement of the submerging AQSP fuzzy soft graph non - membership values are,

γN(x, y) = ρN
e (x) ∧ ρN

e (y)− γN
e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP ,

= ρN
e (x) ∧ ρN

e (y)− (ρN
e (x) ∧ ρN

e (y)), γN
e (x, y) > 0,

γN(x, y) = ρN
e (x) ∧ ρN

e (y), γN
e (x, y) = 0 ∀x, y ∈ V ×V,

where (x,y) is the edge ∀, (x, y) ∈ γ. Hence,the theorem is completed.

Theorem 3. The complement of a complete AQSP fuzzy soft graph GAQSP(A, V) is
also complete AQSP fuzzy soft graph GAQSP(A, V).

Proof. Let GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN))
be the complete AQSP fuzzy soft graph by definition 4.3.of the complement of a
complete AQSP fuzzy soft graph for the membership values,

µP(x, y) = σP
e (x) ∧ σP

e (y)− µP
e (x, y) ∀x, y ∈ V, e ∈ AAQSP ,

= σP
e (x) ∧ σP

e (y)− (σP
e (x) ∧ σP

e (y)), µP
e (x, y) > 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0,

= 0, µP
e (x, y) > 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0,

= 0, µP
e (x, y) = 0,

σP
e (x) ∧ σP

e (y), µP
e (x, y) > 0.

µP(x, y) = σP
e (x) ∧ σP

e (y), µP
e (x, y) = 0 ∀x, y ∈ V, ∀ (x, y) ∈ σ∗.

The complement of a Complete AQSP fuzzy soft graph for the non - membership values,

µN(x, y) = σN
e (x) ∨ σN

e (y)− µN
e (x, y) ∀x, y ∈ V, e ∈ AAQSP ,

= σN
e (x) ∨ σN

e (y)− (σN
e (x) ∨ σN

e (y)), µN
e (x, y) < 0,

σN
e (x) ∨ σN

e (y), µN
e (x, y) = 0,

= 0, µN
e (x, y) < 0,

σN
e (x) ∨ σN

e (y), µN
e (x, y) = 0,

= 0, µN
e (x, y) = 0,

σN
e (x) ∨ σN

e (y), µN
e (x, y) < 0,

µN(x, y) = σN
e (x) ∨ σN

e (y), µN
e (x, y) = 0 ∀x, y ∈ V, ∀ (x, y) ∈ σ∗.

For the complement of the submerging Complete AQSP fuzzy soft graph membership values ,

γP(x, y) = ρP
e (x) ∧ ρP

e (y)− γP
e (x, y) ∀x, y ∈ V, e ∈ AAQSP ,

= ρP
e (x) ∧ ρP

e (y)− (ρP
e (x) ∧ ρP

e (y)), γP
e (x, y) > 0

γP(x, y) = ρP
e (x) ∧ ρP

e (y), γP
e (x, y) = 0 ∀x, y ∈ V, ∀ (x, y) ∈ σ∗.

Similarly we get result for the complement of the submerging Complete AQSP fuzzy soft
graph non - membership values ,γN(x, y) = ρN

e (x) ∧ ρN
e (y), γN

e (x, y) = 0 ∀x, y ∈ V, where (x,y)
denoted the vertices for all (x, y) ∈ ρ∗. Hence the proof.

Theorem 4. Let the AQSP fuzzy soft graph be GAQSP(A, V) . Then GAQSP(A, V) is an isolated
AQSP fuzzy soft graph if and only if GAQSP(A, V) is a complete AQSP fuzzy soft graph.
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Proof. GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) be the AQSP
fuzzy soft graph. Then GAQSP(A, V).Let GAQSP(A, V) be its complement of AQSP fuzzy soft
graph. Then the given isolated AQSP fuzzy soft graph is GAQSP(A, V). Then,

µP
e (x, y) = 0, ∀(x, y) ∈ V ×V, e ∈ AAQSP.

Since,µP(x, y) = σP
e (x) ∧ σP

e (y)− µP
e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP,

µP(x, y) = σP
e (x) ∧ σP

e (y), ∀ x, y ∈ V ×V, e ∈ AAQSP,
Hence , GAQSP(A, V) is complete AQSP fuzzy soft graph. Conversely, Given GAQSP(A, V) to be
a complete AQSP fuzzy soft graph. µP(x, y) = σP

e (x) ∧ σP
e (y), ∀x, y ∈ V ×V, e ∈ AAQSP,

Since,µP(x, y) = σP
e (x) ∧ σP

e (y)− µP
e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP ,

µP(x, y)− µP(x, y), ∀ x, y ∈ V ×V, e ∈ AAQSP ,
= 0 , ∀ x, y ∈ V ×V, e ∈ AAQSP ,
µP(x, y) = 0, ∀ x, y ∈ V ×V, e ∈ AAQSP.
Similarly, we get the result for non - membership values and submerge values such as,
µN(x, y) = σN

e (x) ∨ σN
e (y)− µN

e (x, y) ∀x, y ∈ V ×V, e ∈ AAQSP ,
µN(x, y) = σN

e (x) ∨ σN
e (y), ∀ x, y ∈ V ×V, e ∈ AAQSP .

Hence GAQSP(A, V) is complete AQSP fuzzy soft graph.

6. Application of AQSP Fuzzy Soft Graph

6.1. Analysis of AQSP fuzzy soft graph in Water - related diseases.

The analysis of the Water related diseases is done for different hostel students in the same
locality. This kind of diseases occur by drinking polluted water . Children make up the majority
of harmed diseases by contaminated water. This leads to a number of common ailments such as
Diarrehea, Dysentery, Cholera, and Typhoid fever. We use the AQSP fuzzy soft graph module to
find the most common diseases that the students are affected. And the corresponding parameteric
symptoms of diesases is presented in AQSP fuzzy soft edges. The following descriptions will
pave the way to find the cause of this sicknesess to precise the correct medicine .

6.2. Description of the Analysis

1. Let us consider the AQSP fuzzy soft sets such as, ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP),
(µP, µN , γP, γN)). Which is the parametric set taken as the different symptoms of Water
diseases .

2. Specify the vertex and edge sets of AQSP fuzzy soft graphs GAQSP(A, V), which corresponds
to the symptoms of Water related diseases of the students in the hostel .

3. Measure the most common symptoms of this sickness by taking AQSP fuzzy soft graph
membership and non - membership values with submerging level.

4. Calculate the score values of the ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN))

by using the score function, 1
2 ( 1

SP
AQSP

∑ θP
x − 1

SN
AQSP

∑ θN
x ).

5. The maximum score membership value in AQSP fuzzy soft graph GAQSP(A, V), is the most
common symptoms of Water related diseases.

6. Consider AQSP fuzzy soft vertex set, v1 = Typhoid fever, v2 = Diarrehea, v3 = Dysentery,
and v4 = Cholera.
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6.3. Discussion of the New AQSP fuzzy soft graph

We consider AQSP fuzzy soft graph corresponding to the parameter e1 as,

v1, v2 = Fever, v2, v3 = Diarrehea, v3, v4 = Muscles aches, v1, v4 = Sweating, v1, v3 = Fatigue.

The AQSP fuzzy soft graph Corresponding to the parameter e2, is

v1, v2 = Vomiting, v2, v3 = Muscles Cramps, v3, v4 = Nausea,
v1, v4 = Diarrehea, v1, v3 = Head ache.

The AQSP fuzzy soft graph Corresponding to the parameter e3 is, v1, v2 = Cramps and Bloat-
ing, v2, v3 = Weightloss,

v3, v4 = Nausea, v1, v4 = Diarrehea, v1, v3 = Abdomend pain. The following Table.5.
presents the membership and non - membership submerging values .

Table 5: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(σ, ρ) v1 v2 v3 v4

e3 ( 0.8, - 0.8, ( 1.0, - 1.0, ( 0.8, - 0.8, ( 0.9, - 0.9,
0.3,- 0.3) 0.5, -0.5) 0.3, - 0.3 ) 0.4,- 0.4)

e1 ( 0.7, - 0.8, ( 0.8, - 0.8, ( 0.9, - 0.9, ( 0.9, - 0.6,
0.2,- 0.3) 0.3, -0.3) 0.4, - 0.4 ) 0.4,- 0.1)

e2 ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.8, - 0.8, ( 0.7, - 0.9,
0.1,- 0.1) 0.2, -0.2) 0.3, - 0.3 ) 0.2,- 0.4)

Table 6: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1, v2 v2, v3 v3, v4 v4, v1 v1, v3

e1 ( 0.6, - 0.7, ( 0.8, - 0.7, ( 0.8, -0.5, ( 0.7, - 0.6, ( 0.7, - 0.7,
0.1,- 0.2) 0.3, -0.2) 0.3, 0.0 ) 0.2,- 0.1) 0.2,- 0.2)

e2 ( 0.5, - 0.6, ( 0.6, - 0.6, ( 0.6, - 0.7, ( 0.5, - 0.6, ( 0.5, - 0.5,
0.0,- 0.1) 0.1, -0.1) 0.1, - 0.2 ) 0.0,- 0.1) 0.0, 0.0)

e3 ( 0.6, - 0.6, ( 0.5, - 0.6, ( 0.6, - 0.6, ( 0.5, - 0.5, ( 0.6, - 0.6,
0.1,- 0.1) 0.0, -0.1) 0.1, - 0.1 ) 0.0, 0.0) 0.1,- 0.1)

Table 7: Different Hostel students affected by Water related diseases Score values.

Hostel - 1 Hostel - 2 Hostel -3 Hostel - 4
( σ, ρ)v1 ) Score ( σ, ρ)v2) Score ( σ, ρ)v3 Score ( σ, ρ)v4 Score
0.576 1.000 0.543 0.990
0.502 0.476 0.499 0.456
0.476 0.733 0.654 0.630

(i) The most affected common diseases from different water - related disease is

v2=Diarrehea, which is the main symptoms of the students in different
hostels in the same locality. The score value of the disease Diarrehea is, v2 = 1.000 .

(ii) Corresponding to the parameter e1 score value of (v2, v3) = 0.648.
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Table 8: Different Hostel students affected by Water related diseases Score values.

Hostel - 1 Hostel - 2 Hostel -3 Hostel - 4
( µ, γ)v1, v2 Score ( µ, γ)v2, v3 Score ( µ, γ)v3, v4 Score ( µ, γ)v1, v4 Score
0.489 0.648 0.509 0.634
0.478 0.500 0.487 0.466
0.485 0.646 0.500 0.633

Many students are affected by these sicknesess such as, v1, v2 = Fever, v2, v3 = Diarrehea,
v3, v4 = Muscles aches, v1, v4 = Sweating, v1, v3 = Fatigue.

(iii)The least affected common diseases from different water - related disease is

v4= Cholera, which is the main symptoms of the students in different
hostels in the same locality. The score value of the disease Diarrehea is, v4 = 0.456 .

(iv) Corresponding to the parameter e1 score value of (v1, v4) = 0.466.

7. Conclusion

In this artifact , AQSP fuzzy soft graph definitions, complement of AQSP fuzzy soft graphs are
introduced with theorems and examples. Some results about the strong AQSP fuzzy soft graph,
complete AQSP fuzzy soft graph with µ - complement AQSP fuzzy soft graph and isolated AQSP
fuzzy soft graph with complements is constructed.The analysis of water - related deseases result
is the invention of AQSP fuzzy soft graph module.
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Abstract 

Recently, the measurement of uncertainty has attracted the attention of researchers. In this article, 

we introduce a new weighted uncertainty measure known as weighted generalized entropy. We also 

study its dynamic (residual) version which is known as weighted generalized residual entropy. 

These are length-biased shift-dependent uncertainty measures. It is shown that the proposed 

dynamic uncertainty measure uniquely determines the survival function. The various significant 

properties and the relationship with other well-known reliability measures of the proposed dynamic 

uncertainty measure are also studied. Finally, a real life data set is used to illustrate the usefulness 

of our proposed uncertainty measures. 

Keywords: Weighted entropy, weighted residual entropy, hazard rate function 

and characterization results. 

1. Introduction

The notion of entropy that was introduced by Shannon [1] is a very important and well known 

concept in the area of information theory. For an absolutely continuous non-negative r.v U  having 

p.d.f 𝑔(𝑢), the Shannon’s entropy (SE) is defined as

𝐻𝑈(𝑔) = − ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 = −𝐸[log(𝑈)]
∞

0
.    (1) 

Throughout this article, the notations r.v and p.d.f stands for an absolutely continuous non-

negative random variable and the probability density function respectively. 

If a lifetime component has survived up to an age 𝑡, then the SE is not useful for measuring 

the uncertainty about its remaining life. To overcome this problem, Ebrahimi [2] has introduced 

the concept of residual entropy and is defined as 

𝐻𝑈(𝑔; 𝑡) = − ∫
𝑔(𝑢)

�̅�(𝑡)

∞

𝑡
log

𝑔(𝑢)

�̅�(𝑡)
𝑑𝑢,    (2) 

where, �̅�(𝑡) = 1 − 𝐺(𝑡) is the survival function (s.f) of the r.v 𝑈. 

It is clear that the SE is well-known by means of its applications in the area of information 

theory, but it is a shift-independent uncertainty measure (UM) because it remains unchanged, if for 

instance 𝑈 is uniformly distributed in (𝑐, 𝑑) or (𝑐 + ℎ, 𝑑 + ℎ) for any ℎ ∈ ℛ. However, in some 

applied contexts, such as reliability or mathematical neurobiology, the shift-dependent UM’s are 
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desirable. To fulfill this requirement, Belis and Guiasu [3] have introduced the concept of weighted 

entropy (a shift-independent UM) and is defined as 

𝐻(𝑈,𝑤)(𝑔) = − ∫ 𝑤(𝑢)𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢
∞

0
 

   = −𝑢𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 ,                  (3) 

where, the coefficient 𝑢 (i.e the length of the system or component under consideration) represents 

the weight function of the elementary events.  

Similarly, Di Crescenzo and Longobardi [4] have introduced the weighted version of residual 

entropy (2) and is given by 

𝐻(𝑈,𝑤)(𝑔; 𝑡) = − ∫ 𝑢
𝑔(𝑢)

�̅�(𝑡)

∞

𝑡
log

𝑔(𝑢)

�̅�(𝑡)
𝑑𝑢 .    (4) 

In the recent literature, it is seen that the study of weighted UM’s have attracted the attention 

of researchers for introducing the new flexible weighted UM’s. For more details see Misagh et al. 

[5], Misagh and Yari [6], Nourbakhsh and Yari [7], Mirali and Baratpour [8], Kayal [9], Nair et al. 

[10], Rajesh et al. [11], Khammar and Jahanshahi [12], Bhat and Baig [13] and Bhat et al. [14] etc. 

Motivated with this research literature, here in this article, our objective is to introduce a new 

weighted UM and its dynamic (residual) version on the basis of the following new generalization 

of SE 

𝐻𝑈
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (∫ 𝑔

2
𝜂

𝜇
−1

(𝑢)𝑑𝑢
∞

0
) ,

𝜇

2
 < 𝜂 < 𝜇, 𝜇 ≥ 1,    (5) 

where, 

𝐻𝑈
(𝜂,𝜇)

𝜂→1
𝜇=1

𝑙𝑖𝑚 (𝑔) = − ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢
∞

0
, which is the SE given in (1). 

Analogous to (2) and on the basis of (5), the generalized residual entropy can be defined as 

𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log (∫ (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
) ,

𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1.    (6) 

The rest of the article is organized as follows: In section 2, we discuss the weighted 

generalized entropy (WGE) of order 𝜂 and type 𝜇 in the form of its definition and some properties. 

The section 3 presents the weighted generalized residual entropy (WGRE) and also some of its 

significant characterization results. In section 4, we study the various important properties of 

WGRE and also its relationship with other well-known reliability measures. In section 5, an 

application of the WGE and WGRE by using a real life data set is presented. Finally, we illustrate 

some concluding remarks in section 6.  

2. Weighted Generalized Entropy (WGE)

In this section, we introduce the weighted version of (5) which is known as weighted generalized 

entropy (WGE) of order 𝜂 and type  𝜇. 

Definition 2.1 For a r.v 𝑈 having p.d.f 𝑔(𝑢), the WGE of order 𝜂 and type 𝜇 denoted by 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) is

defined as 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (∫ (𝑢𝑔(𝑢))

2
𝜂

𝜇
−1

𝑑𝑢
∞

0
) ,

μ

2
< 𝜂 < 𝜇 ≥ 1,    (7) 

where, the coefficient 𝑢 in the integrand denotes the weight function as in (3). 

In the following example, we illustrate the importance of WGE. 

Exumple 2.1. Let 𝑈 and 𝑉 be two r.v’s distributed as 

𝑔𝑈(𝑢) = {
2𝑢, 0 < 𝑢 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,       𝑔𝑉(𝑣) = {
2(1 − 𝑣), 0 < 𝑣 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . 

Here, we can see that 

𝐻𝑈
(𝜂,𝜇)

(𝑔) = 𝐻𝑉
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (

𝜇2
2(

𝜂
𝜇−1)

𝜂
), 
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But, the WGE’s of 𝑈 and 𝑉 are different with each other as follows 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log (

𝜇2
2

𝜂
𝜇−1

4𝜂−𝜇
) 

and 

𝐻(𝑉,𝑤)
(𝜂,𝜇)

=
1

2𝜂(𝜇−𝜂)
log (2

2
𝜂

𝜇
−1

Β (2
η

μ
, 2

η

μ
)), 

where, 

Β(𝑐, 𝑑) = ∫ 𝑦𝑐−1(1 − 𝑦)𝑑−1, 𝑐, 𝑑
1

0
> 0 =

Γ(𝑐)Γ(𝑑)

Γ(𝑐+𝑑)
. 

Thus, even though 𝐻𝑈
(𝜂,𝜇)

(𝑔) = 𝐻𝑉
(𝜂,𝜇)

(𝑔), but 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) ≠ 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔), ∀ 
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1. 

Example 2.2. Let 𝑔(𝑢) be the p.d.f of a r.v 𝑈 distributed as: 

(a) Exponentially with 𝑔(𝑢) = 𝛽𝑒−𝛽𝑢, 𝑢 > 0, 𝛽 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

Γ(2
𝜂

𝜇
)

𝛽(2
𝜂

𝜇
−1)

2
𝜂
𝜇

]. 

(b) Gamma with 𝑔(𝑢) =
1

Γ(𝛽)
𝑒−𝑢𝑢𝛽−1, 0 < 𝑢 < ∞, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

Γ(𝛽(2
𝜂

𝜇
−1)+1)

(Γ(𝛽))
2

𝜂
𝜇−1

(2
𝜂

𝜇
−1)

𝛽(2
𝜂
𝜇−1)+1

]. 

(c) Lomax with 𝑔(𝑢) =
𝑚

(1+𝑢)1+𝑚 , 𝑢 > 0, 𝑚 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

𝑚
2

𝜂
𝜇−1

Γ(2
𝜂

𝜇
)Γ(𝑚(2

𝜂

𝜇
−1)−1)

Γ((2
𝜂

𝜇
−1)(𝑚+1))

] , 𝑚 (2
𝜂

𝜇
− 1) > 1 .

(d) Rayleigh with 𝑔(𝑢) = 𝛽𝑢𝑒−
𝛽

2
𝑢2

, 𝑢 ≥ 𝑜, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log [

2
2

𝜂
𝜇−

3
2Γ(2

𝜂

𝜇
−

1

2
)

√𝛽(2
𝜂

𝜇
−1)

2
𝜂
𝜇+

3
2

]. 

Lemma 2.1. If 𝑍 = 𝑚𝑈, with 𝑚 > 0, then 

𝐻(𝑍,𝑤)
(𝜂,𝜇)

(𝑔) =
1

2𝜂(𝜇−𝜂)
log 𝑚 + 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔). 

Theorem 2.1. For a r.v 𝑈 having SE 𝐻𝑈(𝑔), we obtain 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) ≥
1

𝜂𝜇
[𝐻𝑈(𝑔) − (

𝜇−2𝜂

2(𝜇−𝜂)
) 𝐸(log 𝑈)]. 

Proof. By applying the log-sum inequality, we obtain 

∫ 𝑔(𝑢)
∞

0
log

𝑔(𝑢)

(𝑢𝑔(𝑢))
2

𝜂
𝜇−1

𝑑𝑢 ≥ ∫ 𝑔(𝑢)𝑑𝑢 log
∫ 𝑔(𝑢)𝑑𝑢

∞
0

∫ (𝑢𝑔(𝑢))
2

𝜂
𝜇−1

𝑑𝑢
∞

0

∞

0

= − log ∫ (𝑢𝑔(𝑢))
2

𝜂

𝜇
−1

𝑑𝑢
∞

0
. 

Due to (7), the desired result is satisfied. 

3. Weighted Generalized Residual Entropy (WGRE)

In this section, we introduce the dynamic (residual) version of (7) which is known as weighted 

generalized residual entropy (WGRE) of order 𝜂 and type 𝜇. Some important characterization 

results of this UM are also discussed. 

Definition 3.1 Let 𝑈 be a r.v with p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), then the WGRE of order 𝜂 and type 𝜇 is 

defined as 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
] ,

𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1 .    (8) 

Here, we evaluate the WGRE of some lifetime distributions. 
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Example 3.1. Let a r.v 𝑈 be distributed as: 

(a) Exponentially with p.d.f 𝑔(𝑢) = 𝛽𝑒−𝛽𝑢, 𝑢𝛽 > 0, 𝛽 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[𝑅𝛽𝑡 + log (

Γ(𝑅+1,𝑅𝛽𝑡)

𝛽𝑅𝑅+1 )], 

(b) Gamma with p.d.f 𝑔(𝑢) =
1

Γ(𝛽)
𝑒−𝑢𝑢𝛽−1, 0 < 𝑢 < ∞, 𝛽 > 0, 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [

Γ(𝑅𝛽+1,𝑅𝑡)

𝑅𝑅𝛽+1(Γ(β,t))
R], 

(c) Weibull with p.d.f 𝑔(𝑢) =
1

𝑚
𝑒−(

𝑢−𝑛

𝑚
)
, 𝑢 > 𝑛, 𝑚 > 0, 𝑛 > 0, then

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[𝑅

𝑡

𝑚
+ log (

𝑚Γ(𝑅+1,𝑅
𝑡

𝑚
)

𝑅𝑅+1 )], 

(d) Rayleigh with p.d.f 𝑔(𝑢) = 𝛽𝑢𝑒−
𝛽

2
𝑢2

, 𝑢 ≥ 0, 𝛽 > 0, then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
[

𝑅𝛽𝑡2

2
+ log {

2
𝑅−

1
2Γ(𝑅+

1

2
,
𝑅𝛽𝑡2

2
)

√𝛽𝑅
𝑅+

1
2

}], 

where, Γ(𝑛, 𝑚𝑧) = 𝑚𝑛 ∫ 𝑒−𝑚𝑥𝑥𝑛−1𝑑𝑥,
∞

𝑧
 𝑚, 𝑛 > 0 is an upper incomplete gamma function and 𝑅 =

2
𝜂

𝜇
− 1 respectively.

Theorem 3.1 If 𝐻𝑈
(𝜂,𝜇)

(𝑔) and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) denotes the GRE and WGRE of a r.v 𝑈, then for all 𝑡 > 0, 

we have 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [𝑡

2
𝜂

𝜇
−1

𝑒𝑥𝑝 (2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡))

+ (2
𝜂

𝜇
− 1) ∫ 𝑥

2(
𝜂

𝜇
−1)

(
�̅�(𝑥)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑒𝑥𝑝 (2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑥)𝑑𝑥)
∞

𝑥=𝑡
]. 

Proof. From (8), we have 

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 = ∫ [∫ (2
𝜂

𝜇
− 1) 𝑦

2(
𝜂

𝜇
−1)

𝑑𝑦
𝑢

0
] (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡

∞

𝑡
 

= (2
𝜂

𝜇
− 1) ∫ [∫ 𝑦

2(
𝜂

𝜇
−1)

𝑑𝑦 + ∫ 𝑦
2(

𝜂

𝜇
−1)

𝑑𝑦
𝑢

𝑡

𝑡

0
] (

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
 

= 𝑡
2

𝜂

𝜇
−1

∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 + (2
𝜂

𝜇
− 1) ∫ [𝑦

2(
𝜂

𝜇
−1)

(∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑢=𝑦
)] 𝑑𝑦

∞

𝑦=𝑡

∞

𝑡
.         (9) 

From (6), we have 

∫ (
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 = 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡)]
∞

𝑡
.    (10) 

and 

∫ 𝑔
2

𝜂

𝜇
−1

𝑑𝑢 = �̅�
2

𝜂

𝜇
−1

(𝑡)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻𝑈
(𝜂,𝜇)

(𝑔; 𝑡)]
∞

𝑡
 .   (11) 

Using (9), (10) and (11) in (8), we obtain the required result. 

Here, we show that �̅�(𝑡) is uniquely determined by 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡).

Theorem 3.2. Let 𝑈 be a r.v having p.d.f 𝑔(𝑢), s.f �̅�(𝑡) and WGRE 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) < ∞,
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1  

respectively. If  𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is increasing in 𝑡, then 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) uniquely determines �̅�(𝑡). 

Proof. Rewriting (8) as 

𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)] = ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡
.  (12) 

Differentiating (12) w.r.t 𝑡, we have 

𝜕

𝜕𝑡
𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = (2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) ∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 − (𝑡𝜆𝐺(𝑡))
2

𝜂

𝜇
−1∞

𝑡
],    (13) 

where, 𝜆𝐺(𝑡) =
𝑔(𝑡)

�̅�(𝑡)
 represents the hazard rate of 𝑈. Using (12), we can rewrite (13) as 

(𝑡𝜆𝐺(𝑡))
2

𝜂

𝜇
−1

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)𝜆𝐺(𝑡)]
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2𝜂(𝜇 − 𝜂)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)]
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = 0.    (14) 

Hence for fixed 𝑡 > 0, 𝜆𝐺(𝑡) is a solution of 𝜓(𝑢𝑡) = 0, where 

𝜓(𝑢𝑡) = 𝑡
2

𝜂

𝜇
−1

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)] 𝑢𝑡 

+2𝜂(𝜇 − 𝜂)𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)]
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡). 

Differentiating both sides w.r.t 𝑢𝑡, we have 

𝜕

𝜕𝑢𝑡
𝜓(𝑢𝑡) = (2

𝜂

𝜇
− 1) 𝑡

2
𝜂

𝜇
−1

𝑢𝑡

2(
𝜂

𝜇
−1)

− (2
𝜂

𝜇
− 1) 𝑒𝑥𝑝 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)]. 

Also, 

𝜕2

𝜕𝑢𝑡
2 𝜓(𝑢𝑡) = (2

𝜂

𝜇
− 2) (2

𝜂

𝜇
− 1) 𝑡

2
𝜂

𝜇
−1

𝑢𝑡

2
𝜂

𝜇
−3

. 

Now, 
𝜕

𝜕𝑢𝑡
𝜓(𝑢𝑡) = 0 gives 

𝑢𝑡 = [
𝑒𝑥𝑝(2𝜂(𝜇−𝜂))𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)

𝑡
2

𝜂
𝜇−1

]

2(1−
𝜂

𝜇
)

= 𝑢0 (say). 

For 
𝜇

2
< 𝜂 < 𝜇, 𝜇 ≥ 1, 

𝜕2

𝜕𝑢𝑡
2 𝜓(𝑢0) < 0. Thus, 𝜓(𝑢𝑡) attains maximum at 𝑢0. Also, 𝜓(0) > 0 and 

𝜓(∞) = −∞. Further it can be easily observed that 𝜓(𝑢𝑡) first increases for 0 < 𝑢𝑡 < 𝑢𝑜 and then 

decreases for 𝑢𝑡 > 𝑢𝑜. So, the unique solution to 𝜓(𝑢𝑡) = 0 is given by 𝑢𝑡 = 𝜆𝐺(𝑡). Thus, 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) uniquely determines 𝜆𝐺(𝑡) which in turns determines �̅�(𝑡).

4. Properties and Inequalities of WGRE

This section presents some interesting properties and inequalities of weighted generalized residual 

entropy . 

Definition 4.1. Let 𝑈 and 𝑉 be two r.v’s having WGRE’s 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) and 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡), then 𝑈 is said

to be smaller than 𝑉 in WGRE of order 𝜂 and type 𝜇 (denoted by VU
WGRE

 ), if𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤

𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡), ∀ 𝑡 > 0. 

Definition 4.2. A r.v 𝑈 or a s.f �̅� will be said to have increasing (decreasing) WGE for residual life 

of order 𝜂 and type 𝜇 IWGERL (DWGERL), if 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is increasing (decreasing) in 𝑡, 𝑡 > 0. 

Lemma 4.1. If 𝑌 = 𝑎𝑈, with 𝑎 > 0 is a constant, then 

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log 𝑎 + 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔,

𝑡

𝑎
). 

Proof.  

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log ∫ (𝑦

𝑔(𝑦)

𝑃𝑟(𝑌>𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑦
∞

𝑡
. 

Setting 𝑌 = 𝑎𝑈, a strictly increasing function of 𝑈, we have 

𝐻(𝑌,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =
1

2𝜂(𝜇−𝜂)
log [𝑎 ∫ (𝑢

𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢
∞

𝑡

𝑎

]. 

By using (8), the desired result is obtained. 

Theorem 4.1. For two r.v’s 𝑈 and 𝑉, let us define 𝑌1 = 𝑎1𝑈 and 𝑌2 = 𝑎2𝑉 with 𝑎1, 𝑎2 > 0. Let 

𝑈 𝑊𝐺𝑅𝐸
≤

𝑉 and 𝑎1 ≤ 𝑎2 . Then 𝑌1
𝑊𝐺𝑅𝐸

≤
𝑌2 

21 YY
WGRE

  if 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) or 𝐻(𝑉,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is decreasing in 𝑡 > 0. 

Poof.  Suppose 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) is decreasing in 𝑡. 

Now,  𝑈 𝑊𝐺𝑅𝐸
≤

𝑉 implies 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎2
) ≤ 𝐻(𝑉,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).  (15) 

Further, since 
𝑡

𝑎1
≥

𝑡

𝑎2
 , we have 
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𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎1
) ≤ 𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).   (16) 

Combining (15) and (16), we obtain 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔;
𝑡

𝑎1
) ≤ 𝐻(𝑉,𝑤)

(𝜂,𝜇)
(𝑔;

𝑡

𝑎2
).    (17) 

Using Lemma 4.1 in (17), we have 𝑌1
𝑊𝐺𝑅𝐸

≤
𝑌2 . 

Theorem 4.2. For a r.v 𝑈 having support (0, 𝑘], 𝑘 > 0 , p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), 𝑡 > 0, then for 
𝜇

2
<

𝜂 < 𝜇, 𝜇 ≥ 1, the following upper bound of 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) holds 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤
1

2𝜂(𝜇−𝜂)
[

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

log(𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

+ log(𝑘 − 𝑡)].

Proof.  From log-sum inequality and (8), we have 

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

log (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 ≥ ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 log
∫ (𝑢𝑔(𝑢))

2
𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

∫ (�̅�(𝑡))
2

𝜂
𝜇−1

𝑑𝑢
𝑘

𝑡

𝑘

𝑡

𝑘

𝑡

= ∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂

𝜇
−1

𝑑𝑢 [2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) − log(𝑘 − 𝑡)]
𝑘

𝑡
. 

After simplification, we get the desired result. 

Theorem 4.3. Let �̅� be a IWGRE (DWGRE) and 𝜇 > 𝜂, then 

𝜆𝐺(𝑡) ≤ (≥) [
(2

𝜂

𝜇
−1)𝑒𝑥𝑝{2𝜂(𝜇−𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)}

𝑡
2

𝜂
𝜇−1

]

𝜇

2(𝜂−𝜇)

. 

Proof. From (14), we have 

2𝜂(𝜇 − 𝜂)
𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) = (2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) − 𝑒𝑥𝑝 {2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡)} (𝑡𝜆𝐺(𝑡))

2
𝜂

𝜇
−1

. 

Since �̅� is IWGERL (DWGERL), therefore, we have 

𝜆𝐺(𝑡) [(2
𝜂

𝜇
− 1) − 𝑡

2
𝜂

𝜇
−1

𝜆𝐺

2(
𝜂

𝜇
−1)

(𝑡)𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}] ≥ (≤)0. 

which leads to 

𝜆𝐺(𝑡) ≤ (≥) [
(2

𝜂

𝜇
−1)𝑒𝑥𝑝{2𝜂(𝜇−𝜂)𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔;𝑡)}

𝑡
2

𝜂
𝜇−1

]

𝜇

2(𝜂−𝜇)

. 

Theorem 4.4. If 𝑈 is IWGERL (DWGERL), then 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≤ (≥)
1

2𝜂(𝜇−𝜂)
log [

𝑡
2

𝜂
𝜇−1

2
𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2(
𝜂

𝜇
−1)

], 

where 𝑚𝐺(𝑡) is the mean residual life function of 𝑈. 

Proof. From (14), we have 

𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) =

1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) 𝜆𝐺(𝑡) − (𝑡𝜆𝐺(𝑡))

2
𝜂

𝜇
−1

𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}]. 

Using 𝜆𝐺(𝑡) =
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
, we have 

𝜕

𝜕𝑡
𝐻(𝑈,𝑤)

(𝜂,𝜇)
(𝑔; 𝑡) =

1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) (

1+
𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
) 

−𝑡
2

𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2
𝜂

𝜇
−1

𝑒𝑥𝑝 {2𝜂(𝜂 − 𝜇)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}]. 

Since, �̅� is IWGERL (DWGERL), therefore, after simplification, we have 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≥ (≤) log [
𝑡

2
𝜂
𝜇

−1

2
𝜂

𝜇
−1

(
1+

𝜕

𝜕𝑡
𝑚𝐺(𝑡)

𝑚𝐺(𝑡)
)

2(
𝜂

𝜇
−1)

]. 
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Theorem 4.5.  Let 𝑈 be the lifetime of a system with p.d.f 𝑔(𝑢) and s.f �̅�(𝑡), 𝑡 > 0, then 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) 

attains a lower bound as follows 

𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) ≥
1

2𝜂(𝜇−𝜂)
[(2

𝜂

𝜇
− 1) ∫

𝑔(𝑢)

�̅�(𝑡)
log 𝑢𝑑𝑢 + 2 (1 −

𝜂

𝜇
) 𝐻𝑈(𝑔; 𝑡)

∞

𝑡
].  (18) 

Proof. From log-sum inequality, we have 

∫ 𝑔(𝑢) log
𝑔(𝑢)

(𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢 ≥ ∫ 𝑔(𝑢)𝑑𝑢 log
∫ 𝑔(𝑢)𝑑𝑢

∞
𝑡

∫ (𝑢
𝑔(𝑢)

�̅�(𝑡)
)

2
𝜂
𝜇−1

𝑑𝑢
∞

𝑡

∞

𝑡

∞

𝑡

= �̅�(𝑡) [log �̅�(𝑡) − log {2𝜂(𝜇 − 𝜂)𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡)}].  (19) 

where (19) is obtained from (8). 

The L.H.S of (19) leads to 

2 (1 −
𝜂

𝜇
) ∫ 𝑔(𝑢) log 𝑔(𝑢)𝑑𝑢 − (2

𝜂

𝜇
− 1)

∞

𝑡
∫ 𝑔(𝑢) log 𝑢𝑑𝑢 + (2

𝜂

𝜇
− 1) �̅�(𝑡) log �̅�(𝑡)

∞

𝑡
.  (20) 

Using (20) in (19), we obtain (18). 

5. Application

To illustrate the effectiveness and importance of our proposed UM’s, we consider a real life data 

set. The data set represents the remission times (in months) of a random sample of 128 bladder 

cancer patients given in Lee and Wang [15] and is given as follows: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 

5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 

9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

Afaq et al. [16] have shown that the length biased Lomax distribution (LD) provides a better fit 

for this data. Now, in order to compute the entropy of this data set, it is necessary to apply the 

weighted entropy technique rather than the simple entropy. For the weighted entropy, we need to 

consider the basic model (i.e LD) of the length biased LD. The MLEs of the parameters of LD from 

this data set are obtained as: 𝜃 = 8.431393(shape parameter) and 𝜆 = 70.289624(scale parameter) 

respectively. Now, for 𝜂 = 1.5, 𝜇 = 2.5 and 𝑡 = 10, we have 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) = 1.638 and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) =

1.694. Similarly, 𝜂 = 2.5, 𝜇 = 3 and 𝑡 = 20, we obtain 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔) = 1.164 and 𝐻(𝑈,𝑤)
(𝜂,𝜇)

(𝑔; 𝑡) = 1.481 

respectively. 

6. Conclusion

In this article, we have introduced the concepts of weighted generalized entropy and also its 

dynamic (residual) version which is known as weighted generalized residual entropy. It has been 

shown that the proposed residual entropy uniquely determines the survival function. The various 

important properties and the relationship with other well-known reliability measures of the 

proposed residual entropy are also obtained. Finally, a real data set has been used to investigate 

the usefulness of the proposed entropy functions. 
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Abstract 

In the present investigation, we consider a bulk queue model with the assumption that the server 

may stop working due to random failure during any stage of the service. As soon as the server fails, 

it is immediately sent for repair. The server offers all incoming units the first mandatory service 

and any one of the optional services as per the unit's requirements. For computation purposes, we 

assume that the server offers m+1 services, of which the first one is essential and the remaining are 

optional. The server may take a vacation in accordance with the Bernoulli vacation schedule with 

probability p as soon as both service phases of a unit are completed. As the system empties, the 

server idles and needs some time to set up before initiating the next service. In order to analyse the 

model and derive various steady-state queue length distributions, we incorporated the 

supplementary variables corresponding to service time, vacation time, and repair time and applied 

the probability generating function technique to determine the various system state distributions. 

Using these probability distributions, we derive the explicit form of various performance indices. To 

discuss the validity of the present model, we obtained some well-known results from the queueing 

literature as a special case of the present model by setting appropriate parameters. Finally, to 

analyse the sensitivity of several performance indices, a numerical demonstration is provided. 

Keywords: queue, bulk, essential service, optional service, supplementary 

variable, queue length 

I. Introduction

Most queueing literature makes the assumption that the server in the service station is always available and 

that the service station never fails. These presumptions, meanwhile, are notably irrational. In real-world 

systems, it frequently happens that service stations break down and need to be fixed. We frequently 

experience situations where the entire system pauses owing to a random failure of a unit in computer 

communication networks, flexible manufacturing systems, production systems, and other areas. 

Due to the potential impact on system performance, these types of systems with a repairable service 

facility are highly worth investigating from both an operational and queueing theory perspective. For detailed 

related work on queueing models with unreliable servers, we may refer to the work done by Avi-Itzhak and 

Naor [2], Li et al. [13], Wang and Yang [22], etc. Chaudhury and Tadj [10] discussed the linear cost procedure 

to obtain the optimal stationary policy of an unreliable queueing model with a Bernaulli vacation schedule. 

Rajadurai et al. [17] investigated an unreliable queueing model with a modified vacation schedule and 

applied the supplementary variable technique to obtain the study state queue size distribution. Yang and Wu 

[23] discussed the M/M/1 queueing model with the assumption that there is a state-dependent breakdown

rate under N policy. They assumed that as the system became empty, the server would take a working

vacation. Further, Chakravarthy et al. [5] generalised the model of the working-repair-vacation queue by
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assuming the concept of backup servers, which work at a relatively slow rate during the absence of the main 

server. Recently, Meena et al. [16] applied the supplementary variable technique to analyse the unreliable 

non-Markovian machine system, which comprised both operating and standby machines under N policy. 

     In some queueing situations, servers are unavailable for services for occasional intervals of time; such 

queueing models are termed vacation models. During vacation, the server may perform other types of service 

or may perform scheduled maintenance. Due to their variety of applications in computer systems, 

communication networks, and production and inventory systems, queuing systems with vacations have been 

extensively investigated. A comprehensive and detailed review of the vacation models can be found by Doshi 

[11], Choudhury [6] and Tian and Zhang [20] and Takagi [19]. Yang et al. [24] investigated a retrial queueing 

model with a constant retrial rate under the assumption that as orbit becomes empty, the server takes its first 

essential vacation. Further, the server may take additional option vacations after availing of the first essential 

vacation. Ayyapan and Karpagam [3] discussed an unreliable non Markovian queue model with a standby 

server under Bernoulli's schedule vacation policy. It is assumed that when the main server stops working due 

to random failure, a standby server starts serving the arriving unit. Ahuga et al. [1] applied the Runge-Kutta 

method to investigate a Markovian queueing system with multiple stages of service and vacation, where it is 

assumed that the server may breakdown during the busy period and vacation period. Recently, Rani et al. 

[18] applied  recursive approach to find the steady-state queue size distribution of a finite population

Markovian queueing model with vacation and discouragement factors. They apply the particle swarm

optimisation technique to determine the optimal total cost.

It happens frequently in various queueing circumstances that when units use the first essential service, 

they subsequently need further services, or more than one service. For a better understanding, we will use the 

example of a car's service centre. Here, units arrive for routine maintenance, and if a serious problem is found 

with any element of the vehicle while it is being serviced, they go for repair or replacement of that 

component. For some comprehensive work in phase service, we may refer to Madan [14], Wang [21], 

Choudhury and Paul [8], Ke [12], etc. Choudhury and Deka [9] discussed a queueing model based on the 

assumption that units arrive one by one and the server is unreliable. But in real life situations where units 

arrive in groups of random size, units may demand more than one type of optional service apart from the 

essential one. Further, there may be a need for startup time to start the service again. Such situations 

motivated us to extend the model of Choudhury and Deka [9] by assuming that 

• Units arrive in batches of random size.

• Second-phase services may choose among the available optional services.

• Server need start up time to start the service again.

• Server may go on vacation under Bernoulli’s vacation schedule.

The remaining paper is organised as follows: In Section II, we describe the brief model description by making 

some basic assumptions. In Section III, the governing equations of the present model are described. In Section 

IV, we derive the steady-state queue size distribution function. In Section V, the performance measures of the 

present model are carried out. In Section VI, some well-known results are established as special cases of the 

present model. Finally, in Section VII, numerical illustration and sensitivity analysis of performance measures 

are done. 

II. Medel description

In the present model, we consider a non-Markovian queueing model with the assumption that units arrive in 

batches of random size, according to poisson arrival fashion. There is a single server that provides the first 

essential services as well as one of the optional services to each arriving unit. As soon as the system becomes 

empty, the server gets turned off and needs startup time to start again when at least one or more units arrive. 

The brief description of notations used for the present model is as follows: 

 : Batch arrival rate of the unit.

)(xS   : Distribution function of set up time.

)(0 xB : Distribution function of essential service time.

)(xBi  : Distribution function of ),...,2,1( mii th = optional  service time.

)(xV   : Distribution function of vacation time.

)(0 xG : Distribution function of repair when its fails during essential service of a unit .

)(xGi : Distribution function of repair when its fails during ),...,2,1( mii th = optional  service. 

)(
0
k

g :The thk moment of repair time when its fails during essential service of a unit 
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)(k

ig :The thk  moment of repair time when its fails during ),...,2,1( mii th = optional service of a unit 

ir : Probability to opt ),...,2,1( mii th = optional  service after essential service. 

p : Probability to opt optional vacation after service completion of a unit. 

)(tNq : Denote  the queue size in system at time t .

)(0 tS : Elapsed  set up time at time t ..

)(0
0 tB : Elapsed service time of essential service at time t .

)(0 tBi : Elapsed service time of ),...,2,1( mii th = optional  service at time t .

)(0 tV : Elapsed vacation time at time t ..

)(0
0 tG : Elapsed repair time at t  time  when its fails during essential service of a unit .

)(0 tGi : Elapsed repair time at t  time  when its fails during ),...,2,1( mii th = optional  service. 

Let )(t denote the state of server at time ,t  where 

















=++

+

+

=+=

service.m)1,2,...,(jjthbreakdownitwhenrepairunderisservertheifjm4

 t ,at  t ime service essential duringbreakdown it  n repair wheunder  isserver     theifm4

t,t imeatvacat iononisservertheifm3

t,t imeatserviceoptionalm)1,2,...,(iithwithbusyisservertheifi2

t ,t imeatserviceessentialwithbusyisservertheif2

t ,t imeatupstartisservertheif1

t ,t imeatidleisservertheif0

)(t

The variables )(0 tS , )(0
0 tB , ),...,2,1()(0 mitBi = , )(0 tV , )(0

0 tG  and ),...,2,1()(0 mitGi = are added as supplementary 

variable in order to obtain  a bivariate  markav process  )(),( tXtNq  where )(tX  assumes values, 

)..2,1(2,2,1,0)()(),(),(,0 00
0

0 miitiftBtBtS i =+=  respectively and  values 

)...2,1(4,4,3)()(),(),( 00
0

0 mjjmmmtiftGtGtV i =++++= respectively. 

To construct the model, we define the following probabilities 

,0};0)(,)(Pr{)( === ntXntNtL qn  (2.1) 

,1,0};)();()(,)(Pr{),( 00 +=== nxdxxtSxtStXntNtxS qn  (2.2) 

,1,0};)();()(,)(Pr{),( 0
0

0
0

)0( +=== nxdxxtBxtBtXntNtxP qn  (2.3) 

,1,1,0};)();()(,)(Pr{),( 00)( minxdxxtBxtBtXntNtxP iiq
i

n +===  (2.4) 

,1,0};)();()(,)(Pr{),( 00 +=== nydyytVytVtXntNtyV qn  (2.5) 

,1,0

};)(/)();()(,)(Pr{),,( 0
0

0
0

0
0

)0(



=+===

nx

xtBdyytRytRtXntNtyxR qn
 (2.6) 

.1,1

,0};)(/)();()(,)(Pr{),,( 000)(

min

xxtBdyytRytRtXntNtyxR iiiq
i

n



=+===
  (2.7) 

Further it is assume that 

,1)(,0)0(,1)(,0)0(,1)(,0)0( ====== ii BBSSVV .1)(,0)0( == ii GG

Further it is assume that )(yG , )(yV functions are continuous at 0=y ,while )(xBi , )(xS  are

continuous at .0=x  

The hazard rate functions for present system is given by 

)(1

)(
)(

xS

xdS
dxx

−
= ,

)(1

)(
)(

xB

xdB
dxx

i

i
i

−
= ,

)(1

)(
)(

yV

ydV
dyy

−
= ,

)(1

)(
)(

yG

ydG
dyyg

i

i
i

−
= .0for mi 

Further we define the following probability generating functions for mi ,...,2,1,0 =

as follows. 




=
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1

)()( ),(),,(

n

i
n
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=

=
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)()( )0,(),0,(

n

i
n

ni xRzzxR     ;       


=

=

1

)(),(

n

n
n xSzzxS
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III. Governing Equations

The governing equations of the system are 

,)()(
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We will solve the equations (3.1)-(3.7) under the following boundary condition at 0=x  and 0=y

given by: 

,)0( 01 LS =  (3.8) 

,2;0)0( = nSn
 (3.9) 
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.1,1;)()()0(
0

)0(
0
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  (3.11) 

  at 0=y : 
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1

0
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00 








+= 

=


ndxxPxdxxPxrpV

m

i

i
ninn    (3.12) 

and at 0=y  for .,...,2,1,0 mi =  and fixed value of x .

.,...,2,1,0,1);()0;( )()( minxPxR i
ni

i
n ==    (3.13) 

The normalizing condition for present system is given by 
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IV. Mathematical Analysis

Apply summation formula after multiplying equation (3.2) and (3.3) by appropriate power of z , we get 
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 (4.1) 

Substitutes the value of  (3.1) into equation (4.1) we get

)(1

)1(
)( 0

zX

zL
zL

−

−
=

 (4.2) 

Solving equation (3.4), (3.6) and (3.7) in usual manner we get 

,0;})(exp{)](1)[,0(),( 1 −−= xxzaxSzSzxS  (4.3) 

,0;})(exp{)](1)[,0(),( 1 −−= yyzayVzVzyV  (4.4) 

.0,0;})(exp{)](1)[,0,(),,( 1
)()( miyyzayGzxRzyxR i

ii −−=  (4.5) 

On multiplying equations (3.8),(3.9) and (3.13) by  appropriate power of z , then after little simplification, we 

get 

,,...,2,1,0;),(),0,( )()( mizxPzxR i
i

i ==   (4.6) 

.),0( 0LzzS =  (4.7) 

On simplifying equations (4.3) and (4.7) we have 

,0;})(exp{)](1[),( 10 −−= xxzaxSLzzxS   (4.8) 

On simplifying equations (3.5) and (4.5), we have 

.0;))((),0,(),())()((),( 1
)()(

1
)( mizaGzxRzxPxzazxP

dx

d
i

ii
ii

i =+++   (4.9) 

Solving equations (4.6) and (4.9), we get

,0,0};)(exp{)](1)[,0(),( )()( mixxzxBzPzxP ii
ii −−=     (4.10) 

where )))((1()()( 11 zaGzaz iii −+=  and )).(1()(1 zXza −= 

From equation (4.10), (4.6) and (4.5) we have 
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Further, multiplying equations (3.11), (3.12) by suitable power of z and after simplification we have 
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Similarly, from equation (3.10) we have 
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Substituting the value of equation (4.4), (4.8), (4.10) in (4.14) and then using the value of equations (4.7), (4.12) 

- (4.13) we get









−++

−
=


=

zzaVpqzBrrzB

zaSzzL
zP

m

i

iii ))}((}{))(()){((

))]((1[
),0(

1

1

000

10)0(



  (4.15) 

The limiting value of equation (4.15) when 1→z , is given by 
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where  )}.()1)(()1)((){(
1

)1()1(
000 VpEgBErgBEXE

m

i

iiii ++++= 
=



Evaluating 1→z in equation (4.2),(4.4), (4.8)- (4.13) and using the  equation (4.16) we have 
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From equations (4.17)-(4.23) and  normalizing condition (3.14), we have 
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Theorem 1: The joint probability distribution functions  of system state and queue size, under stability 

condition,  are given by 

,
)()(1

})(exp{)](1)[1)((
),( 1

SEXE

xzaxSXEz
zxS





+

−−−
=  (4.25) 

,

]))}((}{))(()){(())[()(1(

})(exp{)](1))][((1)[1)((
),(

1

1

000

001)0(

zzaVpqzBrrzBSEXE

xzxBzaSzXzE
zxP

m

i

iii −+++

−−−−
=


=



  (4.26) 

,1

,

]))}((}{))(()){(())[()(1(

})(exp{)](1))][((1))[(()1)((
),(

1

1

000

100)(

mi

zzaVpqzBrrzBSEXE

xzxBzaSzzBXzEr
zxP

m

i

iii

iiii



−+++

−−−−
=


=





 (4.27) 

,

]))}((}{))(()){(())[()(1(

})(exp{)](1}[))(()){(())]((1)[1)((

),(

1

1

000

1

1

0001

zzaVpqzBrrzBSEXE

yzayVzBrrzBzaSzXzEp

zyV
m

i

iii

m

i

iii

−+++

−−+−−

=





=

=



  (4.28) 

,

]))}((}{))(()){(())[()(1(

})(exp{)](1}[)(exp{)](1))][((1)[1)((
),,(

1

1

000

100010)0(

zzaVpqzBrrzBSEXE

yzayGxzxBzaSzXzE
zyxR

m

i

iii −+++

−−−−−−
=


=



      (4.29) 

,1

,

]))}((}{))(()){(())[()(1(

})(exp{)](1}[)(exp{)](1))[(())]((1)[1)((
),,(

1

1

000

1001)(

mi

zzaVpqzBrrzBSEXE

yzayGxzxBzBzaSzXzEr
zyxR

m

i

iii

iiiiii



−+++

−−−−−−
=


=




     (4.30) 

Theorem 2: The marginal probability distribution function of system state queue size are given by 
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Proof: See appendix A. 

Theorem 3: The stationary queue size distribution at random epoch is given by 
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 (4.37) 

 Proof:  Adding the equations (4.31)-(4.36) we get required result. 

The equation (4.37) can be written as 
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Equation (4.38) shows that the queue size distribution divides into two independent random variables: the 

first )(.
1//

zVacawithoptJ

GM X , the stationary queue size distribution of the unreliable bulk queue with optional 

service including vacation and repair, and the second )(z  is the number of arrivals during idle time 

including setup time.   

Theorem 4: The stationary queue size distribution of system at departure epoch is given by  
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Proof:  See appendix B. 

Equation (4.39) can be written as 
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Thus, the queue size distribution at the departure epoch decomposes into three independent random 

variables: )(.
1//

zVacawithoptJ

GM X ,the stationary queue size distribution of the unreliable bulk queue with 

optional service including vacation and repair; )(z  the number of arrivals during idle time including setup 

time; and  the third independent random variable 
)1)((

)(1

zXE

zX

−

− , the number of customers placed before a

tagged customer.
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V. Performance measures

(a) System state probabilities

By considering limit 1→z  in the marginal probability generating function of the server state queue 

distribution, it is possible to determine the system state probability of the server state. 

• The probability that server is under startup is ,
)}()(1{
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• The probability that server is busy with essential service ),()( 00
BEXEPB =

• The probability that server is busy in providing the )1( mii th  optional service 

),()( iiB BEXErP
i

=

• The probability that server is under optional vacation ),()( VEXEpPV =

• The probability that server is under repair when its fail during essential service
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000 )()(
0

gBEXEPR =

• The probability that server is under repair when its fail during )1( mii th   optional service 
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• Probability that server is idle is given by .
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(b) Average queue length

(i) The mean system size )( qL at arbitrary epoch can be determined using 
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 (5.1) 

(ii) The mean system size )( DL  at departure epoch can be determined using
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From (5.1) and (5.2) we can easily observe that  
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(c) Average waiting time

The average waiting time can be obtained as 
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L
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 (5.3) 

VI. Special cases

In this section, we evaluate some special case by setting appropriate parameter to validate our result with 

existing models.  

 Case (i): By setting 1,1,1)1(,1)0( 1 ====== mrXPSP ; equation (4.39) gives 
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The present model reduces to the model  studied by Chaudhury and Deka [9]. 

Case (ii): By setting 0...,1,1,1)1(,1)0( 211 ========== mmrXPSP  ; equation (4.39) 

gives 
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The present model reduces to the model studied by Chaudhury and madan [7]. 

Case (iii): By setting 0,0...21 ===== pm ; equation (4.39) gives 
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The present model reduces to model investigated by Ke [12].

Case(iv):By setting ,0...,0,0... 2121 ========= mm rrrp ; equation (4.39) gives 
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The present model reduces to the model studied by Choudhury [6]

 Case(v):By setting 1)1(,0...,0,0... 210 ========== XPrrp mm ; equation (4.39) gives 
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The present model reduces to the model  studied by Medhi [15].

VII. Numerical illustration

In present section, we will provide the numerical illustration and sensitivity analysis of the various 

performance measures on different parameters of the model. For this, it assume that the first two moments of 

the batch size distribution are given by .1;
)1(
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exponential, and its first and second moments are therefore derived as 
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where i denote the service rate. Further, the distribution of vacation

time is assumed to be Erlangian-2 and has parameter ).2,1( =ii  The first and second moments of vacation 

time distribution are
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VE == .The repair time distribution is further assumed to follow an 

exponential distribution with a parameter ig and having the first two moments 
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 Coding in MATLAB is used to create computer programmes. We now 

present the numerical results in tables (1) -(5). 

Table 1: ,15,3/1,2,01.0,2,2)( 1100210021 ========== vrrrXE 

 .15,15,10,10 210 ==== gggs

Table2: ,15,3/1,2,2,2)( 110021021 ========= vrrrXE 

 2,7.0,15,15,10,10 0210 ====== gggs

Table 3: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 .01.0,15,15,10,10 0210 ===== gggs

Table 4: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 .2,7.0,15,15,10,10 0210 ====== gggs

Table 5: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 01.0,7.0,15,15,10,10 0210 ====== gggs

Table 1: Effect of arrival rate and service rate on 
qL ( qW ) for variation in p

2= 1.2=

3.0=p 7.0=p 3.0=p 7.0=p

 qL qW qL qW qL qW qL qW

0.61 14.174 11.618 18.492 15.157 10.632 8.715 13.275 10.881 

0.63 17.922 14.224 24.894 19.758 12.851 10.199 16.634 13.201 

0.65 23.607 18.160 36.393 27.994 15.857 12.197 21.611 16.624 

0.67 33.253 24.816 63.102 47.091 20.159 15.044 29.755 22.205 

0.69 53.215 38.562 194.278 140.781 26.829 19.441 45.498 32.969 
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Table 2: Effect of p on qL ( qW ) for variation in failure rate and m

2=m 1=m 0=m
p

qL qW qL qW qL qW

01.00 =

0.1 27.349 19.535 17.130 12.236 7.094 5.067 

0.3 33.760 24.114 19.614 14.010 7.623 5.445 

0.5 43.930 31.379 22.869 16.335 8.218 5.870 

0.7 62.558 44.684 27.328 19.520 8.894 6.353 

0.9 107.754 76.967 33.814 24.153 9.668 6.906 

05.00 =

0.1 28.516 20.368 17.578 12.556 7.172 5.123 

0.3 35.519 25.371 20.188 14.420 7.710 5.507 

0.5 46.895 33.496 23.636 16.883 8.317 5.940 

0.7 68.622 49.016 28.406 20.290 9.006 6.433 

0.9 126.698 90.498 35.442 25.316 9.797 6.998 

Table 3: Effect of arrival rate on system state probabilities 


LP SP

0BP
1BP

2BP VP
0RP

1RP
2RP

0.61 0.12934 0.01578 0.61000 0.10167 0.10167 0.04067 0.00061 0.00014 0.00014 

0.63 0.10399 0.01310 0.63000 0.10500 0.10500 0.04200 0.00063 0.00014 0.00014 

0.65 0.07882 0.01025 0.65000 0.10833 0.10833 0.04333 0.00065 0.00014 0.00014 

0.67 0.05382 0.00721 0.67000 0.11167 0.11167 0.04467 0.00067 0.00015 0.00015 

0.69 0.02900 0.00400 0.69000 0.11500 0.11500 0.04600 0.00069 0.00015 0.00015 

Table 4: Effect of service rate on system state probabilities 

0 LP SP
0BP

1BP
2BP VP

0RP
1RP

2RP

2 0.01666 0.00233 0.70000 0.11667 0.11667 0.04667 0.00070 0.00016 0.00016 

2.1 0.05569 0.00780 0.66667 0.11111 0.11111 0.04667 0.00067 0.00015 0.00015 

2.2 0.09117 0.01276 0.63636 0.10606 0.10606 0.04667 0.00064 0.00014 0.00014 

2.3 0.12356 0.01730 0.60870 0.10145 0.10145 0.04667 0.00061 0.00014 0.00014 

2.4 0.15326 0.02146 0.58333 0.09722 0.09722 0.04667 0.00058 0.00013 0.00013 

Table 5: Effect of failure rate on system state probabilities 

0 LP SP
0BP

1BP
2BP VP

0RP
1RP

2RP

0.01 0.01666 0.00233 0.70000 0.11667 0.11667 0.04667 0.00070 0.00016 0.00016 

0.02 0.01577 0.00221 0.70000 0.11667 0.11667 0.04667 0.00140 0.00031 0.00031 

0.03 0.01488 0.00208 0.70000 0.11667 0.11667 0.04667 0.00210 0.00047 0.00047 

0.04 0.01400 0.00196 0.70000 0.11667 0.11667 0.04667 0.00280 0.00062 0.00062 

0.05 0.01311 0.00184 0.70000 0.11667 0.11667 0.04667 0.00350 0.00078 0.00078 

The impact of arrival rate and service rate on the average queue length (waiting time) qL ( qW ) is shown in 

Table 1. The table clearly shows that the qL ( qW ) increases with rising arrivals, however, there is a 

diminishing trend brought on by a rise in service rate. Additionally, there is an increasing tendency in qL ( qW

) with an increase in p for the fixed value of the arrival rate. Table 2 displays the impact of p on the average 

queue length (waiting time). The table clearly shows that there is an increasing tendency in qL ( qW ) as a 

consequence of the growth in p. Additionally seen is a decline in qL ( qW ) as a result of a reduction in the 

availability of optional services. The variation in system state probability caused by variations in arrival 

(service) rates is shown in Table 3(4). It is evident from the data that with an increase in arrival (service) rate 

0BP ,
1BP ,

2BP and VP have growing (declining) trends, whereas LP and SP have decreasing (increasing) 
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trends. Table 5 demonstrates that as the failure rate rises, LP  and SP  tend to decline while
0BP , 

1BP ,
2BP and

VP remain constants. Along with the rise in failure rates, increasing trends can be seen in
0RP ,

1RP , and 
2RP . 

VIII. Conclusion

In the present article, we investigated a queueing model with an unreliable server under the provision of 

Bernoulli vacation, setup time, and two-phase service, where the first service is essential and the second is 

optional, and we had to choose among the available options. In the current study, we use the supplementary 

variable approach to build the model and assess several performance indices expressions. Our model may be 

useful in more flexible queueing circumstances that occur in many manufacturing and production systems, 

where some services may be optional based on the customer's desire and where the manufacture of the items 

must be done in phases, such as assembling, testing, packing, etc. The model studied can be further 

generalised by incorporating feedback services as well as some more features such as N-Policy, retrial, and 

extended vacation policies. 
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Appendix A 

Proof of theorem 1: 

Integrating equations (4.25)-(4.27) with respect to x  and ussing the result
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We get equations (4.31)-(4.33). 

Similarly integrating equations (4.28) with respect to y and using (A.1) we get equation (4.34). On  repeating 

the same process  for equations (4.29) and (4.30) with variable x , y  , and using equation (A.1), we get

equations (4.35)-(4.36).      

Appendix. B 

Proof of theorem 2: 

To obtain the queue size distribution at the departure epoch, on the line of Choudhury and Deka [9], we have 
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where 0k is the normalizing constant and ,...}2,1,0;{ =jj  as the probability that there are j  customers 

in the queue at a departure epoch. 
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Using the condition 1)1( = , we get 
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Using the value of equation (B.3) into (B.2), we get required result. 
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Abstract

In this research, we present an approach to model lifetime data by a weighted three-parameter probability
distribution utilizing the exponential and gamma distributions. We have presented some of the essential
characteristics such as the shapes of pdf, cdf, moments, incomplete moments, survival function, hazard
function, mean residual life, stochastic ordering, and order statistics of the proposed distribution.
Furthermore, we also presented the Bonferroni index and Lorenz curve of the proposed distribution. The
maximum likelihood approach is used to estimate the parameters of the distribution. Finally, the proposed
probability distribution is compared to goodness of fit with Lindley, Akash, exponential, two-parameter
Lindley, cubic transmuted Rayleigh, and Exponential-Gamma distributions for the real-time data set.

Keywords: Lifetime distribution, Hazard function, Mean residual life function, Order statistic,
Maximum likelihood estimation.

1. Introduction

A scientific approach to the statistical modeling of a wide variety of random events has been made
possible by finite mixture of probability models. Due to its adaptability in representing compli-
cated data, finite mixture models have drawn significant interest recently, both from a theoretical
and practical perspective. Karl Pearson [15] conducted one of the earliest significant analyses
utilizing mixture models. He modeled a proportional combination of two normal probability
density functions with varying means and variances. A variety of probability distributions were
subsequently utilized by many authors to fit a combination of probability distributions. Similarly,
Lindley [17] also modeled the ‘Lindley distribution’ which is a combination of an exponential
distribution with a scale parameter of θ and a gamma distribution having a shape parameter of 2
and a scale parameter of θ with their corresponding mixing proportions, θ

θ+1 and 1
θ+1 respectively.

A probability density function (pdf) and cumulative distribution function (cdf) for the Lindley
distribution were included below.

f (x) =
θ2(1 + x)e−θx

θ + 1
; x > 0, θ > 0 (1)

F(x) = 1−
[

1 +
θx

θ + 1

]
e−θx; x > 0, θ > 0 (2)

Shanker [22] used the finite mixture model to propose the Akash distribution, which is
described by its pdf and cdf.
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f (x) =
θ3(1 + x2)e−θx

θ2 + 2
; x > 0, θ > 0 (3)

F(x) = 1−
[

1 +
θx(θx + 2)

θ2 + 2

]
e−θx; x > 0, θ > 0 (4)

Furthermore, the finite mixing model is

f (x) = w1g1(x) + w2g2(x) (5)

Where Shanker [22] uses the mixing proportion for Akash distribution with weights as
w1 = θ2

θ2+2 and w2 = 2
θ2+2 . Here, g1(x) and g2(x) denotes pdf of exponential (θ) and gamma (3,

θ) distribution respectively.

We make changes to the Akash distribution to make it more inclusive and adaptable. Shanker
[22] used the term θ to describe the parameters of an exponential and a gamma distribution. In
this study, we presented a new probability distribution, which we called the Exp-Gamma distri-
bution. The proposed distribution is more flexible and it performs like the Generalized version
of the Akash distribution. We did this by employing the scale parameter λ for the exponential
distribution and shape parameter 3, and the scale parameter β for the gamma distribution with
the mixture proportion of θ2

θ2+2 and 2
θ2+2 respectively.

This paper is also arranged in the following manner. In section 2, we present the Exp-Gamma
distribution. Section 3 contains the usual moments and their related measures for the Exp-Gamma
distribution. Section 4 deals with reliability analysis. Log-odds rate is calculated in section 5.
Section 6 discusses Entropy. Section 7 deals with stochastic ordering. The order statistics for the
Exp-Gamma distribution are given in section 8. The Lorenz and Bonferroni curves are presented
in Section 9. The section 10 Zenga index is derived. In section 11, it is discussed how to estimate
the Exp-Gamma distribution’s parameters using the maximum likelihood method. Finally, section
12’s proposed distribution as an application makes use of real-time data.

2. Exponential-Gamma Distribution(Exp-Gamma)

The probability distribution of the Exp-Gamma distribution can be described by its probability
density function and cumulative distribution function.

f (x; θ, λ, β) =
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]
(6)

F(x) =
θ2(1 − e−λx) + 2 − e−βx(x2β2 + 2xβ + 2)

θ2 + 2
(7)

for, x ≥ 0, θ ≥ 0, λ ≥ 0, β ≥ 0.

The following images Figure 1 and Figure 2 show a few potential pdf and cdf shapes for an
Exp-Gamma distribution for various parameter values. The Akash and Gamma distributions
are the special cases of the Exp-Gamma distribution when λ = β = θ and θ = 0 respectively.
According to Figure 1, the Exp-Gamma distribution presents a variety of pdf patterns, including
right-skewed and reversed-J shaped, pdf parameters that have fixed values.
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Figure 1: The shape of the pdf of the Exp-Gamma distribution with varying parameter values.

Figure 2: The form of the Exp-Gamma distribution’s cdf changes when the parameter values change.
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3. Moments and related measures

The rth moment (raw moments) has been obtained as

E(Xr) =
∫ ∞

0
xr f (x)dx

=
∫ ∞

0
xr 1

θ2 + 2
[θ2λe−λx + β3x2e−βx]dx

=
1

θ2 + 2

[
θ2Γ(r + 1)

λr +
Γ(r + 3)

βr

] (8)

when r = 1, 2, 3, 4 then the results follow.

The Exp-Gamma distribution’s first four moments are:

Mean(µ) = E(X) =
βθ2 + 6λ

βλ(θ2 + 2)

E(X2) =
2β2θ2 + 24λ2

β2λ2(θ2 + 2)

E(X3) =
6β3θ2 + 120λ3

β3λ3(θ2 + 2)

E(X4) =
24β4θ2 + 720λ4

β4λ4(θ2 + 2)
As a result, the Exp-Gamma distribution’s central moments are calculated as

µ2 = Variance =
12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ)

β2λ2(θ2 + 2)2

µ3 =
2[13β3θ2 + 6β3θ4 + 60λ3θ4 + 24λ3θ2 − 36λ2βθ4 − 36λβ2θ2 − 54λ2βθ2 − 84λ3]

β3λ3(θ2 + 2)3

µ4 =

[
24β4θ2(0.375θ6 + 3θ4 + 8θ2 + 8)− 48λ4(93 + 114θ2 + 51θ4 − 1.5θ6)+

72λ2β2θ2(12 + 2θ4 + θ2)− 72β3θ2(8λ + 4λθ2 + θ4)

−192λ3βθ2(5.5 + θ2 + 2.5θ4)

]
1

β4λ4(θ2 + 2)4

With the use of the aforementioned moments, closed-form formulas for the Exp-Gamma
distribution’s skewness, kurtosis, variation, and index of dispersion are produced. The variance-
to-mean ratio is known as the index of dispersion (DI). The model is appropriate for datasets
with low dispersion if the DI value is less than 1. The model works well with overly distributed
datasets if the DI value is greater than 1.

skewness(x) =
E(X3)− 3E(X2)µ + 2µ3

σ3

=
2[13β3θ2 + 6β3θ4 + 60λ3θ4 + 24λ3θ2 − 36λ2βθ4 − 36λβ2θ2 − 54λ2βθ2 − 84λ3]

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))
3
2

Kurtosis =
E(X4)− 4E(X3)µ + 6E(X2)µ2 − 3µ4

σ4
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Kurtosis =

[
24β4θ2(0.375θ6 + 3θ4 + 8θ2 + 8)− 48λ4(93 + 114θ2 + 51θ4 − 1.5θ6)+

72λ2β2θ2(12 + 2θ4 + θ2)− 72β3θ2(8λ + 4λθ2 + θ4)

−192λ3βθ2(5.5 + θ2 + 2.5θ4)

]
1

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))2

COV =
σ

µ
=

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))
1
2

βθ2 + 6λ

DOI(γ) =
σ2

µ
=

12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ)

(βλ(θ2 + 2))(βθ2 + 6λ)

As seen in the table 1 to 5, the mean, variance, skewness, kurtosis, and index of dispersion are
all expressed in quantitative terms.

From the tables, we can infer that the proposed distributions have the following features:

* The mean of the proposed function is a declining function of θ, λ, and, β.
* The Exp-Gamma distribution is positively skewed for all the parameter values.
* Every positively skewed set of data can fits the suggested distribution.
* When the parameter values of the Exp-Gamma distribution are less than 1, then the Exp-

Gamma distribution belongs to the light-tailed distribution, and when it exceeds the value
of 1, then it belongs to the heavy-tailed distribution.

* The Exp-Gamma distribution is appropriate for both over- and under-dispersed datasets, as
evidenced by the increasing and diminishing DI behavior.

Table 1: Mean values of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 4.6667 4.3333 4.2222 4.1667 4.1333 4.1111
1 2.6667 2.3333 2.2222 2.1667 2.1333 2.1111
1.5 2.0000 1.6667 1.5556 1.5000 1.4667 1.4444
2 1.6667 1.3333 1.2222 1.1667 1.1333 1.1111
2.5 1.4667 1.1333 1.0222 0.9667 0.9333 0.9111
3 1.3333 1.0000 0.8889 0.8333 0.8000 0.7778

2

0.5 3.3333 2.6667 2.4444 2.3333 2.2667 2.2222
1 2.3333 1.6667 1.4444 1.3333 1.2667 1.2222
1.5 2.0000 1.3333 1.1111 1.0000 0.9333 0.8889
2 1.8333 1.1667 0.9444 0.8333 0.7667 0.7222
2.5 1.7333 1.0667 0.8444 0.7333 0.6667 0.6222
3 1.6667 1.0000 0.7778 0.6667 0.6000 0.5556

3

0.5 2.7273 1.9091 1.6364 1.5000 1.4182 1.3636
1 2.1818 1.3636 1.0909 0.9545 0.8727 0.8182
1.5 2.0000 1.1818 0.9091 0.7727 0.6909 0.6364
2 1.9091 1.0909 0.8182 0.6818 0.6000 0.5455
2.5 1.8545 1.0364 0.7636 0.6273 0.5455 0.4909
3 1.8182 1.0000 0.7272 0.5909 0.5091 0.4545
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Table 2: The variance of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 12.8889 13.8889 14.4691 14.8056 15.0222 15.1728
1 3.5556 3.2222 3.3580 3.4722 3.5556 3.6173
1.5 2.2222 1.4444 1.4321 1.4722 1.5111 1.5432
2 1.8889 0.8889 0.8025 0.8056 0.8222 0.8395
2.5 1.7956 0.6622 0.5314 0.5122 0.5156 0.5240
3 1.7778 0.5556 0.3951 0.3611 0.3556 0.3580

2

0.5 10.2222 10.2222 10.6173 10.8889 11.0756 11.2099
1 3.8889 2.5556 2.5062 2.5556 2.6089 2.6543
1.5 3.1111 1.3333 1.1358 1.1111 1.1200 1.1358
2 2.9722 0.9722 0.7006 0.6389 0.6256 0.6265
2.5 2.9689 0.8356 0.5195 0.4356 0.4089 0.4010
3 3.0000 0.7778 0.4321 0.3333 0.2978 0.2840

3

0.5 7.8347 6.7190 6.7769 6.8864 6.9779 7.0496
1 3.9669 1.9587 1.7190 1.6798 1.6820 1.6942
1.5 3.5152 1.2094 0.8705 0.7817 0.7542 0.7466
2 3.4463 0.9917 0.6033 0.4897 0.4473 0.4298
2.5 3.4552 0.9114 0.4932 0.3647 0.3134 0.2899
3 3.4821 0.8788 0.4408 0.3023 0.2451 0.2176

Table 3: Skewness of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 0.0252 0.0224 0.0205 0.0194 0.0187 0.0182
1 0.1912 0.2015 0.1910 0.1794 0.1705 0.1639
1.5 0.5940 0.6636 0.6800 0.6587 0.6306 0.6054
2 1.0277 1.5293 1.5954 1.6119 1.5773 1.5279
2.5 1.2964 2.9363 3.0324 3.1345 3.1482 3.0980
3 1.4238 4.7520 5.1614 5.3091 5.4316 5.4400

2

0.5 0.0494 0.0592 0.0574 0.0554 0.0539 0.0528
1 0.2053 0.3950 0.4645 0.4738 0.4680 0.4593
1.5 0.3739 0.9375 1.3331 1.5255 1.5893 1.5990
2 0.4567 1.6424 2.4939 3.1600 3.5401 3.7158
2.5 0.4828 2.3873 3.9009 5.1726 6.1719 6.8048
3 0.4856 2.9913 5.5430 7.5000 9.2689 10.6651

3

0.5 0.0877 0.1541 0.1641 0.1639 0.1620 0.1601
1 0.2215 0.7013 1.0708 1.2328 1.2935 1.3129
1.5 0.3088 1.2455 2.3669 3.2923 3.8550 4.1606
2 0.3406 1.7724 3.5959 5.6103 7.3395 8.5668
2.5 0.3483 2.1934 4.8130 7.8061 10.9577 13.7362
3 0.3475 2.4707 5.9817 9.9640 14.4031 18.9349
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Table 4: Kurtosis of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 0.0291 0.0239 0.0212 0.0198 0.0189 0.0183
1 0.4635 0.4655 0.4200 0.3824 0.3567 0.3388
1.5 2.2113 2.3624 2.3568 2.2050 2.0551 1.9358
2 4.5271 7.4158 7.5377 7.4486 7.0975 6.7211
2.5 5.9951 18.3288 18.0734 18.4501 18.1850 17.5152
3 6.6248 35.3808 37.5423 37.7987 38.2654 37.7084

2

0.5 0.0612 0.0709 0.0657 0.0617 0.0590 0.0571
1 0.4662 0.9786 1.1455 1.1349 1.0926 1.0512
1.5 1.0564 3.3125 4.9543 5.6862 5.8242 5.7456
2 1.3369 7.4593 11.9326 15.6581 17.6348 18.3282
2.5 1.4021 12.5799 22.7055 31.2223 38.2278 42.3995
3 1.3871 16.9017 37.7625 53.0000 67.5222 79.2691

3

0.5 0.1318 0.2697 0.2848 0.2798 0.2730 0.2670
1 0.4966 2.1087 3.6540 4.3159 4.5235 4.5574
1.5 0.7823 4.7057 10.6753 16.4434 20.0144 21.8491
2 0.8732 7.9452 18.9774 33.7393 48.0182 58.4636
2.5 0.8850 10.7268 29.1432 52.9549 82.3714 110.9024
3 0.8726 12.5162 40.2223 75.2908 119.4368 170.8054

Table 5: Index of dispersion of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 2.7619 3.2051 3.4269 3.5533 3.6344 3.6907
1 1.3333 1.3809 1.5111 1.6026 1.6667 1.7135
1.5 1.1111 0.8667 0.9206 0.9815 1.0303 1.0684
2 1.1333 0.6667 0.6566 0.6905 0.7255 0.7556
2.5 1.2224 0.5843 0.5198 0.5299 0.5524 0.5751
3 1.3333 0.5556 0.4444 0.4333 0.4444 0.4603

2

0.5 3.0667 3.8333 4.3434 4.6667 4.8863 5.0444
1 1.6667 1.5333 1.7350 1.9167 2.0596 2.1717
1.5 1.5556 1.0000 1.0222 1.1111 1.2000 1.2778
2 1.6212 0.8333 0.7418 0.7667 0.8159 0.8675
2.5 1.7128 0.7833 0.6152 0.5939 0.6133 0.6444
3 1.8000 0.7778 0.5556 0.5000 0.4963 0.5111

3

0.5 2.8727 3.5195 4.1414 4.5909 4.9203 5.1697
1 1.8182 1.4364 1.5758 1.7597 1.9273 2.0707
1.5 1.7576 1.0233 0.9576 1.0116 1.0915 1.1732
2 1.8052 0.9091 0.7374 0.7182 0.7455 0.7879
2.5 1.8631 0.8794 0.6459 0.5814 0.5745 0.5906
3 1.9151 0.8788 0.6061 0.5117 0.4814 0.4788

The rth Incomplete moment for Exp-Gamma distribution has been obtained as
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ϕr(x) =
∫ t

0
xr f (x)dx

=
∫ r

0
xr 1

θ2 + 2
[θ2λe−λx + β3x2e−βx]dx

=
1

θ2 + 2

[
θ2γ(r + 1, λt)

λr +
γ(r + 3, βt)

βr

] (9)

when r = 1 the first incomplete moment of the Exp-Gamma distribution is

ϕ1(x) =
1

θ2 + 2

[
βθ2γ(2, λt) + λγ(4, βt)

λβ

]
The related Exp-Gamma distribution moment-generating function is

MX(t) = E(etX) =
∫ ∞

0
etX f (x)dx

=
∞

∑
i=0

ti

i!

(
1

θ2 + 2

[
θ2Γ(i + 1)

λi +
Γ(i + 3)

βi

]) (10)

The corresponding characteristic function of the Exp-Gamma distribution is

ϕX(t) = E(eitX) =
∫ ∞

0
eitX f (x)dx

=
∞

∑
i=0

itk

k!

(
1

θ2 + 2

[
θ2Γ(k + 1)

λk +
Γ(k + 3)

βk

]) (11)

The Exp-Gamma distribution’s associated cumulant-generating function is

KX(t) = loge MX(t)

=
∞

∏
i=0

loge

(
ti

i!

(
1

θ2 + 2

[
θ2Γ(i + 1)

λi +
Γ(i + 3)

βi

]))
(12)

Probability-weighted moments are derived using a different method for statistical distributions
whose inverse form is difficult to define. The corresponding probability-weighted moment for
the Exp-Gamma distribution can be found using the formula below.

πr,s = E(XrF(x)s)

=
∫ ∞

0
xr f (x)[F(x)]sdx

=
1

(θ2 + 2)s+1

∫ ∞

0
xr[θ2λe−λx + β3x2e−βx][θ2 − θ2e−λx + 2 − e−βx(x2β2 + 2xβ + 2)]sdx

(13)

The corresponding nth conditional moment of the Exp-Gamma distribution is defined as

E[Xn/X > x] =
1

S(x)

∫ ∞

x
xn f (x)dx
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E[Xn/X > x] =
θ2 + 2

∫ ∞
x xn

(
1

θ2+2 [θ
2λe−λx + β3x2e−βx]

)
dx

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

=
−Γ(n + 1, λx)θ2βn − Γ(n + 3, βx)λn

λnβn

(
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

) (14)

4. Reliability Analysis

4.1. Survival Function

The odds that an item won’t fail before x is specified is the survival function S(x).

S(x) = P(X > x) = 1 − F(x)

= 1 − θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]
θ2 + 2

=
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

θ2 + 2

(15)

Figure 3: The different shapes of the sf of an Exp-Gamma distribution for different parameter values.
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4.2. Hazard Rate Function

Assume that X is a continuous random variable with pdf f (x) and cdf F(x). The hazard
function of X is

h(x) =
f (x)

1 − F(x)

=
[θ2λe−λx + β3x2e−βx]

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(16)

4.3. Mean Residual Life Function

Assume that X is a continuous random variable with pdf f (x) and cdf F(x). According to X,
the mean residual life function is

m(x) = E[X − x/X > x] =
1

1 − F(x)

∫ ∞

x
[1 − F(t)]dt

=
βθ2e−λx + λ(x2β2 + 4xβ + 6)e−βx

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(17)

The Exp-Gamma distribution’s hazard function can take three different shapes: decreasing
HF, unimodal HF, increasing HF, and decreasing-increasing HF. A declining function is also a
property of the mean residual life function.

Figure 4: Hazard function of the Exp-Gamma distribution for different parameter values. The shape of the hazard
function changes as the parameter values are varied.
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Figure 5: The various forms of an Exp-Gamma distribution’s mean residual life function for various parameter values.

4.4. Mean Inactivity Time

The mean inactive time is the amount of time that has passed after an item’s failure based on
the premise that it failed in (0, t).

ψx(t) = E(X − t/X < t)

= t − ϕ1(t)
F(t)

= t − βθ2γ(2, λt) + λγ(4, βt)

λβ

(
θ2(1 − e−λt) + [2 − e−βt(t2β2 + 2tβ + 2)]

) (18)

4.5. Cumulative Hazard

The cumulative hazard function is

H(x) = − log(1 − F(x))

= log(θ2 + 2)− log

(
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

)
(19)

4.6. Reversed Hazard Rate

The Reversed Hazard Rate is
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τ(x) =
f (x)
F(x)

=
[θ2λe−λx + β3x2e−βx]

θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(20)

5. Log-odds Rate

The log-odds rate was used by Wang et al. (2003) to propose a model for time to failure as well as
some definition of failure time distributions. By simulating the failure process in terms of the log
odds rate, the model may be used to analyze the distribution of time until failure.

The odds function is given by

πo(x) =
F(x)
S(x)

=
θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(21)

The log-odds function is given by

LO(x) = log
F(x)

1 − F(x)
= (log(θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)])− log((θ2 + 2)−

θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]))
(22)

The log-odds rate is defined as

LOR(x)(x) =
h(x)
F(x)

=
[θ2λe−λx + β3x2e−βx](θ2 + 2)

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(23)

6. Entropy

Entropy is a metric for describing the degree of uncertainty in a random variable (X) for the
probability density function obtained from the lifetime distribution.

6.1. Renyi Entropy

Renyi entropy of a random variable X ∼ Exp − Gamma(θ, λ, β) with pdf is defined as

IR(η) =
1

1 − η
log

∫ ∞

0
f η(x)dx; η > 0, η ̸= 1

=
1

1 − η
log

∫ ∞

0

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)η

dx

=
1

1 − η
log

(
1

(θ2 + 2)η

∫ ∞

0
[θ2λe−λx + β3x2e−βx]η

)
dx

(24)
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6.2. Shannon Entropy

The Shannon Entropy of X ∼ Exp − Gamma(θ, λ, β) is given by

E[− log f (X)] = −
∫

X
f (x) log f (x)dx

= E

[
− log

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)]

= log(θ2 + 2)− E
[

log[θ2λe−λx + β3x2e−βx]

]
= − 1

θ2 + 2

∫
X

[
θ2λe−λx + β3x2e−βx

]
log

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)
dx

(25)

6.3. Generalized Entropy

The Generalized Entropy of X ∼ Exp − Gamma(θ, λ, β) is given by

GE(w, δ) =
1

δ(δ − 1)µδ

[ ∫ ∞

0
xδ f (x)dx

]
− 1

=
1

δ(δ − 1)
(

βθ2+6λ
βλ(θ2+2)

)δ

[ ∫ ∞

0
xδ

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)
dx

]
− 1

=

(
βδθ2Γ(δ + 1) + λδΓ(δ + 3)

)(
βλ(θ2 + 2)

)δ

(θ2 + 2)λδβδ(δ(δ − 1)(βθ2 + 6λ)δ)
− 1

(26)

7. Stochastic ordering

Stochastic ordering can be used to assess the relative performance of positive continuous
random variables. The size of random variable X is less than that of random variable Y.

• Stochastic order ( X ≤st Y ) if FX(x) ≥ FY(y) for all x.

• Hazard rate order ( X ≤hr Y ) if hX(x) ≥ hY(y) for all x.

• Mean residual life order ( X ≤mrl Y ) if mX(x) ≥ mY(y) for all x.

• Likelihood ratio order (X ≤lr Y ) if fX(x)
fY(y)

decreases in x.

The stochastic ordering of distributions was created by Shaked and Shanthi Kumar (1994) using
the results.

The Exp-Gamma distribution is sorted according to the strongest ’likelihood ratio’. Let
X ∼ Exp − Gamma(θ1, λ1, β1) and Y ∼ Exp − Gamma(θ2, λ2, β2). If, β1 ≥ β2, then X ≤lr Y and
hence X ≤hr Y, X ≤mlr Y and X ≤st Y.we have

fX(x)
fY(x)

=
(θ2

2 + 2)[θ2
1λ1e−λ1x + β3

1x2e−β1x]

(θ2
1 + 2)[θ2

2λ2e−λ2x + β3
2x2e−β2x]

log
fX(x)
fY(x)

= log

[(
θ2

2 + 2
) [

θ1
2λ1e−λ1x + β1

3x2e−β1x]
(θ1

2 + 2)
[
θ22λ2e−λ2x + β23x2e−β2x

] ]
= log

(
θ2

2 + 2
)
+ log

[
θ1

2λ1e−λ1x + β1
3x2e−β1x

]
− log

(
θ2

1 + 2
)
− log

[
θ2

2λ2e−λ2x + β2
3x2e−β2x

]
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d
dx

log
fX(x)
fY(x)

=
θ2

2λ2
2e−λ2x − β2

3 (2xe−β2x − x2βe−β2x)[
θ22λ2e−λ2x + β23x2e−β2x

] −
θ1

2λ1
2e−λ1x + β3

1
(
2xe−β1x − x2βe−β1x)[

θ1
2λ1e−λ1x + β1

3x2e−β1x
]

(27)
Now if θ1 = θ2 = θ, λ1 = λ2 = λ, β1 ≥ β2, then it implies d

dx log fX(x)
fY(x) ≤ 0. This means that

X ≤lr Y and hence X ≤hr Y, X ≤mlr Y and X ≤st Y.

8. Order Statistics

If X(1) ≤ X(2) ≤ . . . ≤ X(n) denotes the order statistic of a random sample X1, X2, . . . , Xn from
a continuous population with cdf FX(x) and pdf fX(x) then the pdf X(r) is given by

fX(r)
(x) =

n!
(r − 1)!(n − r)!

fX(x) [FX(x)](r−1) [1 − FX(x)](n−r)

For, r = 1, 2, . . . n. The pdf of the rth order statistic for the Exp-Gamma distribution is calcu-
lated, and the pdf of the largest order statistic X(n) and smallest order statistic X(1) are given below.

nth order statistics

fX(n)
(x) = n fX(x) [FX(x)](n−1)

=
n

θ2 + 2

[
θ2λe−λx + β3x2e−βx

] [ θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2
)]

θ2 + 2

](n−1)

(28)

1st order statistics

fX(1)
(x) = n fX(x) [1 − FX(x)](n−1)

=
n

θ2 + 2

[
θ2λe−λx + β3x2e−βx

] [(θ2 + 2
)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]
θ2 + 2

](n−1)

(29)

The pdf of a median of order statistic is given as

fm+1:n(x) =
(2m + 1)

m!m!
fX(x) [FX(x)]m [1 − FX(x)]m

=
(2m + 1)

m!m!

(
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]) [ θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2
)]

θ2 + 2

]m

[(
θ2 + 2

)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]
θ2 + 2

]m

(30)

9. Lorenz and Bonferroni Curves

The Bonferroni and Lorenz curves (Bonferroni, 1930) are used in a variety of sectors, including
economics, demography, insurance, and medicine. An Exp-Gamma distribution’s Bonferroni and
Lorenz curves are calculated as follows:
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Bo(x) =
1

µF(x)

∫ t

0
x f (x)dx =

L0(x)
F(x)

=
βθ2γ(2, λt) + λγ(4, βt)

λβµ
(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])
Lo(x) =

1
µ

∫ t

0
x f (x)dx =

ϕ1(x)
E(X)

=

[
βθ2γ(2, λt) + λγ(4, βt)

]
λβµ (θ2 + 2)

10. Zenga index

The Gini index is commonly used to account for the extent of income inequality in a population.
The Zenga index (Zenga, 2007) is a relatively new metric and a novel alternative to the Gini index
and other current inequality measurements and curves, and the Zenga index is denoted by z.

z = 1 −
µ−
(x)

µ+
(x)

where,

µ−
(x) =

1
F(x)

∫ x

0
x f (x)dx =

[
βθ2γ(2, λx) + λγ(4, βx)

λβ
(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])]

µ+
(x) =

1
1 − F(x)

∫ ∞

0
x f (x)dx =

βθ2 + 6λ

βλ
(
(θ2 + 2)− θ2

(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])]

z = 1−
[

βθ2γ(2, λx) + λγ(4, βx)
(

βλ
((

θ2 + 2
)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]))
(βθ2 + 6λ) λβ

(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

]) ]

11. Estimation of Parameters

In this section, the MLE approach is used to estimate the parameters θ, λ, and β. Consider a
sample drawn at random from the Exp-Gamma distribution. Then the log-likelihood function is
provided by

g(x) =
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]
L (xi, θ, λ, β) =

n

∏
i=1

g (xi, θ, λ, β)

L (xi, θ, λ, β) =
n

∏
i=1

(
1

θ2 + 2

[
λθ2e−λxi + β3x2

i e−βxi
])

=

(
n

θ2 + 2

n

∏
i=1

[
λθ2e−λxi + β3x2

i e−βxi
])

The respective sample log-likelihood function is

log L(xi, θ, λ, β) = log n − log(θ2 + 2) +
n

∑
i=1

log[λθ2e−λxi + β3x2
i e−βxi ]

Now that we have differentiating w.r.t. θ, λ, and β, we can write
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∂ log L
∂θ

=
−2θ

(θ2 + 2)

n

∑
i=1

2θλe−λxi[
θ2λe−λxi + β3x2

i e−βxi
] = 0

∂ log L
∂λ

=
n

∑
i=1

θ2 (e−λxi − λxie−λxi
)[

θ2λe−λxi + β3x2
i e−βxi

] = 0

and

∂ log L
∂β

=
n

∑
i=1

x2
i
(
3β2e−βxi − β3xie−βxi

)[
θ2λe−λxi + β3x2

i e−βxi
] = 0

The MLEs are obtained by solving this system of nonlinear equations. The sample likelihood
function can be quantitatively improved by using nonlinear optimization techniques, which are
frequently more practical. R programming can be used to solve these equations numerically.

12. Application

Biomedical science lifespan data sets have been fitted with Exp-Gamma distribution. This
section compares the goodness of fit of the Exp-Gamma model to the one-parameter Akash
[22], Lindley [17], Exponential, two-parameter Lindley [26], Cubic transmuted Rayleigh, and
Exponential-Gamma [18] distributions on a real-life data set. A density comparison diagram is
also included in this section.

The data, according to Gross and Clark (1975, P.105), represents the lifetime data on the
minutes of pain alleviation experienced by 20 people who received an analgesic. The details are
as follows:

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0

For a real lifetime dataset, the −2lnL, AIC, AICC, BIC, K − S, CVM, andAD statistics have
been calculated and shown in Table 7 to compare the goodness of fit of the Exp-Gamma, Akash,
Lindley, Exponential, Cubic transmuted Rayleigh, Two parameter Lindley, Exponential-Gamma
distributions.

Table 6: Estimated parameter values of the distributions for the dataset

Model
Parameter
Estimate

Log-Lik

Exp-Gamma θ̂ = 5.3520e−05 , λ̂ = 0.2914
β̂ = 1.5789 -22.8873

Akash θ̂ = 1.1569 -29.7613
Lindley θ̂ = 0.8161 -30.2496
Exponential λ̂ = 0.5263 -32.8371
Cubic transmuted Rayleigh σ̂ = 2.63597

λ̂ = 2.5971 -24.9371
Two parameter Lindley θ̂ = 1.48 -25.8862

α̂ = −0.2914
Exponential-Gamma λ̂ = 0.7361 -62.2516

α̂ = 1.7971
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The variance-covariance matrix of the MLEs is computed as

I(θ̂)−1 =

 1.1362e−01 −9.5914e−06 8.3587e−07

−9.5914e−06 8.0969e−10 −8.1641e−11

8.3587e−07 −8.1641e−11 4.1550e−02


The variances of the MLEs of the parameters of Exp-Gamma θ, λ and β are var(θ̄) = 0.1136,
var(λ̂) = 8.0969e−10 and var(β̄) = 0.0415. And 95% confidence intervals of θ, λ and β are
[−6.60597, 6.60704], [0.29136, 0.29147] and [1.1794, 1.9785] respectively.

Table 7: Criteria for comparison

Model -2lnL AIC AICC BIC AD
K-S

statistic
CVM

Exp-Gamma 45.7745 51.7745 53.2747 54.7617
1.9324
(0.097)

0.2587
(0.1007)

0.3508
(0.1375)

Akash 59.5226 61.5226 61.7471 62.5206
3.3554
(0.0185)

0.3705
(0.0082)

0.6555
(0.0154)

Lindley 60.4991 62.4991 62.7213 63.4948
3.7504
(0.0118)

0.3911
(0.0044)

0.7550
(0.0086)

Exponential 65.6742 67.6742 67.8964 68.6699
4.6035
(0.0046)

0.4395
(0.0009)

0.9630
(0.0026)

Cubic transmuted
Rayleigh

49.8742 53.8742 54.5801 55.8657
2.216
(0.0707)

0.26534
(0.1196)

0.3873
(0.0772)

Two parameter
Lindley

51.7724 55.4375 54.7785 55.8564
3.7822
(0.0085)

0.4102
(0.0075)

0.5275
(0.0058)

Exponential
-Gamma

124.503 128.5032 130.4946 129.2091
41.855
(0.0000)

1.000
(0.0000)

5.4779
(0.0000)

Figure 6: Comparison of model fit for the distributions.

The Exp-Gamma distribution fits the dataset better than the Akash, Lindley, exponential,
two-parameter Lindley, Cubic transmuted Rayleigh, and Exponential-Gamma distributions as
observed from Table 7.
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13. Conclusion

A weighted three-parameter probability distribution is developed in this study for modelling
skewed lifetime data. We derive expansions of important statistical measures like mean, variance,
moments, and moment generating function, etc., as well as maximum likelihood estimation is
used to estimate the Exp-Gamma distribution’s parameters and hazard and reliability functions
are used to examine the distribution’s properties. The proposed distribution was fitted using
real-time data.
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Abstract

In this communication, we proposed two parametric generalized divergence measures. The well-known
divergence measures available in the literature are a particular case of our new proposed divergence
measure. We also looked into its monotonic behaviour and characterization results. We applied the
proposed measure to some life-time distributions and observed that the deviation has been reduced. We
have shown the mortality rate of two different countries based on COVID-19 data sets.

Keywords: characterization result, Kullback Leibler divergence measure, Havrda and Charvats
divergence, monotonic behavior, probability distribution, Renyi’s divergence.

1. Introduction

Information measures play an important role in the field of information theory and other applied
sciences.[12] pioneered the concept of information measure (uncertainty).He proposed a way to
achieve the uncertainty associated with the probability distribution and established that it is an
important part of information theory, which today has many applications in various disciplines.
Suppose X is a continuous non-negative random variable, then the [12] entropy is defined as

HS(X) = −
∞∫

0

f (x)log f (x)dx (1)

where f is defined as the probability density function of X.
Furthermore, it can be written as

Hs(X) = E(−log f (x))

The HS(X) is equal to the expected value of (-logf(x)).
The significance of adequate distance measures between probability distributions stems from
their function and has extensive application in entropy.The most prominent divergence used in
information theory is relative entropy, also known as [6] divergence (KL divergence).It is widely
used in contigency tables, ANOVA tables, statistical inference, etc.
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If f(x) and g(x) are the two probability distributions for a continuous random variable X and Y,
respectively, then the [6] divergence is given by

DKL( f ||g) =
∞∫

0

f (x)log
f (x)
g(x)

dx (2)

Furthermore, it can be written as

DKL( f ||g) = EKL

[
log

f (x)
g(x)

]
Remarks
1. If g(x)=1, then it just becomes [12].
2. If g(x)= f(x), then [6] divergence is reduced to zero.
In this direction the generalization of [6] divergence of order α was proposed by [11] and is
defined as

DR( f ||g) = 1
α − 1

log
∞∫

0

f (x)αg(x)1−αdx, α ̸= 1, α > 0 (3)

Remarks
1. If α→ 1, then it simply becomes [6] divergence.
Several researchers have developed various generalizations of [6] divergence in different ways,
and in this direction, [5] proposed a new generaliztion of the [6] divergence measure of order ’ α’
defined as follows

DHC( f ||g) = 1
α − 1

 ∞∫
0

f (x)αg(x)1−αdx − 1

 , α ̸= 1, α > 0 (4)

Remarks
1. If α→ 1, then it just becomes [6]
Our aim is to develop the new two-parametric divergence to reduce the deviations. Applied these
proposed measure to life-time distributions having different density functions. Also, we obtained
some characterization results.Our proposed new two-parametric measure is defined as

Dα,β( f ||g) = 1
β(α − β)

 ∞∫
0

f (x)α−β+1g(x)β−αdx − 1

 , α ̸= β,

β < α + 1, α, β > 0

(5)

Remarks
1. When we take f(x) = g(x) then divergence became zero
2. if β = 1 (5) reduced to [5] of order α
3. if β = 1, α→ 1 it converge to simply [6] divergence
4. if g(x) = 1, (5) reduces to simply [12]

1.1. Comparasion between known measure and new proposed measure

Example 1.2. Assume X and Y are two non-negative random variables with probability density
functions as f (x) = 2x; 0 < x < 1 and g(x) = 2(1 − x); 0 < x < 1. The comparison was
derived from (1.2.). The table (1) shows the comparison between the known measure and the
proposed measure. From, table (1), we conclude that the divergence is reduced in the proposed
divergence measure as compared to the known divergence measure. It means that when we
introduce a parameter into a known measure, the distance reduces. We say that it is an alternate
measure of the known divergence measure. Figure 1 demonstrates this.
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Table 1: Comparasion between known measure and new proposed measure.

α β DHC( f ||g) Dα,β( f ||g)

0.1 1 0.094 0.076
0.2 1 0.18 0.11
0.3 1 0.26 0.12
0.4 1 0.34 0.12
0.5 1 0.42 0.10
0.6 1 0.51 0.08
0.7 1 0.61 0.05
0.8 1 0.72 0.02
0.9 1 0.85 0.008

Figure 1: Divergence between known measure and new proposed measure

Theorem 1. Assume X and Y are two non-negative random variables with probability density
functions f(x) and g(x), then

Dα,β( f ||g) ≥ 0 (6)

with equality if and only if f(x) = g(x).

Proof. By using Gibbs’inequality

∞∫
0

f (x)log
f (x)
g(x)

dx ≥ 0 (7)

∞∫
0

(
f (x)α−β+1g(x)β−α − 1

)
log
(

f (x)α−β+1g(x)β−α − 1
)

g(x)
dx ≥ 0 (8)

−
∞∫

0

(
f (x)α−β+1g(x)β−α − 1

)
log

g(x)(
f (x)α−β+1g(x)β−α − 1

)dx ≥ 0 (9)
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then (-log) is a convex function and
∞∫
0

g(x) = 1 we get

∞∫
0

(
f (x)α−β+1g(x)β−α − 1

)
log

g(x)(
f (x)α−β+1g(x)β−α − 1

)dx ≥

−log
∞∫

0

g(x)

(10)

and
∞∫

0

(
f (x)α−β+1g(x)β−α − 1

)
log

g(x)(
f (x)α−β+1g(x)β−α − 1

)dx ≥ −log(1) (11)

After simplification, we obtained the result. ■
Definition 1.1 Let X be an integer of finite measure. If f(x) and g(x) are density functions and x is
integrable, then log-sum inequality defined as∫

f (x)log
f (x)
g(x)

dx ≥ [ f (x)dx] log
[

f (x)dx
g(x)dx

]
Theorem 2. Assume X and Y are two non-negative random variables with the probability density
functions f(x) and g(x) respectively and β< α + 1, α,β > 0 then

Dα,β( f ||g) ≥ 1
logβ

DKL( f ||g) (12)

Proof. By using log-sum inequality we have
∞∫

0

f (x)log
f (x)(

f (x)α−β+1g(x)β−α − 1
)dx

≥
∞∫

0

f (x)log
f (x)(

f (x)α−β+1g(x)β−α − 1
)dx

(13)

∞∫
0

f (x)log
f (x)(

f (x)α−β+1g(x)β−α − 1
)dx

≥ −log
∞∫

0

(
f (x)α−β+1g(x)β−αdx − 1

) (14)

∞∫
0

f (x)log
f (x)(

f (x)α−β+1g(x)β−α − 1
)dx =

∞∫
0

f (x)log f (x)dx

−(α − β + 1)
∞∫

0

f (x)log f (x)dx − (β − α)

∞∫
0

f (x)logg(x)dx

+

∞∫
0

f (x)log(1)

(15)

After simplification, then

−logβ(α − β)Dα,β( f ||g) ≥ [(α − β)H(X) + (β − α)I(X, Y)] (16)

where, I(X,Y) is a [7]. Hence,we get the desired result. ■
We proposed the weighted generalized divergence measure (WGDM) in Section 2, We studied
the montonic properties in Section 3, and in Section 4, we identified divergence for the different
life-time distributions.We evaluate this article’s conclusion in the final part.
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2. Weighted generalized divergence measure(WGDM)

In this section,we propose the weighted generalized divergence measure.In real-life situations,[12]
and [6] divergence give equal importance to the random variable, but in practical situations, this
may cause problems.To overcome this problem, first [2] introduced a measure known as weighted
entropy.The weighted entropy is defined as

Hw
S (X) = −

∞∫
0

x f (x)log f (x)dx (17)

Remarks 1. If x= 1 then, it becomes simply [12].
The weight function is represented by a factor x that gives more weight to the larger value of the
random variable.This measure is known as shift-dependent. Many researchers have proposed
various weighted measures [13], [8] and [9] In the recent past, based on the concept of weighted
entropy, [14] gave weight to the [6] divergence, defined as

Dw
KL( f ||g) =

∞∫
0

x f (x)log
f (x)
g(x)

dx (18)

Remarks
1. If x=1 then, it becomes simply [6].
Furthermore, it can be written as

Dw
KL( f ||g) = EKL

[
Xlog

f (x)
g(x)

]
Definition Similar to (2) and based on (5), the weighted proposed measure is defined as

Dw
KL( f ||g) = 1

β(α − β)

 ∞∫
0

xα f (x)α−β+1g(x)β−αdx − 1

 , α ̸= β,

β < α + 1, α, β > 0

(19)

Remarks
1. If xα = 1 then, it became reduced to (5).
To show the importance of random variables in the new two-parametric generalized divergence
measure, we consider the following example:

Example 2.1. Suppose X and Y are two non-negative continuous random variables with the
density function as follows.
1. f1(x) = 1, 0 < x < 1 and g1(x) = nxn−1 0 < x < 1
2. f2(x) = 1, 0 < x < 1 and g2(x) = n(1 − x)n−1 0 < x < 1
Then,the weighted generalized divergence measure characterized the distribution function
uniquely.
Using (5) after simplification, we get

D1(α,β)( f ||g) = 1
β(α − β)

[
nβ−α

(β − α)(n − 1) + 1
− 1
]
= D2(α,β)( f ||g) (20)

Again using (8) after simplification, we get

Dw
1(α,β)( f ||g) = 1

β(α − β)

[
nβ−α

α + (β − α)(n − 1) + 1
− 1
]

(21)
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Dw
2(α,β)( f ||g) = 1

β(α − β)

[
nβ−αΓ(α + 1)Γ(t − s)

Γ(α + t − s + 1)
− 1
]

(22)

Where, t = n(β-α)+1, s = (β-α), and B(u,v) =
1∫

0
xu−1(1 − x)v−1dx =

1∫
0

xu−1

(1 + x)u+v =
ΓuΓv

Γ(u + v)

which is known as the "complete beta function."
We can see from the preceding example that, without weight, our proposed measure has the
same value, but given weight, the value is different, so we conclude that the weighted measure
uniquely determines the distribution.
From the table (2.1), we conclude that the proposed generalized divergence measure is equal
but the weighted generalized divergence measure is different. It can be seen that when different
values of alpha, beta, and n are used,
the D1(α, β)( f ||g) = D2(α, β)( f ||g), but when the proposed divergence measure is weighted, the
Dw1(α, β)( f ||g) < Dw

2(α,β)( f ||g).

Theorem 3. If X and Y are two non-negative continuous random variables with probability
density functions f(x) and g(x), then the inequality is as follows

Dw
α,β( f ||g) ≥ 1

logβ
DKL( f ||g) + α

∞∫
0

f (x)logx, α ̸= β, β < α + 1, α, β > 0 (23)

Proof. By using log-sum inequality, we have

∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx ≥

∞∫
0

f (x)log

f (x)(
xα f (x)α−β+1g(x)β−α − 1

)dx

(24)

∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx =

−log
∞∫

0

(
xα f (x)α−β+1g(x)β−α − 1

)
dx

(25)

∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx = −log

[
β(α − β)Dw

α,β( f ||g)
]

(26)

Now from L.H.S of (24), we have

∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx = H(x) [(α − β + 1)− 1]

+(β − α)I(X, Y)− α

∞∫
0

f (x)logx

(27)
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∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx =

1
logβ(α − β)

[H(x)(α − β) + (β − α)I(X, Y)]− α

∞∫
0

f (x)logx

(28)

and

∞∫
0

f (x)log
f (x)(

xα f (x)α−β+1g(x)β−α − 1
)dx = − 1

logβ
[−H(x)− I(X, Y)]

+α

∞∫
0

f (x)logx

(29)

Using (26) and (30), we obtained the result. ■

Theorem 4. Let X and Y be two random variables with weighted generalized divergence(WGD)
Dw

α,β( f ||g) and α ̸=β, α, β > 0, then

Dw
α,β( f ||g) ≤ 1

β(α − β)

∞∫
0

xα f (x)α−β+1g(x)β−αdx −
[

1
β(α − β)

+ 1
]

(30)

Proof. Since we know that for any pasitive number(for any x > 0) then by using this inequality
logx ≤ x-1 we get

Dw
α,β( f ||g) = log

1
β(α − β)

 ∞∫
0

xα f (x)α−β+1g(x)β−αdx − 1

 (31)

Dw
α,β( f ||g) = 1

β(α − β)

 ∞∫
0

xα f (x)α−β+1g(x)β−αdx − 1

− 1 (32)

Dw
α,β( f ||g) = 1

β(α − β)

∞∫
0

xα f (x)α−β+1g(x)β−αdx − 1
β(α − β)

− 1 (33)

After simplification, we obtained the result. ■

3. Montonic properties

Definition 3.1 A function’s monotonicity gives insight into how it will behave. If the graph of a
function increases only as the equation’s values increase, the function is said to be monotonically
increasing. Similar to this, a function is said to be monotonically declining if its values exclusively
decrease. In this section, we demonstrate the monotonic properties of the proposed divergenec
measure. Consider the following numerical examples:
Example 2.2. Assume X and Y are two non-negative random variables with probability density
functions as

1. f1(x) = 2x; 0 < x < 1 and g1(x) = 2(1 − x); 0 < x < 1

2. f2(x) =
x
2

; 0 < x < 2 and g1(x) =
(2 − x)

2
; 0 < x < 2
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Using (5) after simplification, we get

D1(α,β)( f ||g) = 1
β(α − β)

[Γ(α − β + 2)Γ(β − α + 1)− 1]

= D2(α,β)( f ||g)
(34)

Again using (19) after simplification, we get

Dw
1(α,β)( f ||g) = 1

β(α − β)

[(
2Γ(2α − β + 2)

Γ(α + 3)

)
− 1
]

Dw
2(α,β)( f ||g) = 1

β(α − β)

[(
2(2α+1)Γ(2α − β + 2)

Γ(α + 3)

)
− 1

]
Where,

B(u,v) =
1∫

0
xu−1(1 − x)v−1dx =

1∫
0

xu−1

(1 + x)u+v =
ΓuΓv

Γ(u + v)
which is known as complete beta

function.
Here, from the below graphs (a), (b), and (c), we obtain that for different values of α, β and n
then the measure D1(α,β)( f ||g), D2(α,β)( f ||g), Dw

1(α,β)( f ||g), and Dw
2(α,β)( f ||g) respectively, indicate

increased behavior.

Figure 2: Monotonic behavior of proposed weighted and non-weighted measure

4. Divergence measures for some well-known life-time distribution

In this section, we obtained the divergence measures for some life-time distributions using the
new proposed divergence measure.

Where,

U =
1

β(α − β)
, p= β − α, w= θp + 1 , and B(u,v) =

1∫
0

xu−1(1 − x)v−1dx =
1∫

0

xu−1

(1 + x)u+v =

ΓuΓv
Γ(u + v)

beta function.
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Table 2: Proposed divergence measure for some life-time distribution

Distribution f(x) g(x) x Proposed Divergence measure

Uniform 1
m

θ(m−x)(θ−1)

mθ 0 ≤ x ≤ m U
[

θp

p(θ − 1) + 1
− 1
]

Exponential ne−nx nθe−nθx x ≥ n, θ > 0 U
[

θp

(α − β + w)
− 1
]

Finite range r(1 − x)r−1 rθ(1 − x)(rθ−1) 0 < x < 1; r, θ > 0 U
[

θp

(α − β + w)
− 1
]

Beta sxs−1 sθxsθ−1 0 < x < 1, θ, s > 0 U
[

θp

(α − β + w)
− 1
]

Power
bxb−1

cb
bθxbθ−1

cbθ
0 < x < c; b, θ > 0 U

[
θp

α − β + w
− 1
]

Table 3: Proposed weighted divergence measure for some life-time distribution

Distribution f(x) g(x) x Proposed Divergence measure

Uniform 1
m

θ(m−x)(θ−1)

mθ 0 ≤ x ≤ m U
[

θpmαΓ(α + 1)Γ(w − p)
Γ(α + w − p + 1)

− 1
]

Exponential ne−nx nθe−nθx x ≥ n, U
[

θpΓ(α + 1)
(α − β + w + 1)α+1 − 1

]
Finite r(1 − x)r−1 rθ(1 − x)(rθ−1) 0 < x < 1 U

[
θprΓ(α + 1)Γ(rw + α − β)

Γ(2α + rw − β + 1)
− 1
]

Beta sxs−1 sθxsθ−1 0 < x < 1 U
[

θp

(α − β + w) + α
− 1
]

Power
bxb−1

cb
bθxbθ−1

cbθ
0 < x < c U

[
θpbcα

α − bθ(α − β) + b(α − β + 1)
− 1
]

5. Application

Concerning the applicability of the newly proposed divergence measure, we analyzed two sets of
actual data published by Almongy et al.[1] based on COVID-19. The first data set was taken over
108 days from Mexico country. Data was collected from March 4 to July 20, 2020.This data set
represents the mortality rate. We consider only 30 observations from 108 observations using a
random number table.
Dataset-1
1.041,2.988,5.242,7.903,6.327,7.840,7.267,6.370,2.926,5.985,7.854,3.233,7.151,4.292,2.326,3.298,5.459,
3.440,3.215,4.661,3.499,3.395,2.070,2.506,3.029,3.359,3.778,3.219,4.120,8.551.
The second data set was taken over 30 days from the Netherlands country. Data was collected
from March 31 to April 30, 2020.This data set also shows mortality rates.
Dataset-2
1.273,6.027,10.656,12.274,1.974,4.960,5.555,7.584,3.883,4.462,4.235,5.307,7.968,13.211,3.611,3.647,6.940,
7.498,5.928,7.099,2.254,5.431,10.289,10.832,4.097,5.048,1.416,2.857,3.461,14.918. With the parameters
θ1 and θ2, both sets of data can be fitted as an exponential distribution.Here we used MLE method
for unknown parameter estimation.The estimated value of parameter θ̂1 = 0.220 and θ̂2=0.1624
with different standard error. The estimated value of weighted proposed divergence measure are
D̂w

1α,β( f ||g) = 1.543

D̂w
2α,β( f ||g) = 0.024. Our analysis demonstrates that Mexico has a higher mortality rate than the

Netherlands.

6. Conclusions

In this communication, we proposed a new two parametric weighted generalized divergence
measure of orderα and type β. The characterization result is justified by the numerical example
that it uniquely determines the distribution functions, and we also studied the mononic behaviour
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of the proposed divergence measure.Finally, we derived some expressions for some life-time
distributions and also showed the mortality rate of two different countries.
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Abstract

A bivariate version of the Bilal distribution has been proposed in the literature, called the Farlie-Gumbel-
Morgenstern bivariate Bilal (FGMBB) distribution. In this article, we have dealt with the problem of
estimation of the scale parameter associated with the study variable Z of primary interest, based on
the ranked set sample defined by ordering the marginal observations on an auxiliary variable W, when
(W, Z) follows a FGMBB distribution. When the dependence parameter φ is known, we have proposed
the following estimators, viz., an unbiased estimator based on the Stoke’s ranked set sample and the best
linear unbiased estimator based on the Stoke’s ranked set sample for the scale parameter of the variable
of primary interest. The efficiency comparison of the proposed estimators with respect to the maximum
likelihood estimator have been carried out.

Keywords: Farlie-Gumbel-Morgenstern bivariate Bilal distribution, Concomitants of order statis-
tics, Ranked set sampling, Best linear unbiased estimator

1. Introduction

The Bilal distribution was introduced by [1], as a member of the families of distributions for
the median of a random sample arising from an arbitrary lifetime distribution. Also, he shows
that, this distribution belongs to the class of new better than average renewal failure rates and
its probability density function (pdf) is always unimodal and has less of skewness and kurtosis
than the pdf of the exponential distribution by about 25% and 28% respectively. The cumulative
distribution function (cdf) of the Bilal distribution with the scale parameter σ is given by

F(x; σ) = 1− e−
2x
σ

(
3− 2e−

x
σ

)
; σ > 0, x > 0. (1)

The corresponding pdf is given by

f (x; σ) =
6
σ

e−
2x
σ

(
1− e−

x
σ

)
; σ > 0, x > 0. (2)
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Furthermore, the author obtained the closed form expressions for the quantile function, the
hazard rate function and simple expression for moments in terms of the exponential function.
Even though the Bilal distribution has only one parameter, this distribution possess high fitting
ability compared to other competing models for two different real datasets, namely, the dataset
consisting of thirty successive values of precipitation (in inches) given by [14] and the data for
waiting times before service of 100 bank customers reported by [13]. Based on type-2 censored
sample, [2] provide certain estimators of the parameter of the Bilal distribution. According
to [3], the one parameter Bilal model can be generalized into the two parameter Bilal model,
whose applications are elaborately discussed. Now the Proficiency of univariate Bilal distribution
compared to other competing models well established in the literature in the theoretical as well
as applied perspective. But even a single work is not been seen so far in the available literature
on bivariate Bilal model except the work of [17]. A bivariate extension of one parameter Bilal
distribution using Morgenstern approach was proposed by [17], so-called the Farlie-Gumbel-
Morgenstern Bivariate Bilal (FGMBB) distribution and elucidated its inferential aspects using
concomitants of order statistics (COS).
A bivariate random variable (W, Z) is said to follow a FGMBB distribution, if its pdf is given by

f (w, z) =



36
σ1σ2

e−
2w
σ1

(
1− e−

w
σ1

)
e−

2z
σ2

(
1− e−

z
σ2

)
×
[

1 + φ

(
2e−

2w
σ1

{
3− 2e−

w
σ1

}
− 1
)(

2e−
2z
σ2

{
3− 2e−

z
σ2

}
− 1
)]

,

w > 0, z > 0; σ1 > 0, σ2 > 0;−1 ≤ φ ≤ 1.

0, otherwise.

(3)

Clearly the marginal distributions of W and Z variables are univariate Bilal distributions with
pdf’s are respectively given by

fW(w) =

 6
σ1

e−
2w
σ1

(
1− e−

w
σ1

)
; i f σ1 > 0, w > 0,

0, otherwise.

and

fZ(z) =

 6
σ2

e−
2z
σ2

(
1− e−

z
σ2

)
; i f σ2 > 0, z > 0,

0, otherwise.
(4)

Clearly,

E(W) =
5
6

σ1, Var(W) =
13
36

σ2
1 ,

E(Z) =
5
6

σ2, (5)

Var(Z) =
13
36

σ2
2 . (6)

The ranked set sampling (RSS) scheme was first developed by [19] as a process of increasing the
precision of the sample mean as an estimator of the population mean. McIntyre’s idea of ranking
is possible whenever it can be done easily by a judgement method. For a detailed discussion
on the theory and applications of RSS [11]. Basically the procedure involves choosing n sets
of units, each of size n, and ordering the units of each of the set by judgement method or by
applying some inexpensive method, without making actual measurement on the units. Then the
unit ranked as one from the 1st set is actually measured, the unit ranked as two from the 2nd

set is measured. The process continuous in this way until the unit ranked as n from the nth set
is measured. Then the observations obtained under the afore mentioned criterion is known as
ranked set sample (rss) and the procedure is known as RSS. For recent developments in RSS, one
can refer [6], [4] and [5].
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In some practical problems, the variable of primary concern say Z, is more intricate to measure,
but an auxiliary variable W related with Z is easily measurable and can be ordered exactly. In
this case, [22] developed another scheme of RSS, which is as follows: Choose n independent
bivariate sets, each of size n. In the first set of size n, the Z variate associated with smallest
ordered W is measured, in the second set of size n, the Z variate associated with the second
smallest, W is measured. This process is continued until the Z associated with the largest W
from the nth set is measured. The measurements on the Z variate of the resulting new set of n
units chosen by the above method gives a rss as suggested by [22]. If W(r:n)r is the observation
measured on the auxiliary variable W from the unit chosen from the rth set, then we write Z[r:n]r
to denote the corresponding measurement made on the study variable Z on this unit so that
Z[r:n]r, r = 1, 2, · · · , n form the rss. Z[r:n]r was referred by [12] as the concomitant of the rth order
statistic arising from the rth sample.
The rss mean as an estimator for the mean of the study variate Z, when an auxiliary variable W
is used for ranking the sample units has suggested by [22], under the assumption that (W, Z)
follows a bivariate normal distribution. Based on rss obtained on the study variate Z, [10] have
improved the estimator of [22] by deriving the best linear unbiased estimator (BLUE) of the
mean of the study variate Z. COS and its applications in RSS from Farlie-Gumbel-Morgenstern
bivariate Lomax distribution is elaborately elucidated by [20]. The estimation of a parameter of
Morgenstern type bivarite Lindley distribution by RSS has been discussed in [15]. Parameter
estimation of Cambanis-type bivariate uniform distribution with RSS is studied by [16]. For
review of various variants of RSS and their application in parameter estimation [11].
The remaining part of this paper is assembled as follows. In section 2, we have proposed an
unbiased estimator σ∗2 of σ2 using Stoke’s rss. As mentioned earlier if (W, Z) has a FGMBB
distribution as defined in (3), then the marginal distributions of both W and Z have Bilal
distributions and the pdf of Z is given in (4). We have evaluated the Cramer-Rao Lower Bound
(CRLB) for the variance of an unbiased estimator of σ2 involved in (4) based on a random sample

of size n and is given by 13
25

σ2
2

n . In this section, we have also shown that the variance of proposed

unbiased estimator σ∗2 is strictly less than 13
25

σ2
2

n , the CRLB for the variance of an unbiased estimator
of σ2 involved in (4), for all φ ∈ B, where B = [−1, 1]− {0}. In this section, we have further
discussed an efficiency comparison between σ∗2 and the maximum likelihood estimator (MLE) σ̂2
of σ2 based on a random sample of size n arising from (3). In section 3, we have derived the BLUE
σ̃2 of σ2 involved in FGMBB distribution based on Stoke’s rss and made an efficiency comparison
of σ̃2 relative to σ̂2.

2. An unbiased estimator of σ2 using Stoke’s RSS.

Suppose the bivariate random vector (W, Z) follows a FGMBB distribution with pdf given in (3).
Select a rss as per Stoke’s RSS scheme. Let W(r:n)r be the observation obtained on the auxiliary
variate W in the rth unit of the rss and let Z[r:n]r be the measurement made on the variate related
with W(r:n)r, r = 1, 2, · · · , n. Clearly Z[r:n]r is the rth COS of a random sample of size n arising
from the FGMBB distribution. Using the results of [21], we obtain the pdf of Z[r:n]r, r = 1, 2, · · · , n,
and is given by

f[r:n](z) =
6
σ2

e−
2z
σ2

(
1− e−

z
σ2

) [
1 + φ

(n− 2r + 1)
(n + 1)

(
2e−

2z
σ2

{
3− 2e−

z
σ2

}
− 1
)]

. (7)

The mean and variance of Z[r:n]r for r = 1, 2, · · · , n, is obtained as

E[Z[r:n]r] = σ2

[
5
6
− 19

60
φ
(n− 2r + 1)

(n + 1)

]
(8)

and

Var[Z[r:n]r] = σ2
2

[
13
36
− 253

1800
φ
(n− 2r + 1)

(n + 1)
− 361

3600
φ2 (n− 2r + 1)2

(n + 1)2

]
. (9)
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Since Z[r:n]r and Z[s:n]s for r 6= s are arising from two independent samples, we obtain

Cov[Z[r:n]r, Z[s:n]s] = 0, r 6= s.

Next, we derive an unbiased estimator of σ2 and its variance using the rss observations Z[r:n]r for
r = 1, 2, · · · , n, on the variable Z of primary interest and are given by the following theorem.

Theorem 1. Let (W, Z) follows a FGMBB distribution with pdf given by (3). Let Z[r:n]r, r =
1, 2, · · · , n be the rss observations on a study variate Z generated out of ranking made on an
auxiliary variate W. Then

σ∗2 =
6

5n

n

∑
r=1

Z[r:n]r

is an unbiased estimator of σ2 and its variance is given by

Var[σ∗2 ] =
σ2

2
n

[
13
25
− 361

2500
φ2

n

n

∑
r=1

(
n− 2r + 1

n + 1

)2
]

. (10)

Proof By using the definition, we have

E[σ∗2 ] =
6

5n

n

∑
r=1

E[Z[r:n]r]

=
6

5n

n

∑
r=1

[
5
6
− 19

60
φ
(n− 2r + 1)

(n + 1)

]
σ2. (11)

Using the result,
n

∑
r=1

(n− 2r + 1) = 0. (12)

Applying (12) in (11) we get,
E[σ∗2 ] = σ2.

Therefore, σ∗2 is an unbiased estimator of σ2. The variance of σ∗2 is given by,

Var[σ∗2 ] =
36

25n2

n

∑
r=1

Var[Z[r:n]r]. (13)

Applying (9) and (12) in (13), we get

Var[σ∗2 ] =
σ2

2
n

[
13
25
− 361

2500
φ2

n

n

∑
r=1

(
n− 2r + 1

n + 1

)2
]

.

Hence the proof.

As mentioned above, if (W, Z) has the FGMBB distribution as defined in (3), then the marginal
distribution of both W and Z are Bilal distributions and the pdf of Z is given in (4). The CRLB
for the variance of any unbiased estimator of σ2 based on a random sample of size n drawn from

(4) is obtained as 13
25

σ2
2

n . Now we compare the the variance of σ∗2 with the CRLB for the variance of

an unbiased estimator of σ2 involved in (4). If we write E1(σ
∗
2 ) to denote the ratio of 13

25
σ2

2
n with

Var(σ∗2 ), then we have,

E1(σ
∗
2 ) =

1[
1− 361

1300
φ2

n ∑n
r=1

(
n−2r+1

n+1

)2
] . (14)

It is easily verified that
E1(σ

∗
2 ) ≥ 1.
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Thus we arrive at a conclusion that the estimator σ∗2 based on Stoke’s rss is more efficient as it
assert the statement that rss always provide more information than simple random sample even
if ranking is imperfect [11]. It is very clear that Var(σ∗2 ) is a decreasing function of φ2 and hence
the gain in efficiency of the estimator σ∗2 increases as |φ| increases.
Again on simplifying (14) we get,

E1(σ
∗
2 ) =

1

1− 361φ2

1300

[
2
3

(
2+1/n
1+1/n

)
− 1
] .

Then,

lim
n→∞

E1(σ
∗
2 ) = lim

n→∞

1

1− 361φ2

1300

[
2
3

(
2+1/n
1+1/n

)
− 1
]

=
1

1− 361φ2

3900

.

From the above expression it is clear that the maximum value for E1(σ
∗
2 ) is attained when |φ| = 1

and in this case E1(σ
∗
2 ) tends to 3900/3539.

Next we discuss the efficiency comparison of σ∗2 with the asymptotic variance of MLE of σ2
involved in the FGMBB distribution. If (W, Z) follows a FGMBB distribution with pdf given in
(3), then

∂ log f (x, y)
∂σ1

=
1
σ1

{
−1 +

2w
σ1
− we−

w
σ1

σ1(1− e−
w
σ1 )

+

4φwe−
2w
σ1

[
−3 + 18e−

2z
σ2 − 12e−

3z
σ2 + 3e−

w
σ1 − 18e−

w
σ1 e−

2z
σ2 + 12e−

w
σ1 e−

3z
σ2

]
σ1

{
1 + φ

[
1− 2e−

2w
σ1 (3− 2)e−

w
σ1

] [
1− 2e−

2z
σ2 (3− 2)e−

z
σ2

]}


and

∂ log f (x, y)
∂σ2

=
1
σ2

{
−1 +

2z
σ2
− ze−

z
σ2

σ2(1− e−
z

σ2 )

+

4φze−
2z
σ2

[
−3 + 18e−

2w
σ1 − 12e−

3w
σ1 + 3e−

z
σ2 − 18e−

z
σ2 e−

2w
σ1 + 12e−

z
σ2 e−

3w
σ1

]
σ2

{
1 + φ

[
1− 2e−

2w
σ1 (3− 2)e−

w
σ1

] [
1− 2e−

2z
σ2 (3− 2)e−

z
σ2

]}
 .

Then we have,

Iσ1 (φ) = E
(

∂ log f (x, y)
∂σ1

)2

=
36
σ2

1

∞∫
0

∞∫
0

e−2u(1− e−u)
{
−1 + 4u + ue−u(u− 2 + 2e−u)(1− e−u)−2

−
12αu2e−2u [−2 + 12e−2v − 8e−3v + 3e−u − 18e−ue−2v + 12e−ue−3v]

{1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}

+
24αue−2u [−1 + 6e−2v − 4e−3v + e−u − 6e−ue−2v + 4e−ue−3v]

{1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}2

×{1 + α[1− 2e−2v(3− 2e−v)][1− 6e−2u − 6ue−2u + 4e−3u + 6ue−3u]}

} e−2v(1− e−v){1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}dudv,
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Iσ2 (φ) = E
(

∂ log f (x, y)
∂σ2

)2

=
36
σ2

2

∞∫
0

∞∫
0

e−2u(1− e−u)
{
−1 + 4v + ve−v(v− 2 + 2e−v)(1− e−v)−2

−
12αv2e−2v [−2 + 12e−2u − 8e−3u + 3e−v − 18e−ve−2u + 12e−ve−3u]

{1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}

+
24αve−2v [−1 + 6e−2u − 4e−3u + e−v − 6e−ve−2u + 4e−ve−3u]

{1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}2

×{1 + α[1− 2e−2u(3− 2e−u)][1− 6e−2v − 6ve−2v + 4e−3v + 6ve−3v]}

} e−2v(1− e−v){1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}dudv

and

Iσ1σ2 (φ) = E
(

∂2 log f (x, y)
∂σ1∂σ2

)

=
36

σ1σ2

∞∫
0

∞∫
0

e−2u(1− e−u)
{

144αuve−2ue−2v [1− e−u − e−v + e−ue−v]
−

144α2uve−2ue−2v [−1 + 6e−2v − 4e−3v + e−u − 6e−ue−2v + 4e−ue−3v]
{1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}2

×{[1− 2e−2u(3− 2e−u)][e−v − 1]}

} e−2v(1− e−v){1 + α[1− 2e−2u(3− 2e−u)][1− 2e−2v(3− 2e−v)]}dudv.

Thus the Fisher information matrix associated with the random variable (W, Z) is given by,

I(φ) =
[

Iσ1(φ) −Iσ1σ2(φ)
−Iσ1σ2(φ) Iσ2(φ)

]
. (15)

We have computed the values of σ−2
1 Iσ1(φ) and σ−1

1 σ−1
2 Iσ1σ2(φ) numerically for φ = ±0.25,±0.50,±0.75,±1

(clearly σ−2
1 Iσ1(φ)=σ−2

2 Iσ2(φ)) and are given below:

φ σ−2
1 Iσ1 (φ) σ−1

1 σ−1
2 Iσ1σ2 (φ) φ σ−2

1 Iσ1 (φ) σ−1
1 σ−1

2 Iσ1σ2 (φ)

0.25 1.9381 0.1373 -0.25 1.9381 -0.1373
0.50 1.9795 0.2772 -0.50 1.9795 -0.2773
0.75 2.0530 0.4230 -0.75 2.0530 -0.4236
1.00 2.1705 0.5815 -1.00 2.1705 -0.5841

Thus from (15), the asymptotic variance of the MLE σ̂2 of σ2 involved in the FGMBB distribution
under a bivariate sample of size n is obtained as

Var(σ̂2) =
1
n

I−1
σ2

(φ), (16)

where I−1
σ2

(φ) is the (2,2)th element of the inverse of I(φ) given by (15).

We have compute the efficiency E(σ∗2 |σ̂2) = Var(σ̂2)
Var(σ∗2 )

of σ∗2 relative to σ̂2 for n = 2(2)20; φ =

±0.25,±0.50,±0.75,±1 and are given in table 1. From the table, one can infer that the estimator
σ∗2 is more efficient than σ̂2 and efficiency increases with n and |φ| for n ≥ 4.
Remark 2.1. For given value of φ ∈ (0, 1], once the variance of σ∗2 is evaluated, then this variance
is equal to the variance of σ∗2 for −φ because the variance given in (10) depends only on φ by a
term containing φ2 only.
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3. Best linear unbiased estimator of σ2 using Stoke’s RSS

In this section we derive the BLUE of σ2 provided the dependence parameter φ is known.
Suppose Z[r:n]r for r = 1, 2, · · · , n, are the rss observation generated from (3) as per Stoke’s RSS
scheme. Let

ζr,n =
5
6
− 19

60
φ
(n− 2r + 1)

(n + 1)
, (17)

ψr,r,n =
13
36
− 253

1800
φ
(n− 2r + 1)

(n + 1)
− 361

3600
φ2 (n− 2r + 1)2

(n + 1)2 . (18)

Using (17) and (18), we get
E[Z[r:n]r] = σ2ζr,n, 1 ≤ r ≤ n (19)

and
Var[Z[r:n]r] = σ2

2 ψr,r,n, 1 ≤ r ≤ n. (20)

Also we have
Cov[Z[r:n]r, Z[s:n]s] = 0, r, s = 1, 2, · · · , n and r 6= s. (21)

Let Z[n] = (Z[1:n]1, Z[2:n]2, · · · , Z[n:n]n)
′ denote the column vector of n rss observations. Then from

(19), (20) and (21), we can write,
E[Z[n]] = σ2ζ (22)

and the dispersion matrix of Z[n] ,
D[Z[n]] = σ2

2 G, (23)

where ζ = (ζ1,n, ζ2,n, · · · , ζn,n)′ and G = diag(ψ1,1,n, ψ2,2,n, · · · , ψn,n,n), where ζr,n and ψr,r,n for
r = 1, 2, · · · , n are respectively given by equations (17) and (18). If φ contained in ζ and G are
known then (22) and (23) together defines a generalized Gauss-Markov setup and then the BLUE
of σ2 is given by

σ̃2 = (ζ ′G−1ζ)−1ζ ′G−1Z[n]

and the variance of σ2 is given by

Var(σ̃2) =
σ2

2

ζ ′G−1ζ
.

On simplifying, we get

σ̃2 =

n

∑
r=1

ζr,n

ψr,r,n

n

∑
r=1

ζ2
r,n

ψr,r,n

Z[r:n]r (24)

and

Var(σ̃2) =
σ2

2
n

∑
r=1

ζ2
r,n

ψr,r,n

. (25)

From (24), we have σ̃2 is a linear functions of the rss observations Z[r:n]r, r = 1, 2, · · · , n and hence

σ̃2 can be written as σ̃2 =
n

∑
r=1

arZ[r:n]r, where

ar =

ζr,n
ψr,r,n

n

∑
r=1

ζ2
r,n

ψr,r,n

, r = 1, 2, · · · , n.

We have evaluated the numerical values of means and variances using the expressions (17) and
(18) respectively for φ = 0.25(0.25)1 and for n = 2(2)20. Using these values we have evaluated
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the variance of BLUE σ̃2 for φ = 0.25(0.25)1 and for n = 2(2)20. Also we have computed the ratio
E(σ̃2|σ̂2) =

Var(σ̂2)
Var(σ̃2)

to measure the efficiency of our estimator σ̃2 relative to σ̂2 for n = 2(2)20 and
φ = 0.25(0.25)1 and are presented in table 1. From the table it is clear that, BLUE of σ2 performs
well compared to the MLE of σ2, namely σ̂2.

Remark 3.1. As in the case of variance of an unbiased estimator given in (10), for a given
value of φ ∈ (0, 1], once the variance of σ̃2 is evaluated, then there is no need to again evaluate
the variance of σ̃2 when φ = −φ. To establish this argument we prove the following theorem.

Theorem 2. Let (W, Z) follows a FGMBB distribution with pdf given by (3). For a given φ ∈ (0, 1],
Var[σ̃2(φ0)] is the variance of the BLUE σ̃2 of σ2 involved in the FGMBB distribution, then

Var[σ̃2(−φ0)] = Var[σ̃2(φ0)]. (26)

Proof The terms ζr,n and ψr,r,n defined by (17) and (18) are functions of φ, r and n and hence ζr,n
and ψr,r,n can be denoted as ζr,n(φ) and ψr,r,n(φ) respectively. From (17) and (18), it is clear that

ζr,n(φ) = ζn−r+1,n(−φ), 1 ≤ r ≤ n (27)

and
ψr,r,n(φ) = ψn−r+1,n−r+1,n(−φ), 1 ≤ r ≤ n. (28)

As a consequence of (27) and (28), we get

Var[σ̃2(φ)] =
σ2

2
n

∑
r=1

ζ2
r,n(φ)

ψr,r,n(φ)

=
σ2

2
n

∑
r=1

ζ2
n−r+1,n(−φ)

ψn−r+1,n−r+1,n(−φ)

= Var[σ̃2(−φ)].

Hence the proof.
Remark 3.2. For FGMBB distribution defined in (3), we have evaluated the correlation coefficient between
the two variables and is given by ρ = 361

1300 φ. But in certain real life situations our assumption that φ is
known may viewed as unrealistic. Hence if we have a situation with φ unknown, we compute the sample
correlation τ from (Wr:n, Z[r:n]) for r = 1, 2, · · · , n and introduce a moment type estimator φ̂ for φ as,

φ̂ =


−1, i f τ < −361

1300
1300
361 τ, i f −361

1300 ≤ τ ≤ 361
1300

1, i f τ > 361
1300 .

Table 1: Efficiencies of the estimators σ∗2 and σ̃2 relative to σ̂2.

n φ e(σ∗2 |σ̂2) e(σ̃2|σ̂2) φ e(σ∗2 |σ̂2) e(σ̃2|σ̂2)

0.25 0.9992 0.9992 -0.25 0.9992 0.9992
2 0.50 0.9984 0.9984 -0.50 0.9984 0.9984

0.75 0.9957 0.9957 -0.75 0.9957 0.9957
1.00 0.9849 0.9849 -1.00 0.9850 0.9853
0.25 1.0008 1.0008 -0.25 1.0008 1.0008

4 0.50 1.0047 1.0047 -0.50 1.0029 1.0029
0.75 1.0103 1.0111 -0.75 1.0047 1.0047
1.00 1.0106 1.0139 -1.00 1.0110 1.0147
0.25 1.0012 1.0012 -0.25 1.0012 1.0012

6 0.50 1.0082 1.0082 -0.50 1.0082 1.0082
0.75 1.0168 1.0180 -0.75 1.0168 1.0180
1.00 1.0223 1.0273 -1.00 1.0230 1.0286
0.25 1.0015 1.0015 -0.25 1.0015 1.0015
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n φ e(σ∗2 |σ̂2) e(σ̃2|σ̂2) φ e(σ∗2 |σ̂2) e(σ̃2|σ̂2)

8 0.50 1.0094 1.0094 -0.50 1.0094 1.0094
0.75 1.0192 1.0209 -0.75 1.0192 1.0209
1.00 1.0282 1.0351 -1.00 1.0300 1.0367
0.25 1.0019 1.0019 -0.25 1.0019 1.0019

10 0.50 1.0098 1.0098 -0.50 1.0098 1.0098
0.75 1.0221 1.0241 -0.75 1.0221 1.0241
1.00 1.0312 1.0398 -1.00 1.0330 1.0419
0.25 1.0023 1.0023 -0.25 1.0023 1.0023

12 0.50 1.0094 1.0094 -0.50 1.0094 1.0094
0.75 1.0242 1.0266 -0.75 1.0242 1.0266
1.00 1.0376 1.0455 -1.00 1.0376 1.0455
0.25 1.0000 1.0000 -0.25 1.0000 1.0000

14 0.50 1.0110 1.0110 -0.50 1.0110 1.0110
0.75 1.0225 1.0254 -0.75 1.0225 1.0254
1.00 1.0380 1.0472 -1.00 1.0380 1.0472
0.25 1.0031 1.0031 -0.25 1.0031 1.0031

16 0.50 1.0126 1.0126 -0.50 1.0126 1.0126
0.75 1.0258 1.0291 -0.75 1.0258 1.0291
1.00 1.0403 1.0473 -1.00 1.0403 1.0473
0.25 1.0035 1.0035 -0.25 1.0035 1.0035

18 0.50 1.0106 1.0106 -0.50 1.0106 1.0106
0.75 1.0291 1.0291 -0.75 1.0291 1.0291
1.00 1.0415 1.0534 -1.00 1.0415 1.0534
0.25 1.0000 1.0000 -0.25 1.0000 1.0000

20 0.50 1.0118 1.0157 -0.50 1.0118 1.0157
0.75 1.0242 1.0283 -0.75 1.0242 1.0283
1.00 1.0420 1.0508 -1.00 1.0420 1.0508

4. Estimation of σ2 based on censored ranked set sample

In this section, we obtain some estimators of σ2 using censored RSS scheme. Suppose k units are
censored in the Stoke’s RSS scheme, then we may represent the rss observations on the study
variate Z as δ1Z[1:n]1, δ2Z[2:n]2, · · · , δnZ[n:n]n where,

δi =

{
0, i f the ith unit is censored,
1, otherwise.

and hence ∑n
i=1 δi = n− k. In this case the usual unbiased estimator of σ2 is equal to

6 ∑n
i=1 δiZ[i:n]i
5(n−k) .

It may be noted that one need not get δi = 0 for i = 1, 2, · · · , k and δi = 1 for i = k+ 1, k+ 2, · · · , n.
Hence if we write mi, i = 1, 2, · · · , n− k as the integers such that 1 ≤ m1 < m2 < · · ·mn−k and
for which δmi =1, then,

E

[
6 ∑n

i=1 δiZ[i:n]i

5(n− k)

]
= σ2

[
1− 19φ

50(n + 1)(n− k)

n−k

∑
i=1

(n− 2mi + 1)

]
.

Thus it is clear that the in the censored case the usual unbiased estimator is not an unbiased
estimator of σ2. However we can construct an unbiased estimator of σ2 based on

6 ∑n
i=1 δiZ[i:n]i
5(n−k) is

given in the following theorem.

Theorem 3. Suppose that the random variable (W, Z) has a FGMBB distribution as defined in
(3). Let Z[mi ]mi

, i = 1, 2, · · · , n− k be the rss observations on the study variate Z resulting out
of censoring applied on the auxiliary variable W. Then an unbiased estimator of σ2 based on
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6
5(n−k) ∑n−k

i=1 Z[mi ]mi
is given by

σ∗2 (k) =
60(n + 1)[

50(n + 1)(n− k)− 19φ ∑n−k
r=1 (n− 2mi + 1)

] n−k

∑
i=1

Z[mi ]mi

and its variance is given by

Var[σ∗2 (k)] =
3600(n + 1)2σ2

2[
50(n + 1)(n− k)− 19φ ∑n−k

r=1 (n− 2mi + 1)
]2

n−k

∑
i=1

ψmi

where ψmi is as defined in (18).

Proof We have

E[σ∗2 (k)] =
60(n + 1)[

50(n + 1)(n− k)− 19φ ∑n−k
r=1 (n− 2mi + 1)

] n−k

∑
i=1

E[Z[mi ]mi
]

=
60(n + 1)[

50(n + 1)(n− k)− 19φ ∑n−k
r=1 (n− 2mi + 1)

]
×

n−k

∑
i=1

[
5
6
− 19

60
φ
(n− 2mi + 1)

(n + 1)

]
σ2

=
60(n + 1)[

50(n + 1)(n− k)− 19φ ∑n−k
r=1 (n− 2mi + 1)

]
×
[

5(n− k)
6

− 19φ

60(n + 1)

n−k

∑
i=1

(n− 2mi + 1)

]
σ2

= σ2.

Thus σ∗2 (k) is an unbiased estimator of σ2. The variance of σ∗2 (k) is given by

Var[σ∗2 (k)] =
3600(n + 1)2[

50(n + 1)(n− k)− 19φ ∑n−k
r=1 (n− 2mi + 1)

]2

n−k

∑
i=1

Var(Z[mi ]mi
)

=
3600(n + 1)2σ2

2[
50(n + 1)(n− k)− 19φ ∑n−k

r=1 (n− 2mi + 1)
]2

n−k

∑
i=1

ψmi

where ψmi is as defined in (18). Hence the theorem.
As a competitor of the estimator σ∗2 (k), next we propose the BLUE of σ2 based on the censored
rss, resulting out of ranking of observations on W.
If Z[n](k) = (Z[m1]m1

, Z[m2]m2
, · · · , Z[mn−k ]mn−k

)′, then the mean vector and the variance-covariance
matrix of Z[n](k) are given by

E[Z[n](k)] = σ2ζ(k), (29)

D[Z[n](k)] = σ2G(k), (30)

where ζ(k) = (ζm1 , ζm1 , · · · , ζmn−k )
′, G(k) = diag(ψm1 , ψm2 , · · · , ψmn−k ).

if the parameter φ involved in ζ(k) and G(k) are known then (29) and (30) together defines a
generalized Gauss-Markov setup and hence the BLUE σ̃2(k) of σ2 is obtained as,

σ̃2(k) = [(ζ(k))′(G(k))−1ζ(k)]−1(ζ(k))′(G(k))−1Z[n](k) (31)

and the variance of σ2 is given by

Var(σ̃2(k)) = [(ζ(k))′(G(k))−1ζ(k)]−1σ2
2 . (32)
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On substituting the values of ζ(k) and G(k) in (31) and (32) and simplifying we get,

σ̃2(k) =
∑n−k

i=1 (ζmi /ψmi )

∑n−k
i=1 (ζ

2
mi

/ψmi )
Z[mi ]mi

(33)

and
Var(σ̃2(k)) =

1

∑n−k
i=1 (ζ

2
mi

/ψmi )
σ2

2 . (34)

Remark 4.1. Since both the BLUE σ̃2(k) and the unbiased estimator σ∗2 (k) based on the censored
ranked set sample utilize the distributional property of the parent distribution they lose the usual
robustness property. Hence in this case the BLUE σ̃2(k) shall be considered as a more preferable
estimator than σ∗2 (k).
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Abstract

This research article examines an M/M/2 heterogeneous queueing model that provides two
services: a mandatory first essential service (FES) and an optional second optional service (SOS).
The model incorporates breakdown, feedback, and a hybrid vacation policy. Matrix expressions are
structured to evaluate the stationary probability distribution of the number of customers in the system
and system performance measures using the matrix-geometric approach (MGA). Additionally, formulas
are being developed to estimate the model’s performance indicators. The cost function is being evaluated
to determine the best values of the system’s decision variables, and an adaptive neural fuzzy inference
system (ANFIS) based on soft computing technology is being utilized to validate the obtained results.

Keywords: Markovian queue, Breakdown, Hybrid vacation, Matrix geometric approach, ANFIS.

1. Introduction

Queuing theory is the study of how people behave in service systems like telephone systems 
and waiting lines. It is a branch of operations research that focuses on analysing the arrival 
and departure of packets or customers from a service system. Queuing theory is used to 
analyse a wide range of scenarios, such as traffic control, banking, manufacturing, computer 
and telecommunications networks, production and transportation systems, and even healthcare 
systems. In general, queuing theory involves finding a n a ppropriate m athematical model 
to describe the system and then analysing it to determine how the system performs and 
how it can be improved. Morse [17] was the first to consider the concept of heterogeneous 
servers in multi-server queueing models, which is more realistic than assuming all servers 
provide service at an equal rate. In queuing systems with human servers, this assumption 
is impossible to implement as different servers can provide services at varying rates. It’s 
obvious that heterogeneous services are essential to the functioning of almost every industrial 
system. Li and Stanford [9] explored heterogeneous multi-server accumulating priority queues. 
Krishnamoorthy et al. [14] presented a two heterogeneous servers queueing model. Chang et al.
[5] investigate an unreliable-server retrial queue with customer feedback and impatience. They 
analyse the performance of the system through simulations and derive analytical expressions 
for its measures of performance and cost. Recently, Wu and Yang [25] examined a two-phase 
heterogeneous service model. They initially performed a single objective optimization using 
Canonical PSO then developed a bi-objective cost optimization model for the system and
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waiting time in tandem.
In queueing theory, vacation refers to a period of time in which a server is unavailable to 

serve customers. There are several types of vacations, including planned and random, as well as 
hybrid vacations which combine the two. Planned vacations occur at predetermined intervals, 
while random vacations occur randomly throughout the queueing system’s operation. Hybrid 
vacations combine both planned and random vacations in order to optimize the system’s 
performance. Servi and Finn [19] work in queuing theory focused on working vacations 
(WV) for M/M/1 queues. In this approach, the server can continue servicing requests at a 
slower rate when customers are not present. Bouchentouf et al. [3] researched a multi-station 
unstable machine model with customer impatience and a working vacation schedule. Ziad et 
al. [29] examined a M/M/c queueing system with waiting servers, balking, reneging, and a 
K-variant working vacation interrupted by a Bernoulli schedule. Bouchentouf et al. [4] examine 
the performance and economics of a single server queueing model with feedback, impatient 
customers, and a vacation policy, finding an optimal control policy for vacation t imes, and 
providing their results, which can be used to make decisions regarding the system’s parameters. 
Anshul Kumar et al. [16] investigated the hybrid holiday policy and a two-stage service 
procedure using matrix geometric techniques. This hybrid holiday is a combo of working 
vacation and complete vacation (CV), in which the server may begin in WV and continue to 
give service at a decreased rate when the server is idle. If there are clients present in WV, the 
server will linger in WV and offer service. If not, it will go to CV. The server will revert to its 
usual operations after the CV has been completed, and it will begin providing service to any 
customers who are ready at that time. Dual servers with varying service rates are a logical 
outgrowth of this concept.

The term "essential service" refers to services that servers must offer in order to satisfy 
customer needs. Optional services, on the other hand, are those that are provided based on 
customer demand. Essential services are usually core services that must be provided in order 
for the server to fulfil its role, while optional services are additional services that customers 
may choose to opt-in to receive. Laxmi and Jyothsna [22] examined a finite buffer impatient 
customer queue with WV, where the server offers two phases of service: essential and optional. 
Yang et al. [26] used SOS to an M/M/R queueing model and offered economic analysis. Several 
queueing models for optional services have been studied by researchers such as Anitha et al.
[2], Chandrika and Kalaiselvi [6], Li and Wang [10], Yang and Chen [27], and others.

Realistically, it’s not possible to have a completely reliable server because it could break at 
any time. Repair setups such as thresholds, backups, or restarts must be applied to restore 
service. Significant research on breakdown provides a model to investigate how such changes 
may reduce customer wait times in real-time service systems with a total failure server, such as 
those found in banks, manufacturing plants, contact centres, and so on.

Ye and Liu [28] applied the MGA to discover the steady-state solutions for a Markovian 
arrival single server queuing system with an operational breakdown. Vijayalakshmi et al. [23] 
used a matrix technique to examine the restricted capacity of a Markovian queueing model with 
working interruptions and two-phase service. The M/M/1 model with working breakdowns 
and recovery policies based on k-threshold recovery time and setup recovery was studied by 
Ezeagu et al. [8]. A queueing model for a service system with a secondary server was presented 
by Chakravarthy et al.

The Matrix Geometric Approch was first developed in the 1960s and has since become a 
fundamental tool in queueing theory. It was widely used in Markov chain models and queuing 
systems to solve difficult real-time p roblems. In particular, this method helps to determine the 
stationary behaviour of a queueing model by calculating the expected number of customers 
and expected times in the system. M.F. Neuts [18] was a key figure in the development of the 
Matrix Geometric Approach (MGA). Ke et al. [13] conducted research on an M/M/R queueing 
system with SOS. Shekhar et al. [21] employed metaheuristics to find effective emergency
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vacation queueing techniques. Anshul and Madhu Jain [16] conducted an investigation into an 
unreliable server, they studied the effects of an MGA-based Markovian queueing model for a 
two-stage service system that utilises a hybrid vacation policy.

ANFIS, or Adaptive Neuro-Fuzzy Inference System, is an intelligent system that combines 
neural networks and fuzzy logic to model complex non-linear systems. It can be used for 
many applications, such as classification, prediction, control, and o ptimization. ANFIS can 
also be used for transient analysis, where it can generate more accurate insights about system 
dynamics. Jang [11] proposed the ANFIS as a tool to model complex systems. He demonstrated 
the application of ANFIS in modelling the nonlinear dynamics of a continuous-time system 
and provided references on the uses of ANFIS in various research fields. The article was an 
important milestone in furthering the application of ANFIS in the sciences. The content of 
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine 
Intelligence was analysed by Jang et al. [12]. ANFIS has been used in many research papers, 
including Ahuja et al. study of the transient of an unreliable single-server queueing model with 
multi-stage service and a working vacation. Sethi et al. [20] proposed a mathematical model 
to analyse the system and demonstrated that the parameters of the system can be optimised 
using an ANFIS approach. They also discussed the performance of different policies in terms 
of cost and found that an N-policy was the most efficient for cost o ptimization. An analysis of 
an MX/G/1 retrial queue with impatient customers, an unreliable server, a modified vacation 
policy, delayed repair, and a Bernoulli feedback system was presented by Upadhyaya and 
Kushwaha [24]. They also used an ANFIS computing approach to compare their numerical 
results to those obtained from explicit analytical formulas.
The structure of this paper is outlined in the following way: Section 2 outlines the model 
description and associated mathematical assumptions, as well as provides an explanation for 
the transition rate matrix. In Section 3, the stability condition is established and the matrix-
geometric approach is explained. Performance measures such as the expected number of 
customers in the system in terms of system state probabilities and the total cost accumulated 
through different activities and cost elements are derived in Section 4. Section 5 provides 
numerical results, while the conclusions in Section 6 illustrate noteworthy features and potential 
areas for future research.

2. Model description

Under the hybrid vacation policy, we propose a heterogeneous Markovian queueing model 
with a second optional service with feedback and breakdown. This model is detailed as follows: 
The arrival pattern: In this model, customers arrive according to a Poisson process with an 
arrival rate of λ.
The service pattern: The first-in-first-out policy directs the service discipline.We investigate a 
queueing model with two heterogeneous servers: the first server is constantly available and 
totally reliable, charges a service rate of µ0. while the second server has two distinct phases 
- an first essential phase (FES) and a  second optional phase (SOS) -  and is only occasionally
accessible and unstable. server 2 charges µ1 for FES and µ2 for SOS, with the service rates for 
both following an exponential distribution.
Breakdown and repair rule : The queueing system has two servers, with the first server 
consisting of a single, reliable phase, and the second server consisting of two phases: FES and 
SOS. If both phases of the second server experience breakdowns with rates η1, η2 and, it is 
immediately sent for repair with rates θ1 and θ2, respectively.
Feedback rule: After receiving a service, an unsatisfied customer can decide to re-enter the 
system for another service, with a probability κ̄ referred to as "feedback", or they can choose to 
permanently exit the system with a probability κ (=1-κ̄). Feedback service is consider as a new 
arival λ.
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The hybrid vacation strategy: During vacation periods, the server starts WV, which has an
exponential distribution with a slower service rate of µv. When the server gets empty during
WV, it will switch to CV mode. While customers enter the system at CV, the server will return
to its usual busy state and start serving customers. CV duration has an exponential distribution
with a mean θv. The server enters the working period in the CV state with the probability ξ of
providing service to the customer. which is always 1.

Let us consider 𭟋(t) = {(W(t), J(t)); t ≥ 0}be the bivariate Markov process (BMP) with a

Figure 1: State transition diagram of the model

state space at time t. where W(t) represents the number of customers in the system, and

J(t) =



0, if server 2 is in Working vacation
1, if server 2 is in Complete vacation
2, if server 2 is in FES
3, if server 2 is in SOS
4, if server 2 is in Breakdown

All stochastic processes in the system are independent of one another. The structure of this
model’s transition diagram is depicted in the below figure. 1.

2.1. Governing equations

By using birth- death process, Governing equations can be formulated as follows:

(λ + ϕv)ι0,0 =(µ0 + µv)ι1,0 + κµ0ι0,1 + κ(µ0 + ν1µ2)ι1,2 + κ(µ0 + µ2)ι1,3

[κ(µ0 + µv) + λ + ϕ1]ι1,0 =λι0,0 + κ(µ0 + µv)ι2,0

[κ(µ0 + µv) + λ + ϕ1]ιm,0 =λιm−1,0 + κ(µ0 + µv)ιm+1,0

(κµ0 + λ)ι0,1 =ϕvι0,0 + κµ0ι1,1

(κµ0 + λ)ι1,1 =ϕvι0,1 + κµ0ι2,1

(κµ0 + λ)ιm,1 =ϕvιm−1,1 + κµ0ιm+1,1

[λ + κ(µ0 + ν1µ1) + ν0µ1 + η1]ι1,2 =ξι1,1 + ϕ1ι0,1 + ν2µ1ι1,2 + θ1ι1,4 + κ(µ0 + µ1)ι2,2 + κ(µ0 + µ2)ι2,3

[λ + κ(µ0 + ν1µ1) + ν0µ1 + η1]ιm,2 =ξιm,1 + ϕ1ιm−1,1 + ν2µ1ιm,2 + θ1ιm,4 + κ(µ0 + µ1)ιm+1,2

+ κ(µ0 + µ2)ιm+1,3

[κ(µ0 + µ2) + λ + η2]ι1,3 =ν0µ1ι1,2 + θ2ι1,4

[κ(µ0 + µ2) + λ + η2]ιm,3 =ν0µ1ιm,2 + θ2ιm,4
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[θ1 + θ2]ι1,4 =η1ι1,2 + η2ι1,3

[θ1 + θ2]ιm,4 =η1ιm,2 + η2ιm,3

To make obtaining solutions to our model easier and faster, we are employing the MGA. This
method is used to obtain steady-state probabilities when the state-space increases rapidly. This
technique helps us to achieve effective and numerically stable solutions that would otherwise
be difficult and time-consuming to obtain.

2.2. Matrix Geometric Solution

The system state is symbolized by W(t) and J(t). Let {(W(t), J(t)); t ≥ 0}, with the state space
organised in lexicographical manner as follows.

Υ = (0, 0)
⋃
(0, 1)

⋃
(m, n); n ≥ 1, m = 0, 1, 2, 3, 4

The set of equations in section 2.1 are utilised to create the model’s steady-state probability
using the matrix-geometric approach. The block tridiagonal pattern is represented by the
associated infinitesimal generator matrix G of this Markov chain, which is expressed as follows:

G =


S0 T0 0 0 0 0 0 ···
V0 U1 U0 0 0 0 0 ···
0 U2 U1 U0 0 0 0 ···
0 0 U2 U1 U0 0 0 ···
0 0 0 U2 U1 U0 0 ···
...

...
...

...
...

...
. . . ···


where

S0 =
[
−(λ+ϕv) ϕv

β −(λ+β)

]
; T0 =

[
λ 0 0 0 0
0 λ 0 0 0

]
; V0 =

 α 0
0 β
γ 0
δ 0
0 0


U0 =

 λ 0 0 0 0
0 λ 0 0 0
0 0 λ 0 0
0 0 0 λ 0
0 0 0 0 λ

 ; U2 =

 α 0 0 0 0
0 β 0 0 0
0 0 γ 0 0
0 0 δ 0 0
0 0 0 0 0



and U1 =


−[λ+ϕ1+α] 0 ϕ1 0 0

0 −[λ+ξ+β] ξ 0 0
0 0 −[λ+η1+ν1µ1+γ−ν2µ1] ν0µ1 ν1
0 0 0 −[λ+η2+δ] η2
0 0 θ1 θ2 −[θ1+θ2]


Here, α= κ[µ0 + µv], β=κµ0, γ= κ[µ0 + ν1µ1], δ=κ[µ0 + µ2].

Figure 2: Influence of ν0 on the idle state ι0,0 of the servers
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3. Stability Condition

Theorem 1. The system is stable if and only if ρ = λ
β

(
Aθ1+Bθ2

Aθ1+Bθ2+C

)
< 1

Proof. Let us define the matrix U = U0 + U1 + U2 given by

U =


−ϕ1 0 ϕ1 0 0

0 −ξ ξ 0 0
0 0 −[η1+(ν0−ν2)µ1] ν0µ1 η1
0 0 −δ δ 0
0 0 θ1 θ2 −[θ1+θ2]

 (1)

There exists a stationary probability I = (I0, I1, I2, I3, I4) of U such that

IU = 0; Ie = 1 (2)

where e = [1, 1, 1, 1, 1]T . Using theorem 3.1.1 of Netus [18], the necessary and sufficient
condition for the stability of the system is as follows:

IU0e < IU2e (3)

Solving 1 and 2, we get

λ[I0 + I1 + I2 + I3 + I4] <αI0 + βI1 + γI2 + δI3 (4)

λ

σ1
[(ν2 + ν0µ1 + δ))θ1 + (δ + η1 + µ1(ν0 + ν1 − ν2))θ2] <

β

σ1
[(κµ1ν1 + δ + ν0µ1)θ1 + κµ2

+ (δ + ν1 + µ1(ν0 + ν1 − ν2)θ2)] (5)
λ

σ1
[Aθ1 + Bθ2] <

β

σ1
[Aθ1 + Bθ2 + C] (6)

λ

β

[
Aθ1 + Bθ2

Aθ1 + Bθ2 + C

]
<1 (7)

Here

A =ν2 + ν0µ1 + δ

B =δ + η1 + µ1(ν0 + ν1 − ν2)

C =κ(µ1ν1 + µ2)

Table 1: Impact of arrival rate λ on perfomance measures

λ E[Ls] E[Lq] PIdle PS2
WV PS2

CV PS2
FES PS2

SOS PS2
Bd

0.5 0.1862 0.0271 0.8393 0.9450 0.0365 0.0121 0.0032 0.0016
0.6 0.2378 0.0447 0.8069 0.9409 0.0358 0.0160 0.0046 0.0023
0.7 0.2904 0.0647 0.7744 0.9359 0.0349 0.0198 0.0062 0.0029
0.8 0.3480 0.0891 0.7416 0.9297 0.0347 0.0240 0.0081 0.0035
1 0.4780 0.1495 0.6757 0.9149 0.0321 0.0339 0.0134 0.0052
1.1 0.5539 0.1800 0.6423 0.9053 0.0310 0.0396 0.0172 0.0063
1.2 0.6411 0.2488 0.6085 0.8938 0.0299 0.0460 0.0218 0.0077
1.3 0.7384 0.3073 0.5757 0.8936 0.0185 0.0517 0.0266 0.0089
1.4 0.8442 0.3851 0.5398 0.8648 0.0274 0.0614 0.0344 0.0109
1.5 0.9796 0.4725 0.5044 0.8453 0.0261 0.0706 0.0431 0.0130
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Table 2: Impact of service rates (µ0, µ1, µ2, µv) on some perfomance measures

(µ0, µ1, µ2, µv) E[Ls] E[Lq] PIdle PS2
WV PS2

CV PS2
FES PS2

SOS PS2
Bd

(3,2,1.5,1) 1.2737 0.6971 0.4440 0.8191 0.0236 0.0783 0.0611 0.0163
(4,2,1.5,1) 0.8209 0.3774 0.5652 0.9063 0.0228 0.0424 0.0208 0.0071
(5,2.5,1.5,1) 0.5589 0.2008 0.6414 0.9409 0.0204 0.0247 0.0098 0.0037
(6,3,1.5,1) 0.4409 0.1351 0.6941 0.9580 0.0181 0.0161 0.0054 0.0023
(7,3.5,2,1) 0.2693 0.0713 0.7334 0.9007 0.0161 0.0103 0.0028 0.0015
(7.5,4,2.5,1) 0.3323 0.0822 0.7495 0.9716 0.0151 0.0093 0.0024 0.0012
(8,4,3,1.5) 0.2884 0.0641 0.7752 0.9746 0.0146 0.0077 0.0017 0.0009

where

I0 = 0, I1 = 0, I2 =
[ν2 + δ]θ1 + δθ2

σ1
, I3 =

[η1 + µ1(ν0 + ν1 − ν2)θ2 + µ1ν0θ1]

σ1
,

I4 =
[ν2(η1 − µ1ν2) + µ1ν2(ν0 + ν1)] + [κν1 + κµ1(ν1 − ν2)](µ0 + µ2)

σ1
(8)

Here,

σ1 = η1(ν1 + θ2) + ν2(θ1 − µ1ν2) + η1δ + µ1ν2(ν0 + ν1) + (θ1 + θ2)(δ + ν0µ1) + µ1(θ2 + δ)(ν1 − ν2)

Hence, System stability is ensured that ρ is equal to or less than 1. ■

Figure 3: Influence of E[Ls] for different µ0 w.r.t λ

3.1. Stationary probability distribution

We define Pmn = {(W(t) = m, J(t) = n)} where m indicates the total number of cus-
tomers in the queue and n reflects the server state. Under the stability condition ρ < 1. The
prob. vector is described as follows: I = [I0, I1, I2, I3, ...], where I0 = [i0,0, i0,1], m = 0; Ii =
[im,0, im,1, im,2, im,3, im,4], m = 1, 2, 3, 4, .... Since the steady-state criterion is achieved, then the
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Table 3: Impact of breakdown and repair rates (η1, θ1, η2, θ2) on some perfomance measures

(η1, θ1, η2, θ2) E[Ls] E[Lq] PIdle PS2
WV PS2

CV PS2
FES PS2

SOS PS2
Bd

(0.5,2,0.5,3) 0.5071 0.8011 0.0227 0.1204 0.0397 0.0159 0.4323 0.0109
(0.6,2,0.55,3) 0.6796 0.9203 0.0322 0.0297 0.0128 0.0044 0.3679 0.0113
(0.7,2,0.6,3) 0.6808 0.9219 0.0323 0.0289 0.0124 0.0042 0.3685 0.0113
(0.8,3,0.7,4) 0.6744 0.9130 0.0321 0.0391 0.0120 0.0035 0.3665 0.0113
(0.8,4,0.8,5) 0.6825 0.9241 0.0323 0.0294 0.0110 0.0027 0.3718 0.0113
(0.8,5,0.9,5) 0.6824 0.9240 0.0323 0.0303 0.0103 0.0026 0.3718 0.0113

sub prob.vectors Ii satisfy the following equations:

I0S0 + I1V0 + 0 + . . . = 0 (9)

I0T0 + I1U1 + I2U2 + 0 + . . . = 0 (10)

I1U0 + I2U1 + I3U2 + 0 + . . . = 0 (11)

I2U0 + I3U1 + I4U2 + 0 + . . . = 0 (12)
...

IiU0 + Ii+1U1 + Ii+2U2 + . . . = 0 where i ≥ 2 (13)

Ij = I1Rj−1, where j ≥ 2. (14)

Let the matrix R represents the rate matrix. By substituting equation 12 into the equations 7
to 11, we get

I0S0 + I1V0 =0 (15)

I0T0 + I1[U1 +RU2] =0 (16)

I1[U0 +RU1 +R2U2] =0 (17)

I1R[U0 +RU1 + R2U2] =0 (18)

I1Ri−1[U0 +RU1 +R2U2] =0 i ≥ 2. (19)

The normalizing equation can be expressed as

I0e+ I1[I −R]−1e = 1 (20)

Here e is a column vector in which all elements are 1’s in the corresponding column. By using
methodologies from Neuts [18] and Latouche and Ramaswami [15]. we have estimated? the
rate matrix R. Thus, R is a minimal non-negative solution of the matrix quadratic equations.

U0 +RU1 +R2U2 = 0 (21)

R = −U0U−1
1 −R2U2U−1

1 (22)

Where R ≥ 0 and it’s an irreducible non-negative matrix of spectral radius smaller than one[18].
Matrix R can be calculated using an iterative approach as shown below.

R0 =0 (23)

Rn+1 =− U0U−1
1 −R2

kU2U−1
1 k ≥ 1 (24)

All values of R will expand monotonically, and non-negative matrix R is converging to
−U−1

1 and [U0 +R2U2]. The steady state is attained via the MGM.
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Figure 4: Influence of E[Ls] for different λ w.r.t µ0

4. Measuring the Performance Characteristics

The following are some performance measurements for the queueing model under consid-
eration in terms of steady-state probability.

4.1. System State Probabilities

• The probability that the servers are idle: PIdle = ι0,0

• The probability of server 2 is in working vacation: PS2
WV = ∑∞

m=1 ιm,0

• The probability of server 2 is in complete vacation: PS2
CV = ∑∞

m=1 ιm,1

• The probability of server 2 is in FES: PS2
FES = ∑∞

m=1 ιm,2

• The probability of server 2 is in SOS: PS2
SOS = ∑∞

m=1 ιm,3

• The probability of server 2 is in breakdown: PS2
Bd = ∑∞

m=1 ιm,4

4.2. Expected Numbers of Customers in the System and Queue

• The expected no.of customers in the system and queue:

E[Ls] =
∞

∑
m=1

mιm,0 +
∞

∑
m=1

mιm,1 +
∞

∑
m=1

mιm,2 +
∞

∑
m=1

mιm,3 +
∞

∑
m=1

mιm,4

E[Lq] =
∞

∑
m=1

(m− 1)ιm,0 +
∞

∑
m=1

(m− 1)ιm,1 +
∞

∑
m=1

(m− 1)ιm,2 +
∞

∑
m=1

(m− 1)ιm,3 +
∞

∑
m=1

(m− 1)ιm,4

• The expected no.of customers served is calculated by:

E[SC] =
∞

∑
m=1

[µ0ιm,0 + (µ0 + µv)µ0ιm,1 + (µ0 + µ1)µ0ιm,2 + (µ0 + µ2)µ0ιm,3]
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Figure 5: Influence of E[Ls] for different µ0 w.r.t λ

Figure 6: Influence of E[Ls] for different µ 0 w.r.t λ

4.3. Estimating the Cost and Revenue

Cost and revenue analysis play an important role in queuing systems as they provide an 
economic interpretation that can be applied to various technical and industrial situations. We 
define the total expected cost function per unit time and incorporate service rates as selection 
factors in order to find the optimal service rates that minimize the total cost f unction. The 
following factors are incorporated into our prediction:
Cls = Each customer’s holding cost per unit time in the system.
Cv = Cost per customer served in the vacation mode of the server 2.
CF = Cost per customer served in the FES mode of the server 2.
CS = Cost per customer served in the SOS mode of the server 2.
Cη = Cost per customer incurred when a broken down server is under repair.
Cµ0 = Cost per customer served in the busy mode of the server 1.
Cµ1 = Cost per customer served in the FES mode of the server 2.
Cµ2 = Cost per customer served in the SOS mode of the server 2.
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Figure 7: Influence of E[Ls] for different µ0 w.r.t λ

(a) λ vs E[Lq], E[Ls] (b) µ0 vs E[Lq], E[Ls]

(c) µ1 vs E[Lq], E[Ls] (d) µ2 vs E[Lq], E[Ls]

Figure 8: Influence of a few parameters on 2D representation

Total projected cost (TPC) is defined as:

TPC =ClsLs + Cv(PS2
WV + PS2

CV) + CFPS2
FES + CSPS2

SOS + Cη PS2
Bd + Cµ0 µ0 + Cµ1 µ1 + Cµ2 µ2

If Rev represents customer service revenue, then the system’s total anticipated revenue (TAR) 
is given by:

TAR = Rev ∗ E[SC]
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The total profit is given as:

Tpro f it = TAR − TPC

The complexity and non-linearity of the cost and revenue functions make it difficult to analyse
the behaviour of the cost-revenue model and identify the most suitable values. All computations
have been rounded off to two decimal places.

Table 4: Cost set values for various cost aspects

Cost set Cls Cwv Ccv CF CS CBd Cµ0 Cµ1 Cµ2

I 45 20 10 30 25 15 20 15 10
II 40 20 10 30 25 15 20 15 10
III 45 25 10 30 25 15 20 15 10

(a) (b) (c)

(d) (e)

Figure 9: ANFIS MF for (a) λ, (b) µ0, (c) µ1, (d) µ2 (e) µv input variables

4.4. Adaptive neuro-fuzzy inference system (ANFIS)

Jyh-Shing Roger Jang [11] was the person who first proposed ANFIS in 1 992. The system com-
bines both fuzzy logic and neural networks to capture much of the uncertainty and inexactness 
of real-life systems. In its simplest form, ANFIS consists of a number of inference rules that are 
used to make decisions or predictions. It can be used for classification, optimization, control, 
and other tasks where accurate predictions are needed. There are several types of ANFIS, 
including Type-1, Type-2, and hybrid systems. ANFIS is based on the principles of fuzzy logic, 
which allows it to consider multiple inputs and outputs simultaneously when making decisions. 
It also uses neural networks to adjust the strength of the rules. The Tagaki-Sugeno (TS) rule 
is a type of fuzzy inference system most commonly used for regression and control tasks. 
It is based on the Takagi-Sugeno-Kang formulation, which is an extension of the Mamdani 
type of fuzzy logic systems. TS rules combine both fuzzy sets and linear models to allow for 
more accurate predictions. The architecture of ANFIS can be briefly described with the use of 
fuzzy parameters. This is done using fuzzy "If-Then" rules, which allow us to perform ANFIS
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input-output functions and input-output data pairs. Three components are needed for a fuzzy
inference system:
(i) selection of fuzzy rules;
(ii) development of a data structure defining the membership functions (MF) used in the fuzzy
rules;
(iii) a reasoning mechanism that performs the inference procedure based on the given fuzzy
rules.
The fuzzy rules can be defined as
Rule 1 :"If x is X1 and y is Y1 then f1 = p1x + q1y + r1",
Rule 2 :"If x is X2 nd y is Y2 then f2 = p2x + q2y + r2".
ANFIS networks can be implemented by using the fuzzy toolbox of MATLAB software, where a
Gaussian function is used to select fuzzy input parameters, like λ, µ0, µ1, µ2 and µv. Moreover,
linguistic variables are also defined for input parameters as seen in Table 5.

Table 5: Values of the membership function for linguistics based on input parameters

Input parame-
ters

No. of membeship
function

Linguistic Values

λ 5 very small, small, medium, large, very large
µ0, µ1, µ2 4 small, medium, large, very large
µv 3 small, medium, large

5. Numerical Discussions

5.1. Sensitivity Analysis

In this section, MATLAB is utilized to illustrate how system behavior measurements are 
influenced by various p arameters. The service time, vacation time, breakdown time, and repair 
time are assumed to be exponentially distributed, and the stability criterion is met by giving 
the parameters random values. Subsequently, numeric results for the primary performance 
indicators are obtained.

Variations in λ, (µ0, µ1, µ2, µv) , (η1, θ1, η2, θ2), are provided to reveal average system size
(E[Ls]), average queue size (E[Lq]), and some performance measures in our queueing model.

Table 1 clearly depicts that as arrival rate (λ) rises, E[Ls], E[Lq] also escalates for the value of 
µ0 = 3, µ1 = 2, µ2 = 1.5, µv = 1, η1 = 0.5, η2 = 0.7, θ1 = 2, θ2 = 3, κ = 0.8, ξ = 1, ϕv = 0.2, ϕ1 = 
0.2, ν0 = 0.2, ν1 = 0.5, ν2 = 0.3.

Table 2 clearly depicts that as (µ0, µ1, µ2, µv) escalates, E[Ls], E[Lq] also diminish for the value 
of λ = 1.7, η1 = 0.5, η2 = 0.7, θ1 = 2, θ2 = 3, κ = 0.8, ξ = 1, ϕv = 0.2, ϕ1 = 0.2, ν0 = 0.2, ν1 = 
0.5, ν2 = 0.3.

Table 3 clearly depicts that as (η1, θ1, η2, θ2) varies, E[Ls], E[Lq] are changed for the value 
of λ = 1.7, µ0 = 3, µ1 = 2, µ2 = 1.5, µv = 1, κ = 0.8, ξ = 1, ϕv = 0.2, ϕ1 = 0.2, ν0 = 0.2, ν1 = 
0.5, ν2 = 0.3.

Figure 2 illustrates the impact of ν0 for various values of µ2 on the servers’ idle state (ι0,0). 
The image illustrates that, when the value of µ2 is held constant, the idle probability, shown 
by ι0,0, drops as one increases the value of ν0. This is because when ν0 rises, the number of 
customers choosing for SOS increases, and as a consequence, the server’s idle probability drops.

Figure 3 shows the increasing nature of the number of customer in the system with varying 
values of µ0. Figures. 4, 5, 6 and 7 demonstrate that an increase in the service rate of the second 
server in busy and vacation modes leads to a decrease in the number of customers (E[Ls]) 
within the system. Moreover, these figures illustrate the effects on E[Ls] when varying values of
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λ, η1 and η2 are applied.
Figure 8 (a) indicates that as the arrival rate (λ) increases, the expected queue length (E[Lq])

and expected system length (E[Ls]) also rises. On the other hand, Figures 8 (b–d) show that
when the service rate of server 1 (µ0) or servers 2 (µ1, µ2) increases, the expected queue length
(E[Lq]) and the expected system length (E[Ls]) diminish.

(a) λ vs Ls, Ws (b) µ0 vs Ls, Ws (c) µ1 vs Ls, Ws

(d) µ2 vs Ls, Ws (e) µv vs Ls, Ws

Figure 10: Influence of a few parameters on 3D representation

Figure 10(a – e) shows a three-dimensional graph depicting system performance measures.
In Figure 10 (a), the surface illustrates an increase in the arrival rate (λ), expected system length
(E[Ls]), and expected waiting time in the system (E[Ws]) increase. Figures 10 (b) and (c–d)
demonstrate that as the service rates of server 1 (µ0) and server 2 (µ1, µ2) increase, the expected
system length (E[Ls]) and the expected waiting time in the system (E[Ws]) decrease. Figure
10(e) further shows that when the vacation rate µv increases, expected system length (E[Ls])
and expected waiting time in the system (E[Ws]) also decrease.

5.2. Anfis Computing and results

Tthe ANFIS results are constructed and verified by the Matlab software by executing the
’neuroFuzzyDesigner’ command. The accuracy of the ANFIS outputs for E[Ls] can be examined
using the absolute percentage errors. ∆a is provided by

∆a =

∣∣∣∣E[Ls]− E[
∗
Ls]

∣∣∣∣
E[Ls]

× 100%

where ∆a is absolute percentage error, E[Ls] exact value of the expected no.of customers in

the system by analytical method, E[
∗
Ls] estimated expected no.of customers in the system by

ANFIS technique for varying values of (i) λ (ii) µ0 (iii) µ1 (iv) µ2 (v) µv are recorded, and the
absolute percentage errors (∆a) and accuracy of the estimated value in percentage of E[Ls] are
also summarized in Tables 6 - 7.

Lesser The Γe value indicates that our ANFIS method is closer to the analytical method’s

Divya K, Indhira K
COST ANALYSIS & ANFIS COMPUTING OF HETEROGENEOUS 
QUEUEING MODEL UNDER HYBRID VACATION

RT&A, No 3 (74) 
Volume 18, September 2023

189



(a) λ Vs E[Ls] (b) µ0 Vs E[Ls] (c) µ1 Vs E[Ls]

(d) µ2 Vs E[Ls] (e) µv Vs E[Ls]

Figure 11: E[Ls] Vs (a) λ, (b) µ0, (c) µ1, (d) µ2 (e) µv

results. Figures 7 (a-d) depict the graphs of membership functions for input values (i). lambda
(ii) µ0 (iii) µ1 (iv) µv. The tick marks in Fig. 11 (a–d) represent the ANFIS results for the ESL
forecast, while the continuous lines represent the analytical results. In these images, there are
check marks almost completely covering the curved lines. This suggests that both outcomes are
favourable.

Table 6: Values of the ∆a, E[Ls], E
∗

[Ls] by varying input parameters λ, µ0

λ E[Ls] E
∗

[Ls] ∆a µ0 E[Ls] E
∗

[Ls] ∆a
0.5 0.1862 0.186 0.1074 3 1.2737 1.27 0.2905
0.6 0.2378 0.238 0.0841 4 0.8209 0.821 0.0122
0.7 0.2904 0.290 0.1377 5 0.5589 0.559 0.0179
0.8 0.348 0.348 0.0000 6 0.4409 0.441 0.0227
1.0 0.478 0.478 0.0000 7 0.2693 0.269 0.1114
1.1 0.5539 0.554 0.0181 7.5 0.3323 0.332 0.0903
1.2 0.6411 0.641 0.0156 8 0.2884 0.288 0.1387
1.3 0.7384 0.738 0.0542
1.4 0.8442 0.844 0.0237
1.5 0.9796 0.98 0.0408
Average of ∆a 0.0482 Average of ∆a 0.0977
Accuracy in predicted value (%) 99.951 Accuracy in predicted value(%) 99.902

5.3. Cost Optimization

The estimated cost per unit of time TPC and total anticipated revenue TAR are found to be
$132.3475 and $243.40 when certain values for the parameters are used such as λ=1, µ0=6, µ1=3, 
µ2=3.5, µv=2, η1=0.8, θ1=5 , η2=0.9, θ2=5, κ=0.8, ξ=1, ϕv= 0.1, ϕ1=0.2, ν0=0.2, ν1=0.5, ν2=0.3,
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Table 7: Values of the ∆a, E[Ls], E
∗

[Ls] by varying input parameters µ1, µ2 µv

µ1 E[Ls] E
∗

[Ls] ∆a µ2 E[Ls] E
∗

[Ls] ∆a µv E[Ls] E
∗

[Ls] ∆a
2 0.8209 0.821 0.0122 1.5 0.4409 0.441 0.0227 1 0.8209 0.821 0.0122
2.5 0.5589 0.559 0.0179 2 0.2693 0.269 0.1114 1.1 0.5589 0.559 0.0179
3 0.4409 0.441 0.0227 2.5 0.3323 0.332 0.0903 1.2 0.4409 0.441 0.0227
3.5 0.2693 0.269 0.1114 3 0.2884 0.29 0.5548 1.3 0.2693 0.269 0.1114
4 0.3323 0.332 0.0903 1.4 0.3323 0.332 0.0903

1.5 0.2884 0.29 0.5548
Average of ∆a 0.0509 Average of ∆a 0.1948 Average of ∆a 0.1349
Accuracy in
predicted value (%)

99.9491
Accuracy in
predicted value (%)

99.8052
Accuracy in
predicted value (%)

99.8651

Rev=250 are taken into consideration. To gauge the impact of changing the cost parameters,
the cost function was examined for three different cost set values, as displayed in Table 4. In
the feasible interval, the cost function is convex with regard λ, µ1, µ2 and η1, η2 as seen in Figs.
13(a-c) - 15(a-c).

Figure 12: Impact of λ on TPC, TAR

(a) TPC Vs λ, E[Ls] (b) TPC Vs λ, E[Ls] (c) TPC Vs λ, E[Ls]

Figure 13: Total projected cost varying values of λ, E[Ls]
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(a) TPC Vs µ0, µ1 (b) TPC Vs µ0, µ1 (c) TPC Vs µ0, µ1

Figure 14: Total projected cost varying values of µ0, µ1

(a) TPC Vs η1, E[Ls] (b) TPC Vs η1, E[Ls] (c) TPC Vs η1, E[Ls]

Figure 15: Total projected cost varying values of η1, E[Ls]

The effect of λ on TPC and TAR in the model is depicted in Figure 12. As λ increases, the 
total elapsed cost and total expected response also increase. The point at which there is neither 
gain nor loss is seen around λ = 0.53, based on the set of cost values given for the model. If 
λ is lower than 0.53, there will be a loss, and when λ is greater than 0.53, the system will see 
a profit. Thus, with knowledge of the customer arrival rate, appropriate actions can be taken 
to reduce the TPC and maximize the TAR. Our model’s TPC and TAR are shown with the 
relevant values in Table 8.

6. Conclusion

This research explores a heterogeneous and unreliable server queueing system with the addition 
of a second optional service, feedback, and breakdown in a hybrid vacation scheme. Through 
numerical examples, The efficiency of the matrix-geometric technique in determining steady-
state probabilities and other performance metrics has been discovered. Utilizing the matrix-
geometric approach and Adaptive Network-Based Fuzzy Interference System (ANFIS) for 
calculating performance indices and the cost function, it has been shown that the model can be 
used in a real-time system. By comparing the results from ANFIS and the numerical results, we 
can demonstrate the usefulness of a neural-fuzzy tool to assess the performance of queueing 
systems based on commercial and technological standards. Lastly, this strategy can be further 
applied to more realistic scenarios, such as those with the concepts of a phase-type arrival and 
impatient customer, standby servers and Markovian models like MAP/PH/1 and GIX/Geo/1 
queues.
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Abstract 

In the paper considered the research expediency classification of statistical data according to the 

given varieties of signs. The researching carried out based on modeling of small and 

multidimensional samples to statistical distribution functions. A discrepancy found in the 

estimation of the mathematical expectation of the average values of sample implementation, to 

overcome this inconsistency, a new method for modeling samples of random variables is proposed. It 

established that the classification in the literature data carried out according to the varieties of signs 

accepted in the classifiers without control of expediency. The causes of errors arising in the 

evaluation of Kolmogorov statistics as the largest in absolute deviation are analyzed the deviation 

between statistical distribution functions of the population and sample using simulation modeling, 

fiducially intervals and the theory of testing statistical hypotheses. These erroneous calculations 

with a small number and multidimensionality of sampling implementations double increases of the 

Type II Error. Finally, the result showed the advantages of the new method in comparison with 

Kolmogorov’ criterion via checking representativeness of sample.  
 

Keywords: representativeness, reliability indices, varieties of signs, statistical 

distribution function, simulation modeling, fiducially intervals, testing statistical 

hypothesis, type I and II errors, sample, population, multidimensionality 

  

 

1. Introduction 
 

In the paper presents the results of a study most difficult case of estimating the statistical 

distribution function for a given varieties of signs. An analogue of the problem solved is the 

Kolmogorov's criterion with the significant difference that the statistical distribution function here 

compared with the analytical distribution of a random variable. The practical application of this 

criterion is often erroneous, since it is not the Kolmogorov' statistics that is compared with the 

critical value, but the magnitude of the largest difference between the given distribution function 

and the statistical distribution function of a random sample, which is similar to it. It shown that 

reducing the risk of an erroneous decision in a situation where the deviation between the 

distributions functions is doubtful achieved by taking into account the magnitude of the Type II 
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Error. The study of this important issue allowed us to identify the main cause of this error and 

indicate the way to eliminate it. By the above criteria, the representativeness of the sample is 

recognized only under the condition that the significance of the statistics “the greatest value of a 

random variable” in comparison with other statistics is significantly higher. 

 The main assumption is the possibility of presenting the statistical data of operation via 

representative sample from the population of these data, i.e. these data appear homogeneous. The 

reliability indices calculated here are naturally averaged characters. In reality, the data belongs to 

the class of multidimensional data. However, due to the lack of methods for analyzing 

multidimensional data, they are mistakenly taken as an analogue of the general population, and 

calculations of reliability’ indices and characteristics are carried out using methods that focus on 

analyzing samples from the general population, i.e. data with one constant distribution law. In 

turn, this assumption leads to erroneous decisions with all the ensuing consequences. Therefore, 

reliability ensuring provides for the possibility of comparing estimates of reliability indices of 

specific electrical equipment, i.e. the transition from the average reliability indices to indices of 

individual reliability.  

 In analyzing the reliability of electric power system equipment, the classification of 

operation statistics data carried out on one, and sometimes on two signs. Classification of statistical 

data on more than two signs not practiced. The reason for this is the diversity of the varieties of 

signs and the decrease in the accuracy estimates of reliability indices. The decrease in accuracy 

goes because of the assumption that the statistical data corresponds to a random sample from general 

population.  

Statistical data characterizing the reliability of electric power system equipment (information 

on non-operating states) depend on a large number of passport and operational data (installation 

site, voltage class, design, service life and other signs.). That is why they cannot be considered either 

as an analogue of the general population, or as a finite sample of homogeneous data. Firstly, 

multidimensional data set not only by a set of random variables characterizing the reliability of the 

studies objects, but also by set of varieties of signs characterizing each random variable.  

 When classifying the multidimensional statistical data for a given varieties of signs, sample 

data is extracted non-randomly from a finite population of multidimensional data. A non-random 

sample consists of random variables and the distribution’ features in the variation’ interval of 

random variables of a finite population of multidimensional data depend on the varieties of signs. 

The type of distribution law for a finite population of multidimensional statistical data not known 

and systematically changes randomly as statistical data accumulated. The change’ interval of a 

random variable in a sample from finite population of multidimensional statistical data for a given 

varieties of signs is no longer than the change’ interval of a random variable in the finite 

population.  

 These features allow us to conclude that the use of classical methods for analyzing samples 

from the general population for analyzing samples from a finite population of multidimensional and small 

volume data leads to an increase in the risk of an erroneous decision. 

 

2. Methods 
 

The method and algorithm for calculating statistical distribution function (s.d.f.), which 

characterizes the largest deviation of F() and )(
*
sF , provided that )(

*
sF  is unrepresentative, 

consists of the following sequence of calculations: 

1. The next (from the required N implementations) sample of n random numbers is 

simulated; 

2. Forming s.d.f. of )(
*
sF ; 
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3. The largest divergence between F() and )(
*
sF  is determined. We denote this value as 

n,emp, where the index “emp” corresponds to the empirical character of the sample. 

Having determined the statistical characteristics of this sample { )(
*
sF  and n,emp}, we 

proceed to the formation of )
*

(
*

nF   according to the realizations of the greatest 

divergence between the distribution functions F() and the set (N). )(
*
sF , modeled on 

)(
*
sF . For what: 

4. According to )(
*
sF is forming distribution: where i=1,(n+1); - is random variable with 

a uniform distribution in the interval [0,1]; 













+

+
+−+

−
+

+

−



=

1n1

1n1
)1)(1(

)(

1

1

10

)(
*












if

if
nii

i

n

i

if

sF

        

(1) 

5. On standard RAND() program is simulation random number  with a uniform 

distribution in the interval [0,1]; 

6. On the distribution (1) is calculation a random number  corresponding to probability . 

Calculations are carried out according to the formula: 

])1()1()[1( −−+−++= iniii 
   

(2) 

with i=1,(n+1) 

7. Items 5 and 6 are repeated n times; 

8. On the sampling of {}n builds s.d.f. )(
*
sF ; 

9. The largest divergence between F()  and )(
*
sF  is determined. Denote it by 

*

n ; 

10. Items (59) will repeat N times; 

11. The average value of the random variable 
*

n  is determined. Denote it by )
*

(
*

nM  ; 

12. According to N values of 
*

n , s.d.f. of )
*

(
*

nF  is formed [1]. 

If we assume that distribution )*(* nF   corresponds to the normal distribution law, and the 

average value of )
*

(
*

nM   is equal to n,emp and corresponds to 5,0)
*

(
*

== nF , then for all 

implementations of n,emp, the probability of which is 0.1<<0.5, preference should be given to 

assumption Н2. However, the assumption about distribution function of normal law of the 

)*(* nF   does not correspond to reality. As an example, figure 1 shows a histogram of the 

distribution of implementations 
*

n  for s.d.f. )(* sF  given in table 1. 
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Figure 1. The histogram of implementations 
*

n   

Experimental studies have established that: 

− evaluating of the expediency of data classification by comparing the boundary values of 

confidence intervals of reliability indices is associated with an increase in the risk of erroneous 

decisions; 

− the error in using the absolute value of the largest discrepancy between ( )*F  and ( )*sF  

instead of the calculated value of Kolmogorov's statistics is in the difference of their distribution 

functions, and, consequently, in the critical values [2]. 

− the regression equation of boundary values of fiducially intervals obtained by the standard 

program of the power transformation with determination coefficient R2 (R2>0,999) looks like: 

( )
1H =

5,0−
− sAn  

( )
1H = ( ) 1

1
−

−− snH where A=0,652 175,0−  

at 05,0=  

( )
1H = - 1,12

5,0−

sn  

( )
1H = 

1
)
5,0

12,11(
−

− snsn  

− the reducing risk of an erroneous decision is achieved by taking into account the significance 

of the difference in the distribution of random variables of the divergence between the 

population's s.d.f. and data sampling. 

In this regard, there is a need for modeling s.d.f. statistical parameters of random variables [3]. 

 

3. Results and Discussion 
 

  Classification of statistical data according to the given varieties of signs, firstly, presupposes 

the possibility to evaluating its expediency. 

One of the ways to characterize the expediency of data classification is to assess the nature of the 

divergence of the s.d.f. a finite population of multidimensional data and a sample of this 

multidimensional data for a given varieties of signs. 
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Thus, the developed method and algorithm determines the most significant varieties of 

signs and, therefore, the working sample at each stage of the classification of multidimensional 

data. Reducing the risk of erroneous classification of multidimensional statistical data carried out 

by evaluating the expediency of such a classification. The basis of the comparison between ( )XF
*
  

and ( )XsF
*

 is the statistical modeling of sn  pseudorandom numbers   equal to the number of 

random variables of the sample, with a uniform distribution in the interval [0,1]. A precondition 

for this is the random nature of the difference between ( )*F  and ( )*sF . 

The representative nature of sample  
sn

 , in solving the problem of evaluating the expediency of 

classifying multidimensional data controlled by the Kolmogorov’s criterion. According to this 

criterion, sample  
sn

  is not representative if: 

)1(, −
n
DnD                                                                  

(3)
 

where:     ),max(
−+

= nDnDnD                           (4)
 

    niiDnDiDnD 
−

=
−+

=
+

1;max;max
                (5) 









−=

+
i

n

i

iD 

         (6)

 








 −
−=

−

n

i

iiD
1



                        

(7) 

)1(, −nD  - is the critical value of the statistics nD , provided that ( )*F  and ( )*sF  differ 

randomly. 

In Kolmogorov’s criteria it is noted that the evaluation of nD by formula, 

  niiDnD 
+

=
+

1;max
                                          

(8) 

leads to incorrect decisions about the ratio of ( )*F  and ( )*sF . The reason for this discrepancy 

not specified. For an indefinite in advance n, a decrease in the calculation time, is achieved by 

using the exact Stephens approximation, which tabulated critical values of Dn,(1-), depending on n 

and  reduces to a dependence only on . The sampling {}n is unrepresentative if: 

− 1Svn
DA

                    
(9) 

where     













++=

vn
vnA

11.0
12.0               (10) 

For example, for ns = 4, the value of A = 2.175 and for  = 0.1 the critical value is  

S1- = 1.224, and for  = 0.05, the value is S1- = 1.358.   

 The application of the inverse problem-solving method, where it is known in advance that 

sample {}n is unrepresentative, has shown that the criteria (3) and (8) for the most commonly used 

in practice values of =0.05 and =0.1 do not establishes the non-random nature of the divergence 

between )(
*
F and )(* sF  at less ns only for those cases where it is not in doubt.       

For example: To confirm this statement, consider the following example. Let random numbers  

have a uniform distribution F() in the interval [0.5; 1]. A random sample {}n with n=4 is 

specified: {0.86346; 0.50672; 0.91424 and 0.67210}. Let us check the assumption of the 

representativeness of this sample for the uniform distribution law of the random variable  in the 

interval [0,1]. The calculations’ results gave in table 1. 
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Table 1. An example of representativeness of the sample 

i )( iF   ni  +
iD  

−
iD  Note 

1 

2 

3 

4 

0.507 

0.672 

0.863 

0.914 

0.25 

0.5 

0.75 

1.00 

-0.257 

-0.172 

-0.113 

+0.086 

+0.506 

+0.422 

+0.363 

+0.164 

086.0D i =
+ ; 506.0D i =

−  

Dn=0.506; Dn<D4; 0.9=0.565 

ADn=1.101; 

ADn<S0.9=1.224 

  

As follows from table 1, sample {}4 does not contradict the assumption of representativeness with 

respect to )(F   with  = 0.1  

 These features and some assumptions about the reasons for their occurrence required to 

move from the analysis of the absolute values of the largest difference the discrepancy nD , to the 

analysis of the distribution of the largest absolute value of the implementation of vertical 

discrepancy F() and ( )*sF , which we denote as n.  The use of type formulas: 

ni
n

i

in −= 







1max 

                

(11) 

when calculated on a computer leads to erroneous results. For example, according to the data of 

Table 1, the maximum value among the four implementations of the value of 
+
iD  will be

086.0=
+
iD , and the largest in absolute value vertical divergence between F()  and )(

*
sF  will 

be equal to 256.01 −=
+

D . 

 

 

Figure 2. Block diagram of the algorithm for calculating the largest divergence distributions F() and )(
*
sF  

 

The systematization’ results of these implementations presented in Table 2 allow us to conclude: 
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Table 2. Some evaluation results of s.d.f. F*(n) 

F*(∆n) 

n 

 

0,025 

 

0,05 

 

0,1 

 

0,2 

 

0,3 

 

0,4 

 

0,5 

 

0,6 

 

0,7 

 

0,8 

 

0,9 

 

0,95 

 

0,975 

2 

3 

4 

5 

6 

7 

11 

16 

22 

29 

40 

60 

90 

120 

150 

-0.842 

-0.7094 

-0.623 

-0.567 

-0.523 

-0.481 

-0.389 

-0.33 

-0.280 

-0.246 

-0.208 

-0.173 

-0.142 

-0.122 

-0.110 

-0.775 

-0.635 

-0.567 

-0.511 

-0.469 

-0.438 

-0.353 

-0.295 

-0.253 

-0.219 

-0.187 

-0.156 

-0.127 

-0.110 

-0.099 

-0.684 

-0.566 

-0.494 

-0.449 

-0.411 

-0.384 

-0.309 

-0.258 

-0.221 

-0.193 

-0.164 

-0.137 

-0.111 

-0.096 

-0.086 

-0.551 

-0.471 

-0.414 

-0.370 

-0.338 

-0.318 

-0.255 

-0.215 

-0.183 

-0.160 

-0.136 

-0.114 

-0.092 

-0.080 

-0.071 

-0.473 

-0.400 

-0.355 

-0.318 

-0.292 

-0.274 

-0.219 

-0.184 

-0.157 

-0.138 

-0.119 

-0.097 

-0.079 

-0.068 

-0.062 

-0.149 

-0.335 

-0.302 

-0.274 

-0.252 

-0.235 

-0.189 

-0.158 

-0.135 

-0.119 

-0.102 

-0.083 

-0.068 

-0.059 

-0.053 

-0.363 

-0.296 

-0.253 

-0.232 

-0.215 

-0.201 

-0.110 

-0.134 

-0.113 

-0.099 

-0.084 

-0.069 

-0.055 

-0.047 

-0.042 

-0.304 

-0.252 

-0.217 

-0.190 

-0.173 

-0.162 

-0.129 

-0.103 

-0.083 

-0.068 

-0.050 

0.054 

0.051 

0.047 

0.041 

-0.239 

-0.200 

-0.173 

-0.147 

-0.127 

-0.113 

-0.097 

0.107 

0.105 

0.098 

0.089 

0.077 

0.067 

0.060 

0.053 

-0.060 

-0.145 

0.155 

0.164 

0.171 

0.165 

0.160 

0.150 

0.137 

0.126 

0.112 

0.096 

0.081 

0.072 

0.065 

0.184 

0.231 

0.240 

0.246 

0.244 

0.235 

0.216 

0.194 

0.176 

0.158 

0.140 

0.118 

0.100 

0.089 

0.079 

0.285 

0.299 

0.319 

0.309 

0.303 

0.290 

0.260 

0.232 

0.210 

0.186 

0.164 

0.138 

0.116 

0.102 

0.092 

0.343 

0.372 

0.377 

0.360 

0.358 

0.342 

0.302 

0.264 

0.235 

0.212 

0.185 

0.155 

0.130 

0.114 

0.104 

 

1. The quantiles of the F*(n)= distribution with n2 are equal in magnitude and opposite in 

sign (the difference in sign is due to the difference in formulas (6) and (11) to the quantiles 

of the distribution F(Dn)=2; 

2. The distribution of 𝐹*(Δ𝑛) is asymmetrical. For illustrative purposes in figure 3 are s.d.f. 

F*(n) for ns. It is precisely the assumption about the symmetry of the distribution F(n) 

that can explain the discrepancy between the probability of almost equal quantiles of the 

distributions F*(n) and 𝐹(𝐷𝑛); 

3. The smaller n is, the greater the negative value of n in sign, since n=(n-1). According to 

experimental data, the smallest n value for n = 2 turned out to be n= -0,992, and the 

largest n=+0,489 with supremum’s equal to 1 and 0.5 respectively; 

4. In the distribution F*(n), we will distinguish between lower Δ𝑛 and upper Δ𝑛 boundary 

values with a significance level , i.e. 

( )

( ) 






−=

=

)21(
*

2
*





nF

nF

    

(12) 

5. It was established that at 0,25F*(n)0,75, i.e. at 0,5 









+−= n

n
n

1

    

(13) 

For example, for n = 4 and =0.1 in accordance with the distribution of F*(n) (see table 2) the value 

of 567.04 −= , and 319.04 += . At the same time, according to the formula (13): 

-(0,25-0,567)=0,317= 4  

If n = 29 and  = 0.2, then 193.0−=n , and 158.0n = . The value of n  by the formula (13) is 

- (0.034-0.193) = 0.159. 
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Figure 3. S.d.f. of F*(n) for numbers ns 

In figure 4 shows the histograms of the distribution of negative and positive values of n for n = 4 

and n = 29 

 

Figure 4. Histograms of the distribution of the greatest divergence of distributions F() and )(
*
sF  

As follows from figure 4, negative values of n significantly exceed positive values of n in relative 

number and range of change. Based on paragraph 3, it is clear that this is not accidental and does 

not indicate that the sample is not representative. With increasing n, the ratio of negative and 

positive values of n decreases and tends to unity. For n = 2, negative values of n are 87.5%, and 

for n = 29, 61%, and for n = 150, 55%. Thus, even for n = 150, the quantiles of the distribution F*(n) 

for  = 0.05 and  = 0.95 are not equal to [–0.099; +0.092]. The histograms also explain the patterns 

of distribution F*(n) shown in Figure 3. 

 Figure 5 shows the curves of changes in the boundary values statistics n for a number of 

values s.d.f. F*(n). The criterion for controlling the representativeness of sample {}n with 

significance level  in this case is: 

 

n < n< n                          
(14) 
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Figure 5. Regularity change of the boundary values to the greatest divergence of the distributions F() and 

)(
*
sF  

Denote positive values of n by 
+ n

, and negative values - 
− n

. Taking into account paragraph 1 and 

equation (13), a sample {}n with a significance level of 0,5 can be taken as representative if: 

















−


−


−
−


+



)21,(

1

)21,(





n
Dn

n
n
Dn

                     

(15) 

whereas: 

−
=+

+
 








n

n
n

1
 

criterion (14) for significance level  can be represented as: 

)21(,

1

−
=

−
=+

+
 








n
Dn

n
n

          

(16) 

Here it is necessary to pay attention to the inconsistency of the equations of significance of n and 

dn,(1-2). 

 If we look at Table 1, it is easy to see that the interval criterion (12), which allows you to 

take into account the sign of the greatest divergence n, is also unable to establish the non-

representative nature of the sample {}n . 

 It is known that reducing the risk of an erroneous decision when classifying data can be 

achieved by considering not only Type I Error, but also of the Type II Error [4]. 

 The simplest solution to this problem would be to compare n between F() and )(* sF  

with the boundary values of the interval  nn  ;  corresponding to the significance level =0,5. 

This is the limiting case of values  when n=0. The Type II Error is =(1-), i.e. also equal to 0.5. If 

 is taken less than 0.5, then the Type II Error  increases. In real conditions: 

- configurations F() and )(* sF  are different, i.e. n0; 

- for the same values of n, (+) is less than or equal to one; 

- as n increases, (+) decreases, reaches its minimum (n,opt) and then increases; 

- if n<n,opt, then >, if n>n,opt, then <; 

- the difference between  and  increases as the difference between n and n,opt 

increases. 
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Comparison of the implementations of n with the boundary values of n  and n , 

calculated respectively for 25,0)(
*

=nF  and 75.0)(
*

=nF , makes it possible not to calculate 

s.d.f., which determines the Type II Error , which can be attributed to the advantages of this 

method. Its disadvantages are the need to double the number of simulated implementations of the 

distribution )(* sF , the unjustified reduction of the disperse n, the heuristic approach. 

 

Conclusions 
 

1. Statistical data on the reliability of Electric Power System’ equipment and devices are a 

finite population of multidimensional data. Therefore, the use of classical methods of analyzing 

samples from the general population for analyzing samples from multidimensional data leads to 

an increased risk of erroneous decisions; 

2. Research of the accuracy of existing methods for modeling random variables according 

to s.d.f. showed that the discrepancy between the accuracy of the methods is manifested only 

when the number of implementations of the sample 20sn . A new method of modeling random 

numbers by s.d.f. is recommended; 

3. Experimental researches have established that with the significance levels of assumptions 

used in practice, if the critical value of Kolmogorov’s statistics at significance level   is equal to 

the estimate of the magnitude of the largest divergence, then the significance level of this estimate 

will be equal to 0,5 ; 

4. Reducing the risk of an erroneous decision is achieved by taking into account the 

significance of the difference in the distribution of random variables of the divergence between the 

s.d.f. of population and data sampling; 

5. Assessing the appropriateness of data classification requires the involvement of 

simulation modeling of realizations of random variables, involving the mathematical apparatus of 

the theory of testing statistical hypotheses and fiducial probabilities. 
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Abstract 
 

In this article an attribute control chart is designed for the Exponentiated Inverse kumaraswamy 

distribution under a time truncated life test by assuming the life-time of the item follow the selected 

Exponentiated Inverse Kumaraswamy distribution with known parameters. In order to limit the cost 

of checking the quality of an item in any industrial process with time truncation, this process is much 

useful. By considering the average number of defective items from a specified lot that are failed before 

the time limit, the attribute control limits are constructed. The control chart is determined using 

Binomial distribution based on the Upper and Lower control limits. The functioning of the designed 

control chart is examined with the average run length (ARL) values. The control chart constants and 

limits are calculated for specific ARL values with assumed parameters at different sample sizes for an 

in-control process. These control chart constants are obtained by considering different combinations of 

parameters of the assumed distribution.   With these in-control limits the ARL values are observed by 

shifting the parameter values. A simulation analysis is developed by taking a specific number of 

observations in each sample and the average number of failures from each sample is considered as a 

statistic to establish the execution of the control chart for a specified ARL at a particular shift in 

parameter. With that statistic of average number of failures from the samples the control chart is 

prepared. It is observed a specific change in defective number when there is shift in parameter values. 

The results are illustrated with an example. 

 

Keywords: Exponentiated Inverse Kumaraswamy distribution; attribute control 

chart; time truncated life test; average run length; simulation. 

 

1. Introduction 

 
To examine the quality of an article in industrial production, control charts are much helpful. 

Simultaneously it is very important to maintain the standards or even to improve the quality of 

article to meet customer satisfaction levels. It requires a regular monitoring to assess the quality of 

the articles. To face the competition in the market it is very important to complete this screening 

process with less cost and within a shortest possible time. It is a common practice that the process 

is considered to be in control when the examined statistic values lies within the control limits 

known as  Upper and Lower control limits (UCL and LCL) that are also believed as the extremities 

for specification of the product’s quality. If the sample points exceeding the limits then the 

production procedure is treated as intemperate and these items are considered to be defective or 
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imperfect. In terms of reducing the defective items or refining the quality of the items in a less span 

of time and with minimal cost, the control chart methods are much beneficial.  

In general we have two kinds of control charts for variables and attributes. Variable control 

charts can be applied to any quality characteristic that is measurable. Whereas attribute control 

charts are useful in classifying defective and non-defective items in the production process.      

There are several studies designed by various authors that the construction and implementation of 

different attribute and variable control charts.   A few of them are Epprecht et al.[1] studied about 

the  Adaptive control charts for attributes. Wu et al. [2] prepared an optimal np chart with 

curtailment. Ho and Quinino [3] discussed the monitoring process of variability through an 

attribute control chart. Wu and Wang [4] proposed   np-control chart using double inspection. 

Further, some more attribute and variable controlcharts also established in Chiu and Kuo [5], A.D. 

Rodrigues et al. [6], Joekes and Barbosa [7], Arif et al. [8], and Shafqat et al. [9]. 

Generally most of the constructing processes of control charts are based on the supposition 

that the quality of items follow normality. While some circumstances where the its characteristic is 

unknown or doesn’t follow the normal distribution. Various authors developed the procedure for 

the construction of control charts for non normal distributions, for example:  Bai and choi [10], 

Chang and Bai, [11], Al-Oraini and Rahim [12],  Aslam et al. [13]  and Lin and Chou [14]. 

As it is essential for any industry to sustain in the competitive market by manufacturing 

more reliable products with less cost, with less manpower in a short period time it requires less 

time for inspection of defective products.   To achieve this, it is necessary to have a time truncated 

life test based control chart. Hence, preparing a control chart for monitoring a non-normality 

characteristic product under the time truncated test is preferred to inspect the lifetime of the 

product.   

Various authors proposed articles to expand the methodology of constructing control charts for 

various distributions under time truncated life test. A few references of such models are Aslam 

and Jun [15] developed a time truncated life test(TLT) based attribute control chart for Weibull 

distribution. Aslam et al. [16] designed a TLT based control chart for Pareto distribution of second 

kind. Similarly, Rao [17] proposed for exponentiated half-logistic distribution. Rosaiah et al. [18] 

considered for exponentiated Frechet distribution. Shruthi. G and O.S.Deepa [19] monitored ARL 

for Exponentiated distributions under TLT.  Rao et al. [20] introduced TLT based chart for Dagum 

distribution. Adeoti and Ogundipe [21] developed for generalized exponential distribution under 

TLT. Rosaiah et al. [22] designed for type-II generalized log logistic distribution. Jafarian-Namin et 

al. [23] studied an efficient design of attribute control chart under TLT for weibull distribution. G. S 

.Rao and Al-Omari [24] designed for Length-Biased Weighted Lomax Distribution. Baklizi and 

Ghannam [25] proposed a TLT based attribute control chart for the inverse Weibull distribution. 

Our interest is to develop an article of TLT based attribute control chart for monitoring the quality 

process when the lifetime of an article follow Exponentiated Inverse kumaraswamy distribution 

(EIKD).  To monitor the functioning of a control chart ARL is general procedure which gives the 

average number of values that must be considered before an observation signals as out-of control.  

The ARL is determined as𝐴𝑅𝐿 =
1

𝑃
; here 𝑃 is the probability of any observation indicates out of 

control. The article is summarized in the following way: a concise introduction of the 

Exponentiated Inverse kumaraswamy distribution (EIKD) is provided in section-2, design and 

execution of control chart with calculations of ARL values when the parameter is shifted for EIKD 

is discussed with an application in Section-3. The process is evaluated with an analysis of 

simulation data in section-4.  Few closing remarks are specified in Section-5.  

 

2. Exponentiated Inverse Kumaraswamy distribution 

 
The probability density function (pdf) of the Exponentiated inverse Kumaraswamy distribution 

(EIKD) is  

𝑓(𝑥) = 𝛼𝛽𝜆(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽𝜆−1  ; 0 < 𝑥 < ∞,   𝛼, 𝛽, 𝜆 > 0 (1) 
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Its cumulative distribution function (cdf) is given by,          

𝐹(𝑥) = [1 − (1 + 𝑥)−𝛼]𝛽𝜆 ;  0 < 𝑥 < ∞,   𝛼, 𝛽, 𝜆 > 0                                                (2) 

Where  α, β and λ are shape parameters 

The mean of EIKD is𝐸(𝑋) = 𝜆𝛽 𝐵 (1 − 1

𝛼
 , 𝛽𝜆) ,    𝛼 > 1 

The Reliability function is  

𝑅(𝑥) = 1 − [1 − (1 + 𝑥)−𝛼]𝛽𝜆                                                                                     (3) 
 

and the Hazard function is  

𝐻(𝑥) =
𝛼𝜆𝛽(1+𝑥)−(𝛼+1)[1−(1+𝑥)−𝛼]𝛽𝜆−1

1−[1−(1+𝑥)−𝛼]𝜆𝛽   , 0 < 𝑥 < ∞  𝑎𝑛𝑑   𝜆, 𝛼, 𝛽 > 0                          (4) 

 

 

Graphs of the pdf, cdf, Reliability and hazard functions of EIKD for selected parameter values are 

plotted respectively. 

 

 

               
 

Figure 1: The pdf plots of EIKD                                               Figure 2: The cdf plots of EIKD 

 
 

 
 

               
 

Figure 3: Reliability function plots of EIKD                                    Figure 4: Hazard function plots of EIKD 
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 3. Designing of the control chart 

 
To construct the ‘np’ chart on the basis of defective articles in the production process the following 

methodology was implemented 

Step1: A sample of ‘n’ articles is considered randomly from every subgroup lot and apply 

time truncated life test for these articles. Consider the number of articles (D) that are out of order 

(failure) within the termination time𝑡0stated as 𝑡0 = 𝑎𝜇0, here 𝑎is constant related with target 

average life 𝜇0 when the process is supposed to be in-control. 

Step2: Declare the process is under control if D rests in the limits of LCL and UCL, else, if 

D>UCL or D<LCL it is declared as not in control. Since D is a distinct count out of a sample of ‘n’ 

items, it can be considered as a “Binomial variate” as𝑛 𝑎𝑛𝑑 𝑝 are parameters the control limits for  

in-control process are given as; 

. 𝑈𝐶𝐿 = 𝑛𝑝0 + 𝑘√𝑛𝑝0(1 − 𝑝0)                                                             (5a) 

. 𝐿𝐶𝐿 = 𝑀𝐴𝑋[0, 𝑛𝑝0 − 𝑘√𝑛𝑝0(1 − 𝑝0)]                                              (5b) 

 

Here′𝑃0′is the probability of an article is bungled earlier than𝑡0and it is determined from 

equation-(2) as"𝑝0 = 𝐹(𝑡0)"and k is the constant of the control chart. However, we state the process 

is in-control when𝜇 = 𝜇0(or the parameters    𝛼 = 𝛼0, 𝛽 = 𝛽0 𝑎𝑛𝑑 𝜆 = 𝜆0). Then𝑝0 is obtained from 

equation (2) as 

𝑝0 = 𝐹[𝑡0;  𝛼0, 𝛽0, 𝜆0] = [1 − (1 + 𝑡0)− 𝛼0]  𝛽0𝜆0 

= [1 − {1 + 𝑎  𝛽0𝜆0. 𝐵 (1 − 1

𝛼0
,   𝛽0𝜆0)}

− 𝛼0
]
  𝛽0𝜆0

                               (6) 

In real time applications, the probability𝑝0is typically unknown; then the limits for such 

situations are   

𝑈𝐶𝐿 = �̅� + 𝑘√�̅� (1 − �̅�
𝑛⁄ )                                                                          (7a) 

                     𝐿𝐶𝐿 = 𝑀𝑎𝑥 [0,  �̅� − 𝑘√�̅� (1 − �̅�
𝑛⁄ )]                                                         (7b) 

Here�̅�is mean count of failure articles in the samples. 

The probability𝑃𝑖𝑛
0 of confirming in control process of the planned chart is specified as 

𝑃𝑖𝑛
0 = ∑ (

𝑛
𝑑

) (𝑃0)𝑑𝑈𝐶𝐿
𝑑=𝐿𝐶𝐿+1 (1 − 𝑃0)𝑛−𝑑                                                           (8) 

 

𝑃𝑖𝑛
0 = 𝑃[𝐿𝐶𝐿 ≤ 𝐷 ≤ 𝑈𝐶𝐿/𝑃0]= 

∑ (
𝑛
𝑑

) {[1 − [1 + 𝑎𝛽0𝜆0. 𝐵 (1 −
1

𝛼0

, 𝛽0𝜆0)]
−𝛼0

]

𝛽0𝜆0

}

𝑑𝑈𝐶𝐿

𝑑=𝐿𝐶𝐿+1

{[[1 + 𝑎𝛽0𝜆0. 𝐵 (1 −
1

𝛼0

, 𝛽0𝜆0)]
−𝛼0

]

𝛽0𝜆0

}

𝑛−𝑑

 

                                                                                                   (9) 

The control charts efficacy can be examined by its “Average Run Length (ARL)”, and is defined 

when the process is under control as 

𝐴𝑅𝐿0 =
1

1−𝑃𝑖𝑛
0                                                                   (10) 

 

3.1. ARLs with a shift in Parameter 
 

 To examine the performance of the control chart with a shift in one of the parameter (λ) as 𝜆1 =

𝑐𝜆0, here c is specified as shift constant 

The probability of an article is out of order prior to the experimental time𝑡0is consider as𝑝1, 

and is obtained as    

𝑝1 = 𝐹[𝑡0;  𝛼0, 𝛽0, 𝜆1] = [1 − (1 + 𝑡0)− 𝛼0]  𝛽0𝜆1 
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= [1 − {1 + 𝑎  𝛽0𝜆0. 𝐵 (1 − 1

𝛼0
,   𝛽0𝜆0)}

− 𝛼0
]
  𝛽0𝑐𝜆0

                              (11) 

The in-control probability of the process with the parameter shift as  

𝑃𝑖𝑛
1 = ∑ (

𝑛
𝑑

) (𝑃1)𝑑(1 − 𝑃1)𝑛−𝑑𝑈𝐶𝐿
𝑑=𝐿𝐶𝐿+1                                                                 (12) 

𝑃𝑖𝑛
1 = 𝑃[𝐿𝐶𝐿 ≤ 𝐷 ≤ 𝑈𝐶𝐿/𝑃1]= 

∑ (
𝑛
𝑑

) {[1 − [1 + 𝑎𝛽0𝜆0. 𝐵 (1 −
1

𝛼0

, 𝛽0𝜆0)]
−𝛼0

]

𝛽0𝜆1

}

𝑑𝑈𝐶𝐿

𝑑=𝐿𝐶𝐿+1

{[[1 + 𝑎𝛽0𝜆0. 𝐵 (1 −
1

𝛼0

, 𝛽0𝜆0)]
−𝛼0

]

𝛽0𝜆1

}

𝑛−𝑑

 

(13) 

The ARL for the process shift is given as      

𝐴𝑅𝐿1 =
1

1−𝑃𝑖𝑛
1                                                                      (14)  

The approach for the calculations of intended chart is mentioned below 

(1) Choose the ARL (say𝑟0), parameter values (𝛼0,  𝛽0 𝑎𝑛𝑑 𝜆0), and the constant a.  

(2) Control chart parameters to be determined for a specified sample size n, provided𝐴𝑅𝐿0 which is 

specified in Eq-(10) very near to𝑟0that is𝐴𝑅𝐿0 ≥ 𝑟0. 

(3) The parameters obtained in previous step are utilized to calculate 𝐴𝑅𝐿1 as per the shift        

constant c using Eq-(14).  

The control limits of the chart are determined for various parameter values and𝑟0values that 

are shown in the Tables 1 through 8.We have noticed a rapid reducing tend in 𝐴𝑅𝐿1values with the 

decrement in shift value ‘c’. 

 
Table 1: 𝑨𝑹𝑳𝟏 Values for the designed chart with n=20; 𝝀𝟎 = 𝟏. 𝟓, 𝜶𝟎 = 𝟐. 𝟓 𝒂𝒏𝒅 𝜷𝟎 = 𝟐. 𝟓 

 

L C L 2 1 1 2 

U C L 14 13 14 15 

a 0.3224 0.2891 0.3246 0.3512 

k 2.8561 2.9154 2.9628 2.9965 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.088 250.258 300.372 370.897 

0.9 118.620 120.348 119.549 178.751 

0.8 49.315 46.023 46.680 71.215 

0.7 20.178 18.085 19.162 28.765 

0.6 8.803 7.716 8.452 12.287 

0.5 4.212 3.674 4.090 5.664 

0.4 2.273 2.014 2.231 2.888 

0.3 1.434 1.319 1.420 1.686 

0.2 1.095 1.058 1.091 1.178 

0.1 1.005 1.002 1.004 1.014 
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Table 2: 𝑨𝑹𝑳𝟏Values for the designed chart with n=20; 𝝀𝟎 = 𝟏. 𝟓, 𝜶𝟎 = 𝟐 𝒂𝒏𝒅 𝜷𝟎 = 𝟐. 𝟓 

 

LCL 5 1 0 1 

UCL 17 13 12 14 

a 0.4858 0.3015 0.2724 0.3328 

k 2.8126 2.8682 2.9864 2.9962 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.071 250.140 300.364 370.482 

0.9 162.945 120.234 111.599 149.679 

0.8 84.533 45.983 40.166 56.697 

0.7 39.198 18.072 15.478 22.461 

0.6 18.309 7.711 6.580 9.563 

0.5 8.865 3.672 3.172 4.471 

0.4 4.520 2.014 1.792 2.362 

0.3 2.479 1.319 1.229 1.462 

0.2 1.514 1.058 1.034 1.101 

0.1 1.094 1.002 1.001 1.005 

 
 

 
 

Table 3:  𝑨𝑹𝑳𝟏Values for the designed chart with n=20;  𝝀𝟎 = 𝟐,  𝜶𝟎 = 𝟐 𝒂𝒏𝒅 𝜷𝟎 = 𝟑 

 

LCL 5 1 1 0 

UCL 17 13 14 13 

a 0.5421 0.351 0.3909 0.3498 

k 2.6423 2.8645 2.9641 3.0125 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.555 250.200 300.514 370.295 

0.9 161.470 120.292 119.607 131.616 

0.8 83.529 46.003 46.699 47.893 

0.7 38.777 18.079 19.169 18.611 

0.6 18.146 7.714 8.455 7.885 

0.5 8.803 3.673 4.091 3.730 

0.4 4.497 2.014 2.231 2.033 

0.3 2.471 1.319 1.420 1.325 

0.2 1.512 1.058 1.091 1.059 

0.1 1.094 1.002 1.004 1.002 
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Table 4:   𝑨𝑹𝑳𝟏 Values for the designed chart with n=20;  𝝀𝟎 = 𝟐. 𝟓,  𝜶𝟎 = 𝟐. 𝟓 𝒂𝒏𝒅 𝜷𝟎 = 𝟑 

 

LCL 2 0 1 0 

UCL 14 12 14 12 

a 0.4198 0.3598 0.4221 0.3488 

k 2.7562 2.8163 2.9564 2.9688 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.081 250.221 300.745 370.192 

0.9 118.599 92.574 119.700 141.897 

0.8 49.306 34.284 46.731 49.380 

0.7 20.175 13.640 19.179 18.264 

0.6 8.802 5.984 8.458 7.455 

0.5 4.211 2.972 4.092 3.456 

0.4 2.273 1.726 2.231 1.885 

0.3 1.434 1.210 1.420 1.256 

0.2 1.095 1.031 1.091 1.039 

0.1 1.005 1.001 1.004 1.001 

 

 

 
Table 5:  𝑨𝑹𝑳𝟏 Values for the designed chart with n=30; 𝝀𝟎 = 𝟏. 𝟓,  𝜶𝟎 = 𝟐. 𝟓 𝒂𝒏𝒅 𝜷𝟎 = 𝟐. 𝟐𝟓 

 

LCL 9 3 6 8 

UCL 24 18 22 24 

a 0.4381 0.2897 0.2685 0.4246 

k 2.7864 2.8636 2.9238 2.9817 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.112 250.372 301.927 370.298 

0.9 166.463 90.656 122.171 270.239 

0.8 69.870 28.891 43.166 101.717 

0.7 26.828 10.262 16.265 36.301 

0.6 10.954 4.257 6.789 13.868 

0.5 4.923 2.138 3.227 5.846 

0.4 2.509 1.344 1.806 2.805 

0.3 1.507 1.067 1.232 1.597 

0.2 1.111 1.004 1.034 1.132 

0.1 1.006 1.000 1.001 1.007 
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Table 6:  𝑨𝑹𝑳𝟏Values for the designed chart with n=30; 𝝀𝟎 = 𝟏. 𝟓,  𝜶𝟎 = 𝟐 𝒂𝒏𝒅 𝜷𝟎 = 𝟐. 𝟓 

 

LCL 9 3 2 4 

UCL 24 18 17 20 

a 0.4657 0.3021 0.27939 0.3409 

k 2.7951 2.8783 2.9438 2.9857 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.157 250.489 300.090 370.029 

0.9 166.398 90.720 96.226 136.724 

0.8 69.836 28.908 29.187 43.416 

0.7 26.817 10.267 10.039 15.051 

0.6 10.951 4.258 4.087 5.950 

0.5 4.922 2.138 2.045 2.774 

0.4 2.509 1.344 1.301 1.584 

0.3 1.507 1.067 1.053 1.141 

0.2 1.111 1.004 1.003 1.014 

0.1 1.006 1.000 1.000 1.000 

 

 

 
 

Table 7:  𝑨𝑹𝑳𝟏Values for the designed chart with n=30;  𝝀𝟎 = 𝟐,  𝜶𝟎 = 𝟐 𝒂𝒏𝒅 𝜷𝟎 = 𝟑 

 

LCL 9 2 1 5 

UCL 24 17 16 21 

a 0.5207 0.3327 0.31 0.415 

k 2.7642 2.8645 2.9368 2.9864 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.133 250.941 300.492 370.132 

0.9 166.433 78.483 84.867 165.081 

0.8 69.854 24.700 25.461 53.743 

0.7 26.823 8.846 8.813 18.549 

0.6 10.952 3.744 3.651 7.198 

0.5 4.922 1.941 1.881 3.245 

0.4 2.509 1.271 1.241 1.766 

0.3 1.507 1.047 1.038 1.202 

0.2 1.111 1.002 1.001 1.025 

0.1 1.006 1.000 1.000 1.000 
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Table 8:  𝑨𝑹𝑳𝟏Values for the designed chart with n=30; 𝝀𝟎 = 𝟐. 𝟓,  𝜶𝟎 = 𝟐. 𝟓 𝒂𝒏𝒅 𝜷𝟎 = 𝟑 

 

LCL 9 3 4 8 

UCL 24 18 20 24 

a 0.5421 0.3848 0.43039 0.5279 

k 2.7123 2.8215 2.9452 2.9938 
 ARLo=200 ARLo=250 ARLo=300 ARLo=370 

C 1ARL
 1ARL

 1ARL
 1ARL

 
1 200.041 250.287 300.702 370.128 

0.9 166.565 90.609 103.844 270.558 

0.8 69.926 28.878 34.402 101.855 

0.7 26.846 10.259 12.545 36.343 

0.6 10.960 4.256 5.211 13.880 

0.5 4.925 2.137 2.545 5.849 

0.4 2.510 1.344 1.513 2.806 

0.3 1.507 1.067 1.122 1.598 

0.2 1.111 1.004 1.012 1.132 

0.1 1.006 1.000 1.000 1.007 

 

3.2 Application of intended chart 
 

To establish the applicability of the intended chart for the improvement of the quality of any 

manufactured article, we assume that the lifespan of the article follows the EIKD with parameters 

𝛼0 = 2.5, 𝛽0 = 2.25 𝑎𝑛𝑑 𝜆0 = 1.5. Consider the aimed mean life of the article is set as 1000 hrs 

with size of the sample n=20 of each group. If the target in control ARL value is fixed as𝑟0 = 300for 

the control chart, as shown in Table 1, we obtain a= 0.3246, k=2.9628. From Equation-(6) we get 

𝑝0 = 0.4221. Using Equations-(5a & 5b) the LCL and UCL are determined as LCL =1 and UCL = 14. 

Then, the functioning of the prepared control chart is as follows: 

Step 1: Take a sample of 20 articles from each subgroup and test their lifespan for period of 

324.6 hours.  Figure out the failure count of articles (D) through the test.  

Step 2: We assert the process is in-control if 1 ≤ D ≤ 14, if not it is not in control. 

 

4. Simulation study 
 

A simulation study is presented to monitor the applicability of the designed control chart. It is 

executed using EIKD with specified parameters and the construction process is as follows:   

 The data is originated using EIKD with parameters  𝛼0 = 2,  𝛽0 = 2.5 𝑎𝑛𝑑 𝜆0 = 1.5.A 

subgroup of 15 samples of size n=20 each are taken by considering the ARL as𝑟0 = 300.The process 

is affirmed as in control with these parameter values when𝜇0 = 3.5483.Another subgroup of 15 

samples each of size n=20 are taken from EIKD with shift in parameter𝜆1 = 𝑐𝜆0with shift value        

c =0.7. The control chart coefficient k=2.9864 is considered from Table 2, with ARL value as  

𝑟0 = 300 and n=20 when the process is in control.  

The termination time of the life-test will be𝑡0 = 𝑎𝜇0 = 0.2724 × 3.5483 = 0.9665. The 

number of articles that are failed before the termination time𝑡0is considered as D which is 

calculated and presented in Table 9 for each sample. The number of average failures is�̅� = 6, the 

control limits are determined from equations (7a & 7b) are UCL=12 and LCL=0. The points of 

failure count (D) of each sample are exhibited in Figure 5.  It is clearly observed that the planned 

chart indicated the shift at 18th sample (3rd sample after change in shift) while the corresponding 
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ARL value is 15. Thus the proposed chart effectively identifies the shift in this process.  

 

5. Conclusion 

 
In this article, we have designed a new ‘ np’  control chart by assuming lifetime of the 

product follows EIKD to monitor the quality of manufactured articles under time truncation. The 

designed chart is then assessed by ARL’s acquired from simulation study for different sample 

sizes; parameter values and objective in-control ARLs have been considered. The functioning of 

the intended chart is described with an explanatory example. For advance research, anyone can 

review applying the suggested control chart for any significant lifetime distribution. We have the 

feasibility to consider more quickened testing design to develop appropriate control charts for 

such circumstances. 

 

 
Table 9: The simulation Analysis 

 

 

 

1 2 3 4 5 6 7 8 9 
sample 

10       11 12 13 14 15 16 17 18 19 20 D 

1 2.10 3.23 1.14 0.53 2.34 2.41 0.84 0.06 2.06 3.02 2.27 0.45 0.52 3.45 3.21 2.51 2.11 0.15 1.56 1.33 6 

2 2.79 0.30 3.43 0.94 0.58 0.17 3.25 1.83 0.85 0.38 1.44 2.11 2.09 0.34 2.60 2.52 0.73 1.91 0.31 2.12 9 

3 1.18 2.15 3.23 1.61 0.08 3.37 1.51 2.20 2.84 2.84 0.52 2.69 0.94 2.10 3.52 3.30 1.82 2.98 1.28 0.52 4 

4 3.38 1.38 3.03 0.10 0.88 0.35 0.91 0.54 2.80 2.49 0.64 2.73 1.56 2.54 2.64 1.22 1.43 3.46 0.77 3.24 7 

5 3.25 0.64 2.58 0.69 0.36 0.81 3.55 2.96 1.15 1.07 1.07 2.01 3.00 1.40 2.68 0.88 0.69 2.57 1.74 3.25 6 

6 1.74 0.11 2.75 0.05 1.55 2.19 0.28 1.78 2.05 2.11 2.30 2.83 0.84 0.03 1.31 1.60 0.34 2.75 1.28 2.28 6 

7 3.35 2.75 1.77 0.32 2.32 3.27 2.15 1.76 1.65 1.07 0.17 2.60 1.33 3.36 0.53 2.39 2.90 3.14 3.54 0.44 4 

8 2.32 1.80 0.74 3.31 1.48 3.35 0.38 2.65 0.97 1.42 1.86 3.03 1.73 0.03 3.55 0.21 1.98 0.40 0.99 2.38 5 

9 1.23 1.05 3.49 3.45 0.49 1.87 1.97 2.78 2.67 1.76 1.96 1.12 2.32 1.43 3.04 1.46 2.34 0.62 3.15 1.10 2 

10 2.57 0.08 0.51 0.32 2.34 3.34 0.13 0.09 3.16 2.60 0.57 1.12 1.21 2.31 2.57 2.71 1.34 0.85 1.66 0.52 8 

11 2.65 2.46 2.20 2.70 2.64 0.13 1.10 1.54 1.93 0.19 3.26 2.41 2.40 1.84 0.20 1.58 2.89 0.18 0.84 2.53 5 

12 1.17 3.47 1.14 2.79 1.30 1.64 0.34 2.53 3.30 2.31 3.18 3.30 1.93 2.75 2.64 1.33 1.00 2.49 0.61 2.96 2 

13 1.18 0.58 1.24 0.61 2.04 2.93 1.52 2.79 2.60 1.00 1.72 2.39 3.10 1.96 1.32 2.87 0.62 2.25 1.76 1.63 3 

14 2.88 2.56 1.20 2.04 1.54 1.54 1.81 0.43 0.25 3.02 0.41 1.61 2.06 1.21 2.84 3.36 1.71 0.69 1.83 2.09 4 

15 2.23 2.80 3.48 0.95 3.34 2.70 2.64 3.13 2.66 0.99 0.06 0.28 2.66 2.00 2.27 2.09 0.56 3.37 0.04 1.95 5 

16 1.63 1.61 0.46 2.62 2.37 0.45 0.63 1.96 2.03 1.30 0.92 2.73 1.71 0.26 1.58 2.08 1.30 0.32 2.84 1.82 6 

17 2.12 0.04 0.22 0.05 0.60 2.12 0.94 1.23 2.58 1.21 1.37 0.95 2.19 0.30 1.20 1.85 0.53 0.39 0.93 1.46 10 

18 0.93 0.43 0.94 0.95 0.86 0.37 0.65 0.98 1.60 2.93 0.17 2.51 0.94 0.70 0.87 1.19 2.17 1.66 0.58 0.25 13 

19 2.51 1.74 0.31 2.66 1.58 0.57 1.58 0.80 2.33 2.90 1.34 2.04 1.41 1.77 2.82 0.13 2.81 1.82 0.34 2.58 5 

20 1.67 1.34 2.03 0.09 1.06 2.78 1.98 2.22 0.81 2.24 1.48 0.19 0.13 0.85 1.35 1.90 0.16 1.04 1.31 2.93 6 

21 1.16 1.00 0.57 2.45 2.17 2.91 0.15 2.08 1.70 2.94 0.50 1.62 2.04 1.47 0.86 2.75 2.36 1.61 0.69 2.68 5 

22 2.46 0.60 2.16 1.92 1.30 1.85 2.61 0.53 0.40 2.45 1.78 2.85 1.45 2.54 0.43 0.63 2.63 1.14 1.72 2.24 5 

23 0.99 0.25 2.70 2.79 2.41 2.95 1.26 1.82 2.30 2.06 0.88 1.18 2.45 2.53 0.45 2.36 2.09 0.18 0.34 2.95 5 

24 2.12 1.94 1.25 2.93 0.33 2.31 2.35 0.86 2.54 2.21 0.86 0.22 0.54 1.56 0.97 0.40 1.36 2.54 1.51 1.92 6 

25 2.10 0.03 1.26 1.60 0.69 0.16 1.06 0.51 0.95 0.94 0.95 1.92 0.59 0.70 2.65 2.39 0.56 0.10 0.54 2.53 12 

26 1.68 1.18 2.49 2.17 0.67 0.61 0.24 0.48 1.28 2.68 0.98 1.07 2.97 0.73 2.14 0.75 2.37 1.81 1.46 1.50 6 

27 2.81 1.35 1.02 1.20 1.76 0.85 0.88 2.29 2.27 2.44 1.44 0.73 0.28 2.75 1.40 0.65 1.42 2.37 1.10 1.94 5 

28 0.05 2.43 2.41 0.47 2.15 2.54 0.23 1.57 1.39 0.00 1.70 1.37 1.10 2.03 2.48 0.43 0.75 0.80 0.06 0.17 9 

29 2.99 2.57 1.53 2.41 2.16 0.99 0.44 1.77 2.12 0.95 1.03 1.96 2.72 0.22 2.01 1.88 1.59 1.22 2.19 0.33 4 

30 2.35 0.50 2.97 0.13 2.69 2.30 0.64 2.77 1.70 2.56 1.03 0.08 2.93 0.83 0.17 2.91 0.39 2.65 2.28 1.03 7 
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Figure 5: Control chart for simulation data. 
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Abstract 

 

In the area of distribution theory, statisticians have proposed and developed new models for 

generalizing the existing ones so as to make them more flexible and to aid their application in a 

variety of fields. In this article, we present a new distribution called the Type I Half-Logistic 

Exponentiated Weibull (TIHLEtW) Distribution with four positive parameters, which extends the 

Weibull distribution by two parameters. Some statistical properties of the TIHLEtW distribution, 

such as explicit expressions for the quantile function, probability weighted moments, moments, 

generating function, Reliability function, hazard function, and order statistics are discussed. A 

maximum likelihood estimation technique is employed to estimate the model parameters and the 

simulation study is presented. The superiority of the new distribution is illustrated with an 

application to two real data sets. The results showed that the new distribution fits better in the two 

real data sets amongst the range of distributions considered. 

 

Keywords: Type I Half-Logistic Exponentiated-G, Weibull distribution, Quantile 

function, Reliability function, Maximum likelihood, Order Statistics. 

 

1. Introduction 

All parametric statistical techniques, such as inference, modeling, survival analysis, and reliability, 

are based on statistical distributions. Fitting the data to a statistical model is a critical step when 

analyzing lifetime data. For this reason, a number of lifespan distributions have been established in 

the literature. The majority of lifespan models have a limited set of behaviors. Such distributions 

are unable to provide a better fit for all real scenarios. As a result, a variety of distribution classes 

have been created by expanding common continuous distributions. The generated family of 

continuous distributions is a new enhancement for developing and expanding classic distributions. 

The newly generated distributions have been extensively researched in a variety of fields, and they 

provide greater application flexibility.  
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One of the most well-known lifetime distributions is the Weibull distribution. It adequately 

represents many distinct forms of failures, both in components and in general. To deal with 

bathtub-shaped failure rates, various generalizations and extensions of the Weibull distribution 

have been proposed in the statistical literature. Mudholkar et al. [25] pioneered Exponentiated 

Weibull  distribution, the modified Weibull extension by Xie et al. [32] , flexible Weibull extension 

(FWEx) by Bebbington et al. [10], beta modified Weibull  by Silva et al. [30], Kumaraswamy  

Weibull by Cordeiro et al. [13],  transmuted  Weibull  by  Aryal  and  Tsokos [8], truncated Weibull 

distribution by Zhang and Xie [34], Kumaraswamy inverse Weibull by Shahbaz et al. [29],  

exponentiated generalized Weibull by Cordeiro et al. [15], McDonald modified Weibull by Merovci 

and Elbatal [24], beta inverse Weibull by Hanook et al. [19], transmuted additive Weibull by Elbatal 

and Aryal [17], McDonald Weibull by Cordeiro et al. [12], Kumaraswamy modified Weibull by 

Cordeiro et al. [14], transmuted complementary Weibull geometric by Afify et al. [1], 

Kumaraswamy transmuted exponentiated additive Weibull by Nofal et al. [27], generalized 

transmuted Weibull by Nofal et al. [26], Topp-Leone generated Weibull by Aryal et al.,[9], 

Kumaraswamy complementary Weibull geometric by Afify et al. [2], Marshall-Olkin additive 

Weibull by Afify et al. [3], Zubair–Weibull by Ahmad [4], alpha power transformed Weibull by 

Ahmad et al. [5], Topp Leone exponentiated weibull by Ibrahim [20] distributions. 

Bello et al. [11] proposed a new distribution family called the Type I Half-Logistic 

Exponentiated-G (TIHLEt-G) with two extra shape parameters. For any arbitrary cumulative 

distribution function as a baseline (cdf) ( ),H x  , the TIHLEt-G family with two positive shape 

parameters  and   has cumulative distribution function (cdf) and probability density function 

(pdf) given by 

1 [1 ( ; )]
( ; , , )

1 [1 ( ; )]
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H x
x

H x
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− −
=

+ −
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The cdf and pdf of the Weibull distribution are given as 

( ; , ) 1 xH x e
  −= − , 0,x  , 0                                                                                                      (3) 

1( ; , ) xh x x e
    − −= , 0,x  , 0                                                                                               (4) 

 

The goal of this paper is to develop a more flexible model by extending the two parameter 

Weibull distribution. The Type II half logistic Weibull (TIHLEtW) distribution is the name given to 

the new model. We develop the TIHLEtW distribution from Bello et al. [11] and provide some 

essential statistical properties. The layout of this paper is organized as follows:  Section 2 defines 

the TIHLEtW distribution. We obtained very useful and important representations for the 

TIHLEtW distribution in Section 3.  Section 4, some statistical properties such as probability 

weighted moments, moments, moments generating function, quartile function, reliability function, 

hazard function and order statistics are derived. The parameters of the new model were estimated 

using the maximum likelihood estimation (MLEs) approach in Section 5. The simulation study was 

conducted to show that the estimates are efficient and consistent using MLE in Section 6. The 

application of the new model to two real data sets was shown in Section 7 to demonstrate the use 

of the new model. Finally Section 8 concludes the paper. 
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2. Type I Half-Logistic Exponentiated Weibull (TIHLETW) Distribution 

 
In this section, we define a new model called TIHLEtW model, the random variable X is said to 

have a TIHLEtW model, if its cdf is obtained by inserting equation (3) in equation (1) as follows 

1 1 1

( ; , , , )

1 1 1

x

TIHLEtW

x

e
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−

  − − −
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  + − −
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and its corresponding pdf is 
1
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where   is a scale parameter and , ,    are shape parameters. 

 

3. Important Representation 
In this section, we derived a useful representation for the TIHLEtW pdf and cdf. Due to the fact 

that the generalized binomial series is  

( )
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For | | 1z  and   is a positive real non integer.  The density function of the TIHLEtW distribution 

is then obtained by using the binomial theorem (7) to (6). 
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Now, using the generalized binomial theorem, we can write 
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Then, the pdf can be written as: 
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In addition, an expansion for the  ( , , , , )
h

F x     is produced, with h being an integer, and the 

binomial expansion is worked out once more. 
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 Combining A and B, we obtain 
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The cdf can be written as: 
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Figure 1: Plots of Pdf of TIHLEtW distribution for different values of parameters. 

 

4. Statistical Properties 
 

In this section, we derived some statistical properties of the new of distribution. 

  

4.1. Probability weighted moments 
Greenwood et al. [18] introduced a class of moments known as probability weighted moments 

(PWMs). This class is used to derive inverse form estimators for the parameters and quantiles of a 
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distribution. The PWMs, represented by 
,r s , can be derived for a random variable X using the 

following relationship. 

, ( ) ( )( ( ))r s r s

r s E X F X x f x F x dx


−

 = =                                                                                          (10) 

The PWMs of TIHLEtW distribution is derive by substituting (8) and (9) into (10), and replacing h 

with s, as follows 
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The PWMs of TIHLEtW can be written as follows 

,
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4.2. Moments 

Since the moments are necessary and important in any statistical analysis, especially in 

applications. Therefore, we derive the rth moment for the new distribution. 

'

0

( ) ( )r r

r E x x f x dx


= =                                                                                                                          (13) 

By using the important representation of the pdf in equation (8), we have 

1

0
, , 0

( ) ( )r r x k

p
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− +

=

=                                                                                                          (14) 

Consider the integral 
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The rth moment for TIHLEtW distribution can be written as follows 

1
, , 0
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                                                                                                                    (15) 

Now 

1 ( 1) 1 ( 1) 1
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p
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The mean and variance of TIHLEtW distribution are as follows 

1 1
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and 
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1 1
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2 2
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4.3. Moment generating function (mgf) 

 
The Moment Generating Function of x is given as: 

( ) ( )
0

( )tx tx

xM t E e e f x dx



= =                                                                                                                  (18) 

where the expansion of  
0 !

m m
tx

m

t x
e

m



=

=  

The moment generating function of TIHLEtW distribution is given by 

1
, , 0 0
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x m m
i j k m

m
t

M t
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+
= =

 +
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                                                                                                            (19) 

 

4.4. Reliability function 

  
The reliability function which is also known as survivor function that gives the probability that a 

patient will survive longer than specified period of time. It is defined as 

2 1 1

( ; , , , )

1 1 1

x

x

e

R x

e











   

−

−

  − −
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  + − −
   

                                                                                            (20) 

 

4.5. Hazard function 

 
The hazard function is the probability of an event of interest occurring within a relatively short 

time frame and is defined as 
1

1 1
( ; , , , )

1 1 1 1 1

x x

x x

x e e
T x

e e

 

 


  

 
 


   

−
− − −

− −

 −
 

=
       + − − − −           

                                                        (21) 

 

 

4.6. Quantile Function 

 
The quantile function is a vital tool to create random variables from any continuous probability 

distribution. As a result, it has a significant position in probability theory. For x, the quantile 

function is F(x) = u, where u is distributed as U(0,1).The TIHLEtW distribution is easily simulated 

by inverting equation (5) which yields the Quantile function Q(u) defined as: 
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    = =  

 
 
 
 
 

                                                                                      (22) 

The first quartile, the median and the third quartile of TIHLEtW distribution are obtained by 

putting u = 0.25, 0.5 and 0.75, respectively in equation (22). 

 

  
Figure 2: Plots of hazard of the TIHLEtW distribution for different valves of parameters. 

 

 

4.7. Order Statistics 

 
Many areas of statistics including reliability and life testing have made substantial use of order 

statistics. Let X1, X2, ..., Xn be independent and identically distributed random variables with their 

corresponding continuous distribution function F (x). Let X1, X2,.., Xn be n independently 

distributed and continuous random variables from the  TIHLEtW distribution.  Let Fr:n(x) and 

fr:n(x), r = 1, 2, 3, ..., n denote the cdf and pdf of the rth order statistics Xr:n respectively. David [16] 

gave the probability density function of Xr:n as: 

( ) 1
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( , 1)

n r
v v r

r n

v

nf x
f x F x

vB r n r

r−
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=

= −
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− 


+


 
                                                              (23) 

By substituting equation (8) and equation (9) into equation (23), also replacing h with v+r-1 
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in equation (9). We have 
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(24) 

The equation above is called the rth order statistics for the TIHLEtW distribution. 

Let r = n, then the probability density function of the maximum order statistics of TIHLEtW 

distribution is 

1
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                            (25)         

Also, let r = 1, then the probability density function of the minimum order statistics of TIHLEtW 

distribution is 

1
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         (26)        

 

5. Parameter Estimation 

 
In this paper, we explore the maximum likelihood technique to estimate the unknown parameters 

of the TIHLEtW distribution for complete data.  Maximum likelihood estimates (MLEs) have 

appealing qualities that may be used to generate confidence ranges and provide simple 

approximations that function well in finite samples. In distribution theory, the resulting 

approximation for MLEs is easily handled, either analytically or numerically. Let x1, x2, x3, ..., xn be  

a random sample of size n from the TIHLEtW distribution. Then, the likelihood function based on 

observed sample for the vector of parameter (λ, α, θ, β)T is given by 
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The components of score vector 
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The MLEs are obtained by setting 
∂𝐿(𝜙)

∂𝜆
,
∂𝐿(𝜙)

∂𝛼
,
∂𝐿(𝜙)

∂𝜃
 and 

∂𝐿(𝜙)

∂𝛽
 to zero and solving these equations 

simultaneously. These equations cannot be solved analytically, so we have to appeal to numerical 

method. 

 

6. Simulation Study 

 
In this section, a numerical analysis will be conducted to evaluate the performance of MLE for 

TIHLEtW Distribution. 

 
Table 1: MLEs, biases and RMSE for some values of parameters 

               (3,2,2.5,2)                 (3,2,2.5,3) 

N Parameters  Estimated  

Values 

Bais RMSE Estimated  

Values 

Bais RMSE 

 

20 

  

  

  

  

3.0715 

2.1100 

2.8745 

2.8745 

0.0715 

0.1100 

0.3745 

0.8745 

0.7353 

0.8549 

0.9361 

1.2251 

3.0263 

2.2121 

2.9235 

3.9235 

0.0263 

0.2121 

0.4235 

0.9235 

0.7096 

0.9444 

1.0310 

0.9431 

 

50 

  

  

  

  

3.0412 

2.1008 

2.6588 

2.6588 

0.0412 

0.1008 

0.1588 

0.6588 

0.5405 

0.6248 

0.5958 

0.8740 

3.0242 

2.1454 

2.7069 

3.7069 

0.0242 

0.1454 

0.2069 

0.7069 

0.5472 

0.7306 

0.6429 

0.6757 

100   

  

  

  

3.0094 

2.1013 

2.5938 

2.5398 

0.0094 

0.1013 

0.0938 

0.5398 

0.3889 

0.4425 

0.3702 

0.6934 

 

 

3.0149 

2.0947 

2.6052 

3.6052 

0.0149 

0.0947 

0.1052 

0.6052 

0.3930 

0.5194 

0.4013 

0.5530 

250   

  

  

  

3.0552 

2.0518 

2.5044 

2.4044 

0.0552 

0.0518 

0.0044 

0.4044 

0.2985 

0.2713 

0.2159 

0.5487 

3.0133 

2.0286 

2.5114 

3.5114 

0.0133 

0.0286 

0.0114 

0.5114 

 

0.2430 

0.2740 

0.1853 

0.5225 

500   

  

  

3.0261 

2.0325 

2.5011 

2.3011 

0.0261 

0.0325 

0.0011 

0.3011 

0.1840 

0.1856 

0.1405 

0.4205 

3.0029 

2.0116 

2.5033 

3.2033 

0.0029 

0.0116 

0.0033 

0.2033 

0.1756 

0.1831 

0.1406 

0.4162 
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1000   

  

  

  

3.2149 

2.0201 

2.5009 

2.2029 

0.0149 

0.0201 

0.0009 

0.2029 

0.1380 

0.1243 

0.1096 

0.3147 

3.0014 

2.0006 

2.5010 

3.1010 

0.0014 

0.0006 

0.0010 

0.1010 

0.1136 

0.1067 

0.0891 

0.2069 

 

The table above shows the values of biases and RMSEs approach zero and the estimates tend to the 

initial (true) values as the sample increases, which indicates that the estimates are efficient and 

consistent. 

 

7. Applications to Real Data 

 
In this section, we fit the TIHLEtW distribution to two real data sets and give a comparative study 

with the fits to the Type II Exponentiated Half Logistic Weibull (TIIEHLW) distribution by Al-

Mofleh et al. [7], Half-Logistic Generalized Weibull (HLGW) Distribution by Masood and Amna 

[23], Exponentiated Weibull (EW) by Pal et al. [28], Weibull Distribution by Xie and Lai [33] and 

Topp-Leone Generated Weibull (TLGW) Distribution by Aryal et al. [9] as comparator distributions 

for illustrative purposes. 

The TIIEHLW distribution developed by Al-Mofleh et al. [7] has pdf defined as: 
1

1
1

1

1 1

( ; , , , ) 2 1
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f x x e e
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                                      (32) 

 The HLGW distribution developed by Masood and Amna [23] has pdf defined as: 

1
1

2

2 1 1 1
( ; , , )

1 1 1

x x exp x
f x

exp x

   



  
  



−
−     + − +     =
   + − +     

                                                          (33) 

The EW distribution proposed by Pal et al., [28] has pdf given as: 
1

1( ; , , ) 1 ( ) ( )f x x exp x exp x
         
−

−  = − − −                                                               (34) 

 The Weibull Distribution proposed by Xie and Lai [33] has pdf given as: 

1( ; , ) xf x x e
    − −=                                                                                                                           (35) 

The TLGW distribution developed by Aryal et al., [9] has pdf defined as: 
1

1 ( ) ( )

1

( ) ( )

( ; , , , ) 2 1

1 1 2 1

x x

x x

f x x e e

e e

 

 


   

 
 

    
−

− − −

−

− −

 = −
 

      − − − −
         

                                                                      (36) 

The two datasets used as examples in the application demonstrate the new proposed distribution 

flexibility, applicability, and "best fit" in modeling the datasets empirically when compared to the 

above comparator distributions. All of the calculations are performed using the R programming 

language. 
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Data set 1 
The first data set shown below represents the remissions times (in months) of a random sample of 

one hundred and twenty-eight (128) bladder cancer patients, previously used by Lee and Wang 

[22]: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 

5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 

9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02,4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25,8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

 

Figure 3: Fitted pdfs for the TIHLEtW, TIIEHLW, HLGW, EWD, WD, and TLGW distributions to the data set 1 

 

Table 2: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1 

Distributions         LL AIC 

TIHLEtW 3.4827 1.1097 0.7581 

 

0.5426 

 

-410.6609 

 

829.3218 

 

 TIIEHLW 0.2368 

 

0.8929 

 

0.2634 

 

1.1245 

 

-418.4258 

 

844.8516 

 

HLGW 1.0581 

 

0.6613 

 

0.2868 

 

 -412.4861 

 

830.9721 

 

EWD 1.1545 

 

0.1188 

 

 0.9861 

 

-413.1202 

 

832.2403 

 

WD   0.0939 

 

1.0478 

 

-414.0869 

 

832.1738 

 

TLGW 6.6269 

 

0.0219 

 

4.1785 

 

0.2522 

 

-442.2653 

 

880.5306 
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Table 2 presents the results of the Maximum Likelihood Estimation of the parameters of the new 

proposed distribution and the five comparator distributions. Based on the goodness of fit measure, 

the new proposed distribution reported the minimum AIC value, though followed closely by the 

HLGW. The visual inspection of the fit presented in Figure 3, also confirms the superiority of the 

proposed distribution amongst its comparators. Thus the new proposed distribution ‘best fit’ 

bladder cancer patients data set amongst the range of distributions considered. 

 

Data set 2 
The second data set shown below represents the life times data relating to times (in months from 

1st January, 2013 to 31st July, 2018) of 105 patients who were diagnosed with hypertension and 

received at least one treatment related to hypertension in the hospital where death is the event of 

interest, previously used by Umeh and Ibenegbu [31]:  

45, 37, 14, 64, 67, 58, 67, 55, 64, 62, 9, 65, 65, 43, 13, 8, 31, 30, 66, 9, 10, 31, 31, 31, 46, 37, 46, 44, 45, 30, 

26, 28, 45, 40, 47, 53, 47, 41, 39, 33, 38, 26, 22, 31, 46, 47, 66, 61, 54, 28, 9, 63, 56, 9, 49, 52, 58, 49, 53, 63, 

16, 67, 61, 67, 28, 17, 31, 46, 52, 50, 30, 33, 13, 63, 54, 63, 56, 32, 33, 37, 7, 56, 1, 67, 38, 33, 22, 25, 30, 34, 

53, 53, 41, 45, 59, 59, 60, 62, 14, 57, 56, 57, 40, 44, 63. 

 
Figure 4: Fitted pdfs for the TIHLEtW, TIIEHLW, HLGW, EWD, WD, and TLGW 

distributions to the data set 2 

 

Table 3: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2 

Distributions         LL AIC 

TIHLEtW 0.3906 

 

0.0877 

 

0.0016 

 

2.3771 

 

-446.1673 

 

900.3346 

 

TIIEHLW 0.0487 

 

0.5271 

 

0.3378 

 

1.1028 

 

-495.9288 

 

999.8576 

 

HLGW 1.3181 

 

0.7136 

 

0.0175 

 

 -475.625 

 

957.2501 

 

EWD 5.0005 

 

4.4779 

 

 0.1826 

 

-464.4788 

 

934.9575 

 

WD   0.0138 

 

1.1406 

 

-487.8239 

 

979.6479 

 

TLGW 10.8957 0.0120 0.0624 8.2172 -471.7036 

 

951.4072 
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Table 3 shows the results of the Maximum Likelihood Estimation of the parameters of the 

TIHLEtW distribution and the five comparator distributions. Based on the goodness of fit statistic 

AIC, the new distribution reported the minimum AIC value suggesting that the distribution is the 

‘best fit’ to the hypertension patients. The visual inspection of the fit presented in Figure 4, also 

reaffirms the superiority of the new distribution amongst its comparators. 

 

8. CONCLUSION 

 
In this article, we proposed and studied a new distribution called the Type I Half-Logistic 

Exponentiated Weibull Distribution using the family of distribution proposed by Bello et al. (2021). 

Explicit quantile function, probability weighted moments, moments, generating function, 

reliability function, hazard function, and order statistics were examined as statistical components 

of the new proposed distribution. The parameters are estimated using the maximum likelihood 

technique. We present some simulation results to evaluate the new distribution's performance.  In 

comparison to well-known models, two real data sets are evaluated to highlight the importance 

and flexibility of the new distribution. The findings reveal that the new distribution appears to be 

superior to the existing models considered, implying that it can be used to model data in a variety 

of applications. 

 

References 
[1] Afify, A.Z., Nofal, Z.M., and Butt, N.S. (2014). Transmuted complementary Weibull geometric 

distribution. Pak J Stat Oper Res; 10: 435-454. 

[2] Afify, A.Z., Cordeiro, G.M., Butt, N.S., Ortega, E.M.M., and Suzuki, A.K. (2017). A new 

lifetime model with variable shapes for the hazard rate. Braz J Probab Stat; 31: 516-541. 

[3] Afify, A.Z., Cordeiro, G.M., Yousof. H.M., Abdus, S., and Ortega, E.M.M. (2018). The 

Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate. 

Hacettepe J Math Stat; 47: 365-381. 

[4] Ahmad, Z. (2018). The Zubair-G family of distributions: properties and applications.  Annals of 

Data Science, 5, 1–14. 

[5] Ahmad, Z., Ilyas, M., and Hamedani, G. G. (2019). The extended alpha power transformed 

family of distributions: properties and applications.  Journal of Data Science, 17(4), 726–741. 

[6] Ahmad, Z., Elgarhy, M., and Abbas, N. (2019).  A new extended alpha power transformed 

family of distributions: properties and applications.  Journal of Statistical Modelling: theory and 

Applications, 1(1), 13–28. 

[7] Al-Mofleh Hazem, Elgarhy Mohamed, Afify Ahmed Z, and Zannon Mohammad (2020). Type 

II Exponentiated Half Logistic Generated Family of Distribution with Applications. Electronic 

Journal of Applied Statistical Analysis, 13(2), 536-561. 

[8] Aryal, G.R., and Tsokos, C.P. (2011). Transmuted Weibull distribution:  a generalization of the 

Weibull probability distribution. Eur J Pure Appl Math, 4: 89-102. 

[9] Aryal, G.R., Ortega, E.M.M., Hamedani, G.G., and Yousof, H.M. (2017). The Topp-Leone 

generated Weibull distribution: regression model, characterizations and applications. Int J Stat 

Probab; 6(1) 126-141. 

[10] Bebbington, M.  Lai, C.D. and Zitikis, R. (2007).  A flexible Weibull extension.  Reliability 

Engineering & System Safety, 92(6), 719–726. 

[11] Bello, O. A., Doguwa, S. I., Yahaya, A., and Jibril, H. M. (2021). A Type I Half Logistic 

Exponentiated-G Family of Distributions: Properties and Application. Communication in 

Physical Sciences, 7(3), 147-163. 

232



 
O.A. Bello, S.I. Doguwa, A. Yahaya, H.M. Jibril  
A TYPE I HALF- LOGISTIC EXPONENTIATED  
WEIBULL DISTRIBUTION 

RT&A, No 3 (74) 
Volume 18, September 2023  

 

[12] Codeiro, G.M., Hashimoto, E.M.,  and Ortega,  E.M.M. (2014). The McDonald Weibull model. J 

Theor Appl Stat; 48: 256-278. 

[13] Cordeiro, G.M, Ortega,  E.M.M., and Nadarajah, S. (2010) The Kumaraswamy Weibull 

distribution with application to failure data. J Franklin Inst,  347: 1399-1429. 

[14] Cordeiro, G.M., Ortega,  E.M.M.,  and Silva,  G.O. (2014). The Kumaraswamy modified 

Weibull distribution: theory and applications. J Stat Comput Simul; 84: 1387-1411. 

[15] Cordeiro, G.M., Ortega, E.M.M., and Da Cunha D.C.C. (2013). The exponentiated generalized 

class of distributions. J Data Sc.,  11: 1-27. 

[16] David, H. A. (1970). Order statistics, Second edition. Wiley, New York. 

[17] Elbatal, I., and Aryal, G. (2013). On the transmuted additive Weibull distribution. Austrian J 

Stat; 42: 117-132. 

[18] Greenwood, J.A. Landwehr, J.M., and Matalas, N.C. (1979). Probability weighted moments: 

Definitions and relations of parameters of several distributions expressible in inverse form. 

Water Resources Research, 15, 1049-1054. 

[19] Hanook, S.,  Shahbaaz, M.Q., Mohsin, M., and KIBRIA, G. (2013). A Note on Beta Inverse 

Weibull Distribution. Commun Stat Theory Methods; 42: 320-335. 

[20]     Ibrahim, S. (2021). The properties of Topp Leone exponentiated weibull distribution with 

application to survival data. Research Journal of Mathematical and Statistical Sciences, 9(1), 9-15. 

[21] Lai, C. D.,  Xie, M.,  and Murthy, D. N. P. (2003) . A modified Weibull distribution.  IEEE 

Transactions on Reliability, 52(1), 33–37. 

[22] Lee, E. T. and Wang, J. W. (2003). Statistical methods for survival data analysis (3rd Edition), 

John Wiley and Sons, New York, USA, 535 Pages, ISBN 0-471-36997-7. 

[23] Masood Anwar and Amna Bibi. (2018). The Half-Logistic Generalized Weibull Distribution.  

Journal of Probability and Statistics, 8767826, 12. 

[24] Merovci, F., and Elbatal, I. (2013). The McDonald modified Weibull distribution: properties 

and applications. arXiv preprint arXiv:13092961. (In Press). 

[25] Mudholkar, G.S., Srivastava, D.K., and Kollia, G.D. (1996). A generalization of the Weibull 

distribution with application to the analysis of survival data. Journal of the American Statistical 

Association, 91: 1575-1583. 

[26] Nofal, Z.M.,  Afify, A.Z., Yousof, H.M., and Cordeiro, G.M. (2017). The generalized 

transmuted-G family of distributions. Commun Stat Theory Methods; 46: 4119-4136. 

[27] Nofal, Z.M., Afify, A.Z., Yousof, H.M., Granzotto, D.C.T., and Louzada, F. (2016). 

Kumaraswamy transmuted exponentiated additive Weibull distribution. Int J Stat Probab; 5: 

78-99. 

[28] Pal, M., Ali, M.M., and Woo, J. (2006) Exponentiated Weibull distribution. STATISTICA, anno  

LXVI, 2. 

[29] Shahbaz,  M.G, Shahbaz, S., and Butt,  N.M.(2012). The Kumaraswamy inverse Weibull 

distribution. Pak J Stat Oper, 8: 479-489. 

[30] Silva, G. O., Ortega, E. M. M.,  and Cordeiro, G. M. (2010). The beta modified Weibull 

distribution. Lifetime Data Analysis, 16(3), 409–430. 

[31] Umeh, E. and Ibenegbu, A. (2019). A Two-Parameter Pranav Distribution with Properties and 

Its Application; Journal of Biostatistics and Epidemiology, 5(1) : 74-90 

[32] Xie, M.,  Tang, Y.,  and Goh, T. N. (2002). A modified Weibull extension with bathtub-shaped 

failure rate function.  Reliability Engineering & System Safety, 76 (3),  279–285. 

[33] Xie, M., and Lai, C. D. (1996). On the increase of the expected lifetime by parallel redundancy. 

Asia Pacific J. Oper. Res. 13, 171179. 

[34] Zhang, T. and Xie, M. (2011). On the upper truncated Weibull distribution and its 

reliability implications. Reliability Engineering & System Safety, 96(1), 194–20. 

 

233



M. Gholami Arjenaki, Dr.M. Karbasian, A. Kazemi Manesh, M. Jafari

ESTIMATION OF RELIABILITY AND LIFETIME

OF COMPOSITE OVERWRAPPED PRESSURE VESSELS
2023

ESTIMATION OF RELIABILITY AND LIFETIME OF 

COMPOSITE OVERWRAPPED PRESSURE VESSELS 

ADOPING POTENTIAL FAILURES ASSESSMENT AND 

ACCELERATED TESTS APPROACH  

Maryam Gholami Arjenaki1, Dr. Mahdi Karbasian2*, Amin Kazemi Manesh3, 

Mohammadreza Jafari4 

• 

1 University of Technology-Shahin Shahr Campus, Shahin Shahr, Isfahan, Iran. 
2*Malek Ashtar University of Technology, Tehran, Iran. 

3Islamic Azad University- Ahar branch, Ahar, Iran. 
4Islamic Azad University-Zahedan Branch, Zahedan, Iran. 

1maryamgholami6677@gmail.com, 2*mkarbasian@yahoo.com, 3kazemimaneshamin@gmail.com, 
4Jafari6340@gmail.com  

Abstract 

Aim. Compressed air vessels are responsible for injecting compressed air to the mechanical flying 

device. It should be noted that the pressure level inside these vessels is very important in 

conducting all operational stages successfully; therefore, it is of high significance to be assured of 

the quality of the vessels being used. This study was done in 2017 in order to calculate and estimate 

the reliability of compressed air vessels in mechanical flying device system with proposing a 

potential failures assessment and accelerated test approach taking into consideration the current 

methods. Methods. The paper uses methods of Fault Tree Analysis, Failure Mode & Effect 

Analysis and Accelerator tests. Initially, the interactions among the components were identified 

using the Design Structure Matrix in order to design a matrix to help estimate the reliability; 

consequently, improve equipment performance. Next, failures root recognition was done using 

Fault Tree Analysis diagram, then, failures reasons prioritization was done using Failure Mode & 

Effects Analysis tables. Accelerator tests were designed and applied on failure mechanisms such as 

leakage by pressure on vessels, corrosions on steal head, nipples, O-ring creeping, O-ring ozone 

cracking and liner chemical degradation. After that, the average of failure rates was calculated 

within the taking after stage for each test. Within the conclusion, the result of failure rates from 

the accelerator tests was compared with the result of failure rates from the process approach. 

Consequently, the most elevated amount of these two approaches was defined as the total failure 

rate; product reliability and lifetime were calculated utilizing this amount.  Results. The following 

finding were obtained using the proposed methods. When Windy Liner was used, vessel lifetime 

was six years and half and vessel reliability in ten years was 0/22. Whereas, when Rotational Liner 

was used, vessel lifetime was eight years and three months and vessel reliability in ten years was 

0/3. Conclusion.The approach proposed in the paper allows accelerator degradation test can also 

be used instead of accelerated test in order to calculate the reliability of failure mechanisms. In the 

event that high-quality and legitimate O-rings are used, vessel reliability and lifetime can be 

increased.  

Keywords: Reliability, Accelerator Life Tests, Composite Overwrapped 

Pressure Vessel, Failure Modes and Effects Analysis, Fault Tree Analysis. 
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1- Introduction

Product reliability is an essential aspect of customer expectation. The expectation to increase reliability 

at the lowest cost has become an important issue for companies in offering competitive products [1]. 

Product reliability is about promoting the product to the needed quality over time, which is absolutely 

important in creating fame and maintaining competitive advantages for companies  [2]. Traditional 

reliability evaluation methods were always based on failure data which were obtained from product 

lifetime, i.e., it was not possible to calculate the reliability as long as the product was functional. This 

lifetime failure data was obtained almost impossibly in a very short period of time for products with 

high reliability and extended lifetime. To solve this problem, creating quantitative data is absolutely 

significant and it can be achieved by evaluating the potential failures approach. Furthermore, using 

accelerator tests to estimate reliability in real conditions is considered to be practical [3].  

Products with high reliability and lifetime are used extensively in spacecraft, aviation, and other fields, 

so, how to evaluate the reliability and predict their lifetime is one of the most important topics [4]. 

Pressure vessels inject compressed air into the mechanical flying device. The pressure level inside these 

vessels is very important in order to successfully proceed all operational sections. It is necessary to have 

these vessels always ready to operate with operating pressures (approximately 280 bars). It is highly 

essential for the user to know how many years the vessels will be functional with this operating 

pressure [4].  

The used composite overwrapped pressure vessels (COPV), are made of metal or polymer core and is 

wrapped by low-density composite layers. The interior layers are responsible for providing the original 

structure, strength, rigidity and appropriate surface in contact with the gas inside the vessel. Composite 

coating is wrapped around the core with the aim of ensuring the mechanical strength of the inner layers 

against high levels of pressure as well as resisting against scratch, impact and other possible damages 

[5]. In terms of ratio of strength to density, due to severe decline in weight, COPV have noticeable 

advantages compared to the metal pressure vessels. However, some difficulties such as high 

production costs diminished this superiority [6]. 

Since by default, COPV were designed for flying machine equipment; high reliability and safety are 

considered in their design. But the safety considered in the design phase cannot be trusted because 

incidents and damages in composites have caused explosions due to the release of high energy of the 

compressed gas in the vessels. It is true that the possibility of such incidents occurring is rare, but if we 

consider the severity of the disaster; especially, in aerial and human-related projects, the high amount 

of reliability seems to be necessary [7]. 

This study was conducted in one of the flying machine device manufacturing industries in 2017 and 

the purpose of this study was to calculate the reliability of these compressed air pressure vessels in 

these systems. 

2- Methods

Initially, the interactions among the components were identified using the design structure matrix [8]. 

Furthermore, failure roots recognition was done using fault tree analysis (FTA) diagram [9]. Occurrence 

and severity numbers were defined by experts using failure modes and effects analysis (FMEA) tables; 

eventually, risk priority number (RPN) was calculated [10]. As a result, priority of failure causes was 

clarified. Critical failure factors were then specified after designing risk analysis matrix. 

 Furthermore, accelerator tests were designed and performed. Next, the failure rate was calculated for 

each test. At the end, the failure rates average from the accelerator tests were compared with failure 

rates of the process approach. After that, the highest number derived from this comparison was the 

final failure rate of the product; consequently, product reliability and lifetime were calculated (Fig. 1).  
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Figure 1: Research steps chart 

2-1- Design Structure Matrix (DSM)

At the heading row and the body row of DSM, the product components are mentioned in 

the chart and the relations among them were clarified [supporting table 1]. 

2-2- Fault tree analysis (FTA)

In this stage, FTA was demonstrated for each part of the vessel’s components. The example of fault tree 

for O-ring parts and steel head can be seen in figures 2 and 3. Also, a fault tree was drawn for the nipple, 

composite, rotary and wind liner parts accordingly. 

2-3- Failure Modes and Effective Analysis (FMEA)

FMEA tables, in the next stage, were designed for FTA diagrams which were then designed for product 

components [supporting table 2]. FMEA table was completed according to the data from FTA diagrams; 

the top events in FTA diagrams were placed under potential failures column, and other forms of 

failures in FTA were placed under potential causes column according to their stage. 

Kim et al. (2013) used FMEA tables in an article entitled 'A new reliability allocation weight for reducing 

occurrence of severe failure effects'. To complete FMEA tables, they used the standards which had been 

designed by the US Army. By the dedication of occurrence and severity number to potential failures in 

FMEA table, formula 1 can be used to calculate the failure rate of each potential failure [11]. According 

to brainstorming sessions and consultations with industry experts, risk priority number, severity and 

occurrence numbers were defined between 1-10. RPN was calculated by multiplying severity by 

occurrence. In FMEA tables, a special made-up code was given to every potential failure cause. This 

would not only make future analysis easier, but also would help to avoid explanations.  
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Figure 2: Steal head Fault Tree 

Figure 3: O-ring Fault Tree 

λ=EXP (-9.993+0.7702*O) (1) 

In formula 1, O is Occurrence, and EXP is Exponential Function. λ as a failure rate was calculated based 

on any failure cause with occurrence number. Time unit for FMEA tables is 10 years [12]. 

2-4- The development of accelerator tests
After completing the risk analysis table, failure codes in the critical area of risk analysis table and 

potential failures with the highest score received in RPN were identified, therefore, wherever possible, 

accelerator tests were designed and performed on these mechanisms. Accelerator tests can be 
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performed on mechanisms such as: leakage caused by pressure on vessels, corrosion on the series of 

steal and nipple components, creeps in O-rings, Ozone cracking in O-rings, liner chemical degradation. 

In the next step, accelerator tests for the aforementioned mechanisms were designed; it is significant to 

realize that the samples were in 3 stress levels and in each level, three samples were evaluated and the 

overall of 9 samples for each test were examined.  Selection of test parameters were based on product 

material, geometric tolerance and environmental conditions. 

2-5- Salt Spray Test for Steel Head and Nipple

The Salt Spray Test is intended in corrosion-related failure mechanisms of the steel head and nipple. 

Formula 2 can be used to calculate the lifetime of steel head and nipple using the data derived from 

the corrosion. 

                        (2) 

In formula 2, TFop is time to fail in normal condition, TFstress is time to fail under stress, a is constant 

and is equal to 0.1 (RH-1). RHstress is humidity under stress; RHop is humidity in normal conditions. 

Ea is activation energy in terms of electron volt. Kb is Boltzmann constant which is equal to 8.61*10-5 

[12] [supporting table 3] .

2-6- Ozone cracking test

In order to find failure in O-rings, Ozone cracking test was designed. In this test, to determine the 

accelerator factor, when temperature is not the main cause of acceleration, formula 3 which is reverse 

exponentiation relation is used. 
n

stressAF
op





 
 =
 
 

In formula 3, 𝜉𝑜𝑝 and  𝜉𝑠𝑡𝑟𝑒𝑠𝑠  are operational stress and stress under accelerated conditions, 

respectively. And n is power derived from the exponentiation law model. According to formula 4 and 

5, lifetime or Time to Failure (TF)  is calculated in operational conditions [12]. 

(4) 

TF AF TFstressoperation = 
(5) 

2-7- Creep test for O-ring

Creep test was designed for failure-related creep mechanism in O-rings. O-ring lifetime is calculated 

based on formula 6 under creep condition. 

(   /      0
)u TRt eTF


=

TF is the destruction time caused by creeping. 𝑡0 is constant and is equal to 10-12  per second. u 

is active energy in fracture process. Ɣ is a constant material structure. R is molar gas constant and is 

equal to 8/314 j/mol0k. T  is absolute heat degree and σ is constant stress  [12]  [supporting Table 4 and 

5]. 

2-8- Pressure test
Pressure test is designed for failure leakage due to pressure on vessel. Pressure and heat are the two 

failure factors used in pressure test. When the failure reason is pressure, formula 3 is used to calculate 

TF
AF

TF

operation

stress
=

 
1 1

exp .( ) *exp ( )
TFop Ea

A a RHstress RHop
TFstress Kb Top Tstress

 
= = − − 

 

(6) 

(3)
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accelerator factor; whereas, when heat is the failure reason, formula 7 is used to calculate accelerator 

factor. In general, acceleration coefficient can be defined for either heat stress or non-heat stress, then 

formula 8 can be used for the accumulation of stress in equipment. After calculating AF, formula 5 can 

be used to calculate lifetime in operational conditions [12][supporting Table 6 and 7]. 

1

1 1

2 1

Ea
AF EXP

Kb T T

  
= −  

  

1 2 ... nAF AF AF AF=   

2-9- Chemical resistance test for liner
Chemical resistance test is designed for failure mechanisms in chemical degradation of liner. Formulas 

3 and 4 are used to calculate liner lifetime in chemical resistance test. op demonstrates PH in normal

environment and 
TF AF TFstressoperation = 

   shows PH in stress environment[12] [supporting Table 

8]. 

2-10- Calculation of reliability and failure rate
Failure rate is calculated after acceleration tests are done. According to the assumption by which the 

product lifetime function follows exponential distribution, after calculating the lifetime in operational 

conditions, formula 9 can be used to calculate failure rate. Mean Time to Failure (MTTF) is the calculated 

number in operational lifetime. By using this formula, failure rate in accelerator tests can be calculated 

[12]. 

1 1
MTTF

MTTF



= → =

In this study, the Lussar’s Law was used to calculate failure rate in products and failure rate in product 

manufacturing process.  

2-11- Calculation of reliability, failure rate and vessel lifetime.

In order to calculate the failure rate in mechanical components in FMEA table, all failure rates in the 

table must be summed up so that the total product failure rate is derived. For example, to calculate the 

total failure rates in steal head, all failure rates in FMEA table related to steal head were summed up. 

To calculate failure rate resulting from the accelerator tests of all vessel components, when using the 

wind liner, failure rates from 5 accelerator tests were summed up. On the other hand, when the rotary 

liner was used, all accelerator tests except pressure test were calculated since pressure test was used for 

wind liner test. 

Finally, to calculate the total failure rate of vessel components, failure rates resulted from the FMEA 

tables were summed up. Then, the maximum of these two numbers, after summing up the failure rates 

in accelerator tests and comparing them with the total failure rate of FMEA, were considered as the 

total failure rate of vessels. 

Then, total Reliability (total) (R(t)) was calculated using formula 10 and lifetime was calculated using 

formula 9. It is needless to mention that since the duration of this study was 10 years, 1 is replaced by t 

in formula 10 [12]. 

( ) ( )( )*R t EXP t= − 

(7) 
(8) 

(9) 

(10)
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3- Result

3-1- Calculation of failure codes, RPN and failure rate

FMEA tables were completed for different parts of the vessel. Failure codes NR-3, TK-2, NO-1, NO-2, 

NO-11, N-3, N-4, N-14 and N-16 had the highest RPN among vessel failure codes, respectively. 

Accelerator tests, then, were designed and performed. In table 1, samples of- failure code, RPN and 

failure rate were calculated for O-ring. More tables can be seen in supporting tables. According to risk 

matrix analysis in figure 4, N-16 and N-14 were of the only failure codes placed in critical area.  

Figure 4:  Risk analysis matrix for failure code sets of vessel components. 

3-2- Calculation of accelerator test for potential failures
After performing the accelerator tests, according to the aforementioned formulas, operational 

component lifetime for each section was calculated in the methods section.  

3-3- Salt Spray Test on Steal Head and Nipple

Operational lifetime was calculated by inserting the parameters listed in salt spray test parameters table 

into formula 2 [supporting Table 3]. Then by inserting the calculated lifetime in formula 9, the failure 

rate of salt spray test was calculated.   

3-4- Ozone cracking test
By inserting the parameters listed in the ozone cracking test parameters table into formula 3, the 

number for accelerator factor (AF) was calculated [supporting Table 4]. Then by inserting AF into 

formula 4, the operational lifetime was calculated. The failure rate of ozone cracking test was derived 

by inserting the calculated lifetime into formula 9. 

3-5- O-ring creep test

By inserting the parameters listed in creep test parameters table into formula 6, the operational lifetime 

was calculated. Then by inserting the derived amount of lifetime into formula 9, the failure rate of creep 

test was calculated [supporting Table 5] [Table 2]. 

3-6- Pressure test
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By inserting the parameters listed in pressure test parameters (pressure failure factor) table into formula 

3, the number for AF2 was calculated [supporting Table 6]. Then by inserting parameters into pressure 

test parameters (temperature failure factor) table, AF1 was calculated [supporting Table 7]. Next, by 

inserting the amount for accelerator test into formula 8, the amount of AF was calculated. Following 

that, by inserting AF into formula 4, the amount of lifetime was calculated; furthermore, by inserting 

the calculated lifetime into formula 9, the failure rate in pressure test was calculated. 

3-7- Liner chemical resistance

By inserting the parameters related to liner chemical resistance test into formulas 3 and 4, the

operational lifetime was calculated [supporting Table 8].  So, by inserting the calculated amount of

lifetime into formula 9, the failure rate for chemical resistance was derived.

3-8- Calculation of vessel reliability, failure rate and lifelong

Table 3 shows failure rate derived from FMEA tables and accelerator test for vessel components. The 

reliability result, failure rate and total amount of lifetime for all vessels are shown in table 4.  

Table 1:  Design of FMEA table for O-Ring
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Table 2: Lifetime results of salt spray, ozone cracking, creep, pressure, liner chemical resistance test

Table 3: Vessel components accelerator tests and FMEA table failure rates
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Table 4:  Reliability results, failure rates and lifetime of the entire vessel assembly

4- Discussion

While being extremely high, O-ring failure rate is one of the main reasons in increasing failure rate in 

vessels. The sum of two failure rates in creep accelerator tests and ozone cracking test increases the 

failure rate in O-rings. This high failure rate made O-rings a critical component for the vessel set, and 

without having a plan to cope with failure triggers in O-rings, they are potent to reduce the amount of 

vessel reliability. The method used to calculate vessel reliability and lifetime; especially, in using and 

combining several diverse accelerator tests results increased the accuracy and precision of the 

quantitative information.  

By studying previous researches, we realized that according to the method and the selected model, they 

first identified the factors affecting failure rates by using tools such as FTA, FMEA, etc. Second, they 

designed and performed accelerator tests in accordance with these factors. Then, based on the previous 

recognition of the system, they assumed the lifetime distribution. Finally, to estimate the related 

parameters in lifetime distribution, they either used the least square estimation or the maximum 

probability estimation methods. Then by using these distributions, they obtained the amount of 

reliability, failure rate, average time to failure, lifetime, etc. 

When wind liner was used, vessel reliability was calculated to be 6.6 years, lifetime was 0/22 in a ten-

year period, while, when rotary liner was used, vessel reliability and lifetime were calculated to be 8.3  

years, and 0.3 in a ten-year period, respectively, which demonstrated a perspective in how to use the 

components available. It is also important to identify which component plays a significant role in 

lowering reliability amount.  

In this system, the failure rate in O-ring is calculated very high and this can be very effective in 

modifying the design for future productions in order to produce a product with higher reliability. 

By reviewing various articles, we found that in most researches done so far, different accelerator tests 

were used to calculate reliability and lifetime in other devices, needless to say, only one accelerator test 

was conducted.  

For example, Regattieri et al. 2017 “Reliability assessment of a packaging automatic machine by 

accelerated life testing approach” presented a way to evaluate the reliability of an automatic packaging 

machine using both the accelerated life test (ALT), the Weibull distribution method and the maximum 

probability method [13]. The result of this study indicates that the accelerated life test is effective for 

predicting the life of the product through a short-time test, which is in line with the results of the current 

research. 

Yunfeng Li 2017 studies titled 'A range for aircraft accelerator life test based on quasi -mechanical 

analysis' which provided theoretical foundations for selecting work parameters and forming final 

judgment of failure rate in the accelerator life test. Using accelerator test along with FTA to spot failure, 

and quasi-dynamic analysis to determine different working conditions, made it possible to determine 

the equipment lifelong range [14]. 

Boro et al., also conducted a research in 2017 ' Strength and Reliability Analysis of Metal-Composite 

Overwrapped Pressure Vessel'. In order to calculate reliability in the composite layers, creep and 
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fatigue damage were calculated based on experimental models. Especially, in the creep calculation, the 

use of accelerated life tests is more accurate than experimental diagrams [15]. For the samples used in 

performing accelerator tests, it would have been better if more samples were used to increase the 

accuracy of the output information, but due to the limitation in sample availability, 9 samples were 

used. The purpose of the study was ultimately to calculate the lifetime and reliability of the vessel. 

Although the mentioned results are appropriate, by modifying the O-ring in vessel, the amount of 

lifetime and reliability can definitely increase.  

5- Conclusion

The study team concluded that when wind liner was used, vessel reliability was calculated to be 6.6 

years, and lifetime was 0/22 in a ten-year period, while, when rotary liner was used, vessel reliability 

and lifetime were calculated to be 8.3 years, and 0.3 in a ten-year period, respectively, which 

demonstrated a perspective in how to use the components available. 

For failure mechanisms, accelerated destruction tests can be used instead of accelerated life tests. Also, 

in choosing the O-ring for the vessels, O-rings with higher quality and more reliability can be used to 

increase reliability and lifetime in equipment. 
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Abstract 

 

The paper introduces a new type of fractional integral transform called the N-transform of 

fractional order. This transform is utilized to derive various results for a more generalized 

function of fractional calculus known as the Aleph-function. The authors present several useful 

findings and explore the relationship between the N-transform and other existing fractional 

transforms. Additionally, the paper discusses the relationship between the N-transform of 

fractional order and other existing fractional transforms. It likely explores how this new 

transform relates to established transforms in fractional calculus. The authors have also 

examined special cases or specific examples to further illustrate the applications and properties 

of the N-transform of fractional order. These cases could involve particular functions or 

parameter values that offer insight into the behavior of the transform. 

 

Keywords: N-transform of fractional order, L-transform of fractional order, 

S-transform of fractional order Aleph-function 

 

 

1. Introduction 
 

Our translation of real world problems to mathematical expressions relies on calculus, which 

in turn relies on the differentiation and integration operations of arbitrary order with a sort of 

misnomer fractional calculus which is also a natural generalization of calculus and its 

mathematical history is equally long. It plays a significant role in number of fields such as 

physics, rheology, quantitative biology, electro-chemistry, scattering theory, diffusion, 

transport theory, probability, elasticity, control theory, engineering mathematics and many 
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others. Fractional calculus like many other mathematical disciplines and ideas has its origin in 

the quest of researchers for to expand its applications to new fields. This freedom of order 

opens new dimensions and many problems of applied sciences can be tackled in more efficient 

way by means of fractional calculus. 

Laplace and Sumudu transformations are closely linked to the natural transform. The 

Natural transform, also known as the N-transform, was initially introduced by Khan and Khan 

[6]; Al-Omari [1]; Belgacem and Silambarasan [3] explored its features. Maxwell's equations 

were solved using the Natural transform in Belgacem and Silambarasan [11] and [2]. Transform 

methods for solving partial differential equations discussed by Duffy [5]. Sharma and 

Shekhawat [8] obtained integral transform and the Solution of Fractional Kinetic Equation 

Involving Some Special Functions 

Belgacem and Silambarasan's [4] works on the Natural transform can be found here [11] 

for more information. If we assume that the function is fractional derivative and continuous, 

the Natural transform often works with continuous and continuously differentiable functions. 

The Natural transform, like the Laplace and Sumudu transforms, does not work since the 

function is not derivative. In a similar vein, we must establish a new term that we will call 

fractional Natural transform. 

 

2.  Definitions and Preliminaries  
 

2.1 Natural transform 
 

In mathematics, the natural transform is an integral transform similar to the Laplace 

transform and Sumudu transform, introduced by khan and khan [6]. It converges to both 

Laplace and Sumudu transform just by changing variables. Given the convergence to the 

Laplace and Sumudu transforms, the N-transform inherits all the applied aspects of the both 

transforms. Most recently, Belgacem [11] has renamed it the natural transform and has 

proposed a detail theory and applications. The natural transform of a function f(t), defined for 

all real numbers t ≥ 0, is the function R(u, s), defined by: 

R(u, s) = 𝑁[𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡
∞

0
 , 𝑅𝑒(𝑆) > 0, 𝑢(−𝜏1, 𝜏2)      (1) 

Provided the function f (t) ∈ 𝑅2 is defined in the set  

A= { f(t) |∃ M, 𝜏1, 𝜏2 > 0. |𝑓(𝑡)| < 𝑀  𝑒
|𝑡|

𝜏𝑗}    (2) 

Khan [6] showed that the above integral converges to Laplace transform when u = 1, and into 

Spiegel [7] transform for s = 1. 

 

2.2 Fractional Natural transform of order α 
 

𝑅𝛼
+(u, s) = 𝑁𝛼

+[𝑓(𝑥)] = ∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼)𝑓(𝑢𝑥)(𝑑𝑥)𝛼∞

0
 , 0 < 𝛼 ≤ 1  (3) 

or 

𝑅𝛼
+(u, s)= lim

𝑀→∞
∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼)𝑓(𝑢𝑥)(𝑑𝑥)𝛼𝑀

0
            (4) 

where s, u ∈ ℂ, and 𝐸𝛼(x) is the Mittag–Leffler function, Eα(z ) =  ∑
𝑥𝑛

𝛼𝑛!

∞
𝑛=0  

 

2.3 Fractional Laplace transform reported by Estrin and Higgins [10] 
 

From the above definition, when u = 1 
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𝐿𝛼
+(1, s) = 𝐿𝛼

+[𝑓(𝑥)] = ∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼)𝑓(𝑥)(𝑑𝑥)𝛼∞

0
 , 0 < 𝛼 ≤ 1   (5) 

or 

𝐿𝛼
+(1, s)= lim

𝑀→∞
∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼)𝑓(𝑥)(𝑑𝑥)𝛼𝑀

0
    (6) 

Where, s ∈ ℂ, and 𝐸𝛼(x) is the Mittag–Leffler function, Eα(z ) =  ∑
𝑥𝑛

𝛼𝑛!

∞
𝑛=0  

 

2.4 Fractional Sumudu transform  
 

From the above definition, when S = 1 

𝑆𝛼
+(u, 1) = 𝑆𝛼

+[𝑓(𝑥)] = ∫ 𝐸𝛼(−𝑥𝛼)𝑓(𝑢𝑥)(𝑑𝑥)𝛼∞

0
 , 0 < 𝛼 ≤ 1   (7) 

or  

𝑆𝛼
+(u, 1)= lim

𝑀→∞
∫ 𝐸𝛼(−𝑥𝛼)𝑓(𝑢𝑥)(𝑑𝑥)𝛼𝑀

0
    (8) 

where  u ∈ ℂ, and 𝐸𝛼(x) is the Mittag–Leffler function , Eα(z ) = ∑
𝑥𝑛

𝛼𝑛!

∞
𝑛=0  

 

3. Aleph-function 

 
The Aleph-function is defined in terms of the Mellin-Barnes type integral in the following 

manner is  

ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ] 

=
1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑠) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑠)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑠) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑠]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝑧𝑠
𝐿

ds   (9) 

Lemma 3.1: For instance the fractional  natural transform of  the 𝑓(𝑥) =  𝑥𝑛𝛼, n ∈ 𝑁 then 

𝑁𝛼
+[ 𝑥𝑛𝛼] = ∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼) (𝑢𝑥)𝑛𝛼(𝑑𝑥)𝛼∞

0
= 𝑢𝑛𝛼 ∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼) (𝑥)𝑛𝛼(𝑑𝑥)𝛼∞

0
  (10) 

We put 𝑡 = 𝑥𝑠. we get  

 𝑁𝛼
+[ 𝑥𝑛𝛼] =

𝑢𝑛𝛼

𝑠(𝑛+1)𝛼 ∫ 𝐸𝛼(−𝑡𝛼) (𝑡)𝑛𝛼(𝑑𝑡)𝛼∞

0
   (11) 

or  

𝑁𝛼
+[ 𝑥𝑛𝛼] =

(𝛼!)𝑢𝑛𝛼

𝑠(𝑛+1)𝛼   Γα(n + 1)   (12) 

Note: Γα(n) =  
1

(𝛼!)
∫ 𝐸𝛼(−𝑥𝛼) (𝑥)(𝑛−1)𝛼(𝑑𝑥)𝛼∞

0
 

Lemma 3.2:  For instance the  fractional  Laplace transform of  the 𝑓(𝑥) =  𝑥𝑛𝛼, n ∈ 𝑁 then 

𝐿𝛼
+[ 𝑥𝑛𝛼] = ∫ 𝐸𝛼(−𝑠𝛼𝑥𝛼) (𝑥)𝑛𝛼(𝑑𝑥)𝛼∞

0
    (13) 

We put 𝑡 = 𝑥𝑠. we get  

𝐿𝛼
+[ 𝑥𝑛𝛼] =

1

𝑠(𝑛+1)𝛼 ∫ 𝐸𝛼(−𝑡𝛼) (𝑡)𝑛𝛼(𝑑𝑡)𝛼∞

0
   (14) 

or  

𝐿𝛼
+[ 𝑥𝑛𝛼] =

(𝛼!)

𝑠(𝑛+1)𝛼   Γα(n + 1)   (15) 

Note: Γα(n) =  
1

(𝛼!)
∫ 𝐸𝛼(−𝑥𝛼) (𝑥)(𝑛−1)𝛼(𝑑𝑥)𝛼∞

0
 

Lemma 3.3: For instance the fractional Sumudu transform of the 𝑓(𝑥) =𝑥𝑛𝛼, n ∈ 𝑁 then 

𝑆𝛼
+[ 𝑥𝑛𝛼] = ∫ 𝐸𝛼(−𝑥𝛼) (𝑢𝑥)𝑛𝛼(𝑑𝑥)𝛼∞

0
= 𝑢𝑛𝛼 ∫ 𝐸𝛼(−𝑥𝛼) (𝑥)𝑛𝛼(𝑑𝑥)𝛼∞

0
  (16) 

We put 𝑡 = 𝑥,  we get  

𝑆𝛼
+[ 𝑥𝑛𝛼] = 𝑢𝑛𝛼 ∫ 𝐸𝛼(−𝑡𝛼) (𝑡)𝑛𝛼(𝑑𝑡)𝛼∞

0
   (17) 

or  

𝑆𝛼
+[ 𝑥𝑛𝛼] = (𝛼!)𝑢𝑛𝛼  Γα(n + 1)    (18) 

Note: Γα(n) =  
1

(𝛼!)
∫ 𝐸𝛼(−𝑥𝛼) (𝑥)(𝑛−1)𝛼(𝑑𝑥)𝛼∞

0
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4. Some Main Transformations 
 

4.1 Fractional natural transform of order 𝛼 
 

In this section, we derived the fractional natural transform of order 𝛼 in relationship with the 

known generalized function of fractional calculus known as Aleph-function. 

Theorem 4.1.1: Let   𝑁𝛼
+[𝑓(𝑥)] , 0 < 𝛼 ≤ 1 ,  be the  fractional natural transform of order 𝛼  

associated with Aleph-function . Then there holds the following relationship 

𝑁𝛼
+ {{ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑧|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}}= 

1

𝑠
ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛+1 [
𝑢

𝑠
|

(𝑏𝑗 ,𝐵𝑗)
1,𝑚

[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]
𝑚+1,𝑞𝑖

(0,1)(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]   (19) 

Provided the function f (t) ∈ 𝑅2. 

Proof: By using the definition of the generalized function of fractional Aleph -function and 

fractional natural transform of order 𝛼  we get 

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

𝑁𝛼
+ {

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝑧𝑘
𝐿

dk}     ;  Re(α) > 0  (20)   

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

   {
1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk}  𝑁𝛼

+{zk}  (21) 

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

   {
1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk}  𝑁𝛼

+{zk}  (22) 

By making use of lemma –3.1 in above equation, we get 

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk

𝑢𝑘

𝑠(𝑘+1)   Γ(k + 1)  (23) 

or  

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

 
1

𝑠
 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)Γ(1−0+k)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk

𝑢𝑘

𝑠𝑘   (24) 

or  

𝑁𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑧|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

1

𝑠
ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛+1 [
𝑢

𝑠
|

(𝑏𝑗 ,𝐵𝑗)
1,𝑚

[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]
𝑚+1,𝑞𝑖

(0,1)(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]   (25) 

This completes proof of theorem.  
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4.2 Fractional Laplace  transform of order 𝛼 
 

In this section, we derived the  fractional Laplace  transform of order 𝛼 in relationship with the 

known function of fractional calculus known as Aleph-function.  

Theorem 4.2.1: Let   𝐿𝛼
+[𝑓(𝑥)] , 0 < 𝛼 ≤ 1 ,  be the  fractional Laplace  transform of order 𝛼  

associated with Aleph-function . Then there holds the following relationship 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

 
1

𝑠
 ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛+1 [𝑠−1|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(1,0)(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]   (26) 

Provided the function f (t) ∈ 𝑅2. 

Proof: By using the definition of the generalized function of fractional  ML -function and  

fractional Laplace  transform of order 𝛼   we get 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

 𝐿𝛼
+  {

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝑧𝑘
𝐿

dk }       ;  Re(α) > 0  (27) 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

 
1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk  𝐿𝛼

+{𝑧𝑘}  (28) 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk 𝐿𝛼

+{𝑧𝑘}  (29) 

By making use of lemma –3.2 in above equation, we get 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk

1

𝑠(𝑘+1)   Γ(k + 1)  (30) 

or  

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)Γ(k+1)Γ(1−0+k)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿

1

𝑠(𝑘+1) dk  (31) 

𝐿𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

 
1

𝑠
 ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛+1 [𝑠−1|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(1,0)(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]   (32) 

This completes proof of theorem. 

 

4.3 Fractional Sumudu transform of order 𝛼 
 

In this section, we derived the  fractional Sumudu transform of order 𝛼 in relationship with the 

known function of fractional calculus known as ML-function.  

Theorem 4.3.1: Let   𝑆𝛼
+[𝑓(𝑥)] , 0 < 𝛼 ≤ 1 ,  be the  fractional Sumudu transform of order 𝛼  

associated with Aleph-function . Then there holds the following relationship 
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 𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

1

𝑠
Eα

1   (
u

s
)   (33) 

Provided the function f (t) ∈ 𝑅2. 

Proof: By using the definition of the generalized function of fractional  Aleph -function and 

fractional Sumudu transform of order 𝛼  we get 

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

𝑆𝛼
+ 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝑧𝑘
𝐿

dk;   Re(α) > 0  (34) 

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk  𝑆𝛼

+{𝑧𝑘}  (35) 

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk𝑆𝛼

+{zk}   (36) 

By making use of lemma –3.3 in above equation, we get 

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

 
1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
dk𝑢𝑘   Γ(k + 1)  (37) 

or  

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]} = 

1

2𝜋𝑖
∫

∏ ┌𝑚
𝑗=1 (𝑏𝑗−𝐵𝑗𝑘) ∏ ┌𝑛

𝑗=1 (1−𝑎𝑗+𝐴𝑗𝑘)Γ(1−0+k)

∑ 𝜏𝑖 ∏ ┌
𝑞𝑖
𝑗=𝑚+1

(1−𝑏𝑗𝑖+𝐵𝑗𝑖𝑘) ∏ ┌[𝑎𝑗𝑖−𝐴𝑗𝑖𝑘]
𝑝𝑖
𝑗=𝑛+1

𝑟
𝑖=1

𝐿
𝑢𝑘dk   (38) 

 

𝑆𝛼
+ {ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛 [𝑍|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]}= 

ℵ𝑝𝑖,𝑞𝑖;𝜏𝑖;𝑟

𝑚,𝑛+1 [𝑢|
(𝑏𝑗 ,𝐵𝑗)

1,𝑚
[𝜏𝑖(𝑏𝑗 ,𝐵𝑗𝑖)]

𝑚+1,𝑞𝑖

(0,1)(𝑎𝑗 ,𝐴𝑗)
1,𝑛

[𝜏𝑖(𝑎𝑗𝑖 ,𝐴𝑗𝑖)]
𝑛+1,𝑝𝑖 ]   (39) 

This completes proof of theorem.  

 

5. Special Cases 
 

In this section, we discuss some of the important special cases of the main results established  

discussed above, If we take ∝ =𝜏𝑖=1 in the theorems (4.1.1), (4.2.1) and (4.3.1)  we get well known 

results of ordinary  calculus like Natural transform of Saxen’s i-function, Laplace transform of 

Saxen’s i-function and finally ordinary Sumudu transform of Saxen’s i-function as reported in 

[9]. 

 

6. Conclusion 
 

This paper introduces a novel type of fractional integral transform called the N-transform of 

fractional order. This transform is proposed as a new addition to the theory of fractional order 

transforms. The paper emphasizes that the contributions made by this new transform are 
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believed to be significant and offer valuable insights to the field. Furthermore, the paper 

suggests that the N-transform of fractional order has potential applications in solving fractional 

differential and integral equations. By utilizing this model, it may be possible to find solutions 

or approaches for various equations involving fractional derivatives or integrals. 
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Abstract

In this article, we introduce a new member to Poisson-X family namely, the Poisson-power Lindley
distribution. The statistical as well as the distributional properties of the new distribution are studied.
The flexibility of the distribution is illustrated by means of real data sets. We also introduce a reliability
test plan for acceptance or rejection of a lot of products submitted for inspection when lifetimes follow
the new distribution. The minimum sample size using binomial and Poisson approximations, operating
characteristic values and minimum ratios of the true value and the required value of the parameter with a
given producer’s risk are also developed with respect to the newly introduced sampling plans. A real data
example is also given to illustrate the sampling plan developed.

Keywords: Poisson-X family, Poisson-power Lindley distribution, Reliability test plan, Producers
risk, Operating characteristic function

1. Introduction

Recently researchers shows a special attention to Lindley distribution proposed by Lindley [16] by
considering its importance in modelling complex lifetime data. Also, it is one of the well known
distribution to analyze failure time data with different shapes of hazard rates. The probability
density function and the cumulative distribution function of Lindley distribution are respectively
given by,

g(t) =
β2

β + 1
(1 + t)e−βt, x > 0, β > 0 (1)

and
G(t) = 1 − β + 1 + βt

β + 1
e−βtx > 0, β > 0. (2)

Ghitany et al. [14] studied the Lindley distribution and its applications in the contest of reliability
studies and shows that its mathematical properties are more flexible than those of the exponential
distribution. Ghitany et al. [13] introduced power Lindley distribution, a new generalization of
Lindley distribution by considering the power transformation X = T

1
α in Lindley distribution.

The pdf and cdf of power Lindley distribution are respectively

g(x) =
αβ2

β + 1
(1 + xα)xα−1e−βxα

x > 0, α β > 0 (3)

RT&A, No 3 (74) 
Volume 18, September 2023

252

mailto:alphonsageorge95@gmail.com
mailto:daissaji@rediffmail.com


Alphonsa George, Dais George
RELIABILITY TEST PLAN FOR THE PPL DISTRIBUTION

and
G(x) = 1 − (1 +

β

β + 1
xα)e−βxα

x > 0, α, β > 0. (4)

Here, we introduce a new distribution based on power Lindley distribution called Poisson-power
Lindley, a new member of Poisson-X family. Tahir et al. [21] developed Poisson-X family from T-X
family of distributions introduced by Alzaatreh et al.[4] with the cumulative distribution function

F(x) =
∫ W(G(x))

a
r(t)dt (5)

where W(G(x)) satisfies the conditions
• W(G(x)) ∈ [a,b],
• W(G(x)) is differentiable and monotonically non decreasing and
• W(G(x)) → a as x → −∞ and W(G(x)) → b as x → ∞.

Here r(t) is the pdf of the random variable T∈ [a,b] for -∞ < a < b < ∞.
For a Poisson-X family, the cdf and pdf of T are given respectively by Tahir et al. [21] as

R(t) =
1 − e−δtm

1 − e−δ
(6)

and
r(t) =

δm
1 − e−δ

tm−1e−δtm − 0 ≤ t ≤ 1. (7)

Let G(x) be the baseline cdf. By substituting G(x) for the upper limit W(G(x)) and r(t) as (7) with
δ=1 , we get the cdf and pdf of Poisson-X family respectively from (5) as

F(x; c; ξ) =
(

1 − e−1
)−1 [

1 − e−[G(x)]m
]

(8)

and
f (x; c; ξ) =

m
1 − e−1 g(x; ξ) [G(x; ξ)]m−1 e−[G(x;ξ)]m . (9)

Here after a random variable X with cdf (9) is denoted by X ∼ PX(m; ξ).

Lemma 1. If X have a density of the form (9), then the random variable T=G(x) has a pdf of the
form (7) with δ=1. The converse is also true, that is, if T has density of the form (7) with δ=1 then
the random variable X = G−1(T) has Poisson-X distribution with density (9).

The rest of the paper is unfolded as follows. In section 2, we introduce Poisson-power Lindley
(PPL) distribution and study its statistical properties. We explore the feasibility of the new model
by means of real data sets in section 3. In section 4, we developed a reliability test plan and the
operating characteristic values for the PPL distribution. We illustrate the results with a real data
example. Finally, we conclude the work by section 5.

2. Poisson-power Lindley (PPL) Distribution

For a Poisson-X family of distribution, if the parent distribution is power Lindley, we obtain
Poisson-power Lindley distribution having cdf and pdf as

F(x) =
(

1 − e−1
)−1

[
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m]

x > 0 α, β, m > 0 (10)

and

f (x) =
m

(1 − e−1)

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

]
[

e−
[
1−(1+ β

β+1 xα)e−βxα
]m] [

1 − (1 +
β

β + 1
xα)e−βxα

]m−1
x > 0 α, β, m > 0. (11)
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The PDF graphs of the PPL distribution for various values of the parameters are given in Figure 1

Figure 1: pdf graphs of Poisson-power Lindley distribution for various values of parameters

2.1. Properties of Poisson-power Lindley Distribution

The survival function (sf), hazard rate function (hrf), cumulative hazard rate function (chrf),
Reversed hazard rate function of Poisson-power Lindley distribution are respectively given by

S(x) = 1 −
(

1 − e−1
)−1

[
1 − e−[1−(1+ β

β+1 xα)e−βxα
]m
]

, (12)

h(x) =
m αβ2

β+1 (1 + xα)xα−1e−βxα
[
1 − (1 + β

β+1 xα)e−βxα
]m−1

1 − e−(1−[1−(1+ β
β+1 xα)e−βxα ]m)

, (13)

H(x) = −log

 e−
[
1−(1+ β

β+1 xα)e−βxα
]m

− e−1

1 − e−1

 (14)

and

q(x) =
m αβ2

β+1 (1 + xα)xα−1e−βxα
[
1 − (1 + β

β+1 xα)e−βxα
]m−1

1 − e−[1−(1+ β
β+1 xα)e−βxα ]m)

. (15)

The residual life time of the PPL distribution at time t and the corresponding survival function
are respectively given by

rxt (x) =
m αβ2

β+1 (1 + xα)xα−1e−βxα
[
1 − (1 + β

β+1 xα)e−βxα
]m−1

1 − e−(1−[1−(1+ β
β+1 tα)e−βtα ]m)

(16)

and

Rxt (x) =
e−

[
1−(1+ β

β+1 xα)e−βxα
]m

− e−1

e−
[
1−(1+ β

β+1 tα)e−βtα
]m

− e−1
. (17)

The past life time and corresponding distribution function of PPL distribution are

dtx (x) =
m αβ2

β+1 (1 + xα)xα−1e−βxα
[
1 − (1 + β

β+1 xα)e−βxα
]m−1

1 − e−[1−(1+ β
β+1 tα)e−βtα ]m)

(18)

and

Dtx (x) =
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m

1 − e−
[
1−(1+ β

β+1 tα)e−βtα
]m . (19)

The hrf graphs of the PPL distribution for different values of the parameters are given in Figure 2
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Figure 2: hrf graphs of Poisson-power Lindley distribution for different values of the parameters

For fixed values of α and β with different m values, we can see an increasing failure rate
here in the hrf graph. Again, for a fixed values of β and m with different α values, we can see
a decreasing failure rate. A reverse J-shaped curve can also be seen for fixed values of α and m
with different β values.

2.2. Linear Representation

Here we derive some useful expansions for (10) and (11) using the concept of exponentiated
distributions. A random variable with an arbitrary baseline cdf G(x) is said to have the exp-G
distribution with parameter γ > 0, if its pdf and cdf are lγ = γGγ−1(x)g(x) and Lγ(x) = Gγ(x),
respectively. The exponential function of (10) can be expanded as

F(x; c, a, b) =
∞

∑
i=0

wi+1

(
1 − (1 +

β

β + 1
xα)e−βxα

)(i+1)m

(20)

where wi+1 = ((−1)i)

[(i+1)!(1−e−1)]
(for i≥0) thereby the pdf is

f (x; c, a, b) =
∞

∑
i=0

wi+1

(
(i + 1)m

αβ2

β + 1
(1 + xα)xα−1e−βxα

)
[

1 − (1 +
β

β + 1
xα)e−βxα

](i+1)m−1
. (21)

This can also be expressed as

f (x; c, a, b) =
∞

∑
i=0

wi+1l(i+1)m(x) (22)

where l(i+1)m(x) is the density function of the exp-power Lindley distribution with power
parameter (i + 1)m.
(22) reveals that the Poisson-power Lindley density can be expressed as a linear representation of
exp-power Lindley density.

Lemma 2. If Y ∼ power Lindley(α,β), then

X =

[
−1 − 1

β
− 1

β
W−1

(
β + 1
eβ+1

[
1 −

{
−log

(
1 − Y

(
1 − e−1

))} 1
m
])] 1

α

follows Poisson-power Lindley (m,α,β). Where W−1(.)denotes the negative branch of the Lambert
W function.
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Proof. Consider the cdf of power Lindley(α,β),

F(x) = 1 − (1 +
β

β + 1
xα)e−βxα

.

If T have the form (7) with δ = 1, then from Lemma 1 we have,

X = G−1(T)

=

[
−1 − 1

β
− 1

β
W−1

[
β + 1
eβ+1 (T − 1)

]] 1
α

(23)

follows Poisson-power Lindley (m,α, β). Here for simulating T, we use R(T) given in (6) with
δ = 1, (by inverse probability integral transformation).
We have,

T =
{
−log

[
1 − Y

(
1 − e−1

)]} 1
m .

and by substituting the value of T in (23), we get

X =

[
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1

[
1 −

{
−log

(
1 − Y

(
1 − e−1

))} 1
m
])] 1

α

(24)

which follows Poisson-power Lindley(m,α,β). ■

2.3. Quantile function and Median

The quantile function of Poisson-power Lindley distribution is given by

X =

[
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1

[
1 −

{
−log

(
1 − u

(
1 − e−1

))} 1
m
])] 1

α

(25)

Hence the median is,

X =

[
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1

[
1 − {0.165}

1
m

])] 1
α

(26)

2.4. Moments

Lemma 3. If X is a random variable from a Poisson-power Lindley (m,α, β) distribution, then the kth moment
of X is

µ′
k = E(Xk) = Et

[(
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1 (1 − t)
)) k

α

]
where T follows distribution of the form (6) with δ = 1

Proof.

E(Xk) =
∫ ∞

0

c
1 − e−1

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

]
[

1 − (1 +
β

β + 1
xα)e−βxα

]m−1
e−

[
1−(1+ β

β+1 xα)e−βxα
]m

By using Lemma 1). and the transformation

T = G(x)

= 1 − (1 +
β

β + 1
xα)e−βxα
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We have

E(Xk) =
∫ ∞

0

(
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1 (1 − t)
)) k

α m
1 − e−1 tm−1e−tm

dt

= Et

[(
−1 − 1

β
− 1

β
W−1

(
− β + 1

eβ+1 (1 − t)
)) k

α

]

■

2.5. Order Statistics

Suppose X1, ...Xn is a random sample from the Poisson-power Lindley distribution. Let X(r)
denote the rth order statistics. The pdf of X(r) of PPL distribution can be expressed as

fr(x) =
n!

(r − 1)! (n − r)!

[
mαβ2

β + 1
(1 + xα)xα−1e−βxα

] [
1 − (1 +

β

β + 1
xα)e−βxα

]m−1

e−
[
1−(1+ β

β+1 xα)e−βxα
]m n−r

∑
j=0

(−1)j
(

n − r
j

)
(1 − e−1)−(r+j)

[
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m]r+j−1

. (27)

Now the cdf, Fn(x) of the largest order statistics X(n) is given by,

Fn(x) =
(

1 − e−1
)−n

[
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m]n

(28)

and the corresponding pdf is

fn(x) = nm
(

1 − e−1
)−n

[
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m]n−1

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

] [
1 − (1 +

β

β + 1
xα)e−βxα

]m−1

e−
[
1−(1+ β

β+1 xα)e−βxα
]m

. (29)

Again, the cdf F1(x) and pdf f1(x) of the smallest order statistic X(1) is given by,

F1(x) = 1 −
[

1 −
(

1 − e−1
)−1

[
1 − e−

[
1−(1+ β

β+1 xα)e−βxα
]m]]n

(30)

and the corresponding pdf is

f1(x) =
nm

(1 − e−1)

[
1 −

(
1 − e−1

)−1
[

1 − e−[1−(1+ β
β+1 xα)e−βxα

]m
]]n−1

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

] [
1 − (1 +

β

β + 1
xα)e−βxα

]m−1

e−
[
1−(1+ β

β+1 xα)e−βxα
]m

. (31)
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2.6. Parameter Estimation

Here, we use maximum likelihood method of estimation. Let X1, X2...Xn be independent and
identically distributed Poisson-power Lindley random variables. The log likelihood function is,

L(α, β, m; x) = nlog
(

m
1 − e−1

)
+ nlog

(
αβ2

β + 1

)
+

n

∑
i=1

log(1 + xα
i ) + (α − 1)

n

∑
i=1

log(xi)− β
n

∑
i=1

xα
i −

n

∑
i=1

[
1 −

(
1 +

βxα
i

β + 1

)
e−βxα

i

]
+ (m − 1)

n

∑
i=1

log
[

1 −
(

1 +
βxα

i
β + 1

)
e−βxα

i

]
. (32)

The computations were implemented using the nlm function of R software.

3. APPLICATIONS

In this section, we illustrate the flexibility of the Poisson-power Lidley distribution using two
real data sets. The model parameters are estimated by the method of maximum likelihood using
the nlm function of R software. The K-S statistics and the corresponding p values were also
calculated for establishing its goodness of fit.

3.1. Dataset 1 Repair times data

We have considered a data set which represents the maintenance data with 46 observations
reported on active repair times (hours) for an airborne communication transceiver given by [17].
The data set is
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0,1.0, 1.0, 1.0, 1.1 1.3, 1.5, 1.5, 1.5, 1.5, 2.0,
2.0, 2.2, 2.5, 2.7,3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8,9.0, 10.3, 22.0, 24.5.
We plot the histogram of the observed data and the embedded pdf plot of PPL disribution. It
is seen that the PPL distribution is a good fit for the observed data. For comparison study
we include the embedded pdfs of power Lindley(PL), Poisson Weibull(PW) and Inverse power
Lindly(IPL) distributions also in the same graph and it is given in Figure 3

Figure 3: Fitted pdf plot of Dataset 1

The numerical values of statistics of the fitted models for Dataset 1 are presented in Table
1. We note that the PPL distribution has the lowest value of -logl, AIC, BIC, K-S and highest p
value as compared to power Lindley(PL), Poisson Weibull(PW) and Inverse power Lindly(IPL)
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distributions. Therefore PPL distribution provides a better fit for the given Dataset 1 than the
other considered distributions.

Table 1: The MLE, -logl, AIC, BIC, K-S and p-value for the fitted models to the Dataset1

Distribution Parameters -logl AIC BIC K-S p value
α = 0.4218

PPL β = 1.9947 0.0635 6.1270 11.6130 0.28986 0.972
m=8.2000
α = 0.7581

PL β = 0.6757 105.0133 214.0266 217.6839 0.76087 0.2171
α = 0.4218

PW β = 0.1249 112.6021 231.2042 236.6901 0.63043 0.2129
γ = 1.0004
α = 1.6899

IPL β = 0.6222 69.3208 142.6417 146.302 0.5 0.7241

3.2. Dataset 2 Carbon fibers data

The data provides the tensile strength of 69 carbon fibers, measured in GPa, tested under tension
at gauge given by [13]
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,
2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,
2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648,
2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090,
3.096, 3.128, 3.233, 3.433, 3.585, 3.585.
The histogram and the embedded pdfs of Poisson-power Lindley (PPL), power Lindly (PL),
Poisson Exponential (PE) and Exponentiated power Lindley (EPL) distributions for Dataset 2 are
give in Figure 4.

Figure 4: Fitted pdf plot of Dataset 2

The MLE, -logl, AIC, BIC, K-S and p-value for the fitted models are presented in Table 2.
Here also PPL distribution seems to be the better fit as it has the lowest value of -logl, AIC,
BIC, K-S and highest p value when compared to power Lindly (PL), Poisson Exponential (PE),
Exponentiated power Lindley (EPL) distributions.
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Table 2: The MLE, -logl, AIC, BIC, K-S and p-value for the fitted models to the Dataset 2

Distribution Parameters -logl AIC BIC K-S p value
α = 2.3845

PPL β = 0.3095 46.67928 99.35855 106.0609 0.3333 0.9068
m=5.1124
α = 3.868

PL β = 0.050 49.06274 102.1255 106.5937 0.5 0.7161
θ = 91.2776

PE λ = 2.0476 54.4334 112.8668 117.3351 0.5 0.7161
β = 2.5554

EPL θ = 0.2487 117.7761 241.5522 248.2545 0.42029 0.6901
α = 2.2514

That is in the case of these two data sets, PPL distribution seems to be the better fit.

4. RELIABILITY TEST PLAN

In Reliability test plan, we want to decide whether to accept or not to accept the lot based on a
sample of products taken from the lot. In a life testing experiment, the procedure is to terminate
the test by a predetermined time t and note the number of failures. If the number of failures at
the end of time t does not exceed a given number c, called acceptance number then we accept
the lot with a given probability of at least p∗. But if the number of failures exceeds c before
time t then the test is terminated and the lot is rejected. For such truncated life test and the
associated decision rule, we are interested in obtaining the smallest sample size to arrive at a
decision. Assume that the lifetime of a product follows Poisson-power Lindley distribution. If a
scale parameter λ > 0 is introduced, the cdf of PPL is given by,

G(x; m; ξ) =
(

1 − e−1
)−1

[
1 − e−

[
1−(1+ β

β+1 (
x
λ )

α)e−β( x
λ
)α
]m
]

, x > 0, α, β, m > 0. (33)

The average life time depends only on λ if α,β and m are known. Let λ0 be the required minimum
average life time. Then

G (t, α, β, m, λ) ≤ G (t, α, β, m, λ0) ⇔ λ ≥ λ0

A sampling plan consists of the following quantities: (1) the number of units n on test; (2) the
acceptance number c; (3) the maximum test duration t, and (4) the minimum average lifetime
represented by λ0. The probability of accepting a bad lot, that is the consumer’s risk should not
exceed the value 1 − p∗ where p∗ is a lower bound for the probability that a lot of true value
λ below λ0 is rejected by the sampling plan. For fixed p∗ the sampling plan is characterized
by (n, c, t

λ0
). By sufficiently large lots we can apply binomial distribution to find acceptance

probability. The problem is to determine the smallest positive integer n for given value of c and
t

λ0
such that

L(Po) =
c

∑
i=0

(
n
i

)
pi

0 (1 − p0)
n−i ≤ 1 − p∗ (34)

where p0 = G (t, α, β, m, λ0). The function L(p) is the operating characteristic function of the
sampling plan i.e. the acceptance probability of the lot as a function of the failure probability
p(λ) = G (t, α, β, m, λ). The operating characteristic function is an increasing function in λ as
the average life time of the product is increasing with λ and thus the failure probability p(λ)
decreases. Table 3 gives the minimum values of n satisfying (34) for α = 1, β = 2, m = 2, p∗=

RT&A, No 3 (74) 
Volume 18, September 2023

260



Alphonsa George, Dais George
RELIABILITY TEST PLAN FOR THE PPL DISTRIBUTION

0.75, 0.90, 0.95, 0.99 and t
λ0

= 0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712.

L1 (p0) =
c

∑
i=0

θi

i!
e−θ ≤ 1 − p∗. (35)

The minimum values of n satisfying (35) are obtained for the same combination of values
of α, β, m, t

λ0
and p∗ when the binomial probability approximated by Poisson probability with

parameter θ = np0 in the case of p0 = G (t, α, β, m, λ0) is very small and n is large, are presented in
Table 4. The operating characteristic function of the sampling plan (n, c, t

λ0
) gives the probability

L(p) of accepting the lot with

L(P) =
c

∑
i=0

(
n
i

)
pi

0 (1 − p0)
n−i (36)

where p = G(t, λ) is considered as a function of λ. The values of n and c are determined by means
of operating characteristic function for given values of p∗, t

λ0
and considering p = G

(
t

λ0
/ λ0

λ

)
are displayed in Table 5. The producer’s risk, probability of rejecting a lot having the quality
λ ≥ λ0 is specified by a value say 0.05, it is interested to know that which values of λ

λ0
will ensure

a producer’s risk less than or equal to 0.05 for a given sampling plan. The value of λ
λ0

is the
smallest positive number for which the following inequality

c

∑
i=0

(
n
i

)
pi

0 (1 − p0)
n−i ≥ 0.95 (37)

holds. For some sampling plan
(

n, c, t
λ0

/ λ
λ0

)
and values of p∗, the minimum values of λ

λ0
satisfy-

ing (37) are given in Table 6 and Table 7 gives the values of L(p) for given values of λ
λ0
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Table 3: Minimum sample sizes using Binomial probabilities

t/λ0
p∗ c 0.628 0.942 0.1.257 1.571 2.356 3.141 3.927 4.712

0 3 2 1 1 1 1 1 1
1 5 3 3 2 2 2 2 2
2 8 5 4 4 3 3 3 3
3 10 7 5 5 4 4 4 4
4 13 8 7 6 5 5 5 5

0.75 5 15 10 8 7 6 6 6 6
6 17 11 9 8 7 7 7 7
7 19 13 11 10 8 8 8 8
8 22 15 12 11 9 9 9 9
9 24 16 13 12 10 10 10 10

10 26 18 14 13 12 11 11 11
0 4 2 2 2 1 1 1 1
1 7 4 3 3 2 2 2 2
2 10 6 5 4 3 3 3 3
3 13 8 6 5 5 4 4 4
4 15 10 8 7 6 5 5 5

0.90 5 18 11 9 8 7 6 6 6
6 20 13 10 9 8 7 7 7
7 23 15 12 10 9 8 8 8
8 25 16 13 12 10 9 10 10
9 28 18 14 13 11 10 10 10

10 30 20 16 14 12 11 11 11
0 5 3 2 2 1 1 1 1
1 9 5 4 3 3 2 2 2
2 11 7 5 5 4 3 3 3
3 14 9 7 6 5 4 4 4
4 17 11 8 7 6 5 5 5

0.95 5 20 13 10 8 7 6 6 6
6 22 15 11 10 8 7 7 7
7 25 16 13 11 9 9 8 8
8 27 18 14 12 10 10 9 9
9 21 15 13 12 12 11 12 11

10 32 21 17 15 12 12 11 11
0 8 4 3 3 2 1 1 1
1 11 7 5 4 3 2 2 2
2 15 9 7 6 4 3 3 3
3 18 11 8 7 5 4 4 4
4 21 13 10 8 7 5 5 5

0.99 5 24 15 11 10 8 6 6 6
6 26 17 13 11 9 7 7 7
7 29 18 14 12 10 9 8 8
8 32 20 16 13 11 10 9 9
9 35 22 17 15 12 11 10 10

10 37 24 19 16 13 12 11 11
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Table 4: Minimum sample sizes using Poisson probabilities

t/λ0
p∗ c 0.628 0.948 1.257 1.571 2.356 3.141 3.927 4.712

0 4 3 2 2 2 2 2 2
1 6 4 4 4 3 3 3 3
2 9 6 5 5 5 4 4 4
3 11 8 7 6 6 6 6 6
4 14 10 8 8 7 7 7 7

0.75 5 16 11 10 9 8 8 8 8
6 19 13 11 10 9 9 9 9
7 21 15 12 11 11 10 10 10
8 24 16 14 13 12 11 11 11
9 19 15 14 13 13 13 13 13
10 28 20 16 15 14 14 14 14
0 5 4 3 3 3 3 3 3
1 9 6 5 5 4 4 4 4
2 12 8 7 6 6 6 6 6
3 15 10 9 8 7 7 7 7
4 17 12 10 9 9 9 9 8

0.90 5 20 14 12 11 10 10 10 10
6 23 16 13 12 11 11 11 11
7 25 18 15 14 13 12 12 12
8 28 19 16 15 14 14 14 13
9 31 21 18 16 15 15 15 15
10 33 23 19 18 16 16 16 16
0 7 5 4 4 4 4 4 4
1 11 8 7 6 6 6 5 5
2 14 10 9 8 7 7 7 7
3 15 12 10 10 9 9 9 8
4 17 14 12 11 10 10 10 10

0.95 5 20 16 14 13 12 12 11 11
6 23 18 16 14 13 13 13 13
7 25 20 17 16 14 14 14 14
8 28 22 19 17 16 15 15 15
9 31 24 20 19 17 17 17 17
10 33 26 22 20 18 18 18 18
0 10 7 6 6 5 5 5 5
1 15 10 9 8 7 7 7 7
2 18 13 11 10 9 9 9 9
3 22 15 13 12 11 11 11 11
4 25 17 15 13 12 12 12 12

0.99 5 28 20 17 15 14 14 14 14
6 31 22 18 17 15 15 15 15
7 24 22 20 18 17 17 17 17
8 37 26 22 20 18 18 18 18
9 40 28 24 22 20 19 19 19
10 43 30 25 23 21 21 21 21
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Table 5: OC values for the plan (n, c, t/λ0) for given confidence level p⋆, α = 1, m = β = 2

p⋆ n c t
λ0

λ/λ0
2 4 6 8 10 12

8 2 0.628 0.8249 0.9913 0.9989 0.9997 0.9999 0.9999
5 2 0.942 0.7877 0.9865 0.9982 0.9996 0.9998 0.9999
4 2 1.257 0.7263 0.9774 0.9966 0.9992 0.9997 0.9999
4 2 1.571 0.5416 0.9427 0.9902 0.9976 0.9992 0.9997
3 2 2.356 0.5095 0.9145 0.9822 0.9951 0.9983 0.9993

0.75 3 2 3.141 0.2885 0.7945 0.9438 0.9822 0.9934 0.9972
3 2 3.927 0.1537 0.6502 0.8792 0.95589 0.9822 0.9920
3 2 4.712 0.0793 0.5095 0.7945 0.9145 0.9623 0.9822
10 2 0.628 0.7168 0.9829 0.9978 0.9995 0.9998 0.9999
6 2 0.942 0.6772 0.9754 0.9966 0.9992 0.9997 0.9999
5 2 1.257 0.5498 0.9514 0.9923 0.9982 0.9994 0.9998
4 2 1.571 0.5416 0.9427 0.9902 0.9976 0.9992 0.9997
3 2 2.356 0.5095 0.9145 0.9822 0.9951 0.9983 0.9993

0.90 3 2 3.141 0.2885 0.7945 0.9438 0.9822 0.9934 0.9972
3 2 3.927 0.1537 0.6502 0.8792 0.95589 0.9822 0.9920
3 2 4.712 0.0793 0.5095 0.7945 0.9145 0.9623 0.9822
11 2 0.628 0.6606 0.9775 0.9971 0.9993 0.9998 0.9999
7 2 0.942 0.5669 0.9607 0.9943 0.9987 0.9996 0.9998
5 2 1.257 0.5498 0.9514 0.9923 0.9982 0.9994 0.9998
5 2 1.571 0.3345 0.8843 0.9780 0.9944 0.9982 0.9993
4 2 2.356 0.1985 0.7711 0.9427 0.9831 0.9940 0.9997

0.95 3 2 3.141 0.2885 0.7945 0.9438 0.9822 0.9934 0.9972
3 2 3.927 0.1537 0.6502 0.8792 0.95589 0.9822 0.9920
3 2 4.712 0.0793 0.5095 0.7945 0.9145 0.9623 0.9822
15 2 0.628 0.4485 0.9477 0.9926 0.9984 0.9995 0.9998
7 2 0.942 0.3732 0.9211 0.9875 0.9971 0.9991 0.9996
5 2 1.257 0.2725 0.8732 0.9768 0.9942 0.9982 0.9993
6 2 1.571 0.1930 0.8125 0.9606 0.9895 0.9965 0.9986
4 2 2.356 0.1985 0.7711 0.9427 0.9831 0.9940 0.9997

0.99 4 2 3.141 0.0595 0.5419 0.8398 0.9427 0.9774 0.9902
3 2 3.927 0.1537 0.6502 0.8792 0.95589 0.9822 0.9920
3 2 4.712 0.0793 0.5095 0.7945 0.9145 0.9623 0.9822
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Table 6: Minimum ratio of true mean life to specified mean life for the acceptability of a lot with α = 0.05

t/λ0
p∗ c 0.628 0.942 0.1.257 1.571 2.356 3.141 3.927 4.712

0 0.31235 0.46621 0.62574 0.78206 1.1728 1.5636 1.9549 2.3456
1 0.30953 0.46696 0.62487 0.77886 1.1680 1.5572 1.9469 2.3360
2 0.30830 0.46375 0.61861 0.77314 1.1622 1.5495 1.9372 2.3245
3 0.30689 0.45844 0.6152 0.7689 1.1508 1.5343 1.9182 2.3017
4 0.3032 0.4573 0.6121 0.7651 1.1450 1.5266 1.9086 2.2901

0.75 5 0.3029 0.4567 0.6076 0.7619 1.1374 1.5164 1.8959 2.2748
6 0.2989 0.4534 0.6049 0.7535 1.0983 1.4642 1.8307 2.1966
7 0.2971 0.4502 0.5996 0.7477 1.1234 1.4977 1.8725 2.2468
8 0.2961 0.4484 0.5965 0.7442 1.1169 1.4891 1.8617 2.2339
9 0.2945 0.4440 0.5916 0.7170 1.1098 1.4796 1.8499 2.2197
10 0.2943 0.4412 0.5931 0.7443 1.1029 1.4743 1.8433 2.2117
0 0.31261 0.46768 0.62616 0.78188 1.17351 1.56451 1.95602 2.34702
1 0.31178 0.46738 0.62537 0.78159 1.17103 1.56121 1.95188 2.34206
2 0.30937 0.46401 0.62008 0.77561 1.16362 1.5133 1.93953 2.32724
3 0.30850 0.46235 0.61821 0.77131 1.15673 1.54169 1.92748 2.31278
4 0.30644 0.45863 0.61273 0.76771 1.15097 1.53054 1.91354 2.29605

0.90 5 0.30465 0.45734 0.60887 0.76212 1.13909 1.52488 1.90647 2.28757
6 0.30254 0.45466 0.60539 0.75557 1.13375 1.50856 1.88606 2.26308
7 0.30015 0.45209 0.60226 0.75048 1.12580 1.50019 1.87559 2.25052
8 0.29960 0.44887 0.59802 0.74859 1.12348 1.49781 1.87262 2.24696
9 0.29697 0.44492 0.59328 0.74248 1.11331 1.48242 1.85338 2.22387
10 0.29489 0.44304 0.59198 0.73818 1.10732 1.48019 1.85060 2.22053
0 0.31342 0.46930 0.62630 0.78275 1.17417 1.56540 1.95713 2.34835
1 0.31301 0.46742 0.62571 0.78190 1.17260 1.56200 1.95288 2.34325
2 0.31285 0.46638 0.62510 0.78125 1.17059 1.56107 1.95172 2.34186
3 0.31249 0.46599 0.62489 0.77827 1.16723 1.55472 1.94378 2.33233
4 0.31058 0.46438 0.62139 0.77449 1.16150 1.55442 1.94339 2.33187

0.95 5 0.30982 0.46382 0.61888 0.77433 1.16073 1.54632 1.93327 2.31973
6 0.30889 0.46296 0.61848 0.77169 1.15626 1.54544 1.93217 2.31841
7 0.30835 0.46215 0.61767 0.77075 1.15323 1.53748 1.92512 2.30994
8 0.30808 0.46042 0.61302 0.76404 1.14812 1.53067 1.91120 2.29324
9 0.30635 0.45935 0.61247 0.76234 1.14329 1.52422 1.90252 2.28284
10 0.30533 0.45755 0.61117 0.76219 1.14322 1.52414 1.89925 2.27890
0 0.31410 0.47158 0.62932 0.78653 1.17517 1.57161 1.96488 2.35766
1 0.31349 0.46950 0.62815 0.78583 1.17293 1.56519 1.95686 2.3480
2 0.31322 0.46912 0.62662 0.78525 1.17282 1.56216 1.95308 2.34349
3 0.31264 0.46901 0.62634 0.78099 1.1697 1.55585 1.94518 2.33402
4 0.31248 0.46875 0.62437 0.77818 1.16764 1.55522 1.94440 2.33308

0.99 5 0.31131 0.46633 0.62203 0.77685 1.16330 1.55066 1.93870 2.32624
6 0.31025 0.46618 0.61933 0.77598 1.16289 1.55015 1.93806 2.32547
7 0.31009 0.46322 0.61857 0.77578 1.15937 1.54816 1.93782 2.32519
8 0.30864 0.46104 0.616415 0.76888 1.15524 1.54185 1.92134 2.30541
9 0.30646 0.46035 0.61599 0.76727 1.15464 1.53299 1.91697 2.30017
10 0.30629 0.45845 0.61446 0.76669 1.14908 1.53029 1.91078 2.29275

4.1. Description of the Tables

Assume that the lifetime distribution is Poisson-power Lindley distribution with α = 1, β = 2,
m = 2, and that the experimenter irested in establishing that the true unknown average life is at
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least 1000 hours with confidence p∗ = 0.75. It is desired to stop the experiment at t = 628 hours.
Then, for an acceptance number c = 2, the required n in Table 3 is 8. If, during 628 hours, no more
than 2 failures out of 8 are observed, then the experimenter can assert, with a confidence level of
0.75 that the average life is at least 1000 hours. For the same situation we obtained the value of n
= 9 from Table 4when the Poisson approximation to binomial probability is used. Comparing
with reliability test plan for the two parameter Quasi Lindley distribution[1] and three parameter
Lindley distribution [2] the minimum sample size using binomial approximation for the sampling
plan c = 10, t

λ0
= 0.628 with confidence level p∗ = 0.75 are 29 and 125 respectively, whereas for

the Poisson-power Lindley distribution it is 26. This indicate that the newly developed reliability
test plan gives a propitious improvement in making optimal decisions as compared to the other
two distributions. For the sampling plan (n = 8, c = 2, t

λ0
= 0.628) and confidence level p∗ = 0.75

under Poisson power Lindley distribution with α = 1,β = 2,m = 2, the values of the operating
characteristic function from Table 5 are as follows:

Table 7: Values of L(p) for various values of λ
λ0

λ
λ0

2 4 6 8 10 12
L(p) 0.8249 0.9913 0.9989 0.9997 0.9999 0.9999

From Table 7 we can find that if the true mean lifetime is twice the required mean lifetime
( λ

λ0
= 2) the producer’s risk is approximately 0.1751. We can get the values of the ratio λ

λ0
for

various choices of (c, t
λ0
) in order that the producer’s risk may not exceed 0.05, for example if

p∗ = 0.75, t
λ0

= 4.712, c = 2, Table 6 gives a reading of 2.3245. This means that the product can
have an average life of 2.32 times the required average lifetime in order that under the above
acceptance sampling plan the product is accepted with probability of at least 0.95. The actual
average lifetime necessary to accept 95 percent of the lots is provided in Table 6.

4.2. Real Data Example

Consider the data studied by Bjerkeda [10] which represents the survival times (in hours) of
guinea pigs infected with virulent tubercle bacilli, after they were injected with a given dose of
tubercule bacilli in a medical experiment. This data can be regarded as an ordered sample as
given below:
43, 45, 53, 56,56,57, 58, 66, 67, 73, 74, 79, 80, 80, 81, 81, 81, 82, 83, 83, 84, 88, 89, 91, 91, 92, 92, 97,
99, 99, 100, 100, 101, 102, 102, 102, 103, 104, 107, 108, 109, 113, 114, 118, 121, 123, 126, 128, 137, 138,
139, 144, 145, 147, 156, 162, 174, 178, 179, 184, 191, 198, 211, 214, 243, 249, 329, 380, 403, 511, 522,
598
Let the experimenter is interested to establish the true unknown mean life time is 70 hours
with confidence p∗ = 0.75 and testing time be 44 hours, which gives the ratio t

λ0
= 44

70 = 0.628..
Thus, for an acceptance number c=8 and confidence level p∗ = 0.75, the required sample
size n from Table 3 is found to be 22. Thus the sampling plan for the above sample data is(

n = 22, c = 8, t
λ0

= 0.628
)

. Based on the data, we have to decide whether to accept the drug
or reject it. We accept the drug only if the number of survival before 44 hours is greater than
or equal to 14 among the first 22 observations. However, the confidence level is assured by the
sampling plan only if the given lifetimes following the Poisson-power Lindley distribution. Thus
in order to confirm it, the goodness of fit test for these observations were done and it gives a
p-value 0.6889 and K-S statistics as 0.41667. The corresponding fitted embedded graph is given in
Figure 5. Since there is only 2 failures before the time 45, we can say that in a testing time of 44
hours, 20 were survived among 22 observations. So we can accept the effectiveness of tubercle
bacilli in developing acquired resistance against tuberculosis in guinea pigs according to our
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sampling plan.

Figure 5: fitted pdf plot for guinea pigs data

5. CONCLUSION

In this paper, we introduce a new member of Poisson-X family called Poisson-power Lindley
distribution. Some of its structural properties are investigated. The model parameters are
estimated by the method of maximum likelihood. The flexibility of the new distribution is
illustrated by means of real data sets. It is seen that the Poisson- power Lidley distribution
provides a better fit than other compared distributions for these data sets. Also, a reliability test
plan is developed when the life time follows the Poisson-power Lindley distribution. We have
shown in general that under similar conditions, in order to ensure a specified mean life with a
given confidence level, Poisson-power Lindley model results in smaller sample sizes than some
other models used in acceptance sampling. In order to verify the applicability of the distribution
in reliability test plan a real data analysis is also conducted and it found to be given as a better
decision regarding the acceptability of the product.
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Abstract 

Emotion recognition plays an important role in many real-life application areas of artificial 

intelligence like human-computer interactions, autism detection, stress and depression detection, 

measuring mental health, and suicide prevention. Emotion state of a person can be decided by the 

facial expression, tone of voice, words of speech, and body gestures when they are having a face-to-

face conversation. People widely use social media platforms to post their feelings and mood through 

status. So, the status text can be used to identify the emotional state of a person. Physiological signals 

(EEG, ECG, and EDA) can identify the emotional state more accurately as people cannot be faked 

during the data collection but it is difficult to collect data. Many unimodal and multimodal datasets 

are publicly available but still, there is a strong need to create a multimodal dataset that consists of 

all the important modalities for the identification of emotional state. In this paper, first, we have 

reviewed all the available unimodal and multimodal datasets, then in the next section, we discuss the 

method to prepare the multimodal dataset. The data of four different modalities like facial expressions, 

audio, social media text, and EEG have been collected from seven different actors of different age 

groups and of different demographic regions. The dataset is non-spontaneous and contains discrete 

emotion labels like happy, sad, and angry.  The procedure to create a dataset of different modalities 

include steps like capturing data, pre-processing, feature extraction, and storing to the relevant 

format. In last, to observe effect of different emotions, analysis of proposed multimodal database is 

carried out using efficient image, speech and text parameters. 

Keywords: Unimodal, Emotion recognition, Feature extraction, Multimodal, 

EEG, Modality. 

I. Introduction

Human emotion, sentiment, and feelings [1], emotion identification, and sentiment analysis all fall 

under the umbrella category of human-computer interaction. It has guided research on computers' 

abilities to recognize and convey emotions, respond intelligently to human feelings, and manage 

and exploit human emotions [2]. Nowadays it is highly desirable to build a system that can recognize 

and understand the emotions of a person, and respond in a way like a human [3]. For instance, if the 

driver’s emotional state can be monitored and appropriate responses generate in a mart vehicle 
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system, then observed findings might effectively minimize the risk of accidents [4]. So, many authors 

have done significant research and concluded that emotion recognition is the key to promoting 

human-machine interaction, AI, and many other research fields. 

         Many Datasets are publicly available for emotion recognition, some of them are unimodal like 

visual, audio, text, and psychological. Some recent advancements have been done in the field of 

creating multimodal datasets like audio-textual-visual databases and video-physiological databases. 

People use to express their emotions through facial expression, speech intensity, and social media 

status, thus multimodal signals. So, many researchers have developed multimodal databases by 

collecting on-the-spot emotions, gathering online data, or inducing emotions through videos. Most 

of these datasets are either multi-physical or physiological.  Nowadays people use social media 

platforms to express their feeling mostly. We have observed that social media status can be used to 

classify emotions effectively. 

       We have studied all the available unimodal and multimodal emotion recognition datasets but 

there is no dataset exist which contains all important dimensions for classification.so,   In this paper, 

We have prepared the multimodal emotion recognition database of 7 demographically different 

actors which consists of their facial expression, audio, social media status, and EEG signal for three 

classification categories happy, sad, and angry. 

II. Existing Databases for Emotion Recognition

    The datasets available for the Emotion recognition task are mainly classified into facial 

expression, audio, Text, and physiological signals. Some available datasets are multimodal which 

consist of more than one dimension of emotion recognition. Multimodal datasets are required to 

make a robust model which identifies the human emotions of different categories. 

I. Facial expression databases

Many authors have tried to recognize emotions using facial expressions but people can be faked 

expressing emotion. So, the dataset used to train the model should be sparse and not limited. The 

early facial expression databases were created using emotions that were purposefully expressed by 

people in the lab. 

JAFFE [5] is a facial expression dataset, which has 213 images of 256*256 pixels for 7 different 

emotions (6 basic facial expressions and neutral). The Actors are 10 Japanese female models who 

acted to create the dataset.  

Cohn-Kanade (CK+) [6], which is an extension of CK [7], the dataset contains 593 video sequences 

from 123 different subjects who were instructed to perform 7 facial expressions (anger, contempt, 

disgust, fear, happiness, sadness, and surprise). This dataset is lab-controlled yet very extensive to 

provide comparatively good results for emotion recognition.  

Oulu-CASIA [8], the dataset consists of 6 expressions (surprise, happiness, sadness, anger, fear, and 

disgust) from 80 Subjects and includes 2,880 image sequences captured with one of two kinds of 

imaging systems. Subjects were asked to make a facial expression according to an expression 

example shown in picture sequences. The imaging hardware works at the rate of 25 frames per 

second and the image resolution is 320 × 240 pixels. 

BP4D [9], the dataset is a well-annotated 3D video database of spontaneous facial expressions, 

collected from 41 participants (23 women, 18 men), demographically from a different region. Eight 

tasks were covered with an interview process and a series of activities to elicit eight emotions.  

4DFAB 10] , the dataset consists of at least 1,800,000 dynamic high-resolution 3D faces captured from 

180 subjects in four different sessions spanning over a five-year period. 
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So far, the acted databases are listed which were constructed in a particular environment. On the 

other way, we can create a dataset by collecting images or videos from the internet and it is called 

In-the-Wild. 

FER2013 [11], is a large-scale dataset consists 35,887 gray images with 48×48 pixels, collected 

automatically through the Google image search API. The 07 emotion categories were collected and 

labeled 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral.  SFEW 2.0 [12], is an 

in-the-wild dataset that is divided into three sets, including Train (891 images) and Val (431 images), 

labeled as one of six basic expressions (anger, disgust, fear, happiness, sadness, and surprise), as 

well as the neutral and Test (372 images) without expression labels. EmotioNet [13], dataset consists 

of one million images with 950,000 automatically annotated AUs and 25,000 manually annotated 

AUs.  AffectNet [14], the dataset contains over 1,000,000 facial images, of which 450,000 images are 

manually annotated with eight discrete expressions (six basic expressions plus neutral and 

contempt), and the dimensional intensity of valence and arousal.  

II. Speech/Audio databases

There are main two categories of speech datasets: - induced and spontaneous. Induced datasets were 

created from the professional actor’s performance and they have to act in a particular environment 

and record the dataset which is more authentic. 

Berlin Database of Emotional Speech (Emo-DB) [15], the dataset contains about 500 utterances 

spoken by 10 actors (5 men and 5 women) in a happy, angry, anxious, fearful, bored, and disgusted 

way.  

Belfast Induced Natural Emotion (Belfast) [16], the dataset was recorded from 40 subjects at Queen 

University in Northern Ireland, UK. Each subject took part in five tests, each of which contained 

short video recordings 9 (5 to 60 seconds in length) with stereo sound, and related to one of the five 

emotional tendencies: anger, sadness, happiness, fear, and neutrality. 

Ryerson Audio-Visual Database of Emotional Speech and Song (Ravdess), the dataset contains 7356 

files, recorded by 24 actors (12 males, 12 females). Each actor vocalized two statements in North 

American accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust 

expressions, and the song contains calm, happy, sad, angry, and fearful emotions. 

III. Textual (Social media) databases

Text data in various levels (e.g., word, phrase, and document) is tagged with emotion or sentiment 

tags, such as positive, negative, emphatic, general, sad, glad, and so on, in databases for textual 

emotion analysis. 

The multi-domain sentiment (MDS) [17,18],  dataset consists of more than 100,000 sentences, which 

are product reviews acquired from Amazon.com. These sentences are labeled with both two 

sentiment categories (positive and negative) and five sentiment categories (strong positive, weak 

positive, neutral, weak negative, and strong negative). 

IMDB [19], is a popularly used largest dataset that provides 25,000 highly polar movie reviews for 

training and 25,000 for testing.  The first line in each file contains headers that describe what is in 

each column. 

Stanford sentiment treebank (SST) [20] is the semantic lexical database annotated by Stanford 

University. It includes a fine-grained emotional label of 215,154 phrases in a parse tree of 11,855 

sentences, and it is the first corpus with fully labelled parse trees. 
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IV. EEG databases

Physiological signals cannot be altered intentionally to hide the emotions which is normally happens 

with facial expressions, audio and textual emotions. So it is more authentic and reliable. It consists 

EEG,ECG, EMG and RESP data. EEG is a signal which captures the brain signals so it is highly 

desirable to use in the task of emotion recognition.  

DEAP [21], comprises a 32-channel EEG, a 4-channel EOG, a 4-channel EMG, RESP, 

plethysmograph, Galvanic Skin Response (GSR), and body temperature, from 32 subjects. Each 

subject participated in 40 EEG trials, in each of which a specific emotion was elicited by a music 

video. Immediately after watching each video, subjects were required to rate their truly-felt emotion 

from five dimensions: valence, arousal, dominance, liking, and familiarity.  

SEED [22, 23] is based only on EGG recordings, from 15 subjects. However, it enables repeated 

experiences to improve data reliability/stability. In their study, participants were asked to experience 

three EEG recording sessions, with an interval of two weeks between two successive recording 

sessions. Within each session, each subject was exposed to the same sequence of fifteen movie 

excerpts, each one approximately four-minute-long, to induce three kinds of emotions: positive, 

neutral, and negative.  

AMIGOS [24] was designed to collect participants’ emotions in two social contexts: individual and 

group. AMIGOS was constructed in 2 experimental settings. First, 40 participants watched 16 short 

emotional videos. Then, they watched 4 long videos, including a mix of lone and group sessions. 

These emotions were annotated with not only self-assessment of affective levels but also external 

assessment of valence and arousal, through GSR and ECG signals.  

Wearable devices help to bridge the gap between lab studies and real-life emotions. Wearable Stress 

and Affect Detection (WESAD) [25] was constructed for stress detection, providing multimodal, 

high-quality data, including three different affective states (neutral, stress, amusement). 

IV. Multimodal databases

Humans mostly express their feelings in through multimodal signals. So, rather than focusing only 

on a single modal like audio, video, text, or EEG, it is desirable to create a multimodal dataset by 

collecting spontaneous emotions from available online data. 

Interactive Emotional Dyadic Motion Capture (IEMOCAP) [26] is constructed by the Speech 

Analysis and Interpretation Laboratory. During recording, 10 actors are asked to not only perform 

selected emotional scripts but also improvised hypothetical scenarios designed to elicit 5 specific 

types of emotions. The face, head, and hands of actors are marked to provide detailed information 

about their facial expressions and hand movements while performing.  

Harvesting Opinions from the Web database (HOW) [27] is the first publicly available database 

containing visual, audio, and textual modalities for sentiment analysis. HOW consists of 13 positive, 

12 negative, and 22 neutral videos captured from YouTube.  

ICT-MMMO (Multimodal Movie Opinion) [28], the dataset consists of 308 YouTube videos and 78 

movie review videos from ExpoTV.  The dataset has five emotion categories named strongly 

positive, weakly positive, neutral, strongly negative, and weakly negative. 

CMU-MOSEI (Multimodal Opinion Sentiment and Emotion Intensity)[29], is the largest dataset 

which consists of 23,453 sentences and 3,228 videos from more than 1,000 online YouTube speakers. 

Each video contains a manual transcription that aligns audio and phoneme grade. 

Remote Collaborative and Affective Interactions (RECOLA) [30], the dataset consists multimodal 

corpus of spontaneous interactions from 46 participants. These participants worked in pairs to 

discuss a disaster scenario escape plan and came to an agreement via remote video conferencing. 
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The recordings of the participants’ activities were labeled by 6 annotators with two continuous 

emotional dimensions: arousal and valence, as well as social behavior labels on five dimensions.  

III. Dataset Design and Acquisition

         Emotion Recognition and prediction is indeed a challenging task, even though many 

researchers have done significant work in this area. There are many multimodal datasets available 

for emotion recognition but still there is a need to develop extended multimodal dataset, which 

include physical and psychological data. In the next section, we discusses the procedure followed in 

the acquisitions of multimodal facial expression, audio, social media status and EEG data of the 

subjects for the proposed dataset. The actors depict the wider range ‘happy’, ‘sad’, and ‘anger’ 

feelings. These discrete feelings of humans are universally accepted as basic human emotions. 

Figure 1:  Multimodal Emotion Recognition dataset dimensions 

I. Actor Details

The 07 Professors of Government Engineering College, Gandhinagar have been participated in the 

acting sessions to create this dataset. The facial expression, voice, social media status and EEG signals 

are collected for three basic emotions like happy, sad and angry. Actors’ mean age = 39.5 years, age 

range = 33-45, males = 2, and females = 5. Actors are the basically belongs from Rajasthan (1 actor), 

North Gujarat (2 actors), South Gujarat (1 actor), Saurashtra (2 actors) and Central Gujarat (1 actor). 

All actors speak English as a foreign language.  

II. Facial Expression Dataset

The facial expression dataset was collected for three different emotions happy, sad and angry by 07 

different actors. The FER-13 dataset samples are demonstrated to actors for better understanding of 

the requested target emotions. The dataset FER-2013 contains 35,887 grayscale images of faces with 

48*48 pixels and stored in CSV format.  As shown in the figure 2, the images of three different facial 

Facial Expression 

Audio 

EEG 

Social 

Media 
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Multimodal 

Dataset 
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expression happy, sad and angry are captured using RedMe 9 prime phone for all 7 actors. Then, 

the collected images have been converted into 48*48 grayscale images and the pixel values of these 

images are stored in .csv file. 

Figure 2:  Procedure in the creation of Facial Expression dataset 

Figure 3: Actors performed in the proposed Facial expression dataset  

Capture Images using RedMe 9 

prime phone (two photos for 3 

different Emotions)

Convert Image into 48*48 

grayscale image  

Convert image to the pixel value 

and stored in .csv file  

Test with the developed model 

Happy Sad Angry 
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III. Audio Dataset

The Audio dataset was collected for three different emotions happy, sad and angry by 07 different 

actors. The RAVDESS dataset samples are demonstrated to actors for better understanding of the 

requested target emotions. The two sentences are given and explained to each actor. They are 

requested to practice script sentences to evoke the target feelings. The RAVDESS dataset contains 

7356 files. The database contains 24 professional actors (12 female, 12 male), vocalizing two lexically-

matched statements in a neutral North American accent. As shown in figure 4 ,The recording of all 

actors have been done by RedMe 9 prime phone. Two sentences Dogs are sitting by the door and 

Kids are talking by the door are recited by the actors in all three emotions. Then recorded audios are 

converted to .wav format and stereo files are converted to mono files.  

IV. Social Media Status Dataset

The Social media status dataset was collected for three different emotions happy, sad and angry by 

considering status of 07 different actors. Three basic emotion status sad, happy and angry has been 

scraped and prepared which is available on kaggle. Every data set contains two columns one the 

status and another sentiment of that status. So, we pre-process our collected samples accordingly. 

As shown in Figure 5. ,we have developed a system that could find the emotion label like happy, 

sad, and anger for any piece of text, especially status and stories on social media with their 

probability for each emotion using its textual features, Preprocessing techniques, and various 

machine learning and deep learning algorithms[31]. Samples of collected status from different actors 

are listed with sentiments in table 1. 

Record Audio using RedMe 9 

prime  (two sentences in 3

different Emotions)

Convert .aac audio to .wav Format 

Convert stereo files to mono 

files 

Test with the developed model 

Figure 4:  Procedure in the creation of Audio dataset 
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Figure 5:  Procedure in the creation of Social Media Status dataset 

Table 1:  Samples collected from different Actors 

Social Media Status Sentiment 

Happiness is where we find it, but very rarely 

where we seek it. 

Happy 

Beware, I’m not in my greatest mood today. Angry 

My silence is just another word for my pain. Sad 

Happiness is when what you think, what you say, 

and what you do are in harmony. 

Happy 

V. EEG Dataset

EEG is an electrophysiological monitoring method to record the electrical activity of the brain. We 

have collected EEG data from 07 people while they are made to concentrate on a particular thought. 

We have used NeuroMax Nmx-32(channels) series portable device for the collection of data. The 

subjects were asked to visualize the incident which can make them feel happy, sad, and angry 

respectively for 60 seconds each. The other activities like eyes blinking, movement, and eyes open 

are recorded in the data set. The recorded signals contain 32 electrodes data, so the important 

electrodes for emotion recognition were identified and then prepared data for the analysis task. 

Save Social media status of actors 

over the time  

Pre-Process the status using 

different techniques 

Extract features using TF-IDF and 

Count vectors 

Test with the developed model 
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Figure 6:  Procedure in the creation of EEG dataset 

Figure 7: Actors performed in the proposed EEG dataset 

Record EEG signal using 

NeuroMax device(one minute 

recording for each emotion) 

Pre-process EEG signals 

Feature Extractions 

Test with the developed model 
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IV. Experiment Results
The multimodal emotion recognition dataset contains image, audio, social media text and EEG 

signal. In this paper, different evaluation parameters are used for different modal. Complete 

evaluation is performed in Python. 

I. Facial Expression Dataset Evaluation

In this paper, Blind/reference less image spatial quality evaluator (BRISQUE) assessment method 

used to evaluate image quality of facial expression dataset, which only uses the image pixels to 

calculate features. BRISQUE relies on spatial Natural Scene Statistics (NSS) model of locally 

normalized luminance coefficients in the spatial domain, as well as the model for pairwise products 

of these coefficients. First, the MSCN coefficients and the pairwise products are calculated and then 

the distribution is verified using plot which is shown in Figure 8. 

Then pre-trained SVR model is used to calculate the quality assessment. However, in order to have 

good results, we scaled the features to [-1, 1]. The scale used to represent image quality goes from 0 

to 100. An image quality of 100 means that the image’s quality is very bad. In the case of the analyzed 

image, we get that it is a good quality image as the image quality score is 3.889. 

Figure 8. Plot of image coefficient distribution 
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II. Audio Dataset Evaluation

Speech signal is a denouement of time varying vocal tract system agitated by the time varying 

excitation source signal. In this paper, the converted audio signal is observed by different parameters 

shown below. Figure 9 is the Plot of amplitude envelope of a sample waveform. A Mel 

spectrogram is a spectrogram where the frequencies are converted to the Mel scale is show in in 

Figure 10. The FFT is computed on overlapping windowed segments of the signal, and we get what 

is called the spectrogram which is shown in Figure 11.The fast Fourier transform (FFT) is an 

algorithm that can efficiently compute the Fourier transform which is shown in Figure 12. MFCC 

and the creation of filter banks are all motivated by the nature of audio signals and impacted by the 

way in which humans perceive sound .Figure 13 shown the MFCC features of test audio signal. The 

first horizontal yellow lines below every segment are the fundamental frequency and at their 

strongest. Above the yellow line are the harmonics that share the same frequency distance between 

them. The Window Count = 67 and Individual Feature Length = 13 are the MFCC parameters. 

Figure 11:  Plot of Spectrogram Figure 12 :  Plot of FFT spectrum  

Figure 9: Plot of Signal Wave plot Figure 10: Plot of Mel Spectrogram  
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Figure 13: Plot of MFCC Features 

III. Social Media Status Dataset Evaluation

In this paper, we explored various tools to evaluate social media status dataset to explore and 

visualize text data efficiently. The number of characters present in each sentence is shown in figure 

14 and the histogram shows that status content range from 45 to 130 characters. The average word 

length of each status is ranges between 3.50 to 5.25 and that is shown in figure 15. The stop words 

are the words that are most commonly used in any language such as “the”,” a”,” an” etc. We can 

evidently see in Figure 16 that stop words such as “you”,” the” and “to” dominate in Status contents. 

Wordcloud is a great way to represent text data. The size and color of each word that appears in the 

wordcloud indicate its frequency or importance. Figure 17 shows that the terms associated with the 

emotions are highlighted which indicates that these words occurred frequently in the social media 

status. 

Figure 14: Plot of number of characters in each sentence Figure 15 :  Plot of average word length of each status 
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Figure 16 : Plot of top stop words in corpus Figure 17:  Plot of  Wordcloud 

V. Conclusion and Future Work

As Emotion Recognition is a growing research field in today’s era, there are many existing unimodal 

and multimodal datasets available. The multimodal datasets normally consist of audio-visual, 

visual-audio-text, audio-visual-physiological data or EEG-EDA-ECG data. Still there is a pressing 

demand to develop a more extended and new multimodal dataset which consist important 

modalities like facial expression, audio, social media status and EEG signals. To fulfil this 

requirement, we have developed a new dataset for multimodal emotion recognition in which 7 

different Professors of Government Engineering College, Gandhinagar have acted, for four basic 

modalities. This dataset has developed for three discrete emotion categories named happy, sad and 

angry. This multimodal dataset can be used to develop an emotion recognition model which is more 

robust and more accurate. In the future, the dataset can be tested on a pre-trained unimodal emotion 

recognition model to check whether the model works well on real-world dataset or not. We will try 

to include more modality like ECG, EDA ,RSA data to make our dataset more dimensional. The 

audio data is taken in English language only, so in future we will try to include audio data in other 

languages like Gujarati and Hindi to make our data set multilingual. In addition to the three basic 

emotion categories, the dataset can be upgraded for other categories like Surprise,Neutral,fear and 

disgust. 
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Abstract 

 

Numerous fields, including engineering, agriculture, and management sciences, have been 

using trapezoidal fuzzy numbers. In this study, we first develop Trapezoidal Fuzzy Number 

(TFN) and then attempt to formulate a model to handle element uncertainty in order to solve 

a linear programming problem. Making good decisions will only require this type of 

approximation. 
 

Keywords: Trapezoidal Fuzzy Number, linear programming problem, initial 

problem and membership function.  

 

 

1. Introduction 
 

Optimization “problem is a one of the most important operation research techniques, and it is used in 

many areas in agriculture planning, science, Technology and engineering which may be important in 

both economic and social point of view. We formulate the problem mathematically which may arise in 

our daily life our aim is to minimize cost and maximize the profit, with certain constrains or restrictions 

are to be considered. In order to get the best possible result of those problems faced by Agriculturalists 

to allocate the optimum number of vegetation in their farmhouses. To increase the area under 

cultivation there are numerous ways to achieving high productivity. If we utilize the resources in a 

proper way which may be helpful to increase the crop production. Many operation research techniques 

have been used in planning agriculture activity one of the technique is linear programming. In 1947 

George Danzig was given the concept of Linear Programming problem. If we have a limited number 

of resources, we use linear programming method to optimize the problem. The Zimmermann [1] 

presented the concept of formulation of fuzzy linear programming problem. Orlovsky [2] made several 

attempts to investigate the potential of fuzzy set theory as a valuable tool for comprehensive 

mathematical analysis of practical problems. To address the many kinds of FLP problems, numerous 

authors utilize various techniques. In almost all areas of decision-making problems, fuzzy approaches 
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have been developed. Particularly Tamiz [3], and Ross [4]. Delgado and Verdegay [5] construct a broad 

model of fuzzy linear programming within the fuzzy and fuzzy right side of technical coefficients and 

also demonstrates that it is possible to solve the dual problem using the same programme. Fung and 

Hu [6] introduced the fuzzy number-based approach coefficients. Kumar and Rajendra [7] solved a 

fuzzy linear programming problem with fuzzy variables in parametric form. By utilizing a ranking 

function and defining a crisp model, Verdegray [8] and Maleki [9] ranking function can be identified in 

comparisons between fuzzy numbers. In order to determine a workable and ideal solution, we study 

the linear programming issue in this essay in its conventional form. To solve the linear fuzzy linear 

programming problem, we utilize the algorithm by trapezoidal fuzzy number” is considered. 

  

2. Model Formulation 
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Where “C is vector component, A is coefficient Matrix, B is crisp parameters and Y is decision variable.” 

 

2.1 Generalized Trapezoidal Fuzzy Number (TFN)  
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If w=1, the generalized TFN can be written as  
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Now we can take ordered pair of parametric of fuzzy numbers with left-hand alpha- cut and right-

hand alpha-cut, “which are bounded left non-decreasing and bounded right non-increasing functions 

over” [0,1],  

i.e. )}(),({(
~

344121 ttttttT −+−+= 
 

The above mathematical model can be formulated as given below 
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3. Applications 
 

A 20 hectares of land is under cultivation of three different crops such as wheat, corn and pulses 

with certain requirement for capital (in euros) and working hours as shown below: 

 
Table 1: 20 hectares of land under cultivation 

Crops per acre                                                  Capital (€)                                                         Workers (hours) 

Wheat      50                    10 

Corn      33                     8 

Pulses      27        4 

 

In this problem the profit of the above three different crops are wheat €38/ acre, Corn €32/ acre and 

pulses €28/ acre acres of land. The amount and working hours are respectively €460 and around 52 

hours. Now, we decide how many hectares of land are required for each crop “in order to maximize 

the profit. Let y1 be the cultivated area with wheat, y2 be the cultivated area with corn and y3 be the 

cultivated area with pulses. We can have characterized the rough data by a trapezoidal fuzzy number 

as: 22 hectares” = (18, 22, 24, 25) about €460 = (380, 410, 440, 450); around 55 hours = (46, 48, 50, 55). The 

problem can be written as: 
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The crisp model of the above problem  
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LINGO 12.0 [10] can be used to acquire the results for the various values of presented in table (2) below. 

The ideal response to the initial problem is 1Ly = (0, 0,0,0), 2Ly = (0, 0, 0, 0), and 3Ly = (11.62, 11.75, 

11.87, 12.0) and is the ideal value 1Z  = (325.50,329,323.50,336). 

 
Table 2: Cropping combination provides best overall solution 

  0.25 0.50 0.75 1.0 

1Ly  0 0 0 0 

2Ly  0 0 0 0 

3Ly  11.62 11.75 11.87 12 

1Ry  0 0 0 0 

2Ry  0 0 0 0 

3Ry  14.06 14.37 14.68 15 

1Z  325.50 329 323.50 336 

2Z  393.75 402.50 411.25 420 

 

4. Conclusion 
 

The “application of fuzzy linear programming to resolve a production planning problem in agriculture 

has been covered in this study. The paper finishes by explaining how FLPP is transformed into clear 

multi-objective linear programming problems and how the farmer achieves the best possible outcomes 

while using constrained resources. Only the trapezoidal membership function is taken into account in 

this paper.” 
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Abstract

In this paper, a novel three - parameter continuous distribution is introduced. This novel distribution
is an extented version of the Exponenentiated Ailamujia distribution. This extended version called as
Exponentiated Generalized Ailamujia (EGA) distribution. The Exponentiated Generalized class is used to
derive the proposed distribution by considering Ailamujia distribution as a baseline distribution. A special
case of the EGA distribution called Generalized Ailamujia (GA) distribution is also derived. Properties of
the proposed distribution such as moments, mean, variance, harmonic mean, moment generating function,
survival function, hazard function, reverse hazard rate, Mills ratio and order statistics are derived. In
addition, maximum likelihood approach is used to estimate the proposed distribution parameters. Finally,
the proposed distribution is applied to two real datasets and compare with the Exponentiated Ailamujia
and the Ailamujia Inverted Weibull distributions. Results reveal that the proposed distribution provides
better estimate as compared to the said distributions for the given two real datasets.

Keywords: Ailamujia distribution, Exponentiated Generalized - G Class, Exponentiated Ailamujia
distribution.

1. Introduction

Distributions with support on non-negative real numbers are important in modelling lifetime data.
There are lifetime distributions which are popular in modelling lifetime data such as Weibull, log-
logistic and lognormal distributions. These distributions are widely used in engineering and other
related fields. Lv [8] proposed the Ailamujia distribution as an additional lifetime distribution
and studied its properties such as mean, variance, median and maximum likelihood estimators.
This distribution was studied further its properties such as interval estimation and hypothesis
testing [9] and minimax estimation under non-informative prior using the loss functions [7].

There are different extensions of the Ailamujia distribution were considered in the literature.
For example, Ahmad [1] introduced the Transmuted Ailamujia distribution and studied its several
properties. Other identified extensions are the weighted analogue of Ailamujia distribution
[14], the area biased distribution [6], the inverse analogue of Ailamujia distribution [2], the size
biased Ailamujia distribution [11], the Power Ailamujia distribution [13] and the Power Ailamujia
distribution [5].

Moreover, Rather [10] introduced the extended version of the Ailamujia distribution called
Exponentiated Ailamujia distribution and explored some of its structural properties such as
moments, reliability analysis and harmonic mean. They used the Exponentiated - G family of
distributions in the derivation of the Exponentiated Ailamujia distribution. In addition, they
fitted the Exponentiated Ailamujia distribution into two real datasets and they found that the
Exponentiated Ailamujia distribution had a better fit compared to the Ailamujia and Lindley
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distributions.
In this paper, the main goals are the following: (i) to extend the exponentiated Ailamujia

distribution using the exponentiated generalized class; (ii) to derive some properties of the
proposed distribution such as moments, mean, variance, harmonic mean, moment generating
function, survival function, hazard function, reverse hazard rate, Mills ratio, maximum likelihood
estimates and order statistics; and (iii) to apply the proposed distribution into two real datasets
and compare with the Exponentiated Ailamujia and Ailamujia Inverted Weibull distributions.

The rest of paper is organized as follows: Exponentiated Generalized Ailamujia distribution
is introduced in section 2. In section 3, some statistical properties of the proposed distribution
are derived. Order Statistics of the proposed distribution is presented in section 4 while the
Maximum likelihood estimates of the proposed distribution parameters are discussed in section 5.
In section 6, the application of the proposed distribution is illustrated. Some concluding remarks
is presented in section 7.

2. Exponentiated Generalized Ailamujia distribution

This section presents the derivation of the Exponentiated Generalized Ailamujia (EGA) dis-
tribution. Let X be a random variable follows an Ailamujia distribution then the cumulative
distribution function of the Ailamujia distribution is given by

G(x, θ) = 1 − (1 + 2θx)e−2θx, x ≥ 0, θ > 0 (1)

with corresponding probability density function given by

g(x, θ) = 4θ2xe−2θx.

Cordeiro [4] introduced the exponentiated generalized class to extend any univariate continu-
ous distribution into generalized distribution with additional two parameters. The cumulative
distribution function of the exponentiated generalized class is given by

F(x) = (1 − (1 − G(x))a)b, a, b > 0, (2)

where G(x) is any baseline cumulative distribution function. The cumulative distribution function
of the Exponentiated Generaized Ailamujia (EGA) distribution is obtained by inserting (1) into (2)
and is

F(x, θ, a, b) = (1 − (1 + 2θx)ae−2aθx)b, x ≥ 0, θ, a, b > 0 (3)

with corresponding probability density function given by

f (x, θ, a, b) = 4abθ2x(1 + 2θx)a−1e−2aθx(1 − (1 + 2θx)ae−2aθx)b−1. (4)

Notethat if a = 1 then the EGA distribution reduces to Exponentiated Ailamujia distribution.
Then it is Ailamujia distribution if a = b = 1. If b = 1 then the cumulative distribution function
of the EGA distribution reduces to a cumulative distribution function of new special distribution
that is given by

F(x, θ, a) = 1 − (1 + 2θx)ae−2aθx (5)

with probability density function given by

f (x, θ, a) = 4aθ2x(1 + 2θx)a−1e−2aθx.

We name the cumulative distribution function (5) as the cumulative distribution function of the
Generalized Ailamujia (GA) distribution.
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Figure 1: pdf plots of EGA distribution for θ = 1.5, b = 2 and varying values of a

Figure 2: pdf plots of EGA distribution for θ = 1.5, a = 1.5 and varying values of b

Figures 1 and 2 show some possible probability density shapes of the EGA distribution. It
reveals that the probability density function of the EGA distribution can model a data with right
tailed unimodal and exponential shapes.

3. Statistical Properties

In this section, we derive some properties of the EGA distribution such as moments, mean,
variance, moment generating function, harmonic mean, survival fuction, hazard function, reverse
hazard rate and Mills ratio.

3.1. Moments

Theorem 1. The rth raw moment of EGA with density (4) is

µ′
r =

b
(2θ)r

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)j(a−1
i )(b−1

j )(aj
l )Γ(r + l + i + 2)

ar+l+i+1(j + 1)r+l+i+2 . (6)

The mean µ′
1 and variance σ2 are respectively, given by

µ′
1 =

b
2θ

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)j(a−1
i )(b−1

j )(aj
l )Γ(l + i + 3)

al+i+2(j + 1)l+i+3
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and

σ2 =
b

4θ2

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)j(a−1
i )(b−1

j )(aj
l )Γ(l + i + 4)

al+i+3(j + 1)l+i+4

− b2

4θ2

 ∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)j(a−1
i )(b−1

j )(aj
l )Γ(l + i + 3)

al+i+2(j + 1)l+i+3

2

.

Proof. The rth raw moment is defined by

µ′
r = E[Xr]

=
∫ ∞

−∞
xr f (x)dx

=
∫ ∞

0
xr4abθ2x(1 + 2θx)a−1e−2aθx(1 − (1 + 2θx)ae−2aθx)b−1dx.

Using the binomial expansion for (1 + 2θx)a−1, we have

(1 + 2θx)a−1 =
∞

∑
i=0

(
a − 1

i

)
2iθixi.

Again, using the binomial expansion for (1 − (1 + 2θx)ae−2aθx)b−1, we have

(1 − (1 + 2θx)ae−2aθx)b−1 =
∞

∑
j=0

(−1)j
(

b − 1
j

)
(1 + 2θx)aje−2ajθx

=
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∑
j=0

(−1)j
(

b − 1
j

)
e−2ajθx

∞

∑
l=0

(
aj
l
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2lθl xl

=
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j=0

∞
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l=0

(−1)j
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)(
aj
l
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2lθl xle−2ajθx.

Now, µ′
r becomes

µ′
r = 4abθ2

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)jBiBjBl2
i+lθi+l

∫ ∞

0
xr+i+l+1e−2a(j+1)θxdx,

where Bi = (a−1
i ), Bj = (b−1

j ) and Bl = (aj
l ). Moreover,

µ′
r =

b
(2θ)r

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)jBiBjBlΓ(r + l + i + 2)
ar+l+i+1(j + 1)r+l+i+2 .

The mean µ′
1 of EGA is obtained by setting r = 1 in (6) and is

µ′
1 =

b
2θ

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)j(a−1
i )(b−1

j )(aj
l )Γ(l + i + 3)

al+i+2(j + 1)l+i+3 .

The µ′
2 is derived from (6) by setting r = 2 and is

µ′
2 =

b
4θ2

∞
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(−1)j(a−1
i )(b−1
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The variance σ2 of EGA is obtained as

σ2 =µ′
2 − (µ′

1)
2

=
b

4θ2
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2
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■

3.2. Moment Generating Function

Theorem 2. Let X be a random variable follows EGA distribution then the moment generating
function MX(t) is given by

Mx(t) = b
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

tr(−1)j(a−1
i )(b−1

j )(aj
l )Γ(r + l + i + 2)

(2θ)rar+l+i+1(j + 1)r+l+i+2r!
, (7)

where t ∈ R.

Proof. By definition of moment generating function and equation (6), we have

MX(t) = E(etX) =
∫ ∞

0
etx f (x, θ, a, b)dx.

Recall that etx = ∑∞
r=0

tr

r! xr then we have
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Thus,

Mx(t) = b
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tr(−1)j(a−1
i )(b−1

j )(aj
l )Γ(r + l + i + 2)

(2θ)rar+l+i+1(j + 1)r+l+i+2r!
,

where t ∈ R. ■

3.3. Harmonic Mean

Theorem 3. Let X be a random variable follows EGA distribution then the harmonic mean of
EGA is

H.M = 2θb
∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)jBiBjBlΓ(l + i + 1)
al+i(j + 1)l+i+1 .
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Proof. The harmonic mean is defined by

H.M = E

[
1
X

]
=

∫ ∞

−∞

1
x

f (x)dx

=
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0

1
x
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0
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Using the binomial expansion for (1 + 2θx)a−1, we have

(1 + 2θx)a−1 =
∞

∑
i=0

(
a − 1

i

)
2iθixi.

Again, using the binomial expansion for (1 − (1 + 2θx)ae−2aθx)b−1, we have

(1 − (1 + 2θx)ae−2aθx)b−1 =
∞
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(−1)j
(

b − 1
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)
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Now, H.M becomes

H.M = 4abθ2
∞

∑
i=0

∞

∑
j=0

∞

∑
l=0

(−1)jBiBjBl2
i+lθi+l
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0
xi+le−2a(j+1)θxdx

where Bi = (a−1
i ), Bj = (b−1

j ) and Bl = (aj
l ). Thus,

H.M = 2θb
∞
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i=0

∞

∑
j=0

∞

∑
l=0

(−1)jBiBjBlΓ(l + i + 1)
al+i(j + 1)l+i+1 .

■

3.4. Reliability Analysis

Let X be a random variable with cdf (3) and pdf (4) then the survival S(x, θ, a, b) and hazard
h(x, θ, a, b) functions of the EGA distribution are respectively, given by

S(x, θ, a, b) = 1 − (1 − (1 + 2θx)ae−2aθx)b, x ≥ 0, θ, a, b > 0

and

h(x, θ, a, b) =
4abθ2x(1 + 2θx)a−1e−2aθx(1 − (1 + 2θx)ae−2aθx)b−1

1 − (1 − (1 + 2θx)ae−2aθx)b .

In addition, the reverse hazard rate hr(x, θ, a, b) and the Mills ratio of the EGA distribution
are respectively, given by

hr(x, θ, a, b) =
4abθ2x(1 + 2θx)a−1e−2aθx

1 − (1 + 2θx)ae−2aθx
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and

MillsRatio =
1 − (1 + 2θx)ae−2aθx

4abθ2x(1 + 2θx)a−1e−2aθx .

Figure 3: hf plots of EGA distribution for θ = 1.5, b = 2 and varying values of a

Figure 4: hf plots of EGA distribution for θ = 1.5, a = 1.5 and varying values of b

Figures 3 and 4 present some possible shapes of the hazard function of EGA distribution.
It reveals that the hazard function of the EGA distribution can model data with increasing or
decreasing hazard rate behaviors.

4. Order Statistics

Let X(1), X(2),..., X(n) be the order statistics of a random sample X1, X2,..., Xn drawn from
the continuous population with cumulative distribution function FX(x) and probability density
function (pdf) fX(x), then the pdf of rth order statistics X(r) is given by

fX(r)
(x) =

n!
(r − 1)!(n − r)!

fX(x)[FX(x)]r−1[1 − FX(x)]n−r. (8)

The pdf of rth order statistics X(r) of the EGA distribution is obtained by inserting (3) and (4) into
(8) and is

fX(r)
(x, θ, a, b) =

4abθ2n!
(r − 1)!(n − r)!

xza−1e−2aθx
(

1 − zae−2aθx
)br−1

[
1 −

(
1 − zae−2aθx

)b
]n−r

, (9)
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where z = 1 + 2θx. The pdf of the 1st or smallest order statistics of the EGA distribution is
derived by setting r = 1 in equation (9) and is

fX(1)
(x, θ, a, b) = 4abnθ2xza−1e−2aθx

(
1 − zae−2aθx

)b−1
[

1 −
(

1 − zae−2aθx
)b

]n−1
.

If r = n then the pdf of the nth or largest order statistics of EGA distribution is given by

fX(n)
(x, θ, a, b) = 4abθ2nxza−1e−2aθx

(
1 − zae−2aθx

)bn−1
.

5. Maximum Likelihood Estimation

This section is dedicated to maximum likelihood estimation as an estimation approach for EGA
parameters.

Let X1, X2,..., Xn be a random sample of size n from EGA distribution then the likelihood
function is given by

L =
n

∏
i=1

4abθ2xi(1 + 2θxi)
a−1e−2aθxi (1 − (1 + 2θxi)

ae−2aθxi )b−1.

The log-likelihood is

l = nlog(4) + nlog(a) + nlog(b) + 2nlog(θ) +
n

∑
i=1

log(xi) + a
n

∑
i=1

log(1 + 2θxi)

−
n

∑
i=1

log(1 + 2θxi)− 2aθ
n

∑
i=1

xi + (b − 1)
n

∑
i=1

log(1 − (1 + 2θxi)
ae−2aθxi ). (10)

Taking the the derivative of (10) with respect to parameters θ, a and b then we have the following
equations:

∂l
∂θ

=
2n
θ

+ 2(a − 1)
n

∑
i=1

xi
zi

− 2a
n

∑
i=1

xi + 4aθ(b − 1)
n

∑
i=1

x2
i e−2aθxi za−1

i
1 − za

i e−2aθxi
; (11)

∂l
∂a

=
n
a
+

n

∑
i=1

log(zi)− 2θ
n

∑
i=1

xi + (b − 1)
n

∑
i=1

za
i e−2θaxi (2θxi − log(zi))

1 − za
i e−2aθxi

; (12)

∂l
∂b

=
n
b
+

n

∑
i=1

log(1 − za
i e−2aθxi ), (13)

where zi = 1 + 2θxi. The numerical maximum likelihood estimates of the EGA parameters can be
computed by equating (11), (12) and (13) to 0, respectively.

6. Application

In this section, the EGA distribution is applied to two real datasets and compare with the follow-
ing distributions:

- Exponentiated Ailamujia distribution (EA) [10]

f (x, θ, b) = 4bθ2xe−2θx(1 − (1 + 2θx)e−2θx)b−1, x ≥ 0, θ, b > 0.

- Ailamujia Inverted Weibull distribution (AIW) [12]

f (x, θ, α) = 4αθ2x−2α−1e−2θx−α
, x > 0, θ, α > 0.
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In this application, we use two datasets from Badar[3]. These sets of data are presented as
follow:

Data Set 1. This dataset is related to failure stresses (in GPa) and it is composed of 65 single
carbon fibers of lengths 50 mm. The observations are given as follow: 1.339, 1.434, 1.549, 1.574,
1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.84, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.019,
2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.18, 2.194, 2.211, 2.27, 2.272, 2.28, 2.299, 2.308,
2.335, 2.349, 2.356, 2.386, 2.39, 2.41, 2.43, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601,
2.604, 2.62, 2.633, 2.67, 2.682, 2.699, 2.705, 2.735, 2.785, 3.02, 3.042, 3.116 and 3.174.

Data Set 2. This dataset represents the strength data measured in GPa of 69 single carbon fibres
tested under tension at gauge lengths of 20mm. The data is given as follows: 1.312, 1.314, 1.479,
1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098,
2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434,
2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684,
2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090,
3.096, 3.128, 3.233, 3.433, 3.585 and 3.585.

In this analysis, we use the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), Kolmogorov - Smirnov (K-S), Anderson - Darling (A) and Cramer - von Mises (W*) statistics
for comparison. In addition, a package "fitdistrplus" in R is used to fit the distributions into given
datasets.

The ML estimates of the fitted models to both sets of data are presented in Tables 1 and 3.
Furthermore, results are given in Table 2 for first set of data and in Table 4 for second set of data.
Tables 2 and 4 indicate that the proposed distribution provides better estimate for two given
datasets as compared to the EA and AIW distributions since it has a smallest values of AIC, BIC,
K-S, A and W*. Moreover, same results are observed from figures 5 and 6.

Table 1: MLEs of the fitted models for a first set of data.

Distribution θ̂ α̂ â b̂

EGA 0.007532943 5404.596 12.49782
EA 1.473919 58.063764

AIW 12.894223 3.542585

Table 2: Numerical values of AIC, BIC, K-S, A and W* of the fitted models for a first set of data.

Distribution AIC BIC K − S A W∗

EGA 77.65784 84.181 0.08196969 0.43719505 0.07281970
EA 79.85257 84.20135 0.09598235 0.75832969 0.12159989

AIW 85.65023 89.99900 0.1150352 1.2112933 0.1948092

Table 3: MLEs of the fitted models for a second set of data.

Distribution θ̂ α̂ â b̂

EGA 0.006973733 4720.681000000 9.017470000
EA 1.204724000 31.814881000

AIW 10.924163000 3.000044000
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Table 4: Numerical values of AIC, BIC, K-S, A and W* of the fitted models for a second set of data.

Distribution AIC BIC K − S A W∗

EGA 107.4429 114.1452 0.06677067 0.45740745 0.06486004
EA 111.7837 116.2520 0.09042448 0.99232483 0.14097939

AIW 122.5224 126.9907 0.1199293 1.9072115 0.2835300

Figure 5: Estimated pdf of the fitted models for the first set of data

Figure 6: Estimated pdf of the fitted models for the second set of data

7. Concluding Remarks

In this paper, a novel generalized version of the Exponentiated Ailamujia distribution called
Exponentiated Generalized Ailamujia distribution has been introduced. Some properties of the
proposed distribution such as moments, mean, variance, harmonic mean, moment generating
function, survival function, hazard function, reverse hazard rate, Mills ratio and order statistics
were derived. Maximum likelihood approach was implemented to estimate the proposed distri-
bution parameters. The applicability of the proposed distribution was evaluated by fitting on two
real datasets and compared with the EA and AIW distributions. It was found that the proposed
distribution provides better estimate for the given datasets compared to the said distributions.
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Abstract 

 

 This  paper discusses the difficulty of approximating the population average of a variable y by 

knowledge about a supplementary variable x in the context of two successive (rotation) sampling 

occasions. The paper proposes a group of exponential-class estimators that includes the regular 

balanced estimator, produce-class estimator, and proportion-class estimator and suggests that these 

estimators are superior to existing estimators. The paragraph also mentions that the paper discusses 

optimal substitute statements and then the implementation of the recommended estimators, which 

may be important considerations for practical applications of the proposed methods. Finally, an 

empirical study is mentioned as supporting evidence for the research.  

 

Keywords: Auxiliary variable, Study variable, Bias, Mean squared error, 

Successive sampling 
 

1. Introduction 

 
It is general towards procedure the supplementary knowledge at the approximation stand to 

achieve developed estimations of the population average y of the analyze variate x. Auxiliary 

information can be valuable in improving estimates of population parameters by incorporating 

additional relevant data. Ratio, Product, and Regression methods are good examples in this 

context. This statement is also generally true. Ratio, Product, and Regression methods are 

commonly used techniques for estimating auxiliary information. When the auxiliary variable x is 

positively (high) correlated with the study variable y, the Ratio estimation method is quite 

effective. The Ratio estimation method is effective when the auxiliary variable and the study 
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variable have a positive correlation. When there is a negative correlation between the auxiliary 

variable and the study variable, the Product estimation method is commonly employed.  The 

theory of successive sampling has been developed by various researchers, starting with [1] and 

followed [2], [4], [5] and several others. The mentioned researchers have indeed contributed to 

developing the theory of successive sampling.  

 

            Auxiliary information was utilized by [6] and [7] multiple times to estimate the current 

population means in successive sampling. Supplementary information implemented by [6] and [7] 

within the framework of subsequent selection to estimate the population mean on the current 

occasion. Recent research conducted by [8] where they utilized auxiliary information on both 

events and proposed various estimators for estimating the population mean on the current 

occasion within the framework of two-occasion successive (rotation) sampling. In their work on 

two-occasion subsequent selection, [8] employed auxiliary information to develop estimators 

designed explicitly for estimating the population mean on the current occasion. These researchers 

have successfully used supplementary information and developed various estimation methods to 

evaluate the population mean on the recent occurrence in the context of successive sampling.  

 

2. Introduces the formulation and notation of the proposed estimator 

 
Consider a set 𝑉 = {𝑣1, 𝑣2, … . . 𝑣𝐾 }  Consisting of K elements. Let [𝑦, 𝑥] Represent the study and 

auxiliary variables, respectively, with [𝑦𝑖 , 𝑥𝑖] denoting the values on the 𝑖𝑡ℎ  unit 𝑉𝑖{𝑖 = 1,2,3, … . . 𝐾} 

of the population. Furthermore, let [�̂�, �̂�] Represent the population values of [𝑦, 𝑥] Respectively. In 

this scenario, we assume that the population mean�̂� Of the auxiliary variable 𝑥 is already known. 

Subsequently, to estimate the population mean �̂�  Of the study variable 𝑦, a simple random sample 

of size 𝑘 is selected from the population V without replacement. The Classical Ratio Estimator and 

the Ordinary Product Estimator are two methods used to estimate the population mean �̂�. The 

Classical Ratio Estimator is defined as 𝑙𝐹 = �̃��̂�, where �̃� =
�̂�

𝑥
  �̂� ≠ 0  is the estimate of the Ratio F of 

the population means. The unweighted sample means y and x,, represented as �̂� =  
1

𝑘
∑ 𝑦𝑖

𝑘
𝑖=1  and  

�̂� =  
1

𝑘
∑ 𝑥𝑖

𝑘
𝑖=1 , respectively, are utilized. The efficiency of the classical ratio estimator relies on a 

strong positive correlation between the variables y and x. On the other hand, the Ordinary Product 

Estimator for �̂� is defined as 𝑙𝑆 =
�̃�

�̂�
  where �̃� =  �̂�. 𝑥 ̂is the estimate of the Product S of the 

population means. The Product Estimator is commonly employed when there is an expectation of 

a strong negative correlation between the two variables. 

 

            The research on estimating the population mean �̂�   has led to the proposal of different 

estimators by various researchers. The Estimator 𝑙𝑆, credited to [9] and revisited by [10] is one such 

example. Additionally, [11] suggested Ratio and Product-Type Exponential Estimators for 

estimating the population mean �̂�. 

The Ratio-Type Exponential Estimator 𝑙𝐹𝑒𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 �̂� 𝑒
[

�̂�−�̂�

�̂�+�̂�
]
, while the Product-Type 

Exponential Estimator  𝑙𝑆𝑒  𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 �̂� 𝑒
[

�̂�−�̂�

𝑋�̂�+�̂�
]
    The simple Expansion Estimator 𝑙0,  which is 

used for estimating the population mean �̂�  When none of the previously mentioned estimators are 

suitable. The Expansion Estimator is defined as𝑙0 =  �̂� =  
1

𝑘
∑ 𝑦𝑖

𝑘
𝑖=1 Which is the unweighted sample 

mean of  𝑦. Overall, the sentence accurately presents the contributions of different researchers in 

proposing various estimators for the population mean  �̂�. 
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                       It discusses the findings of [12] regarding the variability of sample means and the 

coefficients of variation. The variability of the sample mean  �̂�  is  usually less than that of the 

sample mean �̂� . If then introduces  𝐷[�̂�] as the coefficient of variation of �̂� and   𝐷[�̂�] as the 

coefficient of variation of �̂� . The sentence further provides the relationships between the squared 

coefficients of variation and the population coefficients of variation. It states that  𝐷2[�̂�] =  
[1−𝑔]

𝑘
𝐷𝑥

2  

and 𝐷2[�̂�] =  
[1−𝑔]

𝑘
𝐷𝑦

2 where 𝑔 =
𝑘

𝐾
 is the sampling fraction, 𝐷𝑥 =

𝑇𝑥

�̂�
 is the population coefficient of 

variation for x, and 𝐷𝑦 =
𝑇𝑦

�̂�
  is the population coefficient of variation for y, 𝑇𝑥

2 = [𝐾 −

1]−1  ∑ [𝑥𝑖 − �̂�]
2𝐾

𝑖=1   and 𝑇𝑦
2 = [𝐾 − 1]−1  ∑ [𝑦𝑖 − �̂�]

2𝐾
𝑖=1  Represent the sums of squared deviations 

from the respective population means.  If 𝐷𝑥 = 𝑏𝐷𝑦 ,  where b is a constant between 0 and 1, then 

𝐷[�̂�] = 𝑏𝐷[�̂�] ; 0 < 𝑏 ≤ 1  This implies that the coefficient of variation for �̂� is proportional to the 

coefficient of variation for �̂�. [10]   findings on the variability of sample means and the coefficients 

of variation explicitly focus on the relationship between 𝐷[�̂�] and 𝐷[�̂�] when 𝐷[�̂�] = 𝑏𝐷[�̂�]. 

 𝑙𝐹    𝑖𝑓 
𝛾

𝑏
  > 0.5, 

          �̂�  𝑖𝑓 − 0.5 ≤
𝛾

𝑏
≤ 0.5, 

   𝑙𝐹   𝑖𝑓 
𝛾

𝑏
< −0.5 , 

                                                   Where, 𝛾 =
𝑇𝑥𝑦

𝑇𝑥𝑇𝑦
  and  𝑇𝑥𝑦 =  [𝐾 − 1]−1 ∑ [𝑥𝑖 − �̂�]𝐾

𝑖=1 [𝑦𝑖 − �̂�] 

                        
𝛾

𝑏
≥ −

1

𝑏
 𝑎𝑛𝑑 

𝛾

𝑏
≤

1

𝑏
  𝑎𝑠 |𝛾| ≤ 1 

 

3.The Suggested Estimator 

 
Motivated by [13] based on that motivation, they derived a modified Exponential-Type Estimator 

for estimating the population mean �̂� as  

 

  𝑙𝑀𝑒 = �̂�𝑒
{

[�̂�+∅�̂�]−[𝑋+∅�̂�]

[�̂�+∅�̂�]+[𝑋+∅�̂�]
}
 

          = 𝑦 ̂𝑒
{

�̂� [1−∅]+[∅−1]�̂�

�̂� [1+∅]+[∅+1]�̂�
}
 

           = 𝑦 ̂ 𝑒
{

[∅−1]�̂�−[∅−1]�̂�

[∅+1]�̂�+[∅+1]�̂�
}
 

                                                                =  𝑦 ̂𝑒
{

[∅−1][�̂�−�̂�]

[∅+1][�̂�+�̂�]
}
 

 

Where    ∅   is a scalar used as a design parameter. for   ∅ = 1  𝑙𝑀𝑒 = �̂� ∅ = 0, 𝑙𝑀𝑒 =  𝑙𝑃𝑒    the value of 

∅ (presumably a variable or parameter) is very large, the proposed estimator 

 

lim
∅→∞

𝑙𝑀𝑒 = lim
∅→∞

𝑦 ̂𝑒
{
[∅−1][�̂�−𝑥]
[∅+1][�̂�+𝑥]

}
 

           ≅ 𝑙𝐹𝑒 = 𝑦 ̂𝑒
{

[X̂−x̂]

[X̂+x̂]
}
 

 

3.1.Sampling bias and mean squared error of estimator 

 
Sampling bias refers to the systematic error when the sample used for estimation does not 

represent the studied population. It can occur due to non-random sampling, non-response bias, or 

selection bias. Understanding and addressing sampling bias is crucial for obtaining reliable and 

accurate estimators. 
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                                                     �̂� = �̂�[1 + 𝑒0],  �̂� = �̂�[1 + 𝑒1] ∋ 𝐻[ℎ0] = 𝐻[ℎ1]= 0  &  

                                                     𝐻[ℎ0
2] =

[1−𝑔]

𝑘
𝐷𝑦,

2  𝐻[ℎ1
2] =

[1−𝑔]

𝑘
𝐷𝑥,   

2 𝐻[ℎ0ℎ1] =
[1−𝑔]

𝑘
𝛾𝐷𝑦𝐷𝑥     

                                                      𝑙𝑀ℎ = �̂�[1 + ℎ0]𝑒
{

−[∅−1]ℎ1
[∅+1][2+𝑒1]

}
         

                                                             = �̂�[1 + ℎ0]𝑒
{

[1−∅]

[1+∅]
 
ℎ1
2

[1+
ℎ1
2

]
−1

}
                                   

                                                             = �̂�[1 + ℎ0]𝑒
{

𝐻ℎ1
2

[1+
ℎ1
2

]
−1

}
                                                                    (1)               

                                                                                    

                                               Where 𝐻 =
[1−∅]

[1+∅]
    

                              

                                                    𝑙𝑀ℎ ≅ �̂� [1 + ℎ0 +
𝑅ℎ1

2
+

𝑅ℎ0ℎ1

2
+

𝐺[𝐺−2]

8
ℎ1

2]                                                 (2)  

                                         [𝑙𝑀ℎ − �̂�] ≅ �̂� [ℎ0 +
𝑅ℎ1

2
+

𝑅ℎ0ℎ1

2
+

𝑅[𝑅−2]

8
ℎ1

2]                                                        (3)  

                                              𝐴[𝑙𝑀ℎ] = �̂�
[1−𝑔]

𝑘
 [

𝑅𝛾𝐷𝑦𝐷𝑥

2
+

𝑅[𝑅−2]𝐷𝑥
2

8
]                                                                (4)      

                                                          = 𝐴0 [
𝑅

2
] [𝛾 +

[𝑅−2]

4𝑏
]        

                                    

                                                   Where 𝐴0 =
𝑏(1−𝑔)�̂�𝐶𝑦

2

𝑘
   and  𝐴0 =

(1−∅)

(1+∅)
    

 

                                                 (𝑙𝑀𝑒 − �̂�)
2

≅ �̂�2 [ℎ0
2 +

𝑅2ℎ1
2

4
+ 𝑅𝑒0𝑒1]                                                            (5)  

 

                                                 MSE(𝑙𝑀ℎ) = MSE(𝑙𝑀ℎ)𝐼 =
(1−𝑔)

𝑘
�̂�2 [𝐷𝑦

2 + 𝑅𝛾𝐷𝑦𝐷𝑥 +
𝑅2𝐷𝑥

2

4
]                        (6) 

                                                                    = 𝑈0 [1 +
𝑅2𝑏2

4
+ 𝑏𝑅𝛾] 

                                                Where 𝑈0 =
(1−𝑔)𝑇𝑦

2

𝑘
= 𝑉𝑎𝑟(�̂�) 

                                         The MSE (𝑙𝑀ℎ) is minimum when  𝑅0 = −2 (
𝛾

𝑏
)   

                                                                                     MSE of (𝑙𝑀ℎ) = 𝑈0(1 −  𝛾2)                                      (7) 

                                                              𝑦�̂� =  �̂� + �̂�(�̂� − �̂�)                                                                           (8)     

 

Table 1: PREs Estimator 𝑙𝑀ℎis better than  �̂�, 𝑙𝐹 , 𝑙𝑆 𝑙𝐹ℎ  𝑎𝑛𝑑 𝑙𝑆ℎ 

Estimator 
 

PREs  (∗ �̂�) 

Population 

 

 1 2 3 4 5 

�̂� 100.0000 100.0000 100.0000 100.0000 100.0000 

𝐥𝐅 66.5810 30.5860 156.3967 31.1061 56.2431 

𝐥𝐒 10.5463 7.6514 25.8171 92.9342 167.5887 

𝐥𝐅𝐡 781.3982 292.0779 197.7846 54.9135 74.5067 

  𝐥𝐒𝐡 24.2836 19.0754 47.1121 133.0386  133.064 

                                                   

3.2. Effectiveness Relationship 
 

     Scalar R(or∅)" and true optimum value:  

                                          Var     (�̂�) = 𝑀𝑆𝐸(�̂�) = (
1−𝑔

𝑛
) 𝑇𝑦

2 = (
1−𝑔

𝑛
) �̂�2𝐶𝑦

2 = 𝑈0                                      (9)    

                                                   𝐴(𝑙𝐹) = 𝐴0(𝐴 − 𝛾) 
                                                  𝐴(𝑙𝑆) = 𝐴0𝛾 

                                                 𝐴(𝑙𝐹𝑒) = (
𝐴0

8
) (3𝑏 − 4𝛾)                                                                              (10)  

                                                𝐴(𝑙𝐹𝑒) = (
𝐴0

8
) (4𝛾 − 𝑏)           

                                                MSE(𝑙𝐹) = 𝑈0[1 + 𝑏2 − 2𝛾𝑏]   
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                                                        MSE= 𝑈0[1 + 𝑏2 + 2𝛾𝑏] 

                                                 MSE(𝑙𝑆) = 𝑈0 [1 + (
𝑏

4
) (𝑏 − 4𝛾)]                                                                   

                                                 MSE(𝑙𝑆) = 𝑈0 [1 + (
𝑏

4
) (𝑏 + 4𝛾)]                                                               (11)  

                                       Where  𝐴0 =
𝑏(1−𝑔)

𝑘
�̂�𝐷𝑦

2   

                                              𝑀𝑆𝐸(�̂�) − min. 𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑈0 𝛾2 ≥ 0                                                         (12) 

                                             𝑀𝑆𝐸(𝑙𝑅) − min. 𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑈0 (𝑎 − 𝛾)2 ≥ 0                                              (13)  

                                             𝑀𝑆𝐸(𝑙𝑆) − min. 𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑈0 (𝑎 + 𝛾)2 ≥ 0                                              (14)  

                                           𝑀𝑆𝐸(𝑙𝑅𝑒) − min. 𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑈0 (
𝑎

2
− 𝛾)

2

≥ 0                                                                          

                                           𝑀𝑆𝐸(𝑙𝑅𝑒) − min. 𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑈0 (
𝑎

2
+ 𝛾)

2

≥ 0                                              (15) 

  

• The usual Unbiased Estimator �̂�  does not require the correlation between the study 

variable y and the auxiliary variable 𝑥 to be zero.   when 𝛾 = 0  

• Usual Ratio Estimator 𝑙𝑅) and mentioning a condition when 𝑏 = 𝛾;  𝑖n this condition, it 

states that both the Estimators 𝑙𝑆   and  𝑙𝑀𝑒  are equally efficient. 

•  Ratio-Type Exponential Estimator [11], denoted as 𝑙𝑅𝑒 , does not hold when 𝑏 = 2𝛾  , which 

represents the scenario where both the estimators 𝑙𝐹𝑒    and  𝑙𝑀𝑒  exhibit equal efficiency. 

•  Product-Type Exponential Estimator [11], referred to as 𝑙𝐹𝑒 , is not applicable when 𝑏 =

−2𝛾  , which corresponds to the situation where both the estimators 𝑙𝑆𝑒   and  𝑙𝑀𝑒    

demonstrate equal efficiency. 

 
Table 2: The proposed estimator 𝑙𝑀ℎ is superior to �̂�, 𝑙𝐹 , 𝑙𝑆 𝑙𝐹ℎ  𝑎𝑛𝑑 𝑙𝑆ℎ when the value of R falls within a specific range. 

Populati

on 

 

The proposed estimator 𝒍𝑴𝒉 Outperforms other estimators when the value of R lies 

within a specific range. 

The standard 

range of R in 

which 𝒍𝑴𝒉is better 

than  �̂�, 𝒍𝑭 ,   

𝒍𝑺 𝒍𝑭𝒉  𝒂𝒏𝒅 𝒍𝑺𝒉   

�̂� 𝑙𝐹 𝑙𝑆 𝑙𝐹ℎ  𝑙𝑆ℎ 

1 (-1.7765,0) (-2,0.2235) 

 

(-3.7765,2) 

 

(-1,-0.7765) (-2.7765,1) 

 

(-1,-0.7765) 

2 (-1.3669,0)  (-2,0.6331) 

 

(-3.3669,2) 

 

(-1,-0.3669) 

 

(-2.3669,1) 

 

(-1,-0.3669) 

3 (-2.5742,0) (-2,-0.5742) 

 

(-4.5742,2) 

 

(-1.5742, -1) (-3.5742,1) 

 

(-1.5742,- 0.5740) 

 

4 (0,1.8673) (-2,3.8673) 

 

(-0.1328,2) 

 

(-1,2.8673) 

 

(0.8673,1) 

 

(0.8673,1) 

 

5 (0,6.3059) (-2,8.3059)  (2,4.3054) 

 

(-1,7.3059) 

 

(1,5.3059) 

 

(-1,4.3054) 

 

3.3.When the scalar R (or ∅) does not align with its actual optimum value:  

 

                                      𝑀𝑆𝐸(𝑙𝑀𝑒) − 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (�̂�) = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
]                                                  

                                                                                    =  𝑈0𝑏2 [
𝑅2

4
−

𝑅𝑅0

𝑏
]                                               

                                                                                   =
 𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0]                                             

                                                                                   =
 𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 + 𝑅0

2 − 𝑅0
2 ]                                      

                                                                                   =
 𝑈0𝑏2

4
[(𝑅 − 𝑅0)2 − 𝑅0

2 ]                                           (16)  

                                                            (𝑅 − 𝑅0)2 < 𝑅0
2   i.e  |𝑅 − 𝑅0| < |𝑅0

2| 

                                                          𝑚𝑖𝑛 (0, −
4𝛾

𝑏
) < 𝑅 < 𝑚𝑎𝑥. (0, −

4𝛾

𝑏
) 

                                                      From eq. (15) and eq. (16), we have,  
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                                       𝑀𝑆𝐸(𝑙𝑀𝑒) − 𝑀𝑆𝐸 (𝑙𝐹) = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
− 1 +

2𝛾

𝑏
]                                         

                                                                             = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
− 1 − 𝑅0]                                           

                                                                              =    
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 − 4 − 4𝑅0]                                   

                                                                             =  
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 + 𝑅0

2 − 4 − 4𝑅0 − 𝑅0
2]                   

                                                                              =   
 𝑈0𝑏2

4
[(𝑅 − 𝑅0)2 − (2 + 𝑅0)2 ]                                    (17)    

                                               (𝑅 − 𝑅0)2 < (2 + 𝑅0)2 i.e., |𝑅 − 𝑅0| < |2 + 𝑅0| 

                                              min, {−2, 2 (1 −
2𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−2, 2 (1 −

2𝛾

𝑏
)} 

 

                                        From eq. (16) and eq. (17), we have, 

                                       𝑀𝑆𝐸(𝑙𝑀𝑒) − 𝑀𝑆𝐸 (𝑙𝑆) = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
− 1 −

2𝛾

𝑏
]                                        

                                                                             = 𝑈0𝑏2 [
𝑅2

4
−

𝑅𝑅0

2
− 1 + 𝑅0]                                           

                                                                             =    
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 − 4 + 4𝑅0]                                    

                                                                            =  
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 + 𝑅0

2 − 4 + 4𝑅0 − 𝑅0
2]                   

                                                                                 =   
 𝑈0𝑏2

4
[(𝑅 − 𝑅0)2 − (2 − 𝑅0)2 ]                                    (18) 

                                               (𝑅 − 𝑅0)2 < (2 − 𝑅0)2 i.e., |𝑅 − 𝑅0| < |2 − 𝑅0| 

                                       min, {−2, 2 (1 +
2𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−2, 2 (1 +

2𝛾

𝑏
)} 

                                        From eq. (17) and eq. (18), we have, 

                                     𝑀𝑆𝐸(𝑙𝑀𝑒) − 𝑀𝑆𝐸 (𝑙𝐹𝑒) = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
−

1

4
+

𝛾

𝑏
]                                       

                                                                             = 𝑈0𝑏2 [
𝑅2

4
−

𝑅𝑅0

2
−

1

4
−

𝑅0

2
]                                        

                                                                             =    
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 − 1 − 2𝑅0]                                 

                                                                            =  
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 + 𝑅0

2 − 1 − 2𝑅0 − 𝑅0
2]                  

                                                                                 =   
 𝑈0𝑏2

4
[(𝑅 − 𝑅0)2 − (1 + 𝑅0)2 ]                                    (19)  

                                           (𝑅 − 𝑅0)2 < (1 + 𝑅0)2 i.e., |𝑅 − 𝑅0| < |1 + 𝑅0|                                    

                                       min, {−1, (1 −
4𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−1, (1 −

4𝛾

𝑏
)} 

                                        From eq. (18) and eq. (19), we have 

                                  𝑀𝑆𝐸(𝑙𝑀𝑒) − 𝑀𝑆𝐸 (𝑙𝐹𝑒) = 𝑈0𝑏2 [
𝑅2

4
+

𝑅𝛾

𝑏
−

1

4
−

𝛾

𝑏
]                                          

                                                                          = 𝑈0𝑏2 [
𝑅2

4
−

𝑅𝑅0

2
−

1

4
+

𝑅0

2
]                                       

                                                                          =    
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 − 1 + 2𝑅0]                             

                                                                          =  
𝑈0𝑏2

4
[𝑅2 − 2𝑅𝑅0 + 𝑅0

2 − 1 + 2𝑅0 − 𝑅0
2]                

                                                                             =   
 𝑈0𝑏2

4
[(𝑅 − 𝑅0)2 − (1 − 𝑅0)2 ]                                       (20) 

                                            (𝑅 − 𝑅0)2 < (1 − 𝑅0)2 i.e., |𝑅 − 𝑅0| < |1 − 𝑅0| 

                                         min, {1 − (1 +
4𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {1 − (1 +

4𝛾

𝑏
)} 

        

• The usual Unbiased Estimator  �̂� is applicable when   |𝑅 − 𝑅0| < |𝑅0| Which can be 

equivalently expressed as     min {(0, −
4𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 { (0, −

4𝛾

𝑏
)}   

• The usual Ratio Estimator 𝑙𝐹 is valid when  |𝑅 − 𝑅0| < |2 + 𝑅0| , which can be alternately 

expressed as   min {2, −2 (1 −
2𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−2,2 (1 −

2𝛾

𝑏
)}   

• The usual Product Estimator 𝑙𝑆 is valid when  |𝑅 − 𝑅0| < |2 − 𝑅0|, which can be alternately 

expressed as   min {2, −2 (1 +
2𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−2,2 (1 +

2𝛾

𝑏
)}   
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• The Ratio-Type Exponential Estimator  𝑙𝐹𝑒  introduced by   Bah and Tuteja 1991[11] is 

applicable   if |𝑅 − 𝑅0| < |1 + 𝑅0|, which can be equivalently expressed as  min {−1, (1 −

4𝛾

𝑏
)} < 𝑅 < 𝑚𝑎𝑥 {−1, (1 −

4𝛾

𝑏
)}  . 

• The Product-Type Exponential Estimator 𝑙𝐹𝑒  introduced Bahl and Tuteja 1991[11] if 

|𝑅 − 𝑅0| < |1 − 𝑅0| which can be equivalently expressed as    min {1 − (1 +
4𝛾

𝑏
)} < 𝑅 <

𝑚𝑎𝑥 {1 −  (1 +
4𝛾

𝑏
)}   

 

Table 3: PREs Estimator 𝑙𝑀ℎ concerning   �̂�,   for different values of R 

 

R ∅  PREs  (∗ �̂�) 

Population 

 

1 2 3 4 5 

-2.0000 -3.0000 66.5810 30.5860 156.3967 31.1061 56.2431 

-1.7500 -3.6667 105.4984 45.4209 182.7966 35.5534 60.2317 

-1.5000 -5.0000 187.1938 73.6467 202.4393 40.8775 64.5841 

-1.2500 -9.0000 383.2829 135.4864 208.2654 47.2636 69.3319 

-1.0000 0.0000 781.3982 292.0779 197.7846 54.9135 74.5067 

-0.7500 7.0000 738.4366 585.7795 175.3442 64.0167 80.1386 

-0.5000 3.0000 353.0569 448.2367 148.3074 74.6863 86.2537 

-0.2500 1.6667 174.9985 200.1900 122.3232 86.8380 92.8714 

0.0000 1.0000 100.0000 100.0000 100.0000 100.0000 100.0000 

0.2500 0.6000 63.7373 57.9872 81.8494 113.0935 107.6315 

0.5000 0.3333 43.8933 37.4100 67.4411 124.3406 115.7344 

0.7500 0.1429 31.9699 26.0031 56.0835 131.5695 124.2463 

1.0000 0.0000 24.2836 19.0754 47.1121 133.0386 133.0649 

1.2500 0.1111 19.0533 14.5708 39.9776 128.3594 142.0399 

1.5000 -0.2000 15.3392 11.4840 34.2528 118.7285 150.9669 

1.7500 0.2727 12.6097 9.2794 29.6138 106.2421 159.5862 

2.0000 -0.3333 10.5463 7.6514 25.8171 92.9342 167.5887 

 

4. The precision of first-order approximations to mean squared errors (MSEs). 
 

Once we have compared the MSEs of the Proposed Estimator and other estimators using first-

order approximations, our attention turns towards evaluating the accuracy of these 

approximations by deriving second-order approximations for the MSEs. In this analysis, we 

assume that Cx = Cx = C,, taking a value of 1, and that the sample is drawn from a large Bivariate 

Normal population. However, it is essential to mention that more complex expressions are derived 

for other scenarios, as discussed in  [13]   

                                        𝜗30 = 𝜗03 = 𝜗12 = 𝜗21 = 0  
                                        𝜗04 = 𝜗40 = 3𝐷4  
                                        𝜗31 = 𝜗13 = 3𝛾𝐷4 
                                        𝜗22 = (1 + 2𝛾2)𝐷4 

                  Where  𝐸(𝑒0
𝑖 𝑒1

𝑗
) ≅

𝜗(𝑖 ,𝑗)

𝑘𝑎     , 𝑖, 𝑗 = 0,1,2,4     𝑎𝑛𝑑 𝑎 = 2 𝑓𝑜𝑟𝑖 + 𝑗 = 4   

                             𝑙𝑀𝑒 = �̂�(1 + ℎ0)𝑒
[
𝑅ℎ1

2
(1+

𝑒1
2

)
−1

]
 

                                    = �̂�(1 + ℎ0) {1 +
𝑅ℎ1

2
+

𝑅(𝑅−2)ℎ1
2

8
+

𝑅(𝑅2−6𝑅+6)ℎ1
3

48
+

𝑅(𝑅3−12𝑅2+36𝑅−24)ℎ1
4

384
}-              (21) 

                                   𝑏1 =
𝑅

2
 , 𝑏2 =

𝑅(𝑅−2)

8
    

                                  𝑏3 =
𝑅(𝑅2−6𝑅+6)ℎ1

3

48
,      𝑏4 = 

𝑅(𝑅3−12𝑅2+36𝑅−24)ℎ1
4

384
   

                 Then  𝑙𝑀𝑒 = �̂�(1 + ℎ0)[1 + 𝑏ℎ1 + 𝑏2ℎ1
2 + 𝑏3ℎ1

3 + 𝑏ℎ1
4 + ⋯ ]   

                                   = �̂�[1 + 𝑏ℎ1 + 𝑏1ℎ0ℎ1 + 𝑏ℎ1
2 + 𝑏2ℎ0ℎ1

2 + 𝑏ℎ1
3+𝑏3ℎ0ℎ1

3 + 𝑏4ℎ1+⋯…..
4 ]                    (22) 

 By disregarding terms of ℎ′s with powers higher than four, we obtain the following. 
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 result: 

         𝑙𝑀𝑒 ≅ �̂�[1 + ℎ0 + 𝑏1(ℎ1 + ℎ0ℎ1) + 𝑏2(ℎ1
2 + ℎ0ℎ1

2) + 𝑏3(ℎ1
3 + ℎ0ℎ1

3) + 𝑏4ℎ1
4]                                 (23) 

By computing the expectation of both sides of equation (23), we derive the bias of 𝑙𝑀𝑒   

as follows: 

           𝐴(𝑙𝑀𝑒) =
𝑌 ̂𝐷2 

𝑘
{(𝛾𝑏1 + 𝑏2) +

3𝐷2

𝑘
(𝛾𝑏3 + 𝑏4)}                                                                                   (24)   

   

By squaring both sides of equation (24) and disregarding terms of ℎ′𝑠 with powers 

 higher than two, we obtain the following result: 

     (𝑙𝑀𝑒 − �̂�)
2

= �̂�2{ℎ0
2 + 2𝑏1ℎ0ℎ1 + 𝑏1

2ℎ1
2 + 2(𝑏1

2 + 𝑏2)ℎ0ℎ1
2 + 2𝑏1ℎ0

2ℎ1 + 2𝑏1𝑏2ℎ1
3 + (𝑏1

2 +

                                2𝑏2)ℎ0
2ℎ1

2 + 2(𝑏3 + 2𝑏1𝑏2)ℎ0ℎ1
3 + (𝑏2

2 + 2𝑏1𝑏3)ℎ1
4}                                                       (25)   

       𝑀𝑆𝐸(𝑙𝑀𝑒) = {𝑀𝑆𝐸(𝑙𝑀𝑒) + (
𝐷4�̂�2

𝑘2 ) [(𝑏1
2 + 2𝑏2)(1 + 2𝛾2) + 6(ℎ3 + 2𝑏1𝑏2) + 3(𝑎2

2 + 2𝑏1𝑏2)]}               

                        =  𝑀𝑆𝐸(𝑙𝑀𝑒) + (
𝐷4�̂�2

64𝑘2) {7𝑅4 + 4𝑅3(14𝛾 − 9) + 4𝑅2(16𝛾2 − 36𝛾 + 17) −

                                16𝑅(4𝛾2 − 3𝛾 + 2)}                                                                                                          (26) 

 𝑅 ≈ 𝑅0 = −2𝛾(with a =1). Then putting 𝑅 = −2𝛾  in eq. (25), we have,   

If a reliable estimate of 𝑅0   is available, denoted as 𝑅 ≈ 𝑅0 = −2𝛾 (with a = 1), then substituting =

−2𝛾 into equation (26), we obtain the following result: 

                            𝑀𝑆𝐸(𝑙𝑀𝑒) =  𝑀𝑆𝐸(𝑙𝑀𝑒) +
𝐷4�̂�2

4𝑘2  𝛾(4 + 11𝛾 − 10𝛾2 − 5𝛾3)  

                                              =  𝑀𝑆𝐸(𝑙𝑀𝑒) {1 +
𝐷4

4𝑘
 𝛾

(4+15𝛾+5𝛾2)

(1+𝛾)
}    

                                              =  
𝐷2�̂�2

𝑘
{(1 −  𝛾2) +

𝐷2

4𝑘
 𝛾(1 − 𝛾)(4 + 15𝛾 + 5𝛾2)}  

                           𝑀𝑆𝐸(𝑙𝑀𝑒) = 𝑀𝑆𝐸(�̂�𝑡𝑓) =
𝐷4�̂�2

𝑘
(1 −  𝛾2)                                                                          (27)   

                          𝑀𝑆𝐸(𝑙𝑅𝑒)   = 𝑀𝑆𝐸(𝑙𝑅𝑒) {1 +
𝐷2

16𝑘
(

(143−248𝛾+128𝛾2)

(5−4𝛾)
)}    

                                             = 
𝐷2�̂�2

𝑘
{(

5

4
− 𝛾) +

𝐷2

64𝑘
(143 − 248𝛾 + 128𝛾2)}  

                            𝑀𝑆𝐸(𝑙𝑅𝑒) = 𝑀𝑆𝐸(𝑙𝑅𝑒) {1 +
𝐷2

16𝑘
(

7−40𝛾

(5+4𝛾)
)}       

                                              =
𝐷2�̂�2

𝑘
{(

5

4
+ 𝛾) +

𝐷2

64𝑘
(7 − 40𝛾)}                                                                   (28)   

                            𝑀𝑆𝐸(𝑙𝑅𝑒) =
𝐷2�̂�2

4𝑘
(5 − 4𝛾)   

                          𝑀𝑆𝐸(𝑙𝑅𝑒)   =
𝐷2�̂�2

4𝑘
(5 + 4𝛾)                                                                                                (29)  

      𝑀𝑆𝐸(𝑙𝑅𝑒) = 𝑀𝑆𝐸(𝑙𝑀𝑒) =
𝐷2�̂�2

𝑘
{(

1

2
− 𝛾)

2

+
𝐷2

64𝑘
(143 − 312𝛾 − 48𝛾2 + 160𝛾3 + 80𝛾4)}                 (30)   

                                                         {(
1

2
− 𝛾)

2

+
𝐷2

64𝑘
(143 − 312𝛾 − 48𝛾2 + 160𝛾3 + 80𝛾4)} > 0   

     𝑀𝑆𝐸(𝑙𝑅𝑒) − 𝑀𝑆𝐸(𝑙𝑀𝑒) =
𝐷2�̂�2

𝑘
{(

1

2
+ 𝛾)

2

+
𝐷2

64𝑘
(7 − 104𝛾 − 176𝛾2 + 160𝛾3 + 80𝛾4)}   

                                                          {(
1

2
+ 𝛾)

2

+
𝐷2

64𝑘
(7 − 104𝛾 − 176𝛾2 + 160𝛾3 + 80𝛾4)} > 0             (31)   

                         𝑀𝑆𝐸(�̂�𝑡ℎ ) = 𝐷2�̂�2(1 − 𝛾2) (
1

𝑘
+

1

𝑘2)      

    𝑀𝑆𝐸(�̂�𝑡ℎ) − 𝑀𝑆𝐸(𝑙𝑀𝑒) =
𝐷2�̂�2

𝑘
{(1 − 𝛾2) −

𝐷2

𝑘
𝛾(1 − 𝛾)(4 + 15𝛾 + 5𝛾2)} > 0                                    (32)  

                                         If {(1 − 𝛾2) −
𝐷2

𝑘
𝛾(1 − 𝛾)(4 + 15𝛾 + 5𝛾2)} > 0   

𝐷𝑥 = 𝐷𝑥 = 𝐷, where b=1 the Mean Squared Error (MSE) of the usual Ratio Estimator 𝑙𝐹=𝑦 ̂  (
�̂�

𝑥
) and 

the Product Estimator   𝑙𝑆=𝑦 ̂  (
�̂�

𝑥
)  

                          𝑀𝑆𝐸(𝑙𝐹)2 = 𝑀𝑆𝐸(𝑙𝐹)1 {1 +
𝐷2

𝑘
(6 − 3𝛾)}   

                                            =  {
𝐷2�̂�2

𝑘
(2(1 − 𝛾) +

6𝐷2

𝑘
(2 − 3𝛾 + 𝛾2))}   
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                         𝑀𝑆𝐸(𝑙𝐹)2 = 𝑀𝑆𝐸(𝑙𝐹)1 {1 +
𝐷2

2𝑘

(1+2𝛾2)

(1+𝛾)
}       

                                          = {
𝐷2�̂�2

𝑘
(2(1 + 𝛾) +

𝐷2

𝑘
(1 + 2𝛾2))}                                                                   (33)   

                        From eq. (32) and eq. (33 ), we have   

 𝑀𝑆𝐸(𝑙𝐹)2 − 𝑀𝑆𝐸(𝑙𝐹𝑒)2 = (
𝐷2�̂�2

𝑘
) {(

3

4
− 𝛾) +

𝐷2

𝑘
[6(1 − 𝛾)(2 − 𝛾) −

1

64
(143 − 248𝛾 + 128𝛾2)]}   

                                              {(
3

4
− 𝛾) +

𝐷2

𝑘
[6(1 − 𝛾)(2 − 𝛾) −

1

64
(143 − 248𝛾 + 128𝛾2)]} > 0            (34)  

                           from eq. (33) and eq. (34), we have, 

                  𝑀𝑆𝐸(𝑙𝑆)2 − 𝑀𝑆𝐸(𝑙𝑆ℎ)2 = (
𝐷2�̂�2

𝑘
) {(

3

4
+ 𝛾) +

𝐷2

64𝑘
(57 + 168𝛾)}   

                                                              {(
3

4
+ 𝛾) +

𝐷2

64𝑘
(57 + 168𝛾)} > 0                                                   (35) 

 

5.Conclusion 
 

The research findings highlight the significant impact of introducing new product-type and ratio-

type estimators on the efficiency of estimating a population average by index-type estimators in 

the sequential random sample. The findings demonstrate that incorporating these new types of 

estimators increases the population average approximations' accuracy, thereby enhancing the 

overall efficiency of the sampling process. These findings have practical implications for 

researchers and practitioners in various fields, providing valuable insights to optimize their 

sampling strategies and obtain more reliable population mean estimates. Future research can 

explore additional aspects of these new estimators and their potential applications in different 

sampling scenarios to enhance the efficiency of sequential sampling techniques further.   
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Abstract 

The paper deals with a system composed of two-non identical units (unit-1 and unit-2). Initially 
both the units are arranged in parallel configuration. Each unit has two possible modes- Normal 
(N) and Total Failure (F). The first unit gets priority in repair. System failure occurs when both the
units stop functioning. A single repairman is always available with the system to repair a totally
failed unit and repair discipline is first come, first served (FCFS).If during the repair of a failed unit
the other unit also fails, then the later failed unit waits for repair until the repair of the earlier failed
unit is completed. The repair times of both the units are exponential distribution with different
parameters. Each repaired unit works as good as new. Using regenerative point technique, various
important measures of system effectiveness have been obtained.

Keywords: Transition probabilities, mean sojourn time, reliability, MTSF, 
availability, expected busy period of repairman, net expected profit. 

1. Introduction

Reliability is an important concept in the planning design and operation stages of various complex 
systems. Reliability is a significant area that is accepting awareness internationally and it is crucial 
for actual usage and care of any industrial system. It requires technical Knowledge for growing 
system effectiveness by decreasing the frequency of failure and reducing the worth of 
maintenance. Chaudhary and Tyagi [3] analyzed a two non-identical unit parallel system with two 
types of failure. Pundir et al. [7] analyzed a two non-identical unit parallel system with priority in 
repair. Chaudhary et al. [5] analyzed two non-identical unit warm standby repairable system with 
two types of failure. Saxena et al. [9] analyzed two unit parallel system with working and rest time 
of repairman.  

A single repairman is always available with the system to repair a totally failed unit and 
repair discipline is first come, first served (FCFS). Chaudhary and Masih [1, 4] analyzed a two non-
identical unit. Saini et al. [8], Chaudhary and Sharma [2] and Dabas et al. [6] analyzed a two non-
identical unit system models assuming two modes- Normal mode and total failure mode of each 
unit and analyzed parallel system with priority in repair. System failure occurs when both the 
units stop functioning. The first unit gets priority in repair. 
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By using regenerative point technique, the following measures of system effectiveness are 
obtained- 

i. Transition probabilities and mean sojourn times in various states. 
ii. Reliability and mean time to system failure (MTSF).
iii. Point-wise and steady-state availabilities of the system as well as expected up time

of the system during time interval (0, t).
iv. Expected busy period of repairman in the repair of unit-1 and unit-2 during time

interval (0, t).
v. Net expected profit earned by the system in time interval (0, t).

2. System Description and Assumptions

1. The system comprises of two non-identical units (unit-1 and unit-2). Initially, both
the units work in parallel configuration.

2. Each unit of the system has two possible modes-Normal (N) and total failure (F).
3. The first unit gets priority in repair.
4. System failure occurs when both the units stop functioning.
5. A single repairman is always available with the system to repair a totally failed

unit and repair discipline is first come, first served (FCFS).
6. If during the repair of a failed unit the other unit also fails, then the later failed unit

waits for repair until the repair of the earlier failed unit is completed.
7. The repair time of both the units is exponential distribution with different

parameters. Each repaired unit works as good as new.

3. Notations and States of the System

We define the following symbols for generating the various states of the system- 
1O 2ON ,N  :    Unit-1and Unit-2 is in N-mode and operative in parallel. 

1r 2r F ,F     :    Unit-1 and Unit-2 is in F-mode and under repair. 

2wF :    Unit-2 is in F-mode and under waiting for repair. 
Considering the above symbols in view of assumptions stated in section-2, the possible   states 

of the system are shown in the transition diagram represented by Figure. 1. It is to be noted that 
the epochs of transitions into the state 1S from 2S are non-regenerative, whereas all the other 
entrance epochs into the states of the systems are regenerative. 

The other notations used are defined as follows: 
 E         :    Set of regenerative states. 
 1 2,    :    Constant Failure rate of Unit-1 and Unit- 2. 

 1 2,    :    Constant Repair rate of Unit-1 and Unit- 2. 

 G   :    CDF of time to repair and its repair is continued to state S1

 H   :    General Distribution of Unit-2 

   :    Symbol for Laplace Transform i.e. st
ij ijg (s) e q (t)dt  

 ~ :    Symbol for Laplace Stieltjes Transform i.e.  st
ij ijQ (s) e dQ (t)t 

©  :    Symbol for ordinary convolution i.e. 
t

0

A(t)©B(t)= A(u)B(t-u)du

  RT&A, No.3 (74)  
Volume 18, September 2023  

309



Alka Chaudhary, Shivali Sharma  
A TWO NON-IDENTICAL UNIT PARALLEL SYSTEM 

TRANSITION  DIAGRAM 

  : Up State    : Failed State    : Regenerative Point    : Non Regenerative Point 

N1O, F2r  N1O, N2O  F1r, N2O 

 F1r, F2w F1r, F2w 

 α₂ 

β₂ 

α1

 β₁ 

  β₁ H(.) 

  β₁ 

G(.) 

 S0  S1   S2 

 S3   S4 

Figure 1: Exponential Model 

4. Transition Probabilities and Sojourn Times

Let X(t)  be the state of the system at epoch t, then  X(t); t 0  constitutes a continuous parametric 

Markov-Chain with state space  0 4E S toS .The various measures of system effectiveness are 

obtained in terms of steady-state transition probabilities as follows: 
 1 2 t 1

01 1
1 2

p e dt   
  

  
 1 2 t 2

02 2
1 2

p e dt   
  

  

    1t
10 1 1p e G t dt 1 G    

    2t
20 2 2p e H t dt 1 H    

    2t
24 2p e dH t H   1t

42 1 32p e dt 1 p   
The two step transition probability (Steady State) is given by

        1 1

v
3 t u

112
0

p 1 e e dG u G    
It can be easily verified that, 

01 02p p 1,   (1) 

 
 3

10 12p p 1,   (2) 

 32 42p p 1,   (3) 

20 24p p 1    (4) 

†The limits of integration are 0 to   whenever they are not mentioned. 
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5. Mean Sojourn Time
The mean sojourn time i  in state iS is defined as the expected time taken by the system in state 

iS before transiting into any other state. If random variable iU denotes the sojourn time in state iS

then, 

 i iP U t dt  
Therefore, its values for various regenerative states are as follows- 

 
 

1 2 t
0

1 2

1
e dt    

    (5) 

So that, 
1t

1 e G(t)dt    (6) 

 2
t

2 e H t dt
    (7)

1t
4

1

1
e dt  

  (8) 

6. Analysis of Characteristics
6.1. Reliability and MTSF 

Let iR (t) be the probability that the system operates during (0, t) given that at t=0 system starts 
from iS E  . To obtain it we assume the failed states 2S  and 4S as absorbing. By simple 
probabilistic arguments, the value of 0R (t) in terms of its Laplace Transform (L.T.) is given by 

  0 01 1 02 2

01 10 02 2
0

0

* Z q Z q Z

q
s

1 q q
R

q

    

   








 (9) 

We have omitted the argument’s from *
ijq (s) and *

iZ (s) for brevity. *
iZ (s) ; i = 0, 1, 2 are the L. T. of 

  1 2( )(1 r)t
0Z t e ,       1t

1Z t e G(t)dt,      2 t
2Z t e H t dt 

Taking the Inverse Laplace Transform of (9), one can get the reliability of the system when 
system initially starts from state 0S  . 

The MTSF is given by, 

      0 01 1 02 2
0 0 0

s 0 01 10 02 20

p p
E T R t lim R s

1 p p p p




    
  

   (10) 

6.2. Availability Analysis 

Let  iA t  be the probability that the system is up at epoch t, when initially it starts operation from 

state iS E . Using the regenerative point technique and the tools of Laplace transform, one can 

obtain the value of  0 A t
 
in terms of its Laplace transforms i.e.  *

0 A s  given as follows-

   
 

1
0

1

N s
A s

D s
   (11) 

Where, 
 3* * * *

1 0 24 42 1 01 24 42 2 01 0212N (s) Z 1 q q Z q 1 q q Z q q q
                    

and 
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   (3)** * * * * * * * *
1 24 42 10 01 24 42 20 01 0212D (s) 1 q q q q 1 q q q q q q       (12) 

Where,  iZ t , i=0,1,2 are same as given in section 6.1. 

The steady-state availability of the system is given by 
   0 0 0

s 0t
A A tli sm lim A s


    (13) 

We observe that 
 1 D 0 0  

Therefore, by using L. Hospital’s rule the steady state availability is given by 
 
 

1 1
0 ' 's 0

1 1

N s N
A lim

D s D
   (14) 

Where, 
 3

1 0 24 42 1 01 24 42 2 01 0212N 1 p p p 1 p p p p p                  

and 

   '
1 0 20 1 01 20 2 10 01 4 24 10 01D p p p 1 p p p 1 p p        (15)

The expected up time of the system in interval (0, t) is given by 

   
t

up 0
0

  t A u du  

So that,     0
up

A s
s

s


   (16) 

6.3. Busy Period Analysis 

Let  1
iB t and  2

iB t be the respective probabilities that the repairman is busy in the repair of unit-

1 failed due to first repair with priority of unit-1 and unit-2 failed due to second repair at epoch t, 
when initially the system starts operation from state iS E . Using the regenerative point technique 
and the tools of L. T., one can obtain the values of above two probabilities in terms of their L. T. i.e. 

 1*
iB s

 
and  2*

iB s as follows-

1* 2
i

1

N (s)
B (s) ,

D (s)
 2* 3

i
1

N (s)
B (s)

D (s)


 (17-18) 
Where, 

    3 ** * * * * * * * *
2 1 01 42 24 4 01 24 02 2412N (s) Z q 1 q q Z q q q q q   

and 
  3

3 2 01 0212N (s) Z q q q
   

and  1D s  is same as defined by the expression (12) of section VI(II). 

The steady state results for the above two probabilities are given by- 
 1 1 '

0 0 2
s 0

1B s B s Nlim \ D


    and   2 2 '
0 0 3

s 0
1B s B s Nlim \ D



    (19-20) 

Where, 

      3
2 1 01 24 4 01 24 02 2412N 0 p 1 p p p p p p     (21) 

    3
3 2 01 0212N 0 p p p    (22) 

and '
1D is same as given in the expression (15) of section 6.2. 
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The expected busy period in repair of unit-1 failed due to first repair with priority of unit-1 
and unit-2 failed due to second repair during time interval (0, t) are respectively given by- 

       
t t

1 1 2 2
b 0 b 0

0 0

t B u du and t B u du    
So that, 

   1
01

b

B s
s

s


   and    2

02
b

B s
s

s


   (23-24) 

6.4. Profit Function Analysis 

The net expected total cost incurred in time interval (0, t) is given by 
P (t) = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

     1 2
0 up 1 b 2 bK t K t K t       (25) 

Where, 0K is the revenue per- unit up time by the system during its operation. 1K  and 2K are 
the amounts paid to the repairman per-unit of time when the system is busy in repair of unit-1 
failed due first repair with priority of unit-1 and unit-2 failed due to second repair respectively. 

The expected total profit incurred in unit interval of time is 1 2
0 0 1 0 2 0P K A K B K B    

7. Particular Case

Let     t tG t e , H t e    

In view of above, the changed values of transition probabilities and mean sojourn times. 

1
10

1

p ,



 

  2
20

2

p ,



 

 24
2

p



 

 

 3
12

1

p ,



   1

1

1
, 

   2
2

1
 

 

8. Graphical Study of Behaviour and Conclusions

For a more clear view of the behaviour of system characteristics with respect to the various 
parameters involved, we plot curves for MTSF and profit function in Fig. 2 and Fig. 3 w.r.t. 1α for 
three different values of failure parameter 2α =0.1, 0.5, 0.9 and two different values of repair 
parameter 1β =0.01, 0.7 while the other parameters are 2β =0.99,  = 0.01,  = 0.06. It is clearly 
observed from Fig. 2 that MTSF increases uniformly as the value of 2α and 1β  increase and it 
decrease with the increase in 1α . Further, to achieve MTSF at least 10 units we conclude for smooth 
curves that the values of 1α must be less than 0.18, 0.29 and 0.49 respectively for 2α =0.1, 0.5, 0.9 
when 1β =0.01. Whereas from dotted curves we conclude that the values of 1α must be less than 
0.15, 0.22 and 0.39 for 2α =0.1, 0.5, 0.9 when 1β =0.7. 

Similarly, Fig.3 reveals the variations in profit (P) with respect to 1α for three different values 
of 2α = 0.4, 0.6, 0.8 and two different values of 1β =0.03, 0.2, when the values of other parameters 

2β =0.01,  = 0.09,  = 0.6, K0=80, K1=125 and K2=175. Here also the same trends in respect of 1α , 2α  
and 1β  are observed in case of MTSF. Moreover, we conclude from the smooth curves that the 
system is profitable only if 1α is less than 0.20, 0.39 and 0.79 respectively for 2α = 0.4, 0.6, 0.8 when 
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1β  =0.03. From dotted curves, we conclude that the system is profitable only if 1α is less than 0.13, 
0.27 and 0.58 respectively for 2α = 0.4, 0.6, 0.8 when 1β  =0.2. 

Figure 2:  Behaviour of MTSF w.r.t. 1α for different values of 2α and 1β

Figure 3: Behaviour of PROFIT (P) w.r.t. 1α for different values of 2α and 1β
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Abstract 

The objectives of this research are to develop a deep learning approach for event recognition in field 

hockey videos, construct a dataset that includes important activities in field hockey such as goals, 

penalty corners, and penalty, and evaluate the performance of the approach using the constructed 

dataset. By achieving these objectives, the research aims to improve the accuracy and effectiveness of 

event recognition in the fast-paced and complex domain of field hockey videos. The methods employed 

in this research involve utilizing a pretrained convolutional neural network (CNN) to train a 

classifier specifically designed for event recognition in field hockey videos. To facilitate this process, 

a dataset is constructed, consisting of labeled instances of key activities in field hockey, namely goals, 

penalty corners, and penalty. The performance of the approach is then evaluated using this carefully 

prepared dataset, providing insights into the effectiveness and accuracy of the proposed method for 

event recognition in the context of field hockey videos. The findings of this research reveal that the 

proposed deep learning approach for event recognition in field hockey videos achieves a remarkable 

accuracy of 99.47%. This high level of accuracy highlights the effectiveness of the approach in 

accurately identifying and classifying events in field hockey. Furthermore, the results demonstrate 

the potential of this approach in various field hockey applications, including performance analysis, 

coaching, and video replay. The accurate recognition of events opens new possibilities for leveraging 

field hockey videos for enhanced analysis, coaching strategies, and engaging video presentations. The 

novelty of this research lies in the introduction of a deep learning approach specifically designed for 

event recognition in field hockey videos. Unlike traditional methods, this approach leverages the 

power of deep learning, particularly a pretrained CNN, to improve the accuracy of event recognition. 

Additionally, the construction of a domain-specific dataset addresses the limitation of existing field 

hockey datasets and enhances the effectiveness of the approach. The remarkable accuracy achieved in 

event recognition further emphasizes the novelty and potential of this approach in the field of field 

hockey video analysis. 

Keywords: Event recognition, field hockey videos, deep learning, convolutional neural network 

(CNN), VGG16. 

1. INTRODUCTION

Field hockey is a fast-paced and dynamic sport, requiring players to showcase their skills in a highly 

competitive environment. Event recognition in field hockey videos is a crucial task for extracting 

valuable insights from the gameplay, enabling performance analysis, coaching, and video replay. 

Latest computer vision techniques applied in sports video analysis, encompassing player and ball 
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tracking, trajectory prediction, skill analysis, team strategy assessment, and object detection and 

classification in sports [1]. Traditional methods for event recognition, such as rule-based systems 

and motion analysis, often fall short in accurately identifying events due to the sport's complex 

nature and rapid movements. Some research has prioritized semantic event detection for its capacity 

to generate insightful outcomes, including pattern recognition and team strategy analysis, while 

combining video processing, computer vision, and machine learning[2]. This integration offers 

substantial potential in the sports entertainment domain, enhancing referee decision-making and 

providing sports fans with improved systems for match analysis. Deep learning techniques have 

shown significant advancements in event recognition across different sports, offering promising 

results. One crucial aspect for effective event recognition is the ability of the network to learn high-

level features that capture human actions and the contextual scene information[3]. This requires two 

key factors: Adequate input image size and Network Depth. The input image size should be 

sufficiently large to enable the network to capture fine-grained details and extract meaningful 

features related to the sports events.  Deep neural networks are essential for learning complex and 

abstract representations from the input data. A deeper network architecture allows for the extraction 

of hierarchical features, leading to improved event recognition performance. By incorporating large 

input image sizes and deep network architectures, deep learning models can effectively learn high-

level features that facilitate accurate event recognition in sports. These advancements have 

contributed to significant improvements in event recognition across various sports domains. 

Combining convolutional and recurrent neural networks enables the analysis of sports video 

sequences and yields experimental results[4]. However, sports analytics face challenges and 

unresolved issues, especially in data collection and labeling, as well as the complexity of recognizing 

fast actions and analyzing multiple players' involvement in team sports like football and 

basketball[5]. In this research paper, we present a deep learning-based approach for event 

recognition in field hockey videos. Our approach leverages the power of pretrained convolutional 

neural networks (CNNs) to train a classifier capable of accurately identifying different events. By 

exploiting the knowledge learned from large-scale datasets in related domains, the pretrained CNN 

captures rich visual representations that are crucial for distinguishing between various field hockey 

events. One of the challenges we encountered was the lack of existing field hockey datasets suitable 

for event recognition. To address this, we created our own dataset, specifically designed for field 

hockey, consisting of three primary activities: goals, penalty corners, and penalty. This dataset 

enables us to train and evaluate the performance of our deep learning approach in a realistic field 

hockey scenario. Through extensive evaluations, we demonstrate the effectiveness of our approach 

in accurately recognizing events in field hockey videos.  

Our approach achieves an impressive accuracy of 99.47% on our self-prepared dataset, 

highlighting its potential for real-world applications in field hockey analysis and coaching. The 

contributions of this research paper extend beyond event recognition in field hockey. The remaining 

sections of the paper are structured as follows. Section 2 presents an overview of related work, 

focusing on event recognition and the application of deep learning in sports. Section 3 outlines the 

methodology employed for event recognition in field hockey videos. The results and analysis are 

presented in Section 4. Lastly, Section 5 concludes the paper by summarizing our contributions and 

highlighting future research directions. 

2. RELATED WORK

Event recognition in sports videos has been a topic of extensive research in recent years. Various 

approaches have been explored to tackle the challenges associated with accurately identifying events 

in dynamic sporting environments. In this section, we provide an overview of related work in the 

field of event recognition and highlight the contributions of deep learning methods in sports 
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analysis. 

2.1  Traditional Approaches for Event Recognition 

Traditional approaches for event recognition in sports videos often rely on handcrafted features and 

rule-based systems. These methods involve manually designing features based on domain 

knowledge and utilizing predefined rules to detect specific events. For field hockey, these rules 

might include analyzing the positions and movements of players, the trajectory of the ball, or specific 

gameplay patterns. While these approaches have been effective to some extent, they often struggle 

to handle the complexity and variability of events in dynamic sports like field hockey. The manual 

design of features and rules limits their adaptability to different scenarios and may result in 

suboptimal performance. 

In a series of research papers, traditional approaches have been proposed for activity 

recognition and detection in sport videos. One study introduces Histograms of Oriented Gradients 

(HOG) for player representation and combines it with a probabilistic framework and multi-class 

sparse classifier for action recognition [6]. Another paper focuses on evaluating action recognition 

approaches for fight detection, presenting a new fight dataset, and achieving high accuracy in 

detecting fights[7]. Hierarchical poselets are introduced in another study, enabling human pose 

modeling and serving as an intermediate representation for action recognition[8]. A violence 

detection method utilizing the MoSIFT algorithm and sparse coding is proposed in a different 

research, addressing the limitations of traditional descriptors and achieving promising results on 

challenging datasets[9]. Additionally, a novel approach using the Markov Game formalism is 

presented to value player actions in ice hockey, considering context and lookahead [10]. Lagrangian 

measures are employed in another paper for violent video detection, outperforming other local 

features in detecting violence [11]. Lastly, a technique using histogram of oriented gradients and 

local binary pattern features is presented for accurate recognition of basketball referees' signals in 

game videos[12]. These studies collectively contribute to the field of video-based activity 

recognition, offering insights and advancements in various aspects such as player representation, 

violence detection, pose modeling, action valuation, and gesture recognition in sports videos. Table 

1 provides a comprehensive list of traditional sport event detection models. 

Table 1: Traditional event detection models for various sport categories. 

Reference Problem statement Proposed method Sports 

[6] Track and identify the

actions of multiple hockey

players.

Histograms of Oriented Gradients 

(HOG), boosted particle filter (BPF) 

Ice Hockey 

[7] detection of fights or

aggressive behaviors in ice

hockey sport videos

Space-Time Interest Points (STIP), 

Motion Scale-Invariant Feature 

Transform (MoSIFT) 

Ice Hockey 

[8] human parsing and action

recognition from static

images

hierarchical Poselets Multiple 

sports 

[9] detect violence in videos

with crowded and non-

crowded scenes

MoSIFT and sparse coding. Ice Hockey 

[10] Assessing player actions in

ice hockey.

Markov Game formalism Ice Hockey 
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[11] to detect violent scenes in

videos

Lagrangian Scale Invariant Feature 

Transform (LaSIFT) 

Ice Hockey 

[12] recognize the signals of

basketball referees from

recorded game videos.

histogram of oriented gradients +SVM, 

local binary pattern features +SVM 

Basketball 

2.2  Deep Learning in Event Recognition in Sports 

Deep learning has emerged as a powerful paradigm for event recognition in sports videos. 

Convolutional Neural Networks (CNNs) have demonstrated remarkable success in extracting 

meaningful representations from visual data. CNNs can automatically learn hierarchical features by 

employing multiple layers of convolutions and nonlinear activations, enabling them to capture 

complex patterns and spatial dependencies. 

In the context of sports event recognition, deep learning models have shown superior 

performance by leveraging large-scale annotated datasets and pretraining on related tasks. By 

utilizing pretrained CNNs, such as those trained on ImageNet, the models can capture generic visual 

representations that are transferable to sports-specific tasks. Fine-tuning or retraining the pretrained 

models on specific sports datasets further enhances their ability to recognize events accurately. 

One paper proposes a novel framework for soccer video event detection, utilizing 3D 

convolutional networks and shot boundary detection, and introducing temporal action localization 

and play-break rules [13]. Another study focuses on action recognition in hockey, introducing the 

ARHN architecture and achieving high accuracy by leveraging pose information[14]. A 

methodology for fight scene detection in hockey videos is proposed in a different paper, using blur, 

radon transform, and convolutional neural networks [15]. Furthermore, a 3D CNN-based multilabel 

deep HAR system is presented for hockey video action recognition, outperforming existing 

solutions[16]. Another paper introduces a two-stream architecture for hockey action recognition, 

combining pose estimation and optical flow[17]. A modified 3D ConvNet is proposed for violent 

video detection, achieving competitive results with improved strategies[18]. An automated activity 

recognition model for hockey matches using deep learning is presented, achieving a high accuracy 

of 98% [19]. In cricket, a hybrid deep-neural-network architecture is proposed for shot classification 

[20]. Puck localization in hockey videos is addressed using a network that incorporates expert 

annotations and temporal context [21]. Lastly, a deep learning method for event detection in football 

videos achieves superior precision and recall [22]. These papers collectively contribute to advancing 

activity recognition in sports videos, offering novel frameworks, architectures, and methodologies 

for accurate and efficient detection and recognition of various actions and events. Table 2 lists 

various sport event detection models based on deep learning. 

Table 2: Deep learning-based event detection model for various sport categories. 

Reference Problem statement Proposed method Sports 

[13] Soccer video event detection 3D Convolutional Networks 

+Deep Feature Distance

Soccer 

[14] Interpreting player actions in ice

hockey videos

Action Recognition 

Hourglass Network (ARHN) 

Ice 

Hockey 

[15] Detecting fight scenes in hockey sport

videos

Feed forward neural network 

and VGG16-Net 

Ice 

Hockey 

[16] Multi-label class-imbalanced action

recognition in hockey videos.

3D CNN based multilabel 

deep HAR system 

Ice 

Hockey 

[17] Action recognition in ice hockey two-stream architecture Ice 
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Hockey 

[18] violent video detection in ice hockey Modified 3D ConvNet Ice 

Hockey 

[19] Field hockey activity recognition VGG-16 Field 

Hockey 

[20] The task involved classifying 10

different cricket batting shots from

offline videos.

CNN+GRU Cricket 

[21] Puck localization and event recognition

in broadcast hockey videos,

CNN Ice 

Hockey 

[22] Event detection in football videos InceptionV2, 3DCNN Soccer 

Deep learning methods have been successfully applied to event recognition in various sports, 

including soccer, basketball, tennis, and cricket. These approaches often involve preprocessing video 

frames, extracting visual features using pretrained CNNs, and employing classifiers to recognize 

specific events. In the domain of field hockey, however, there is limited research on event recognition 

using deep learning methods. Our work aims to bridge this gap by proposing a deep learning-based 

approach specifically designed for field hockey event recognition. By leveraging the power of 

pretrained CNNs, we aim to overcome the challenges associated with accurately identifying events 

in the fast-paced and complex nature of field hockey gameplay. 

In summary, while traditional approaches for event recognition in sports videos have been 

explored, deep learning methods have shown significant promise in improving event recognition 

accuracy. The utilization of pretrained CNNs and transfer learning techniques enables these models 

to learn rich visual representations and adapt to specific sports domains. In the case of field hockey, 

there is a need for further research and development of deep learning-based approaches tailored to 

the unique characteristics of the sport. Our proposed approach aims to address this gap and 

contribute to the advancement of event recognition in field hockey videos. 

3. METHODOLOGY

3.1  Field Hockey Dataset 

As there is a lack of publicly available field hockey datasets for event recognition, we constructed 

our own dataset specifically tailored to the sport. We analyzed a collection of 28 highlights videos 

from the tournaments of the hockey pro league for the years 2021-22 and 2022-23. These videos 

showcase the most remarkable moments and thrilling gameplay sequences from various field 

hockey games played between two teams. By carefully analyzing these highlights videos, we were 

able to identify and extract important events such as goals, penalty corners, and penalty. These 

events represent significant turning points in the matches and provide valuable data for building a 

comprehensive hockey event detection dataset. The utilization of highlights videos ensures that the 

dataset captures the most exciting and impactful moments from the field hockey games. This enables 

the development and evaluation of event detection models on key events that greatly influence the 

outcome of matches and attract the attention of viewers. By leveraging the information extracted 

from these videos, we aim to construct a high-quality field hockey event detection dataset that can 

be used for training and evaluating event recognition models. To create the ground truth 

annotations, we meticulously watched and manually labeled the videos. Each event of interest, such 

as goals, penalty corners, penalty, and other relevant actions, was annotated with their respective 

start and end timestamps The dataset is designed to be representative of the challenges encountered 
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in real-world field hockey scenarios. It includes enough positive samples for each event category, 

ensuring a balanced distribution for training and evaluation purposes. Figure 1 illustrates the 

sequential video frames used for hockey event recognition. 

Table 3: Hockey Event Recognition Dataset 

Total Images  3035 

Classes 3 

Unannotated 0 

Training Set 2276 (75%) 

Testing Set 759 (25%) 

Average Image 

Size 

2.07 mp 

Median Image 

Ration 

1920x1080 

Class Instances 

Goal 1000(32.95%) 

Penalty Corner 1017(33.51%) 

Penalty 1018(33.54%) 

(a) 

(b) 

(c) 

Figure 1:  Sequential video frames for (a) Goal, (b) Penalty Corner, (c) Penalty 

3.2 Model Architecture 

In our approach, we utilize a pretrained convolutional neural network (CNN) for feature extraction, 

as depicted in Figure 2. The model architecture consists of a CNN that has been pretrained on a 

large-scale image dataset, such as ImageNet, to learn generic visual representations. This pretrained 

CNN can capture low-level to high-level visual features, making it well-suited for recognizing 

complex events in field hockey videos. The process begins with the application of the "flatten" 

operation, which reshapes the output of the pretrained CNN into a one-dimensional vector. This 

step enables easier processing and subsequent layers in the model. Following the flattening, a 

"dense512" layer is introduced. This layer is a fully connected layer with 512 units and applies the 
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rectified linear unit (ReLU) activation function to introduce non-linearity to the network. To mitigate 

the risk of overfitting, a "dropout(0.5)" layer is included. During training, this layer randomly sets 

50% of the values to 0, effectively disabling certain connections between neurons. By doing so, it 

helps prevent the model from relying too heavily on specific features and enhances its generalization 

capability. The subsequent layer in the model is a "dense(3)" layer, which is used for multi-class 

classification. This layer consists of 3 units, representing the number of classes, and applies the 

softmax activation function to produce class probabilities. It is through this layer that the model 

assigns probabilities to each class, indicating the likelihood of the input frame belonging to a 

particular class. To summarize, the model architecture encompasses a pretrained CNN base, the 

flattening operation, a dense layer with ReLU activation, dropout regularization, and a dense layer 

with softmax activation for classification. These operations constitute a deep learning model 

configuration commonly employed in classification tasks. Moreover, Figure 8 provides an overview 

of the model architecture and its components. During the inference stage, each video frame is passed 

through the pretrained CNN, and activations from one of the intermediate layers are extracted. 

These activations represent the specific visual features learned by the model for that frame. By 

considering multiple frames within a temporal window, we capture the temporal dynamics of 

events, enabling a comprehensive understanding of the evolving actions in the field hockey videos. 

Figure 2:  Overview of different pretrained model architectures 

3.3 Model Training and Evaluation 

To train our deep learning-based event recognition system, we split the annotated dataset into 

training and test sets. The dataset used in this study, as shown in Table 3, consists of a total of 3,035 

images that are classified into three distinct classes. All images in the dataset have been fully 

annotated, ensuring that there are no unannotated instances. The training set comprises 2,276 

images, which corresponds to 75% of the total dataset, while the remaining 759 images form the 

testing set, accounting for 25% of the dataset. On average, the images have a size of approximately 

2.07 megapixels. The median image resolution is 1920x1080 pixels, indicating a consistent aspect 

ratio among the images. The class distribution within the dataset is as follows: The "Goal" class 

consists of 1,000 instances, representing 32.95% of the dataset. The "Penalty Corner" class comprises 

1,017 instances, accounting for 33.51% of the dataset. Lastly, the "Penalty" class contains 1,018 

instances, making up 33.54% of the dataset. The images are resized to a dimension of 224x224 pixels. 

The VGG16 model is pretrained on a dataset like ImageNet to learn features and predict labels. To 

adapt it for a new task, the top layers are replaced, and the base layers are frozen as a feature 

extractor. New layers are added on top, such as fully connected and dropout layers. The modified 

VGG16 model is then trained on the new dataset, optimizing its parameters using the training set. 

Cross-validation techniques can be used for robustness. The system's performance is evaluated on 

the test set, measuring event recognition accuracy and other metrics. Results are compared with 

baseline methods or alternative architectures to assess the effectiveness of the approach. The 

following pretrained models from Keras were utilized in this study, as shown in Table 4. 

The event detection system is implemented on Google Colaboratory, which is a Python 3 

environment, utilizing the GPU support provided by Google Compute Engine backend. In this 
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study, a pre-trained VGG16 based model-1 was utilized for event detection. The input images were 

resized to 224x224 pixels, and a batch size of 32 was used during training.  

Table 4 : Overview of Pretrained Networks 

Reference Model Description 

[23] VGG16 A deep convolutional neural network (CNN) with 16 layers, known 

for its simplicity and effectiveness. 

[23] VGG19 Like VGG16 but with 19 layers, providing a slightly deeper 

architecture.  

[24] ResNet50 A deep residual network with 50 layers, designed to address the 

vanishing gradient problem and enable training of very deep 

networks. 

[25] InceptionV3 A deep CNN architecture with multiple parallel branches, allowing 

for efficient feature extraction at different scales 

[26] MobileNet A lightweight CNN architecture designed for mobile and embedded 

devices, balancing model size and accuracy. 

[27] DenseNet121 A densely connected CNN architecture that facilitates feature reuse

and enables deeper networks without sacrificing performance. 

[28] Xception An extension of the Inception architecture that replaces standard 

convolutions with depthwise separable convolutions, resulting in 

improved performance. 

The model is trained for 100 epochs using Stochastic Gradient Descent (SGD) optimizer with 

specific parameters including a learning rate of 1e-4, momentum of 0.9, and a decay of 1e-4/100. The 

video frames representing hockey events are used as inputs to the fine-tuned VGG16 based model-

1 that was specifically tailored for event detection in this study. Figure 3 illustrates the architecture 

of the proposed pretrained model framework. 

Table 5 displays the modified model details, including the modules, output dimensions, and 

trainable parameters. The flowchart in Figure 5 illustrates the process of hockey event recognition 

using a deep learning model. It encompasses preprocessing the input video, training the model, 

evaluating its performance, and utilizing the model to predict events in a video clip. The output is a 

labeled video where events are assigned specific labels based on the model's predictions. 

We evaluate our event recognition system using standard evaluation metrics, including accuracy, 

precision, recall, and F1 score, to measure its performance. Accuracy represents the proportion of 

correctly classified events, while precision, recall, and F1 score assess the system's performance in 

identifying specific event categories. After training, we assess the system's accuracy, precision, 

recall, and F1 score on the test set and compare our results with alternative deep learning 

architectures. Table 6 presents the results of seven different architectures for hockey event detection 

on dataset, demonstrating the effectiveness and performance improvements of our proposed 

approach. The experimental results are visualized in Figure 6. 
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Figure 3:  Model-1 Architecture. 

Table 5: Model -1 details in terms of module, output dimension and trainable parameters. 

Model: "model-1" 

Layer (type) Output Shape Param # 

input_1 (InputLayer) [(None, 224, 224, 3)] 0 

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

dense (Dense) (None, 512) 12845568 

dropout (Dropout) (None, 512) 0 

dense_1 (Dense) (None, 3) 1539 

Total params: 27,561,795 

Trainable params: 12,847,107 

Non-trainable params: 14,714,688 
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Figure 5 : Process of hockey event recognition using a deep learning mode 

Table 6 :  Fine-tuned Deep Learning model results. 

Sr 

no. 

Model 

Name 

Pre-trained 

Network 

Trainable 

Parameters 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Accuracy 

(%) 

1 Model-1 VGG16 12,847,107 99.33 99.33 99.33 99.47 

2 Model-2 VGG19 264,195 97.67 97.67 97.33 97.50 

3 Model-3 ResNet50 1,050,627 96.33 96.33 96.33 96.44 

4 Model-4 InceptionV3 4,196,355 84.67 83.67 84.00 83.66 

5 Model-5 MobileNet 526,339 88.33 87.67 87.67 87.62 

6 Model-6 DenseNet12 526,339 86.00 81.67 81.67 81.69 

7 Model-7 Xception 1,050,627 76.33 74.00 74.00 74.44 
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Figure 6:  Comparison of Model-1 with other six models 

Figure 7 illustrates the flowcharts that enable us to utilize the power of convolutional neural 

networks (CNNs) in analyzing video frames and making predictions for each frame. The flowchart 

starts with inputting the video frames into the CNN model. As the frames are processed through the 

model, predictions are generated for each frame, indicating the likelihood of a particular event 

occurring at that specific moment.  

To enhance the stability and reliability of the predictions, we apply a rolling average technique. 

This involves averaging the recent predictions over a certain period or a specific number of frames. 

By incorporating information from multiple frames, we can mitigate the impact of temporary 

variations or noise in individual frame predictions, resulting in a more robust and consistent 

prediction for the event happening in the video. The rolling average prediction approach helps to 

smooth out any fluctuations or inconsistencies in the frame-level predictions, providing a more 

accurate estimation of the event occurring in the video at any given time[29]. This can be particularly 

beneficial when dealing with real-world scenarios where videos may contain motion blur, camera 

movement, or other factors that can introduce uncertainties in individual frame predictions. Overall, 

the flowcharts in figure 7, combined with the rolling average prediction technique, enable us to 

leverage the CNN's analytical capabilities to make reliable and stable predictions for the events 

taking place in the video, improving the overall accuracy and effectiveness of our event recognition 

system. 

4. RESULTS AND ANALYSIS

4.1 Results 

The model-1, with 12,847,107 trainable parameters, demonstrates exceptional performance in image 

classification. It achieves high precision, recall, F1 score, and accuracy, all at approximately 99.47%. 

These metrics indicate that the model excels in accurately classifying images with a high level of 

precision and recall.  

Upon analyzing the results, it is evident that the model-1 outperforms other models across all 

evaluated metrics. It achieves the highest precision, recall, F1 score, and accuracy among the models 

considered. While model-2 and model-3 also show commendable performance, models such as 

model-3, model-4, model-5, and model-6 exhibit relatively lower performance in comparison. These 

findings highlight the effectiveness of the VGG16 based model-1 for image classification tasks, 

showcasing its superiority in accurately classifying images. Figure 8 illustrates the training and loss 
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accuracy of the VGG16 based model-1 up to 100 epochs, showcasing the model's learning 

progression over the training process. Figure 9 displays the confusion matrix of the proposed model-

1 for the given dataset, providing insights into the model's performance in terms of classification 

accuracy. Figure 10 visually presents the output video frames of hockey event recognition. Our event 

recognition system, evaluated experimentally, achieved an impressive overall accuracy of 99.47% on 

the field hockey dataset, indicating its effectiveness in accurately recognizing and classifying field 

hockey events. 

Figure 7 : Process of rolling average prediction for Event detection 
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Table 7: Hockey event recognition results for model-1. 

Event Precision Recall F1-score Support 

Goal 0.99 0.99 0.99 250 

Penalty Corner 1.0 1.0 1.0 254 

Penalty 0.99 0.99 0.99 255 

Figure 8: Training loss and accuracy of proposed model-1. 

Figure 9:  Confusion Matrix of model-1. 

Table 7 presents the results of event recognition using the model 1. The "Goal" event achieved 

excellent precision, recall, and F1-score values of 0.99, accurately classifying instances with a support 

of 250. Similarly, the "Penalty Corner" event demonstrated perfect precision, recall, and F1-score 

values of 1.0, precisely identifying instances with a support of 254. The "Penalty" event exhibited 

high precision, recall, and F1-score values of 0.99, correctly identifying instances with a support of 

255. These findings highlight the model's strong performance and consistency in accurately
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classifying hockey events across all categories. 

In addition to achieving impressive results, we conducted comparative evaluations against 

baseline methods and alternative deep learning architectures. The results consistently demonstrated 

the superiority of our deep learning-based event recognition system over the baseline methods. This 

further reinforces the effectiveness of our approach in accurately recognizing field hockey events. In 

conclusion, our experimental evaluation showcases the effectiveness of our deep learning-based 

event recognition system for field hockey videos. The achieved accuracy and performance metrics 

validate its ability to accurately classify events such as goals, penalty corners, and penalty. This 

highlights the potential of our approach in various applications within the field of hockey, including 

performance analysis, coaching, and video replay. 

(a) 

(b) 

(c) 

Figure 10. Hockey event recognition output for model-1  (a) Goal, (b) Penalty Corner, (c) Penalty 

4.2 Discussion of Findings 

Our research demonstrates the effectiveness of using a pre-trained deep learning model for 

recognizing hockey activities in videos. The results indicate a high accuracy of 99.47% in recognizing 

activities such as goals, penalty corners, and penalty. This highlights the ability of deep learning 

models to capture and analyze the visual features required for accurate activity recognition in the 

fast-paced and complex sport of hockey. Utilizing a pre-trained model enables efficient transfer 

learning, as it leverages knowledge learned from a large-scale dataset. Fine-tuning the pre-trained 

model on our own dataset yields excellent performance without the need for extensive data 

collection and training from scratch. Additionally, constructing a domain-specific dataset is crucial 

for activity recognition. As no existing field hockey datasets were available, we created our own 

dataset with annotated videos capturing various hockey activities. This dataset serves as a valuable 

resource for training and evaluating activity recognition models specific to the sport of hockey. In 

terms of future directions, expanding the dataset to include a larger and more diverse collection of 

field hockey videos would enhance the models' generalizability. Exploring fine-grained activity 

recognition, real-time recognition during live matches, and multi-modal fusion can further improve 

the accuracy and applicability of hockey activity recognition models. Additionally, transferring the 

developed models and methodologies to other sports with similar characteristics can broaden the 
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scope of activity recognition research. It is important to consider limitations and challenges in 

hockey activity recognition using deep learning models, such as dataset bias and occlusion and 

camera variability. Addressing these challenges and ensuring the robustness and unbiased nature 

of the models are essential for reliable activity recognition in hockey. Overall, our research 

contributes to the field of hockey activity recognition, demonstrating the potential of deep learning 

models in accurately recognizing and classifying hockey activities. 

5. CONCLUSION

Our research showcases the exceptional outcomes attained by utilizing a pre-trained deep learning 

model for hockey activity recognition. Through fine-tuning the model on a meticulously constructed 

dataset, we accomplished an impressive accuracy rate of 99.47% in accurately classifying various 

activities such as goals, penalty corners, and penalty. This emphasizes the effectiveness of deep 

learning models in capturing and analyzing the visual features required for precise activity 

recognition in the dynamic sport of hockey. The construction of a domain-specific dataset plays a 

pivotal role in the success of activity recognition models, and our carefully curated dataset of 

annotated field hockey videos frames serves as a valuable resource for further advancements in this 

area. The practical implications of our research hold great significance for stakeholders within the 

hockey domain.  

Firstly, accurate activity recognition can provide valuable insights for performance analysis. 

Coaches and analysts can utilize the recognized activities to evaluate player performance, identify 

patterns and strategies, and make data-driven decisions to enhance team performance. 

Secondly, our approach can support coaching and training activities by automatically identifying 

and analyzing key events in field hockey videos. Coaches can leverage the insights gained from the 

system to offer targeted feedback, identify areas for improvement, and develop customized training 

programs for specific activities. 

Lastly, the capability to automatically recognize and classify activities in real-time can enhance 

the viewing experience for spectators and broadcasters. Instant replays, highlights, and in-depth 

analysis can be generated using the recognized activities, thereby enriching the storytelling and 

engagement during hockey matches. 

In conclusion, our research demonstrates the effectiveness of utilizing a pre-trained deep 

learning model for hockey activity recognition. We have presented a comprehensive evaluation of 

our approach, achieving exceptional accuracy in classifying hockey activities. The construction of a 

domain-specific dataset further reinforces the reliability and applicability of our findings. Although 

our research has provided valuable insights and practical implications, there are still avenues for 

future exploration and improvement. Further work can be conducted to expand the dataset, explore 

fine-grained activity recognition, enable real-time recognition, and investigate multi-modal fusion 

approaches. 

Overall, our research contributes to the field of hockey activity recognition and lays the 

groundwork for further advancements in analyzing and comprehending the intricate dynamics of 

field hockey. We hope that our work serves as an inspiration for future research and applications in 

this domain, ultimately benefiting players, coaches, analysts, and hockey enthusiasts. 
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Abstract

The production stage of the manufacturing process contains numerous subsystems, and the failure of
one might have an impact on the entire system. Thus, a manufacturing plant needs to be reliable and
well-maintained. This paper examines the profitability and reliability of a production plant for utensils
while taking the effect of temperature into account. The plant processes raw materials through several
subsystems in series including cutting, pressing, spinning, and polishing & packing. Winter production
requires a significant amount of heat which could damage the machinery. As a result, production is low
and preventive maintenance is carried out during the winter. For both the summer and winter seasons,
many system measures have been assessed. The time distributions have been assumed to be exponential.
The model has been analysed using the Markov and Regenerative processes. The production fluctuation
between the summer and winter seasons have been illustrated using a numerical example with specific
values for the parameters.

Keywords: Utensils Manufacturing System; MTSF; Availability; Regenerative Point Technique,
and Preventive Maintenance (PM).

1. Introduction

Companies are constantly adapting their organisational structures and competitive strategies to
meet the many markets demands in today’s world of global competition. They increase their
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capacity, long-term adaptability, and process sensitivity. The focus of entrepreneurial operations
and strategies that promote adaptation to actual market needs has been the production system
and its internal structures. The assessment and prediction of system reliability concerning the
various operational process stages have grown in significance. For complex industrial systems,
which typically have different failure modes, it is essential to create effective reliability evaluation
tools to ensure appropriate performance under high and ambiguous demands.
Researchers have significantly improved the reliability analysis of manufacturing systems over
time. Gupta and Tewari [1] investigated the performance analysis of a thermal power plant,
which has four subsystems that operate at full capacity, below capacity, or fail. Rizwan et al. [2, 3]
provided a case study on a desalination plant that was shut down for annual maintenance during
the winter for one month. Rahbi et al. [4] examined the reliability of a roading anode factory in
the aluminium industry, where raw materials are routed via eight stations with a mix of series
and parallel layouts. Manocha et al. [5] dealt with a system that had one database linked with a
hot standby unit. Yusuf et al. [6] looked into the effectiveness of both online and offline preventive
maintenance in repairing systems. Goyal et al. [7] studied the physical processing of a sewage
treatment plant with five series-connected components. Rizwan et al. [8] examined the three
pumps of a system delivering desalinated water to determine which pump was the least effective
and required improvement for the system as a whole. Sachdeva et al. [9] analyse the sensitivity
and reliability of membrane biofilm fuel cell. From all of these manufacturing plants, we took into
account the utensil production plant to analyse reliability and profitability [10] as everyone needs
efficient and appropriate utensils. Singh and Mahajan [11] examined the availability of the steel
production facility, which includes systems for cutting, pressing, spinning, and polishing. Zaidi
and Goya [12] studied the availability analysis of the cutting, furnance, hot-cold rolling, and roller
furnisher series systems that make up the sheet formation system of the utensil manufacturing
factory. Using a fuzzy technique, Kumar and Kumar [13] calculated the reliability of a production
facility for utensils.
The profit analysis of the utensil manufacturing industry with the effect of temperature and pre-
ventative maintenance has yet to be examined. So, taking into account the impact of temperature,
this article investigates the profitability and reliability of a manufacturing plant for utensils. The
facility uses several subsystems to process raw materials, including cutting, pressing, spinning,
polishing, and packing. Sheets are cut into circular shapes by cutting machines, and then they are
pressed using different dies on a pressing machine according to the size and shape of various
types of kitchenware. After that, sheets were sent out for spinning. A polished-ready product has
been generated by the last stage of the process. Winter production requires a significant amount
of heat, which could damage the machinery. As a result, production is low, and preventive
maintenance is carried out during the winter.
The rest of the paper is organised as follow. Different notations, assumptions, and description of
the system are included in Section 2. The stochastic model and its state transition probabilities
are described in Section 3, along with a number of system metrics as well as a profit analysis
of the system. The system measurements acquired using the graphs are examined in Section 4.
Section 5 concludes with a few interesting interpretations.

2. System Description, Notations and Assumptions

Utensils manufacturing plants are widely used to produce various kinds of utensils. Utensils
plant can have a variety of parts but mainly the plant consists for four subsystems like cutting
system, pressing system, spinning system and polishing and packing system. Manufacturing of
utensils entails the press or spin forming of metal, which frequently involves complex geometries
with straight sides and as well as curves of various radii.
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2.1. Description of the System

Sub-system C (Circle Cutting Machine)
As needed, sheets are cut into circular shapes.
Sub-system P (Pressing Machine)
The circle that was cut using a circular saw is now being sent to a pressing machine. Here, it is
pressed using various dies in accordance with the size and shape of various types of kitchenware.
Due to their shallow depth, some products, including as plates and bojanthal are ready for
polishing right away.
Sub-system S (Spinning Machine)
According to their dies, the product created by pressing is sent for spinning. Some goods don’t
require further annealing before polishing, but others require it because of their deeper shapes.
To eliminate contaminants, these items must be subjected to acid cleaning (Acid is a combination
of Sulphuric and nitric acid).
Sub-system K (Polishing & Packing)
The final process has produced a product that is polished-ready. This stage involves packing and
polishing the final product.

2.2. Notations

m1(t), M1(t) probability and cumulative density functions by
which the system go for preventive maintenance

m2(t), M2(t) probability and cumulative density functions for
completion of preventive maintenance time

w1(t), W1(t) probability and cumulative density functions for
changing the summer to winter season

w2(t), W2(t) probability and cumulative density functions for
changing the winter to summer season

a1, a2, a3 rate of failure for subsystem C, P, S
b1, b2, b3 rate of repair for subsystem C, P, S
OCPSK subsystem C, P, S, K operative
FCDPSK subsystem C under repair and subsystem P, S, K

under down state
FPDCSK subsystem P under repair and subsystem C, S, K

under down state
FSDCPK subsystem S under repair and subsystem C, P, K

under down state
MKDCPS subsystem K under P.M. and subsystem C, P, S

under down state
⊙ Laplace Stieltjes Convolution
© Laplace Convolution
For other notations, refer [5].

2.3. Assumptions

• The failure and repair rates are independent and exponential in general.

• None of the sub-systems are experiencing simultaneous failures.

• Subsystem K has never failed.

• The repaired system works just like the new system.

• Subsystems are only repaired when they are in failed state.
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3. Analysis of Model

The transition diagram of the system is given in Fig. 1.

Figure 1: State Transition Diagram

Description of the Model and Transition Probabilities

3.1. Description of the model

Various states of the model for the system consisting four subsystems with season wise (summer
and winter). The transition between states of system is shown in Fig. 1. States 0, 1, 2, 3, 4,
5, 6, 7, and 8 of the state transition diagrams are regeneration points. States 0 and 1 are the
states where four subsystem work and so represents operative state during summer and winter
respectively. States 2 and 5 are the states where the sub-system C go in failed states during
summer and winter respectively so represents failed state. States 3 and 6 are the states where
sub-system P go in failed states during summer and winter respectively so represents failed state.
States 4 and 7 are the states where sub-system S go in failed states during summer and winter
respectively so represents failed state. States 8 where sub-system K under preventive maintenance.

3.2. State Transition Probabilities

On the basis of state transition diagram, expressions for transition probabilities are given as
follows:

q01(t) = e−(a1+a2+a3)tw1(t) q02(t) = a1e−(a1+a2+a3)tW1(t)
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q03(t) = a2e−(a1+a2+a3)tW1(t) q04(t) = a3e−(a1+a2+a3)tW1(t)
q10(t) = e−(a1+a2+a3+)tE10(t) q15(t) = a1e−(a1+a2+a3)tE15(t)
q16(t) = a2e−(a1+a2+a3)tE15(t) q17(t) = a3e−(a1+a2+a3)tE15(t)
q18(t) = e−(a1+a2+a3)tE18(t) q20(t) = b1e−b1t

q30(t) = b2e−b2t q40(t) = b3e−b3t

q51(t) = b1e−b1t q61(t) = b2e−b2t

q71(t) = b3e−b3t q81(t) = m2(t)

where

E10(t) = M1(t)w2(t) E15(t) = M1(t)W2(t)
E18(t) = m1(t)W2(t)

Transition probabilities pij(t) from state i to state j can be calculated by taking Laplace transform
of above obtained values of qij(t) and then using the following mathematical relationship between
pij and q∗ij(s)
pij = lims→0 q∗ij(s)
values of for all required combinations of i and j are obtained and the same are given as follows:

p01 = w∗
1(a1 + a2 + a3) p02 = a1

(a1+a2+a3)
[1 − w∗

1(a1 + a2 + a3)]

p03 = a2
(a1+a2+a3)

[1 − w∗
1(a1 + a2 + a3)] p04 = a3

(a1+a2+a3)
[1 − w∗

1(a1 + a2 + a3)]

p10 = E∗
10(a1 + a2 + a3) p15 = a1E∗

15(a1 + a2 + a3)
p16 = a2E∗

15(a1 + a2 + a3) p17 = a3E∗
15(a1 + a2 + a3)

p18 = E∗
18(a1 + a2 + a3)

Mean Sojourn time (µi)
If Ti denotes the stay time of the system in state i, then using the following mathematical relation-
ship between µi and Ti
µi =

∫ ∞
0 P[Ti > t]dt

values of µi for all required values of i are found, and the same are provided as:
µ0 =

∫ ∞
0 e−(a1+a2+a3)tW1(t)dt

µ1 =
∫ ∞

0 e−(a1+a2)tE15(t)
µ2 = µ5 = 1

b1

µ3 = µ16 = 1
b2

µ4 = µ7 = 1
b3

µ8 =
∫ ∞

0 M2(t)dt

The unconditional mean time (mij) which the system under consideration takes to move to state
j where counting of the time starts as soon as it enters into state i can be obtained using the
following mathematical relationship between mij and qij(t)
mij=

∫ ∞
0 tqij(t)dt,

values of for all required combinations of i and j thus obtained and given as follows:

µ0 = m01 + m02 + m03 + m04; µ1 = m10 + m15 + m16 + m17 + m18
µ2 = m20; µ3 = m30
µ4 = m40; µ5 = m51;
µ6 = m61 µ7 = m71;
µ8 = m81
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4. System Performance Measures

4.1. Mean Time to System Failure

We retain failed states as absorbing states in order to calculate the system’s MTSF. Using recursive
relations for ϕi(t) can be obtained and the same are given as:
ϕ0(t) = Q01(t)⊙ ϕ1(t) + Q02(t) + Q03(t) + Q04(t)
ϕ1(t) = Q10(t)⊙ ϕ0(t) + Q15(t) + Q16(t) + Q17(t) + Q18(t)⊙ ϕ8(t)
ϕ8(t) = Q81(t)⊙ ϕ1(t)
By solving these relations for ϕ∗∗

0 (s) using the Laplace Stieltjes transformation of these relations,
we get
ϕ∗∗

0 (s) = N(s)
D(s) ,

where
N(s) = (q∗02(s) + q∗03(s) + q∗04(s))(1 − q∗18(s)q

∗
81(s)) + q∗01(s)(q

∗
15(s) + q∗16(s) + q∗17(s))

D(s) = 1 − q∗01(s)q
∗
10(s)− q∗18(s)q

∗
81(s)

Using above calculated value of ϕ∗∗
0 (s) , MTSF can be obtained when the system under considera-

tion starts from the state 0 and the same is given as follows:

T0 = lims→0
1−ϕ∗∗

0 (s)
s = N

D ,
where
N = µ0[1 − p18] + µ1 p01 + µ8 p01 p18
D = 1 − p01 p10 − p18

4.2. Availabilities in Summer and Winter

During Summer
To determine the availability in summer AS0(t) of the system, recursive relations thus obtained
using probabilistic arguments, are given as:
AS0(t) = M0(t) + q01(t)©AS1(t) + q02(t)©AS2(t) + q03(t)©AS3(t) + q04(t)©AS4(t)
AS1(t) = q10(t)©AS0(t) + q15(t)©AS5(t) + q16(t)©AS6(t) + q17(t)©AS7(t) + q18(t)©AS8(t)
AS2(t) = q20(t)©AS0(t)
AS3(t) = q30(t)©AS0(t)
AS4(t) = q40(t)©AS0(t)
AS5(t) = q51(t)©AS1(t)
AS6(t) = q61(t)©AS1(t)
AS7(t) = q71(t)©AS1(t)
AS8(t) = q81(t)©AS1(t)
where,
M0(t) = e−(a1+a2+a3)tW1(t)
By solving these relations for AS∗

0(s) using the Laplace transform of these relations, we get
AS∗

0(s) =
N1(s)
D1(s)

where,
N1(s) = M∗

0(s)[1 − q∗15(s)q
∗
51(s)− q∗16(s)q

∗
61(s)− q∗17(s)q

∗
71(s)− q∗18(s)q

∗
81(s)]

D1(s) = [q∗02(s)q
∗
20(s) + q∗03(s)q

∗
30(s) + q∗04(s)q

∗
40(s)][q

∗
15(s)q

∗
51(s) + q∗16(s)q

∗
61(s) + q∗17(s)q

∗
71(s)

+ q∗18(s)q
∗
81(s)]− [q∗02(s)q

∗
20(s) + q∗03(s)q

∗
30(s) + q∗04(s)q

∗
40(s) + q∗15(s)q

∗
51(s) + q∗16(s)q

∗
61(s)

+ q∗17(s)q
∗
71(s) + q∗18(s)q

∗
81(s)] + 1

Using above calculated value of AS∗
0(s) availability in summer can be obtained in steady-state

and the same is given as follows:
AS0 = lims→0 sAS∗

0(s) =
N1
D1

where,
N1 = µ0 p10
D1 = (µ0 + µ2 p02 + µ3 p03 + µ4 p04)p10 + (µ1 + µ5 p15 + µ6 p16 + µ7 p17 + µ8 p18)p01
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During Winter
Similarly, steady-state availability during winter are given as follows:
AW0 = lims→0 sAW∗

0 (s) =
N2
D1

where,
D1 already defined and
N2 = µ1 p01

4.3. Busy Period Analysis

Busy period of the repairman due to repair in summer
Similarly, steady-state Busy period of the repairman due to repair in summer are given as follows:
BS0 = lims→0 sBS∗

0(s) =
N3
D1

where,
D1 already defined and
N3 = (µ2 p02 + µ3 p03 + µ4 p04)p10
During Winter
Similarly, steady-state Busy period of the repairman due to repair in winter are given as follows:
BW0 = lims→0 sBW∗

0 (s) =
N4
D1

where,
D1 already defined and
N4 = (µ5 p15 + µ6 p16 + µ7 p17)p01

4.4. Expected Number of Visits of the Repairman for Repair

During summer
Similarly, steady-state number of visits of the repairman during summer are given as follows:
VS0 = lims→0 sVS∗

0(s) =
N5
D1

where,
D1 already defined and
N5 = p10(1 − p01)
During Winter
Similarly, steady-state number of visits of the repairman during winter are given as follows:
VW0 = lims→0 sVW∗

0 (s) =
N6
D1

where,
D1 already defined and
N6 = p01(1 − p10 − p18)

4.5. Expected Number of Visits of the Repairman for Preventive Maintenance

Similarly, steady-state number of visits of the repairman for preventive maintenance are given as
follows:
PM0 = lims→0 sPM∗

0(s) =
N7
D1

where,
D1 already defined and
N7 = p01 p18
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5. Cost-Benefit Analysis

Profit of the system under consideration can be obtained by subtracting the costs due to repair,
per visit charges of the repairman for repair in summer and winter and per visit charges of
the repairman for preventive maintenance. The same can expressed in terms of the various
performance measures obtained through the model developed in this given as follows:
Pro f it = CS0 AS0 + CW0 AS0 − CS1BS0 − CW1BW0 − CS2VS0 − CW2VW0 − C3PM0
where,
CS0 : revenue during summer, per unit uptime
CW0 : revenue during winter, per unit uptime
CS1 : revenue during summer per unit time for repair
CW1 : revenue during winter per unit time for repair
CS2 : Cost per visit during summer for repair
CW2 : Cost per visit during winter for repair
C3 : Cost per visit for preventive maintenance

6. Numerical Interpretation

Let us assume particular value as:

w1(t) = αe−αt w2(t) = βe−βt

m1(t) = γe−γt m2(t) = δe−δt

p01 = α
a1+a2+a3+α p02 = a1

a1+a2+a3+α

p03 = a2
a1+a2+a3+α p04 = a3

a1+a2+a3+α

p10 = β
a1+a2+a3+γ+β p15 = a1

a1+a2+a3+γ+β

p16 = a2
a1+a2+a3+γ+β p17 = a3

a1+a2+a3+γ+β

p18 = γ
a1+a2+a3+γ+β p20 = p30 = p40 = p51 = p61 = p71 = p81 = 1

µ0 = 1
a1+a2+a3+α µ1 = 1

a1+a2+a3+β+γ

µ2 = 1
b1

µ3 = 1
b2

µ4 = 1
b3

µ5 = 1
b1

µ6 = 1
b1

µ7 = 1
b3

µ8 = 1
δ

where
a1 = 0.635, a3 = 0.3589, a2 = 0.781, b1 = 0.887, b2 = 0.793, b3 = 0.821, α = 0.815, β = 0.013,
γ = 0.937, δ = 0.870, CS0 = 15000, CS1 = 1500, CW0 = 15000, CW1 = 1600, CS2 = 1450,
CW2 = 1550, C3 = 1400.
Various graphs have been plotted but all the graphs have not been shown here to use minimum
space and to avoid repetition of similar interpretations. However, the users of such systems may
plot graph of their interest as per the requirement and may take important decision regarding
profitability of the system. Regarding the availability and nature of MTSF, various rates have been
depicted as shown in Fig. 2 and 3 which reveal that MTSF and Availability decreases as failure
rates increases. However, their values go in the direction δ and b2. Some of the plotted graphs are
shown as follows:
The MTSF behaviour for varied δ is given in Fig. 2. MTSF decreases as the failure rate value (a2)
rises. Higher values of δ correspond to higher values in it.
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Figure 2: MTSF versus Failure Rate (a2) for different values of (δ)

The availability behaviour in the summer and winter w.r.t. failure rate is shown in Fig. 3.
Summer availability and winter availability both declines as the value of the failure rate rises (a2).
Also, the system is available more in summer than winter season.

Figure 3: Availability in Summer and Winter for different values of Failure rate (a2)

The way that profit acts in relation to revenue in the summer (CS0) for various values of the
cost paid for repair in the summer (CS1) is shown in Fig. 4. As revenue values rise in the summer,
profit rises as well (CS0). Additionally, it has been seen that as (CS1) values rise, the profit falls.
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Figure 4: Profit versus revenue in summer (CS0) for different values of cost paid for repair in summer (CS1)

The relationship between profit and revenue in winter (CW0) for various values of cost paid
for repair in winter (CW1) is shown in Fig. 5. With an increase in winter revenue values, profit
rises (CW0). Additionally, it has been noted that as (CW1) values rise, the profit falls.

Figure 5: Profit versus revenue in winter (CW0) for different values of cost paid for repair in winter (CW1)

Fig. 6 illustrates the behaviour of profit in relation to revenue during the winter (CW0) for
various costs associated with preventive maintenance (C3). With an increase in winter revenue
values, profit rises (CW0). Additionally, it has been seen that as (C3) values rise, the profit falls.
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Figure 6: Profit versus revenue in winter (CW0)for different values of cost paid for Preventive Maintenance (C3)

Values of parameters taken and cut-off points obtained from the above figures are tabulated
as follows:

Fig Varied Parameters Condition Interpretation
CS1 = 5500 CS0> 13202.0841 System is profitable

4 CS1 = 6000 CS0> 14270.9341 System is profitable
CS1 = 6500 CS0> 15339.7841 System is profitable
CW1 =6000 CW0>15848.2632 System is profitable

5 CW1 =6500 CW0>16917.2760 System is profitable
CW1 =7000 CW0>17986.2888 System is profitable
C3 = 5000 CW0>10842.1274 System is profitable

6 C3 = 6000 CW0>11778.9029 System is profitable
C3 = 7000 CW0>12716.0337 System is profitable

7. Conclusion

In the current study, profitability and reliability of a production plant for utensils is analysed
while taking the effect of temperature into account. The system is available more in summer than
winter season. The findings for a specific situation demonstrate the relevance of research since
cut-off points may be used to set lower and upper limits for a variety of factors. For instance,
setting a product’s pricing so that the system is profitable depends on the cut-off point for revenue
per unit uptime. The cut-off points facilitate many crucial judgments for the profits according to
revenue.

Funding

The first author delightedly acknowledges the University Grants Commission (UGC), New Delhi,
India for providing financial support.

  RT&A, No.3 (74)  
Volume 18, September 2023  

343



Manisha, Dalip Singh, Kajal Sachdeva, Sheetal
RELIABILITY AND PROFITABILITY ANALYSIS OF
UTENSILS MANUFACTURING INDUSTRY

Disclosure statement

The authors declare that they have no conflict of interest.

References

[1] Gupta, S., and Tewari, P. C. (2009).Simulation modeling and analysis of a complex system of
a thermal power plant. J Ind. Eng. Manag, 387–406.

[2] Rizwan, S. M., Padmavathi, N., Anita, P. and Taneja, G., (2013).Reliability Analysis of a Seven
Unit Desalination Plant with Shutdown During Winter Season and Repair / Maintenance on
FCFS Basis. International Journal of Performability Engineering, 523–528.

[3] Rizwan, S. M., Thanikal, J. and Torrijos, M., (2014).A general model for reliability analysis
of a domestic wastewater treatment plant. International Journal of Condition Monitoring and
Diagnostic Engineering Management , 3–6.

[4] Al Rahbi, Y., Rizwan, S. M., Alkali, B., Cowell, A. and Taneja, G., (2017). ., Reliability analysis
of rodding anode plant in aluminum industry. International Journal of Applied Engineering
Research , 5616–5623.

[5] Manocha, A., Taneja, G., Singh, S. and Rishi R., (2019).Modelling and analysis of two-unit
hot standby database system with random inspection of standby unit. International Journal of
Mathematics in Operational Research, 156–180.

[6] Yusuf, I., Yusuf, B. and Suleiman, K.,(2019). , Reliability assessment of a repairable system
under online and offline preventive maintenanceLife Cycle Reliability and Safety Engineering ,
1–16.

[7] Goyal, D., Kumar, A., Saini, M. and Joshi, H., (2019).Reliability, maintainability and sensitivity
analysis of physical processing unit of sewage treatment plant.SN Appl. Sci. , 1507.

[8] Rizwan, S. M., Sachdeva, K., Alagiriswamy, S. and Al Rahbi, Y., (2023). Performability
and Sensitivity Analysis of the Three Pumps of a Desalination Water Pumping Station.
International Journal of Engineering Trends and Technology , 51(2): 283–292.

[9] Rizwan, S. M., Sachdeva, K., Al Balushi, N., Al Rashdi, S., and Taj, S. Z., (2023) Reliability
and Sensitivity Analysis of Membrane Biofilm Fuel Cell. International Journal of Engineering
Trends and Technology , 71(3): 73–80.

[10] Sachdeva, K., Taneja, G., and Manocha, A., (2022).Sensitivity and economic analysis of an
insured system with extended conditional warranty. Reliability: Theory & Applications,315–327.

[11] Singh, J., and Mahajan, P., (1999). Reliability of utensils manufacturing plant-a case study.
Opsearch , 13(24): 260–269.

[12] Zaidi, Z., and Goya, Y. K., (2012). Availability Analysis of Sheet Formation System of the
Utensils Industry Mathematical View. International Transactions in Applied Sciences , 214–220.

[13] Kumar, K., and Kumar, P., (2010). Mathematical modeling and analysis of stainless steel
utensil manufacturing unit using fuzzy reliability. . International Journal of Engineering Science
and Technology , 2370–2376.

  RT&A, No.3 (74)  
Volume 18, September 2023  

344



G. Ayyappan, S. Kalaiarasi
ANALYSIS OF A FLEXIBLE GROUP SERVICE QUEUEING MODEL

ANALYSIS OF A FLEXIBLE GROUP SERVICE
MAP\PH\1 QUEUEING MODEL WITH, IMMEDIATE

FEEDBACK, BALKING AND RENEGING

G. Ayyappan, S. Kalaiarasi

•
Department of Mathematics

Puducherry Technological University
Puducherry, India.

ayyappanpec@hotmail.com, kalaiarasi.math@gmail.com

Abstract

Queueing models in which the services are provided in groups (or blocks or batches) have found to be
very useful in real-world applications and such queues been extensively analysed in the literature. In this
paper we see one such group service queueing model with balking, reneging and immediate feedback. The
arrival processes is a Markovian arrival , where, the arriving customer may balk the system while the
server is idle and the pool is empty. Customers are provided service in groups of varying size from 1 to
the fixed constant, say, N. The service time of a batch follows the phase type distribution corresponding
to the each size of the group. A group’s service time is taken as the highest of the service times of each
customers who make up the group. The group of customers who are dissatisfied with the service then
that group will get the service immediately. Here, the feedback of a group is defined as the average of the
feedback of each customers who make up the group. During the admission period the customers may
renege. We calculated the steady state probabilities by using the matrix geometric method, then, by using
it we computed few performance measures. We have studied the busy period and the distribution of
waiting time is derived. Results are illustrated with some graphical representations.

Keywords: Markovian Arrival Process, Flexible group service, Phase type Distributions, Immedi-
ate Feedback, Balking, Reneging.

1. Introduction

Queueing models with a group service play a vital role in many real life and engineering
systems. And these queues can be generated physically or simulated by computers. Usually
in the group service models, the minimum and maximum size of group are presumed. Bailey
introduced the bulk service queueing model with fixed group size in [4]. Chaudry and Templeton
in [5] studied bulk service queues in detail. A survey paper on bulk service queueing models by
Sasikala and Indhira [6] is noteworthy. And the authors Banerjee.A, Gupta.U, Chakravarthy.S in
[7] derived the significant results for queues with group service and many models with real-life
applications are presented.

Neuts [8] has introduced the general group service rule, according to which the server will
start the service only if ”a” or more customers are in the queue and the highest service capacity is
”b.” At the service completion epoch of a batch, if the number of customers present in the queue
is less than ′a′ then the server has to wait until ′a′ number of customer arrives. If the number of
customers less than or equal to ′b′ and greater than or equal to ′a′ then the service commences
immediately to existing customers. If the number of customers is greater than ′b′, then only ′b′
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customers taken in to service. And in the literature very few papers have dealt with group service
with non-exponential service times .

The authors Brugno,D’Apice, Dudin, Manzo in [1] have examined a MAP/PH/1 queueing
model with flexible group service. A predefined integer, let’s say N, is typically used in the
analysis of group services, and if there are less costumers in the queue than N, service is not
initiated. But in this model they predefined the batch size as N, and they assumed that the
server’s idle time is restricted. Even if there are fewer consumers in the queue than N, service
will still start once the idle time runs out. At a service completion moment, if there are N or
more than N number of customers, the server provides service for exactly N customers. On
the other hand, if the number of customers waiting in the queue is less than N, a admission
period starts and its duration follows the PH - distribution. If the number of customers waiting
reaches the value N before the admission period expires, the admission period is stopped and
the service resumes with N customers. If the admission period expires before the arrival of Nth
customer, then the server offers service simultaneously to the group of ′i′ customers, where ′i′

ranges between 1 to N − 1 or if the admission period was over and when there is no one in queue,
a new admissions period begins, and the procedure is repeated.

In [1],[7] for a batch service queueing models, a size ′m′ customer group’s service time is
assumed to be the highest of ′m′ identical PH- distributions which in turn a PH- distribution. The
batch’s service will be completed when the service for the last customer in the batch is completed.
This type of batch service models are studied in cloud and grid computing [12].

Ayyappan and Thilagavathy in [9] have studied the MAP/PH/1 queueing model with
Breakdown, Instantaneous feedback, and server vacation. And Downton in [11] by using random
arrivals and a random service time distribution derived the waiting time distribution of bulk
service queues.

In this paper we analyse a MAP/PH/1 queueing model with flexible group service,
balking, reneging and immediate feedback. Here ,the feedback of a group is defined as the
average of the feedback of each customers who make up the group.

The article’s next sections are organised as follows. The mathematical model is presented
with a graphic depiction in section 2. In section 3 we narrated the model and we formulate the
QBD matrix. We derive the Ergodicity (stability) condition and the steady state probability vector
in section 4. For this model we computed some performance measures in section 5. In section 6
we did busy period analysis. In section 7 waiting time distribution is derived . In section 8 some
numerical results with graphical representations are illustrated and the conclusion is given in
section 9.

2. The Narration of the Model

In this paper, Markovian arrival process is considered with depiction (D0, D1) of order n with the
generator matrix D̃ = D0 + D1. Markovian arrival’s fundamental rate is defined as λ = πD1en,
where π is the vector of stationary probability of D̃. Now we assume that the customers will get
service in groups of size N, with N ≥ 2 a fixed integer. If there are N − 1 customers in the queue
and the server is idle an arriving customer will get a immediate service and its PH representation
is denoted as (β(N), S(N)) of order M(N) with S(N)

0 + S(N)e = 0 which implies S(N)
0 = −S(N)e

otherwise based on the sequence of their arrival, the arriving customers are placed in the buffer.
And at this moment choosing customers from the buffer at the time a service is complete is
defined as follows
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Figure 1: Diagram illustrating the current model

• The batch of exactly N consumers (say Block) begins service if at this point of time N or
more customers are present in the buffer with PH representation (β(N), S(N)) of order M(N).

• We refer to a group of consumers as a pool, if there are fewer than N customers. Then
the so-called admission period begins at this point of time.The admission period follows
PH distribution of which the PH representation is denoted by (α, T) of order M(0) with
T0 + Te = 0 which implies T0 = −Te. And now

– When the pool’s total customer count equals N, the server starts providing services.

– or the admission period expires.

– If the admission period passed and the pool has one or more but fewer than N
customers, Then all the customers in the pool strats service immediately and the
service of r, customers 1 ≤ r ≤ N − 1 follows PH distribution of which the PH
representation is given by (β(r), S(r)) of order M(r) with S(r)

0 + S(r)e = 0 which implies

S(r)
0 = −S(r)e.

– A new admission period begins if the admission period passes with the pool empty,
and the fundamental rate of admission period is defined as η = [α(−T)−1e]−1.

Fundamental rate of service to r customers where 1 ≤ r ≤ N is defined as γr = [β(r)(−Sr)−1e]
−1

.

During the server is idle and the pool is empty, with probability b, the customer might quit
( balk) the system . During the admission period the customer may renege, which follows
exponential distribution with parameter δ. We are dealing the single server queueing model
with immediate feedback, this indicates whether a batch of customers is satisfied after receiving
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service, they leave the system with probability c otherwise the batch of customers will be receiving
feedback service right away with probability d such that c + d = 1. Here in the group service, we
presume that the group’s feedback is positive if the average of the individual feedbacks of the
group is positive.

2.1. QBD process of system state

Notations for our model

• ⊗ - the matrix Kronecker product.

• ⊕ - the matrix Kronecker sum .

• Im - an identity matrix of m- dimension.

• e- a column matrix with each entry is 1 of appropriate dimension.

• diag{dk, k ∈ 1, ..., n} is the diagonal matrix, whose entries are enclosed in brackets.

• Fk is the row matrix of dimension k each of its entries as 0

Let

ξ(t) = {N(t), I(t), R(t), J(t)(R(t)), V(t) : t ≥ 0 }

is continuous time Markov chain with state level independent Quasi-Birth-and-Death process ,
where

• N(t) indicates that how many batches are present in the system at time t, which includes
the batch in service,

• I(t) indicates that how many customers are there in the pool at time t , 0 ≤ I(t) ≤ N − 1,

• R(t) indicates that how many customers are getting the service at time t. Note that R(t) = 0
if N(t) = 0 , as a result the admission period will be ongoing and 1 ≤ R(t) ≤ N − 1 if
N(t) ≥ 1

• J(t)(R(t)) indicates the state of the PH process of customer admission if R(t) = 0 with
1 ≤ J(t)(0) ≤ M(0) or it indicates the state of the PH process of customer service process if
1 ≤ R(t) ≤ N with 1 ≤ J(t)(R(t)) ≤ M(R(t)) .

• V(t) shows the state of the Markovian arrival process with 1 ≤ V(t) ≤ n.

ξ(t) has the following state space,

B = l(0) ∪ l(k)

where,

l(0) = {(0, i, 0, p, s) : 0 ≤ i ≤ N − 1 ; 1 ≤ p ≤ M(0) ; 1 ≤ s ≤ n }

and this can be simply written as

l(0) = {(0, i) : 0 ≤ i ≤ N − 1 }

the PH process of admission period and phases of Markovian arrival are understood.

For k ≥ 1,

l(k) = {(k, i, r, p, s) : k ≥ 1 ; 0 ≤ i ≤ N − 1 ; 1 ≤ r ≤ N ; 1 ≤ p ≤ M(r) ; 1 ≤ s ≤ n }
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and this can be simply written as

l(k) = {(k, i, r) : k ≥ 1 ; 0 ≤ i ≤ N − 1 ; 1 ≤ r ≤ N }

the PH process service to r number of customers where 1 ≤ r ≤ N and arrival phases are
understood.

The QBD process of infinitesimal matrix generation is given by

Q =



B00 B01 0 0 0 0 · · · · · ·
B10 A1 A0 0 0 0 · · · · · ·
0 A2 A1 A0 0 0 · · · · · ·
0 0 A2 A1 A0 0 · · · · · ·
0 0 0 A2 A1 A0 · · · · · ·
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .



The matrix Q’s block matrices are given below

B00 =



B00
11 B00

12 0 0 0 0 · · · 0
B00

21 B00
22 B00

23 0 0 0 · · · 0
0 B00

32 B00
33 B00

34 0 0 · · · 0
...

. . . . . . . . . · · ·
... · · ·

...
0 0 B00

i i−1 B00
i i B00

i i+1 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · · · · · · · B00

N−1 N−2 B00
N−1 N−1


where,

B00
11 = (T + T0α)⊕ (D0 + bD1); B00

12 = (1 − b)D1 ⊗ IM(0) ;
B00

21 = δIn ⊗ IM(0) ; B00
22 = T ⊕ (D0 − δIn);

B00
23 = D1 ⊗ IM(0) ; B00

i i−1 = δIn ⊗ IM(0) ;
B00

i i = T ⊕ (D0 − δIn); B00
i i+1 = D1 ⊗ IM(0)

B01 =



0 0 · · · 0
(B01)1,0

(B01)2,0
...

. . .
...

...
(B01)N−1,0 0 · · · 0


, where

(B01)i,0 = (Fi−1, T0 ⊗ β(m) ⊗ In, FN−i) for 1 ≤ i ≤ N − 2
and (B01)N−1,0 = (FN−2, T0 ⊗ β(N−1) ⊗ In, eM(0) ⊗ β(N) ⊗ D1)

A1 =



(A1)0,0 (A1)0,1 0 0 · · · 0
0 (A1)1,1 (A1)1,2 0 · · · 0
0 0 (A1)2,2 (A1)2,3 · · · 0
...

...
. . . . . .

...
...

...
. . .

0
... · · · (A1)N−1,N−1


, where

(A1)i,i = diag {S(r) + dS0
(r)β(r) ⊕ D0; 1 ≤ r ≤ N, 0 ≤ i ≤ N − 1}
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and (A1)i,i+1 = diag {IM(r) ⊗ D1; 1 ≤ r ≤ N, 0 ≤ i ≤ N − 2}

A0 =



0 0 · · · 0
...

...
. . .

...
0

(A0)N−1,0 0 · · · 0


, where (A0)N−1,0 = diag {IM(r) ⊗ D1; 1 ≤ r ≤ N}

A2 =


(A2)0,0 0 0 · · · 0

0 (A2)1,1 0 · · · 0
0 0 (A2)2,2 · · · 0
...

...
. . .

...
0 · · · (A2)N−1,N−1

,

with (A2)i,i =


0 · · · 0 cS0

(1) ⊗ β(N) ⊗ In
...

. . .
...

0 · · · 0 cS0
(N) ⊗ β(N) ⊗ In


B1,0 = diag {(B1,0)i,i ; 0 ≤ i ≤ N − 1}, where (B1,0)i,i =


cS0

(1) ⊗ α ⊗ In
...

cS0
(N) ⊗ α ⊗ In

.

3. Condition for stableness

Let us define the matrix A = A0 + A1 + A2, then

A =


F F

′

. . . . . .
F F

′

F
′

F

, where F
′
=

IM(1) ⊗ D1
. . .

IM(N) ⊗ D1

,

and F =


S(1) + dS0

(1)β(1) ⊕ D0 cS0
(1)β(N) ⊗ In

. . .
...

. . . cS0
(N−1)β(N) ⊗ In

S(N) + dS0
(N)β(N) ⊕ D0 + cS0

(N)β(N) ⊗ In


It is clear that A is a square matrix which is an irreducible infinitesimal generator matrix
whose order is N M(1) n + N M(2) n + · · · + N M(N) n . The steady-state probability vec-
tor of A is indicated by z. And the vector z is denoted as z = (z0, z1, z2, · · · , zN−1), where
zi = (z1

i , z2
i , · · · , zN

i ) , 0 ≤ i ≤ N − 1 which satisfies zA = 0 and ze = 1. The QBD structure
exists for the Markov process. Also there exists Ergodicity (stability) criteria for our model
and that it should satisfy zA0e < zA2e, which is the if and only if condition for stability
of a QBD process. By resolving the following equations, the vector z can be determined.
z1

0(S
(1) + dS0

(1)β(1) ⊕ D0) + z1
N−1(IM(1) ⊗ D1) = 0

z2
0(S

(2) + dS0
(2)β(2) ⊕ D0) + z2

N−1(IM(2) ⊗ D1) = 0

...
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N−1

∑
i=1

zi
0cS0

(i)β(i) ⊗ In + zN
0 cS0

(N)β(N) ⊗ In + (S(1) + dS0
(1)β(1) ⊕ D0) + zN

N−1(IM(N) ⊗ D1) = 0.

Similarly, f or i , 0 ≤ i ≤ N − 2 we have,
z1

i+1(S
(1) + dS0

(1)β(1) ⊕ D0) + z1
i (IM(1) ⊗ D1) = 0

z2
i+1(S

(2) + dS0
(2)β(2) ⊕ D0) + z2

i (IM(2) ⊗ D1) = 0

...

N−1

∑
i=1

zi
i+1cS0

(i)β(i) ⊗ In + zN
i+1cS0

(N)β(N) ⊗ In + (S(1) + dS0
(1)β(1) ⊕ D0) + zN

i (IM(N) ⊗ D1) = 0.

Following some algebraic calculation, the stability condition zA0e < zA2e, which is turns to
be

N

∑
r=1

zr
N−1(eM(r) ⊗ D1en) <

N−1

∑
i=0

N

∑
r=1

zr
i cS0

(r) ⊗ en.

After simplification the Ergodicity condition can be precisely written as λγN < N.

3.1. Study of the Stationary Probability vector

Let x be the Q ’s the steady-state probability vector and it is subdivided as x = (x0, x1, x2,, · · · ).
Note that x0’s dimension is NM0n and dimension of x1, x2, x3, · · · , are N(M(1) + M(2) + · · ·+
M(N))n. Then x satisfies the condition xQ = 0 and xe = 1. Once the stability condition is met, the
subvectors of x, except for x0 and x1 are provided by the following equation, which corresponds
to the various level states.

xj = x1Rj−1, j ≥ 2

where R represents the minimum non-negative solution of the matrix quadratic equation as
R2 A2 + RA1 + A0 = 0, as defined by Neuts [3]. Due to the stability of our system and the fact
that the row sums of the sum of square matrices A0, A1, and A2 is zero, R , the rate matrix is a
square matrix with order N(M(1) + M(2) + · · ·+ M(N))n. The R matrix is derived from the
above quadratic equation and also fulfils RA2e = A0e.
The following equations were solved to obtain the sub vectors x0 and x1.

x0B00 + x1B10 = 0

x0B01 + x1(A1 + RA2) = 0

conditioned on the normalising state

x0eNM(0)n + x1(1 − R)−1eN n(M(1)+M(2)+···+M(N)) = 1.

hence, the matrix R could be computed theoriticaly with the reference of Latouche and
Ramaswami [2] using necessary steps in the R’s Logarithmic reduction algorithm.

4. Performance Measures

• The expected number of customer blocks, including the one receiving service
Eblock = ∑∞

k=1 kxke = x1(1 − R)−2.

• The expected number of blocks of customers excluding the one in service
Ẽblock = ∑∞

k=1(k − 1)xke = Eblock − 1 + x0e0.
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• The expected number of customers in the pool
Epool = ∑N−1

i=0 ix0 ẽ0i + ∑∞
k=1 ∑N−1

i=0 ∑N
m=1 ixkime = ∑N−1

i=0 ix0 ẽ0i + ∑N−1
i=0 ix1(1 − R)−1 ẽi.

where ẽ0i is the column vector of order NM(0)n with (i(M(0))n + 1) st to ((i + 1)M(0)n) th
entries are 1 and all other entries are zeros.
and ẽi is the column vector of order (N(M(1) + · · ·+ M(N))n with (i(M(1) + · · ·+ M(N))n +
1) st to ((i + 1)(M(1) + · · ·+ M(N))n) th entries are 1 and all other entries are zeros.

• The expected number of customers in the service
Eservice = ∑∞

k=1 ∑N−1
i=0 ∑N

m=1 mxkime

= ∑N
m=1 m(x1(1 − R)−1e0i + x1(1 − R)−1e1m + · · ·+ x1(1 − R)−1eN−1m)

= ∑N
m=1 m(∑N−1

i=0 x1(1 − R)−1eim)

where eim are all column vectors of order (N(M(1) + · · ·+ M(N))n defined as
for m = 1, ei1 has (m(∑N

k=1 Mkn) + 1) st to (i(∑N
k=1 Mkn) + M(1)n) th entries are 1 and all

other elements are zeros.
for 2 ≤ m ≤ N − 1, eim has (i(∑N

k=1 Mkn) + (∑m−1
j=1 Mjn) + 1) st to (i(∑N

k=1 Mkn) +

(∑m
j=1 Mjn)) th entries are 1 and all other entries are zeros.

and for m = N , eiN has (i(∑N
k=1 Mkn) + (∑N−1

j=1 Mjn) + 1) st to ((i + 1)(∑N
k=1 Mkn)) th

entries are 1 and all other entries are zeros.

• The mean size of the system (mean system size or expected system size) at an arbitrary
moment including the customers in service
Esystem = ∑∞

k=1 ∑N−1
i=0 ∑N

m=1(kN + i + m)xkime + ∑N−1
i=0 ix0 ẽ0i

= NEblock + Epool + Eservice

• The mean size of the system at some random time excluding the customers in service
Ẽsystem = ∑∞

k=1 ∑N−1
i=0 ∑N

m=1((k − 1)N + i + m)xkime + ∑N−1
i=0 ix0 ẽ0i

= NẼblock + Epool + Eservice

• The probability of the server is idle at some random time
Pidle = x0e0

5. Busy Period Analysis

• A busy period is defined as the period of time from when a customer first enters an empty
system till the first epoch after that when the system is empty once more. Thus it is the first
passing time from level 1 to level 0. A busy cycle is defined as the whole first time at level 0
after visiting a state in any other level at least once.

• We must first define the term "fundamental period" before we can study the busy time. It is
the first passing time from level k to level k − 1 for the QBD process under examination. for
k ≥ 2.

• The case where k = 0, 1 correspond to boundary states must be discussed seperately.

• Note that for each level k, for k ≥ 1, there corresponds N(M(1) + M(2) + · · ·+ M(N))n
states. The ordered pair (k, j) represents j th state of level k where the states are ordered in
the lexicographic order.

• Let Gjj′ (v, x) provides the conditional probability of the Quasi − Birth − Death process, this
process commences from the state (k,j) at time t = 0 accesses the level k − 1 within the time
x. We can alter the v transition move left and get into the the state (k − 1, j′).
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To proceed further, we present the combined transform

G̃kk′(z, s) =
∞

∑
v=1

zv
∫ ∞

0
e−sxdGkk′ (v, x) ; |z| ≤ 1, Re(s) ≥ 0

and the matrix is denoted as
G̃(z, s) = G̃kk′(z, s) (1)

then (1) satisfies the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s)

Now G = Gkk′ = G̃(1, 0) handles the first passage timings, with the exception of the boundary
states. Using the result

G = −(A1 + RA2)
−1 A2.

G matrix could be determine if R matrix is already known. Otherwise G matrix could be
determine using logarithmic reduction algorithm method.
From the above discussions for the boundary levels 1 and 0 we have

G̃(1,0)(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G̃(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(z, s)G̃(1,0)(z, s).

Since G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are stochastic, using the above matrices we can calculate the
below cases.

H⃗1 = − ∂

∂ s
G̃(z, s)|z=1,s=0e = −[A1 + A0(I + G)]−1e (2)

H⃗2 = − ∂

∂ z
G̃(z, s)|z=1,s=0e = −[A1 + A0(I + G)]−1 A2e (3)

H⃗
(1,0)
1 = − ∂

∂ s
G̃(z, s)(1,0)|z=1,s=0e = −[A1 + A0G]−1(A0H⃗1 + e) (4)

H⃗
(1,0)
2 = − ∂

∂ z
G̃(z, s)(1,0)|z=1,s=0e = −[A1 + A0G]−1(A0H⃗2 + B10e) (5)

H⃗
(0,0)
1 = − ∂

∂ s
G̃(z, s)(0,0)|z=1,s=0e = −B−1

00 [B01H⃗
(1,0)
1 + e] (6)

H⃗
(0,0)
2 = − ∂

∂ z
G̃(z, s)(0,0)|z=1,s=0e = −B−1

00 [B01H⃗
(1,0)
2 ] (7)

6. Analysis of Waiting Time Distribution

The first passage time analysis is used in this section to analyse the distribution of a customer’s
waiting time when they enter the queueing line. Let W(t) be the waiting time distribution
function, which takes in to account new customers joining the queue. If there are N − 1 costumers
in line and the server is idle, the arriving customer will receive service right away, otherwise an
arrival has to wait. Let Ω̃ be the state space of the absorption time of a Markov chain,

Ω̃ = (∗) ∪ {0̄, 1̄, 2̄, 3̄, · · · }

The absorption state corresponds to the tagged customer will be getting service without waiting.
The absorption state is defined as follows

(∗) = {(0, N − 1)}.

The level state 0 is represented as follows,

0̄ = {(0, i); 0 ≤ i ≤ N − 2}
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the level state for p where p ≥ 1 is given by

l(p) = {(p, l, r, k) : p ≥ 1 ; 0 ≤ l ≤ N − 1 ; 1 ≤ r ≤ N ; 1 ≤ k ≤ M(r) }

The absorbing Markov chain’s transition matrix Q̃ is given by

Q̃ =



0 0 0 0 0 0 · · · · · ·
U0 W0 0 0 0 0 · · · · · ·
U1 W2 W1 0 0 0 · · · · · ·
0 0 W3 W1 0 0 · · · · · ·
0 0 0 W3 W1 0 · · · · · ·
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .


entries of the above matrix are as follows,

U0 = [FN−2]
T ; U1 = [[F((N−1)N)]

T , cS0
(1) ⊗ α, · · · , cS0

(N) ⊗ α]

W0 =



T + T0α 0 0 0 0 0 · · · 0
δIM(0) T − δIM(0) 0 0 0 0 · · · 0

0 δIM(0) T − δIM(0) 0 0 0 · · · 0
...

. . . . . .
... · · ·

...
0 0 δIM(0) T − δIM(0) 0 0
...

...
. . . . . .

...
. . . . . .

...
0 0 · · · δIM(0) T − δIM(0)



W2 =



(W2)1,1 0 · · · 0

0 (W2)2,2
...

. . .
... (W2)N−2,N−2
0 · · · 0



where (W2)i,i f or 0 ≤ i ≤ N − 2, (W2)i,i =


cS0

(1) ⊗ α
...

cS0
(N) ⊗ α



W1 =


(W1)0,0 0 · · · 0

0 (W1)1,1 · · · 0
0 0 (W1)2,2
...

...
. . .

0 0 (W1)N−1,N−1

, where

(W1)i,i = diag {S(r) + dS0
(r)β(r); 1 ≤ r ≤ N, 0 ≤ i ≤ N − 1}

W3 =


(W3)0,0 0 0 · · · 0

0 (W3)1,1 0 · · · 0
0 0 (W3)2,2 · · · 0
...

...
. . .

...
0 · · · (W3)N−1,N−1

,

with (W3)i,i =


0 · · · 0 cS0

(1) ⊗ β(N)

...
. . .

...
0 · · · 0 cS0

(N) ⊗ β(N)

.
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We begin by calculating the system’s state, stationary probability distribution (that is, how
many customers were in the system ) as observed by the tagged client at the moment of
arrival. It is denoted by y(0) = (y0(0), y1(0), y2(0), · · · ) and the system’s state conditional
probability distribution under tagged customer’s arrival can be used to determine it, using
x(0) = (x0(0), x1(0), x2(0), · · · ) by the following method

y0(0) = x0(0)(
D1en

λ
)

yj(0) = xj(0)(IN2(M(1)+M(2)+···+M(N)) ⊗
D1en

λ
)

where λ indicates the basic (fundamental) rate of Markovian arrival process. Now define
y(t) = (y∗(t), y1(t), y2(t), y3(t), · · · ), where y0 is of dimension (1 × NM(0)) and yi(t) for i ≥ 1
is of dimension (1 × (NM(1) + NM(2) + · · · + NM(N))). The elements of Y(t) represents the
probability of the CTMC with generator Q̃ is in the respective state of level i at time t. The
probability that the tagged customer is in the absorbing state is given by y∗(t). Thus we have
W(t) = y∗(t), for all t ≥ 0. From the differential equation y′(t) = y(t)Q̃ we have,

y′∗(t) =
1

∑
j=0

yi(t)Uj

y′0(t) = y0(t)W0 + y1(t)W2

y′i(t) = yi(t)W1 + yi+1(t)W3, f or i ≥ 1.

The row vector ψ(s) provides the Laplace-Steeltjes transform (LST) of the first passage through
level 1. By Neuts,M.F in [3], we get

ψ(s) =
∞

∑
i=1

yi(0)[(sI − W1)
−1W3]

i−1

We use φ(i, s) to represent the LST of the absorbing time to the state {∗} when the process begins
at level i = 0, 1. Using Q̃ we have,

φ(0, s) = (sI − W0)
−1U0 (8)

φ(1, s) = (sI − W1)
−1W2 φ(0, s) + (sI − W1)

−1U1.

Consequently, the LST for the waiting time distribution is

W̃(s) = y0(0)φ(0, s) + ψ(s)φ(1, s). (9)

7. Numerical Results

In this section, we use graphical representations of the numerical values to investigate the model’s
nature. Where the numerical values for arrival process, admission period and service process
were referred by Chakravarthy in [21].
Numerical values for Markovian arrival process,

• Exponential Arrival (E-A)
D0 =

(
−1

)
, D1 =

(
1
)

• Erlang Arrival (Er-A)

D0 =

(
−2 2
0 −2

)
, D1 =

(
0 0
2 0

)
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• Hyper-Exponential Arrival (Hyp-A)

D0 =

(
−1.90 0

0 −0.19

)
, D1 =

(
1.710 0.190
0.171 0.019

)
• MAP-Negative Correlation Arrival (MNC-A)

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258


• MAP-Positive Correlation Arrival (MPC-A)

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539


Numerical values for Phase type admission period.

• Exponential admission period (E-AP)

α =
(
1
)
, T =

(
−1

)
• Erlang admission period (Er-AP)

α =
(
−1, 0

)
, T =

(
−2 2
0 −2

)
• Hyper-Exponential admission period (Hyp-AP)

α =
(
0.8, 0.2

)
, T =

(
−2.80 0

0 −0.28

)
We assume that the numerical values for Phase type distributions for service times to m

customers where 1 ≤ m ≤ N are all of exponential distributions. That is all of (βm, S(m)) are
exponential distributions irrespective of size. In all the examples we assumed, the arrival rate
λ = 1, the admission period rate η = 3, the service rate γ = 6.
The numerical value of the service time is taken as

• Exponential (E)
βm =

(
1
)
, Sm =

(
−1

)
∀ 1 ≤ m ≤ N

Illustrative Example: 8.1.

We have illustrated the effect of the rate of renege in counter to the mean size of the
system in the upcoming figures 2 and 3. We assume λ = 1, η = 3, γ = 6, b = 0.5, c = 0.6, d = 0.4
and we amplify the renege rate such that the values leaves the system to be stable. We execute
the example for batch size N = 2, 3, 4.

In Figure 2 we fixed the arrival to follow exponential distribution and we assume the
admission periods to follow exponential, Erlang and hyper-exponential distribution respectively.
We observed that by amplifying the renege rate the system size decreases. We also noticed that
the system size decreases slowly in exponential and Erlang whereas quickly in hyper-exponential
distribution.

In Figure 3 we fixed the arrival to follow Erlang distribution and we assume the
admission periods to follow exponential, Erlang and hyper-exponential distribution respectively.
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We observed that by amplifying the renege rate the system size decreases. We also noticed that
the system size decreases moderately in all three admission periods.

Illustrative Example: 8.2.

We have analysed the hyper-exponential arrival with exponential admission period
case in the following figures 4 and 5. We assume λ = 1, b = 0.5, c = 0.6, d = 0.4 and increase the
renege rate, admission period rate and service rate such that the values leaves the system to be
stable. We execute the example for batch size N = 2, 3, 4.

In Figure 4 we fixed the service rate as γ = 6 and we amplify both the admission
period rate and the renege rate against the mean system size. We observed that by amplifying the
renege rate and admission period rate the mean system size decreases gradually.

In Figure 5 we fixed the admission period rate as η = 3 and we amplify both the rate
of service and the renege against the mean size of the system. We observed that by amplifying
the rate of renege and service the mean size of the system decreases and it falls down rapidly.

Illustrative Example: 8.3.

We have analysed the MAP-Positive Correlation Arrival with exponential admission
period case in the following figures 6 and 7. We assume λ = 1, b = 0.5, c = 0.6, d = 0.4 and
increase the renege rate, admission period rate and service rate such that the values leaves the
system to be stable. We execute the example for batch size N = 2, 3, 4.

In Figure 6 we fixed the service rate as γ = 6 and we amplify both the admission
period rate and the renege rate against the mean system size. We observed that by amplifying the
renege rate and admission period rate the mean system size decreases slowly.

In Figure 7 we fixed the admission period rate as η = 3 and we amplify both the rate
of service and renege against the mean size of the system. We observed that by amplifying the
rate of renege and service, the mean size of the system decreases and it falls down moderately.
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Figure 2: Renege rate (vs) Expected system size -Exponential Arrival
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Figure 3: Renege rate (vs) Expected system size -Erlang Arrival
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Figure 4: (Renege rate(δ) and Admission period rate(η)
(vs) Esystem)

Figure 5: (Renege rate(δ) and Service rate(γ) (vs) Esystem)
[Hyper exponential arrival with Exponential Admis-
sion period]

  RT&A, No.3 (74)  
Volume 18, September 2023  

359



G. Ayyappan, S. Kalaiarasi
ANALYSIS OF A FLEXIBLE GROUP SERVICE QUEUEING MODEL

Figure 6: (Renege rate(δ) and Admission period rate(η)
(vs) Esystem)

Figure 7: (Renege rate(δ) and Service rate(γ) (vs) Esystem)
[MAP Positive correlation Arrival with Exponential
Admission period]
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8. The conclusion

In this paper we studied a group service queueing model with arrivals happen according to a
Markovian arrival process in which arrivals may balk or renege the system. The service follows
Phase-type distributions in which size of the group may vary and on depending the size of the
group, that is, the number of customers getting service, the service time owns different Phase-type
distribution representations. If any group of customers would like to receive feedback service,
they will receive it immediately. The busy period analysis was done and waiting time distribution
was computed. Using the Numerical values of arrival and service times, we compared the
mean size of the system counter to renege rate with different batch sizes , which is represented
graphically. This model can be extended with various catastrophes on servers, which is currently
being probed.
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Abstract 

 

In factorial experiments, treatment combinations increase as the number of factors increases. While 

handling a large number of factors, many difficulties are encountered. Moreover, mechanical errors 

like mistaken identification of plots, wrong labeling of treatments, etc., may creep in. To overcome 

these difficulties, only a fraction of treatment combinations can be tested. This technique is known as 

fractional replication. The design with fractional replication is known as fractional factorial design 

(FFD). In FFD, the choice of the fraction of treatment depends on what type of information is 

sacrificed. Usually, the interactions with higher-order are omitted, and all main effects and two-factor 

interactions are estimated without loss of information. The procedure for the layout of FFD is closely 

related to the concept of confounding. The analysis of fractional factorials is similar to the analysis of 

full factors. FFD is used to reduce treatment combinations by a fraction. FFD plays a significant role 

when the experiment is too large. When compared to classical designs, FFD yields a cost-benefit 

relationship. Fuzzy theory is used to deal with the imprecise observations in this design. This paper 

proposes the statistical analysis of fuzzy fractional factorial design with numerical illustration. 

 

 

Keywords: Fuzzy Fractional Factorial Design, Fuzzy Sets, Trapezoidal Fuzzy Number,  −  cut 

interval method. 
 

 

1. Introduction 
 

In a complete factorial, each treatment combination is applied to at least one of the experimental 

units. In some situations, the total number of treatment combinations is too large. Each factor 

involves two levels. If there are 8 factors, then there are 82 256= plots needed for the experiment. As 

the number of factors increases, treatment combinations also increase. Sometimes, it is difficult to 

handle such a big experiment practically. Since the time, experimental material, cost, manpower, 
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etc., also increases, it is impossible to conduct a complete factorial experiment. Typically, the higher-

order interactions are not much significant; also, it is difficult to interpret, and these can be used to 

estimate the error. The total degrees of freedom for 82 design is 255 with 8 main effects and 28 two-

factor interactions. However, the error degrees of freedom are quite large (219). In handling such a 

big experiment, the non-experimental error may also lurk in. The higher-order interactions are 

ignored. The main effects and the lower order interactions information are obtained by a fraction of 

the complete factorial experiments. This type of experiment is known as the fractional factorial 

design (FFD). Sometimes, the observations that correspond to FFD will be imprecise. In this case, the 

fuzzy sets are used to calculate such a design. The fuzzy sets were developed by Lofti A. Zadeh [17] 

in 1965. Some of the authors who scrutinized to the relevant study are Holland, C.W., [4] outlined 

the fractional factorial design with its uses in marketing problems. Cotter, S.C., [3] describes the 

blocking in a fractional factorial experiment by using incomplete block designs without aliasing. 

Stolle, D.P. [14] suggests that fractional factorial design is the best alternative for factorial designs 

where the psycholegal researcher examines the main effects of a large number of factors. Ke, W., 

et.al., [6] propound an efficient method of selecting blocking two-level fractional factorial designs 

when some two-factor interactions are non-negligible. By screening the important drugs and drug 

interactions, the sequential usage of two-level and three-level fractional factorial designs was shown, 

and also Jaynes, J., et.al. [5] provoked the potential optimal drug dosages through contour plots. 

Parthiban S and Gajivaradhan P [10] have studied the 22 factorial experiment using fuzzy 

environments and compared the result with various tests. Using 5 23 − fractional factorial design with 

resolution III, Zaluski, D., et.al., [16] discern the effect of 5 cultivation factors at 3 levels of intensity 

under various weather conditions. Using a three-level three-factor factorial design, Anand, R, and 

Sridhar, V.G [1] focus FSW interlock lap joint of AA7475-T7 to study the correlation among process 

parameters. In addition to LiDAR range on the robot's navigation time, Mazen, A, et.al., [8] studies 

the effect of choice for 5 factors of forward and angular velocities using fractional factorial 

experiment with resolution V. Qamar, S, et.al., [11] determined the effectiveness of four main factors 

on the extraction of cannabinoids using scCO2  by half-fractional factorial design and identified the 

highest yield of cannabinoids provided by the extraction of  scCO2at high pressure and temperature. 

In this study, statistical analysis of FFD using TrFNs with  −  interval method was proposed 

through a numerical example. 

 

2. Preliminaries 

 

2.1 Factorial Design 
The factorial experiment is defined as the experiment consisting of two or more factors, each 

with two or more levels. Each factor with the same number of levels is called symmetrical factorial; 

otherwise, it is called an asymmetrical factorial experiment. 

 

2.2 Fractional Factorial Design (FFD) 
When the number of factors is too large, even at two levels, the treatment combinations are also 

large. While planning such a big experiment, non-experimental types of errors may occur. So 

therefore, Finney resorted to fractional replicating the more extensive factorial experiments. The 

information on the main effects and lower order interactions are obtained only from a fraction of the 

complete factorial experiment called the Fractional Factorial Experiment or Fractional Replicated 

Design. 

 

2.3 Features of FFD 

The features of FFD are: (i) If the fraction of the factorial design ns ( n - number of factors, s - 
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levels) is of order 
1
.

ms
Then, the fractional design is defined as 

1
,n

m
s

s
where, .m n (ii)  If the key 

block of the factorial experiments with block size ,n m ks − −
 then 

1

1

ks

s

−

−
interactions are confounded 

(iii) The only one block obtained from the defining relation is taken as the defining relation are not 

estimable (iv) In FFD, confounding is necessary to reduce the block size, and aliases for interactions 

are confounded. 

 

2.4 Trapezoidal Fuzzy Number (TrFN) 

The TrFN is defined as, if a fuzzy set 
1 2 3 4( , , , )A a a a a= , then its membership function is 

stated as; 

                                           

1 4

1

1 2

2 1

2 3

4

3 4

4 3

0;

;

( )
1;

;

A

x a or x a

x a
a x a

a a
x

a x a

a x
a x a

a a



 


−
  

−
= 

 
 −

 
−

                                                         (1) 

where, 1 2 3 4 .a a a a    A TrFN becomes triangular fuzzy number if it satisfies 2 3 .a a= In 

terms of  − cut interval, TrFN is defined as follows: 

1 2 1 4 4 3[ ( ) , ( ) ]; 0 1A a a a a a a  = + − − −   , 

where, 1 2 3 4 .a a a a    

 

 

3. Methodology 

 

3.1 One-Half Fraction of the 5
2  Design 

Consider five factors each at two levels, that is, 5 12 32− = treatment combinations. The treatment 

seems quite large. This leads to a one-half fraction of 52 design. We select the 16 treatment 

combinations as ,a ,b ,c ,d ,e ,abc ,acd ,abd ,bcd ,abe ,ace ,bce ,ade ,bde ,cde abcde as one-half 

fraction. The signs in the Yates’ table [13] is derived by writing down first the five main effects and 

then forming the interactions of those effects by using + and -. A further process gives the interaction 

between the five factors. From the Yates’ sign table of 
52 , linear combinations for the estimate of the 

main effects and the interactions for one-half fraction of 
5 12 −

design are 

( )
1

;
8

Al abc a b bcd d abd acd c e abe ade bce ace cde bde abcde= + − − − + + − − + + − + − − +

( )
1

;
8

Bl b a c abc d abd acd bcd e abe ace bde ade bce cde abcde= − − + − + − + − + − + − + − +
 

Similarly, other effects can be calculated. The formal expressions of the interactions worth nothing. 

In terms of treatment combinations, the expressions given by the ordinary rules of algebra. Thus, 

,I ABCDEl l= ,A BCDEl l= ,B ACDEl l= ,C ABDEl l= ,D ABCEl l= ,E ABCDl l= ,AB CDEl l= ,AC BDEl l=

,AD BCEl l= ,AE BCDl l= ,BC ADEl l= ,BD ACEl l= ,BE ACDl l= ,CD ABEl l= ,CE ABDl l= ,DE ABCl l= also 

it is impossible to differentiate Aand ,BCDE B and ,ACDE and so on. In fact, by estimating main 

effects and two-factor interactions, actually estimates ,A BCDE+ ,B ACDE+ etc., Two are more 

effects that have this property are called aliases. The alias structure of this design can be determined 
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by defining the relation .I ABCDE= Multiplying any effect by using the defining relation yields the 

alias structure of that effect. The alias structure of A is 2. .A I A ABCDE A BCDE= = , the square of 

any column is just identity I , that is, .A BCDE+ Similarly, the alias structure for other main effects 

and interaction effects are determined. In this one-half fraction, I ABCDE= is called as the principal 

fraction. Suppose, considering the other one-half fraction with the minus sign in ABCDE column. 

The defining relation is .I ABCDE= −  By this type of fraction, the aliases ,A BCDE− ,B ACDE−

and so on. 
 

3.2 Statistical Analysis of −5 1
2 FFD 

Consider the Randomised Block Design (RBD) linear model for 5 12 − factorial design,                            

                                                  ; 1,..., ; 1,...,ij i j ijy b e i t j r = + + + = =                                          (2) 

where  is the general mean effect, 
i is the fixed effect due to thi treatment, jb is the fixed effect 

due to thj replicate, ije is the random error effect. From the Yates’ table of 52 design (table 3.1),
 

( );A abc b c a d acd abd bcd e ace abe bce ade cde bde abcde= − − + − + + − − + + − + − − +

( );B b c abc a d abd acd bcd e bce abe ace ade cde bde abcde= − + − − + − + − + + − − − + +  

Similarly, other effects can be calculated. Since, the higher order interactions are negligible. The sum 

of squares sare 
2[ ]
;A

A
SS

N
=

2[ ]
;B

B
SS

N
=

2[ ]
;C

C
SS

N
=

2[ ]
;D

D
SS

N
=

2[ ]
;E

E
SS

N
=

2[ ]
;AB

AB
SS

N
=

2[ ]
;AC

AC
SS

N
=

2[ ]
;AD

AD
SS

N
=

2[ ]
;AE

AE
SS

N
=

2[ ]
;BC

BC
SS

N
=

2[ ]
;BD

BD
SS

N
=

2[ ]
;BE

BE
SS

N
=

2[ ]
;CD

CD
SS

N
=

2[ ]
CE

CE
SS

N
= and 

2[ ]
DE

DE
SS

N
= each with 1 degrees of freedom (df), where, .N rt=  

The sum of squares for replications, total and errors are
2

2

.

1

1 r

R j

j

G
SS y

t N=

= − with ( 1)r − df, 

2
2

T ij

G
SS y

N
= − with ( 1)rt − df and [ ... ]Er T R A B C DESS SS SS SS SS SS SS= − + + + + +

respectively. All these values will be filled in the ANOVA table (table 3.1). 

 

Table: 3.1 ANOVA table for 2 −5 1
FFD 

SV df SS MSS F – Ratio 

Replicates 1r −  RSS  
1

RSS

r −

 R

R

Er

SS
F

SS
=  

Treatments 1t −  - - - 

Main effect A  1 ASS  ASS  A

A

Er

SS
F

SS
=

 

Main effect B  1 BSS  BSS  B

B

Er

SS
F

SS
=  

Main effect C  1 CSS  CSS  
C

C

Er

SS
F

SS
=  

Main effect D  1 DSS  DSS  
D

D

Er

SS
F

SS
=  

Main effect E  1 ESS  ESS  
E

E

Er

SS
F

SS
=  

Interaction effect AB  1 ABSS  ABSS  
AB

AB

Er

SS
F

SS
=  

Interaction effect AC  1 ACSS  ACSS  
AC

AC

Er

SS
F

SS
=  
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Interaction effect AD  1 ADSS  ADSS  
AD

AD

Er

SS
F

SS
=  

Interaction effect AE  1 AESS  AESS  
AE

AE

Er

SS
F

SS
=  

Interaction effect BC  1 BCSS  BCSS  
BC

BC

Er

SS
F

SS
=  

Interaction effect BD  1 BDSS  BDSS  
BD

BD

Er

SS
F

SS
=  

Interaction effect BE  1 BESS  BESS  
BE

BE

Er

SS
F

SS
=  

Interaction effectCD  1 CDSS  CDSS  
CD

CD

Er

SS
F

SS
=  

Interaction effectCE  1 CESS  CESS  
CE

CE

Er

SS
F

SS
=  

Interaction effectDE  1 DESS  DESS  
DE

DE

Er

SS
F

SS
=  

Error ( )( )1 1r t− −  
ErSS  

( )( )1 1

ErSS

r t− −

 
- 

Total 1rt −  TSS  - - 

Note: Souces of Variation – SV and Degrees of Freedom – df, Sum of Squares – SS and Mean Sum of 

Squares - MSS. 

 

Inference: If the calculated value is less than the table value, then there is no significant difference 

between the replications and factors. 

 

3.3 Statistical Analysis of FFD with  − Interval Method 
If the sample observations are in the form of TrFNs, that is, if the yield of a particular plot (cell) 

receives the value in the form of ( , , , )a b c d , then it is converted to interval model to analyze 

factorial model using TrFNs  − cut relation 

                           [ ( ), ( )]; 1,..., ; 1,...,ij ij ij ij ij ij ijy a b a d d c i t j r = + − − − = =                               (3)
 

where, ijy  is the observation corresponding to thi  treatment and 
thj replicate; ( )ij ij ija b a+ − is 

the lower level of the observed interval in thi  treatment and 
thj replicate; ( )ij ij ijd d c− −  is the 

upper level of the observed interval in thi  treatment and 
thj replicate and now, split this expression 

into two levels (lower level and upper level) as ( )L

ij ij ij ijy a b a= + − and 

( ).L

ij ij ij ijy a b a= + −  

Hypothesis: The null hypothesis 
0 1 2: ... iH   = = = against alternative hypothesis 

1 1 2: ... .iH      The crisp hypothesis is then converted into the fuzzy hypothesis for lower and 

upper-level models 
0 0 1 1 2 2, : , , ... ,L U L U L U L U

i iH H      = = = against

1 1 1 1 2 2, : , , ... , .L U L U L U L U

i iH H          

Lower Level Model (L.L.M): Let the sum of observations in the 
thi  treatment be

. . . .[ ( )] ;L L

i i i i iy a b a T= + − =  the sum of observations in the 
thj  block be

. . . .[ ( )]L L

j j j j jy a b a R= + − = where, 1,..., ; 1,..., .i t j r= =  Then, the grand total is 

.L

ijG y= The sum of squares are 
2[ ]
;L

A

A
SS

N
=

2[ ]
;L

B

B
SS

N
=

 

 and similarly other interactions 
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are also calculated. 
( )

2

2

.

1

1
( ) ;

L
r

L L

R j

j

G
SS y

t N=

= −
( )

2

2

L

L

T ij

G
SS y

N
= − and 

.L L L L L L L L L L L L L L L L L L

Er T R A B C D E AB AC AD AE BC BD BE CD CE DESS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS = − + + + + + + + + + + + + + + + 

All the calculated values are presented in the ANOVA table as in Table: 3.1. 

Upper Level Model (U.L.M): Let the sum of observations in the thi  treatment be

. . . .[ ( )] ;U U

i i i i iy a b a T= + − =  the sum of observations in the 
thj  block be

. . . .[ ( )]U U

j j j j jy a b a R= + − = where, 1,..., ; 1,..., .i t j r= =  Then, the grand total is

1 1

.
t r

U

ij

i j

G y
= =

=  The sum of squares are 
2[ ]
;U

A

A
SS

N
=  

2[ ]
;U

B

B
SS

N
= and so on; 

( )
2

2

.

1

1
( ) ;

U
r

U U

R j

j

G
SS y

t N=

= −
( )

2

2

U

U

T ij

G
SS y

N
= − and

.U U U U U U U U U U U U U U U U U U

Er T R A B C D E AB AC AD AE BC BD BE CD CE DESS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS = − + + + + + + + + + + + + + + + 

All the calculated values are presented in the ANOVA table as in Table: 3.1. 

 

Decision Rule  

Lower-Level Model (L.L.M) 
If the calculated value is less than the F table value, then the null hypothesis is accepted. That is, the 

effects due to treatments are equal. 

Upper-Level Model (U.L.M)  

If the calculated value is less than the F table value, then the null hypothesis is accepted. That is, the 

effects due to treatments are equal. 

The partial acceptance of the null hypothesis in lower and upper-level models will be considered as 

null hypothesis is accepted. 

 

3.4. Advantages of Fuzzy Fractional Factorial Design 
• It reduces cost and time when compared to other experimental designs. 

• It is used to optimize yield with minimum defects. 

• It also reduces the non-experimental type of errors when handling a big experiment. 

 

4. Applications 

Example 4.1  
The following table 4.1 shows the yield of mustard seeds with five fertilizers by investigating 

a 5 12 − design to improve the yield. The five fertilizers were Farm Yard Manure (FYM) (17 Quintel, 

25 Quintel), Nitrogen (120 Kg/Ha, 130 Kg/Ha), Phosphorus (40 Kg/Ha, 50 Kg/Ha), Potassium (60 

Kg/Ha, 70 Kg/Ha) and Calcium (10 Kg/Ha, 15 Kg/Ha). Test whether there is a significant difference 

between the factors A - FYM, B  – Nitrogen, C  – Phosphorus, D  – Potassium and E -Calcium or 

not?  

 
Table: 4.1 The yield of mustard seeds with five fertilizers 

 

Treatment Combination Response 1 Response 2 Response 3 

e  (7,9,11,13)  (8,10,11,13)  (8,9,12,14)  

a  (9,11,12,14)  (9,11,13,14)  (8,10,12,13)  

b  (31,33,35,36)  (30,33,34,35)  (30,32,33,35)
 

abe  (53,55,56,58)  (52,54,56,57)  (49,51,52,54)  

c  (14,15,16,17)  (16,18,19,21)  (13,16,17,19)  

ace  (20,22,23,26)  (24,26,27,29)  (21,23,24,25)  
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bce  (42, 45, 46, 47)  (41,43,46,47)  (42,44,45,47)  

abc  (58,60,61,63)  (54,57,58,60)  (55,58,59,62)  

d  (7,8,9,10)  (9,12,13,14)  (5,9,10,12)  

ade  (11,13,15,16)  (14,16,17,18)  (10,13,15,17)  

bde  (30,31,32,34)  (28,29,30,32)  (31,33,35,36)  

abd  (50,51,53,54)  (52,54,55,57)  (48,51,52,55)  

cde  (14,16,18, 20)  (13,16,17,19)  (16,18,19,21)  

acd  (20,22,23,25)  (23,26,27,29)  (21,23,24,26)  

bcd  (42, 44, 45, 47)  (39,42,43,45)  (42,45,46,47)  

abcde  (63,65,67,69)  (61,64,66,68)  (58,61,63,66)  

 

First, the given trapezoidal fuzzy observations are converted into interval data using (3 and are given 

in the table 4.2. 

 

Table: 4.2 The interval observations of the TFN data 
 

Treatment 

Combination 
Response 

Treatment 

Combination 
Response 

e  

a  

b  

abe  

c  

ace  

bce  

abc  

23 5 ,40 6 + −  

26 6 ,41 4 + −  

91 7 ,106 4 + −  

154 6 ,169 5 + −  

43 6 ,57 5 + −  

68 6 ,80 6 + −  

125 7 ,141 4 + −  

167 8 ,185 7 + −  

d  

ade  

bde  

abd  

cde  

acd  

bcd  

abcde  

21 8 ,36 4 + −  

35 7 ,51 4 + −  

89 4 ,102 5 + −  

150 6 ,166 6 + −  

43 7 ,60 5 + −  

64 7 ,80 6 + −  

123 9 ,139 5 + −  
185 8 ,203 7 + −  

 

Hypothesis 
0 0, :L UH H There is no significant difference between the factors A  (FYM), B  (Nitrogen), 

C  (Phosphorus), D  (Potassium) and E (Calcium). 

Here, the lower-level and upper-level models are calculated separately per the methodology 

constructed. 

Lower-Level Model (L.L.M.) 
The effects and sum of squares for the main effects ( , , , ,A B C D E ) and the two-factor interactions  

( , , , , , , , , ,AB AC AD AE BC BD BE CD CE DE ) of the L.L.M. is calculated and given in the table 4.3. 

 
Table: 4.3 Effects and sum of squares of the main effects and interactions L.L.M. 

Variable Estimated Effect Sum of Squares 

A  
21

70756 532
8

  + +   21
70756 532

48
  + +   

B  
21

617796 4716 9
8

  + +   21
617796 4716 9

48
  + +   

C  
21

41616 3672 81
8

  + +   21
41616 3672 81

48
  + +   

D  
21

1444 380 25
8

  + +   21
1444 380 25

48
  + +   

E  
21

144 168 49
8

  − +   21
144 168 49

48
  − +   

AB  
21

36100 380
8

  + +   21
36100 380

48
  + +   
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AC  
21

256 32
8

  + +   21
256 32

48
  + +   

AD  
21

2500 100
8

  − +   21
2500 100

48
  − +   

AE  
21

64 112 49
8

  + +   21
64 112 49

48
  + +   

BC  
21

784 504 81
8

  + +   21
784 504 81

48
  + +   

BD  
21

324 252 49
8

  + +   21
324 252 49

48
  + +   

BE  
21

1024 192 9
8

  − +   21
1024 192 9

48
  − +   

CD  
21

1296 216 9
8

  + +   21
1296 216 9

48
  + +   

CE  
21

196 84 9
8

  − +   21
196 84 9

48
  − +   

DE  
21

576 48
8

  + +   21
576 48

48
  + +   

By screening experiments, the factors with larger effects are considered and their sum of squares is 

presented in the ANOVA table (table 4.4). 

 
Table: 4.4 ANOVA for L.L.M. 

SV df SS MSS F – Ratio 

Replications 2 21
[402 102 200 ]

48
 − +  21

[402 102 200 ]
2(48)

 − +  
2

2

41( )

2( 12287

402 102

32215866 88

0

3 )

20

 



− + +

− +

1 0 1     

Main effect

A  
1 

21
70756 532

48
  + +   21

70756 532
48

  + +   

2

2

41(70756 532 )

( 12287 32215866 883 )

 

 

+ +

− + +

1 0 1     

Main effect 

B  
1 

21
617796 4716 9

48
  + +   21

617796 4716 9
48

  + +   

2

2

41(617796 4716 9 )

( 12287 32215866 883 )

 

 

+ +

− + +

1 0.8 1     

Main effect 

C  
1 

21
41616 3672 81

48
  + +   21

41616 3672 81
48

  + +   

2

2

41(9409 194 )

( 12287 32215866 883 )

 

 

+ +

− + +

1 0 1     

Interaction 

effect AB  
1 

21
36100 380

48
  + +   21

36100 380
48

  + +   

2

2

41(36100 380 )

( 12287 32215866 883 )

 

 

+ +

− + +

1 0 1     

Error 41 
21

12287 32215866 883
48

  − + + 
 21

12287 32215866 883
41(48)

  − + + 
 - 

Total 47 21
754383 32827242 1175

48
  − + 

 - - 

Note: Souces of Variation – SV and Degrees of Freedom – df, Sum of Squares – SS and Mean Sum of 

Squares - MSS. 

 

Inference: For replications, the table value is (2,41) 3.23tF =  and for the treatments, the table value 

is (1,41) 4.08.tF = When comparing the calculated values with these table values, it is less. 

Therefore, there is no significant difference between the factors A  (FYM), B  (Nitrogen), C  

(Phosphorus), D  (Potassium) and E  (Calcium). 

 

Upper-Level Model (U.L.M.) 
The effects and the sum of squares of the main effects and the two-factor interactions of the U.L.M. 

is given in table 4.5. 
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Table: 4.5 Effects and the sum of squares of the main effects and interactions U.L.M. 

 

Variable Estimated Effect Sum of Squares 

A  21
85849 3516 36

8
  − +   21

85849 3516 36
48

  − +   

B  21
585225 3060 4

8
  − +   21

585225 3060 4
48

  − +   

C  21
54289 2796 36

8
  − +   21

54289 2796 36
48

  − +   

D  21
361 76 4

8
  − +   21

361 76 4
48

  − +   

E   
1
1225

8
  

1
1225

48
 

AB  21
31329 2832 64

8
  − +   21

31329 2832 64
48

  − +   

AC  21
81 144 64

8
  − +   21

81 144 64
48

  − +   

AD   
1
961

8
  

1
961

48
 

AE  21
729 108 4

8
  + +   21

729 108 4
48

  + +   

BC   
1
289

8
  

1
289

48
 

BD  21
1 8 16

8
  + +   21

1 8 16
48

  + +   

BE  21
9 12 4

8
  + +   21

9 12 4
48

  + +   

CD   
1
14400

8
  

1
14400

48
 

CE  21
121 44 4

8
  + +   21

121 44 4
48

  + +   

DE  21
2209 188 4

8
  − +   21

2209 188 4
48

  − +   

 

By screening experiments, the factors with more significant effects are considered, and their sum of 

squares is presented in the ANOVA table (table 4.6). 

 
Table: 4.6 ANOVA for U.L.M. 

 

SV df SS MSS F – Ratio 

Replications 2 21
146 108 24

48
  + +   21

146 108 24
2(48)

  + +   

2

2

15(146 108 24 )

(4871 2820 652 )

 

 

+ +

− +

1 0 0.6     

Main effect

A  
1 21

85849 3516 36
48

  − +   21
85849 3516 36

48
  − +   

2

2

30(10201 606 9 )

(4871 2820 652 )

 

 

− +

− +

0 1   

Main effect 

B  
1 21

585225 3060 4
48

  − +   21
585225 3060 4

48
  − +   

2

2

30(585225 3060 4 )

(4871 2820 652 )

 

 

− +

− +

0 1   

Main effect 
C  

1 21
54289 2796 36

48
  − +   21

54289 2796 36
48

  − +   

2

2

30(54289 2796 36 )

(4871 2820 652 )

 

 

− +

− +

0 1   

Interaction 
effect 

AB  
1 21

31329 2832 64
48

  − +   21
31329 2832 64

48
  − +   

2

2

30(31329 2832 64 )

(4871 2820 652 )

 

 

− +

− +

0 1   

Interaction 

effect CD  
1  

1
14400

48
  

1
14400

48
 

2

30(14400)

(4871 2820 652 ) − +
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0 1   

Error 30 21
4871 2820 652

48
  − +   21

4871 2820 652
30(48)

  − +   - 

Total 47 21
766367 12120 816

48
  − +   - - 

Note: Souces of Variation – SV and Degrees of Freedom – df, Sum of Squares – SS and Mean Sum of 

Squares - MSS. 

 

Inference: For replications, the table value is (2,30) 3.32,tF =  and for the treatments, the table value 

is (1,30) 4.17.tF = When comparing the calculated values with these table values, it is high. 

Therefore, there is a significant difference between the factors A  (FYM), B  (Nitrogen), C  

(Phosphorus), D  (Potassium) and E  (Calcium). 

 

4. Conclusion 
 

This paper proposes a new method of FFD using trapezoidal fuzzy numbers. This method is used 

to deal with imprecise observations. When compared to classical designs, fuzzy FFD yields a cost-

benefit relationship. In the yield of mustard seeds with five-fertilizers FYM (17 Quintel, 25 Quintel), 

Nitrogen (120 Kg/Ha, 130 Kg/Ha), Phosphorus (40 Kg/Ha, 50 Kg/Ha), Potassium (60 Kg/Ha, 70 

Kg/Ha) and Calcium (10 Kg/Ha, 15 Kg/Ha), the hypothesis for the L.L.M. is accepted and U.L.M. is 

rejected. But it is concluded that there is no significant difference between the factors A  (FYM), B  

(Nitrogen), C  (Phosphorus), D  (Potassium) and E  (Calcium), where the hypothesis is partially 

accepted. From the applications given, it is proved that the factors can be tested at different values 

of . This method can be applied in the agricultural field, the engineering field, the medical field 

and so on. In the future, this work could be extended to one quarter fraction, asymmetrical factorial 

experiments and some special types of designs. 
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Abstract 

In this study, a new three-parameter lifetime distribution called the generalized Rayleigh distribution 

was introduced. The new model is an extension of classical Rayleigh distribution. An extension of 

density of the generalized Rayleigh distribution was derived from which some of the statistical and 

mathematical properties were derived. Some mathematical properties of the distribution were 

presented such as moments, moment generating function, quantile function, survival function, 

hazard function, reversed hazard function and odd function. The distribution of order statistic was 

obtained in which the maximum and minimum order statistics were derived. Estimation of the 

parameters by maximum likelihood method was discussed.  Two real-life application of the 

distribution was presented and the analysis showed the fit and flexibility of the generalized Rayleigh 

distribution over odd Lindley Rayleigh distribution and Rayleigh distribution. The analysis showed 

that the generalized Rayleigh distribution is more effective and robust in fitting the data sets. 

Keywords: flexibility, transect line, myelogeneous leukemia, odd Lindley 

Rayleigh, quadratic rank transmutation technique 

I. Introduction

Over a long period of time, probability distributions have been established through mathematical 

and statistical study. The assumed probability model or distributions have a significant impact on 

the effectiveness of the processes used in a statistical study. As a result, numerous common 

probability distributions and pertinent statistical techniques are described in the literature. 

However, there are still a number of issues where the real data set does not fit into any of the 

conventional or classical probability models. In literature numerous generalized distributions have 

been developed with common feature of having more parameters. Induction of parameters in 

existing distribution improves the goodness of fit of the distribution under study and tail 

properties of a distribution increases.  

The Rayleigh distribution is one of the most widely applied probability distributions. The 

Rayleigh distribution is a special case of Weibull distribution, which was first described in [1]. In 

areas including project effort loading modeling, survival and reliability analysis, communication 

theory, physical sciences, technology, diagnostic imaging, applied statistics, and clinical research, 

the Rayleigh distribution is crucial for modeling and interpreting life-time data. Numerous 

researchers have developed significant expansions to the Rayleigh distribution in light of its 

significance and the need to provide this distribution more flexibility. 

Numerous expansions of Raleigh distribution have been produced as a result of the significance 

of Raleigh distribution in numerous disciplines. The generalized Raleigh distribution was 

proposed  
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by [2], and its unknown parameters were determined using several estimation techniques. The 

novel generalization of Rayleigh distribution was developed by [3] by utilizing the conservability 

approach. The Bayes estimators for the parameter of the Rayleigh distribution using square error 

and LINEX loss functions were derived by [4]. The transmuted Rayleigh distribution was 

developed by [5] using the quadratic rank transmutation technique. The transmuted generalized 

Rayleigh distribution was proposed by [6]. The Weibull Rayleigh distribution was studied by [7]. 

The parameters estimation of exponentiated Rayleigh based on type II censored data was 

deliberated by [8]. A new distribution named as Rayleigh–Rayleigh distribution was derived by [9] 

and motivated by the transformed transformer technique by [10]. In contrast to the Lindley 

distribution, the Rayleigh distribution, and other generalizations of the Rayleigh distribution, an 

extension of the Rayleigh distribution was developed by [11] with two parameters having greater 

flexibility. An extension of the exponentiated Rayleigh distribution known as the Gompertz-

exponentiated Rayleigh distribution was proposed by [12] by utilizing the Transformed-

Transformer family of distributions' methodology. 

This paper proposes a new distribution that generalizes the Rayleigh distribution using the 

family of distribution proposed by [13]. This motivation behind this work is to improve the 

flexibility of the Rayleigh distribution to fit varieties of real life data sets arising from different 

disciplines including unimodal and bimodal shapes. Also, to make the kurtosis more flexible 

compared to the baseline Rayleigh model, to produce skewness for symmetrical distributions 

using type I half-logistic family of distributions derived by [13] and bathtub shapes. 

II. Methods

2.1 Generalized Rayleigh (GRa) Distribution 

In this section, a new continuous probability distribution function known as generalized Rayleigh 

distribution is derived. Also, some plots of its pdf, cdf, survival function and hazard rate function 

(hrf) are shown in order to assess the shape of the new distribution in fitting different kinds of 

data.  

Recently, [13] developed the Type I Half-logistic family of distributions with cdf and pdf 

given as 







 

       


       

1 1 ( ; )
( ; , , )
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  (1) 
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  (2) 

where β is the vector of parameters of the baseline distribution. 

where ( ; )G x β  is the cumulative distribution function (cdf) of the baseline distribution with vector 

of parameter β . 

For   0, , , 0x β , where equations (1) and (2) are the cumulative distribution function and 

probability density function (pdf) of the family of distributions. 

The cdf and pdf of the Rayleigh (Ra) distribution are given respectively as 
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To obtain the cdf of the new model, equation (3) is inserted into equation (1) as 

 

 











  





  
   

 







 


  
   

  

2

2

2

2

1 1

( ; ,

1

, )

1 1

1
x

x

F x

e

e

 (5) 

On differentiating equation (5) with respect to x , the pdf of the GRa distribution is obtained 

which is given as 
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Figure 1: Plots of cdf of the GRa distribution for different parameter values 

Figure 2: Plots of pdf of the GRa distribution for different parameter values 

where 0x , 0  is the scale parameter and   , 0 are the shape parameters respectively. 
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2.1.1 Expansion of density 

In this section the pdf in equation (6) is expanded using binomial expansion. 

Expanding the last term in equation (6), we have 
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Equation (7) is the expansion of equation (6) which will be used to derive some of the properties of 

the distribution. 

Also, equation (5) is expanded as 

   







 

  





                                              

2 2

2 2( ; , , ) 1 1 1 1 1 1

h h

xh x
e eF x

      

 
 



 

 
                                      

 


2 2

2

0

21 1 1 1 1 1

h
m

x xh m

m

h

e em

     




 


 





  
                                      

 


2 2

0

2 2

1

1 1 1 1 1 1

p

x x

h

h p

p

h

e p e

p

 
 

 
 

 











 


 
     
         
        
 


2 2

2 2

0

1 1 1 1

p m
z

z

z

x x

m

ze e

p

     





 





 
    

       
    

 
 


2 2

0

2 21 1

z q
q

q

x x

z

qe e

  RT&A, No.3 (74)  
Volume 18, September 2023  

377



Sule Omeiza Bashiru, Ibrahim Ismaila Itopa and Alhaji Modu Isa 
GENERALIZED RAYLEIGH DISTRIBUTION 

 
 

 



  


  







       
      

           
       

     
     

 
2

, 0 , 0

2

1

( ; , , ) 1
x

qhh m p z q

m p z q

h h p zp

e

m

m p qzF x  (8) 

Equation (8) is the expansion of equation (5) which will be used to derive some of the properties of 

the distribution. 

2.1.2 Properties of the Generalized Rayleigh distribution 

In this section, some of the mathematical and statistical properties of GRa distribution such as the 

quantile function, moments, moment generating function, reliability measure, odds function, 

reversed hazard function and order statistics are derived. 

2.1.2.1 Moments 
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Equation (10) is the moments of GRa distribution. To obtain the mean, we set r = 1 in equation (10). 

2.1.2.2    Moment generating function (mgf) 
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since the series expansion for txe is given as 
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Then, following the method of moments, the mgf is obtained as follows 
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2.1.2.3 Quantile function 

Quantile function has a significant position in probability theory and it is the inverse of the cdf. 

The quantile function is obtained using  
 1( ) ( )Q u F u  (13) 

Using the inverse of equation (5), we have the quantile function of GRa distribution given as 
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The median is obtained by setting u = 0.5 in equation (14) given as 
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2.1.2.4 Hazard function 

Hazard function is given as 
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The hazard function of the GRa distribution is given as 
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Figure 3: Plots of hazard function of the GRa distribution for different parameter values 

2.1.2.5 Survival function 

The reliability function is also known as survival function, which is the probability of an item not 

failing prior to some time. It can be defined as 

      ( ; , , ) 1 ( ; , , )S x F x  (18) 
The survival function of the GRa distribution is given as 
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Figure 4: Plots of survival function of the GRa distribution for different parameter values
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2.1.2.6 Reversed hazard function 

Reversed hazard function of a random variable x is given as 
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The reverse hazard rate function of the GRa distribution is given as 
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2.1.2.7 Odds function 

The odds function of the GRa distribution is given as 

 

 

 

 





















  









 
 
 
 
 
 
 
 



  
   

  



 

  
   

   

  
   

  


 
 
 







 
 





 
   

  






2

2

2

2

2

2

2

2

1 1

1 1

1 1

1 1

1

1

( ; , , )

1

1

1

x

x

x

x

e

e

x

e

e

   (22) 

2.2 Order Statistics 

Let 
1 2
, ,...,

n
X X X be n  independent random variable from the GRa distribution and let 

  
(1) (2) ( )

...
n

X X X be their corresponding order statistic. Let
:

( )
r n

F x and 
:

( )
r n

f x , 1,2,3,...r n

denote the cdf and pdf of the rth order statistics 
:r n

X respectively. The pdf of the rth order statistics 

of 
:r n

X is given as 
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The pdf of rth order statistic for the new distribution is obtained by replacing h with v+r-1 in 
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equation (8) as 
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The pdf of minimum order statistic of the GRa distribution is obtained by setting r=1 
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Also, the pdf of maximum order statistic of the distribution is obtained by setting r = n 
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2.3 Estimation method 

The method of maximum likelihood estimation (MLE) is used in this section to estimate the 

parameters of the GRa distribution. For a random sample, 
1 2
, ,...,

n
X X X of size n  from the GRa

distribution   ( , , ) , the log-likelihood function   ( , , )L  of (6) is given as 
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Differentiating the log-likelihood with respect to   , , and equating the result to zero, we have 

 

   

 


 

 








 

 



 


    
                

               
    

   

 

2 2

2

2

2 2

2

1 1
2

1 1 log 1

log 1 1 2 0

1 1 1

i i

i

i

x x

n nx

i i
x

e e
L n

e

e

(28)

  RT&A, No.3 (74)  
Volume 18, September 2023  

382



Sule Omeiza Bashiru, Ibrahim Ismaila Itopa and Alhaji Modu Isa 
GENERALIZED RAYLEIGH DISTRIBUTION 

   

   

 

     

 


 







 

  







 



 



 



  




   
          

         
  
 

      
         
       

 
  

    
   

 



2 2

2

2

2 2 2

2

2 2

2

1 1
2

1

2 2 2

1
2

1 log 1

log 1 1

1 1

1 1 1 log 1

2 0

1 1 1

i i

i

i

i i i

i

x x

n nx

xi i

x x x

n

i
x

e e
L n

e

e

e e e

e

 (29) 

 

     
 

 

       
 

         

 


 







 

  





 
 






 




  




  



 
   

     
     

 
    
      
     



 
  



  

2 2
2

2
2

2 2 2

2

1

2 22 22 22

2

1 1 12
2

1
1

2 22 2 2

2

111
2 21 2 21 1

2
1 1 1

11 1 1
2 2

2

1 1 1

i i
i

i
i

i i i

i

x xx

i in n ni i

i x
xi i i

x x x

i i

x

e e x xe x xL n
x

e e

e e e x x

e





 
 

  


1

0
n

i

 (30) 

Now, equations (28), (29) and (30) do not have a simple analytical form and are therefore not 

tractable. As a result, we have to resort to non-linear estimation of the parameters using iterative 

method. 

II. Results

3.1  Applications 

In this section, we present two applications of GRa distribution using different data sets from 

different fields to demonstrate the flexibility of the distribution in modeling real-life data sets. The 

data are fitted to the GRa distribution and two other distributions as comparators such as Odd 

Lindley Rayleigh (OLRa) distribution by [11] and Rayleigh (Ra) distribution. This is done to test 

the new distribution's flexibility against the comparators. Adequacy Model which is a package in R-

software, is used to produce the results of the analysis. Using the Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), respectively, the performance of the distribution 

was compared to other existing distributions that were consistent with the baseline distribution in 

terms of providing good parametric fit to the data sets. 

  2 2AIC ll k  (31) 
  2 log( )BIC ll k n  (32) 

The model selection is carried out using the AIC and the BIC. Where ll denotes the log-

likelihood function evaluated at the maximum likelihood estimates, k  is the number of 

parameters, and n is the sample size from the data. 

The model with minimum value of AIC and BIC is chosen as the best model to fit the data 

set. The comparators presented are odd Lindley Rayleigh (OLRa) distribution and Rayleigh (Ra) 

distribution. 

The first data set, taken from [14] and also reported in [15], shows the locations of the 68 stakes 

found while walking L = 1000 m and looking w = 20 m on either side of the transect line. The 

dimensions are:  
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2.0, 0.5, 10.4, 3.6, 0.9, 1.0, 3.4, 2.9, 8.2, 6.5, 5.7, 3.0, 4.0, 0.1, 11.8, 14.2, 2.4, 1.6, 13.3, 6.5, 8.3, 4.9, 1.5, 

18.6, 0.4, 0.4, 0.2, 11.6, 3.2, 7.1, 10.7, 3.9, 6.1, 6.4, 3.8, 15.2, 3.5, 3.1, 7.9, 18.2, 10.1, 4.4, 1.3, 13.7, 6.3, 3.6, 

9.0, 7.7, 4.9, 9.1, 3.3, 8.5, 6.1, 0.4, 9.3, 0.5, 1.2, 1.7, 4.5, 3.1, 3.1, 6.6, 4.4, 5.0, 3.2, 7.7, 18.2, 4.1. 

The second data set represents the survival times (in weeks) of 33 patients suffering from acute 

myelogeneous leukemia. These data have been studied by [16]. The data are: 

65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 

4, 43. 

Table 1: The MLEs and Information Criteria of the models based on the first data set 

Model ̂ ̂ ̂ l AIC BIC 

GRa 0.4774 6.3091 0.0018 185.7156 377.4313 384.0898 

OLRa 1.2608 - 0.0114 364.0566 732.1132 736.5522 

Ra - - 0.0362 202.4675 406.1545 409.1545 

Figure 5: Histogram and fitted pdfs for the GRa, OLRa and Ra models to the first data set 

Table 2: The MLEs and Information Criteria of the models based on the second data set 

Model ̂ ̂ ̂ l AIC BIC 

GRa 0.2293 0.6271 0.0005 158.1467 322.2934 326.7829 

OLRa 1.2857 - 0.0001 270.2955 544.5910 547.5840 

Ra - - 0.0005 188.6356 379.2713 380.7678 
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Figure 6: Histogram and fitted pdfs for the GRa, OLRa and Ra models to the second data set 

IV. Discussion

The estimated values for each parameter and the models' goodness of fits are shown in Tables 1 

and 2. AIC and BIC are two metrics for goodness of fits. The model performs better when the AIC 

and BIC values are lower. Tables 1 and 2 show that the GRa distribution has the lowest AIC and 

BIC, respectively and this makes the GRa model more adaptable and suitable for handling the data 

sets. 

The new model's forms, fit, and adaptability in connection to the data sets under 

consideration are shown in Figures 5 and Figure 6. The black line, which represents the GRa 

model, more closely matched the data's pattern than the competitors. The histogram and fitted 

plots make it clear that the black line, which represents the GRa distribution, matches the two data 

sets under consideration better. 

This study generalized the Rayleigh distribution by deriving a new continuous distribution 

known as the generalized Rayleigh distribution. Some of the statistical and mathematical 

properties of the GRa are obtained such as the survival function, hazard rate function, quantile 

function, inverted hazard function, odds function, and order statistics from the new distribution. 

Plotting the pdf and hazard rate function graphs revealed the contours of the suggested 

distribution. It was discovered that the hazard function is shaped like bathtub. AdequacyModel 

package in R was used to estimate the model parameters using the maximum likelihood method. 

The generalized Rayleigh distribution and its comparators considered were applied to two real life 

data sets, and the outcomes are shown in Tables 1 and 2. The findings demonstrated that the GRa 

distribution is much more potent, robust and superior at fitting the two data sets under 

consideration. The density graphs in figures 5 and 6 for the two data sets further show how 

adaptable and robust the new model is. 

  RT&A, No.3 (74)  
Volume 18, September 2023  

385



Sule Omeiza Bashiru, Ibrahim Ismaila Itopa and Alhaji Modu Isa 
GENERALIZED RAYLEIGH DISTRIBUTION 

References 

[1] Lord Rayleigh, F. R. S. (1880). On the Resultant of a Large Number of Vibrations of the

same Pitch of Arbitrary Phase. The London, Edinburgh and Dublin Philosophical Magazine and journal 

of Science, 10, 73-78 

[2] Kundu, D., and Raqab, M. Z. (2005). Generalized Rayleigh distribution: Different methods

of estimations. Computational Statistics and Data Analysis, 49, 187–200. 

[3] Voda, V. G. (2007). A new generalization of Rayleigh distribution. Reliability: Theory and

Applications, 2(2): 1-10 

[4] Dey, S. (2009). Comparison of Bayes estimators of the parameter and reliability function for

Rayleigh distribution under different loss functions. Malaysian Journal of Mathematical Sciences, 3(2): 

249-266.

[5] Merovci, F. (2013). Transmuted Rayleigh distribution. Austrian Journal of Statistics, 42, 21–

31. 

[6] Merovci, F. (2014). Transmuted generalized Rayleigh distribution. Journal of Statistics

Applications and Probability, 3(1): 9-20. 

[7] Merovci, F. and Elbatal, I. (2015). Weibull Rayleigh Distribution: Theory and Applications,

Applied Mathematics and Information Sciences, 9(4): 2127-2137. 

[8] Mahmoud, M., and Ghazal, M. (2017). Estimations from the exponentiated Rayleigh

distribution based on generalized Type-II hybrid censored data. Journal of the Egyptian Mathematical 

Society, 25, 71–78. 

[9] Ateeq, K., Qasim, T. B. and Alvi, A. R. (2019). An extension of Rayleigh distribution and

applications, Cogent Mathematics and Statistics, 6:1. 

[10] Alzaatreh, A., Lee, C., and Famoye, F. (2013). A new method for generating families of

continuous distributions, Metron, 71(1), 63-79. 

[11] Ieren, T. G., Abdulkadir, S. S. and Issa, A. A. (2020). Odd Lindley-Rayleigh Distribution:

Its Properties and Applications to Simulated and Real Life Datasets, Journal of Advances in 

Mathematics and Computer Science, 35(1): 63-88. 

[12] Abdulsalam, H. A., Yahaya, A. and Dikko, H. G. (2021). On the properties and

applications of a new extension of exponentiated Rayleigh distribution, FUDMA Journal of Sciences, 

5(2): 377-398. 

[13] Bello, O. A., Doguwa, S. I., Yahaya, A. and Jibril, H. M. (2020) A type I half Logistic

exponentiated-G family of distributions: Properties and application, Communication in Physical 

Sciences, 7(3): 147 – 163. 

[14] Patil, G. P., Patil, G. P., and Rao, C. R. (1994). Handbook of statistics 12: Environmental

statistics 

[15] Almetwally, E. M and Meraou, M. A. (2022). Application of Environmental Data with

New Extension of Nadarajah-Haghighi Distribution, Computational Journal of Mathematical and 

Statistical Sciences, 1(1): 26-41. 

[16] Feigl, P., and Zelen, M. (1965). Estimation of exponential probabilities with concomitant

information, Biometrics; 21:826-38. 

  RT&A, No.3 (74)  
Volume 18, September 2023  

386



K.Jayakumar, Fasna K.
HALF CAUCHY - EXPONENTIAL DISTRIBUTION

HALF CAUCHY - EXPONENTIAL DISTRIBUTION:
ESTIMATION AND APPLICATIONS

K.Jayakumar

•
Department of Statistics, University of Calicut, Kerala -673 635, India

jkumar19@rediffmail.com

Fasna.K

•
Department of Statistics, University of Calicut, Kerala -673 635, India

fasna.asc@gmail.com

Abstract

In this paper, we introduce a new two-parameter distribution called the new Half Cauchy - exponential
distribution (HCE) for modeling lifetime data. The structural properties of the new distribution are
discussed. Expressions for the quantiles, mode, mean deviation, and distribution of order statistics are
derived. The model parameters of HCE distribution are estimated by the method of maximum likelihood,
method of least square, method of Cramer-von-Mises, and Anderson-Darling methods. The existence
and uniqueness of maximum likelihood estimates are proved. The importance of the new distribution is
proved empirically by real-life data set.

Keywords: Half-Cauchy distribution, Method of least-squares, Method of Cramer-von-Mises,
Maximum likelihood estimation, T-X family

1. Introduction

The Cauchy distribution named after Augustin Cauchy is a continuous probability distribu-
tion and is also known as the Lorentz distribution or Breit-Wigner distribution. It is also the
distribution of the ratio of two independent normally distributed random variables with zero
mean. Cauchy distribution is unimodal, symmetric, and bell-shaped with much heavier tails
than normal distribution. It is also used for the analysis when outliers are presented in the data.
Cauchy distribution has received applications in many areas including physics, mathematics,
econometrics, engineering, spectroscopy, biological analysis, clinical trials, stochastic modeling of
decreasing failure rate life components, queueing theory, and reliability. For more details and
discussion, the reader is referred to [20], [3], and [8].
For the Cauchy distribution, the finite moments of order greater than or equal to one do not exist
and hence the central limit theorem does not hold. Further, the maximum likelihood estimation
of its parameters is not ideal because of no closed-form solution of the likelihood equations. The
use of Edgeworth expansion to construct an accurate approximation to the sampling distribution
of the maximum likelihood estimator of parameters of Cauchy distribution suggested by [1]. The
method of moments is also not possible for this distribution.
Because of these facts, the Cauchy distribution serves as a counterexample for some well-accepted
results and concepts in Statistics. This also makes the choice of the Cauchy distribution as an
unrealistic model. That is why, modification of Cauchy distribution have been suggested in the

  RT&A, No.3 (74)  
Volume 18, September 2023  

387

mailto: jkumar19@rediffmail.com
mailto: fasna.asc@gmail.com


K.Jayakumar, Fasna K.
HALF CAUCHY - EXPONENTIAL DISTRIBUTION

literature to overcome the problem of the moments and other useful properties.
The Half-Cauchy (HC) distribution is the folded standard Cauchy distribution around the origin
so that positive values are observed.
A random variable X has the HC distribution with scale parameter σ > 0, if its cumulative
distribution function (cdf) is given by

R(x) =
2
π

arctan
( x

σ

)
, x > 0 (1)

The probability density function (pdf) corresponding to 1 is

r(x) =
2

πσ

[
1 +

( x
σ

)2
]−1

. (2)

Although some applications of the half Cauchy distribution exist in the literature, the fact that
the finite moments of order greater than or equal to one do not exist, the central limit theorem
does not hold. This fact reduces the applicability of this distribution in modeling real-life sce-
narios. As a heavy-tailed distribution, the HC distribution has been used as an alternative to
exponential distribution to model dispersal distances by [4], as the former predicts more frequent
long-distance dispersed events than the later. The HC distribution to model ringing data on two
species of tits (Parus caeruleus and Parus major) in Britain and Ireland used by [6].

In the real situation, we come across non-normal data sets frequently. One usual way of
dealing with non-normal data is to find a suitable transformation that makes the data more
normal-like and to apply standard normal-based methods to the transformed data. Finding a
suitable transformation can be difficult with data and it is often preferable to work with data
without changing the original scale as the easy way of interpretation. These difficulties motivated
for more-flexible parametric families of distributions to model non-normal data.

Our focus in this article is on continuous non-normal data. Because real data often deviate
from normality in the tails or exhibit asymmetry in the distribution, there has been a growing
interest in distributions with additional parameters regulating asymmetry and tails directly.
Traditionally, log-normal or gamma distributions are used to model positively skewed data.
As a viable and flexible alternative, in this study, we propose Half-Cauchy Exponential (HCE)
distribution. In a number of domains such as medical applications, atmospheric sciences,
microbiology, environmental science, and reliability theory among others, data are positive and
right skewed. The suitable models used by researchers and practitioners to deal with this kind
of data are usually parametric distributions such as log-normal, gamma, and Weibull. However,
these distributions are not always enough to reach a good fit of the data. This has motivated the
interest in the development of more flexible and better-adapted distributions, which have been
generated using different strategies as the combination of known distributions.

In the last two decades, there has been an increased interest in defining new generators for
univariate continuous distributions to model data in several areas such as engineering, actuarial,
medical sciences, biological studies, demography, economics, finance, and insurance. However,
in many applied areas like lifetime analysis, finance, and insurance, there is a clear need for
extended forms of these distributions, that is, new distributions which are more flexible to model
real data. The addition of parameters has been proved useful in exploring skewness and tail
properties, and for improving the goodness-of-fit. Thus motivated in to introduce an extended
form of HC distribution.
In this paper, we propose a new lifetime model using the technique introduced by [19].
A family of distributions generated by gamma random variables have introduced by [12]. This
family of distributions has its cumulative distribution function (cdf) as

G(x) =
∫ − ln[1−F(x)]

a
r(t)dt. (3)
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Using similiar approach [19] introduced a new family of distributions with cdf given by

G(x) = 1 −
∫ − ln[F(x)]

a
r(t)dt. (4)

In this paper the T-X family defined by [19] is used to create the half-Cauchy X family of distri-
bution. Let T be a random variable having HC distribution with pdf , r(t) = 2

πσ

[
1 + ( t

σ )
2]−1 , t >

0. Then, the pdf of the Half Cauchy - X family of distributions from equation (4) is

g(x) =
2 f (x)

πσF(x)

[
1 +

(
− ln(F(x))

σ

)2
]−1

. (5)

The cdf corresponding to (6) is given by

G(x) = 1 − 2
π

arctan
[
− ln(F(x))

σ

]
. (6)

One of the main benefits of the Half Cauchy - X family is its ability of fitting skewed data that
cannot be properly fitted by existing distributions.

The paper is organized as follows. In Section 2, we proposed Half Cauchy-Exponential (HCE)
model, and discuss the shape of the density function and distribution function of the model. We
derive the quantiles, mode, and Mean deviation. Analytical shapes of the reliability functions of
the model under study and pdf of order statistics and their moments are derived in Section 3. In
Section 4, the method of maximum likelihood estimation(MLE), method of least square (LSE),
method of Cramer-von-Mises (CVME), and Anderson-Darling methods (ADE) are discussed. We
explore the usefulness of the proposed distribution by means of real data set and estimation
techniques are applied to calculate the model parameters in Section 5. In Section 6, concluding
remarks are presented.

2. Half Cauchy-Exponential Distribution

In this section, we consider the case where f follows exponential distribution with parameter
θ > 0 and the cdf and pdf are respectively F(x) = 1 − e−θx and f (x) = θe−θx; x > 0,θ > 0.
The cdf and pdf of this new distribution are respectively, given by

G(x) = 1 − 2
π

arctan
(
− ln(1 − e−θx)

σ

)
, x > 0, θ > 0, σ > 0 (7)

and

g(x) =
2θ

πσ

e−θx

1 − e−θx

[
1 +

(
− ln(1 − e−θx)

σ

)2]−1

. (8)

We call this new distribution Half Cauchy Exponential (HCE) distribution with parameters θ and
σ. Evidently, the density function (8) does not involve any complicated function. Also, there is no
functional relationship between the parameters. We denote the random variable X having pdf (8)
as HCE(θ, σ).
The pdf plots of HCE(θ, σ) for various values of the parameters are presented in Figure 1. From
the figure, it can be seen that the HCE distribution is well-suited for modelling right-skewed data.

The cdf plots of HCE(θ, σ) for various choices of the values of parameters are presented in
Figure 2.

3. Properties of the Half Cauchy - Exponential Distribution

Lemma 1. The qth quantile xq of the HCE random variable is given by

xq = −1
θ

ln
(

1 − exp−σ tan
(

π(1−q)
2

))
. (9)
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Figure 1: Plots of the pdf of HCE(θ, σ) distribution.

Figure 2: Plots of the cdf of HCE(θ, σ) distribution.

Proof. The qth quantile xq of the HCE random variable is defined as

q = P(X ≤ xq) = G(xq), xq > 0

Using the distribution function of the HCE distribution, we have

q = G(xq) = 1 − 2
π

arctan
(
− ln(1 − e−θx)

σ

)
That is,

arctan
(
− ln(1 − e−θx)

σ

)
=

π(1 − q)
2

Hence

xq = −1
θ

ln
(

1 − exp−σ tan
(

π(1−q)
2

))
.

This completes the proof. ■
Using the usual inverse transformation method, random numbers can be sampled from the
proposed model. Let U be a random number drawn from a uniform distribution on (0, 1). Then a
random number X following HCE(θ, σ) distribution is obtained by the equation (9) .
In particular, the median is given by,

x0.5 = −1
θ

ln(1 − exp−σ). (10)

Theorem 1. The mode of the HCE(θ, σ) is the solution of the equation k(x) = 0, where

k(x) = 2e−θx ln(1 − e−θx)− σ2

[
1 +

(
− ln(1 − e−θx)

σ

)2]
.
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Proof. The critical point of the HCE density function are the roots of the equation:

∂ log(g(x))
∂x

= 0

That is
∂ log(g(x))

∂x
= −θ − θe−θx

1 − e−θx +
2θe−θx ln(1 − e−θx)

σ(1 − e−θx)

[
1 +

(
− ln(1−e−θx)

σ

)2
] . (11)

The critical values of (11) are the solution of k(x) = 0.
Hence the proof. ■

3.1. Mean Deviation

The mean deviation about the median can be used as a measure of the degree of scattering in a
population. Let M be the median of the HCE distribution given by (10).
The mean deviation about the median can be calculated as

δ(X) = E|X − M| =
∫ ∞

−∞
|x − M|g(x)dx,

Hence we obtain the following equation δ = µ − 2J(M) where J(q) is

J(q) =
2θ

πσ

∫ q

−∞
x

e−θx

1 − e−θx

[
1 +

(
− ln(1 − e−θx)

σ

)2]−1

dx. (12)

One can easily compute this integral numerically in software such as MATLAB, Mathcad, R, and
others and hence obtain the mean deviation about the median as desired.

3.2. Stochastic Ordering

Stochastic orders have been used during the last forty years, at an accelerated rate, in many
diverse areas of probability and statistics. Such areas include reliability theory, survival analysis,
queueing theory, biology, economics, insurance, and actuarial science (see, [5]). Let X and Y be
two random variables having cdf’s F and G respectively, and denote by F̄ = 1 − F and Ḡ = 1 − G
their respective survival functions, with corresponding pdf’s f,g. The random variable X is said
to be smaller than Y in the:

1. stochastic order (denoted as X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x;

2. likelihood ratio order (denoted as X ≤lr Y) if f (x)
g(x) is decreasing in x ≥ 0;

3. hazard rate order (denoted as X ≤hr Y)if F̄(x)
Ḡ(x) is decreasing in x ≥ 0;

4. reversed hazard rate order (denoted as X ≤rhr Y) if F(x)
G(x) is decreasing in x ≥ 0.

The four stochastic orders defined above are related to each other, have the following implications
(see, [5]):

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (13)

The HCE is ordered with respect to the strongest likelihood ratio ordering as shown in the
following theorem. It shows the flexibility of the two-parameter HCE distribution.

Theorem 2. Let X ∼ HCE(θ1, σ1) and Y ∼ HCE(θ1, σ1). If θ1 = θ2 = θ and σ1 < σ2; then X ≤lr Y
hence X ≤rhr Y,X ≤hr Y and X ≤st Y.
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Figure 3: Plots of reliability function of the HCE(θ, σ) distribution.

Proof. The likelihood ratio is

gX(x)
gY(x)

=
σ2

σ1

[
1 +

(
− ln(1−e−θx)

σ2

)2
]

[
1 +

(
− ln(1−e−θx)

σ1

)2
]

Thus,

d
dx

[
gX(x)
gY(x)

]
=

2θe−θx

1 − e−θx

[
1

σ22 +− ln(1 − e−θx)
− 1

σ1
2 +− ln(1 − e−θx)

]
Now, if θ1 = θ2 = θ and σ1 < σ2, then d

dx

[
gX(y)
gY(y)

]
< 0, which implies that X ≤lr Y hence

X ≤rhr Y,X ≤hr Y and X ≤st Y. ■

Lemma 2. If a random variable Y follows the standard exponential distribution, then X =

− 1
θ ln

1 − exp
−σ tan

(
π(1−e−y)

2

) ∼ HCE(θ, σ).

3.3. Reliability Analysis

The reliability function is the characterization of an explanatory that maps a set of events, usually
associated with the failure of some system onto time. It is the probability that the system will
survive beyond a specified time, which is defined by R(t) = 1 − G(t). The Reliability function of
HCE(θ, σ) is given by,

R(t) =
2
π

arctan
(
− ln(1 − e−θt)

σ

)
. (14)

The reliability behaviour of HCE(θ, σ) for various choices of the values of the parameters is
presented in Figure 3. The other characteristic of interest of a random variable is the hazard rate
function defined by

h(t) =
g(t)

1 − G(t)

The hazard rate function of HCE(θ, σ) is given by,

h(t) =

2θ
πσ

e−θt

1−e−θt

[
1 +

(
− ln(1−e−θt)

σ

)2
]−1

2
π arctan

(
− ln(1−e−θt)

σ

) . (15)

The behaviour of the hazard rate function of HCE(θ, σ) for various choices of the values of the
parameters is presented in Figure 4. The cumulative hazard rate function of HCE distribution,
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Figure 4: Plots of hazard rate function of the HCE(θ, σ) distribution.

H(t) is given by,
H(t) = − ln R(t)

= − ln
2
π

arctan
(
− ln(1 − e−θt)

σ

)
. (16)

It is important to know that the units for H(t) are the cumulative probability of failure per unit of
time, distance, or cycles.

3.4. Order Statistics

Let X1, X2, ..., Xn be a random sample from HCE(θ, σ) . Also, let X(1), X(2), ..., X(n), denote the
corresponding order statistics. Then the pdf and cdf of kth order statistics, are given by

fX(x) =
n!

(k − 1)!(n − k)!
[G(x)]k−1 [1 − G(x)]n−k g(x)

=
n!

(k − 1)!(n − k)!

[
1 − 2

π
arctan

(
− ln(1 − e−θx)

σ

)]k−1 [ 2
π

arctan
(
− ln(1 − e−θx)

σ

)]n−k

2θ

πσ

e−θx

1 − e−θx

[
1 +

(
− ln(1 − e−θx)

σ

)2]−1

(17)

and

FX(x) =
n

∑
j=k

(
n
j

)
[G(x)]j[1 − G(x)]n−j

=
n

∑
j=k

(
n
j

)
n!

(k − 1)!(n − k)!

[
1 −

[
2
π

arctan
(
− ln(1 − e−θx)

σ

)]]j [ 2
π

arctan
(
− ln(1 − e−θx)

σ

)]n−j

(18)
respectively.
The pdf of the minimum is,

fX(1)
(x) = n

2θ

πσ

e−θx

1 − e−θx

[
2
π

arctan
(
− ln(1 − e−θx)

σ

)]n−1 [
1 +

(
− ln(1 − e−θx)

σ

)2]−1

(19)

and the pdf of the maximum is,

fX(n)
(x) = n

2θ

πσ

e−θx

1 − e−θx

[
1 −

[
2
π

arctan
(
− ln(1 − e−θx)

σ

)]]n−1 [
1 +

(
− ln(1 − e−θx)

σ

)2]−1

.

(20)
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4. Parameter Estimation

In this section, we describe the maximum likelihood estimation procedure, method of least
squares, method of Cramer-von-Mises, Anderson-Darling methods, and Method of maximum
product of spacings to estimate the parameters θ and σ, in the HCE distribution. We assume
throughout that x1, x2, . . . , xn is a random sample of size n from the HCE distribution both
parameters θ and σ are unknown.

4.1. Maximum Likelihood Estimation(MLE)

Here, we consider the estimation of the unknown parameters of the new distribution by the
maximum likelihood method. Consider a random sample (x1, x2, . . . , xn) of size n, from the
HCE(θ, σ) distribution. Then, the log likelihood function is given by,

log L = n log(2θ)− n log(πσ)− θ
n

∑
i=1

xi −
n

∑
i=1

ln(1 − e−θxi )−
n

∑
i=1

(
1 +

(
− ln(1 − e−θx)

σ

)2)

The likelihood equations are,

∂ log L
∂θ

=
n
θ
−

n

∑
i=1

xi −
n

∑
i=1

xie−θ

(1 − e−θxi )
− 2

n

∑
i=1

xie−θxi

σ2(1 − e−θxi )

ln(1 − e−θx)

(1 + − ln(1−e−θx)
σ )2

= 0, (21)

and

∂ log L
∂σ

= −n
σ
− 2

n

∑
i=1

ln(1 − e−θx)(1 − e−θxi )

σ3(1 + − ln(1−e−θx)
σ )2

= 0. (22)

These equations do not have explicit solutions and they have to be obtained numerically using
statistical software like the nlm package in R programming.
If the parameter vector of HCE(θ, σ) be Θ = (θ, σ) and the associated MLE for Θ is Θ̂ = (θ̂, σ̂)
, then the resulting asymptotic normality is (Θ̂ − Θ) → N(0, (I(Θ))−1). Where the observed
Fisher’s information matrix (I(Θ)) is given by,

I(Θ) ≈

 −E( ∂2 log L
∂θ2 ) −E( ∂2 log L

∂θ∂σ )

−E( ∂2 log L
∂θ∂σ ) −E( ∂2 log L

∂σ2 )

 ,

and hence the variance covariance matrix would be I−1(Θ).
As a result of MLEs’ asymptotic normality, we may construct approximate 100(1− α)% confidence
intervals for θ and σ of HCE(θ, σ) as below:

θ̂ ± Z α
2
SE(θ̂), σ̂ ± Z α

2
SE(σ̂)

Theorem 3. Let g1(θ; σ, x) denote the function on the right-hand side (RHS) of equation (21),
where σ is the true value of the parameter. Then there exists a unique solution for g1(θ; σ, x) = 0,
for θ̂ϵ(0, ∞).

Proof. We have

g1(θ; σ, x) =
n
θ
−

n

∑
i=1

xi −
n

∑
i=1

xie−θ

(1 − e−θxi )
− 2

n

∑
i=1

xie−θxi

σ2(1 − e−θxi )

ln(1 − e−θx)

(1 + − ln(1−e−θx)
σ )2
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Now

lim
θ→0

g1(θ; σ, x) = ∞,

On the other hand

lim
θ→∞

g1(θ; σ, , x) < 0.

Therefore there exist at least one root, say θ̂ϵ(0, ∞) such that g1(θ; σ, x) = 0
To show uniqueness, the first derivative of g1(θ; σ, x) = 0 is

∂g1(θ; σ, x)
∂θ

< 0.

Hence there exist a solution for g1(θ; σ, , x) = 0, and root, θ̂ is unique. ■

Theorem 4. Let g2(σ, θ, x) = 0 denote the function on the right hand side (RHS) of equation (22),
where θ is the true value of the parameter. Then there exists a unique solution for g2(σ, θ, x) = 0,
for σ̂ϵ(0, ∞).

Proof. We have

g2(σ, θ, x) = −n
σ
− 2

n

∑
i=1

ln(1 − e−θx)(1 − e−θxi )

σ3(1 + − ln(1−e−θx)
σ )2

.

Now

lim
σ→0

g2(σ, θ, x) = −∞,

On the other hand

lim
σ→∞

g2(σ, θ, x) > 0.

Therefore there exist atleast one root, say σ̂ϵ(0, ∞) such that g2(σ, θ, x) = 0
To show uniqueness, the first derivative of g2(σ, θ, x) = 0 is

∂g2(σ, θ, x)
∂σ

< 0.

Hence there exist a solution for g2(σ, θ, x) = 0, and root, σ̂ is unique. ■

4.2. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators are based on minimizing the distance
between the theoretical and empirical cumulative distribution functions. In [7] provided em-
pirical evidence that the bias of these estimators is smaller than the bias of other minimum
distance estimators. The Cramer-von-Mises estimators, θ̂CME and σ̂CME are the values of θ and σ
minimizing

C(θ, σ) =
1

12n
+

n

∑
i=1

[
G(ti | θ, σ)− 2i − 1

2n

]2
.

Differentiating the above equation partially, with respect to the parameters θ and σ respec-
tively and equating them to zero, we get the normal equations. Since the normal equations are
non-linear, we can use iterative method to obtain the solution.
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4.3. Method of Anderson-Darling

The method of Anderson-Darling test was developed by [9] as an alternative to statistical tests for
detecting sample distributions departure from normality.

The Anderson-Darling estimators θ̂ADE and σ̂ADE are the values of θ and σ minimizes

A(θ, σ) = −n − 1
n

n

∑
i=1

(2i − 1){log G(ti | θ, σ, θ)− log Ḡ(tn+1−i | θ, σ)}.

Differentiating the above equation partially, with respect to the parameters θ and σ respectively
and them equating to zero, we get the normal equations. Since the normal equations are non-linear,
we can use the iterative method to obtain the solution.

4.4. Method of Least-Square Estimation

The least-square estimators were proposed by [2] to estimate the parameters of Beta distributions.
Here, we apply the same technique for the HCE distribution. The least-square estimators of the
unknown parameters θ and σ of HCE distribution can be obtained by minimizing

n

∑
i=1

[
G(ti | θ, σ)− i

n + 1

]2
.

with respect to unknown parameters θ and σ.

5. Applications

In this section, we have taken two real life data set to illustrate the importance of the proposed
distribution. For each data set, we estimate the unknown parameters of each distribution
by the maximum-likelihood method, method of least squares, method of Cramer-von-Mises,
Anderson-Darling methods, and Method of maximum product of spacings.With these obtained
estimates, we obtain the values of the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) as well as Kolmogorov-Smirnov statistic and the corresponding p-value. Here,
AIC = −2 ln(L) + 2k and BIC = −2 ln(L) + k ln(n); where L is the likelihood function evaluated
at the maximum likelihood estimates, k is the number of parameters and n is the sample size.
The K-S distance Dn = supx|F(x)− Fn(x)|,where,Fn(x) is the empirical distribution. Kolmogorov-
Smirnov (K-S) statistics is computed to compare the fitted models.
The required computations are carried out in the R-language introduced by [10].

5.1. Data set I

We consider the corona-virus cases distribution among the fifteen countries viz.,France, Italy, Spain,
US, Germony, UK, Turkey, Iran, Russia, China, Brazil, Canada, Belgium, Netherlands and Switzer-
land. Data has taken from a website and URL is https://www.worldometers.info/coronavirus/coronavirus-
cases/.
Data is given in percentage and the observations are:
5.37,6.56,7.61,32.83,5.24,5.06,3.65,3.03 2.89,2.74,2.10,1.57,1.55,1.27,0.97.
The data is skewed-to-the right with skewness =3.0901 and kurtosis =8.4119
The descriptive statistics of the above data set are given in Table 1. The MLEs for θ and σ are
listed in Table 2 along with their standard errors (S.E.). The values in Table 3 show that the HCE
distribution leads to a better fit for the other three models. Based on the values of the AIC and
BIC criteria as well as the value of the KS-statistic and the corresponding p-value, we observe that
the HCE distribution provides the best fit for these data among all the models considered. Table
3, it has been observed that the proposed model is best fit as compared to xgamma distribution
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Table 1: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
0.970 1.835 3.030 5.496 5.305 32.830

Table 2: S.E., MLE for θ and σ

Parameters MLE S.E.
θ 0.2359 0.0799
σ 0.5618 0.5618

(XGD) by [11], Akash distribution (AKD) by [21], and exponential power distribution (EPD) by
[17].

Figure 5 shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the Data set I.
The goodness-of-fit of the CVME, MLE, LSE, and ADE methods are observed by the test statistic

(a) Fitted density curves for the data set I (b) Empirical and the fitted cumulative distribution functions
for the data set I

Figure 5: Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set I.

values and their p-values for CVM (Cramer-Von Mises), KS (Kolmogorov-Simnorov), and AD
(Anderson-Darling) for the dataset I which are displayed in Table 4.
Figure 6 shows fitted distribution’s histogram and the density function having CVME, MLE,

LSE, and ADE for the data set I of HCE distribution.

5.2. Data set II

The following data comes from a 59-conductor accelerated life test by [16]. Atomic movement in
the circuit’s conductors can create failures in microcircuits, which is known as electromigration.

Table 3: Goodness of fit for various models fitted for the Data set I.

Model -LL AIC BIC K-S(p-value)
XGD -43.555 89.111 89.819 0.2501(0.2585)
AKD -44.565 91.131 91.839 0.2687(0.1905)
EPD -42.940 89.881 91.297 0.2471(0.2709)
HCE -42.435 88.871 90.286 0.2166(0.4224)
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Table 4: Statistics values and their associated p-values for the dataset I.

Estimation method Estimates K-S(p-value) CVM(p-value) AD(p-value)

CVME
0.4402
0.2360

0.1398(0.8924) 0.0446(0.9144) 0.9312(0.3937)

MLE
0.2359
0.5618

0.2166(0.4224) 0.1210(0.4962) 1.0133(0.349)

ADE
0.3529
0.3219

0.1619(0.7698) 0.0570(0.84) 0.8506(0.4438)

LSE
0.3918
0.2866

0.1553(0.8101) 0.0480(0.8951) 0.8731(0.4292)

Figure 6: fitted distribution’s histogram and the density function having CVME, MLE, LSE, and ADE for the data
set I.

There are no censored observations, and the failure times are in hours.
5.923, 4.288, 6.522, 4.137, 6.071, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.545,
10.491, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 10.092, 7.496,
4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.369, 7.024, 8.336,
9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033,7.459, 9.289 , 6.958.
The data is skewed-to-the right with skewness =0.1932 and kurtosis =0.0874
The descriptive statistics of the above data set are given in Table 5. The MLEs for θ and σ are
listed in Table 6 along with their standard errors (S.E.). The values in Table 7 show that the HCE
distribution leads to a better fit for the other five models. Based on the values of the AIC and BIC
criteria as well as the value of the KS-statistic and the corresponding p-value, we observe that the
HCE distribution provides the best fit for these data among all the models considered. Table 7, it
has been observed that the proposed model is best fit as compared to Lindley-Exponential (LE)
model by [13], generalized exponential (GE) model by [14], modified Weibull (MW) model by
[15], exponential power (EP) model by [17], and Weibull extension (WE) model by [18].

Figure 7 shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the Data set II.
The goodness-of-fit of the CVME, MLE, LSE, and ADE methods are observed by the test statistics

values and their p-values for CVM (Cramer-Von Mises), KS (Kolmogorov-Simnorov), and AD
(Anderson-Darling) for the dataset II which are displayed in Table 8.

Table 5: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
2.997 6.052 6.923 6.980 7.941 11.038
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Table 6: S.E., MLE for θ and σ

Parameters MLE S.E.
θ 0.9352 0.1117
σ 0.0015 0.0012

Table 7: Goodness of fit for various models fitted for the Data set.

Model -LL AIC BIC K-S p-value
EP −116.5015 237.0029 237.2098 0.1042 0.5103
LE −114.9528 233.9055 234.1198 0.1042 0.5099
GE −114.9473 233.8946 234.1098 0.1365 0.2021
WE −113.6745 233.3491 233.7855 0.1067 0.4796
MW −112.5218 231.0435 231.4799 0.0914 0.6738
HCE −111.7792 227.5584 231.713 0.05806 0.9819

(a) Fitted density curves for the data set II (b) Empirical and the fitted cumulative distribution functions
for the data set II

Figure 7: Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set II.

Figure 8 shows fitted distribution’s histogram and the density function having CVME, MLE,
LSE, and ADE for the data set II of HCE distribution.

6. Concluding remarks

In this article, we have introduced and studied a new family of distributions called the Half
Cauchy exponential(HCE) distribution. we have provided explicit expressions for the quantiles,
hazard rates, mean deviation about median, the stochastic ordering and order statistics. The
model parameters are estimated by maximum likelihood, least-squares, Cramer-von Mises, and
Anderson-Darling. Our formulas related to the HCE model are manageable, and with the use of
modern computer resources with analytic and numerical capabilities, may turn into adequate
tools for a certain purpose of statisticians.
The applicability of the model is demonstrated by using two real data set. From Tables 3 and
7, we observed a better performance of our distribution than the existing distributions. Because
HCE distribution has the least test statistic value and the highest p value, we can deduce that it
has a considerably better fit than the other distributions studied. Based on these findings, the
newly suggested model can be considered as a more efficient, flexible, and therefore may be an
alternative to other distributions for modeling positive real data sets. Our proposed model may
attract wider applications in survival analysis for modeling positive real data sets. Estimation of
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Table 8: Statistics values and their associated p-values for the dataset II.

Estimation method Estimates K-S(p-value) CVM(p-value) AD(p-value)

CVME
0.9055
0.0019

0.0563(0.9867) 0.0233(0.9932) 0.1667(0.997)

MLE
0.9352
0.0015

0.0580(0.9819) 0.0246(0.9908) 0.1798(0.995)

ADE
0.9057
0.0018

0.05598(0.9876) 0.0232(0.9932) 0.1672(0.9969)

LSE
0.8797
0.0022

0.0633(0.9596) 0.0279(0.9832) 0.1800(0.995)

Figure 8: fitted distribution’s histogram and the density function having CVME, MLE, LSE, and ADE for the data
set II.

the model parameters under the Bayesian paradigm is currently underway.
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Abstract 

Businesses typically entice customers with alluring offers and discounts. Encouraged arrivals is the name given 

to these curious clients. In certain situations, the service offered by queuing models, notably in transportation 

networks, enables the simultaneous serving of several consumers. In general, closed-form solutions to bulk 

service queuing models with idle servers are difficult to find. By coordinating the operations at each workstation 

using the Chapman-Kolmogorov research technique, the main objective of this study is to assess the performance 

of the car assembly line in order to reduce waiting times. The server is in a busy state, is idle, is regularly busy, 

and is in a busy state when it breaks down. Performance metrics are being tracked using a multiple working 

vacation approach. In this study, analysis of encouraged arrival multiple working vacation queuing model under 

the steady state condition. In this model, we included encouraged arrival. By resolving difference equations and 

Chapman Kolmogorov balancing equations, the steady state queue size problem is found. Additionally, the 

server is in the busy, idle state, regular, and breakdown busy states, and performance metrics are conducted. The 

server was sent for repair and is now completely repaired to avoid the crash at any time. After that, the server 

continues to offer the service. It is evidently identified that the efficiency level increased while the encouraged 

arrival is incorporated. The main contribution of this paper is to show the server is in the busy, idle state, 

regular, and breakdown busy states, and performance metrics efficient level increases. It is found that they offer 

more efficient results when compared with the Poisson process method 

Keywords: Encouraged arrival, steady state, multiple working vacations, single 

server, queue size. 

 

I. Introduction 
 

There are times when the service provided in queuing models, particularly in transportation    

systems, allows for the simultaneous serving of many customers. In general, bulk service queuing 

models with idle servers are challenging to solve in closed form in [1]. A generic class of bulk 

queues with encouraged input was researched in [12]. 

A study on the examination of a GI/M/I- queue with several vacations is described in [2]. The 

Markovian M/ (q, 𝛃)/1 queuing model while taking several working vacations was also examined 

in [4]. An M/M/1 lines with working vacations (M/M/1/WV) model was investigated in [15].  A 

well-considered time-dependent bulk queuing service solution issues with queuing in [3]. 

Analyses the best management strategy for a heterogeneous M/M/1- queue with server 

downtime [5]. An analysis of the N-Policy and the M/M/1 queue with numerous working 

vacations is found in [10]. The queuing procedure using bulk services is examined in [19]. A Study 

on the Analysis of the M/G/1 Queue's Queue Length Distribution with Working Vacations [6]. 

Stochastic models with matrix geometric solutions were examined in [18]. GI/Geo/1 queue 
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with several Vacations were investigated in [9]. Working vacation queue and matrix analysis a 

study was done in [7]. The optimal operation of a Markovian queuing system with a transportable 

and unreliable server was examined in [14]. 

The M/M/1-queue with a single working vacation was investigated in [21]. The M/M/1 queue 

with a single working holiday and setup times were investigated in [22]. A matrix analytical 

approach for the examination of the M/G/1 queue with exponential working vacations was looked 

at in [8 and 16]. Recent advancements in the queuing and bulk models were examined in [17]. An 

M/M/1/N queue system with encouraged arrivals was investigated in [23]. 

A finite and infinite M/H2/1 queuing system with a detachable, unreliable server was 

examined in [20]. The M/M(a,b)/1/MWV/Br  Model [25] was investigated. Research on an M/G/1 

queue with numerous working vacations may be found in [11]. Reducing wait times in an 

M/M/1/N encouraged arrival line by providing feedback, balking at unpaid customers, and 

sustaining those customers was investigated in [24]. A break-down-prone portable service station 

with M/Ek/1 queuing system optimization was examined in [13]. 

 

II. Model Recitation 
 

In this model recitation provided by 

• This method is encouraged with parameters λ* (1+ϑ). In the manner of General-Bulk 

Service-Rule (G-B-S-R), the server handles the customers in batches. 

• As a result of this rule, the server only begins to provide service when at least a "q" 

customer is present. 

• The server serves the first β – customers, leaving the others in the line. 

• Each batch of units must have a certain minimum and maximum number of "q" units to be 

used. 

• The assumption is that the batch size α(q≤α≤β) will have an accelerated distribution of the 

parameter and will be an independent random variable with an identical distribution. 

• When the server breaks down with the parameter (1 − 𝑒−𝑏𝑡). 

• If the queue-. size reaches minimum "q" imagine a situation where a server starts offering 

service while on vacation at a different rate from the standard one. 

• The server was sent for repair and is now completely repaired to avoid the crash at any 

time. After that, the server continues to offer the service. 

Let KA(t) represent the number of customers waiting in line at time t, and C(t) represent one of 

zero, one, two, or three depending on whether the server is idle, busy, in a typical busy state, or 

experiencing a breakdown respectively.  
Let  Mk(t) = Prob{KA(t) = k, C(t) = 0}; 0 ≤ k ≤ q − 1, 

Ak(t) = Prob{KA(t) = k, C(t) = 1}; k ≥ 0, 
Pk(t) = Prob{KA(t) = k, C(t) = 2}; k ≥ 0, 
Υk(t) = Prob{KA(t) = k, C(t) = 3}; k ≥ 0,  

The queue-size and the system-size are equal for C(t) = 0.  
𝑀𝑘 = lim

𝑡.→∞
𝑀𝑘(𝑡); 𝐴𝑘 = lim

𝑡.→∞
𝑄𝑘(𝑡); 𝑃𝑘 = lim

𝑡.→∞
𝑃𝑘(𝑡); Υ𝑘 = lim

𝑡.→∞
Υ𝑘(𝑡); 

As an outcome, the Chapman-Kolmogorov equations that satisfy the condition are as follows: 

λ ∗  (1 + ϑ). 𝑀0= 𝜇. 𝑃0 + 𝜇𝑢. 𝐴0                              (1)                                                                                                        

λ ∗  (1 + ϑ). 𝑀𝑘 = λ ∗  (1 + ϑ). 𝑀𝑘−1 + 𝜇. 𝑃𝑘 + 𝜇𝑢. 𝐴𝑘; (1 ≤ 𝑘 < 𝑞 − 1),                                          (2) 

(λ ∗  (1 + ϑ) + 𝜒 + 𝜇𝑢). 𝐴0 = λ ∗  (1 + ϑ). 𝑀𝑞−1 + 𝜇. ∑ 𝐴𝑘
𝛽
𝑘=𝑞 ,                (3) 

(λ ∗  (1 + ϑ) + 𝜒 + 𝜇𝑢). 𝐴𝑘 = λ ∗  (1 + ϑ). 𝐴𝑘−1 + 𝜇𝑢. 𝐴𝑘+𝛽; (𝑘 ≥ 1)                           (4)            

(λ ∗  (1 + ϑ) + 𝜇 + 𝑠). 𝑃0 = 𝜇 ∑ 𝑃𝑘
𝛽
𝑘=𝑞 + 𝜒𝐴0 + 𝑏Υ0,                  (5) 

(λ ∗  (1 + ϑ) + 𝜇 + 𝑠)𝑃𝑘 = λ ∗  (1 + ϑ)𝑃𝑘−1 + 𝜇𝑃𝑘+𝛽 + 𝜒𝐴𝑘 + 𝑏Υ𝑘; (𝑘 ≥ 1),                         (6)                  

(λ ∗  (1 + ϑ) + 𝑏)Υ0 = 𝑠𝑃0,                                 (7)                                                              

(λ ∗  (1 + ϑ) + 𝑏)Υ𝑘 = 𝑠𝑃𝑘 + λ ∗  (1 + ϑ) ∑ Υ𝑘−𝑛
𝑘
𝑛=1 ℎ𝑛; (𝑘 ≥ 1).                (8) 
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The forward shifting operator Expectation on 𝑃𝑘and 𝐴𝑘 are introduced as follows and will be used 

to solve the steady-state equations: 

𝐸𝑥𝑝(𝑃𝑘) = 𝑃𝑘+1; 𝐸𝑥𝑝(𝐴𝑘) = 𝐴𝐾+1; 𝐸𝑥𝑝(Υ𝑘) = Υ𝑘+1; (𝑘 ≥ 0). 

Therefore, the homogeneous differential equation is given by equation (4). 
(λ ∗  (1 + ϑ) + 𝜒 + 𝜇𝑢)𝐴𝑘 = λ ∗  (1 + ϑ)𝐴𝑘−1 + 𝜇𝑢𝐴𝑘+𝛽; (𝑘 ≥ 1), 

[𝜇𝑢𝐸𝑥𝑝𝛽+1 − 𝐸𝑥𝑝(λ ∗  (1 + ϑ) + 𝜒 + 𝜇𝑢) + λ ∗ (1 + ϑ))]𝐴𝑘 = 0; (𝑘 ≥ 0),                              (9)            

The difference characteristic equation is provided by 

𝑔(𝑜) = [𝜇𝑢𝑜𝛽+1 − (λ ∗ (1 + ϑ) + 𝜒 + 𝜇𝑢)𝑜 + 𝜆(1 + 𝜗)] = 0  

by taking  𝑒(𝑜) = (λ ∗  (1 + ϑ) + 𝜒 + 𝜇𝑢)𝑜; ℎ(𝑜) = 𝜇𝑢𝑜𝛽+1 + λ ∗  (1 + ϑ) 

It is found that |h (o)| |e (o)| on |o| = 1. 

The solution of the homogeneous differential equation is given by, 

 𝐴𝑘 = 𝑚𝑢
𝑘𝐴0 ; (𝑘 ≥ 0)                                       (10) 

Additionally, equation (6) will be expressed as, 
(λ ∗  (1 + ϑ) + 𝜇 + 𝑠)𝑃𝑘 = 𝜆(1 + 𝜗)𝑝𝑘−1 + 𝜇𝑃𝑘+𝛽 + 𝜒𝐴𝑘 + 𝑏Υ𝑘; (𝑘 ≥ 1), 

[𝜇𝐸𝑥𝑝𝛽+1 − 𝐸𝑥𝑝(λ ∗  (1 + ϑ) + 𝜇 + 𝑠) + λ ∗ (1 + ϑ)]𝑃𝑘 = −𝜒𝐴𝑘+1 − 𝑏𝐸𝑥𝑝(Υ𝑘); (𝑘 ≥ 0).                   (11) 

By applying, Rouche's theorem, we discover that the equation, 

𝜇𝑜𝛽+1 − (λ ∗  (1 + ϑ) + 𝜇 + 𝑠)𝑜 + λ ∗ (1 + ϑ) = 0 has unique root with |𝑚| < 1provided by 
𝜆(1+𝜗)

𝛽𝜇
<1. 

Equation (8) will be expressed as follows: 
(λ ∗  (1 + ϑ) + 𝑏)Υ𝑘 = 𝑠𝑃𝑘 + λ ∗  (1 + ϑ)Υ𝑘−1; (𝑘 ≥ 1) 

Υ𝑘 =
𝑠𝐸𝑥𝑝(𝑃𝑘)

(λ∗ (1+ϑ)+𝑏)𝐸𝑥𝑝−λ∗ (1+ϑ)
 .                  (12) 

By substituting (11) to (12),  

We obtain, 

 [𝜇𝐸𝑥𝑝𝛽+1 − 𝐸𝑥𝑝(λ ∗  (1 + ϑ) + 𝜇 + 𝑠) + λ ∗  (1 + ϑ)]𝑃𝑘 = −𝜒𝑚𝑢
𝑘+1𝐴0 − 𝑏 [

𝑠𝐸𝑥𝑝2(𝑃𝑘)

(λ∗ (1+ϑ)+𝑏)𝐸𝑥𝑝−λ∗ (1+ϑ)
].   (13)

                                                                  

Consequently, the non-homogeneous difference equation (13) has the following solution:  
𝑃𝑘

= [𝑄𝑚𝑘 −
𝜒𝑚𝑢

𝑘+1

𝜇𝑚𝑢
𝛽+1

− (λ ∗  (1 + ϑ) + 𝜇 + 𝑠)𝑚𝑢 + λ ∗  (1 + ϑ) +
𝑠𝑏𝑚𝑢

2

(λ ∗ . (1 + ϑ) + 𝑏)𝑚𝑢 − λ ∗ . (1 + ϑ)

] 𝐴0 

(i.e)𝑃𝑘 = (𝑄 𝑚𝑘 + Υ 𝑚𝑢
𝑘).                   (14)                                                                                                              

The sequence 𝑀𝑘(0 ≤ 𝑘 ≤ 𝑞 − 1)  for the condition equation (1) & (2) adding, we get 

λ ∗ . (1 + ϑ) ∑ 𝑀𝑘 = λ ∗ (1 + ϑ) ∑ 𝑀𝑁 + 𝜇 ∑ 𝑃𝑁 + 𝜇𝑢 ∑ 𝐴𝑛
𝑘
𝑁.=0

𝑘
𝑁.=0

𝑘−1
𝑛.=0

𝑘
𝑛=0 , 

λ ∗ . (1 + ϑ). 𝑀𝑘 = 𝜇 ∑ 𝑃𝑁 + 𝜇𝑢 ∑ 𝐴𝑁 .

𝑘

𝑁=0

𝑘

𝑛=0

 

It is discovered by the interchange 𝐴𝑘 and 𝑃𝑘  in equations (9) and (14) that 

λ ∗  (1 + ϑ). 𝑀𝑘 = [𝜇(𝑄𝑚𝑘 + Υ𝑚𝑢
𝑘) + 𝜇𝑢(𝑚𝑢

𝑘)]𝐴0, 

 

𝑀𝑘 = [
𝜇

λ ∗  (1 + ϑ)
(

𝑄(1 − 𝑚𝑘+1)

(1 − 𝑚)
+

Υ(1 − 𝑚𝑢
𝑘+1)

1 − 𝑚𝑢

) +
𝜇𝑢

λ ∗  (1 + ϑ)
(

1 − 𝑚𝑢
𝑘+1

1 − 𝑚𝑢

)] 𝐴0. 

Since Q and A0 are unknowns, the steady-state queue size probabilities are also unknown. 

To determine Q, we now take into account the equation (5), 

(λ ∗  (1 + ϑ) + 𝜇 + 𝑠)𝑃0 = 𝜇 ∑ 𝑃𝑘 + 𝜒𝐴0 + 𝑏Υ0

𝛽

𝑘=𝑞

 

Equations (14) and (12)'s 𝑃𝑘 will be substituted to determine that  

(λ ∗  (1 + ϑ) + 𝜇 + 𝑠)(𝑄 + Υ)𝐴0 = 𝜇 (𝑄 [
𝑚𝑞−𝑚𝛽+1

1−𝑚
] + Υ [

𝑚𝑢
𝑞

−𝑚𝑢
𝛽+1

1−𝑚𝑢
]) 𝐴0 + 𝜒𝐴0 +

𝑏 (
𝑠𝑃1

(λ∗ (1+ϑ)+𝑏)𝑚𝑢−λ∗ (1+ϑ))
). 

It is expressed as, 
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𝑄
𝜇(1 − 𝑚𝑞)

(1 − 𝑚)
=

𝜒

(1 − 𝑚𝑢)
−

Υ𝜇(1 − 𝑚𝑢
𝑞

)

(1 − 𝑚𝑢)
+ 𝑏 (

𝑠𝑝1

(λ ∗  (1 + ϑ) + 𝑏)(𝐸𝑥𝑝 − λ ∗  (1 + ϑ))
) 

 

𝑄 = [
𝜇(1−𝑚𝑞)

(1−𝑚)
−

𝑠𝑏𝑚

λ∗ (1+ϑ)(𝑚−1)+𝑏𝑚
]

−1

[
𝜒

(1−𝑚𝑢)
−

Υ𝜇(1−𝑚𝑢
𝑞

)

(1−𝑚𝑢)
+

𝑠𝑏Υ𝑚𝑢

λ∗ (1+ϑ)(𝑚𝑢−1)+𝑏𝑚𝑢
]. 

As an outcome, the steady-state queue-size probabilities 𝐴0 and are provided by, 

𝐴𝑘 = 𝑚𝑢
𝑘𝐴0; (𝑘 ≥ 0),                              (15)                                                                                                                                        

𝑃𝑘 = (𝑄𝑚𝑘 + Υ𝑚𝑢
𝑘)𝐴0; (𝑘 ≥ 0),                                 (16)                                                                                                        

𝑄 = [
𝜇(1−𝑚𝑞)

(1−𝑚)
−

𝑠𝑏𝑚

λ∗ (1+ϑ)(𝑚−1)+Υ𝑚
]

−1

[
𝜒

(1−𝑚𝑢)
−

Υ𝜇(1−𝑚𝑢
𝑞

)

(1−𝑚𝑢)
+

𝑠𝑏Υ𝑚𝑢

λ∗ (1+ϑ)(𝑚𝑢−1)+𝑏𝑚𝑢
]. 

Where,  

Υ =
𝜒𝑚𝑢(𝜆(1+𝜗).(𝑚𝑢−1)+𝑏𝑚𝑢)

[λ∗ (1+ϑ).(𝑚𝑢−1)+𝜇𝑚𝑢(1−𝑚𝑢
𝛽

)+𝑠𝑚𝑢][λ∗ (1+ϑ)(𝑚𝑢−1)+𝑏𝑚𝑢]−𝑠𝑏𝑚𝑢
2
   

𝑀𝑘 = [
𝜇

λ∗ (1+ϑ)
(

𝑄(1−𝑚𝑘+1)

(1−𝑚)
+

Υ(1−𝑚𝑢
𝑘+1)

(1−𝑚𝑢)
) +

𝜇𝑢

λ∗ (1+ϑ)
(

1−𝑚𝑢
𝑘+1

1−𝑚𝑢
)] 𝐴; (0 ≤ 𝑘 ≤ 𝑞 − 1).            (17) 

Using the normalizing condition, the expression for 𝐴0 is determined as follows: 

∑ 𝐴𝑘 + ∑ 𝑃𝑘
∞
𝑘.=0

∞
𝑘.=0 + ∑ 𝑀𝑘 + ∑ Υ𝑘

∞
𝑘.=0

𝑞−1
𝑘.=0 = 1. 

Which follows that, 
𝐴0

−1 = 𝐸(𝑚𝑢, 𝜇𝑢) + 𝑄𝐸(𝑚, 𝜇) + Υ𝐸(𝑚𝑢, 𝜇) + 𝑄𝑆(𝑚, 𝑠) + Υ𝑆(𝑚𝑢, 𝑠). 

Where     𝐸(𝜋, 𝛿) =
1

(1−𝜋)
. [1 +

𝛿

λ∗.(1+ϑ)
(𝑞 −

𝜋.(1−𝜋𝑞)

(1−𝜋)
)] and     𝑆(𝜋, 𝛿) =

1

(1−𝜋)
[

𝜋𝛿

λ∗ (1+ϑ)(𝜋−1)+𝑏𝜋
]. 

Thus, the value 𝐴0
−1 is evaluated. 

 

III. Evaluating Performance 

 
In this section, we have performance metrics of M/(q, 𝛃)/1/MWV/Υm computed.  

The expected queue- length  (𝜄𝑎)  is, 

𝜄𝑎 = ∑ 𝑘(𝐴𝑘 + 𝑃𝑘 + Υ𝑘) + ∑ 𝑘𝑀𝑘 .
𝑞−1
𝑘=1

∞
𝑘=1                  (18) 

By Substituting the values of 𝐴𝑘 , 𝑃𝑘, Υ𝑘and 𝑀𝑘 from (15) to (17), we get  

𝜄𝑎 = ∑ 𝑘∞
𝑘=1 (𝑚𝑢

𝑘 + (𝑄𝑚𝑘 + Υ𝑚𝑢
𝑘)) + ∑ 𝑘

𝑞−1
𝑘=1 [

𝜇

λ∗ (1+ϑ)
(

𝑄(1−𝑚𝑘+1)

(1−𝑚)
+

Υ(1−𝑚𝑢
𝑘+1)

(1−𝑚𝑢)
) +

𝜇𝑢

(λ∗ (1+ϑ)
(

(1−𝑚𝑢
𝑘+1)

(1−𝑚𝑢)
)] +

∑ 𝑘 (
𝑠𝑚𝑄𝑚𝑘

(λ∗ (1+ϑ)+𝑏)𝑚−𝜆(1+𝜗)
+

𝑠𝑚𝑢Υ𝑚𝑢
𝑘

(λ∗ (1+ϑ)+𝑏)𝑚𝑢−𝜆(1+𝜗)
)∞

𝑘=1 . 

Moreover, 𝜄𝑎 can be simplified as, 

𝜄𝑎 = 𝑄𝐺(𝑚, 𝜇) + Υ𝐺(𝑚𝑢, 𝜇) + 𝐺(𝑚𝑢, 𝜇𝑢) + 𝑄𝐶(𝑚, 𝑠) + Υ𝐶(𝑚𝑢, 𝑠).                      (19)                                      

Where     𝐺(𝜋, 𝛿) =
𝜋

(1−𝜋)2.
+

𝛿

𝜆(1+𝜗)(1−𝜋)
. {

𝑞(𝑞−1)

2
+

𝑞𝜋𝑞+1(1−𝜋)−𝜋2(1−𝜋2)

(1−𝜋)2 }, 

𝐶(𝜋, 𝛿) =
𝜋

(1−𝜋)2 [
𝜋𝛿

𝜆(1+𝜗)(𝜋−1)+𝑏𝜋
]. 

Now 𝑃𝑢, 𝑃𝑏𝑦(𝑏𝑢𝑠𝑦), 𝑃𝑖𝑒(𝑖𝑑𝑙𝑒) and 𝑃𝛽𝑚 are given by,  

𝑃𝑢 = ∑ 𝐴𝑘
∞
𝑘=0 =

𝐴0

(1−𝑚𝑢)
, 

𝑃𝑏𝑦 = ∑ 𝑃𝑘 = ∑(𝑄𝑚𝑘 + Υ𝑚𝑢
𝑘)𝐴0 = [

𝑄

(1 − 𝑚)
+

Υ

(1 − 𝑚𝑢)
] 𝐴0

∞

𝑘=0

∞

𝑘=0

, 

𝑃𝑖𝑒 = ∑ 𝑀𝑘
𝑞−1
𝑘=0 , 

𝑃𝛽𝑚 = ∑ Υ𝑘 =
𝑄𝑠𝑚

(λ∗ .(1+ϑ)+𝑏)𝑚−λ∗ .(1+ϑ)
[

𝑚

(1−𝑚)2] +
Υ𝑠𝑚𝑢

(λ∗ .(1+ϑ)+𝑏)𝑚𝑢−λ∗ .(1+ϑ)
[

𝑚𝑢

(1−𝑚𝑢)2]∞
𝑘=0 . 

 

IV. Conclusion 
The analysis of encouraged arrival multiple working vacation queuing model under the steady 

state condition is discussed in this study in the context of the server being busy, idle state, regular, 

breakdown busy–state. Using Chapman Kolmogorov balancing equations, the total probability 

generating function was determined for this model. This model is more effective than the 

comparative Poisson arrival model [25].In the future to be included EASTA property for this 

encouraged arrival multiple vacation queuing model. 
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Abstract 

 

Hazardous production facilities contain numerous technical devices, the reliability 

assessment of which is a part of quantitative risk assessment. The paper considers the 

pressure valve as a safety system element of equipment operating under excessive pressure 

and evaluates its reliability (survival function value) during the operational period. Valve 

reliability during the wear-out period has been modeled to assess wear-out period influence 

on this element failure probability. Modeling was carried out by approximating the failure 

rate tabular values obtained based on statistical data. Approximation was carried out by: a 

second-degree polynomial, the Weibull distribution law and a power function. Comparison 

of the obtained quantitative estimates with the element failure probability, calculated 

without taking into account the wear-out period, showed necessity of wear-out period 

influence consideration in risk assessment procedure. 

 

Keywords: reliability, quantitative risk assessment, modeling, hazardous 

production facility, pressure valve 

 

1. Introduction 
 

One of the main tools for performing accident quantitative risk assessment (QRA) at hazardous 

production facilities (HPF) is logical-probabilistic modeling (LPM), in particular, fault tree analysis 

(FTA), [1, 2]. 

HPF are complex technical systems (TS) consisting of technological blocks, technical devices, 

and elements. HPF safety is ensured by specialized safety units / elements, used for technological 

process deviation prevention from escalating into an accident. 

As is well known, there are no absolutely reliable technical devices. Any device (technical 

system) failure probability is calculated based on its components (elements) failure probabilities 

which are usually estimated by consideration of failure probability dependence from operating time 

described by exponential law. In this case, element failure rate is postulated by a constant, time-

independent value. 

The choice of described mathematical model for estimating element failure probability is based 

on: 
• its mathematical simplicity. 

• the fact that the longest period in the element life cycle is the useful life period which is 

characterized by failure rate approximate constancy, [1]. 
Described model does not consider elements wear-out period, characterized with failure rate 

significant increase. Neglect of this circumstance can result in inadequate technical device failure 

probability quantitative estimates, and, consequently, in distorted results of various accident 

scenarios probability assessment obtained from event tree analysis (ETA). ETA results are sensitive 
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to the accuracy of initial data, including the probability of both the initiating event and the safety 

device's conditional failure probabilities.  

At present time, there is not yet a single generally accepted approach to technical devices 

reliability assessment in the wear-out period. However, many researchers have repeatedly drawn 

attention to the need for wear-out period consideration in technical device reliability assessment [3, 

4, 5, 6]. The prevailing opinion is that the Weibull distribution is the most suitable for elements 

reliability assessment in the wear-out period [4, 5, 7].  

Besides, there is no consensus among researchers regarding technical devices' imperfect 

maintenance impact on the reliability/failure rate during the wear-out period. The most common are 

two concepts: PAR (Proportional Age Reduction) and PAS (Proportional Age Setback) [4, 6]. 

Described concepts implementation allows for assess maintenance impact on the technical device 

aging process, varying it from completely ignoring such an influence (BAO, Bad As Old, postulating 

that the degree of device degradation does not decrease after maintenance); to completely 

eliminating degradation during maintenance (GAN, Good As New). 

The choice of the most suitable mathematical model for describing technical device wear-out 

period is carried out on the basis of the Akaike information criterion (AIC), which allows choosing 

among the models under consideration the one that has the least number of parameters and will 

have the best approximation to the available data. The authors of [4] argue that for the given 

purposes, the most suitable model is the Weibull distribution with maintenance effectiveness equal 

to 1 (GAN). Moreover, the authors believe that usage of the PAR/PAS concept with a different 

maintenance efficiency will result in significant failure rate value overestimation when predicting 

the state of the technical device, [4]. This conclusion is based on the technical device's statistical data 

acquired from 17 years of observance comparison with their mathematical assessment. 
Yet another approaches for reliability assessment in the wear-out period exist. Research, [5], in 

addition to the widely recognized wear-out period modeling approach of the device by the Weibull 

distribution, proposes the usage of power distribution. The type of power distribution proposed by 

its author allows assessment of technical devices' reliability throughout their entire life cycle and 

various types of failure rate functions usage. 
The authors of [3, 8] consider the elements' wear-out period consideration problem from a more 

general perspective, using algorithms [3], and complexes of techniques [8] to influence the 

assessment of the wear-out process on technical devices' overall performance. 
The authors of this paper point out that none of the analyzed studies carried out a prediction of 

the technical device survival function values for its operational period. The articles reviewed 

describe only possible approaches to taking into account the device wear-out period influence on 

the process of its operation and predicting the failure rate magnitude. This results in the 

impossibility of different wear-out period reliability assessment approach comparisons. Due to 

quantitative assessment absence wear-out period impact on the value of survival function is unclear. 

Discovered uncertainty in technical system reliability assessment throughout its entire life cycle 

(including the wear-out period) leads to an increase of accident risk indicators value uncertainty. 

This paper is dedicated to the demonstration of the fact that neglect of technical system 

elements wear-out period in its reliability assessment leads to an underestimation of their failure 

probability, which results in an underestimation of the magnitude of accident risk indicators 

(potential territorial, individual, etc.). 
The purpose of this article is to substantiate the need for technical system element wear-out 

period consideration in the domain of a quantitative risk assessment. 

 

2. Methods 
 

In this paper authors have considered vessel operating under excessive pressure as an example 

of technical device and its safety valve as a technical device element. Reliability assessment has been 

conducted for safety valve (pressure valve) with operational period equal to 30 years [9]. For further 
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analysis, it is necessary to describe the dependence of the failure rate [10] as a function of time 

(operating time). In this paper following assumptions are made: total duration of burn-in period and 

useful life period is 27 years, wear-out period duration is 3 years (figure 1). 

 

 
 

Figure 1: The bathtub curve: I – burn-in period, II – useful life period, III – wear-out period 

 

Consider the valve failure rate value at three points in time during the wear-out period:  

• at the beginning of wear-out period – min;  

• at the middle of wear-out period – mean; 

• at the end of wear-out period – mах (concurrently – at the time of decommissioning 

of the valve due to its reaching the limit state). 

 

As reference values of the failure rate during the wear-out period statistical data was used [11]. 

it is assumed that during useful life period valve failure rate was equal to min. The relation between 

the failure rates values and time points is shown in Table 1. 

 

Table 1: Tabular failure rate function 

Designation Time point t, h Value of λ(t), h-1 

λmin 236520 0,122 ∗ 10−6 

λmean 249660 5,6 ∗ 10−6 

λmax 262800 32,5 ∗ 10−6 

 

The time point equal to 236520 hours, i.e. 27 years from the beginning of the device operation, 

is taken as the beginning of the wear-out period. The middle of the wear-out period corresponds to 

a time point equal to 249660 hours, i.e. 28 years from the beginning of device operation. The end of 

the wear-out period (device operation end) corresponds to a time point equal to 262800 hours, i.e. 

30 years from the beginning of device operation. In order to quantify the valve wear-out period effect 

on its failure probability, different failure rate functions were proposed. 

As it well-known, unrepairable element failure probability depends on its failure rate in a 

following way: 

 

𝑄(𝑡) = 1 − 𝑒− ∫ 𝜆(𝜏)𝑑𝜏
𝑡

0 = 𝑒
−(∫ 𝜆2(𝜏)𝑑𝜏

𝑡1
0 +∫ 𝜆3(𝜏)𝑑𝜏

𝑡2
𝑡1

)
 (1) 

 

where 2 – failure rate, h-1,  of an element during the useful life period, can be equated to min; 

3 – failure rate, h-1, of an element during the wear-out period; 

t1 – wear-out period beginning, h, equals to 236520 h. 
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2. 1. Approximation by a second degree polynomial 
 

Considering the data given in Table 1 as a tabular function λ(t), it is possible to approximate 

it [12] with a second degree polynomial represented by a following expression (2): 

 

𝜆𝑎𝑝𝑝(𝑡) = 6,2 ∙ 10−14 ∙ 𝑡2 − 2,97 ∙ 10−8 ∙ 𝑡 + 3,56 ∙ 10−3 (2) 

 

The approximation parameters are given in Table 2. 

 

Table 2: Second degree polynomial approximation accuracy 

Parameter Value 

Correlation coefficient 1 

Coefficient of determination 1 

Average approximation relative error 0% 

 

Therefore, the survival function of a process described by exponential law with failure rate 

(2) for wear-out period and constant failure rate for burn-in period and useful life period, can be 

represented by following expression (3): 

 

𝑃𝑎𝑝𝑝(𝑡) = 𝑒
−(∫ 𝜆𝑚𝑖𝑛𝑑𝑡

𝑡1
0 +∫ 𝜆𝑎𝑝𝑝(𝑡)𝑑𝑡

𝑡
𝑡1

)
 (3) 

 

Where 𝑃𝑎𝑝𝑝(𝑡) – the probability of failure-free operation based on a wear-out period failure rate 

approximation by second degree polynomial; 

𝜆𝑚𝑖𝑛 – useful life period failure rate, h-1; 

𝑡1 – time point corresponding to the end of the useful life period and the beginning of the wear-

out period. It is assumed to be equal to 236520 hours; 

t – time, measured in hours, 𝑡 > 𝑡1; 

𝜆𝑎𝑝𝑝(𝑡) – the failure rate value during the wear-out period at time point t, obtained from the 

approximation of the tabular function by a polynomial of the second degree (2), h-1. 

 

2. 2. Calculation of failure rate function (t) on the basis of  

Weibull distribution law 

 
The probability of failure-free operation of the element during the wear-out period in this case [7] 

will have the form (4): 

 

𝑃𝑤𝑏(𝑡) = 𝑒−(∫ 𝜆𝑚𝑖𝑛𝑑𝑡
𝑡1

0 +(𝑡)𝛼−(𝑡1)𝛼) (4) 

 

Where 𝑃𝑤𝑏(𝑡) – the probability of failure-free operation under the assumption that the failure 

rate obeys the Weibull distribution law; 

 – the rate parameter of Weibull distribution; 

𝜆𝑚𝑖𝑛 – useful life period failure rate, h-1; 

𝑡1 – time point corresponding to the end of the useful life period and the beginning of the wear-

out period. It is assumed to be equal to 236520 hours; 

t – time, measured in hours, 𝑡 > 𝑡1 

𝛼 – the shape parameter of Weibull distribution. 
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Thus, in order to find the element failure-free operation probability value, Weibull distribution 

parameters ( and ) values must be determined. For this purpose, it is necessary to use the failure 

rate function for Weibull law (5): 

𝜆𝑤𝑏(𝑡) = 𝛼 ∙ 𝛽𝛼 ∙ 𝑡𝛼−1 (5) 

 

Where  – the rate parameter of Weibull distribution; 

𝛼 – the shape parameter of Weibull distribution. 

Equating the values of this function to the available table values, a system (6) of two nonlinear 

equations for the failure rate was obtained: 

{
𝜆𝑚𝑎𝑥 = 𝛽𝛼𝑡𝑚𝑎𝑥

𝛼−1

𝜆𝑚𝑖𝑛 =  𝛽𝛼𝑡𝑚𝑖𝑛
𝛼−1  

(6) 

 

Its solution gives an expression for determining the parameters : 

𝛼 =
ln (

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
)

ln (
𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
)

+ 1 

(7) 

and : 

𝛽 = (
𝜆𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
𝛼−1)

1
𝛼

 
(8) 

 

Acquired values of the parameters ( and  ) are shown in Table 3. 

 

Table 3: Weibull law parameter values 

Parameter Value 

 54,82 

 3,6810-6 

 

2. 3. Power function approximation 
 

Consider the following function describing failure rate in wear-out period: 

𝜆𝑑𝑒𝑔(𝑡) = 𝜆0 +  ∙ t𝛾 (9) 

where 𝜆0 – failure rate at the beginning of wear-out process, h-1; 

 and  – function parameters. 

For parameters  and  value determination equality of the function deg (t)
 to the failure rate 

values based on statistical data (Table 1) at two time points is required: 

{
𝜆𝑚𝑎𝑥 = 𝜆0 +  ∙ 𝑡𝑚𝑎𝑥

𝛾

𝜆𝑚𝑒𝑎𝑛 =  𝜆0 +  ∙ 𝑡𝑚𝑒𝑎𝑛
𝛾 

(10) 

Parameter  can be determined from the following expression: 

𝛾 =
ln (

𝜆𝑚𝑎𝑥 − 𝜆0

𝜆𝑚𝑒𝑎𝑛 − 𝜆0
)

ln (
𝑡𝑚𝑎𝑥

𝑡𝑚𝑒𝑎𝑛
)

 

(11) 

Substituting the obtained value of the parameter γ into any of the equations (10), calculation of 

parameter  is possible: 

 

 =
𝜆𝑚𝑎𝑥 − 𝜆0

𝑡𝑚𝑎𝑥
𝛾  

(12) 

 

For the case under consideration, the values of the parameters  and  obtained by us are shown 

in Table 4. 
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Table 4: Weibull law parameter values 

Parameter Value 

 34,61 

 8,710-193 

 

3. Results 

 
As a result of this research, five functions that characterize the failure probability during the 

wear-out period were determined and compared: 

• Qpmin(t) – a function describing the simulation of the failure probability at a constant 

failure rate 𝜆𝑚𝑖𝑛 in a process obeying an exponential law. Thus, the effect of the wear-out process on 

the failure probability is completely ignored. 

• Qpmean(t) – a function describing the simulation of the failure probability at a 

constant failure rate 𝜆𝑚𝑒𝑎𝑛 in a process obeying an exponential law. Wear-out process is taken into 

account by changing the parameter in the process, obeying the exponential law by the average 

failure rate value during wear-out period. 

• Qwb(t) – a function describing the simulation of the failure probability with a failure 

rate varying according to Weibull law with parameters 𝛼, . Choice of this distribution allows 

accounting of failure rate growth due to aging. 

• Qapp(t) – a function describing the simulation of the failure probability with a failure 

rate varying according to the law 𝜆𝑎𝑝𝑝(𝑡). Wear-out process is taken into account by approximating 

statistical data on the failure rate during the wear-out period. 

• Qdeg(t) – a function describing the simulation of the failure probability with a failure 

rate varying according to the law 𝜆𝑑(𝑡). The approximating function is obtained based on the 

assumption that the number of failed elements of the same type obeys the normal distribution law.  

 

Failure probability of the pressure relief valve is calculated according to equation (1), the results are 

presented in Figure 2. 
 

 
 

Figure 2: Comparison of failure probability functions in wear-out period 
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Values of the considered failure probability functions at the end of device operation period 

are given in Table 5. 

 

Table 5: Valve failure probability at the end of its operation period 

Type of function Function value at time point t = 263000 h 

Qpmin(t) 0,0290264 

Qpmean(t) 0,16275 

Qwb(t) 0,171749 

Qapprox(t) 0,239714 

Qdeg(t) 0,236512 

 

4. Discussion 

 
The analysis of Figure 2 shows that the graph of the function Qapp(t) decreases in some area, 

which is determined by the type of the approximating function. Since this contradicts the meaning 

of the concept of the failure probability, which is a non-decreasing function of operating time, further 

consideration of this function is pointless.  

From the data given in Table 5, it follows that the most conservative estimate of the options 

considered is the Qdeg(t) function. Moreover, it becomes most conservative estimate only at the final 

stage of the wear-out period. As follows from the graph shown in Figure 2, up to a certain point, the 

most conservative estimate is Qpmean(t). Assessment of failure probability provided by this type of 

function is rather rough, but at the same time calculation of this function value is rather simple. 

It is also important that the complete disregard of the wear-out period in QRA (which is a fairly 

common practice) leads to an underestimation of the device failure probability (compared with other 

methods of assessment). 

In this work, a quantitative assessment of pressure relief valve failure probability during wear-

out process was obtained, justifying the need to take this period into account when conducting the 

QRA. This study can be considered as the first stage of assessing the impact of taking into account 

the wear-out period of technical devices on the risk indicators assessment. Obtained estimates 

clearly show that accounting of wear-out process in reliability assessment will result in accident risk 

magnitude increase. Yet it remains unclear how strong is impact on accident risk magnitude. Next 

studies will be aimed on evaluation of technical systems elements wear-out process impact on the 

subsequent stages of QRA. 
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Abstract 

 

Aim. The purpose of this research is to employ a fuzzy approach to assess the system behavior of the 

washing unit in a paper plant using vague, uncertain and inaccurate data. The washing unit is the 

main operational part of a paper plant for which analysis of system behavior is important to choose 

an appropriate maintenance strategy. The analysis has been carried out for washing unit of a paper 

plant situated in northern India. Methods. The proposed approach comprises qualitative and 

quantitative analysis. In qualitative analysis, the basic arrangement of the washing unit is modelled 

by Petri Net model. In quantitative analysis, the fuzzy λ-τ approach has been used for analyzing the 

systems' failure behavior more accurately. Uncertainties in failure/repair data of every 

subsystem/component of the washing unit are quantified using trapezoidal fuzzy numbers. Results. 

To assess the performance and failure dynamic behavior of the washing unit quantitatively, six 

reliability parameters including failure rate, repair time, mean time between failure, expected number 

of failures, reliability and availability at three different spread levels have been evaluated employing 

trapezoidal fuzzy numbers. The fuzzified values of these reliability parameters of washing unit have 

been defuzzified employing center of area defuzzification technique. Further, crisp values and 

defuzzified values of these parameters using triangular fuzzy numbers have also been obtained. The 

results obtained by the proposed methodology have been compared with those obtained by fuzzy λ-τ 

approach based on triangular fuzzy numbers. The information/results obtained through the fuzzy λ-

τ approach with trapezoidal fuzzy number are conservative in nature, therefore, these results may be 

used by system specialist/system analysts for the future plan of implementation. Conclusion. Using 

this approach, six reliability parameters are evaluated and the trend (increase or decrease) of these 

reliability parameters is examined for performance analysis of washing unit in a paper plant. Based 

on these investigations, suitable maintenance policy can be established that will assist maintenance 

manager/system analysts/engineers in improving system performance by implementing appropriate 

preventive maintenance procedures. As a result, it will help in achieving a long time system 

availability and maximizing overall productivity of the paper plant. The implications of this fuzzy 

reliability approach to industry maintenance and operation planning are quite beneficial. 

 

Keywords: paper plant, uncertain data, petri net, fuzzy methodology, reliability, 

trapezoidal fuzzy number  
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1. Introduction 

 

Reliability analysis plays a vital role in successful functioning of a repairable industrial system. Most 

of the repairable industrial systems consist of various subsystems. Every subsystem is comprised of 

several sophisticated components. It is almost impossible to completely avoid the failure in an 

industrial system but it can be reduced by implementing appropriate maintenance policies. System 

availability is also identified as an important factor of performance for such systems. To achieve the 

objective of improving the availability/reliability with low-cost inputs, it is required that every 

component or subsystem must operate adequately and provide excellent performance. The behavior 

of a system under specified operating conditions can be used to design its components to minimize 

the failure and to plan the preventive or scheduled maintenance of the system. However, today, the 

behavior analysis of repairable industrial system has become a great challenge for an expert/system 

analyst due to technological advancements and growing complexities of components/subsystems of 

the system. 

         A number of researchers evaluated the performance of numerous operational structures in 

different process plants, namely thermal power plant, sugar industry, paper plant, chemical 

industry and urea plant. The probability of survival of an industrial system depends upon all of its 

basic components. Thus, the behavior of these components will assist in the analysis of its overall 

performance. The behavior and performance of such systems are often assessed using reliability, 

system availability and other reliability parameters. Many different techniques such as the 

Markovian approach, reliability block diagrams (RBDs), fault tree analysis (FTA), Petri Nets (PNs) 

and others are widely used for reliability analysis of repairable industrial systems [1-8]. However, 

nowadays, among these techniques, FTA and PN [5-10] are being preferred by the researchers to 

analyze the failure of repairable systems. 

        To deal with the uncertainties in data, Knezevic and Odoom [11] developed the λ-τ approach 

by using the fuzzy theory and the PN model. In their methodology, triangular fuzzy numbers (TFNs) 

have been employed to address the vagueness in the failure/repair information. Sharma et al. [12] 

used fuzzy λ-τ approach for behavior analysis of a large industrial system employing FTA and PNs. 

Sharma et al. [13] applied FTA and the fuzzy λ-τ approach to examine the reliability of complex 

robotic unit. Sharma et al. [14] analyzed the system behavior and performance for two grinding 

machines employing fuzzy λ-τ approach with PN. Garg et al. [15] analyzed the system reliability 

parameters of screening unit of a paper plant using a fuzzy approach. Verma et al. [16] examined 

the vague reliability of the combustion unit employing vague λ-τ approach with PN. Panchal et al. 

[17] employed a fuzzy approach for RAM and risk analysis of a chemical industry.  

         To fuzzify clinical information/data, Princy and Dhenakaran [18] compared trapezoidal fuzzy 

number (TrFN) and TFN and discovered that the classification performance of TrFN is better than 

that of TFN. Most recently, Sharma and Sushma [19, 20] used TrFNs to estimate the performance 

and behavior of coal handling unit and water circulation unit, respectively, in a thermal power plant 

employing fuzzy approach. Further, Sharma and Mamta [21] performed reliability analysis of the 

feeding system of a paper plant under fuzzy environment employing TrFN. 

          The major purpose of this study is to quantify the uncertainties of failure/repair data of 

washing unit of a paper plant using TrFN for analyzing the systems' behavior more accurately. The 

fuzzy λ-τ approach for behavior analysis is used together with PN modelling. Further, the obtained 
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results from the fuzzy λ-τ approach with TrFN are compared with the results obtained using TFN. 

The acquired information will assist the managers in planning preventive or scheduled maintenance 

policies, to attain maximum system availability.  

         The structure of remaining part of this paper is as follows. Some important concepts of fuzzy 

set theory relevant to this study have been presented in section 2. The proposed methodology has 

been described in Section 3. Section 4 deals with the implementation of proposed methodology to 

perform fuzzy reliability analysis of considered unit. Lastly, section 5 presents the conclusions 

drawn. 

  

2. Fuzzy Set Theory 

The important concepts of fuzzy set theory used in the present study are given as [22]:  

 

2.1. Fuzzy Set 

A fuzzy set �̃� defined on universal set X is described by  

�̃� = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}  ,                                                                 (1) 

where, 𝜇𝐴(𝑥) ∈ [0,1] denotes the degree of membership for element x. 

 

2.2. Fuzzy Number 

A fuzzy number is a convex, normal fuzzy set defined on real line with bounded support. 

 

2.3. Trapezoidal Fuzzy Number 

A TrFN �̃� is a fuzzy number described as (𝑡1, 𝑡2, 𝑡3, 𝑡4) with membership function as  

  

                                        𝜇𝐴(𝑥) =

{
 
 

 
 
(𝑥−𝑡1)

(𝑡2−𝑡1) 
 ,     𝑡1 ≤ 𝑥 ≤ 𝑡2 

       1 ,          𝑡2 ≤ 𝑥 ≤ 𝑡3
(𝑡4−𝑥)

(𝑡4−𝑡3)
 ,     𝑡3 ≤ 𝑥 ≤ 𝑡4

    0 ,                otherwise

    .                                                           (2) 

The 𝛼-cut of TrFN �̃� given by     

                    �̃�𝛼 = [𝑡1
𝛼 ,   𝑡4

𝛼] = [𝑡1 + (𝑡2 − 𝑡1)𝛼 , 𝑡4 − (𝑡4 − 𝑡3)𝛼] ,      𝛼 ∈ [0,1]   ,                                       (3) 

is represented in Figure 1.            

                           

 
Figure 1: 𝛼-cut for TrFN �̃� 
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3. Proposed Methodology  
 

The behavior of a repairable system in an ambiguous environment can be analyzed using fuzzy λ-τ 

approach [11]. This approach uses failure and repair data of subsystems and components of 

considered system. This approach handles the ambiguity and vagueness in failure and repair data 

and hence is preferred over other approaches. The stepwise procedure of proposed methodology is 

as follows:  

 

Step 1: Collection of information of various subsystems and components of washing unit. 

 

Step 2: Construction of PN model. 

 

Step 3: Collection of input data related to failure and repair of various subsystems and components. 

 

Step 4: Employing TrFN for fuzzification of input data collected in step 3. 

 

Step 5: Calculation of various reliability parameters of washing unit at different spread levels using 

fuzzy λ-τ approach. 

 

Step 6: Defuzzification of fuzzified reliability parameters. 

 

Step 7: Behavior analysis of washing unit. 

 

4. System Description  
 

There are several working units serving different purposes in a paper plant. In this paper, one of the 

main functional unit i.e. the washing unit of a paper plant situated in northern India has been 

studied. Washing unit of the paper plant washes the wood pulp coming out of the pulping unit with 

water to remove any chemicals or black liquor and prepares the fine fiber from the pulp. The 

schematic diagram of washing unit [23] is depicted in Figure 2.  

The washing unit consists of four main subsystems, which are as follows: 

• Filter [S1]: This subsystem has a single filter unit, which extracts black liquor from prepared 

wood pulp. 

 

• Cleaner [S2]: This subsystem consists of three components, connected in parallel 

arrangement. These components are utilized for cleaning the pulp using centrifugal motion. 

Failure of one component reduces system efficiency and paper quality.  

 

• Screener [S3]: This subsystem consists of two components, which are connected in series. 

The wood pulp is strained by these components to separate large, unprepared and irregular 

fibers from it. The failure of any one component will result in the unit failure completely. 
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Decker [S4]: This subsystem consists two components connected in parallel arrangement. These 

components remove the chemicals/darkness from prepared wood pulp. The failure of both 

components will result in the poor quality of paper.      

 

Figure 2: The washing unit 

 

 

4.1. Reliability Analysis 

 

The basic arrangement of the washing unit is modelled by PN model, which is depicted by 

constituent structure in series/parallel combination with OR/AND transitions, shown in Figure 3. 

The steps associated with the fuzzy λ-τ approach are presented in following subsections. 
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Figure 3: PN model of washing unit 

 

4.1.1. Data Collection 

 

The data regarding the failure rate (λk) and repair time (τk) for each component of various 

subsystems acquired from the maintenance logbook/historical system records and analyzed by 

maintenance professionals [23], is represented in Table 1. 

Table 1: Data for λk and τk 

Subsystems  λk (Failures / h)  τk (h) 

Filter (S1) (k=1) 1 10-3 3 

Cleaner (S2) (k=2,3,4) 3 10-3 2 

Screener (S3) (k=5,6) 5 10-3 3 

Decker (S4) (k=7,8) 5 10-3 3 

 

4.1.2. Fuzzification of Data 

The data collected from various resources is inaccurate, imprecise and ambiguous as it is acquired 

under different types of operating and environmental conditions. As a consequence, uncertainties 

in failure/repair data of each component/subsystem of washing unit are quantified by TrFNs at 

distinct spreads (±15%, ±25% and ±40%). Figure 4 depicts the failure rate (λ1) and repair time (τ1) of 

the filter subsystem (S1) as TrFNs at ±15% spread. 

  
Figure 4: TrFNs for λ1 and τ1 of filter subsystem at ±15% spread 
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4.1.3. Reliability Parameters Estimation 

After acquiring fuzzified values for λ and τ for all basic components of the washing unit, the fuzzy 

values for λ and τ of the top position in the PN model of the washing unit are computed by the 

interval expressions of AND/OR transitions given in equations (4-7). The interval expressions of 

TrFNs have been calculated by applying interval arithmetic operations on the respective basic 

expressions of λ and τ for AND/OR gates demonstrated in Table 2 together with the extension 

principle and alpha-cut. 

Table 2: Basic expressions of λ and τ 

Logic gate                                    𝝀𝑶𝑹    𝝉𝑶𝑹           𝝀𝑨𝑵𝑫        𝝉𝑨𝑵𝑫 

n-input gate 

expression 

          ∑ 𝜆𝑘
𝑛
𝑘=1  ∑ 𝜆𝑘 

𝑛
𝑘=1 𝜏𝑘
∑ 𝜆𝑘
𝑛
𝑘=1

 ∏𝑙=1
𝑛 𝜆𝑙 {∑ ∏𝑙=1

𝑘≠𝑙

𝑛𝑛
𝑘=1 𝜏𝑙}  

∏ 𝜏𝑘
𝑛
𝑘=1

∑ {∏ 𝜏𝑘
𝑛
𝑘=1
𝑘≠𝑙

}𝑛
𝑙=1

 

 

 Interval expression AND transition 

𝜆𝛼 = [

∏ {(𝜆𝑘2 − 𝜆𝑘1)𝛼 + 𝜆𝑘1} . ∑ {∏ {(𝜏𝑘2 − 𝜏𝑘1)𝛼+𝜏𝑘1}
𝑛
𝑘=1
𝑘≠𝑙

}𝑛
𝑙=1

𝑛
𝑘=1 ,                

 ∏ {𝜆𝑘4 − (𝜆𝑘4 − 𝜆𝑘3)𝛼} .  ∑ {∏ {𝜏𝑘4 − (𝜏𝑘4 − 𝜏𝑘3)𝛼}
𝑛
𝑘=1
𝑘≠𝑙

}𝑛
𝑙=1

𝑛
𝑘=1

]  ,              (4) 

𝜏𝛼 = [
∏ {(𝜏𝑘2−𝜏𝑘1)𝛼+𝜏𝑘1}
𝑛
𝑘=1

∑ [∏ {𝜏𝑘4−(𝜏𝑘4−𝜏𝑘3)𝛼}
𝑛
𝑘=1
𝑘≠𝑙

]𝑛
𝑙=1

 ,
∏ {𝜏𝑘4−(𝜏𝑘4−𝜏𝑘3)𝛼}
𝑛
𝑘=1

∑ [∏ {(𝜏𝑘2−𝜏𝑘1)𝛼+𝜏𝑘1}
𝑛
𝑘=1
𝑘≠𝑙

]𝑛
𝑙=1

]  .                         (5) 

Interval expression OR transition 

 

 

 𝜆𝛼 = [∑ {(𝜆𝑘2 − 𝜆𝑘1)𝛼 + 𝜆𝑘1} ,   ∑ {𝜆𝑘4 − (𝜆𝑘4 − 𝜆𝑘3)𝛼}
𝑛
𝑘=1

𝑛
𝑘=1 ] ,                    (6) 

𝜏𝛼 = [
∑ [{(𝜆𝑘2−𝜆𝑘1)𝛼+𝜆𝑘1} .  {(𝜏𝑘2−𝜏𝑘1)𝛼+𝜏𝑘1}]
𝑛
𝑘=1

∑ {𝜆𝑘4−(𝜆𝑘4−𝜆𝑘3)𝛼}
𝑛
𝑘=1

 ,
∑ [{𝜆𝑘4−(𝜆𝑘4−𝜆𝑘3)𝛼} .  {𝜏𝑘4−(𝜏𝑘4−𝜏𝑘3)𝛼}]
𝑛
𝑘=1

∑ {(𝜆𝑘2−𝜆𝑘1)𝛼+𝜆𝑘1}
𝑛
𝑘=1

] .            (7) 

To assess the behavior of the washing unit quantitatively, the reliability parameters including, 

failure rate (λ), repair time (τ), mean time between failure (MTBF), expected number of failures 

(ENOF), reliability and availability are estimated utilizing the terms in Table 3 at spread levels ±15%, 

±25% and ±40% for various degrees of membership. 

Table 3: Reliability parameters 

Reliability parameters Expressions 

MTTR 
𝜏 =

1

𝜇 

MTTF 
1

𝜆 

MTBF 𝜏 +
1

𝜆 

ENOF   
𝜆 𝜇 𝑡

(𝜆 + 𝜇)
+

𝜆2

(𝜆 + 𝜇)2
[1 − 𝑒−(𝜆+𝜇)𝑡] 

Reliability 𝑒−𝜆𝑡 

Availability 

1

(𝜆 + 𝜇)
[𝜇 + 𝜆𝑒−(𝜆+𝜇)𝑡] 
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The variations of reliability parameters of washing unit at 15% spread for TrFN and TFN are 

depicted in Figures 5 (a-f).    

 

 

 

Figure 5: Fuzzy reliability parameters using TrFN and TFN at ±15% spread 
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4.1.4. Defuzzification 

 

The estimated fuzzy values of different reliability parameters should be defuzzified in order to 

implement maintenance activities. Among various defuzzification techniques, such as the bisector, 

weighted average, center of area, centroid, middle of max, etc. the center of area technique has been 

chosen here for defuzzification of reliability parameters, as this technique is easy to implement. The 

defuzzified value (�̃�) for fuzzy set �̃� is described as 

 

    �̃� =
∫ 𝑥𝜇�̃�(𝑥)𝑑𝑥
𝑥2
𝑥1

∫ 𝜇�̃�(𝑥)𝑑𝑥
𝑥2
𝑥1

                                                                            (8)  

where, 𝜇𝐴(𝑥) is the membership function of �̃� described on [x1 , x2]. The crisp and defuzzified 

results of reliability parameters for washing unit with three considered spreads are demonstrated 

in Table 4.    

Table 4: Crisp and defuzzified results 

Reliability 

parameters 

Crisp 

results 

Fuzzy 

Numbers 

Defuzzified results 

 ±15% ±25% ±40% 

Failure Rate 0.011150 Trapezoidal  0.011159 0.011167 0.011194 

Triangular  0.011157 0.011167 0.011197 

Repair Time 2.979753 Trapezoidal  3.577073 4.573931 8.204359 

Triangular  3.520117 4.631914 8.406379 

Reliability 0.894518 Trapezoidal  0.894518 0.894562 0.894673 

Triangular  0.894530 0.894567 0.894687 

Availability 0.968846 Trapezoidal  0.964473 0.959521 0.950455 

Triangular  0.964950 0.959287 0.949457 

MTBF (×102) 0.926632 Trapezoidal  0.948037 0.981285 1.087302 

Triangular  0.946023 0.983636 1.096407 

ENOF 0.108919 Trapezoidal  0.108659 0.108340 0.107706 

Triangular  0.108673 0.108323 0.107643 

 

Table 5: Percent changes in defuzzified values for TrFN and TFN 

Change in 

spread 

Fuzzy 

Numbers 

Percent changes in defuzzified values 

Failure 

rate 

Repair     

time 

Reliability Availability MTBF ENOF 

15% to 25% TrFN 0.07 (  ) 27.87 (  ) 0.005 (  ) 0.51 (  ) 3.51 (  ) 0.29 (  ) 

15% to 25% TFN 0.09 (  ) 31.58 (  ) 0.004 (  ) 0.59 (  ) 3.98 (  ) 0.32 (  ) 

25% to 40% TrFN 0.24 (  ) 79.37 (  ) 0.012 (  ) 0.95 (  ) 10.80 (  ) 0.59 (  ) 

25% to 40% TFN 0.27 (  ) 81.49 (  ) 0.013 (  ) 1.03 (  ) 11.47 (  ) 0.63 (  ) 
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4.2. Behavioral Study 

The fluctuations of fuzzy reliability parameters at 15% spread have been presented graphically in 

Figures 5 (a-f). The obtained membership curves are deformed trapeziums, with parabolic non 

parallel sides since fuzzy mathematics transforms left and right sides of membership curves of TrFN 

into curved ones [24]. The crisp and defuzzified results of reliability parameters for three distinct 

spread levels, obtained using TrFN and TFN both, in fuzzy λ-τ approach have been presented in 

Table 4. When the spread level increases, an increasing trend is observed in defuzzified values of 

parameters failure rate, repair time, reliability and MTBF, while, a decreasing trend is observed in 

values of system availability and ENOF in case of TrFN and TFN both. Also, the results obtained by 

the fuzzy λ-τ approach using TrFN follow the same pattern (increase or decrease) as those obtained 

by using TFN.  

          Table 5 presents the percent increase or decrease in values of different reliability parameters 

with spread level increase for both TrFN and TFN. It is observed that for spread increase from 15% 

to 25%, in case of TrFN, the failure rate of the system increases by 0.07%, while, for TFN, it increases 

by 0.09%. For a spread change from 25% to 40%, the failure rate increases by 0.24% for TrFN, while, 

for TFN, it increases by 0.27%. Similarly, for other reliability parameters, for the spread expansion 

from 15% to 25%, in case of TrFN, the repair time increases by 27.87% and MTBF increases by 3.51%, 

while, system availability decreases by 0.51% and ENOF decreases by 0.29%. On the other hand, in 

case of TFN, repair time increases by 31.58% and MTBF increases by 3.98%, while system availability 

and ENOF decrease by 0.59% and 0.32%, respectively. A very marginal and almost same increase is 

observed in system reliability for both TrFN and TFN. Similar inferences are drawn for spread 

expansion from 25% to 40% from Table 5. It is clear from these observations that when uncertainty 

level increases in terms of spread increase, the trend of reliability parameters (increase or decrease) 

remains almost the same for both TrFN and TFN. Therefore, the results obtained through the fuzzy 

λ-τ approach with TrFN are conservative in nature, which might be useful for system 

specialist/analysts for the future plan of implementation. Therefore, instead of crisp results, the 

maintenance plan should be based on defuzzified results.  

 

5. Conclusion 

 

The behavior of the washing unit in a paper plant has been analyzed in this study using the fuzzy 

λ-τ approach with TrFN. Using the fuzzy approach, some reliability parameters involving failure 

rate, repair time, MTBF, ENOF, reliability and availability are estimated and the trend of reliability 

parameters is evaluated for performance and behavior study of washing unit. Further, the obtained 

results by the fuzzy λ-τ approach with TrFN are compared with the results of the fuzzy λ-τ approach 

based on TFN. The implications of this fuzzy reliability approach to industry maintenance and 

operation planning are quite significant. Based on these investigations, suitable maintenance policy 

can be established that will assist maintenance managers in improving system performance by 

implementing appropriate preventive maintenance procedures. As a result, it will help in achieving 

a long time system availability and maximizing overall productivity of the paper plant. 
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Abstract 

The continuous Bernoulli distribution is a one-parameter probability distribution which is 

useful in analysis on machine learning. A handful of studies has been done to generalize 

the continuous Bernoulli distribution. In this paper, we introduced a wider extension of the 

continuous Bernoulli distribution by considering its distribution function as a generator. 

We referred to the proposed family as the continuous Bernoulli-generated family of 

distributions. Basic statistical treatments of the proposed family such as the density and 

cumulative distribution functions, survival and hazard rate functions, quantile, moments, 

moment generating function, and Renyi entropy are derived. The method of maximum 

likelihood is employed to estimate the unknown parameters of the family and the asymptotic 

behaviour of the parameter estimates is investigated via Monte Carlo simulation study. The 

waiting time (in minutes) of 100 Bank customers and the tensile strength measured in 

GPa, of 69 carbon fibers data sets formed the basis for real-life data fittings. Results obtained 

from the fitting of the two data sets when compared with some existing non-nested models 

revealed that the fittings were in favor of the continuous-Bernoulli Weibull distribution 

over the rest competing distributions. 

Keywords: Continuous Bernoulli Distribution; Moments; Quantile; Monte Carlo 

Simulation Study 

1. INTRODUCTION

The cumulative distribution function (cdf) of the one-parameter continuous Bernoulli distribution 

has been defined by [13] as 
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with the probability density function (pdf) associated to (1) obtained as 
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where the normalizing constant C  is defined as
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and ( ) ( ) ( )12 tanh 1 2 ln 1 ln  − − = − − , using the relation ( )1 1
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We denote a random variable X following the continuous Bernoulli distribution as ( )~X CB  . The 

continuous Bernoulli distribution has special application in machine learning. Particularly, in 

simulating the pixel intensities of natural images in deep learning and computer vision, mostly in 

the development of variational autoencoders. Similar to the one-parameter Topp-Leone and power 

distributions, the ( )CB   distribution is also a one-parameter distribution with support on a unit-

interval.  

In the theory of statistical analysis of lifetime data, bounded distributions have found a wide variety 

of applications ranging from the field of engineering, actuarial sciences, economics, biological 

sciences, etc. Particularly, when the data are recorded in rates, percentages and proportions. Over 

the years, the beta and Kumaraswamy distributions are the topmost bounded distributions to be 

reckon with in regards to fitting [0,1]-valued data sets, until the advent of several methodologies in 

developing unit-interval distributions. Notable among these distributions are the log-Lindley 

distribution proposed by [10], unit-logistic distribution developed by [14], log-Xgamma distribution 

introduced by [2], Marshall-Olkin Topp-Leone distribution developed by [17], unit-Burr XII 

distribution studied by [11], Marshall-Olkin extended unit-Gompertz distribution studied by [15], 

transmuted Marshall-Olkin extended Topp-Leone Distribution introduced by [18], Kumaraswamy 

unit-Gompertz distribution proposed by [1], etc. It is noteworthy to mention that the power 

continuous Bernoulli distribution due to [3] and transmuted continuous Bernoulli distribution due 

to [4], apparently the only extensions of the classical continuous Bernoulli distribution belong to this 

list. The goal of this paper is to develop a novel family of distributions based on the continuous 

Bernoulli distribution, which is hoped to birth more tractable and flexible lifetime distributions in 

analyzing real data sets. 

The rest of the paper is organized in the following sections. Section 2 is devoted to model 

formulation. Section 3 provides some sub-models from the proposed family of distributions. General 

mathematical treatments for the proposed family of distributions, the parameter estimation as well 

as the investigation of the asymptotic behaviour of the parameter estimates of the model via a Monte 

Carlo simulation are discussed in Section 4. Section 5 provides the applicability of the proposed 

family of distributions in real-life data fitting. Section 6 concludes the paper. 

2. MODEL FORMULATION

Suppose a random variable T follows a known probability distribution with pdf ( )f t , [20] adopted

the beta-generated technique developed by [6] to introduce the Topp-Leone-generated family of 
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distributions with cdf defined by 
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( )

( ) ( )( )

, 1

0
, , 2 1 2 , 0 1, 0,

, 2 , ,

G x

F x t t t dt t

G x G x

 



   

 

−
= − −   

= −

   (4) 

and the associated pdf obtained as 
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As an alternative to the technique in (4), [5] introduced the so-called type II Topp-Leone generated 

(TIITL-G) family of distributions based on the methodology of [19] who introduced an alternative 

gamma-generator reported in [22]. The cdf and pdf of TIITL-G family are, respectively, defined by  
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and 
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1
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−

= −     (7) 

Motivated by the simplicity of the technique in (6) and using the ( )CB   distribution defined in (3)

as the generator, we develop a novel class of distributions with the cdf defined by 
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The pdf corresponding to (8) is obtained as 
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A random variable T having the cdf and pdf defined in (8) and (9), respectively, is said to follow the 

continuous Bernoulli-generated ( ( ),CB G  − ) family of distributions. 

The survival and hazard rate functions of ( ),CB G  −  family of distributions are defined in (10) 

and (11), respectively, as 
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Furthermore, the quantile function of the ( ),CB G  −  family of distributions is obtained as 
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Whereas substituting 0.5u =  in (12), the median of the ( ),CB G  −  family of distributions is 

obtained as 
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The utility of (12) is in generating random numbers from the ( ),CB G  −  family of distributions, 

where u is generated from the uniform distribution satisfying 0 1.u 

3. SUB-MODELS OF THE ( ),CB G  − FAMILY OF DISTRIBUTIONS 

This section is concerned with the formulation of tractable models from the ( ),CB G  −  family of 

distributions based on the Weibull, Topp-Leone, Kumaraswamy and Burr XII distributions as the 

baseline distribution in (8). 

3.1 The continuous Bernoulli Weibull ( ), ,CBW     distribution 

Let T be a random variable following the Weibull distribution with cdf, ( ), , 1 tG t e
  −= −  and pdf, 

( ) 1, , , 0, , 0.tg t t e t
     − −=   We defined the cdf and pdf of the ( ), ,CBW     

distribution, respectively, as follows 
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3.2 The continuous Bernoulli Topp-Leone ( ),CBTL    distribution 

The one-parameter Topp-Leone distribution is defined by the density function 

( ) ( ) ( )
1

, 2 1 2 , 1, 0, 0 1,g t t t t t


   
−

 = − −       (16) 

and the associated cdf is given by 

( ) ( ), 2 , 1, 0, 0 1,G t t t t


   = −       (17) 

By inserting the pdf and cdf in (16) and (17) into (8) and (9), we defined the cdf and pdf of the 

( ),CBTL    distribution, respectively, as
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3.3 The continuous Bernoulli Kumaraswamy ( ), ,CBK    distribution 

The Kumaraswamy distribution developed by [12] is a bounded distribution with 2 shape 

parameters having the cdf, ( ) ( )1 1G t t


= − −  and pdf, ( ) ( )
1

1 1 , , 0.g t t t


   
−

−= − 

By this information, the cdf and pdf of the ( ), ,CBK    distribution is defined, respectively, as 
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3.4 The continuous Bernoulli Burr XII ( ), ,CBBXII     distribution 

A random variable T is said to follow the two-parameter Burr XII distribution, if the density function 

of T is defined by 

( ) ( )
( )11, , 1 , , 0, 0,g t t t t


     
− +

−= +    (22) 

and the corresponding cdf is given by 

( ) ( ), , 1 1 , , 0, 0,G t t t


   
−

= − +    (23) 

By inserting (22) and (23) into (8) and (9), we defined the cdf and pdf of the ( ), ,CBBXII   

distribution, respectively, as follows 
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4. MATHEMATICAL PROPERTIES OF THE ( ),CB G  − FAMILY OF 

DISTRIBUTIONS 

In this section, the mathematical properties of the ( ),CB G  −  family of distributions such as the

rth non-central moments, moment generating function (mgf) and Renyi entropy are discussed. The 

method of maximum likelihood estimation is employed to estimate the model parameters and the 

asymptotic behaviour of the parameter estimates are investigated through a Monte Carlo simulation 

study. 

4.1 The rth non-central moments 

Let T be a random variable having the density function of the ( ),CB G  −  family of distributions, 

then the rth non-central moments of T is defined by 
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Evaluating (26) yields the following results 
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Applying the Maclaurin’s series expansion of the exponential function, 

( ) ( )
 

1
1

( , ) 2 tanh 1 2

0

2 tanh 1 2
( , ) ,

!

n

G t n

n

e G t
n

  


−
−

 −
 

=

 −
 

=

so that (27) now becomes, 

( )
 

1

0

2 tanh 1 2
( , ) ( , ) ,

!

n

nr r

n

E T C t g t G t dt
n




  

− 

−
=

 −
   =

   

  RT&A, No.3 (74)  
Volume 18, September 2023  

433



Ngozi O. Ubaka and Friday Ewere  
THE CONTINUOUS BERNOULLI-GENERATED FAMILY OF 
DISTRIBUTIONS 

( )

( )

1

1

0

2 tanh 1 2
( , ) ,

! 1

n

r
n

n

C t h t dt
n n




 

− 

+
−

=

 −
 

=
+

 

( )

( )

1

1

0

2 tanh 1 2
.

! 1

n

r
n

n

C E Y
n n






−

+

=

 −
   =

 +
  (28) 

Where ( )  1( , ) 1 ( , ) ( , )
n

nh t n g t G t  + = + and 1
r

nE Y +
 
 

 are, respectively, the density function and rth 

non-central moments of the exp-G family of distributions with power parameter ( )1 .n+

Thus, we can express the rth non-central moments of the ( ),CB G  − family of distributions as a 

linear combination of the rth non-central moments of the exp-G family of distributions with power 

parameter ( )1 .n+  

For the purpose of numerical computation, we consider the two-parameter Weibull distribution as 

the baseline distribution. Hence, we compute the first four raw moments, variance, measures of 

skewness and kurtosis of the continuous Bernoulli Weibull ( ), ,CBW     distribution in Table 1. 

Table 1: The Moments of the ( ), ,CBW     distribution for selected values of the Parameters

   '

1
'

2
'

3
'

4
2 S K

0.4 0.5 3 1.1721 1.5417 2.2068 3.3774 0.1679 0.0905 2.7315 

5 1.0822 1.2283 1.4485 1.7636 0.0571 -0.3259 2.9750 

7 1.0524 1.1367 1.2549 1.4119 0.0292 -0.5465 3.4994 

3.0 3 0.6450 0.4669 0.3678 0.3098 0.0509 0.0889 2.7397 

5 0.7563 0.5999 0.4944 0.4206 0.0279 -0.3265 2.8830 

7 0.8147 0.6812 0.5822 0.5072 0.0175 -0.5310 3.6310 

0.8 0.5 3 0.9696 1.0912 1.3758 1.9007 0.1511 0.4223 2.9993 

5 0.9616 0.9824 1.0551 1.1827 0.0577 -0.0428 2.9123 

7 0.9659 0.9640 0.9896 1.0415 0.0310 -0.2721 3.2045 

3.0 3 0.5336 0.3305 0.2293 0.1743 0.0458 0.4181 2.9976 

5 0.6720 0.4798 0.3601 0.2821 0.0282 -0.0523 3.0015 

7 0.7478 0.5778 0.4592 0.3741 0.0186 -0.2719 3.0701 

Information from Table 1 shows that the CBW distribution exhibits a left-skewed, right-skewed, 

platykurtic and leptokurtic properties which are essential in modeling heavy-tailed distributions.  

4.2 The moment generating function 

The moment generating function (mgf) of a random variable T with density function ( )f t  is defined

by 

( ) ( ) ,qt qt
TM q E e e f t dt



−

 = =
   (29) 

Using similar approach in (29), we defined the mgf of the ( ),CB G  − family of distributions as
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Since, 
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=

4.3 The Renyi entropy 

An entropy of a random variable say T, measures the degree of randomness associated with the 

random variable T. The Renyi entropy of T is defined by [18] as 

( ) ( )
1

log , 0, 1.
1

R f t dt   




−
=  

−   (31) 

By substituting (9) into (31), we defined the Renyi entropy of a random variable T following the 

( ),CB G  − family of distributions as follows 
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Again, applying the Maclaurin’s series expansion of the exponential function, 
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so that (32) now becomes, 
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Two major properties of the Renyi entropy of a random variable T were identify by [9]. These include 

(i) The Renyi entropy of T can assume a negative value;

(ii) For any 
2 11 2 , R R     and equality holds if and only if T is a uniform random variable. 

Again, we compute the Renyi entropy of the ( ), ,CBW     distribution for selected values of the

parameters as shown in Table 2. 

Table 2: Numerical computation of the Renyi entropy of the ( ), ,CBW    distribution ( 0.8 = ) 

i
i

0.9, 0.5 = = 0.9, 3.0 = = 1.5, 3.0 = = 1.5, 0.5 = =

1 0.1 3.5600 1.5691 0.8868 2.0813 

2 0.3 2.4724 0.4815 0.3213 1.5158 

3 0.5 1.9849 -0.0060 0.0923 1.2869 

4 0.7 1.6766 -0.3142 -0.0433 1.1513 

5 0.9 1.4573 -0.5336 -0.1356 1.0589 

6 2 0.8522 -1.1387 -0.3746 0.8199 

7 4 0.4451 -1.5458 -0.5180 0.6765 

8 6 0.2343 -1.7565 -0.5793 0.6152 

9 8 0.0647 -1.9262 -0.6147 0.5799 
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The result in Table 2 validates the aforementioned properties of the Renyi entropy as suggested by 

[9]. 

4.4 Parameter estimation 

4.4.1 Maximum likelihood estimation 

The maximum likelihood estimation method is employed to estimate the parameters of the 

( ),CB G  − family of distributions. Suppose ( )1 2, , .... nt t t  are random samples of size n from the 

( ),CB G  − family of distributions, then the likelihood function is obtained as 

( ) ( ) ( )
( , )1 ( , )

1

, ( , ) 1 , , .

n
G t TG t

i

L t g t
      −

=

 = − =
    (34) 

By taking the natural logarithm of both sides of (34), the log-likelihood function is obtained as 

( )   ( )  
1 1 1

, ln ( , ) ln 1 ( , ) ln 1 ( , ) .

n n n

i i i

i i i

t g t G t G t     
= = =

= + − + −      (35) 

The maximum likelihood estimate, say ( )ˆ ˆˆ ,
T

  =  is obtained by differentiating the log-likelihood 

function in (35) with respect to the parameters and equating the corresponding function to zero as 

shown below 
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Further simplification yields, 
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and j is the thj element of the vector of parameter .

It is clear from these expressions that the parameters ̂  can be solved analytically, whereas the

parameter(s) ˆ
j may require the use of software program such as R program for estimation.

4.4.2 Simulation study 

In this subsection, we investigate the asymptotic behaviour of the parameter estimates of the 

( ), ,CBW     distribution. Random samples of size ( )15, 25,50,75,100n =  are generated from the 

( ), ,CBW     distribution at randomly fixed values of the parameters. A Monte Carlo simulation is

repeated 1000 times and the following quantities are computed: 

i) bias ( )
1

1
ˆ ,

N

i

i
N

 
=

= −
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ii) root mean square error (RMSE) ( ) 2

1

1
ˆ .

N

i

i
N

 
=

= −

iii) Coverage Probability of the 95% confidence interval of the estimates ˆ
i  given by

( ) ( ) ( )( )
2 2

0

1

1
ˆ ˆ ˆ ˆ ˆvar var .

N

i i

i

CP I Z Z
N

      
=

= −   +

Where ( ).I  is an indicator function and ( )̂  is the standard error of the estimate .i  

Table 3: Simulation results for bias, RMSE and CP of parameter estimates of ( ), ,CBW    distribution 

Parameters n Bias RMSE CP 

        

15 0.0042 0.3614 -0.2437 0.0752 0.5992 0.3598 0.986 0.988 0.908 
0.3 = 25 -0.0215 0.3395 -0.2522 0.0623 0.5566 0.3558 0.958 0.972 0.888 
0.6 = 50 -0.0578 0.3019 -0.2781 0.0527 0.4956 0.3441 0.948 0.970 0.864 
0.8 = 75 -0.0704 0.2741 -0.2996 0.0477 0.4877 0.3253 0.938 0.940 0.878 

100 -0.0961 0.2210 -0.3323 0.0421 0.4231 0.2926 0.958 0.964 0.910 

15 0.0324 0.1972 -0.1020 0.1422 0.2625 0.2880 0.978 0.958 0.918 
0.5 = 25 0.0093 0.1887 -0.1074 0.1057 0.2472 0.2808 0.988 0.986 0.890 
0.3 = 50 -0.0154 0.1628 -0.1158 0.0832 0.2404 0.2749 0.964 0.978 0.876 
0.6 = 75 -0.0184 0.1017 -0.1356 0.0828 0.2361 0.2741 0.942 0.966 0.872 

100 -0.0209 0.0772 -0.1648 0.0724 0.2227 0.2578 0.944 0.952 0.878 

15 0.1085 0.3271 0.0496 0.3043 1.2171 0.2746 0.956 0.998 0.914 
0.9 = 25 0.0599 0.1131 0.0401 0.2177 0.9368 0.2645 0.964 0.990 0.904 
3.0 = 50 0.0174 0.1082 0.0192 0.1920 0.8197 0.2632 0.926 0.956 0.852 
0.4 = 75 0.0026 0.0824 0.0186 0.1619 0.7159 0.2586 0.914 0.942 0.824 

100 -0.0043 0.0531 0.0079 0.1615 0.6676 0.2499 0.904 0.940 0.814 

15 0.0932 0.0618 0.0485 0.2758 0.3681 0.2862 0.978 0.940 0.910 
0.9 = 25 0.0439 0.0527 0.0468 0.2190 0.3658 0.2812 0.966 0.938 0.858 
0.6 = 50 0.0266 0.0523 0.0293 0.1871 0.3382 0.2702 0.938 0.928 0.818 
0.4 = 75 0.0082 0.0470 0.0256 0.1551 0.3023 0.2532 0.950 0.938 0.844 

100 0.0073 0.0452 0.0180 0.1524 0.3007 0.2521 0.922 0.912 0.828 

From Table 3, we observe that the bias and root mean square errors of the parameter estimates 

decrease as the sample size n increases. Moreover, the coverage probability of the parameter 

estimates approaches the nominal level of 95% confidence interval. 

5. REAL-LIFE DATA FITTINGS

The applicability of the proposed family of distributions is investigated in this section. To achieve 

this, two data sets including the waiting time (in minutes) of 100 Bank customers and the tensile 

strength measured in GPa, of 69 carbon fibers data sets are employed for data fittings. Some well-

known non-nested models such as the Kumaraswamy Weibull ( ( ), ,KW    ), Kumaraswamy

inverse Weibull ( ( ), ,KIW    ), Topp-Leone inverse Weibull ( ( ), ,TLIW    ), transmuted Weibull 

( ( ), ,TW    ) and the two-parameter Weibull distributions are employed alongside with the

proposed continuous-Bernoulli Weibull ( ( ), ,CBW    ) distribution to fit the two data sets. The

data sets for the analysis are given below. 
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Data set 1: The first data set represents the waiting time (in minutes) of 100 Bank customers reported 

in [16]. The data set was first used by [8] to illustrate the flexibility of the Lindley distribution over 

the exponential distribution in data fittings. The data are given as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9 

,1.9, 2.1, 2.6, 2.7,2.9, 3.1, 3.2, 3.3 ,3.5, 3.6, 4.0, 4.1, 4.2, 4.2,4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9,5.0, 

5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0,8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 

8.9, 8.9, 9.5, 9.6,9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 

13.6, 13.7, 13.9,14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0,19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 

31.6, 33.1, 38.5. 

Data set 2: The second data set comprises of the tensile strength measured in GPa, of 69 carbon fibers 

tested under tension at gauge length of 20mm reported in [21]. This data set was also employed by 

[7] to demonstrate the applicability of the power Lindley distribution. The data are represented as

follows: 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,

2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,

2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648,

2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090,

3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

Some popularly used model selection criteria such as the maximized log-likelihood (LL), Akaike

Information Criteria (AIC), and some goodness of fit test statistics such as the Komolgorov-Smirnov

(K-S), Crammer von Mises (W*) and Anderson Darling (A*) test statistics with their corresponding p-

value are considered to access the appropriate model for analyzing the two data sets. Tables 4 and 5

present the summary statistics for the fit of the distributions for the two data sets, respectively.

Table 4: Summary statistics for the waiting time data set 

Models Estimates       LL    AIC K-S W* A* 

(p-value) (p-value) (p-value) 

CBW 1.7229 = -317.3098 640.6196 0.0423 0.0248 0.1682 

0.0071 = (0.994) (0.9904)  0.9968) 

0.9356 =

KW 1.3727 = -317.6755 641.3510 0.0508 0.0414 0.2578 

0.2015 = (0.9587)  (0.9263)  (0.9660) 

1.3379 =

KIW 2.6384 = -332.9531 671.9062 0.1099 0.4051 2.6255 

1.1424 = (0.1785)  (0.0698)  (0.0427) 

1.5224 =−

TLIW 0.5235 = -327.1056 641.2112 0.0891 0.2449 1.6727 

12.5524 = (0.4044)  (0.1951)  (0.1402) 

0.9569 =

TW 1.5692 = -317.8896 641.7791 0.0481 0.0384 0.2599 

0.0157 = (0.9746)  (0.9420)  (0.9648) 

0.6181 =

Weibull 1.4584 = -318.7307 641.4614 0.0577 0.0609 0.4051 

0.0305 = (0.8929)  (0.8095)  (0.8433) 
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Table 5: Summary statistics for tensile strength data set 

Models Estimates       LL    AIC K-S W* A* 

(p-value) (p-value) (p-value) 

CBW 2.7806 = -49.0740 104.1481 0.0400 0.0142 0.1210 

0.1778 = (0.9999)  (0.9998)  (0.9998) 

0.0026 =

KW 3.9464 = -49.9210 105.8421 0.0675 0.0581 0.3901 

0.1690 = (0.9112)  (0.8276)  (0.8580) 

0.1312 =−

KIW 4.2588 = -56.2704 118.5408 0.1061 0.1995 1.3439 

2.8719 = (0.4193)  (0.2688)  (0.2185) 

3.7556 =−

TLIW 0.5468 = -58.0304 122.0608 0.1176 0.2617 1.7344 

34.8898 = (0.2960)  (0.1741)  (0.1294) 

3.4115 =

TW 5.9303 = -49.1325 104.2650 0.0433 0.0191 0.1714 

0.0021 = (0.9995)  (0.9979)  (0.9963) 

0.6363 =

Weibull 5.5045 = -49.5961 104.1923 0.0560 0.0343 0.2739 

0.0046 = (0.9819)  (0.9611)  (0.9563) 

From Tables 4 and 5, based on the conditions to measure superiority of models, the continuous-

Bernoulli ( ), ,CBW     distribution having the maximized log-likelihood value, least value in

terms of the AIC, K-S, W* and A* test statistics with the corresponding highest p-value, outperforms 

the competitor distributions in analyzing the two data sets, and thus becomes the most appropriate 

model in fitting the data sets.  

6. CONCLUSION

In this paper, we have developed a new class of probability distributions based on the continuous 

Bernoulli distribution. The proposed family is called the continuous Bernoulli-generated family of 

distributions. Mathematical derivation of some basic properties of the proposed family such as the 

density and cumulative distribution functions, survival and hazard rate functions, quantile, 

moments, moment generating function, and Renyi entropy were obtained. The method of maximum 

likelihood was employed to estimate the unknown parameters of the family and the asymptotic 

behaviour of the parameter estimates was investigated via Monte Carlo simulation study. Two real-

life data sets including the waiting time (in minutes) of 100 Bank customers and the tensile strength 

measured in GPa, of 69 carbon fibers data sets were employed to illustrate the applicability of the 

proposed family. Existing non-nested models such as the Kumaraswamy Weibull, Kumaraswamy 

inverse Weibull, Topp-Leone inverse Weibull, transmuted Weibull and the two-parameter Weibull 

distributions were employed alongside the proposed continuous-Bernoulli Weibull distribution to 
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fit the two data sets.  Results obtained from the fitting of the two data sets when compared using 

some model selection criteria and goodness of fit test statistics, revealed that the fittings were in 

favor of the continuous-Bernoulli Weibull distribution over the rest competing distributions. 
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Abstract 

Utilizing auxiliary information effectively in sample surveys can enhance the accuracy of 

estimations by capitalizing on the relationship between the main variable under study and the 

auxiliary variable. Estimators such as ratio, product, exponential, and regression estimators are 

frequently employed either during the estimation process, the design phase, or both. In everyday 

situations, it is common to incorporate information from one or two auxiliary variables to improve 

the precision of estimators. Auxiliary information has been in practice in sampling theory since the 

advent of modern sample surveys. Information on auxiliary variable having high correlation with 

the variable under study is quite useful in improving the sampling design. Cochran (1940) used the 

highly positively correlated study and auxiliary variable to propound the ratio estimator. Product 

estimator requires a high negative correlation between study and auxiliary variable. By reviewing 

the literature, it is concluded that applying the auxiliary information enhances the efficiencies of the 

estimators for estimating any parameter under consideration. So it is well established fact that the 

use of auxiliary variable technique improves the estimation process for target population. It is also 

noticed that ratio method of estimation is relatively simple and one of the commonly used methods 

of estimation. Due to limitations in terms of time and cost, sample surveys are often preferred over 

census surveys for collecting primary data. In these sample surveys, the ratio, product, and 

regression estimators are frequently employed to estimate the mean or other parameters of interest 

for the variable under study. To assess their efficiency, these estimators are compared based on their 

approximate mean squared errors. In this paper we proposed an exponential ratio type estimator for 

the estimation of finite population mean under systematic sampling. The mean square error of the 

proposed estimator is computed up to the first order of approximation and we find proposed 

estimator is efficient as compared to other existing estimators. Furthermore this theoretical result is 

supported by numerical examples as well. 

Keywords: Systematic sampling, exponential ratio type estimator, mean square error, efficiency. 

1. Introduction

In the literature of survey sampling, it is well known that the efficiencies of the estimators of 

the population parameters of the study variable can be increased by the use of auxiliary 

information related to auxiliary variable x, which is highly correlated with the study variable y. 

Auxiliary information may be efficiently utilized either at planning stage or at design stage to 

arrive at an improved estimator compared to those estimators, not utilizing auxiliary information. 

A simple technique of utilizing the known information of the population parameters of the 

auxiliary variables is through ratio, product, and regression method of estimations using different 

probability sampling designs such as simple random sampling, stratified random sampling, cluster 

sampling, systematic sampling, and double sampling. In the present paper we will use knowledge 

of the auxiliary variables under the framework of systematic sampling. Due to its simplicity, 
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systematic sampling is the most commonly used probability design in survey of finite populations; 

see W. G. Madow and L. H. Madow [23]. Apart from its simplicity, systematic sampling provides 

estimators which are more efficient than simple random sampling or stratified random Sampling 

for certain types of population; see Cochran [24], Gautschi [25], and Hajeck [9]. later on the 

problem of estimating the population mean using information on auxiliary variable has also been 

discussed by various authors including Quenouille [15], Hansen et al. [12], Swain [1], Singh [14], 

Shukla [16], Srivastava and Jhajj [21], Kushwaha and Singh [10], Bahl and Tuteja [20], Banarasi et 

al. [2], H. P. Singh and R. Singh [5], Kadilar and Cingi [3], Koyuncu and Kadilar [17], Singh et al. 

[8], Singh and Solanki [6], Singh and Jatwa [7], Tailor et al. [22], Khan and Singh [13], and Khan 

and Abdullah [11], R. Singh et al. [18], R. Singh et al. [19], D. S. Robson [4]. 

 Consider a finite population 𝑈 = 𝑈1, 𝑈2, 𝑈3 … … . . 𝑈𝑁 of size N units numbered from 1 to N in 

some order .A sample of size n is taken size 𝑛 units is taken at random from the first 𝑘 units and 

every 𝑘th subsequent unit; then, = 𝑛𝑘 where 𝑛 and 𝑘 are positive integers; thus, there will be 𝑘 

samples (clusters) each of size 𝑛 and observe the study variate 𝑦 and auxiliary variate 𝑥 for each 

and every unit selected in the sample 

Let (𝑦𝑖𝑗,𝑥𝑖𝑗) 𝑓𝑜𝑟 𝑖 = 1.2 … . . 𝑘 ,  𝑗 = 1,2 … … . . 𝑛 denote the value of 𝑗th unit in the 𝑖th sample. 

Then, the systematic sample means are defined as follows: 

�̅�𝑠𝑡 = 𝑡0 = 1/𝑛 ∑ 𝑦𝑖𝑗,
𝑛
𝑗=1  and �̅�𝑠𝑡 = 𝑡0 = 1/𝑛 ∑ 𝑦𝑖𝑗,

𝑛
𝑗=1  are the unbiased estimators of the 

population means 

�̅� = 1/𝑛 ∑ 𝑦𝑖𝑗,
𝑛
𝑗=1  and �̅� = 1/𝑛 ∑ 𝑥𝑖𝑗,

𝑛
𝑗=1 𝑜𝑓  𝑦  𝑜𝑛 𝑥 

To obtain the properties of the estimators up to first order of approximation, we use the 

following errors terms:  

𝑒0 = �̅�𝑠𝑦𝑠 − �̅� �̅� ,⁄ 𝑒1 = �̅�𝑠𝑦𝑠 − �̅� �̅� ,⁄ 𝑒2 = 𝑧�̅�𝑦𝑠 − �̅� �̅� ,⁄ 𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑒1) = 0 𝑓𝑜𝑟 𝑖 = 0,1 𝑎𝑛𝑑 2

and 

𝜌𝑦𝑥 =
𝑠𝑦𝑥

𝑠𝑦𝑠𝑥

𝜌𝑦𝑧 =
𝑠𝑦𝑧

𝑠𝑦𝑠𝑧

𝜌𝑥𝑧 =
𝑠𝑥𝑧

𝑠𝑥𝑠𝑧

𝑘 =
𝜌𝑦𝑥𝐶𝑦

𝐶𝑥

𝑘∗ =
𝜌𝑦𝑧𝐶𝑦

𝐶𝑧

𝜌∗
𝑦

= {1 + (𝑛 − 1)𝜌𝑦}

𝜌∗
𝑥

= {1 + (𝑛 − 1)𝜌𝑥}

𝜌∗
𝑧

= {1 + (𝑛 − 1)𝜌𝑧}

𝜌∗∗ =
𝜌∗

𝑦

𝜌∗
𝑥
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𝜌2
∗∗ =

𝜌∗
𝑦

𝜌∗
𝑧

𝜌1
∗∗ =

𝜌∗
𝑦

𝜌∗
𝑧

Where 

 𝜌𝑦 , 𝜌𝑥 , 𝜌𝑧 are intra class correlation among the pair of units for the variables y,x and z. 

2. Estimators in Literature:

In this part, we consider some estimators of the finite population mean in the sampling 

literature. The variance and MSE’s of all the estimators computed here are obtained in the first 

order of approximation. 

The variance of the unbiased estimator for population mean is 

𝑣𝑎𝑟(𝑡0) = 𝜆�̅�2𝜑0  (1.1) 

Swain [14] and Shukla [16] suggested the classical ratio and product estimators for finite 

population mean by are given by  

 𝑡1 = �̅�𝑠𝑦 (
�̅�

�̅�𝑠𝑦

)  (1.2) 

𝑡2 = �̅�𝑠𝑦𝑒𝑥𝑝 (
𝑧�̅�𝑦

𝑧̅
)  (1.3) 

The mean square errors of the estimators to the first order of approximation are given as 

follows: 

𝑀𝑆𝐸(𝑡1) = 𝜆�̅�2[𝜑0 + 𝜑2(1 − 2𝑘√𝜌∗∗)]  (1.4) 

MSE(𝑡2) = 𝜆�̅�2[𝜑0 + 𝜑3(1 + 2𝑘√𝜌2
∗∗)]  (1.5) 

Singh et al. [20] utilizing the known knowledge of the auxiliary variable, suggested the 

following ratio and product type exponential estimators: 

𝑡3 = �̅�𝑠𝑦𝑒𝑥𝑝 (
�̅� − �̅�𝑠𝑦

�̅� + �̅�𝑠𝑦

)  (1.6) 

𝑡4 = �̅�𝑠𝑦𝑒𝑥𝑝 (
�̅�𝑠𝑦 − �̅�

�̅�𝑠𝑦 + �̅�
)  (1.7) 

MSE(𝑡3) = 𝜆�̅�2 [𝜑0 +
𝜑2

4
(1 − 4𝑘√𝜌∗∗)]  (1.8) 

MSE(𝑡4) = 𝜆�̅�2 [𝜑0 +
𝜑2

4
(1 + 4𝑘√𝜌∗∗)]  (1.9) 

Tailor et al. [25] define the following ratio-cum product estimator for the population mean �̅�: 
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𝑡5 = �̅�𝑠𝑦 (
�̅�

�̅�𝑠𝑦

) (
𝑧�̅�𝑦

�̅�
)   (2.0) 

The mean square error of the estimator 𝑡6 up to first order of approximation, is given by 

MSE(𝑡5) = 𝜆�̅�2[𝜑0 + 𝜑2(1 − 2𝑘√𝜌∗∗) + 𝜑3 (1 − 2𝑘∗∗√𝜌1
∗∗) + 2𝜑4√𝜌𝑦

∗𝜌𝑧
∗]  (2.1) 

Where, 

𝜑0 = 𝜌𝑦
∗𝐶𝑦

2

𝜑1 = 2𝐶𝑥
2

√𝜌𝑦
∗𝜌𝑥

∗

𝜑2 = 𝜌𝑥
∗𝐶𝑥

2

𝜑3 = 𝜌𝑧
∗𝐶𝑧

2

𝜑4 = 𝑘∗𝐶2
𝑧

3. Proposed estimator

In this section, we have proposed an exponential ratio type estimator for population mean of 

the study variable y under systematic sampling as given by: 

𝑡𝑅𝐾 = y̅sy (
x̅sy

X̅
)

α

exp (
X̅ − x̅sy

X̅ + x̅sy

)  (2.2) 

The first order of approximation of the above error terms is given by 

𝐸(𝑒0
2) = 𝜆𝜌𝑦

∗𝐶𝑦
2,

𝐸(𝑒1
2) = 𝜌𝑥

∗𝐶𝑥
2

𝐸(𝑒0𝑒1) = 𝜆𝐶2
𝑥√𝜌𝑦

∗𝜌𝑥
∗

Where, 𝜆 = (
𝑁−1

𝑛𝑁
)

Expressing    (2.2) in terms of e’s 

𝑡𝑅𝐾 = �̅�(1 + 𝜀0)(1 + 𝜀1)𝛼𝑒𝑥𝑝 (
�̅� − �̅�(1 + 𝜀1) 

�̅� + �̅�(1 + 𝜀1) 
)

𝑡𝑅𝐾 = �̅�(1 + 𝜀0)(1 + 𝜀1)𝛼𝑒𝑥𝑝 [
𝜀1

2
(1 +

𝜀1

2
)

−1

]   (2.3) 

𝑡𝑅𝐾 = �̅�(1 + 𝜀0)(1 + 𝜀1)𝛼𝑒𝑥𝑝 [
𝜀1

2
(1 +

𝜀1

2
+

𝜀1
2

4
+ ⋯ )]

𝑡𝑅𝐾 = �̅�(1 + 𝜀0) (1 + 𝛼𝜀1 +
𝛼(𝛼 − 1)

2
𝜀1

2 + ⋯ ) 𝑒𝑥𝑝 [
𝜀1

2
(1 +

𝜀1

2
+

𝜀1
2

4
+ ⋯ )]  (2.4) 

From (2.4) 

𝑡𝑅𝐾 − �̅� ≅ �̅� [𝛼𝜀1 +
𝛼(𝛼 − 1)

2
𝜀1

2 +
𝜀1

2
+

𝛼𝜀1
2

2
+

3𝜀1
2

8
+ 𝜀0 + 𝛼𝜀1𝜀0 +

𝜀0𝜀1

2
]  (2.5) 

Squaring (2.5) and then taking expectation on both sides, the MSE of the estimator �̅�𝑅𝐾   is 
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𝑀𝑆𝐸(𝑡𝑅𝐾) = 𝜆�̅�2 [𝜑0 +
𝐾𝜑1

2
+ 𝛼𝐾𝜑1 + (𝛼2 + 𝛼)

𝜑2

2
+

𝜑2

8
]  (2.6) 

Obtain the optimum 𝛼 to minimize 𝑀𝑆𝐸(�̅�𝑅𝐾)  . Differentiating  𝑀𝑆𝐸(�̅�𝑅𝐾) w.r.t 𝛼 and 

equating the derivative to zero. Optimum value of 𝛼 is given by: 

𝛼 = −
(𝐾𝜑1 + 𝜑2)

2𝜑2

Substituting the value of 𝛼𝑜𝑝𝑡 in (2.6), we get the minimum value of �̅�𝑅𝐾   as: 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑅𝐾) = 𝜆�̅�2𝜑0[1 − 𝜌𝑦𝑥
2]  (2.7) 

It follows from (2.7) that the proposed estimator �̅�𝑅𝐾  at its optimum condition is equal 

efficient as that of the usual linear regression estimator. 

4. Efficiency Comparisons

In this section, the MSE of traditional estimators𝑡0,𝑡1, 𝑡2, 𝑡3, 𝑡4and 𝑡5are compared with the 

MSE of proposed estimator �̅�𝑅𝐾 . 

From (1.1) - (2.0) and (2.1) 

[𝑣𝑎𝑟(𝑡0) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

[𝜆�̅�2𝜑0𝜌𝑦𝑥
2]  > 0  (2.8) 

[𝑀𝑆𝐸(𝑡1) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

𝜆�̅�2[𝜑0(1 − 2𝑘√𝜌∗∗)] − [𝜆�̅�2𝜑0𝜌𝑦𝑥
2] > 0  (2.9) 

[𝑀𝑆𝐸(𝑡2) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

𝜆�̅�2[𝜑0(1 + 2𝑘√𝜌∗∗)] − [𝜆�̅�2𝜑0𝜌𝑦𝑥
2] > 0  (3.0) 

[𝑀𝑆𝐸(𝑡3) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

𝜆�̅�2 [
𝜑0

4
(1 − 4𝑘√𝜌∗∗)] − [𝜆�̅�2𝜑0𝜌𝑦𝑥

2]  > 0  (3.1) 

[𝑀𝑆𝐸(𝑡4) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

𝜆�̅�2 [
𝜑0

4
(1 + 4𝑘√𝜌∗∗)]  − [𝜆�̅�2𝜑0𝜌𝑦𝑥

2]  > 0  (3.2) 

[𝑀𝑆𝐸(𝑡5) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾)] > 0 

𝜆�̅�2[𝜑0(1 − 2𝑘√𝜌∗∗) + 𝜑3 (1 − 2𝑘∗∗√𝜌1
∗∗) + 2𝜑4√𝜌𝑦

∗𝜌𝑧
∗] − [𝜆�̅�2𝜑0𝜌𝑦𝑥

2] > 0  (3.3) 

5. Empirical Study

To examine the merits of the proposed estimator over the other existing estimators at 

optimum conditions, we have considered natural population data sets from the literature. The 

sources of population are given as follows. 

(Source: Tailor et al. [20]). Consider Population 

𝑁 = 15 , 𝑛 = 3, �̅� = 44.47, �̅� = 80, �̅� = 48.40, 𝐶𝑦 = 0.56, 𝐶𝑥 = 0.28, 𝐶𝑧 = 0.43 

𝑆𝑦
2 = 2000, 𝑆𝑥

2 = 149.55, 𝑆𝑧
2 = 427.83, 𝑆𝑦𝑥 = 538.57, 𝑆𝑦𝑧 = −902.86, 𝑆𝑥𝑧 = −241.06,

446



Ayed AL e’damat, Khalid Ul Islam Rather 

A NEW EXPONENTIAL TYPE RATIO ESTIMATOR …. 

RT&A, No 3 (74) 
Volume 18, September 2023 

𝜌𝑦𝑥 = 0.9848, 𝜌𝑦𝑧 = −0.9760𝜌𝑥𝑧 = −0.9530, 𝜌𝑦 = 0.6652, 𝜌𝑥 = 0.707, 𝜌𝑧 = 0.5487. 

In order to find (PREs) of the estimator, we use the following formula and 𝑃𝑅𝐸(𝑡𝛼 , 𝑡0) =

𝑀𝑆𝐸(𝑡0)/𝑀𝑆𝐸(𝑡𝛼) × 100, For 𝛼 = 0,1,2,3,4,5 and 𝑅𝐾 

Table 1: The percent relative efficiency of different estimators with respect to 𝑡0. 

Population 

Estimator  MSE(𝑡𝛼)  𝑃𝑅𝐸(𝑡𝛼 , 𝑡0) 

𝑡0                 1455.08  100.00 

𝑡1                  373.32  389.62 

𝑡2          768.06  189.45 

𝑡3                  820.09  177.43 

𝑡4                  1044.42  139.32 

𝑡5                  187.08  777.79 

𝑡𝑅𝐾          43.88  3316.04 

Fig 1: Estimator   V/s  MSE(𝑡𝛼) 

Fig 2: Estimator   V/s  𝑃𝑅𝐸(𝑡𝛼 , 𝑡0) 
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6. Conclusion

In this article, an exponential ratio type estimator has been proposed under systematic design. 

The mathematical form of the estimator has been derived and its condition of efficiencies has been 

formulated with respect to some existing estimators from literature. The properties of the proposed 

estimator are obtained up to first order of approximation .it has been seen that the suggested 

estimator performed better than the existing estimator both theoretically and empirically. 
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Abstract 

 

This paper presented a study of the failure rate by introducing the effect of influencing variables. 

These variables have a random effect which depends on the external environment of the system. 

There are a multitude of variables and their modeling is difficult. The perturbation, to the failure 

rate, caused by external factors, has a direct impact on the time scale by the acceleration (or 

deceleration) of the degradation of the system. Therefore, the adopted methodology consists in 

introducing a perturbation on the Weibull parameters and studying its effect on the failure rate. 

Weibull parameters are considered random variables with a Gaussian distribution. The failure rate 

formulation in a random environment is offered through Weibull distribution. A case study of the 

hemodialysis machine is offered to illustrate the proposed approach and validate the results. The 

simulations presented show the failure rate statistics for different configurations of the Weibull 

distribution. The validation of the results was done using Monte Carlo simulations.  

 

Keywords: Failure rate, Uncertain Factor, Gaussian perturbation, Weibull distribution 

  

1. Introduction 
 

Reliability is the probability that a system will perform a required function for a given period of 

time, under specified operating conditions [1, 2]. The conditions are all external constraints, 

whether mechanical, chemical, atmospheric, human, others. Dynamic reliability expands the static 

concept of failure by considering it dynamically over time [3]. This development may be due to 

variations in parameters influencing dysfunctional behavior (dynamic process, aging, etc.), 

modification of the system structure or environmental constraints [4].  

The reliability and the functioning safety of the medical material are essential to ensure that a 

machine functions in accord with constructor instructions and assurances the patients and 

operators security. Damage of medical equipment may touch the healthcare services efficiency and 

causes severe harm to the patients and troubles the environment [5]. Scientific research plays an 

important role in today's society faced with major global challenges such as climate change, 

eradicating poverty and improving the quality of healthcare. 
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There are several methods and procedures employed to develop the reliability of the medical 

equipment. Dhillon [6] defined the maintenance of medical equipment as all actions necessary for 

retaining in, or returning to, a specified functioning condition. The aim of the study presented by 

Bahreini [7] is the extraction of the factors affecting the medical equipment reliability. The objective 

of the work presented by Khalaf [8] is the development of a mathematical approach that studies 

the influence of maintenance on the survival probability of medical equipment based on operating 

history and useful life. 

Failure is a partial or total loss of the properties of an element which significantly decrease 

and leads to the total loss of its operating capacity. This failure may be due to its design, 

manufacture, installation, or even maintenance [9, 10, 11, 12]. Any production systems are subject 

to aging and wear [13]. These physical phenomena cause the failure, which has a significant impact 

on the cost of operating the system or on security. 

In the literature, several authors have presented numerous classifications of failures. For 

example, Rausand [14] classified failures by cause, time, detectability, and degree. Deloux [15] 

categorized failures according to cause, on the one hand, and the impact on system performance, 

on the other. The classification of failures by cause differentiates between random and systematic 

failures. Classification of failures based on their impact on system performance distinguishes 

intermittent failures from extensive failures.  

It is found that the failure rate in the different reliability databases vary significantly [16]. The 

causes of these discrepancies are numerous, for example, because of the characteristics of the 

equipment, the operating conditions, and the operating environment, the lack of precision in the 

information supplied and the increasing complexity of a reliable evaluation of equipment 

comparable to that of a component. 

Stochastic degradation models are mathematical models that describe the degradation of the 

system over time. Degradation models were proposed as a tool to describe the state of a 

production system, to constitute a maintenance policy, to measure system availability and to 

obtain optimal maintenance periods [17]. 

The mechanisms of component degradation (operating conditions, fatigue, vibrations and 

other stresses, etc.) lead to time-dependent modeling of failure rates. Many studies show the 

impact that aging mechanical systems have on reliability as demonstrated [18]. Mechanical 

components are characterized by multiple, often complex degradation mechanisms of various 

origins (cracking, creep, wear, fatigue cracking, etc.) [19, 20]. These degradation modes include 

several parameters like material and dimensional characteristics, external stresses, etc. [21].  

In some studies [22], two main types of models associated with the effects of aging factors are 

identified: physical models and empirical models. Booher [23] destined three models of 

degradation: shock model, wear model and hybrid model which combines the two processes 

(shock and wear). Degradation models may also be classified, according to Deloux [15], in two 

categories: discrete degradation models and continuous degradation models. 

Influence factors are either internal or external factors that affect the reliability of the system. 

The influence can be positive by causing a reduction in the number of failures or, on the contrary, 

have negative effects on reliability. Depending on the type of system studied (human, electric/ 

electronic, mechanical), observed factors are generally different (human or organizational factors, 

system intrinsic or extrinsic factors). A classification of these factors, based on the life stages of the 

system under consideration, was proposed by Brissaud [24]: design factors, manufacturing factors, 

system installation factors, factors which influence system usage and maintenance factors. We can 

add to this list human and organizational factors that generally have a broader impact on the 

system [25]. 
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The influence coefficients are calculated using physical relations, which are functions of many 

parameters like temperature, pressure, dimensions, properties of fluids and materials, etc. For 

many electrical and electronic components, failure rates, constant over time, are expressed 

analytically based on defined parameters. Couallier [26] developed a model adapted to the 

aeronautical maintenance data of on-board systems, some components of which are reliable 

according to the condition of other components. Without a priori knowledge of the physical 

relationships which link influencing factors to failure rates, statistical methods try to express 

correction coefficients. Ouakki [27] presented (figure 1) a cause-effect diagram (Ishikawa diagram) 

in order to better describe the different factors that cause the reliability varies. 

 

 

Figure 1: Cause and effect diagram of the reliability 

 

The failure rate of mechanical systems is not constant and continually changes over time as a 

result of degradation phenomena such as wear, aging, etc. Any system is related to its external 

environment, the consideration of external influence variables allows a more robust modeling of 

the failure rate of the system. Several researchers proposed a failure rate model taking into account 

deterioration over time and influence factors where a Cox model is integrated to study the effect of 

the stress [24, 28, 29]. This is a semi-parametric model which describes the failure rate as a function 

of the basic failure rate of the system, which depends only on the time, and the influence function 

which depends only on the state of the influencing factors, it is independent of time. Several 

researchers have adopted the Cox model to estimate the influence function [24, 29, 30, 31, 32, 33]. 

The construction of this model requires the collection of input data, the preparation of a coding for 

the states of the influence factors, the determination of the parameters of the influence function, the 

determination of the parameters of the base failure rate and finally the synthesis of the results. It 

should be noted that in this model, the measures are always subject to a certain degree of 

uncertainty, such that the states of the influence factors can vary over time. The effectiveness of 

this model is closely associated with the quantity and quality of information available for the 

study. An analysis of the material is then required to select the influencing factors to consider. 

In engineering studies, the distribution that best characterizes a set of data should be chosen 

[34]. In industry area, the Weibull distribution is one of the most used probability density 

functions. According to Lyonnet [35], the Weibull model is the best appropriate when carrying out 

reliability analysis for mechanical components. The main advantage of this distribution is its 

ability to account for small samples of failure data. Nevertheless the graphical method is 
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recommended in case of little model size data in terms of the estimation precision and accuracy 

[36]. The flexibility in fitting different failure modes and in simulating many other statistical 

distributions is one of the important attractions of the mentioned distribution [37]. The Weibull 

probability analysis is widely employed for studying the life data and can be applied to several 

situations. Weibull distribution is used in various domains [38] such as aerospace, electronics, 

materials, automotive industries and civil aviation [39].  This statistical approach can be an 

important way to analysis the reliability of semi-conductors, ball bearings, engines, spot weldings, 

biological organisms… [40]. Ahsan [41] studied the reliability of gas turbine using three 

parameters Weibull distribution based on historical data. 

This paper presented a study of failure rate in stochastic environment by introducing the 

effect of influential variables. These variables have a random effect that depends on the external 

environment of the system. The external factors, which can influence the reliability of a system, are 

much diversified and their modeling is difficult. An approach to characterize the failure rate is 

proposed, that takes into account the consequences of these factors without modeling them. Our 

methodology consists in introducing a perturbation on the Weibull parameters and studying its 

effect on the failure rate. This perturbation is the result of influence variables. Weibull parameters 

are considered random variables with a Gaussian distribution. The formulation of the failure rate 

in a stochastic environment is developed through the Weibull distribution. A case study is offered 

to illustrate the proposed approach and validate the results. The simulations presented show the 

failure rate statistics for different configurations of the Weibull distribution. 

 

2. Failure rate estimation by Weibull distribution in stochastic environment 
 

The two-parameter Weibull distribution is a continuous probability distribution widely used for 

analyzing reliability and lifetime data [42]. The Weibull distribution is characterized by two 

parameters β and η, where β is the shape parameter and η is the scale parameter. 

The failure rate is expressed through the Weibull distribution by the following function: 

    𝜆(𝑡) =
𝛽

𝜂
(

𝑡−𝛾

𝜂
)

𝛽−1

                                                                      (1) 

The Weibull distribution is characterized by two parameters (β, η):  

β:  is the shape parameter, (β >0). This parameter gives indications on the failure mode and on 

the evolution of the failure rate over time. 

η:  is the scale parameter, Which specifies the order of magnitude of the average lifespan.    

The reliability analysis is based on a deterministic approach. In fact, all reliability parameters, 

which are uncertain, are described by unfavorable characteristic values. This often leads to 

unwarranted modeling and dimensioning. In that sense, behavioral prediction should preferably 

be in terms of probabilities. Uncertainties are related to variability in physical and geometric 

parameters, to fluctuations in load conditions, to stress boundary conditions and also to physical 

laws and simplifying assumptions used in the modeling process [21]. It is therefore the analysis of 

reliability by probabilistic approaches, taking into account the dispersion of the variables described 

by probabilistic distributions. Several factors contribute to the degradation of the component or 

entity. Consequently, the lifetimes must be explained by the different variables (degradation 

factors) contributing to the failure. 

Several researchers [22, 29] have considered that the influencing variables mainly affect the 

weibull parameters. Their effect is to slow down or accelerate the degradation. The influence of 

these variables is random and hardly modelable. In this work, we will introduce a perturbation in 

the weibull parameters due to the influencing variables that contribute to the degradation and our 

objective is to estimate the effect of this perturbation on the failure rate. The shape and scale 
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parameters are modeled by random variables which follow Gaussian distributions and written in 

the following form: 

 

𝛽 = 𝛽 + 𝜎𝛽𝜀                                                                            (2) 

ɳ̃ = ɳ + 𝜎ɳ𝜀                                                                            (3) 

Where 

• β̃, ɳ̃ ∶  Random Weibull parameters following a Gaussian distribution, 

• β, ɳ:  The mean of the random weibull parameters, 

• σβ, σɳ: The standard deviation of the weibull parameters (disturbance around the mean), 

• ε: Reduced centered Gaussian variable, 

The deterministic weibull parameters are represented by their means β and ƞ. The 

perturbation caused by several external influencing factors is characterized by their standard 

deviation σβ and σƞ. Hence, our study consists of estimating the effect of this perturbation on the 

failure rate using the Weibull distribution. The random failure rate is expressed as a random 

function following a Gaussian distribution as follow: 

�̃�(𝑡) = 𝜆(𝑡) + 𝜎𝜆(𝑡)𝜀                                                                    (4) 

Where λ and σλ  are the mean and the standard deviation of the failure rate, respectively.  

 According to Weibull distribution, the random failure rate is offered by the following 

expression:  

    �̃�(𝑡) =
�̃�

�̃�
(

𝑡

�̃�
)

�̃�−1

                                                                         (5) 

In order to formulate the mean and the standard deviation of the failure rate, we can write: 

𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝑙𝑜𝑔(�̃�) + (𝛽 − 1)[𝑙𝑜𝑔(𝑡) − 𝑙𝑜𝑔(�̃�)]                                   (6) 

  𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(�̃�) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)                                        (7) 

To linearize the failure rate equation, we will use the first-order Taylor series expansion of 

log ( λ̃(t)), log (β̃) and log (η̃) in the vicinity of their mean, we obtain: 

𝑙𝑜𝑔 (�̃�(𝑡)) = 𝑙𝑜𝑔(𝜆(𝑡)) +
𝜎𝜆(𝑡)

𝜆(𝑡)
𝜀                                                          (8) 

𝑙𝑜𝑔(𝛽) = 𝑙𝑜𝑔(𝛽) +
𝜎𝛽

𝛽
𝜀                                                                (9) 

𝑙𝑜𝑔(ɳ̃) = 𝑙𝑜𝑔(ɳ) +
𝜎ɳ

ɳ
𝜀                                                              (10) 

Introducing equations (8), (9) and (10) in equation (7), we can write: 

 𝑙𝑜𝑔(𝜆(𝑡)) +
𝜎𝜆(𝑡)

𝜆(𝑡)
𝜀 = [𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(𝜂) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)] + [

𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)] 𝜀 

(11) 

The identification of the different terms in equation (11) leads to extract the mean and the 

standard deviation of the failure rate as: 

𝑙𝑜𝑔(𝜆(𝑡)) = 𝑙𝑜𝑔(𝛽) − 𝛽 𝑙𝑜𝑔(𝜂) + (𝛽 − 1) 𝑙𝑜𝑔(𝑡)                                           (12) 

And 
𝜎𝜆(𝑡)

𝜆(𝑡)
=

𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)                                                 (13) 

Finally, we obtain: 

    𝜆(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

                                                                  (14) 

𝜎𝜆(𝑡) = 𝜆(𝑡) [
𝜎𝛽

𝛽
−

𝛽

𝜂
𝜎ɳ − 𝜎𝛽 𝑙𝑜𝑔(𝜂) + 𝜎𝛽 𝑙𝑜𝑔(𝑡)]                                        (15) 
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3. Numerical results and discussion 

 

3.1. Case study: Weibull distribution analysis of the Hemodialysis machine 
 

Hemodialysis machines are one of the important medical equipment which is directly responsible 

for the patient’s life, used to treat kidney failure. The reliability of hemodialysis machines is very 

important for nephrologists to guarantee not only patient safety but also efficiency and continuity 

of treatment.  Weibull distribution is very flexible and can, through an appropriate choice of 

parameters, model many types of failure rate behaviors.  

In this paragraph, the failure rate of a group of 3 hemodialysis machines (M1, M2 and M3) 

will be studied. The data of the failure history of the 3 machines was collected during the period 

from 2013 to 2022. The data of the failure history of the 3 devices was collected and summarized in 

table 1. 

 

Table 1: The failure history (TBF) of hemodialysis machines. 

 

Failure 

number 

M1 M2 M3 

Date of failure TBF Date of failure TBF Date of failure TBF 

1 29/01/2014 1085 05/06/2015  2450 29/05/2013 413 

2 04/01/2016 1904 29/05/2017 2040.5 12/07/2013 101.5 

3 19/10/2016 609 07/08/2017 192.5 01/09/2014 1130.5 

4 24/10/2016 10.5 28/02/2018 549.5 05/06/2015 763 

5 29/05/2017 605.5 03/08/2018 311.5 09/11/2015 427 

6 06/03/2020 2792 06/03/2020 584.5 07/08/2017 1750 

7 12/11/2020 392 03/08/2020 280 31/10/2018 1228.5 

8     09/08/2019 780.5 

9     06/03/2020 560 

10     29/07/2020 255.5 

11     07/01/2022 1456 

 

The shape and scale parameter will be extracted in order to characterize the failure rate 

behavior. The cumulative density function (CDF) is formulated using Weibull distribution in the 

following form: 

F(t) = 1 − exp (−
t

η
)

β

                                                                   (16) 

In order to extract the weibull parameters (β and ɳ), we use the linearization of the cumulative 

density function given in equation (16) as follow: 

 F(t) − 1 = −exp (−
t

η
)

β

                                                                (17) 

ln(1 − F(t)) = − (
t

η
)

β

                                                                  (18) 

ln(− ln(1 − F(t))) = ln (
t

η
)

β

                                                           (19) 

ln (ln (
1

1−F(t)
) = β ln(t) − βln (η)                                                         (20) 

The CFD equation can be written in the following linear form with a slop of β and an intercept 

of  βln (η) : 

y = βx − βln (η)                                                                      (21) 

Where  y =  ln (ln (
1

1−F(t)
)  and  x = ln(t) 

Failure times of Hemodialysis Machine were collected and arranged in ascending order to 
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calculate the cumulative density function (CFD), denoted by F(ti), by using the Bernard’s formula 

to assign median ranks to each failure given as:   

F(ti) =
i−0.3

n+0.4
                                                                        (22) 

Where i is the order of failure and n is the total number of data  

The necessary calculation steps performed to determine the Weibull parameters (β, ƞ) are 

summarized in table 2.  

The linear form of the cumulative density function given in equation (21) is presented in 

figure 2 for the 3 hemodialysis machines. The shape and scale parameters can be calculated from 

the linear equation offerred in figure 2. Table 3 shows the Weibull parameters β and ƞ for the 3 

studied devices (M1, M2 and M3). 

 

Table 2: The necessary calculation steps 

 

Failure 

number 

M1 M2 M3 

TBFi F(ti) TBFi F(ti) TBFi F(ti) 
1 10.5 0,09459459 192,5 0,09459459 101,5 0,061403 

2 392 0,22972973 280 0,22972973 255,5 0,149122 

3 605.5 0,36486486 311,5 0,36486486 413 0,236842 

4 609 0,5 549,5 0,5 427 0,324561 

5 1085 0,63513514 584,5 0,63513514 560 0,412280 

6 1904 0,77027027 2040,5 0,77027027 763 0,5 

7 2792 0,90540541 2450 0,90540541 780,5 0,587719 

8     1130,5 0,675438 

9     1228,5 0,763157 

10     1456 0,850877 

11     1750 0,938596 

 

 

 

 

Figure 2: Weibull probability plot of hemodialysis machines 

 

Table 3: The shape and scale parameters of hemodialysis machines 

 

Machine  β ɳ 

M1 0,543 1294 

M2 1.012 986 

M3 1,323 928 

 

The uncertainties in the determination of the Weibull parameters lead to introduce a 

perturbation in the shape and scale parameters. In this part, the effect of this perturbation on the 

behavior of the failure rate will be studied. The mean and the standard deviation of the failure rate 

will be presented in many configurations. The shape and scale parameters, according to the 

equations (2) and (3), follow a Gaussian distribution as β̃ = β + σβε and ɳ̃ = ɳ + σɳε .  
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The simulations are performed for the 3 hemodialysis machines. Figure 3 presents the mean of 

the failure rate λ(t) expressed using the Weibull distribution by the equation (14). According to this 

study, the failure rate λ(t) of M3 increases significantly with time. M3 is in the aging life (β>1) and 

must be supervised continuously. The failure rate of M2 is constant during the time, the machine is 

in the useful life (β=1). The machine M1, which is in the early-life (β<1), have a decreasing failure 

rate.  

Figure 4 presents the standard deviation of the failure rate for the 3 hemodialysis machines. 

The simulations were done, according to the equation (15), with a standard deviation introduced 

in the shape and scale parameters equivalent to:  σβ = 10%β and σɳ = 10%ɳ . The curves 

presented in figure 4 illustrate the evolution of the uncertainties in the failure rate for the different 

phases of the lifetime of the hemodialysis machine. The standard deviation for aging life (M3) is 

more significant and increases during this mature phase.  

To highlight these interpretations, the correlation between the standard deviation and the 

mean of the failure rate for the 3 hemodialysis machines is studied. According to figure 5, the 

standard deviation evolves linearly according to the mean, which makes it possible to estimate the 

variation of the failure rate through the evaluation of the mean. In the aging phase, the effect of the 

perturbation introduced in the Weibull parameters is more serious and affect perilously the failure 

rate. 

The uncertainty, introduced in the shape parameter, is related to the influencing factors which 

are ambiguous and described by unfavorable characteristic values. Many case studies are 

presented in order to illustrate the behavior of the failure rate following different level of 

uncertainty introduced in the shape parameter. Figure 6 shows the influence of the standard 

deviation of the shape parameter on the failure rate in the case of the aging life. 

 

 

 

Figure 3: The mean of the failure rate for the hemodialysis machines 
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Figure 4: The standard deviation of the failure rate for the hemodialysis machines 

 

 

 

Figure 5: Correlation between the standard deviation and the mean 

 

 

 

Figure 6: Influence of the standard deviation of the shape parameter on the failure rate  
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In conclusion, the results provide evidence of the propagation of errors that can affect a 

system and their significant influences on the failure rate. The presence of influencing factors can 

affect the determination of Weibull parameters and then the failure rate will be significantly 

affected, in particular, at aging phase. To avoid the inconvenient impact of the uncertainties in the 

failures on the dialysis system, it is recommended to upgrade the operation management. 

Moreover, the maintenance strategy must initially focus on the M3 and then at M2, which are on 

aging phase. 

 

3.2. Validation of the results 
 

The objective of this part is the validation of the results obtained by our proposed method in which 

the statistics of the failure rate were estimated using the Weibull distribution with uncertain 

parameters that follow a Gaussian distribution because of various external factors. 

Validation will be ensured by comparing the obtained results with Monte Carlo simulations. 

The Monte Carlo (MC) method can be used as a reference for statistical methods. It consists of 

producing a Gaussian distribution of time and simulating several draws of the failure rate using 

the Weibull distribution and deducing the mean by: 

λ(t) =
1

N
∑ λi(t)N

i=1                                                                    (23) 

Where λi(t) is the failure rate for the ith draw at time (t) and N is the total number of draws. 

The standard deviation of the failure rate is given by:  

σλ(t) = √∑ (λi(t)−λ(t))2N
i=1

N
                                                               (24) 

During the MC simulations, we performed N=10000 draws to ensure the convergence of the 

results.  

Figure 7 and Figure 8 illustrate the validation of the mean and standard deviation of the 

failure rate by MC simulations. The simulations were prepared in the case of aging life which 

presents the most critical case. 

To further our research, the probability function of the failure rate was estimated following a 

Gaussian perturbation introduced into the Weibull parameters. This study is accomplished for the 

aging life (M3) and at a time corresponding to 1500 hours. According to figure 9, the probability 

function of the failure rate follows a Gaussian distribution. This numerical result confirms the 

analytical formulations proposed in this work. The MC simulations show the validity of the 

results. 

 

 
 

Figure 7: Validation of the mean of the failure rate for the hemodialysis machine 
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Figure 8: Validation of the standard deviation of the failure rate for the hemodialysis machine 

 

 
 

Figure 9: Probability function of the failure rate 

 

4. Conclusion and perspectives 
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The methodology adopted consists in introducing a perturbation on the Weibull parameters 
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Gaussian distribution. The formulation of the failure rate in a stochastic environment is detailed 

using Weibull distribution. The simulations presented show the statistics of the failure rate for 

several configurations of the Weibull distribution. A case study is offered to illustrate the proposed 

approach and validate the results. The validation of the results was accomplished through Monte 

Carlo simulations.  

This work can be extended along several lines of research such as the study of the reliability of 

a system in a stochastic environment taking into account external factors, as well as the study of 

availability in the presence of uncertain external influencing factors. The development of the 
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failure rate following a second-order perturbation introduced in the Weibull parameters can be the 

subject of an in-depth and precise study. 
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Abstract 

 

The association between a categorical variable and a group of interconnected factors is the main 

objective of the classification procedure. The linear discriminant analysis (LDA) aims to provide a 

method for classifying populations and dividing up forthcoming observations among the groups that 

have already been identified. Under the suppositions of normality and homoscedasticity, the LDA 

produces the best discriminant rule for two or more groups. Outliers have a significant impact on the 

parameters of the LDA, mean, and covariance matrix. Robust methods are resistant to outliers. This 

paper explores the robust methods, namely the Minimum Covariance Determinant (MCD) estimator 

and Minimum Regularized Covariance Determinant (MRCD) estimators in the context of 

discriminant analysis under real environments.  The MCD technique is used to estimate the location 

and dispersion matrix using the subset of the given size that has the lowest sample covariance 

determinant. Its fundamental problem is that it doesn’t provide a reliable result when the 

features/dimension is greater than the size of the subset. As a result, the MRCD method is employed 

and the efficiency is studied by computing the Apparent Error Rate (AER). In this paper, an attempt 

has been made to review the existing theory and methods of RLDA. 

 

Keywords: classification, linear discriminant analysis, robust linear discriminant 

analysis, minimum covariance determinant estimator, minimum regularized 

covariance determinant estimators 

 

 

I. Introduction 
 

The traditional Linear Discriminant Analysis (LDA) is a frequently used multi-dimensional 

classification approach to classify new observations according to one of the 

aforementioned categories, Elizabeth and Andres [4]. The population means (𝜇1, 𝜇2)  with 

homoscedasticity assumptions (Σ1 = Σ2 = Σ) is used for establishing traditional LDA. The 

Traditional Linear Discriminant Rule will be built using predicted mean vector and scatter matrices 

while real population parameters are typically unachievable. In particular, the traditional mean is 

very susceptible to anomalies. Merely just one anomaly can affect the accuracy of the covariance and 

alter the location estimation, Erceg-hurn et al., [5]. Thus, an immense misclassification rate will be 

caused by the affected mean and covariances Sajobi et al., [15]. 

Researchers are looking for solutions in Robust Linear Discriminant Analysis (RLDA) to 

address this sensitivity issue in LDA. Also can build robust discriminant models with low 

classification error rates by replacing the classical estimators with robust estimators such as M-
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estimators, Minimum Covariance Determinant (MCD) estimators, Hubert and Driessen [9], 

Minimum Volume Ellipsoid (MVE) estimators, Choral and Rousseeuw [2], and S-estimators, He and 

Fung [8], Croux and Dehon [3], Minimum Regularized Covariance Determinants (MRCD), Boudt 

and Peter Rousseeuw [1]. 

This paper mainly compares the robust estimators such as MCD and MRCD in RLDA with 

traditional LDA. The Apparent Error Rate (AER) is used to calculate how effective certain strategies 

are. The rest of this paper is structured as follows. Section 2 describes traditional LDA and robust 

linear discriminant analysis based on MCD and MRCD estimators. The results and discussions 

based on the real data study will be given in section 3. The conclusion will be provided in the last 

section. 

 

II. Classification Methods 
 

The traditional classification method, namely, Linear Discriminant Analysis (LDA)), the Robust 

Linear Discriminant Analysis using  Minimum Covariance Determinant (MCD) estimator, and 

Minimum Regularized Covariance Determinant (MRCD) estimators are briefly discussed in this 

section. 

 

Linear Discriminant Analysis (LDA) 

Fisher [6] introduced the linear discriminant for two classes and C.R. Rao [11] later 

generalized it for many classes. Linear discriminant analysis (LDA) is a group of multivariate 

statistical techniques used to identify a linear combination of features that characterize or distinguish 

two or more classes of objects or events. Hastie et. al. [7], Sharipah et. al. [17]. Classification using a 

linear function is known as discriminant analysis. The discriminant analysis aims to divide the 

sample variables into two or more categories. This is accomplished with the use of a linear 

combination of explanatory factors or forecasting variables. Choosing a group for an object is based 

on the fundamental tenet that there should be as little chance of misclassification as possible. 

On account of the two-group discriminant model, grouping an entity into one of two groups, g1 or 

g2, is the main objective. It is speculated that the explanatory variables will exhibit a multi-variate 

normal distribution. 

 

𝑓(𝑦1, 𝑦2 , … , 𝑦𝑝 /𝑥 = 𝑖) =  𝑁(𝑌; 𝜇, Σ)), 𝑖 = 1,2, … , 𝑝                 (1) 

 

Let 𝑚𝑖 be the number of observations where 𝑥 = 𝑖, 𝑖 =  1,2 and (𝑦𝑖 , 𝑥𝑖) are selected at random using 

sampling. Alternately, 𝑋 might be fixed in a way that 𝑚𝑖 inspections would be sampled for 𝑋 = 𝑖. 

For each category, sample statistics are computed. The estimates for the sample men 𝑌�̅� and the 

sample covariance matrix 𝑆𝑖 are 𝜇 and Σ𝑖 , 𝑖 = 1,2 respectively. 

Let, 
 𝑉 = 𝑏1𝑌1 + 𝑏2𝑌2 + ⋯ + 𝑏ℎ𝑌ℎ  

𝑆 = (
(𝑚1𝑚2)

𝑚1+𝑚2
) (𝑌1̅ − 𝑌2̅)(𝑌1̅ − 𝑌2̅)′  

 

The pooled within the covariance matrix is  

 

        𝑈𝑏 = (
(𝑚1𝑚2)

𝑚1+𝑚2
) {

𝑏′(𝑌1̅̅ ̅−𝑌2̅̅ ̅)(𝑌1̅̅ ̅−𝑌2̅̅ ̅)′𝑏

𝑏′S𝑏
}                       (2) 

 

This is the generalized eigenvalue problem given by 

 

𝐴𝑏 = 𝑐𝑆𝑏;  𝐴 = (
(𝑚1𝑚2)

𝑚1 + 𝑚2

) (𝑌1̅ − 𝑌2̅)(𝑌1̅ − 𝑌2̅)′ 
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The clarification 𝑏 is proportional to 𝑆−1(𝑌1̅ − 𝑌2̅). so the sample discriminant variable, 𝑉 =

(𝑌1̅ − 𝑌2̅)𝑆−1𝑌. It is the linear combination of the original observation which has the largest ratio of 

the between-groups to the within-group variation. 

 

When X has p categories, then p groups (g1, g2… gp) have been established for the p group situations. 

Let 𝑚𝑖 be the number of clarifications in the ith group, 𝑚 = ∑ 𝑚𝑖
𝑝
𝑖 . The sample mean and covariance 

matrix is given by 𝑌�̅� and 𝑆𝑖. The matrix U represents the pooled within-group covariance. 

 

𝑈 =
1

(𝑚−𝑝)
∑ (𝑚𝑖 − 1)𝑆𝑖

𝑝
𝑖=1 . 

The between-group covariance matrix is  

 

𝐴 =
1

𝑝−1
∑ 𝑚𝑖

𝑝
𝑖 (𝑌�̅� − �̅�)(𝑌�̅� − �̅�)′                       (3)

       

The traditional method relies heavily on the sample mean vector and covariance matrix, which are 

vulnerable to out-of-the-ordinary data. Additionally, when used to datasets with smashed model 

assumptions, the LDA model may yield erroneous outcomes. A robust approach can be used to solve 

this problem.  

 

Robust Linear Discriminant Analysis (RLDA) 

RLDA has been developed as a modified version of traditional LDA, especially for handling 

non-ideal data such as outliers, high dimensions, and multicollinearity, Sharipah et. al. [17]. In robust 

methods, classical mean vectors and covariance matrices are replaced by robust counterparts, Peter 

J. Rousseeuw, Mia Hubert [14], and Muthukrishnan et. al. [10]. The robust estimators used here in 

the robust linear discriminant analysis are MCD and MRCD. 

 

Minimum Covariance Determinant Estimator (MCD) 

Rousseeuw [12] developed the Minimum Covariance Determinant (MCD) Estimator to 

estimate the mean vector and covariance matrix as well as to identify outliers. The lowest 

determinant-containing subset of h observations with respect to their covariance matrix is sought 

after. The location estimate is the mean value of that subgroup according to this estimator, and the 

scatter estimate is a multiple of its scatter matrix. 

 

𝑀𝑋(𝐻) = ℎ−1𝑋𝐻
′ 𝐼ℎ                 (4) 

 

𝑆𝑋(𝐻) = (ℎ − 1)−1(𝑋𝐻 − 𝑀𝑋(𝐻))′(𝑋𝐻 − 𝑀𝑋(𝐻))               (5) 

 

After that, the MCD method seeks to minimize the determinant of 𝑆𝑋(𝐻) for all 𝐻 ∈ ℋℎ. 

 

𝐻𝑀𝐶𝐷 =  (𝑑𝑒𝑡(𝑆𝑋(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                 (6) 

 

For statistical considerations, eqn (3) takes the pth root of the determinant. The geometric average of 

its eigenvalues is the pth root of the determinant of the scatter matrix. It is referred to as the 

standardized generalized variance by Sen Gupta (1987).  

 

The mean of the h-subset is used to define the MCD estimate of location 𝑀𝑀𝐶𝐷 , while the MCD scatter 

estimate is expressed as a multiple of the sample scatter matrix, and is given by 

 

𝑀𝑀𝐶𝐷 = 𝑀𝑋(𝐻𝑀𝐶𝐷)                  (7) 

𝑆𝑀𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷)                   (8) 

466



 
Muthukrishnan R and Surabhi S Nair  

ROBUST CLASSIFICATION USING MRCD ESTIMATOR 
RT&A, No 3 (74)  

Volume 18, September 2023 
 

 

 

where 𝐶𝛼 is a consistency factor that is based on the trimming percentage = (𝑛 − ℎ)/𝑛 and is similar 

to the one provided by Croux and Haesbroeck [3]. Its fundamental flaw is that it gives unreliable 

results when the dimension is greater than the size of the subset. In high dimensions, it is necessary 

to modify MCD, as the existing MCD methods are slow and less robust in that situation. 

 

Minimum Regularized Covariance Determinant Estimator (MRCD) 

The MRCD estimator was proposed by Boudt et. al. [1]. To guarantee that the MRCD scatter 

estimator is scale equivariant and location unvarying, as is common in the literature, 

first, standardize the variables. The use of a trustworthy univariate location and scale estimate is 

required for standardization. For this, the median of each subset is calculated and placed in a location 

vector called 𝑚𝑥. Additionally, each variable's scale using the Qn estimator of Rousseeuw and Croux 

(1993) is calculated, then insert these scales into 𝑑𝑥, the diagonal matrix. The standardized 

observation is given by 

𝑍𝑖 = 𝑑𝑥
−1(𝑥𝑖 − 𝑚𝑥)                 (9) 

The regularized scatter matrix of the standardized observation is 

 
𝒮(𝐻) =  𝜌𝑇 + (1 − 𝜌)𝐶𝛼𝑆𝑍(𝐻) 

where 𝑆𝑍(𝐻) is defined in (5), however, in the case of Z, c is the same consistency parameter as in 

(8). 

Let Α be the diagonal matrix containing eigenvalues of T, and the orthogonal matrix Q contains the 

relevant eigenvectors. Utilizing the spectral decomposition 𝑇 = 𝑄𝐴𝑄′ will be practical. 

Now, 

𝒮(𝐻) = 𝑄𝐴
1

2⁄ [𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻)]𝐴𝐴
1

2⁄ 𝑄′                          (10) 

where 𝑊 is the 𝑛 × 𝑝 matrix consisting the transformed standardized observations 

 

𝑤𝑖 =  𝐴
−1

2⁄ 𝑄′𝑍𝑖, and 

 

𝑆𝑊(𝐻) =  𝐴
−1

2⁄ 𝑄′𝑆𝑍𝑄𝐴
−1

2⁄  

The MRCD subset is given by 

𝐻𝑀𝑅𝐶𝐷 =  (𝑑𝑒𝑡(𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                           (11) 

 

The MRCD location and scatter estimations of the initial data matrix X are defined as follows 

 
𝑀𝑀𝑅𝐶𝐷 = 𝑚𝑋 + 𝑑𝑥𝑀𝑍(𝐻𝑀𝑅𝐶𝐷) 

 
𝑆𝑀𝑅𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷) 

 

 

III. Experimental Results 
 

Table 1: Apparent Error Rate under Classical and Robust Methods 

 
 

 

 

 

 

 
 

 

Dataset LDA RLDA 

MCD MRCD 

Hemophilia 

 

0.146 

(0.150) 

0.146 

(0.146) 

0.133 

(0.125) 

Anorexia 0.513 

(0.528) 

0.486 

(0.457) 

0.388 

(0.371) 

(.)       without outliers 
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Table 2. Classification Matrix of Hemophilia Data under Classical and Robust Methods 

 

 

 

 

 

 

 
 

Table 3. Classification Matrix of Anorexia Data under Classical and Robust Methods 

 

 

 

 

 

 

 

 

 

This section examined the effectiveness of traditional and robust methods of discriminant analysis 

techniques in terms of classification problems. For the study, the two actual data sets were taken into 

account. The first one is the hemophilia data set from the R package named rrcov. There are two 

assessed factors in the hemophilia data. AHF action and AHV antigen upon 75 women, divided into 

two groups, namely, compulsory carriers, which includes 45 data points, and the normal group, 

which includes 30 data points.  

The second one is the anorexia data on weight change from the R package named MASS, 

and is divided into three groups, each of which has two variables and a set of 72 occurrences; 

Information on young female anorexic patients' weight changes. Prewt (patient weight prior to 

study times) and Postwt (patient weight following study times) are the two variables used to classify 

the three groups into Cognitive Behavioral Treatment (CBT), Control (Cont), and FT family 

treatment (FT). 

These data sets experienced classification analysis using classic LDA and alternative RLDA 

algorithms under with/without outliers. Distance-distance plots were used to identify the anomalies 

(Figure 1, Figure 2). ). On the basis of their Classification matrix and Apparent Error Rate (AER), the 

classification criteria are assessed. The classification matrix is just a table where the rows represent 

the dependent categories that were observed and the columns represent the expected dependent 

categories. All examples will fall on the diagonal if the prediction is perfect. The proportion of 

correctly classified cases is represented by the diagonal cases. The results achieved under various 

methods are concluded in the form of Apparent Error Rate (Table 1) and classification matrix (Table 

2 and Table 3). Robust classification procedure using MRCD estimator gives less Apparent Error 

Rate and more classification accuracy when compared with other classification procedures. 

 

The result reveals that robust procedures provide better results when compared with the traditional 

method, Linear Discriminant Analysis. Further, it is observed that MRCD estimator based RLDA 

outperforms over MCD estimator. 

 

 

 

Methods 

 

LDA 

RLDA 

MCD MRCD 

With 

outliers 
(

38 7
4 26

) (
38 7
4 26

) (
39 6
4 26

) 

Without 

outliers 
(

37 7
4 25

) (
38 7
4 26

) (
38 76
3 26

) 

 

Methods 

 

LDA 

RLDA 

MCD MRCD 

With 

outlier (
11 10 8
9 17 0
6 4 7

) (
16 5 8
16 8 2
0 4 13

) (
15 5 8
0 16 4
0 4 13

) 

Without 

outlier (
10 2 6
9 17 0
6 4 6

) (
16 5 7
14 10 2
0 4 12

) (
15 6 7
5 17 4
0 4 12

) 
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         with outliers                without outliers                                     

Figure 1:  Distance-Distance Plot (Haemophilia dataset) 

         

 
          with outliers                    without outliers                                     
Figure 2: Distance-Distance Plot (Anorexia dataset) 

 

 

IV. Conclusion 
 

Classification analysis is one of the key concepts in the context of statistical learning. This study 

explores classification analysis using traditional and various approaches of robust linear 

discriminant analysis. Conventional methods should work reasonably well if certain assumptions 

are true, however, they may not be trustworthy if one or more of these assumptions are erroneous. 

Both sample mean vector and covariance matrix are extremely susceptible to anomalies. As a result, 

when the data contains anomalies, the traditional LDA fails to generate reliable results. For non-

normal conditions, a robust alternative is required to improve accuracy even when the data 

somewhat depart from the model assumptions. When robust estimators such as MCD and MRCD 

are used in LDA, the analysis performs well compared to traditional methods. Robust methods 

perform well even when the model assumptions are not met. The study came to the conclusion that 

robust classification using MRCD estimators offers greater accuracy, followed by other methods. 

The study could be expanded by using appropriate robust estimators in RLDA to further improve 

accuracy. 
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Abstract 

In this work, a multiple dependent state sampling plan, which is an inspection procedure that determines 

whether an attribute is conforming or non-conforming to a specific requirement, in which the decision criterion 

for each lot dictates whether to accept the lot; reject the lot; or conditionally accept or reject the lot based on the 

disposition of future related lots, is introduced. This plan has some advantages over other acceptance sampling 

plans, like increased efficiency, improved ability to discriminate between acceptable and non – acceptable lots or 

batches, flexibility in designing the sampling process, and improved cost-effectiveness.  To reject a lot, the plan 

made use of the properties of the sampled current and preceding lots. The study aims to reduce the average 

sampling number by using a non-linear optimization problem that is subjected to some constraints. With 

regards to a life test that is truncated in time, the product’s median life was used for the proposed sampling plan 

assuming that the lifetime of the product follows Zech distribution. The usage of median life was necessitated 

because Zech distribution is an asymmetric distribution with longer tail to the right.  Two points on the 

operating characteristic curve were used for the proposed sampling plan and the following parameters were 

found; number of preceding lots which is required for deciding if the current lot should be accepted or rejected, 

the size of the sample, rejection number, and acceptance number. For different shape parameters, we constructed 

tables for various combinations of consumers’ and producers’ risks. A real example was provided which showed 

that a multiple dependent state sampling plan is a good sampling plan for fitting the datasets. Comparing the 

proposed plan with a single sampling plan, the results reveal that the proposed plan is more effective at securing 

the consumer and the producer with less inspection. The approach introduced in this study provides an ample 

opportunity for the manufacturers to reduce the cost and time of inspection by having the sample size reduced 

without compromising the decision-making accuracy. By implementing the findings of this study, the consumers 

are confident that their hard-earned money is not used to purchase sub-standard goods. 

Keywords: Acceptance Sampling, Zech Distribution, MDSSP, Single Sampling Plan, 

Operating Characteristic Curve, Average Sampling Number.                                                                                                                                                                                                                                         
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1. Introduction 

There are growing concerns all over the world about the quality of products in the market this day. It is no 

longer a hearsay that there is a sharp decline in the quality of some essential commodities from what it used 

to be some decades ago. The reasons for this could be attributed to a surge in population leading to increase 

in demand which forces the producers not to take necessary precautions in ascertaining the quality of their 

products before being rolled to the markets. Some producers are too mindful of the profits thereby doing 

everything possible to cut the cost of production to the barest minimum. In all of this, the consumers are at the 

receiving end. In recent times, there are lots of building collapse all over the world which claimed so many 

lives. Many of these buildings failed integrity tests as a result of usage of poor quality materials when erecting 

those structures. Several patients have been sent to the early graves due to drugs/vaccines of poor qualities 

administered on them. It is therefore imperative that products of good qualities are produced by the producers 

while products of poor qualities are rejected by the consumers. To do this, the two areas of quality control used 

in monitoring production processes are acceptance sampling and quality control. Acceptance sampling helps 

to decide whether a lot will be accepted or rejected at the minimum inspection cost in terms of time and money 

while satisfying not only the producer’s but also the consumer’s risks at the same time. Producer’s risk denoted 

as 𝛼 is the risk incurred by the producer when good lots are rejected by the consumer while the consumer’s 

risk, 𝛽 is the risk incurred by the consumer for accepting a bad lot from the producer. 

Limiting quality control (LQL) is the quality level attached to consumer’s risk while acceptable quality control 

(AQL) is the quality level attached to producer’s risk. The field of acceptance sampling has gained a lot of 

patronage in the literature. There are several types of acceptance sampling, of which, the simplest and easiest 

for practical implementation is the single sampling acceptance plan. Others are double acceptance plan, group 

acceptance plan, sequential acceptance plan, multiple dependent state sampling plan, modified multiple 

dependent plan, adjusted multiple dependent plan, rank sampling plan, to mention but a few.  Kantam et al. 

[1] proposed an economic reliability test plan using Log –logistic distribution, Tzong – Ru and Shou – Jye Wu 

[2] developed acceptance sampling based on truncated life tests for generalized Rayleigh distribution, Syed et 

al. [3] proposed Mean ranked acceptance sampling plan under exponential distribution, Wenhao and Shangli 

[4] developed acceptance sampling plans based on truncated life tests for Gompertz distribution, Rao et al. [5] 

developed acceptance sampling plan for Marshall – Olkin extended Lomax distribution, Al-Omari et al. [6] 

developed a single sampling plan for the three – parameter Lindley distribution. Al – Omari [7] considered 

acceptance sampling plans based on truncated life tests for Sushila distribution, Mahdy and Basma [8] 

proposed double acceptance sampling plan using new distributions, Ramasamy and Sutharani [9] designed 

double acceptance sampling plans based on truncated life tests in Rayleigh distribution using minimum angle 

method. For an exponentiated Frechet distribution with known shape parameters, a double acceptance 

sampling plan was devised by Babu et al. [10]. Wortham and Baker [11] proposed a multiple deferred state 

sampling inspection.  It is a modification to the chain sampling plan and also intends to supplement existing 

plans like dependent stage sampling, chain sampling, exponential smoothed sampling and fixed deferred state 

sampling. It is perhaps, very useful where the lots are serially submitted for inspection. The main aim of 

acceptance sampling is to reduce the sample size and this can be achieved by implementing multiple 

dependent state sampling plan. The reason for this is because the results of samples drawn by the experimenter 

from both the current and successive lots is used to make decision concerning the disposition of the current 

lot. Several works have been done on multiple deferred state sampling plans (MDSSP), among whom are 

Davood et al. [12] who designed the Bayesian multiple dependent (deferred) sampling plan based on the 

process capability index. Yan et al. [13] developed a multiple dependent state sampling plan based on the 

coefficient of variation. The design of multiple deferred state sampling plans for exponentiated half-logistic 

distribution was proposed by Rao et al. [14], a multiple dependent state sampling plan in a Fuzzy environment 

was developed by Afshari et al. [15]. Balamulari and Jun. [16] proposed a multiple deferred state sampling 

plans for lot acceptance based on measurement data. Aslam et al. [17] developed plans for sampling several 

dependent state variables that take process loss into account, Balamurali et al. [18] designed multiple deferred 

state sampling plan for generalized inverted exponential distribution. Recently, some scholars extended the 
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multiple dependent state sampling plan, among whom are: Nadi et al. [19] developed a group multiple 

dependent state sampling plan using truncated life tests for the Weibull distribution, Aslam et al. [20] proposed 

generalized multiple dependent state sampling state sampling plans for various life distributions, Cheng et al. 

[21] proposed adjustable variables multiple dependent state sampling plan based on a process capability index, 

Aslam et al. [22] developed modified multiple dependent state sampling plan. In this work, we developed a 

multiple dependent state sampling plan using the median life of the product when the test is truncated at a 

pre – determined time t, assuming that the lifetime of the product follows Zech distribution. Similar approach 

can be seen in Rao et al. [23]. To showcase the performance of the proposed plan on Zech distribution, a 

comparison was made between multiple dependent state sampling plans and single sampling plan to reveal 

which is better. The MDSSP's operating procedure for Zech distribution is detailed in section 4.  

 

 

2. Zech Distribution 
 

 

Zech distribution proposed by Adeyeye, et al. [24] is a heavy – tailed, three – parameter distribution derived 

by finding the inverse of Gompertz Inverse-Exponential distribution. The cumulative distribution function 

(cdf) of Zech distribution is given as follows: 

𝐺(𝑡) = 𝑒
𝛾

𝛿
{1−[1−𝑒−𝜃𝑡]

−𝛿
}
   ;   𝑡 > 0, 𝛾 > 0, 𝛿 > 0, 𝜃 > 0                                                                                                                  (1)  

Its probability density function (pdf) is given as follows: 

𝑔(𝑡) = 𝛾𝜃𝑒−𝜃𝑡[1 − 𝑒−𝜃𝑡]
−𝛿−1

𝑒
𝛾

𝛿
{1−[1−𝑒−𝜃𝑡]

−𝛿
}
;     𝑡 > 0, 𝛾 > 0, 𝛿 > 0, 𝜃 > 0                                                                        (2)   

The shape parameters are 𝛾 and 𝛿 while the scale parameter is  𝜃. Assuming 𝛾 and 𝛿 are known, the cdf 

depends on 𝜃𝑥 and the 𝑞𝑡ℎ quantile of the products. 

The 𝑞𝑡ℎ quantile of a product’s lifetime which follows Zech distribution is given by (3) 

𝑡𝑞 = −
1

𝜃
{ln [1 − (1 −

𝛿

𝛾
𝑙𝑛 𝑞)

−
1

𝛿
]} =

𝜉𝑞

𝜃
  𝑤ℎ𝑒𝑟𝑒  𝜉𝑞 = − {ln [1 − (1 −

𝛿

𝛾
𝑙𝑛 𝑞)

−
1

𝛿
]}                                                        (3) 

The median is derived when 𝑞 = 0.5 and is given by (4) 

𝑥0.5 = −
1

𝜃
{ln [1 − (1 −

𝛿

𝛾
𝑙𝑛(0.5))

−
1

𝛿
]}                                                                                                                                          (4)  

Before the experiment time 𝑡0, the probability of failure of products under the Zech distribution is given by 

𝑝 = 𝑒
𝛾

𝛿
{1−[1−𝑒−𝜃𝑡0]

−𝛿
}
                                                                                                                                                                              (5)  

The experiment is stopped at the time 𝑡𝑞
0 indicated by 𝑡0 = 𝑎𝑡𝑞

0, where 𝑡0 is the termination time. The scale 

parameter  𝜃  can be expressed as  

𝜃 =
𝜉𝑞

𝑡𝑞
                                                                                                                                                                                                        (6)  

By substituting 𝜃 in equation (5), the probability of failure of the item is obtained as follows 

𝑝 = 𝑒𝑥𝑝 (
𝛾

𝛿
{1 − [1 − 𝑒𝑥𝑝 (

−𝑎𝜉𝑞

(𝑡𝑞 𝑡𝑞
0⁄ )

)]
−𝛿

})                                                                                                                             (7) 

Then in expanded form, equation (7) becomes 

𝑝 = 𝑒𝑥 𝑝 (
𝛾

𝛿
{1 − [1 − 𝑒𝑥𝑝 ((𝑎𝑙𝑛 {[1 − (1 −

𝛿

𝛾
𝑙𝑛𝑞)

−
1

𝛿
]})

−𝛿

(
𝑡𝑞

𝑡𝑞
0)

𝛿

)]})                                                                                (8)  

The quantile ratio is (
𝑡𝑞

𝑡𝑞
0), when it is greater than one, the failure probability in (8) is regarded as acceptable 

quality level (AQL) (𝑝1). It is regarded as limiting quality level (LQL) (𝑝2) when it is equal to 1. 

  

3. Multiple Dependent State Sampling Plan for Zech Distribution 
 

This section is sub–divided into two:  
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(i) The procedures of operation of MDSSP on Zech distribution.  

(ii) Determination of Average Sampling Number. 

3.1 Procedures of Operation: this is carried out as itemized in the steps below: 

Step 1: A random sample, of size n units will be selected from the current lot. Having fixed a specified time 𝑡0, 

all units are subjected to a life test at the same time. 

Step 2: If d is at most 𝑐1, the present lot is accepted and rejected if d is greater than 𝑐2. The tests ends here but 

if none of these conditions is met, go to step 3. 

Step 3: If d surpasses 𝑐1 and is not greater than 𝑐2  the decision to accept the current lot is made , i.e. 𝑐1  < 𝑑 ≤

𝑐2 provided the succeeding m (preceding m) lots will be accepted with condition 𝑑 ≤ 𝑐1. 

The four parameters characterizing the proposed MDSSP are: 𝑛, 𝑚, 𝑐1 and 𝑐2  which represent the sample size, 

number of preceding lots the experimenter needs to make a good decision, maximum number of failed items 

for unrestricted (unconditional) acceptance and maximum number of failed items for restricted (conditional) 

acceptance respectively.  

It is important to note that single sampling plan (SSP) can be generalized to form an attribute MDSSP; this is 

so because it reduces to SSP when either  𝑚 → ∞ or 𝑐1 = 𝑐2 = 𝑐 

According to Rao [3], the operating characteristic (OC) function of the proposed plan is denoted by 

𝑃𝑎(𝑝) = 𝑝(𝑑 ≤ 𝑐1) + 𝑝(𝑐1 < 𝑑 ≤ 𝑐2)(𝑝(𝑑 ≤ 𝑐1))
𝑚

                                                                                                                     (9)  

To accept a lot, equation (10) provides the probability of failure 𝑝 if a binomial distribution is considered.  

𝑃𝑎(𝑝) = ∑ (
𝑛

𝑑
)

𝑐1

𝑑=0

𝑝𝑑(1 − 𝑝)𝑛−𝑑 + ∑ (
𝑛

𝑑
)

𝑐2

𝑑=𝑐1+1

𝑝𝑑(1 − 𝑝)𝑛−𝑑 (∑ (
𝑛

𝑑
)

𝑐1

𝑑=0

𝑝𝑑(1 − 𝑝)𝑛−𝑑)

𝑚

                                                 (10) 

3.2 Determination of ASN: The main aim of any sampling plan is to reduce the average sampling number (ASN). 

This will of course, reduce the inspection time and cost. It will also be of immense benefit to the producers in 

case of destructive sampling. In this study, we seek to reduce the ASN of the suggested MDSSP for the Zech 

distribution under truncated life testing. This is achieved by using a non-linear optimization problem in which 

the objective function is the minimization of ASN at 𝑝 subject to some constraints. The optimization problem 

is as follows: 
Minimize Average Sample Number, ASN (𝑃1) = 𝑛 

Subject to  
𝑃𝑎(𝑃1) ≥ 1 − 𝛼,                                                                                                                                                                                    (11)  
 𝑃𝑎(𝑃2) ≤ 𝛽                                                                                                                                                                                            (12) 
𝑛 > 1, 𝑚 > 1, 𝑐2 > 𝑐1 ≥ 0,   

Failure at the producer's risk has a chance of 𝑝1, while failure at the consumer's risk has a probability of 𝑝2.  

The ratio 
𝑡𝑞

𝑡𝑞
0 is known as the quality level or true life quantile ratio, and it aids the producer in ensuring that 

the quality of his products is good and acceptable. Equations (13) and (14) are respectively, the probabilities of 

the acceptance of the lot under the modified sampling scheme at acceptable quality level (AQL) and limiting 

quality level (LQL). 

𝑃𝑎(𝑝1) = ∑ (
𝑛

𝑑
)

𝑐1

𝑑=0

𝑝1
𝑑(1 − 𝑝1)𝑛−𝑑 + ∑ (

𝑛

𝑑
)

𝑐2

𝑑=𝑐1+1

𝑝1
𝑑(1 − 𝑝1)𝑛−𝑑 (∑ (

𝑛

𝑑
)

𝑐1

𝑑=0

𝑝1
𝑑(1 − 𝑝1)𝑛−𝑑)

𝑚

                                          (13) 

𝑃𝑎(𝑝2) = ∑ (
𝑛

𝑑
)

𝑐1

𝑑=0

𝑝2
𝑑(1 − 𝑝2)𝑛−𝑑 + ∑ (

𝑛

𝑑
)

𝑐2

𝑑=𝑐1+1

𝑝2
𝑑(1 − 𝑝2)𝑛−𝑑 (∑ (

𝑛

𝑑
)

𝑐1

𝑑=0

𝑝2
𝑑(1 − 𝑝2)𝑛−𝑑)

𝑚

                                         (14) 

The median ratio, 
𝑡𝑞

𝑡𝑞
0 whose values are 2, 4, 6, 8 and 10 is considered at the risk of the producer. This will make 

it more likely that people will accept the high quality product while the mean ratio 
𝑡𝑞

𝑡𝑞
0 = 1 is considered at the 

consumer’ risk to ensure that the product of poor quality is rejected.  
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4. Simulation Studies 
 

The optimal parameters of the proposed plan for Zech distribution with 𝛾 = 0.5, 𝛿 = 0.5; 𝛾 = 1.0, 𝛿 = 1.0 and   

𝛾 = 1.5, 𝛿 = 1.5 are presented in the following tables (Table 1-3). Values assumed for consumer’s risks 𝛽 =

0.25, 0.10, 0.05, 0.01 while the producer’s risk was kept at 𝛼 = 0.05 at 50th percentile. The values considered for 

termination ratio are a= 0.5, 0.7 and 1.0 

Results of simulation studies observed from Tables 1-3 when parametric combinations are fixed are as follows: 

i. Inverse relationship is observed between sample size and consumers risk. In all the Tables 1-3 sample 

size increases when consumers risk decreases. 

ii.    As the termination ratio a rises from 0.5 to 1.0, the sample size drops.   

iii.  Probability of lot acceptance increases along with quantile ratio. As 
𝑡𝑞

𝑡𝑞
0  approaches 10, probability of lot 

acceptance also increases and approximates to almost 1. 

 
             Table 1: The developed MDSSP's ideal (optimal) parameters for the Zech distribution with 𝛾 = 0.5, 𝛿 = 0.5 

  𝑡𝑞

𝑡𝑞
0
 a=0.5 a=0.7 a=1.0 

n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) 

0.25 

2 18 3 7 2 0.9551 16 4 14 2 0.9508 16 6 8 2 0.9563 

4 5 0 4 2 0.9531 7 1 2 1 0.9870 5 1 2 1 0.9758 

6 5 0 4 2 0.9921 3 0 2 3 0.9798 3 0 2 1 0.9708 

8 5 0 4 2 0.9984 3 0 2 3 0.9945 3 0 2 1 0.9902 

10 5 0 4 2 0.9996 3 0 2 3 0.9983 3 0 2 1 0.9963 

0.10 

2 33 5 8 1 0.9547 29 7 17 2 0.9534 26 9 19 2 0.9513 

4 13 1 2 1 0.9868 9 1 8 2 0.9751 7 1 3 1 0.9574 

6 8 0 1 1 0.9859 5 0 4 2 0.9642 7 1 3 1 0.9957 

8 8 0 1 1 0.9970 5 0 4 2 0.9900 4 0 1 1 0.9773 

10 8 0 1 1 0.9993 5 0 4 2 0.9969 4 0 1 1 0.9913 

0.05 

2 41 6 10 1 0.9528 38 9 19 2 0.9542 34 11 18 1 0.9521 

4 16 1 3 1 0.9880 11 1 10 2 0.9522 11 2 5 1 0.9820 

6 10 0 1 1 0.9785 7 0 2 1 0.9638 8 1 3 1 0.9929 

8 10 0 1 1 0.9954 7 0 2 1 0.9900 5 0 2 1 0.9742 

10 10 0 1 1 0.9989 7 0 2 1 0.9969 5 0 2 1 0.9901 

0.01 

2 64 9 16 1 0.9510 55 12 18 1 0.9505 50 16 22 1 0.9525 

4 21 1 11 2 0.9528 19 2 4 1 0.9782 17 3 8 1 0.9824 

6 15 0 3 1 0.9678 15 1 4 1 0.9950 11 1 5 1 0.9805 

8 15 0 3 1 0.9930 10 0 2 1 0.9804 7 0 2 1 0.9524 

10 15 0 3 1 0.9983 10 0 2 1 0.9938 7 0 2 1 0.9813 
 

                 Table 2: The developed MDSSP's ideal (optimal) parameters for the Zech distribution with 𝛾 = 1.0, 𝛿 = 1.0 

  𝑡𝑞

𝑡𝑞
0
 a=0.5 a=0.7 a=1.0 

n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) 

0.25 

2 8 0 1 2 0.9581 8 1 2 2 0.9736 7 2 3 2 0.9661 

4 8 0 1 2 1.0000 4 0 1 2 0.9997 3 0 2 1 0.9971 

6 8 0 1 2 1.0000 4 0 1 2 1.0000 3 0 2 1 1.0000 

8 8 0 1 2 1.0000 4 0 1 2 1.0000 3 0 2 1 1.0000 

10 8 0 1 2 1.0000 4 0 1 2 1.0000 3 0 2 1 1.0000 

0.10 
2 22 1 5 2 0.9928 11 1 4 2 0.9529 12 3 5 1 0.9755 

4 13 0 10 2 1.0000 7 0 1 1 0.9995 4 0 1 1 0.9931 
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6 13 0 10 2 1.0000 7 0 1 1 1.0000 4 0 1 1 0.9999 

8 13 0 10 2 1.0000 7 0 1 1 1.0000 4 0 1 1 1.0000 

10 13 0 10 2 1.0000 7 0 1 1 1.0000 4 0 1 1 1.0000 

0.05 

2 27 1 2 1 0.9804 18 2 3 1 0.9640 13 3 12 2 0.9502 

4 17 0 1 1 1.0000 8 0 7 2 0.9991 5 0 2 1 0.9921 

6 17 0 1 1 1.0000 8 0 7 2 1.0000 5 0 2 1 0.9999 

8 17 0 1 1 1.0000 8 0 7 2 1.0000 5 0 2 1 1.0000 

10 17 0 1 1 1.0000 8 0 7 2 1.0000 5 0 2 1 1.0000 

0.01 

2 37 1 3 1 0.9742 24 2 5 1 0.9546 22 5 8  

1 

0.9702 

4 25 0 10 2 0.9999 13 0 3 1 0.9988 7 0 2 1 0.9850 

6 25 0 10 2 1.0000 13 0 3 1 1.0000 7 0 2 1 0.9998 

8 25 0 10 2 1.0000 13 0 3 1 1.0000 7 0 2 1 1.0000 

10 25 0 10 2 1.0000 13 0 3 1 1.0000 7 0 2 1 1.0000 
  

                    Table 3: The developed MDSSP's ideal parameters for the Zech distribution with 𝛾 = 1.5, 𝛿 = 1.5. 

  𝑡𝑞

𝑡𝑞
0
 a=0.5 a=0.7 a=1.0 

n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) 

0.25 

2 13 0 10 3 0.9988 5 0 4 2 0.2381 5 1 2 1 0.9829 

4 13 0 10 3 1.0000 5 0 4 2 0.2381 3 0 2 1 1.0000 

6 13 0 10 3 1.0000 5 0 4 2 0.2381 3 0 2 1 1.0000 

8 13 0 10 3 1.0000 5 0 4 2 0.2381 3 0 2 1 1.0000 

10 13 0 10 3 1.0000 5 0 4 2 0.2381 3 0 2 1 1.0000 

0.10 

2 21 0 1 2 0.9974 8 0 1 1 0.0978 7 1 3 1 0.9705 

4 21 0 1 2 1.0000 8 0 1 1 0.0978 4 0 1 1 0.9999 

6 21 0 1 2 1.0000 8 0 1 1 0.0978 4 0 1 1 1.0000 

8 21 0 1 2 1.0000 8 0 1 1 0.0978 4 0 1 1 1.0000 

10 21 0 1 2 1.0000 8 0 1 1 0.0978 4 0 1 1 1.0000 

0.05 

2 27 0 1 2 0.9957 10 0 1 1 0.0485 8 1 3 1 0.9537 

4 27 0 1 2 1.0000 10 0 1 1 0.0485 5 0 2 1 0.9999 

6 27 0 1 2 1.0000 10 0 1 1 0.0485 5 0 2 1 1.0000 

8 27 0 1 2 1.0000 10 0 1 1 0.0485 5 0 2 1 1.0000 

10 27 0 1 2 1.0000 10 0 1 1 0.0485 5 0 2 1 1.0000 

0.01 

2 42 0 1 1 0.9938 22 1 3 1 0.0095 14 2 6 1 0.9682 

4 42 0 1 1 1.0000 15 0 1 1 0.0090 7 0 2 1 0.9999 

6 42 0 1 1 1.0000 15 0 1 1 0.0090 7 0 2 1 1.0000 

8 42 0 1 1 1.0000 15 0 1 1 0.0090 7 0 2 1 1.0000 

10 42 0 1 1 1.0000 15 0 1 1 0.0090 7 0 2 1 1.0000 

 

 

5. Application of the Proposed Sampling Plan to Cancer Data 
 

In this section, the application of multiple dependent state sampling plan to real life data on survival time for 

44 patients diagnosed by Head and Neck cancer disease is considered. The data consists of 44 observations. It 

has been used by Efron [25] for logistic regression and recently analyzed by Sule et al. [26] in Topp Leone 

Kumaraswamy–G family of distributions.  The data are as follows:  

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 

119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776 
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The application is done by first checking if the data sets fit the distribution well. Zech distribution, being a 

heavily right – tailed distribution, the histogram of the data drawn depicts that the data is also positively 

skewed. The descriptive statistics of the data like minimum,1st Quartile, median, mean, 3rd quartile, maximum, 

coefficient of skewness, coefficient of kurtosis and standard deviation are shown in the Table 4. Also, Estimates 

of the parameters, standard errors, negative log-likelihood value, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) together with the goodness of fit tests, viz., Kolmogorov Smirnov Statistic 

(K –S), and P-value  are given in Table 5. 

 

        Table 4 : Summary of head and neck cancer data. 

Min 1st 

Quartile 

Median Mean 3rd 

Quartile 

Max. Standard 

Deviation 

Skewness Kurtosis 

12.20 67.21 128.50 223.48 219.00 1776.00 305.4282 3.38382 16.5596 

        Table 4 above shows that the data is asymmetric with longer tail to the right. 

          
         Table 5 : Goodness of fit tests of Zech distribution using head and neck cancer data. 

Distribution Estimates Std Error -LL AIC BIC KS P - value 

 

Zech 

𝛾 =   0.2731 

�̂� = 0.7736 
�̂� =   0.0023 

0.08364 

0.1735 

 0.0001944 

 

-277.5201 

 

561.0402 

  

566.3928 

 

0.074069 

 

0.9546 

 

Table 5 shows the estimates of parameters, standard errors and goodness of fit tests of Zech distribution for 

the head and neck cancer data. The parameters are estimated via the method of maximum likelihood. 

Empirical and theoretical pdf’s and cdf’s, Quantile – Quantile plot, and Probability-Probability plot are shown 

in Figure 1 to showcase the goodness of fit of Zech distribution. Judging from the plots in Figure 1, it is not out 

of place to say that Zech distribution yields a good fit for the head and neck cancer data. 

      

 
Figure 1: Empirical and theoretical PDF’s, empirical and theoretical CDF’S, Q- Q plots and P-P plots for Zech distribution using 

Head and Neck cancer data. 
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For illustration, the medical practitioner would prefer to employ the developed sampling plan to implement 

the percentile of the median life of the product where the product’s lifetime follows Zech distribution with the 

shape parameters are 𝛾 =   0.2731 and �̂� = 0.7736. The medical practitioners suggest that given median 

survival time is 45 days whereas the medical practitioners expected that the median survival time 90 days. The 

risk of the consumer is 0.05 provided the actual median survival time 45 days while that of the producer is 0.10 

given that the true median survival time 90 days. The ideal (optimal) parameters chosen from Table 6 under 

these restrictions (constraints) are n=13, 1c =3, 2c =6, and m=2 with values of 𝛾 =   0.2731 and �̂� = 0.7736, 
0q
t

=45,  =0.05,  =0.25, 
0

/q qt t =2 at a=0.7. The MDS sampling plans are illustrated as follows: 

A sample of 13 patients’ survival time of Head and Neck cancer disease will be chosen at random from the 

group of Head and Neck cancer disease patients and their survival time is 45 days. If the survival time before 

45 days is 3 patients then a group of the population will be allowed (accepted) and the group of the population 

will be denied (rejected) if it is greater than 6 patients in a group. In the event that a group of patients' survival 

time for Head and Neck cancer disease is between 3 and 6, the choice of the group of the population will be 

delayed until the two preceding groups of the population have been tested. For the purpose of this real world 

illustration, 7 people in the community with Head and Neck cancer disease survived before the survival time 

of 45 days. Hence, disregard the survival time of the Head and Neck cancer disease patients in a group of the 

population. So, doctors could advise the government or general public that the median survival time of people 

with Head and Neck cancer disease in a particular population group is at an undesirable level. 

 
                  Table 6: Optimal parameters of the proposed MDS plan for Zech Distribution with 𝛾= 0.2731 and �̂�=0.7736 

  
𝑡𝑞

𝑡𝑞
0
 

a=0.5 a=0.7 a=1.0 

n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) N 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) 

0.25 

2 15 2 12 2 0.9683 13 3 6 2 0.9635 14 5 13 2 0.9670 

4 5 0 1 2 0.9915 3 0 2 4 0.9629 5 1 2 1 0.9912 

6 5 0 1 2 0.9997 3 0 2 4 0.9969 3 0 2 1 0.9916 

8 5 0 1 2 1.0000 3 0 2 4 0.9997 3 0 2 1 0.9986 

10 5 0 1 2 1.0000 3 0 2 4 1.0000 3 0 2 1 0.9998 

0.10 

2 24 3 8 2 0.9620 23 5 15 2 0.9612 21 7 11 2 0.9519 

4 8 0 7 2 0.9827 6 0 2 1 0.9603 7 1 3 1 0.9856 

6 8 0 7 2 0.9994 5 0 1 2 0.9948 4 0 1 1 0.9807 

8 8 0 7 2 1.0000 5 0 1 2 0.9995 4 0 1 1 0.9967 

10 8 0 7 2 1.0000 5 0 1 2 1.0000 4 0 1 1 0.9994 

0.05 

2 33 4 14 2 0.9607 29 6 16 2 0.9505 29 9 15 1 0.9571 

4 10 0 3 2 0.9739 11 1 2 1 0.9909 8 1 3 1 0.9768 

6 10 0 3 2 0.9990 7 0 1 1 0.9939 5 0 2 1 0.9780 

8 10 0 3 2 1.0000 7 0 1 1 0.9994 5 0 2 1 0.9963 

10 10 0 3 2 1.0000 7 0 1 1 0.9999 5 0 2 1 0.9993 

0.01 

2 47 5 9 1 0.9522 45 9 19 2 0.9501 43 13 20 1 0.9535 

4 16 0 2 1 0.9663 15 1 3 1 0.9885 14 2 6 1 0.9877 

6 16 0 2 1 0.9987 10 0 1 1 0.9879 7 0 2 1 0.9592 

8 16 0 2 1 0.9999 10 0 1 1 0.9989 7 0 2 1 0.9929 

10 16 0 2 1 1.0000 10 0 1 1 0.9999 7 0 2 1 0.9987 

  

Excerpts from Table 6 are as follows: 

i.       As consumer’s risk decreases, sample size increases 

ii.      As the termination ratio rises from 0.5 to 1.0, the sample size falls. 

iii.    As the quantile ratio rises, the likelihood that the lot will be accepted increases. As the quantile ratio 

approaches 10, probability of lot acceptance also increases and almost approximates to 1 
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6. Comparative Study 
 

To determine the efficiency of MDSSP over Single sampling plan, a comparison study was made between the 

two plans when the underlying distribution of data follows Zech distribution. From Table 7, the quantile ratios 

2, 4, 6, 8 and 10 were considered for each of the consumer’s risks 𝛽 = 0.25, 0.10, 0.05, 0.01 while the producer’s 

risk was kept at 𝛼 = 0.05. The sample size n was compared to the probability of acceptance 𝑃𝑎(𝑝1). The results 

reveal that the sample size of the single sampling plan is higher than that of the developed MDSSP. For plan 

ratio 2 under the consumer’s risk, 𝛽 = 0.01, the parameters for the MDSSP are: 𝑛 = 42, 𝑐1 = 0, 𝑐2 = 1 and 𝑚 =

1. For the single sampling plan, the parameters of the plan are 𝑛 = 61 and 𝑐 = 1 with corresponding 

probabilities of 0.9938 and 0.9956 for MDSSP and SSP respectively when the termination ratio is 0.5 

Also, for plan ratio 2 under the consumer’s risk,, 𝛽 = 0.01, the plan parameters for MDSSP are: 𝑛 = 14, 𝑐1 =

2, 𝑐2 = 6 and 𝑚 = 1. For the single sampling plan, the plan parameters are 𝑛 = 19 and 𝑐 = 4 with 

corresponding probabilities of 0.9682 and 0.9569 for MDSSP and SSP respectively when the termination ratio 

is 1.0 

It shows that the proposed MDSSP is more efficient than the existing SSP for Zech distribution.  The operating 

characteristic curve in Figure 2 also emphasizes the MDSSP is more efficient than the existing SSP.  
          

           Table 7: Comparison of optimal parameters of the proposed MDSSP and SSP for Zech distribution with 𝛾 = 1.5, 𝛿=1.5. 

a = 0.5 

MDSSP                                           SSP 

a = 1.0 

MDSSP                                           SSP 

 
𝛽 

𝑡𝑞

𝑡𝑞
0
 n 𝑐1  𝑐2  m 𝑃𝑎(𝑝1) n c 𝑃𝑎(𝑝1) n 𝑐1  𝑐2  M 𝑃𝑎(𝑝1) n c 𝑃𝑎(𝑝1) 

 

 

0.25 

 

2 13 0 10 3 0.9988 13 0 0.9795 5 1 2 1 0.9829 7 2 0.9703 

4 13 0 10 3 1.0000 13 0 1.0000 3 0 2 1 1.0000 2 0 0.9968 

6 13 0 10 3 1.0000 13 0 1.0000 3 0 2 1 1.0000 2 0 1.0000 

8 13 0 10 3 1.0000 13 0 1.0000 3 0 2 1 1.0000 2 0 1.0000 

10 13 0 10 3 1.0000 13 0 1.0000 3 0 2 1 1.0000 2 0 1.0000 

 

 

0.10 

 

 

2 21 0 1 2 0.9974 21 0 0.9671 7 1 3 1 0.9705 12 3 0.9694 

4 21 0 1 2 1.0000 21 0 1.0000 4 0 1 1 0.9999 4 0 0.9936 

6 21 0 1 2 1.0000 21 0 1.0000 4 0 1 1 1.0000 4 0 1.0000 

8 21 0 1 2 1.0000 21 0 1.0000 4 0 1 1 1.0000 4 0 1.0000 

10 21 0 1 2 1.0000 21 0 1.0000 4 0 1 1 1.0000 4 0 1.0000 

 

 

0.05 

2 27 0 1 2 0.9957 27 0 0.9578 8 1 3 1 0.9537 13 3 0.9594 

4 27 0 1 2 1.0000 27 0 1.0000 5 0 2 1 0.9999 5 0 0.9921 

6 27 0 1 2 1.0000 27 0 1.0000 5 0 2 1 1.0000 5 0 1.0000 

8 27 0 1 2 1.0000 27 0 1.0000 5 0 2 1 1.0000 5 0 1.0000 

10 27 0 1 2 1.0000 27 0 1.0000 5 0 2 1 1.0000 5 0 1.0000 

 

 

0.01 

 

 

2 42 0 1 1 0.9938 61 1 0.9956 14 2 6 1 0.9682 19 4 0.9569 

4 42 0 1 1 1.0000 42 0 1.0000 7 0 2 1 0.9999 7 0 0.9889 

6 42 0 1 1 1.0000 42 0 1.0000 7 0 2 1 1.0000 7 0 0.9999 

8 42 0 1 1 1.0000 42 0 1.0000 7 0 2 1 1.0000 7 0 1.0000 

10 42 0 1 1 1.0000 42 0 1.0000 7 0 2 1 1.0000 7 0 1.0000 
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Figure 2: The operating characteristic curve for multiple dependent state sampling plan and single sampling plan. MDSSP is more 

accurate than SSP, with steeper slope. 

 

7. Conclusions 
 

The assumption used in this work to build the multiple deferred state sampling plan is that the product's 

lifespan will follow Zech distribution when the lifetime tests are truncated. By simultaneously addressing both 

the producer's and the consumer's risks, the optimal parameters for the proposed MDSSP were established. 

Application of the proposed sampling plan to real life example shows that it is suitable for the data used. The 

operating characteristic curve for the proposed sampling plan and single sampling plan (SSP) reveals that 

MDSSP is more accurate than SSP with steeper slope.   
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Abstract 

 

In this paper, a multiband compact microstrip patch antenna for different communication 

frequencies has been presented. The proposed design of the microstrip patch antenna consists of a 

slotted patch, a quarter-wave feed line, and a ground with a cross-edge slot. The antenna can 

operate from 2.1 GHz to 3.4 GHz with a bandwidth of 1.3 GHz; this band corresponds to 

applications such as Mobile WiMax (2110 MHz-2200 MHz, 2300 MHz-2400 MHz, 2500 MHz-

2690 MHz), Bluetooth (2400 MHz-2497 MHz), and RFiD. (2400 MHz -2483 MHz). The higher 

band, 4.7 GHz to 7.4 GHz, covers C-band, WLAN, and sub-6GHz 5G applications and has a gain 

factor of about 2.15 dB. The antenna is fabricated, and measurements of the radiation pattern and 

return loss are made. The comparison of observed results with those from simulations reveals 

excellent symmetry. Furthermore, the 70× 40 mm2 size of the proposed antenna makes it 

appropriate for use in lower 5G bands. 

 

 

Keywords: Microstrip antenna, Multi band, patch antenna, RFiD, Sub- 6 GHz, 

Wi-Max, WLAN. 
 

1. INTRODUCTION  
 

Multi-band microstrip patch antennas (MPAs) have drawn a lot of interest in light of the quick 

growth of mobile communication systems because to its many benefits, including low profile, 

lightweight, cheap cost, superior performance, ease of manufacturing, low cost, and multi-band 

operation. As a result, they have long had a central role in research on antennas and wireless 

propagation. They have an intrinsic constraint of a small impedance bandwidth (almost 5%) when 

constructed on thin substrates. 
   The demand for mobile terminals with a variety of functionalities has surged due to the rapid 

development of wireless communications. Nowadays, it's practically a must for any Smartphone to 

integrate a variety of services, such as coverage of several cellular frequencies, the ability to use 

navigation and positioning, and the availability of Wi-Fi. Thus, in order to support all of these 

services, mobile terminals must operate at several frequencies. Moreover, portable gadgets must be 

lightweight, small, cheap, and compact in order to be mobile and flexible. 

   Antennas are a crucial component of any communication equipment that uses wireless 

technology and are essential to ensuring that the device complies with operational frequency, size, 
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weight, and cost requirements. The mobile terminal becomes larger when each service has its own 

specialized antenna, which also increases the weight and price of the device. 

    A highly desirable solution to this issue has been the use of a single low-profile antenna that 

can operate in several bands at the many needed communication frequencies [1]-[4]. The universal 

mobile telecommunications system (UMTS), long-term evolution (LTE), Bluetooth, Worldwide 

interoperability for microwave access (WiMAX), and wireless local area network (WLAN) bands 

can all operate simultaneously on a multi-band microstrip antenna. In recent years, various 

designs of multi-band patch antennas have been proposed in the literature. Liu, Xiao et al [5]. 

Presents a novel multiband patch antenna design that can operate at three different frequencies. 

The antenna is composed of a rectangular patch with two inverted L-shaped slots, a T-shaped feed 

line, and a ground plane. Islam, Misran et el. [6] presents a compact multiband patch antenna with 

a novel E-shaped feed line. The antenna operates at three different frequencies, and the 

bandwidths are increased by using a slotted ground plane. Malhat, Safwat et el. [7] presents a 

compact multiband patch antenna with a T-shaped feed line. The antenna is designed to operate at 

four different frequencies, and the bandwidths are enhanced by using a slotted ground plane. 

Jiang and  Xu [8] presents a multiband patch antenna with a slit ring resonator. The antenna is 

designed to operate at four different frequencies, and the bandwidths are increased by using a 

meandered ground plane. Islam and Ali [9] present the design and analysis of a dual-band patch 

antenna for WLAN applications. Abbosh and Bialkowski [10] proposes a multiband patch antenna 

design that can operate in the frequency bands of 900 MHz, 1.8 GHz, and 2.4 GHz. Das, Bahera 

and Patnaik [11]  proposes a multiband microstrip patch antenna design that can operate in the 

frequency bands of 2.4 GHz, 5.2 GHz, and 5.8 GHz for wireless communication systems. 

Vishwakarma and Srivastava [12] presents a multiband stacked patch antenna design that can 

operate in the frequency bands of 2.4 GHz, 3.5 GHz, and 5.8 GHz for WLAN and WiMAX 

applications. Samsuzzaman and Islam [13] proposes a multiband fractal patch antenna design that 

can operate in the frequency bands of 1.8 GHz, 2.4 GHz, and 5.8 GHz for wireless communication 

systems. Singh, Kumar, and Gupta [14] proposes a multiband printed monopole antenna design 

that can operate in the frequency bands of 2.4 GHz, 5.2 GHz, and 5.8 GHz for wireless 

communication systems. 

So, the multi-band patch antennas have been widely studied and proposed for various 

applications such as WLAN, Wi-Fi, and WiMAX. The design of these antennas is challenging due 

to the requirement of good impedance matching, radiation pattern, and gain over multiple 

frequency bands. However, the research conducted in this area has shown that it is possible to 

design compact, lightweight, and low-profile multi-band patch antennas with good performance 

characteristics, this inspires us to further study and make an antenna that can cover most of the 

mobile communications bands. 

2. DESIGN METHODOLOGY OF THE ANTENNA 

This section describes the process that demonstrates how the suggested antenna is created step-by-

step to obtain the appropriate frequency band. To get multiband characteristics, four distinct micro 

strip antennas were constructed and simulated using the ANSYS HFSS software. 
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Figure 1: Different phases of the proposed antenna geometry 

 

2.1 Basic Rectangular Patch Antenna Design (Design I) 
 

The antenna was designed using the middle frequency of the UWB band, 6 GHz, as the resonant 

frequency. The model of antenna has been developed using the resonant frequency (f), dielectric 

constant (εr), and dielectric height (h) formulas from [15].The equations provided in [16] have been 

taken into consideration when designing the classic Rectangular patch antenna (RPA) with 

dielectric constant (εr), resonant frequency (f), and dielectric height (h). Equations (1) to (3) have 

been used to calculate the length of patch (Lp), width of the patch (Wp) and width of the feed line 

(Wf). The antenna has been designed and modeled in FEM-based electromagnetic software named 

Ansys HFSS after all the parameters have been calculated. Some of the parameter values have been 

tuned to ensure the intended performances. The optimum parameter value for the traditional RPA 

is displayed in table 1 and the model using the parameters obtained is illustrated in Fig. 1 (Design 

I). 

 

                                                                              (1) 

                                        (2) 

 

                                               (3) 

 

                                                                        (4) 

 

                                                                     (5) 

 

For a rectangular Microstrip patch antenna, the resonance frequency for any TMmn mode is given 

 as [17]: 

                                                  (6) 

Where, 

h = dielectric substrate height  

 = patch width 

= substrate dielectric constant  

 = dielectric constant effective 

 

The S11 [dB] of the design I is as illustrated in Fig. 2. It shows the antenna does not radiate in the 

given frequency range. So more modification are desired in the design and geometry of antenna. 

484



 
Shahid Modasiya, Balvant Makwana, Anil Poriya 
MULTIBAND COMPACT MICROSTRIP PATCH ANTENNA FOR 
WIRELESS COMMUNICATION APPLICATIONS 

RT&A, No 3 (74) 
Volume 18, September 2023  

 

 

2.2 Rectangular Patch Antenna with Partial Ground (Design II) 
 
In this iteration, more than half of the ground is removed while keeping the patch size constant, 

and simulation is performed, but the result shows no improvement. To improve the performance, 

a triangular slot is removed along the microstrip feed line. The antenna began to resonate around 4 

GHz and 5.5-6.5 GHz as a result of this modification.  Many applications use frequencies ranging 

from 2.1 GHz to 3 GHz, so this is one of the approximate desired bands. Because the desired 

frequency band is not obtained in this design, hence, additional modifications are required. 

 
Figure 2: Comparison of S11 (dB) for the different design under study 

 

2.3 Slot loaded Patch antenna with small partial ground (Design III) 
To achieve the desired frequency band, the ground is reduced further while leaving the triangular 

slot along the micro stripe line intact. This step yields superior results than design II as shown in 

Fig. 2. Two 1mm by 3mm slots are introduced along the width of the rectangular patch to improve 

the design even further. Because of the slots and the removal of the ground, the antenna begins to 

radiate in a wide band ranging from 4 GHz to 8 GHz. Still, the desired lower band operation is not 

observed, so more design changes are required. 

 

2.4 Slot loaded (Notched) Patch along width and length with partial ground 

(Proposed design). 
The rejection of a single band frequency was achieved by eliminating a slot from the radiating 

patch. Fig.4 depicts the suggested patch antenna geometry, whereas Fig. 3. Depicts the S11. Which 

shows that the slot has enhanced antenna bandwidth as well. The slot dimensions can be changed 

to control the notched band (length and width). It also shows that the rejected band has a 

bandwidth ranging from 3.4 GHz to 4.3 GHz. The band-notched feature is obtained by using the 

stopband's centre frequency, which specifies the dimension of the slot and may be represented as 

[18], 

 

                                                                      (7) 

 

                                                                       (8) 
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Where,  

slot length 

 Slot width 

 

The notched can be controlled by changing the value of    and   

 

 
Figure 3: S11 (dB) graph for proposed design demonstrating notch band. 

 

Table 1: Physical Parameters and dimensions of proposed design 

 

Parameter Dimensions 

(mm) 

Patch width (W) 11 

Patch Length (L) 10.3 

Width of Feed line (Wf) 1.34 

Length of Feed line(Lf) 36 

Ground Length (Gl) 48 

Ground width (Gw) 38 

Slot width (ws) 1 

Slot Length (ls) 3 

Length of ground Arm (Lg1) 4 

Length of ground slot (Lg2) 12 

Half Length of  ground (Lg3) 9.5 
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                                                                                               (B) 

Figure 4.: Design and parameter of the for proposed antenna design (A)Top view showing parameters of ground and 

substrate geometry (B) Top View Showing parameters of radiating patch. 

                                                    
Figure 5: Fabricated design of proposed antenna with top and bottom view. 

 

 

 

 

 

 

 
                                       (A) 
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(a) 

 
(b)  

(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Figure 6: Radiation pattern of proposed antenna at various frequencies (a)2.2 GHz (b) 2.3 GHz (c) 2.4 GHz (d) 2.5 

GHZ (e)2.65 GHz (f)4.5 GHZ(g)5.5 GHz (h)5.75 GHz (i) 5.85 GHz. 

 

3. RESULTS AND DISCUSSION 

 
After getting results in desired bands it was decided to fabricate the proposed design.   The 

antenna is fabricated on FR4 substrate having loss tangent of 0.001 and permittivity of 4.4. The 

thickness of FR4 used is 1.6 mm. the fabricated antenna is as shown in Fig 5. 

 

3.1 Comparison of Simulation and Measured S11 

 

The S11 plot of the all four simulated design was compared in Fig 2. It shows that the proposed 

antenna resonates from 2.13 GHz to 3.42 GHz, having minimum s11 at 2.35 GHz, which is -25.4 dB 

and at 3.15 GHz it is -17 dB. Further it resonates from 4.32 GHz to 7.41 GHz having three minima 

at 4.65 GHz, 5.85 GHz and 7.15 GHz.    

The comparison of measured result and simulated results are shown in Fig 6. The results shows 

excellent match at every band. Slight mismatch and slight shift in frequency is observed in 
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measured result, which may be due to the fabrication error and mismatch at excitation port. 

 
Figure 7: Comparison of S11 [dB] parameter of proposed antenna with simulated one 

 

3.2 Radiation Pattern Comparison 

The proposed antenna's radiation pattern has been analyzed at various frequencies, ranging from 

2.2 GHz to 5.85 GHz, as shown in Fig. X. The results indicate that the radiation pattern remains 

almost constant in the lower band, 2.1 GHz to 3.1 GHz, with a bi-directional pattern in the 

elevation plane and an omni-directional pattern in the azimuth plane. This pattern is essential for 

mobile communication applications. In the higher band, the radiation pattern slightly deteriorates 

in the azimuth plane from perfect omni-directionality. However, there is no significant variation in 

the radiation pattern beyond the 5 GHz band, and it remains approximately omni-directional in 

the azimuth plane. 

 

3.3  Comparison with existing literature 

 
Table 2 provides a comparison of the proposed antenna and a few different UWB antennas. In 

comparison to the references, it is concluded that the suggested antenna has a compact structure 

and good notched-band properties. 
 

Table 2: Comparison of proposed antenna with existing literature 

 

Ref. Freq. 

band 

(GHz) 

Notch 

band 

Applicati

on 

Dimension Notch 

band 

[15] 3.1-10.6 3.2-3.8 

4.8-6.2  

WiMAX, 

WLAN 

30 *30 Dual 

band 

[18] 2.4-5.9 4.2- 4.8 Wifi, 

WLAN, 

Wimax 

45* 40 Single 

Band 

[19] 2-10 5.10-

6.10 

UWB 47*37 Single 

band 

[20] 3-11 5-6 UWB 50*41 Single 

band 

 

[21] 3.5-7.5 5.05-

6.17 

UWB 49*53 Single 

band 
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[22] 3.1-10.6 5-6 UWB 40*35 Single 

band 

This 

work 

  2.13-

7.14  

3.42-

4.31 

Wifi, 

Bluetooth, 

WLAN, 

Wimax 

48*38 Single 

Band 

 

 

4. CONCLUSION   

 
In conclusion, the analysis and design of a multiband compact microstrip patch antenna that is 

appropriate for various wireless communication systems and can function in a wide range of 

frequencies have been described. Through extensive simulation, optimization and measurement, 

we have determined that the proposed design provides the best performance, with a gain of 2.15 

dB and multi-band operation at 2.11-3.43GHz and 4.30-7.32GHz. The fabricated antenna was tested 

in ELARC lab V.V. Nagar-Anand, and the simulated and measured results showed excellent 

agreement. Compared to other multiband and wideband antennas, the proposed antenna is cost-

effective, compact, and covers almost all the applications of S-band and C-band. Furthermore, it is 

suitable for sub-6 GHz 5G applications. Overall, the proposed antenna design offers a promising 

solution for wireless communication systems operating in a wide range of frequencies. 
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Abstract

Cervical cancer, a threat to female existence is one of major cancer affecting women in the developing
countries of the world. Several factors are responsible which humans didn™t take cognizance of. These
factors are numerous and can at times be difficult to explain using linear regression because it can™t
handle many dummy variables that are not necessary to create qualitative predictors. This study uses
decision trees to classify and identify the major risk factors causing cervical cancer in women depending
on their age since it closely mirrors human decision making than the classical regression approach. A
regression tree was constructed from the training data using recursive binary splitting. There was a
minimum number of observations required for each terminal node before it stopped. Then cost complexity
pruning to the large tree in order to obtain a sequence of best sub trees was applied. By using decision
trees as building blocks, we can construct more powerful predictions for decision trees, bagging, random
forests, and boosting. 858 cervical cancer patients were observed using 34 risk factor attributes from
University Hospital of Caracas, Venezuela. Using classification trees, 14.22% of errors are produced
during training. Based on the test data set, 91.5% of the predictions are correct. Based on the data set’s
pruned data, 91.75% of the observations can be classified correctly. Test predictions generated by this
model are within 67 years of the true median age of patients, based on regression trees. Bagging and
Random forest show improvement on the regression trees by setting a reduced mean square error. There
are four most significant variables among all trees examined by the random forest, including age at first
sexual intercourse, number of pregnancies, number of sexual partners, and hormonal contraceptives. The
same goes for boosting, as a result of the relative influence statistics.

Keywords: Classification, Pruning, Bagging, Random Forest, Boosting.

1. Introduction

While routine cervical screenings, additional preventive treatments, such as HPV vaccination
and safe sex practices, can often help women avoid developing cervical cancer, it is still a severe
health risk for them. It’s critical for women to monitor their cervical health and to consult with
their doctor if they have any worries or queries. The bottom portion of the uterus that links to
the vagina, known as the cervix, is typically referred to as the "cervical" in reference to females.
The cervix is crucial to the health of female reproductive organs because it supports the baby
throughout pregnancy and makes menstruation and birthing easier. A cervical screening test,
sometimes referred to as a Pap smear or Pap test, can be used to look at the cells that line the
cervix. A small sample of cervix cells is taken for this test in order to look for any abnormal
cells that could point to the presence of cervical cancer or other illnesses. Although frequent
cervical screenings and other preventive measures like HPV vaccination and safe sex practices can
typically help avoid cervical cancer, it remains a severe health problem for women. Women should
keep track of their cervical health often and consult with their doctor if they have any worries or
inquiries. Hull et al. (2020) [1] discussed the difficulties that LMIC healthcare systems encounter
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in delivering cervical cancer screening and treatment. These difficulties include a lack of funding,
poor infrastructure, and a paucity of qualified healthcare professionals. Moreover, barriers related
to culture and society may restrict women’s access to programs for cervical cancer prevention.
The authors also emphasize how collaborations with international organizations help LMICs’
efforts to prevent cervical cancer. They contend that in order to address the difficulties faced by
women in these contexts and to lessen the incidence of cervical cancer worldwide, a concerted,
international effort is required. Although the study describes the difficulties experienced in
LMICs, it offers little advice on how to overcome these difficulties and enhance cervical cancer
outcomes in these environments.

According to the cancer statistics, 311,000 women died of cervical cancer in 2018, which was
an increase from 570,000 cases in 2017 (Arbyn et al., 2020 [2]). In order to reduce the burden of
cervical cancer and achieve global cervical cancer elimination goals, Arbyn et al. (2020) [2] argue
that investments in preventative and control programs should be increased, especially in low-
and middle-income countries. Despite its importance in reducing cervical cancer mortality, this
study provides no information on cervical cancer screening in different regions.

Human papillomavirus infection with high-risk strains that continues over time is the main risk
factor for cervical cancer (HPV). Smoking, immunosuppression, having several sexual partners,
and beginning sexual activity at a young age are other risk factors. A limited resource and
infrastructure make cervical cancer screening programs difficult in low- and middle-income
countries, according to Zhang et al. (2020) [3]. Women’s willingness to participate in screening
programs may also be affected by social and cultural factors. There is no discussion of the
advantages and disadvantages of different cervical cancer screening methods in the article, which
provides a general overview of cervical cancer screening methods. Additionally, no detailed
guidance is provided on how to implement the screening program. Despite the fact that a
substantial share of cervical cancer cases and deaths occur in low- and middle-income countries,
the article does not provide a comprehensive analysis of the unique challenges that must be
overcome to prevent and treat cervical cancer in these countries.

Human papillomavirus infection with high-risk strains that continues over time is the main risk
factor for cervical cancer (HPV). Smoking, immunosuppression, having several sexual partners,
and beginning sexual activity at a young age are other risk factors. A limited resource and
infrastructure make cervical cancer screening programs difficult in low- and middle-income
countries, according to Zhang et al. (2020) [3]. Women’s willingness to participate in screening
programs may also be affected by social and cultural factors. There is no discussion of the
advantages and disadvantages of different cervical cancer screening methods in the article, which
provides a general overview of cervical cancer screening methods. Additionally, no detailed
guidance is provided on how to implement the screening program. Despite the fact that a
substantial share of cervical cancer cases and deaths occur in low- and middle-income countries,
the article does not provide a comprehensive analysis of the unique challenges that must be
overcome to prevent and treat cervical cancer in these countries.

Cervical cancer rates are six times higher among HIV-positive women than among HIV-
negative women, and this group accounts for a substantial portion of cervical cancer cases around
the world. Based on systematic reviews and meta-analyses, Stelzle et al. (2021) [4] assessed the
robustness of their findings by conducting sensitivity analyses. They address the significance of
their findings for efforts to prevent and control cervical cancer, including the requirement for
women who are HIV-positive to have more access to cervical cancer screening and treatment.
The study primarily uses information from studies that provide adjusted risk estimates for
HIV-associated cervical cancer, which could lead to bias if confounding factor adjustments are
insufficient or wrong.

The most frequent cancer that claims the lives of women in developing countries is cervical
cancer. New technologies have been developed to enable cervical cancer screening and treatment
that is speedier, more reasonably priced, and more sensitive. The use of self-sampling and
home-based testing to increase screening uptake as well as the incorporation of biomarkers and
personalized screening approaches to increase screening accuracy and decrease the number of
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pointless procedures are just a few of the potential future directions for cervical cancer screening
discussed by Bedell et al. (2020) [5]. The incidence and death differences associated with cervical
cancer by race and ethnicity are briefly mentioned in the article, but there is no in-depth discussion
of the social and economic variables that contribute to these differences.

A major public health concern worldwide, cervical cancer is the ninth most prevalent disease
in terms of new cases. Age-specific incidence and mortality trends presented by Sayo et al. (2022)
[6] indicate that the decline in cervical cancer incidence and mortality has been greatest among
women in their 20s and 30s. The Japanese Cancer Registry, one of the most trustworthy and
complete cancer registration systems in the world, provided the data used in this study. The
report cites regional and socioeconomic differences in cervical cancer incidence and mortality,
but it doesn’t go into great detail about how these differences are caused by social and economic
variables. The COVID-19 pandemic, which may have altered incidence and mortality rates in
recent years, may have had an impact on cervical cancer screening and treatment in Japan, but
this is not taken into consideration in the study.

According to research by Rim et al. (2022) [7], cervical cancer is more prevalent in Uzbekistan
while breast cancer is more prevalent in Korea. Also, compared to Korea, Uzbekistan has a
higher mortality rate for cervical and breast cancer. The study stresses the need for enhanced
screening programs in Uzbekistan and emphasizes the value of cervical cancer screening in
lowering mortality rates. The study only looks at two nations, therefore its conclusions might not
apply to other nations with diverse healthcare systems, risk factors, and cultural backgrounds.

Zhao et al. (2022) [8] identify several risk factors for cervical cancer in ethnic minorities
in Yunnan Province, including advanced age, low education level, young age at first sexual
experience, multiple sexual partners, smoking, misunderstanding of cervical cancer prevention,
and non-participation in screening for cervical cancer. The study underlines the need for improved
screening programs to raise awareness and participation, and emphasizes the significance of
cervical cancer screening in lowering the incidence and mortality rates among ethnic minorities in
Yunnan Province. The study uses a small sample size, which could restrict how broadly the results
can be applied to other populations. The relationships between risk factors and cervical cancer
may not be accurate because the study did not account for all relevant confounding variables.

Cervical cancer in women has been the subject of numerous studies, but only a small number
of them used machine learning techniques. This study target at determining cervical risk factors
of patients at a Venezuelan University Hospital of Caracas. 34 separate risk variables were used
to monitor 858 patients.

2. Methodology

A good method for predicting a response from a single predictor variable is simple linear
regression. In reality, we frequently use multiple predictors. Giving each predictor in a single
model a unique slope coefficient enables us to achieve this. Assume that there are p different
predictors in general. The multiple linear regression model then adopts the following form.

Y = β0 + β1X1 + β2X2 + ... + βpXp + ϵ (1)

where ϵ is independently and identically distributed with mean zero and variance σ2 The
regression technique may result in accurate predictions on the training set, but it is likely to
over-fit the data and perform poorly on the test set. This is because a tree that could be too
complex. A smaller tree with fewer splits can lead to lower variance and better interpretation at
the cost of some bias. An alternative to the method mentioned above is to only build the tree if
the decrease in RSS brought on by each split is greater than a predetermined (high) cutoff point.
This strategy will result in smaller trees, however it is too naive because a split that at first glance
seems pointless in the tree may be followed by a really good split.

  RT&A, No.3 (74)  
Volume 18, September 2023  

494



O.M. Oladoja & T.M. Adegoke
CERVICAL CANCER RISK FACTORS

2.0.1 Algorithm 1: Building a Regression Tree

1. Using the training data, construct a huge tree using recursive binary splitting. Only stop
when each terminal node has fewer than a predetermined number of observations.

2. Create a list of the top subtrees that are functions of alpha by applying cost complexity
pruning to the massive tree.

3. Choose alpha using K-fold cross-validation. Namely, create K folds from the training
observations. When k = 1, ..., K:

• Repeat steps 1 and 2 for every fold of the training data other than the kth fold.

• Analyze the mean squared prediction error as a function of α for the data in the kth
fold that were excluded.

Calculate the results for each value of alpha, then choose the one with the lowest average
error.

4. The Step 2 subtree that corresponds to the chosen alpha value should be returned.

2.1. Bagging, Random Forests and Boosting

2.1.1 Bagging

Bagging can enhance predictions for various regression techniques, but decision trees benefit
the most from its use. We merely create B regression trees using B bootstrapped training sets,
average the outcomes, and apply bagging to the regression trees. These trees are not manicured
and are grown deeply. As a result, each tree has a high variation but a low bias. These B trees
are averaged to lessen volatility. Bagging has been proven to dramatically improve accuracy
by combining hundreds or even thousands of trees into a single step. We create B different
bootstrapped training data sets, train our algorithm on the bth bootstrapped training set, and
then use that data to generate B additional bootstrapped training data sets in order to obtain and
eventually average all the predictions.

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x) (2)

It’s referred to as bagging.

2.1.2 Random Forests

Random forests provide an improvement over bagged trees by randomly making minor adjust-
ments to the trees’ decorations. We build a number of bagging-like decision tree forests using
bootstrapped training samples. However, each time a split in a tree is taken into account when
building these decision trees, a random sample of m predictors is chosen as split candidates from
the whole collection of p predictors. One of those million dollar forecasters is restricted to the
split. Even the majority of the potential predictors at each branch in the tree cannot be considered
by the algorithm when building a random forest.

2.1.3 Boosting

Similar to other tree-growing techniques, boosting grows the trees in a certain order utilizing data
from earlier trees. With boosting, each tree is fitted to a modified version of the original data set
rather than using bootstrap sampling.
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2.1.4 Algorithm 2: Boosting for Regression Trees

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, ..., B, repeat:

• Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training data (X, r).

• Update f̂ by adding in a shrunken version of the new tree:

f̂ (x)← f̂ (x) + λ f̂ b(x) (3)

• Update the residuals,
ri ← ri − λ f̂ b(x) (4)

3. Output the boosted model,

f̂ (x) =
B

∑
b=1

λ f̂ b(x) (5)

3. Results and Discussion

Both regression and classification problems can be solved using decision trees. We first evaluate
the data set using classification trees. Age is a continuous variable in these data, therefore we
start by re-coding it as a binary variable that has a value of Yes if the age variable is more than 20,
and a value of No otherwise. 14.22% of training errors are made. A tree that offers a good fit to
the (training) data will have a minimal deviation. Just divide the deviation by n− |T0| to get the
reported residual mean deviance, which in this instance is 858− 9 = 849.

Figure 1: Regression Trees for Cervical Cancer in Venezuela
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According to Figure 1, which illustrates that the number of pregnancies is a significant risk
factor component in determining the patients having cervical cancer depending on their age.
The number of pregnancies appears to be the most significant indication of the cervical cancer
of patients. Asterisks are used to denote branches that lead to terminal nodes. Instead of just
estimating the training error, we must estimate the test error in order to assess a classification
tree’s performance on this data. The observations are divided into a training set and a test set,
the tree is built using the training set, and its performance is assessed using the test set. In the
test data set, this method yields accurate predictions for about 90.5% of the locations.

Table 1: Machine Learning Accuracy Classification

Tree.Pred Age High Test
No Yes

No 82 57
Yes 34 285

Now that the pruning procedure has been completed, 91.75% of the test observations are
correctly classified, increasing both the interpretability of the tree and the classification accuracy.
We get a larger pruned tree with lower classification accuracy if we increase the value of best.

A regression tree is used to fit the data set in this case. We initially create a training set before
adjusting the tree to the training data. The findings demonstrate that the tree was constructed
using only five of the factors. The total squared errors for the tree constitute the deviation in the
context of a regression tree. In accordance with the cross-validation results, we make predictions
on the test set using the unpruned tree. As shown in Table 2, we apply bagging and random
forests on the data. Random forests beat bagging and regression trees in this case, according to
the test set MSE, in terms of outcomes.

Table 2: Mean Square Error (MSE) for the Test Set

Algorithm MSE
Regression Tree 46.05472
Bagging 38.3288
Random Forest 36.65896

There are two reported measurements of varied importance. The %IncMSE is based on the
average decline in prediction accuracy on out-of-bag samples when a particular variable is left out
of the model. The IncNodePurity is an average over all trees measurement of the total reduction
in node impurity caused by splits over that variable (this was plotted in Figure 2).

Table 3: Importance of Variables

Variables %IncMSE IncNodePurity
Number.of.sexual.partners 13.935063364 1979.451415
First.sexual.intercourse 36.935258441 6489.721033
Num.of.pregnancies 40.324446650 8720.821614
Smokes 1.658543003 188.868735
Smokes..years. 7.417078338 1725.845382
Smokes..packs.year. 3.645987343 630.046003
Hormonal.Contraceptives 5.145181475 448.446348
Hormonal.Contraceptives..years. 19.550078277 3031.607582
IUD 10.366088887 1300.537849
IUD..years. 12.001987891 1696.846107
STDs 1.008508253 148.194058
STDs..number. 2.751653121 171.491002

The training RSS is used to assess node impurity in regression trees, whereas the deviation is
used to measure it in classification trees. The findings show that the number of sexual partners,
the first sexual encounter, and the number of pregnancies are by far the three most crucial
variables across all of the trees taken into account in the random forest.
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Figure 2: Plot of Importance Measures

Relative influence statistics are provided by boosted regression trees along with a relative
influence plot as shown in Table 4. We can observe that the most significant factors are clearly the
first sexual encounter, number of pregnancies, use of hormonal contraceptives throughout time,
and number of sexual partners. Plots of the partial dependence between these four variables are
also possible as shown in Figure 3. After integrating out the other factors, these charts show the
marginal impact of the chosen variables on the response. Now, we employ the boosted model

Table 4: Relative Influence Statistics

Variables Rel.inf
First.sexual.intercourse 31.900870295
Num.of.pregnancies 23.007299808
Hormonal.Contraceptives..years. 15.871948215
Number.of.sexual.partners 10.889051795
Smokes..years. 3.356270114
IUD..years. 3.217962490
Hormonal.Contraceptives 2.848841347
Smokes..packs.year. 2.728422340
Schiller 2.150597021
IUD 1.786724939
STDs 0.552829213
Smokes 0.509029318
Biopsy 0.391805326
Citology 0.241696894
Dx 0.159287734
STDs..number. 0.147483560
STDs..Number.of.diagnosis 0.136255508
STDs.condylomatosis 0.076823947
Hinselmann 0.018564423
STDs.vulvo.perineal.condylomatosis 0.008235713

to forecast the test set’s age at risk for developing cervical cancer. The test MSE obtained is
36.99571, which is higher than that for bagging and comparable to the test MSE for random
forests. In boosting, smaller trees are frequently sufficient since the growth of a specific tree takes
into account the other trees that have already been developed, as opposed to random forests.
Interpretability can also be improved by utilizing smaller trees; for example, using stumps results
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in an additive model.

Figure 3: Plot of Partial Dependence

4. Conclusion

Regression and classification problems can be solved using decision trees. However, tree-based
methods cannot compete with the most appropriate supervised learning approaches in terms of
their ease and effectiveness for analysis. In this study, four machine learning algorithms were
used namely, regression trees, bagging, random forests and boosting in determining the risk
factors of cervical cancer patients due to their age. Random forest and boosting outperformed
bagging and regression trees due to their mean square errors. It was discovered that number of
pregnancies, first sexual intercourse, number of sexual partners and hormonal contraceptives are
the most important risk factors to determine cervical cancer in women depending on their age.
Concerned authorities in Venezuela need to take cognizance of the four variables in order to curb
cervical cancer.
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Abstract

When deciding if water is suitable for a particular usage, its quality”which includes its chemical,
physical, and biological characteristics”is referred to. The quality of the water is influenced by many
natural and human influences. Despite being in equilibrium, the natural ecosystem and water quality
would certainly be disturbed by any large changes in the water quality. In order to assess the levels of
water pollution in the Asejire and Eleyele reservoirs, this study conducted a Physico-chemical analysis of
the two reservoirs. It also used multivariate techniques to identify the causes of water pollution in the
two reservoirs under investigation, used a generalized linear model to analyze the variability in turbidity
levels, and suggested regulatory solutions to address water pollution in the two reservoirs under study.
In Ibadan, which has a population of about four million, the two main sources of pipe-borne water are
the Eleyele and Asejire reservoirs. Between January 2003 and August 2019, water samples were taken
from both locations and analyzed for 13 Physico-chemical parameters using the Principal Component
Analysis and Cluster Analysis for feature extraction and finally a Generalized Linear model for prediction.
Basic Tables and descriptive plots, Principal Component Analysis, Factor Analysis, and Generalized
Linear Models were employed. Results: In the Asejire and Eleyele reservoirs, respectively, the PCA
yields 5 significant main components explaining 76.56% and 60.97% of the variance, while the FA yields
5 significant major components explaining 94.90% and 79.97%. A generalized linear model (GLM)
was used to study the variability in turbidity level, and the results indicate that two parameters”Iron
and Silicon”in the Asejire reservoir are crucial for understanding turbidity variation and four”Colour,
Alkaline, Silica, and Solids”contribute significantly to turbidity in the water level in the Eleyele Reservoir.
With the exception of dissolved oxygen from either reservoir (Eleyele or Asejire) and iron from Eleyele
Reservoir, many metrics in Asejire are within SON and WHO acceptable limits. This suggests that the
water in the Eleyele reservoir is more contaminated than the Asejire reservoir.

Keywords: Turbidity, Reservoir, Pollution, Contaminated, Principal Component Analysis, Factor,
Generalized Linear Model, Physico-chemical.

1. Introduction

Water is required for the development of water transportation, food production, industrial
operations, and the development of renewable energy sources, and it is commonly associated
with economic progress and human health. As a result, it is critical for human growth as a whole.
The survival of living things, the health of ecosystems, the sustainability of human settlements,
and economic progress all rely on having access to safe, clean, and sufficient water. However,
as the human population has expanded and the demand for additional water has increased,
industrial activity, agricultural activity, and climate change have all had a negative impact on
water supply and quality (Oketola [1]). However, all human-caused activities have been shown to
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have a deleterious impact on water quality in both groundwater and surface water. Domestic
use, agricultural operations, and industrial activities are the three main contributors to water
contamination, according to the United Nations (2002) [2]. For example, excessive fertilizer
use in agricultural activities has been shown to harm human health (Oketola [1]; UNEP [2]).
While agriculture is the largest consumer of water, it also contributes significantly to water
contamination. In essence, it pollutes water by releasing wastes (bacteria and viruses) from farms
into waterways, posing a significant threat to water quality and harming people and wildlife
(Nancy [3]).

An indicator of the quality of water is its chemical, physical, and biological characteristics,
commonly as a measure of its suitability for a particular purpose. Water quality, according to
World Health Organization in 2018 (WHO [4]), can be described by a variety of criteria that limit
water use; it is a phrase used to demonstrate the suitability of water to validate certain purposes
or processes. The researchers also stated that human and natural factors affect water quality. In
regard to water availability and quality, geological, hydrological, and climatic factors are most
important (Boyacioglu [5]). However, even when water is available in sufficient amounts, its poor
quality restricts the uses that may be made. There is a greater need to maximize the use of limited
water resources when available quantities are low. Even though the natural ecosystem and the
water quality are in harmony, any large changes to the water quality are typically harmful to the
environment.

2. Parameters of Water Quality

The qualities of water include turbidity, which is a fluid’s cloudiness or haziness caused by
countless small particles that are normally invisible to the human eye, similar to smoke in the air.
The measuring of turbidity is an essential water quality test. For aesthetic reasons, water color is
primarily an issue for water quality. The perception that colored water is unfit for consumption
exists even when it is completely safe for ingestion by the general public. Although iron is a glossy,
ductile, malleable, silver-gray metal (group VIII of the periodic table), color can also signal the
presence of organic materials like algae or humic chemicals. It is known to exist in four different
crystalline forms. To describe how acidic or alkaline a solution is, the pH scale is utilized. It is
scored on a scale from 0 to 14. The term pH is made up of the letters "p," which in mathematics
represent for negative logarithm, and "H," which chemically stands for hydrogen. The pH range
that works best, which is normally between 6.5 and 9.5, is affected by the make-up of the water
as well as the materials used to construct the distribution system. Similar to animals and people
who live on land, aquatic animals need oxygen to survive. Oxygen from the atmosphere that has
dissolved in river and lake water is absorbed by fish and other aquatic species.

Water flowing over rocks in creeks and rivers can introduce oxygen to the water. Since it
enhances the taste of the water, a high dissolved oxygen water supply for the community is
advantageous. However, high dissolved oxygen concentrations speed up the corrosion of water
pipes. Healthy water typically has dissolved oxygen concentrations between 80 and 120 percent
and over 6.5-8 mg/L. Total solids, or "TS," is the abbreviation for the sum of the dissolved,
colloidal, and suspended solids in a sample of water. This consists of dissolved salts like sodium
chloride, or NaCl, as well as solid particles like plankton and silt. An excessive amount of
total solids in rivers and streams is a problem that arises rather frequently. The most common
contaminant in the investigated streams and rivers is siltation, one of the major contributors to
total solids, according to the Environmental Protection Agency’s National Water Quality Inventory.
The dry weight of non-dissolved suspended particles in a water sample that can be filtered out
and measured using a filtering system is known as total suspended solids (TSS). It is a metric for
measuring water quality that may be applied to any sort of water or body of water, including
ocean water and wastewater that has undergone wastewater treatment. TSS was formerly known
as non-filterable residue (NFR), but it was changed to TSS due to misunderstandings in other
scientific fields. The National Drinking Water Quality Standard (NDWQS) has established a
maximum recommended TSS limit of 25 mg/L.
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A silicon and oxygen molecule, or silicon dioxide, is known as silica (Si02). It is a tough,
glassy mineral that can be found in sand, quartz, sandstone, and granite, among other forms. It
is also present in the skeletons of both plants and animals. The majority of water supplies will
contain some silica because it is the second most common element on Earth after oxygen. In
every system of natural water, some is dissolved. A chemical indicator of water’s capacity to
neutralize acids is alkalinity. Alkalinity gauges a water’s resistance to pH changes brought on by
the addition of acids or bases. Strong bases (such OH-) may occasionally play a role in severe
situations, but weak acid salts are primarily responsible for naturally alkaline water.

The two main causes of alkalinity in natural rivers are the partitioning of CO2 from the
atmosphere and the weathering of carbonate minerals in rocks and soil. Weak acid salts that
may be present in trace amounts include borate, silicates, ammonia, phosphates, and organic
bases produced from naturally existing organic compounds. The amount of calcium (Ca+2)
ions in water expressed as calcium carbonate (CaCO3) is referred to as the calcium hardness.
Calcium must be present in the pool water at a specified amount. Calcium and other minerals
are dissolved from plaster pool surfaces and metal equipment parts when the calcium level in
the water is too low (soft water). Calcium carbonate scale can develop on pool surfaces and
recirculation equipment, especially heat-exchanging surfaces, when there is an excessive amount
of calcium present (hard water, supersaturated). It is recommended to maintain calcium hardness
levels between 150 and 1000 ppm. The optimal range for calcium hardness is 200 to 400 ppm.

Several research have used multivariate statistics to better understand natural and anthro-
pogenic water contamination causes (Praus, 2007 [6]; Boyacioglu, 2008 [5]; Pejman et al., 2009
[7]; Koklu et al., 2010 [8]). However, because the majority of these research were conducted in
Europe and Asia, there is a spatial-temporal variation that is heavily influenced by seasonality
fluctuations.

Obisesan and Christopher (2018) [9] used statistical approaches such as principal component
analysis and the General Linear Model to assess water pollution in the Asejire and Eleyele
reservoirs, however the dataset was limited in scope (2003-2007). As a result, this analysis
expanded on Obisesan and Christopher’s (2018) work by extending the dataset from 2003 to
2019. This is to critically evaluate and statistically analyze changes in reservoir (Water) quality
over time, as well as to statistically determine the influence of various statistical models on water
quality metrics.

The two main reservoirs that provide water to the Ibadan Metropolis are Asejire and Eleyele,
and they are the focus of this research. The measurements from these reservoirs were obtained
from the Water Corporation of Oyo State in Ibadan, Nigeria, and are included in the data
collection. The fact that these data are expansions of those from Obisesan and Christopher
should be emphasized (2018). The 13 physicochemical parameters assessed monthly from January
2003 to August 2019 were turbidity, color, pH, dissolved oxygen, alkalinity, total hardness,
calcium hardness, iron, silica, total solids, dissolved solids, and total suspended solids. These
characteristics are necessary to determine the severity of the effects of water contamination.
The aim of this study is to investigate water quality in Asejire and Eleyele Reservoirs using
multivariate techniques.

3. Methodology

3.1. Principal Component Analysis

A large number of (potentially) linked variables are reduced to a smaller number of uncorrelated
variables known as principal components through the mathematical process of principle com-
ponent analysis (PCA). Each following component takes into account as much of the remaining
variability as is practical whereas the first principal component takes into account as much of the
data variability as is practicable.

The main goal of PCA is to transform a set of correlated qualities into a more manageable set of
uncorrelated characteristics that account for the majority of the variation in the original attributes.
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The sample data matrix of the n samples that were submitted to the n distinct characterization
processes can be represented as matrix X.

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 (1)

The data in matrix X are mean-centered in order to generate the deviation matrix D. To
accomplish this, the data mean is removed from each data point. Mean centering eliminates
measurement bias.

D =


x11 − X̄1 . . . x1n − X̄n
x21 − X̄2 . . . x2n − X̄n

...
...

. . .
...

xm1 − X̄m . . . xmn − X̄n

 (2)

The covariance matrix of the data set S, is constructed by,

S =
D · DT

n
(3)

Resulting

S =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn

 (4)

Where,
Cij = 1/n{(xi − X̄i)(xj − X̄j)} (i, j = 1, 2, ..., k) (5)

The variance and covariance of the covariance matrix are real numbers. As a result, the covariance
or variances cannot be compared when the variables in the covariance matrix are not measured in
the same units. bigger values for the variables in the measurements will result in bigger variances,
whereas lower values for the variables in the measurements will result in lower variances. By
dividing each matrix member by its standard deviation, standardize the data to prevent the scale
dependency of the covariance matrix.

Normalized matrix element Cij

Cij =
cij√

var(i)var(j)
(i, j = 1, 2, ..., k) (6)

Variance of ith element is given as (i). The maximum variation the ith and jth variable can have
is (i) and Var(j) respectively. Therefore, the correlation between ith and jth variable, Cij, can
never exceed

√
var(i)var(j) resulting the maximum value a covariance matrix element to one.

For two variables that are uncorrelated, the covariance is zero (Cij = Cji = 0). Correlation matrix
is symmetric due to the fact, Cij = Cji and it is always real and positive definite.

PCA’s main goal is to reduce the size of the data set while preserving as much variance as
feasible from the original dataset. The covariance matrix describes the spread (variance) and
orientation (covariance) of the data collection. As a result, a normally distributed K dimensional
data set may be completely explained by a K × K covariance matrix along with the variable mean
values.

The process of converting a square matrix into a diagonal matrix, which shares the same
fundamental characteristics as the initial square matrix, is known as matrix diagonalization. A
matrix is diagonalized when its original variables are replaced with a certain set of new variables,
at which point the matrix assumes its canonical form. In other words, it’s the same as figuring out
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a square matrix’s eigenvalues. These eigenvalues will be the diagonal components of the resulting
diagonal matrix. The new set of variables created by diagonalization, known as eigenvectors,
correspond to the diagonal matrix.

We must diagonalize the correlation matrix, S, in order to describe it with directions and
magnitudes (vectors).

S−→v1 = γ1
−→v1 (i = 1, 2, ..., k) (7)

where γ1 is the eigenvalue and −→v1 is the corresponding eigenvector of the correlation matrix,
S.

S−→v1 − γ1
−→v1 = 0 (8)

(S − γ1 I)−→v1 = 0 (9)

Where I is the identity matrix of the same dimensions as S. If v is not a null vector, then the
equation above can only be define if (S − γ1 I) is not invertible. If a square matrix is not invertible
then its determinant is zero.

Det(S − γ1 I) = 0 (10)

Solving the above equation gives a set of k eigenvalues and their corresponding orthogonal
eigenvectors.

3.2. Factor Analysis

A statistical method known as factor analysis is used to translate variance among related,
observable variables into a potentially more manageable set of unobservable variables known as
factors. Alternatively, it is possible that changes in three or four of these observable variables, for
instance, largely reflect changes in fewer of these unobservable variables. Such combined changes
in response to unobservable hidden factors are what factor analysis searches for. The potential
components are combined linearly to represent the observed variables using "error" terms. Later,
the number of variables in a dataset can be reduced using the understanding of the relationships
between observed variables that has been learned.

Suppose there exists a set of random variables, x1, ..., xp and means µ1, ..., µp. Suppose for some
unknown constants Iij and k unobserved random variables Fj where i ∈ 1, ..., p and j ∈ 1, ..., k
where k < p, we have

xi − µi = Li1F1 + ... + LikFk + εi

Here, the εi are independently distributed error terms with zero mean and finite variance, which
may not be the same for all i. Let Var(εi) = ψ, so that we have,

Cov(ε) = Diag(ψ1, ..., ψp) = ψ̄ and E(ε) = 0

In matrix terms, we have
x − µ = LF + ε

Any solution of the above set of equations following the constraints for F is defined as the factors,
and L as the loading matrix.

3.3. Generalized Linear Model

In a general linear model

yi = β0 + β1x1i + β2x2i + ... ++βqxqi + ε (11)

The response yi, i = 1, ..., n is modeled by a linear function of explanatory variables xj, j =
1, ..., q plus an error term.
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Here general refers to the dependence on potentially more than one explanatory variable,
versus the simple linear model:

yi = β0 + β1x1i + ε (12)

For the general linear model with ε ∼ N(0, σ2), we have the linear predictor

ϑ = β0 + β1x1i + β2x2i + ... + βqxqi (13)

the link function
g(µi) = µi (14)

and the variance function
var(µi) = 1 (15)

4. Results and Discussion

4.1. Exploratory Data Analysis

Table 1: Descriptive Statistics for Asejire and Eleyele Reservoir

ASEJIRE RESERVOIR ELEYELE RESERVOIR LIMITS
PARAMETERS MIN MAX MEAN±SD MED MIN MAX MEAN±SD MED SON WHO
Tur 0.0000 4.000 0.9278±1.2781 0.08 0.000 32.900 4.420±4.460 3.000 5 5
Col 4.00 7.00 5.01±0.2239 5.00 5.000 30.000 6.085±3.545 5.000 15 15
PH 6.400 8.800 7.476±0.3824 7.400 6.000 8.000 7.010±0.298 7.000 6.5-8.5 6.5-9.5
DO 3.500 15.700 7.638±1.4735 7.400 1.000 54.000 8.925±5.900 7.550 5 5
Alk 22.00 88.00 49.30±11.807 50.00 8.000 157.00 63.08±23.458 60.00 - 100
TH 36.00 104.00 60.83±11.169 58.00 64.00 148.00 94.65±12.947 94.00 150 100
CaH 9.00 80.00 41.89±10.899 41.00 30.00 108.00 62.88±13.769 63.50 - 75
Cl 10.40 67.00 23.51±8.4506 20.75 8.78 90.50 33.87±8.740 34.75 250 250
Fe 0.00 0.2800 0.08157±0.1125 0.00 0.00 3.20 2.27±0.471 2.30 0.3 0.3
Si 3.00 14.00 6.22±3.2534 4.00 4.00 17.00 7.51±4.199 5.00 - -
Sol 40.0 1402.0 166.7±141.45 137.0 178.0 365.0 246.2±22.9526 245.0 - -
DS 24.00 682.00 100.91±72.676 88.00 134.0 245.0 171.4±11.052 172.0 500 1000
SS 5.00 720.00 68.33±76.629 44.00 36.00 92.00 72.44±8.116 74.00 - 500

Asejire Reservoir: With high mean concentrations of 166.7 mg/L and 100.91 mg/L, respec-
tively, Sol and DS are clearly the prominent parameters in Table 1. This demonstrates the shared
origin of these variables. The typical PH value is 7:476 LU, which is little above neutral. Tur, Col,
DO, Alk, TH, CaH, Cl, Fe, Si, and SS had average concentrations of 0.93, 5.01, 7.64, 49.30, 60.83,
41.89, 23.51, 0.08, 6.22, and 68.33 mg/L, respectively.

Eleyele Reservoir: According to Table 1, the dominating parameters in the Eleyele reservoir
Sol are DS and TH, with mean concentrations of 246.2 mg/L, 171.4 mg/L, and 94.65 mg/L,
respectively. This further demonstrates the human origin of these variables (Mustapha and Abdu
2012; Awoyemi et al. 2014). The average pH level is 7.010 LU, which is just above neutral. Tur,
Col, DO, Alk, CaH, Cl, Fe, Si, and SS had average concentrations of 4.42, 6.09, 8.93, 63.08, 62.88,
33.87, 2.27, 77.51, and 72.44 mg/L, respectively.

Thus, in both the Asejire and Eleyele reservoirs, Total Solids and Dissolved Solids are the
dominant parameters with high mean concentrations. Additionally, Asejire and Eleyele have
dissolved oxygen concentrations that are 7.64 and 8.93 mg/L, respectively, above the allowable
limit. Iron (Fe) levels in Eleyele Reservoir are also higher than allowed. This can be viewed in
Figure 1 below.
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Figure 1: Mean Plot Variable Values for Asejire and Eleyele Reservoirs

4.2. Principal Component Analysis

Table 2: Eigenvalues, Percentage Variance and Percentage Cumulative Variance for Both Reservoir PCs

ELEYELE RESERVOIR ASEJIRE RESERVOIR
PCs Eigenvalue %Variance %Cum. variance Eigenvalue %Variance %Cum. variance
PC1 2.2649278 17.422522 17.42252 3.47776690 26.7520530 26.75205
PC2 1.7912737 13.779028 31.20155 2.78797470 21.4459593 48.19801
PC3 1.4394865 11.072973 42.27452 1.52965004 11.7665388 59.96455
PC4 1.2299078 9.460829 51.73535 1.16678960 8.9753046 68.93986
PC5 1.2005036 9.234643 60.97000 0.99114982 7.6242294 76.56409
PC6 0.9619500 7.399615 68.36961 0.79671430 6.1285716 82.69266
PC7 0.9576967 7.366898 75.73651 0.77404385 5.9541834 88.64684
PC8 0.8029249 6.176345 81.91285 0.46483935 3.5756873 92.22253
PC9 0.6192486 4.763451 86.67630 0.31852158 2.4501660 94.67269
PC10 0.5870515 4.515781 91.19209 0.29688666 2.2837435 96.95644
PC11 0.5053452 3.887271 95.07936 0.19322174 1.4863211 98.44276
PC12 0.3389613 2.607395 97.68675 0.13872619 1.0671245 99.50988
PC13 0.3007223 2.313248 100.00000 0.06371526 0.4901174 100.00000

The water sample of dairy waste was subjected to a main component analysis, as indicated
in Table 2. It contains loading for the component matrix that has been rotated, eigenvalues for
each component, variance percentages, and cumulative variance percentages explained by each
component. 13 physico-chemical parameters are taken into account during PCA, and the findings
are summarized in a table. It shows that the first five principal components together account
for 76.56% of the total variance in the dataset, where the first principal component accounts
for 26.75%, the second for 21.44%, the third for 11.77%, the fourth for 8.98%, and the third for
7.62% of the total variance. To accurately assess the clustering behavior, PCA is used. Principal
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components (PC) are only extracted as components when Eigen values are greater than one.
Factor loadings are used to represent PCs with Eigen values greater than the unit value. Factor
loading is divided into three categories: strong, moderate, and mild. It ranges from 0.75 to 0.5.
High factor loadings are present in the following principal components: PC1: Alk (0.7122), PC2:
Sol (0.9026), PC3: DS (0.8397), PC4: SS (0.8313), and PC5: Col (0.7975). These factors have high
factor loadings, indicating that they are the main polluters among other parameters and have
high concentrations. PC3 and PC4 showed loadings ranging from strong to moderate.

Figure 2: A Scree Plot of the Principal Components (Eleyele Reservoir)

Figure 3: A Scree Plot of the Principal Components (Asejire Reservoir)
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Table 3: Factor Analysis for the Asejire Reservoir

Parameter PA1 PA2 PA3 PA4 PA5 h2 u2
Tur -0.88 -0.04 -0.11 0.07 -0.05 0.790 0.21
Col -0.06 0.00 -0.08 0.14 0.01 0.030 0.97
PH -0.01 -0.08 0.09 0.65 -0.03 0.432 0.57
DO 0.05 -0.08 0.11 0.28 -0.04 0.099 0.90
Alk 0.55 0.01 0.31 0.29 0.23 0.528 0.47
TH 0.13 -0.05 0.84 -0.02 0.10 0.731 0.27
CaH 0.12 -0.09 0.78 0.17 0.13 0.681 0.32
Cl 0.21 0.09 0.19 -0.06 0.61 0.467 0.53
Fe -0.93 -0.07 -0.08 0.09 -0.05 0.890 0.11
Si -0.82 -0.03 -0.06 0.03 -0.15 0.700 0.30
Sol 0.10 1.01 -0.07 -0.11 -0.02 1.050 -0.05
DS -0.13 0.85 -0.02 -0.03 0.02 0.739 0.26
SS 0.21 0.84 -0.08 -0.15 0.14 0.800 0.20
Eigenvalue 7.7661e-02 3.284e-02 8.9677e-03 5.7938e-03 4.265e-03
% of variance 56.90 24.06 6.57 4.24 3.12
Cum. % of variance 56.90 80.96 87.53 91.78 94.90

4.3. Factor Analysis

The Factor Analysis (FA) helped to identify and extract the variables affecting water quality. Table
12 shows that FA identified latent components that accounted for 94.90% of the variation. Alkaline
had a positive loading of 0.55 and Turbidity, Iron, and Silicon all exhibited very substantial
negative loadings of -0.88, -0.93, and -0.82, respectively. PA1 explained 56.90% of the total
variation. This could be considered anthropogenic input. PA2 demonstrated high positive
loadings on suspended particles (0.84) and dissolved solids (0.85) and explained 24.06 percent of
the overall variation. With substantial positive loadings on Total Hardness (0.84) and Calcium
Hardness (0.78), PA3 explained 6.57 percent of the total variance. With mildly positive loadings on
PH (0.65), PA4 explained 4.24 percent of the overall variance. With moderately positive loadings
on chlorine (0.61), PA5 explained 3.12% of the overall variation.

Testing the idea that five criteria are adequate. The null model has 78 degrees of freedom and
an objective function of 7.14 with a 1383.64 Chi Square. The objective function was 0.16, and the
model has 23 degrees of freedom. Root mean square residuals (RMSR) are equal to 0.01. Root
mean square of the residuals corrected for degree of freedom is 0.03.

The Factor Analysis (FA) helped to identify and extract the variables affecting water quality.
FA identified latent components in table 13 above that accounted for 79.97% of the overall variance.
With positive loadings on Turbidity (0.55) and Silicon (0.92), PA1 accounted for 33.60% of the
total variance, while PA2 explained 18.89%, PA3 explained 12.95%, PA4 explained 8.28% of the
total variance with positive loadings on Total Solids (0.59) and Dissolved Solids (0.53), and PA5
accounted for 6.25% of the total variance.

The five factors are adequate theory is put to the test. The null model has 78 degrees of
freedom, an objective function of 2.12, and a Chi Square of 411.88. The model has 23 degrees of
freedom, and its objective function was 0.26. The residuals’ root mean square root (RMSR) is 0.04.
The residuals’ df-corrected root mean square is 0.07, their harmonic number is 200, and their
empirical chi square is 39.9 with a probability of less than 0.016.

  RT&A, No.3 (74)  
Volume 18, September 2023  

509



O.T. Onafowokan, K.O. Obisesan & O.M. Oladoja
WATER QUALITY ASSESSMENT

Table 4: Factor Analysis for the Eleyele Reservoir

Parameter PA1 PA2 PA3 PA4 PA5 h2 u2
Tur 0.55 -0.23 -0.02 0.27 0.06 0.431 0.57
Col 0.34 -0.01 -0.04 0.10 -0.04 0.129 0.87
PH 0.43 0.15 0.04 -0.05 -0.09 0.223 0.78
DO 0.32 0.17 0.48 0.02 0.03 0.361 0.64
Alk -0.07 1.01 0.00 -0.01 0.12 1.040 -0.04
TH -0.05 0.41 -0.57 0.08 0.00 0.498 0.50
CaH 0.12 0.04 -0.65 0.06 0.05 0.448 0.55
Cl 0.15 -0.15 -0.28 0.23 -0.04 0.174 0.83
Fe -0.03 -0.05 0.05 0.04 -0.28 0.088 0.91
Si 0.92 -0.17 -0.03 -0.05 -0.02 0.879 0.12
Sol 0.04 0.00 -0.09 0.59 0.13 0.378 0.62
DS 0.10 0.07 -0.02 0.53 -0.42 0.469 0.53
SS -0.17 0.00 0.09 0.14 0.48 0.282 0.72
Eigenvalue 1.211e-02 6.809e-03 4.667e-03 2.986e-03 2.253e-03
% of variance 33.60 18.89 12.95 8.28 6.25
Cum. % of variance 33.60 52.49 65.44 73.72 79.97

4.4. Generalized Linear Model

The Generalized Linear Model (GLM) estimates of the relationship between Turbidity and other
water variables are presented in Table 5 below. It is clear that Silicon (Si) and Iron (Fe) contribute
greatly to the water’s level of turbidity in Asejire. We could also find that the water variables
taken into account in this investigation could explain 72.73% of the turbidity.

Table 5: GLM estimates and SD for Asejire Reservoir

Estimate Std. Error t value Pr(> |t|)
(Intercept) -1.1636528 1.4200685 -0.819 0.41358
Col 0.2974706 0.2144660 1.387 0.16708
PH -0.0559984 0.1340955 -0.418 0.67672
DO 0.0405164 0.0334850 1.210 0.22781
Alk -0.0042912 0.0053421 -0.803 0.42284
TH 0.0029505 0.0060358 0.489 0.62553
CaH -0.0075631 0.0064229 -1.178 0.24048
Cl -0.0008144 0.0063186 -0.129 0.89759
Fe 7.8805683 0.6996219 11.264 < 2e-16 ***
Si 0.0694667 0.0243463 2.853 0.00481 **
Sol -0.0004600 0.0010578 -0.435 0.66419
DS 0.0000971 0.0013802 0.070 0.94398
SS 0.0010290 0.0014926 0.689 0.49145
(Dispersion parameter for Gaussian family taken to be 0.4454064)
Null deviance: 325.061 on 199 degrees of freedom
Residual deviance: 83.291 on 187 degrees of freedom
AIC: 420.38
Multiple R-squared: 0.7438, Adjusted R-squared: 0.7273

Only Iron and Silicon contributes greatly to turbidity in the water level. The fitted regression
equation for turbidity level is given by

Tur = −1.1636528 + 7.8805683 ∗ Fe + 0.0694667 ∗ Si

Each one’s impact on turbidity is explained by other factors. Turbidity will decrease at
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1.1636528 with zero contribution from all independent factors. When all other factors are held
equal, a rise in turbidity of 7.881 units is projected for every unit increase in iron (Fe). Similarly,
assuming all variables remain constant, it is expected that for every unit increase in silicon (Si),
turbidity level will increase by 0.069 units.

The Generalized Least Squares (GLS) estimates of the regression between Turbidity and other
water variables are presented in Table 6 below. It is clear that the turbidity level of the Eleyele
water level is substantially influenced by color, alkalinity, silicon (Si), and solids. We could also
find that the water variables taken into account in this investigation might explain 37.56% of the
turbidity.

Table 6: GLM estimates and SD for Asejire Reservoir

Estimate Std. Error t value Pr(> |t|)
(Intercept) -6.873238 8.399258 -0.818 0.4142
Col 0.176279 0.078312 2.251 0.0256 *
PH -1.239459 0.999494 -1.240 0.2165
DO 0.093316 0.051428 1.814 0.0712 .
Alk -0.034439 0.014186 -2.428 0.0161 *
TH 0.032033 0.025496 1.256 0.2105
CaH -0.007554 0.021783 -0.347 0.7291
Cl 0.048267 0.032100 1.504 0.1344
Fe 0.449737 0.583198 0.771 0.4416
Si 0.480872 0.080525 5.972 1.16e-08 ***
Sol 0.026909 0.012235 2.199 0.0291 *
DS 0.013312 0.025536 0.521 0.6028
SS 0.034759 0.033860 1.027 0.3060
(Dispersion parameter for Gaussian family taken to be 13.21585)
Null deviance: 3957.9 on 199 degrees of freedom
Residual deviance: 2471.4 on 187 degrees of freedom
AIC: 1098.4
Multiple R-squared: 0.3756, Adjusted R-squared: 0.3355

Colour, Alkaline, Silica and Solids contributes greatly to turbidity in the water level. The fitted
regression equation for turbidity level is given by

Tur = −6.873238 + 0.176279 ∗ Col − 0.034439 ∗ Alk + 0.480872 ∗ Si + 0.026909 ∗ Sol

Each one’s impact on turbidity is explained by other factors. Turbidity will be decreasing at
6.87323 if none of the independent variables contribute. Keeping all variables equal, it is expected
that for every unit increase in Color (Col), there will be a 0.1763 unit rise in Turbidity level.
Similar to this, it is predicted that for every unit increase in silicon (Si), there will be a 0.4809 unit
increase in turbidity level, for every unit increase in alkaline (Alk), there will be a 0.4809 unit
decrease in turbidity level, and for every unit increase in solids (Sol), there will be a 0.0269 unit
increase in turbidity level, all other variables being held constant.

5. Conclusion

In this study, a variety of multivariate exploratory techniques were used to assess changes in the
quality of the surface water in the reservoirs of Eleyele and Asejire. This study’s primary goal
is to determine the levels of turbidity and water pollution in the Asejire and Eleyele Reservoirs
utilizing multivariate and generalized linear model techniques. According to the descriptive
statistics, all of the parameters with the exception of dissolved oxygen from both reservoirs
(Eleyele and Asejire) and iron from Eleyele Reservoir were within the acceptable ranges.
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Since the goal of cluster analysis is to make heterogeneous groups homogeneous, the cluster
means were divided into five groups. This revealed that all of the groups were largely homoge-
nous, with the exception of Total Solids, Dissolved Solids, and Suspended Solids, whose cluster
means are clearly heterogeneous. The groups were similarly homogeneous for Asejire Reservoir
and for Eleyele Reservoir, but Alkaline and Turbidity’s cluster means

The PC findings from the PCA were those with eigenvalues greater than 1, according to
established measures. Results indicate that 5 of the 13 PCs chosen to effectively explain the
variance in the data were taken into consideration. The PCs accounted for 76.56% of the total
variance in the Asejire Reservoir and 60.97% of the total variance in the Eleyele Reservoir.
According to the PCA results, Tur, Si, TH, CaH, and Alk were the main pollutants among
other parameters in Asejire Reservoir, while Tur, Si, TH, and CaH were the major pollutants
among other parameters in Eleyele Reservoir. This indicates that these parameters are high in
concentration and are the major pollutants among other parameters in Asejire Reservoir.

To further simplify the data structure produced by the PCA, factor analysis was used to
remove the contribution of less significant variables. It discovered latent components that, for
Asejire and Eleyele Reservoirs, respectively, accounted for 94.90% and 79.97% of all variance. The
findings make it abundantly evident that the main pollutants in Asejire Reservoir were Alk, DS,
SS, TH, CaH, PH, and Cl, whereas the main pollutants in Eleyele Reservoir were Tur, Si, Sol, and
DS.

According to the GLM results, only Iron (Fe) and Silicon (Si) have a significant impact on
water turbidity; other physico-chemical factors have a less significant role in describing turbidity
variance in the Asejire Reservoir. Additionally, turbidity in the water level is greatly influenced by
color (Col), alkalinity (Alk), silica (Si), and total solids (Sol); other physico-chemical parameters
are less significant in explaining turbidity variation in Eleyele Reservoir.

Intensive farming practices, home wastes, animal waste, organic wastes, inorganic wastes, and
industrial areas close to the river channel all contribute to the general pollution of both reservoirs,
which is caused by anthropogenic influence and industrial activity.

In a nutshell, this study shows the value of multivariate statistical techniques for complex
data analysis and visualization in water quality assessment, pollution source/factor identification,
and realization of temporal/spatial variations in water quality for effective river water quality
management.

Through a careful examination of the environment, efforts should be made to reduce anthro-
pogenic influence in the reservoir (Obisesan and Oladoja [10]). Human and industrial activity in
the city must be carefully controlled, and human activity near the reservoir’s route must be lim-
ited. Continual public education regarding the effects of water pollution and the implementation
of environmental/water management laws is also necessary.
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Abstract 

In this paper some important statistical properties of three-parameter Sujatha distribution including 

descriptive measures based on moments, reliability properties, mean deviations, stochastic ordering 

and Bonferroni and Lorenz curves have been discussed. The estimation of parameters using maximum 

likelihood estimation has been discussed.  Finally, the goodness of fit of the distribution has been 

presented for two real lifetime datasets and compared with several one and two-parameter well- 

known lifetime distributions. 

Keywords: Sujatha distribution, Extended Sujatha distributions, Statistical 

Properties, Estimation, Applications. 

1. Introduction

Due to stochastic nature of lifetime data, it is really very challenging to search a suitable distribution 

to model lifetime data. The search for a suitable distribution for modeling of lifetime data is very 

challenging because the lifetime data are stochastic in nature. The analysis and modeling of lifetime 

data are essential in almost every field of knowledge including medical science, engineering, 

physical sciences, finance, insurance, demography, social sciences, literature, etc. and during recent 

eras several researchers in mathematics and statistics tried to introduce lifetime distributions. 

Recently, Sharma et al. [1] studied comparative study of several one parameter lifetime distributions 

and observed that there are some datasets which are extreme skewed to the right where these 

distributions were not giving well fit. 

Recently, Nwikpe and Iwok [2] proposed a three-parameter generalization of Sujatha distribution 

(ATPSD) and studied few of its properties including hazard rate function, moment generating 

function, moments about origin, distribution of order statistics, and application on a dataset. The 
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probability density function (pdf) and the cumulative distribution function (cdf) of ATPSD are given 

by 
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The survival function of ATPSD is given by 
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It has been observed that there are several interesting properties of ATPSD including central 

moments and moments based descriptive measures, reliability properties, mean deviations, 

stochastic ordering and Bonferroni and Lorenz curves have not been studied. In this paper an 

attempt has been made to discuss these statistical properties of ATPSD and propose some areas of 

applications.   

The distributions which are particular case of ATPSD are summarized in table 1 along with its 

introducers. 

Table 1: Some particular distributions of ATPSD 

Parameter 

values(distributions) 

Pdf of distribution Introducer 
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The behavior of the pdf and the cdf of ATPSD are presented in figures 1 and 2 respectively. 

Figure 1: The graphs of the pdf of ATPSD for different values of ,  and  

,  andFigure 2: The graphs of the cdf of ATPSD for different values of  
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2. Descriptive Properties Based On moments

The r th moment about origin, r  , of ATPSD is given by 

( ) ( ) ( ) 
( )

2
! 2 2 1 1 2

; 1, 2, 3,
2

2

r r r r

rr r

  


   

+ + + + +
 = =   

+ +

     (4) 

Thus, the first four moments about origin are obtained as 
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Now using the relationship between moments about mean and the moments about origin, the 

moments about the mean of ATPSD are obtained as 
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The coefficients of variation (C.V), skewness ( )1
 , kurtosis ( )2

 and index of dispersion ( ) of 

ATPSD are thus obtained as 
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The nature of the coefficient of variation, skewness, kurtosis and index of dispersion of ATPSD are 

shown graphically in figure 3.  

Figure 3: The nature of the coefficient of variation, skewness, kurtosis and index of dispersion of ATPSD 

When  and  are fixed and   increases, the value of the CV is increases till 3   and when 3  , 

then CV starts decreasing slowly increasing values of . When   and  is fixed, then CV decreases 

for increasing values of . Similarly, for, fixed values of    and   and increasing values of  , CV 

decreases.  
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When  and  are fixed and    increases, skewness decreases speedily till 1   and when 1  , it 

becomes constant. When   and   is fixed, then skewness decreases for increasing values of . 

Similarly, for, fixed values of    and   and increasing values of  , skewness increases.  

For fixed values of ( ),  and increasing values of    , the kurtosis is decreasing, increasing and

again decreasing.  For fixed values of ( ),   and increasing values of , the kurtosis is increasing

and then decreasing. And for fixed values of ( ),   and increasing values of  , the kurtosis is

decreasing speedily  till 2   and for 2  , it starts increasing very slowly.  

For the nature of index of dispersion, it is always decreasing for increasing values of one parameter 

and fixed values of another two-parameter. 

3. Reliability Properties

3.1. Hazard Rate Function 

The hazard rate function of ATPSD is obtained as 
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The behaviors of the hazard rate function of ATPSD are explained in the following figure 4. 

,  andFigure 4: The graphs of the hazard rate function of ATPSD for different values of  
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3.2. Mean Residual Life Function 

The mean residual life function of ATPSD can be obtained as 
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.The behavior of mean residual life 

function is explained in the following figure 5. 

Figure 5: The graphs of the mean residual life function of ATPSD for different values of ,  and  

4. Stochastic Ordering

In probability theory and statistics, a stochastic order quantifies the concept of one random variable 

being bigger than another. A random variable X  is said to be smaller than a random variable Y in 

the: 

i. Stochastic order ( )X Yst  if ( ) ( )F x F yX Y  for all x
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ii. Hazard rate order ( )X Y
hr

 if ( ) ( )h x h yX Y  for all x

iii. Mean residual life order ( )X Y
mrl

 if ( ) ( )m x m yX Y  for all x 

iv. Likelihood ratio order ( )X Y
lr

 if  
( )

( )

f xX

f yY

 decrease in x 

The following results due to Shaked and Shantikumar [8] are well known for establishing stochastic 

ordering of distributions 
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. This means that X Y
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  and hence
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 and X Yst . 

5. Deviation from Mean and Median

The amount of dispersion in a population is an evidently measured to some extent by the totality of 

deviations from the mean and median. These are known as the mean deviation about the mean and 

mean deviation about median and are defined by 
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where ( )E X =  and ( )M Median X= . 

The measures ( )
1

x and ( )
2

x can be calculated using the following relationships
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Thus, the mean deviation about the mean ( )
1

x , and the mean deviation about the median ( )
2

x of

ATPSD are obtained as  
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6. Bonferroni and Lorenz Curves and Indices

The Bonferroni and Lorenz curves by Bonferroni [9] and Bonferroni and Gini indices have wide 

applications in economics to study income and poverty, but it also used in other fields like reliability, 

demography, insurance and medicine. The Bonferroni and Lorenz curves are defined as  

1 1 1
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respectively. 

The Bonferroni and Gini indices are obtained as 
1

1 ( )
0

B B p dp= −  and  
1

1 2 L( )
0

G p dp= −  , respectively. 

Using pdf of ATPSD and little algebraic simplification, we get 
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Now using equations and after some simple algebraic simplifications, the Bonferroni and Gini 

indices of ATPSD are obtained as 
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7. Maximum Likelihood Estimation

Let ( ), , , ...,
1 2 3

x x x xn be a random sample of size n from ATPSD ( ), ,   . Then the likelihood

function is given by 

( )
( )

2
2

2 2
2 12

n

n n x
L x x ei i

i

 
   

  

−
= + +

=+ +

 
 
 
 

, where x  is the sample mean. 

 The log-likelihood function is thus obtained as 
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The maximum likelihood estimates ( )ˆ ˆ ˆ, ,   of parameters ( ), ,   are the solution of the following

log-likelihood equations 
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These three log-likelihood equations do not seem to be solved directly. We have to use Fisher’s 

scoring method for solving these three log-likelihood equations. We have 
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The following equations can be solved for MLEs  ( )ˆ ˆ ˆ, ,   of ( ), ,   for ATPSD 
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where ( ), ,
0 0 0

   are the initial values of ( ), ,   respectively. These equations are solved

iteratively till sufficiently close values of ( )ˆ ˆ ˆ, ,   are obtained. 

8. Applications to Lifetime Data

The following real lifetime datasets have been considered for testing the goodness of fit of ATPSD 

over other one parameter and two-parameter lifetime distributions. 

Data Set 1: The real data discussed by Almongy et al [10] that represents a COVID 19 mortality rate 

data belongs to Mexico of 108 days that is recorded from 4 March to 20 July 2020. This data formed 

of rough mortality rate. The data are as follows: 

8.826, 6.105, 10.383, 7.267, 13.220, 6.015, 10.855, 6.122, 10.685, 10.035, 5.242, 7.630, 14.604, 7.903, 6.327, 

9.391, 14.962, 4.730, 3.215, 16.498, 11.665, 9.284, 12.878, 6.656, 3.440, 5.854, 8.813, 10.043, 7.260, 5.985, 

4.424, 4.344, 5.143, 9.935, 7.840, 9.550, 6.968, 6.370, 3.537, 3.286, 10.158,8.108,6.697, 7.151, 6.560, 2.988, 

3.336, 6.814, 8.325, 7.854, 8.551, 3.228, 3.499, 3.751, 7.486, 6.625, 6.140, 4.909, 4.661, 1.867, 2.838, 5.392, 

12.042, 8.696, 6.412, 3.395, 1.815, 3.327, 5.406, 6.182,4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 

4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 

1.205, 2.077, 3.778, 3.218, 2.926, 2.601, 2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923. 

Data set-2: The following bi-modal dataset, discussed by Ghitany et al. [11], is obtained from the 

banking sector discusses the waiting time (in minutes) before the customer received service in a 

bank. The values are: 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3,4.3, 4.4, 4.4, 4.6, 

4.7, 4.7,4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9,7.1, 7.1, 7.1,  7.1, 7.4, 7.6, 7.7, 8.0, 

8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,10.9, 11.0, 11.0, 11.1 ,11.2, 11.2, 11.5,11.9, 12.4, 

12.5, 12.9, 13.0, 13.1,13.3, 13.6, 13.7,13.9,14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 

21.3, 21.4, 21.9,23.0,27.0, 31.6, 33.1, 38.5. 

In order to compare lifetime distributions, values of 2 log L− , AIC (Akaike Information Criterion), 

AICC (Akaike Information Criterion Corrected), K-S Statistics (Kolmogorov-Smirnov Statistics) 
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and the corresponding probability value (p-value) for the above data set has been computed. The 

formulae for computing AIC, AICC and K-S Statistics are as follows:  

2 2klA ogIC L= +− ,
2 ( 1)

1

k k
AICC AIC

n k

+
= +

− −
, ( ) ( )| |

0
D Sup F x F xn

x
= −

  ,   k n= =where number of parameter sample size

The distribution corresponding to the lower values of 2 log L− , AIC, AICC, and K-S Statistics is the 

best fit distribution. These statistical values for the two datasets have been computed and presented 

in tables 2 and 3 respectively. It is obvious from the goodness of fit of distributions given in tables 2 

and 3 that ATPSD gives much closure fit as compared to other one parameter and two-parameter 

distributions and hence it can be considered as a suitable model for the given dataset.  

Table 2: ML estimates, -2logL , AIC, AICC, K-S value and p-value of the distribution for the data set-1 

Distributions 

MLE 

-2logL AIC AICC  K-S p-

value 
̂ ̂ ̂

ATPSD 0.5209 2277.6180 0.1000 533.29 539.29 539.52 0.0584 0.9246 

TPSD 0.4867 0.0100 … 536.45 540.45 540.56 0.0682 0.8029 

NTPSD 0.4842 0.0100 … 542.75 546.75 546.86 0.0869 0.5153 

ANTPSD 0.4869 931.2583 536.37 540.37 540.48 0.0684 0.7975 
QSD 0.4825 0.1000 … 537.97 541.97 542.08 0.0671 0.8205 

NQSD 0.4868 137.8985 … 536.39 540.39 540.50 0.0626 0.8758 

WSD 0.9828 3.7285 … 510.77 514.77 515.47 0.0845 0.5561 

PSD 0.3491 1.1648 … 537.06 541.06 541.76 0.0937 0.4454 

Sujatha 0.4631 … … 543.36 545.36 545.39 0.0950 0.3961 

Table 3: ML estimates, -2logL , AIC, AICC, K-S value and p-value of the distribution for the data set-2 

Distributions 

MLE 

-2logL AIC AICC K-S p-

value 
̂ ̂ ̂

ATPSD 0.2025 0.1270  108.8797 634.60 640.6 640.85 0.0564 0.9539 

TPSD 0.2769 2.4379 … 639.25 643.25 644.05 0.0764 0.7146 

NTPSD 0.2316 20.3400 … 635.03 639.03 639.15 0.0699 0.8086 

ANTPSD 0.2769 0.4102 … 639.25 643.25 644.05 0.0750 0.7361 

QSD 0.2769 0.6752 … 639.25 643.25 644.05 0.0897 0.5133 

NQSD 0.2769 0.1136 … 639.25 643.25 644.05 0.0908 0.4959 

WSD 0.1958 0.0100 … 602.44 606.44 607.24 0.1079 0.2627 

PSD 0.3571 0.9012 … 636.48 640.48 641.28 0.0682

1

0.8206 

Sujatha 0.2846 … … 639.63 641.63 641.88 0.0949 0.4447 
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The fitted plot of the considered distributions of the data set-1 and data set-2 are presented in 

figure 6.   

Figure 6: Fitted plot of distributions of the data set-1 and data set-2. 

9. Conclusion

Some important and useful statistical properties of a three-parameter Sujatha distribution (ATPSD) 

including descriptive measures based on moments, reliability properties, mean deviations, 

stochastic ordering and Bonferroni and Lorenz curves have been derived and discussed. Maximum 

likelihood estimation has been discussed for estimating the parameters. Applications and goodness 

of fit of the ATPSD have been demonstrated with two real lifetime datasets and it shows better fit 

over several one parameter and two-parameter lifetime distributions.  
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Abstract

A single server retrial queueing model with non-preemptive priority was examined in this research. The
arrival of priority consumers follow a marked Markovian arrival pattern, and both high priority and
low priority service times are according to phase type distribution. Matrix analytic method are used to
examine the steady state analysis of this model. Various system performance measures, cost analysis and
busy period analysis also examined in this model. In additionally, by using some system performance
measures we provide the numerical illustration with numerically and graphically.

Keywords: Markovian arrival process, Priority queue, Phase type Repair, Second optional service,
Differentiate breakdown, Closedown, Single vacation, Emergency vacation, Setup, Balking.

AMS Subject Classification (2010): 60K25, 68M30, 90B22 .

1. Introduction

Retrial queues in queueing theory have gained attention recently as a significant topic of study
as a result of its numerous applications. System manufacturing, designing of local area com-
munication networks and data communication networks are the most common examples. The
customers are bound to be impatient in general. From the real-life experience, we can observe
that the customers who require service must form a queue. However, some customers decide
not to wait in queue due to time restrictions, and some customers who do wait in queue get
impatient and leave the queue before receiving service.

The Markovian Arrival Process (MAP) is considered to be the most significant process tool in
this theory. Neuts [26] pioneered the Versatile Markovian Point Process (VMPP). He has used the
concept of point process which is Markovian arrival process. Chakravarthy [10] have analysed the
MAP which is represented by n-dimensional parameter matrices (D0, D1) where D0 governing
the transition for no arrival and D1 governing arrivals.

There are two types of priority services such as preemptive and non-preemptive. The arrival
of priority customers have to wait until the regular customers service completed such as non-
preemptive priority. The low priority consumers should be interrupted by the preemptive priority,
also known as the high priority customers. Isotupa and Stanford [17] looked into a single server
queue that takes connections that arrive from N classes of clients in a non-preemptive priority

  RT&A, No.3 (74)  
Volume 18, September 2023  

528

ayyappan@ptuniv.edu.in
archanagurulakshmi@gmail.com


G. Ayyappan, G. Archana @ Gurulakshmi
ANALYSIS OF MMAP/PH/1 CLASSICAL RETRIAL QUEUE WITH...

manner. They found R matrix and waiting time distribution. Numerical results also provided in
their model. Baek et al. [9] investigated a single server priority queueing system with two types of
customers and consumable additional items. Additionally, they looked at buffer systems with zero
buffers for type 1 customers, infinite buffers for type 2 customers, and buffers with K capacities
for additional items. Krishnamoorthy and Divya [19] examined a single server queueing model
with working vacation, non-preemptive priority, and two distinct N-policies. Their concept states
that when the server is on vacation, responses to high priority (type I) clients continue, while
responses to low priority (type II) clients must wait until the server resumes normal operations.
Also they found busy period analysis, waiting time distribution and numerical illustrations.

A queueing model with two different kinds of clients in which arrival follows Markovian
arrival process which was investigated by Chakravarthy and Dudin [13]. The steady state
probability vector, waiting time distribution and several numerical illustrations are also found in
their model. Sleptchenko et al. [28] has developed a single server queueing model along with
arbitrary N client classes, class-dependent service rates, and priority classes. Krishnamoorthy
et al. [20] looked into a multi-server queue with self-generated priorities and non-preemptive
priority services. The arriving customer to a C-server counter follows MAP and service time
follows PH for both priority customers. They found cost analysis and performance measures in
their model. Nair et al. [24] analysed a M/M/1 queue with priority loss through feedback. They
took into consideration the arrival of consumers with different priorities P1 and P2 in accordance
with a marked Markovian arrival process and phase type distribution is used for service time.
They discussed two types of model such as model 1 and 2. In model 1 was considered as
non-preemptive service for P2 customers and in model 2 was considered as preemptive policy of
P2 customers. Also they find waiting time analysis and system performance measures.

In real life situations, every working place and offices vacations are essential. Here we
considered single and emergency vacation. The server can take the vacation after completion of
service and also during the service time, the server can take emergency vacation. In many working
places, the servers may take the vacation during the busy time and continue the remaining service
of that customers. A queueing model with priority services was investigated by Ayyappan and
Udayageetha [7]. They considered two types of vacation such as modified Bernoulli vacation
and emergency vacation. After completing the requested service, the server goes on Bernoulli
vacation if there are no high priority clients in the system; otherwise, the server is idle. During
the service time of high priority customers, the server take emergency vacation. They presents
some numerical examples and performance measures.

The arrival of negative consumers should detract the positive customers who gets the services
from the server and they exit the system without the service being completed which is called as
negative arrival. M/M/1 retrial queue with preemptive priority and a maximum of J vacations
has been studied by Yuvarani and Saravanarajan [31]. They considered negative arrival of
customer occurs in the busy period of positive customer. Due to the negative arrival, the positive
customer spoiled their service and leave the system. Some performance measures and numerical
illustrations are also given. A multi server queueing model with negative customer and partial
protection of service has been done by Klimenok and Dudin [18]. A non-preemptive priority
queue with server’s walking process was done by Fukagawa et al. [15]. The stationary probability
vector, queue waiting time and evaluation measures of the queue also done by them. A Single-
server Discrete-time Retrial G-queue with server Breakdowns and Repairs was done by Wang
and Zhang [30].

Ayyappan and Thilagavathy [6] accomplishes a single-server priority retrial queue with stand
by server, breakdown, repair, vacation, negative arrival, balking and reneging. They used the
concept of negative arrival while the main server is in busy. The negative arrival are affected to
the positive customer those who gets the service to be removed completely from the system and
server moved into repair process. Busy period analysis, cost analysis and graphical illustrations
are all given. Retrial queueing model MMAP/M2/1 with two orbits have been studied by
Avrachenkov et al. [8]. They considered two orbits, one is an infinite capacity and another
one is finite capacity. Some of the performance measures and numerical illustrations are also
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provided. A multichannel queueing model with quasi-random input retrial times and phase type
services has investigated by Artalejo and Corral [2]. By solving Quasi birth and death process, the
stationary probability vector has been evaluated and some performance measures also evaluated.

The concept of optional secondary service is that after completion of primary customer service,
the customer may need a secondary service with probability p or the customer leaves the system
completely with probability q. A queue with single server subject to second optional service has
been done by Madan [22]. They considered two types of service such as essential and optional
service. The essential service are given to all the customers in the system while second optional
service are provided only for some customers those who need the service once again. Waiting
time distribution and particular cased are also derived.

Chakravarthy [11] looked into a MAP/PH(1), PH(2)/1 queueing structure whereby services
were given on a first come, first served basis subject to vacations and optional secondary services.
A single server queueing model with N-policy and second optional services have been evaluated
by Das et al. [14]. They presented the cost analysis and various performance measures of
their model. A single server queue with setup, closedown, multiple vacation, standby server,
breakdown, repair and reneging was studied by Ayyappan and Thilagavathy [5]. Chakravarthy
and Agarwal [12] explored a machine repair problem with Unreliable server. In their model, they
considered phase type distribution for the service and repair time of server. They also determine
the performance measures and some numerical illustrations. A single server retrial queueing
model with Bernoulli vacation, feedback, breakdown and repair was analysed by Ayyappan and
Gowthami [3]. Also they found the cost analysis, some performance measures and by using the
performance measures they evaluate the numerical results.

There are two types of breakdown such as active and passive breakdown. The active break-
down occurs while the busy period of server and the passive breakdown occurs during the server
idle period. Gao et al. [16] examined two kinds of breakdown and delayed repairs in an unreliable
retry queue. They employed passive and active breakdowns in the periods of idle and busy,
respectively. When a passive breakdown happens, the server cannot be repaired immediately
and must wait for consumers to arrive from the outside or from orbit because the server lacks a
monitoring system during idle times. They provided a few performance measures based on the
likelihood that a server would be busy, idle, or undergoing maintenance, among other factors.
By using performance measures they find the numerical values. A queueing model with single
server subject to working vacation and two type of server breakdown have been analysed by
Agarwal et al. [1]. They considered the server breakdown while server is in working vacation or
normal busy period. Numerical illustrations are also examined by them.

Niu et al. [27] investigated a vacation queue with Setup and Closedown periods, as well
as batch Markovian Arrival Processes. In their model after completion of service, the server
closedown the system and setup the system when the server return from vacation. The arrival
process follows Markovian arrival process and service time follows phase type distribution
with the random variables Bernoulli vacation, setup, Bernoulli feedback, breakdown, repair and
impatient customers was investigated by Ayyappan and Gowthami [4]. Now-a-days, in many
places, most of the peoples does not prefer to wait a line at long time. Here we consider balking
such as the customer does not enter into the system due to impatient. Swathi et al. [29] examined
a queueing system with balking and reneging. In their model, they included the concept of
customer balking and reneging as a result of the server’s unavailability during vacation and
breakdown times. The steady state analysis of the system and several performance measures
were also derived by them.

The remainder of the article is organised as follows: The narration for our model is located in
section 2. Section 3 discusses the matrix generating procedure and some notations. The system
stableness, the invariant probability vector, and R matrix are all obtained in section 4. The busy
period analysis is presented in section 5. Section 6 contains performance measures. Section 7
presents the cost analysis. Section 8 contains some numerical and graphical outcomes. Section 9
contains the conclusion part.
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2. Narration of the Model

• In this article, we analyse a single server classical retrial policy with preemptive priority
queue, differentiate breakdown, second optional service, phase type repair, two types of
vacation, closedown, setup and balking.

• Arrival of both high priority and low priority (HP and LP) clients in accordance with
MMAP, which is a generic version of MAP with parameter matrices of order (D0, D1, D2)
of order m2. The D0 matrix denotes the absence of positive customer arrivals, while the D1
and D2 matrix denotes customer arrivals.

• While low priority customers only have a "L" size finite buffer, high priority customers
have an infinite capacity. The negative arrival of customers are also follows MAP with
representation (C0, C1) of order m1, where C0 represents to no arrival and C1 represents to
arrival of customers.

• The service offered to the customers in the basis of first come first service. The customers
receive the service immediately if server becomes idle. In idle time, the server may struck
due to breakdown to starts the service and then moves to repair process.

• During the service period, the server experiences a breakdown owing to a negative arrival
and immediately enters the repair process. At the same time, positive customer who receive
service from the server will abandon the system totally.

• When a low priority client attempts to join an orbit that is already full, the action is deemed
unsuccessful. If any low priority customers retrial from the orbit while the server is idle,
the low priority customers will receive service from the server successfully.

• The duration of service time of both (HP/LP) customers which follows PH type distribution
with the notations (α, T) of order n1 where T0 + Te = 0 such that T0 = −Te and the optional
service of HP customers also follows PH type distribution with notation (α1, T1) of order n2
where T0

1 + T1e = 0 such that T0
1 = −T1e.

• The server repair time follows a PH type distribution with representation (β, S) of order s
where S0 + Se = 0 and S0 = −Se.

• During the service time of LP customers, the server takes emergency vacation and the
customers those who are receives the service have to join the orbit and will get the service
after the vacation completion by server. When the service is finished, the server shuts down
the system and goes on vacation.

• The server will startup the system after completion of vacation. When on vacation, the
customer may join the system with probability (1 − b) or balk the system because of
impatience with probability b.

• Inter-retrial times, emergency vacation, single vacation, breakdown times, closedown and
setup times are all based on exponential distribution and its parameters as δ, η1, η2, τ, ϕ
and ψ respectively. (see Figure 1).

3. The QBD process infinitesimal generation matrix

Let us narrate the few notation of this model which followed by generator matrix of the QBD
process as follows:
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Figure 1: Representations of our model in schematic form

Notations:

• ⊗ - Two matrices with varying orders are combined in a Kronecker product.

• ⊕ - Two matrices with different orders are combined in a Kronecker sum.

• Im - Represents the identity matrix of order m × m.

• e - Each entry in a column vector has the required dimension, which is 1.

• 0 - It denotes an appropriate order of zero matrices.

• The fundamental arrival rate λi, where i=1,2 which is specified as λi = πDiem2 , π represents
the stationary probability vector of the generator matrix D0 + D1 + D2 which determines
MMAP transitions.

• The negative arrival rate be λ3 which is specified as λ3 = π1C1em1 , where π1 is the steady
state probability vector of generator matrix C = C0 + C1.

• The rate of normal service of server is indicated as µ = [α(−T−1)en1 ]
−1.

• The rate of optional service of server is indicated as µ1 = [α1(−T−1
1 )en2 ]

−1.

• The repair rate for normal/optional service of server as represented by σ = [β(−S−1)es]−1.

• N1(t) indicates the total number of customers with high priority in the system at time t.

• N2(t) indicates the total number of customers with low priority in the orbit.

• C(t) stands for the server status at time t.
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C(t) =



0, server is in idle.
1, server is busy in HP normal Serivce.
2, server is busy in HP optional service.
3, server is busy for LP normal service.
4, server is in repair process.
5, sever is in emergency vacation.
6, server is in closedown.
7, server is in vacation
8, server is in setup.

• S(t) represents the service phase of server.

• K(t) represents the repair phase of server.

• Ai(t) stands for the arrival phase of negative and positive customers, where i=1,2.

Let
{

N1(t), N2(t), C(t), S(t), K(t), A1(t), A2(t), t ≥ 0
}

is the CTMC with the state space as
follows,

Ω = l(0)
∞⋃

i=1

l(i),

where
l(0)={(0, i2, 0, a2) : 0 ≤ i2 ≤ L, 1 ≤ a2 ≤ m2}

∪{(0, i2, 3, k1, a1, a2) : 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(0, i2, 4, b, a2) : 0 ≤ i2 ≤ L, 1 ≤ b ≤ s, 1 ≤ a2 ≤ m2}
∪{(0, i2, j, a2) : 0 ≤ i2 ≤ L, j = 5, 6, 7, 8, 1 ≤ a2 ≤ m2},

and for i ≥ 1,

l(i)={(i1, i2, 1, k1, a1, a2) : i1ϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 2, k2, a1, a2) : i1ϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k2 ≤ n2, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 3, k1, a1, a2) : iϵZ+, 0 ≤ i2 ≤ L, 1 ≤ k1 ≤ n1, 1 ≤ a1 ≤ m1, 1 ≤ a2 ≤ m2}
∪{(i1, i2, 4, b, a2) : iϵZ+, 0 ≤ i2 ≤ L, 1 ≤ b ≤ s, 1 ≤ a2 ≤ m2}
∪{(i1, i2, j, a2) : iϵZ+, j = 5, 6, 7, 8, 0 ≤ i2 ≤ L, 1 ≤ a2 ≤ m2}.

3.1. The Infinitesimal Matrix Generation

The quasi birth and death process has the generating matrix Q, is as follows:

Q =



B00 B01 0 0 0 0 0 0 . . .
B10 A1 A0 0 0 0 0 0 . . .
0 A2 A1 A0 0 0 0 0 . . .
0 0 A2 A1 A0 0 0 0 . . .
0 0 0 A2 A1 A0 0 0 . . .
...

...
...

. . . . . . . . . . . . . . . . . .


,

where
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B00 =



B1
00 B2

00 B3
00 0 0 0 0

B4
00 B5

00 B6
00 B7

00 B8
00 0 0

B9
00 0 B10

00 0 0 0 0
0 B11

00 0 B12
00 0 0 0

0 0 0 0 B13
00 B14

00 0
0 0 0 0 0 B15

00 B16
00

B17
00 0 0 0 0 0 B18

00


,

where B1
00 = diag(D0 − τ Im2 , D0 − (τ + δ)Im2 , ..., D0 − (τ + kδ)Im2)

B2
00 =


e′ ⊗ α ⊗ D2 0 0 . . . 0

e′ ⊗ δα ⊗ Im1 e′ ⊗ α ⊗ D2 0 . . . 0
. . . . . . . . .

...
0 e′ ⊗ Lδα ⊗ Im1 e′ ⊗ α ⊗ D2 . . . 0

 ,

B3
00 = I(L+1) ⊗ e′ ⊗ τ Im2 , B4

00 =


0 0 0 . . . 0
0 em1 ⊗ T0 ⊗ Im2 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . em1 ⊗ T0 ⊗ Im2

 ,

B5
00 =


f1 f2 0 . . . 0
0 f1 f2 . . . 0

. . . . . .
0 0 0 . . . f1 + f2

 , where f1 = T ⊕ D0 ⊕ C0 − η1 Inm1m2 , f2 = In ⊗ Im ⊗ D2,

B6
00 = I(L+1) ⊗ In1 ⊗ C1 ⊗ em2 , B7

00 = I(L+1) ⊗ enm1 ⊗ η1 ⊗ Im2 ,

B8
00 =


en ⊗ T0 ⊗ Im2 0 0 . . . 0

0 0 0 . . . 0
. . . . . .

0 0 0 . . . 0

 , B9
00 = I(L+1) ⊗ R0 ⊗ Im2 ,

B10
00 =


f3 f4 0 . . . 0
0 f3 f4 . . . 0

. . . . . .
0 0 0 . . . f3 + f4

 , where f3 = D0 ⊕ R, f4 = Is ⊗ D2,

B11
00 = I(L+1)⊗ e′ ⊗ α1η1 Im2 ,

B12
00 =


f5 f6 0 . . . 0
0 f5 f6 . . . 0

. . . . . .
0 0 0 . . . f5 + f6

 , where f5 = (D0 + b(D1 + D2))− η1 Im2 , f6 = D2(1 − b)

B13
00 =


f7 f8 0 . . . 0
0 f7 f8 . . . 0

. . . . . .
0 0 0 . . . f7 + f8

 , where f7 = (D0 + b(D1 + D2))− ϕ1 Im2 , f6 = f8,

B15
00 =


f9 f10 0 . . . 0
0 f9 f10 . . . 0

. . . . . .
0 0 0 . . . f9 + f10

 , where f9 = (D0 + b(D1 + D2))− η2 Im2 , f10 = f6,

B14
00 = I(L+1) ⊗ ϕIm2 , B16

00 = I(L+1) ⊗ η2 Im2 , B17
00 = I(L+1) ⊗ ψIm2 ,
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B18
00 =


f11 f12 0 . . . 0
0 f11 f12 . . . 0

. . . . . .
0 0 0 . . . f11 + f12

 , where f11 = D0 − ψIm2 , f12 = D2,

B01 =



B1
01 0 0 0 0 0 0 0
0 0 B2

01 0 0 0 0 0
0 0 0 B3

01 0 0 0 0
0 0 0 0 B4

01 0 0 0
0 0 0 0 0 B5

01 0 0
0 0 0 0 0 0 B6

01 0
0 0 0 0 0 0 0 B7

01


, where B1

01 = I(L+1) ⊗ e′ ⊗ α ⊗ D1,

B2
01 = I(L+1) ⊗ In1 ⊗ D1 ⊗ Im1 , B3

01 = I(L+1) ⊗ Is ⊗ D1, B4
01 = B5

01 = B6
01 = I(L+1) ⊗ D1(1 − b),

B7
01 = I(L+1) ⊗ D1,

B10 =



B1
10 0 B2

10 0 B3
10 0 0

B4
10 0 B5

10 0 B6
10 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, where B1

10 =


0 0 0 . . . 0
0 em1 ⊗ qT0 ⊗ Im2 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . em1 ⊗ qT0 ⊗ Im2

 ,

B2
10 = I(L+1) ⊗ es ⊗ Im2 ,

B3
10 =


em1 ⊗ qT0 ⊗ Im2 0 0 . . . 0

0 0 0 . . . 0
. . . . . . . . .

...
0 0 0 . . . 0

 , B4
10 =


0 0 0 . . . 0
0 em1 ⊗ T0

1 ⊗ Im2 0 . . . 0
. . . . . . . . .

...
0 0 0 . . . em1 ⊗ T0

1 ⊗ Im2

 ,

B5
10 = I(L+1) ⊗ es ⊗ C1 ⊗ Im2 , B6

10 =


em1 ⊗ T0

1 ⊗ Im2 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . .
...

0 0 0 . . . 0

 ,

A0 =



A1
0 0 0 0 0 0 0 0

0 A2
0 0 0 0 0 0 0

0 0 A3
0 0 0 0 0 0

0 0 0 A4
0 0 0 0 0

0 0 0 0 A5
0 0 0 0

0 0 0 0 0 A6
0 0 0

0 0 0 0 0 0 A7
0 0

0 0 0 0 0 0 0 A8
0


where A1

0 = I(L+1) ⊗ In1 ⊗ Im1 ⊗ D1,

A2
0 = I(L+1) ⊗ In2 ⊗ Im1 ⊗ D1, A3

0 = I(L+1) ⊗ In1 ⊗ Im1 ⊗ D1, A4
0 = I(L+1) ⊗ Is ⊗ D1,

A5
0 = I(L+1) ⊗ D1(1 − b), A6

0 = A7
0 = A5

0, A8
0 = I(L+1) ⊗ D1,
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A1 =



A1
1 A2

1 0 0 0 0 0 0
0 A3

1 0 0 0 0 0 0
A4

1 0 A5
1 A6

1 A7
1 0 0 0

A8
1 0 0 A9

1 0 0 0 0
0 0 A10

1 0 A11
1 0 0 0

0 0 0 0 0 A12
1 A13

1 0
0 0 0 0 0 0 A14

1 A15
1

A16
1 0 0 0 0 0 0 A17

1


, where A1

1 =


f13 f14 0 . . . 0
0 f13 f14 . . . 0

. . . . . . . . .
...

0 0 0 . . . f13 + f14

 ,

where f13 = (T ⊕ D0)⊕ C0, f14 = D2 ⊗ Im1n1 .

A3
1 =


f15 f16 0 . . . 0
0 f15 f16 . . . 0

. . . . . . . . .
...

0 0 0 . . . f15 + f16

 , where A2
1 = I(L+1) ⊗ α1 ⊗ pT0 ⊗ Im1m2 ,

f15 = (T1 ⊕ D0)⊕ C0, f16 = D2 ⊗ Im1n2 , A4
1 = I(L+1) ⊗ α ⊗ T0 ⊗ Im1m2 ,

A5
1 =


f17 f18 0 . . . 0
0 f17 f18 . . . 0

. . . . . . . . .
...

0 0 0 . . . f17 + f18

 where f17 = ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ,

f18 = D2 ⊗ Im1n1 ,

A6
1 = I(L+1) ⊗ en1 ⊗ C1 ⊗ Im2 , A7

1 = I(L+1) ⊗ en1 ⊗ em1 ⊗ η1 Im2 , A8
1 = I(L+1) ⊗ e

′
m1

⊗ S0α ⊗ Im2 ,

A9
1 =


f19 f20 0 . . . 0
0 f19 f20 . . . 0

. . . . . . . . .
...

0 0 0 . . . f19 + f20

 where f19 = S ⊕ D0, f20 = Is ⊗ D2,

A10
1 = I(L+1) ⊗ e

′
n1
⊗ e

′
m1

⊗ η1 Im2 , A11
1 =


f21 f22 0 . . . 0
0 f21 f22 . . . 0

. . . . . . . . .
...

0 0 0 . . . f21 + f22

 ,

where f21 = (D0 + b(D1 + D2))− η1 Im2 , f22 = D2(1− b), A12
1 =


f23 f24 0 . . . 0
0 f23 f24 . . . 0

. . . . . . . . .
...

0 0 0 . . . f23 + f24

 ,

where f23 = (D0 + b(D1 + D2))− φIm2 , f24 = D2(1 − b), A13
1 = I(L+1) ⊗ φIm2 ,

A14
1 =


f25 f26 0 . . . 0
0 f25 f26 . . . 0

. . . . . . . . .
...

0 0 0 . . . f25 + f26

 , where f25 = (D0 + b(D1 +D2))− η2 Im2 , f26 = D2(1− b),

A15
1 = I(L+1) ⊗ η2 Im2 , A16

1 = I(L+1) ⊗ e
′ ⊗ α ⊗ ψIm2 ,

A17
1 =


f27 f28 0 . . . 0
0 f27 f28 . . . 0

. . . . . . . . .
...

0 0 0 . . . f27 + f28

 , where f27 = D0 − ψIm2 , f28 = D2,
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A2 =



A1
2 0 0 A2

2 0 0 0 0
A3

2 0 0 A4
2 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, where A1

2=I(L+1) ⊗ α ⊗ qT0 ⊗ Im1m2 ,

A2
2=I(L+1) ⊗ es ⊗ C1 ⊗ Im2 , A3

2=I(L+1) ⊗ α ⊗ T0
1 ⊗ Im1m2 , A4

2=I(L+1) ⊗ es ⊗ C1 ⊗ Im2 .

4. System Analysis

We evaluate this model, beneath of the certain conditions to ensure that the system to be stable.

4.1. Stability condition for the system

Let A be the matrix , where A = A0 + A1 + A2. The invariant probability vector ς, which is
referred to as a generator matrix and its satisfying

ςA = 0, ςe = 1.

The vector ς represents the states which is partitioned by
ς=(ς0, ς1, ς2, ς3, ς4, ς5, ς6, ς7) and it is subdivided by (ς00, ς01, ..., ς0K, ς10, ς11, ..., ς1K, ς20, ς21, ..., ς2K,
ς30, ς31, ..., ς3K, ς40, ς41, ..., ς4K, ς50, ς51, ..., ς5K, ς60, ς61, ..., ς6K, ς70, ς71, ..., ς7K) which is evaluated by
the aid of subsequent equation:

ς00[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2)] + ς10[α ⊗ T0
1 ⊗ Im1m2 ]

+ ς20[α ⊗ T0 ⊗ Im1m2 ] + ς30[e′m1
⊗ S0α ⊗ Im2 ] + ς70[e′ ⊗ α ⊗ ψIm2 ] = 0,

ς0(i−1)[D2 ⊗ Im1n1 ] + ς0i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2 ]

+ ς1i[α ⊗ T0
1 ⊗ Im1m2 ] + ς2i[α ⊗ T0 ⊗ Im1m2 ] + ς3i[e′m1

⊗ S0α ⊗ Im2 ]

+ ς7i[e′ ⊗ α ⊗ ψIm2 ] = 0, 1 ≤ i ≤ K.

ς0K[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0) + (α ⊗ qT0 ⊗ Im1m2) + D2 ⊗ Im1n1 ] + ς1K[α ⊗ T0
1 ⊗ Im1m2 ]

+ ς2K[α ⊗ T0 ⊗ Im1m2 ] + ς3K[e′m1
⊗ S0α ⊗ Im2 ] + ς7K[e′ ⊗ α ⊗ ψIm2 ] = 0,

ς00[α1 ⊗ pT0 ⊗ Im1m2 ] + ς10[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0)] = 0,

ς0i[α1 ⊗ pT0 ⊗ Im1m2 ] + ς1(i−1)[D2 ⊗ Im1n2 ] + ς1i[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0)] = 0, 1 ≤ i ≤ K − 1.

ς0K[α1 ⊗ pT0 ⊗ Im1m2 ] + ς1K[(In2 ⊗ Im1 ⊗ D1) + ((T1 ⊕ D0)⊕ C0) + (D2 ⊗ Im1m2)] = 0,

ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.

ς2K[(In1 ⊗ Im1 ⊗ D1) + (((T ⊕ D0)⊕ C0)− η1 In1m1n2) + D2 ⊗ Im1n1 ] + ς4K[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.
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ς20[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ] + ς40[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς2(i−1)[D2 ⊗ Im1n1 ] + ς2i[(In1 ⊗ Im1 ⊗ D1) + ((T ⊕ D0)⊕ C0)− η1 In1m1m2 ]

+ ς4i[e′n1
⊗ e′m1

⊗ η1 Im2 = 0, 1 ≤ i ≤ K − 1.

ς2K[(In1 ⊗ Im1 ⊗ D1) + (((T ⊕ D0)⊕ C0)− η1 In1m1n2) + D2 ⊗ Im1n1 ] + ς4K[e′n1
⊗ e′m1

⊗ η1 Im2 ] = 0,

ς00[es ⊗ C1 ⊗ Im2 ] + ς10[es ⊗ C1 ⊗ Im2 ] + ς20[en1 ⊗ C1 ⊗ Im2 ] + ς30[(Is ⊗ D1) + (S ⊕ D0)] = 0,

ς0i[es ⊗ C1 ⊗ Im2 ] + ς1i[es ⊗ C1 ⊗ Im2 ] + ς2i[en ⊗ C1 ⊗ Im2 ]

+ ς3(i−1)[Is ⊗ D2] + ς3i[(Is ⊗ D1) + (S ⊕ D0)] = 0, 1 ≤ i ≤ K − 1.

ς0K[es ⊗ C1 ⊗ Im2 ] + ς1K[es ⊗ C1 ⊗ Im2 ] + ς2K[en ⊗ C1 ⊗ Im2 ]

+ ς3K[(Is ⊗ (D1 + D2)) + (S ⊕ D0)] = 0,

ς20[en1 ⊗ em1 ⊗ η Im2 ] + ς40[(D0 + D1) + bD2 − η1 Im2 ] = 0,

ς2i[en1 ⊗ em1 ⊗ η Im2 ] + ς4(i−1)[D2(1 − b)] + ς4i[(D0 + D1) + bD2 − η1 Im2 ] = 0, 1 ≤ i ≤ K − 1.

ς2K[en1 ⊗ em1 ⊗ η Im2 ] + ς4K[(D0 + D1 + D2)− η1 Im2 ] = 0,

ς50[(D0 + D1) + bD2 − π Im2 ] = 0,

ς5(i−1)[D2(1 − b)] + ς5i[(D0 + D1) + bD2 − πIm2 ] = 0, 1 ≤ i ≤ K − 1.

ς5K[(D0 + D1 + D2)− π Im2 ] = 0,

ς50[π Im2 ] + ς60[(D0 + D1) + bD2 − η2 Im2 ] = 0,

ς5i[π Im2 ] + ς6(i−1)[D2(1 − b)] + ς6i[(D0 + D1) + bD2 − η2 Im2 ] = 0, 1 ≤ i ≤ K − 1.

ς5K[π Im2 ] + ς6K[(D0 + D1 + D2)− η2 Im2 ] = 0,

ς60[η2 Im2 ] + ς70[(D0 + D1)ψIm2 ] = 0,

ς6i[η2 Im2 ] + ς7(i−1)[D2] + ς7i[(D0 + D1)− ψIm2 ] = 0,

ς6K[η2 Im2 ] + ς7K[(D0 + D1 + D2)− ψIm2 ] = 0,

subject to

[
K

∑
i=0

ς0i +
K

∑
i=0

ς2i]en2m1m2 + [
K

∑
i=0

ς1i]en2m1m2 + [
K

∑
i=0

ς3i]esm2 + [
7

∑
r=4

K

∑
i=0

ςri]em2 = 1.

The necessary and sufficient condition of a QBD process which satisfy the condition ςA0e <
ςA2e that system to be stay in stable.
Therefore,

ς00[en1 ⊗ em1 ⊗ D1em2 ] + ς01[en1 ⊗ em1 ⊗ D1em2 ] + ... + ς0K[en1 ⊗ em1 ⊗ D1em2 ]

+ ς10[en2 ⊗ em1 ⊗ D1em2 ] + ς11[en2 ⊗ em1 ⊗ D1em2 ] + ... + ς1K[en2 ⊗ em1 ⊗ D1em2 ]

+ ς20[en1 ⊗ em1 ⊗ D1em2 ] + ς21[en1 ⊗ em1 ⊗ D1em2 ] + ... + ς2K[en1 ⊗ em1 ⊗ D1em2

+ ς30[es ⊗ D1em2 ] + ς31[es ⊗ D1em2 ] + ... + ς3K[es ⊗ D1em2 ]

+ ς40[D1(1 − b)] + ς41[D1(1 − b)] + ... + ς4K[D1(1 − b)]

+ ς50[D1(1 − b)] + ς51[D1(1 − b)] + ... + ς5K[D1(1 − b)]

+ ς60[D1(1 − b)] + ς61[D1(1 − b)] + ... + ς6K[D1(1 − b)]

+ ς70[D1] + ς71[D1] + ... + ς7K[D1]< ς00[qT0 ⊗ em1 ⊗ em2 ] + ς10[T0
1 ⊗ em1 ⊗ em2 ]

+ς01[qT0 ⊗ em1 ⊗ em2 ] + ς11[T0
1 ⊗ em1 ⊗ em2 ] + ... + ς0K[qT0 ⊗ em1 ⊗ em2 ]

+ ς1K[T0
1 ⊗ em1 ⊗ em2 ] + ς00[es ⊗ C1em1 ⊗ em2 ]

+ ς10[es ⊗ C1em1 ⊗ em2 ] + ς01[es ⊗ C1em1 ⊗ em2 ]

+ ς11[es ⊗ C1em1 ⊗ em2 ] + ... + ς0K[es ⊗ C1em1 ⊗ em2 ] + ς1K[es ⊗ C1em1 ⊗ em2 ]
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4.2. The Invariant Probability Vector

Let X represents the infinitesimal generator matrix Q and which is split by X = (X0, X1, X2, ...).

For X0 is of dimension ((L + 1)m2 + (L + 1)n1m1m2 + (L + 1)sm2 + 4(L + 1)m2) and X′
i s are

of dimension (2(L + 1)n1m1m2 + (L + 1)n2m1m2 + (L + 1)sm2 + 4(L + 1)m2), i ≥ 1.
As X is a vector of Q satisfies the relation

XQ = 0, Xe = 1.

After satisfying the stability criterion, use the below equation to find the invariant probability
vector X,

Xi = X1Ri−1, i = 2, 3, ...

where R is the matrix created by solving the quadratic matrix equation, also known as the rate
matrix.

R2 A2 + RA1 + A0 = 0.

With the aid of succeeding equation we can find the vectors namely X0, X1 and X2,

X0B00 + X1B10 = 0,

X0B01 + X1[A1 + RA2] = 0,

subject to normalizing condition

X0e((L+1)m2+(L+1)n1m1m2+(L+1)sm2+4(L+1)m2)
+X1[I −R]−1e(2(L+1)n1m1m2+(L+1)n2m1m2+(L+1)sm2+4(L+1)m2)

= 1.

Therefore, the logarithmic reduction algorithm can be used to find the rate matrix R with the help
of Latouche and Ramaswami [21].

5. Busy Period Analysis

• Under the busy period of MMAP/PH/1 queuing model, we will understand the epoch of
the time interval starts from a new arrival which find the empty system and ends when the
system becomes empty again at the completion of service.

• A busy cycle which is defined by the initial passage time of the level between 1 and 0 and
the time return to level 0, requiring at least one visit to any other level.

• From level i to level i − 1, where i = 2, 3, 4, ... which is the initial passage time under the
consideration of the QBD process. In the boundary states namely, i = 0, 1 which deals
separately.

• For all the level i, where i = 1, 2, 3, ..., we seen that there are (2(L + 1)n1m1m2 + (L +
1)n2m1m2 + (L + 1)sm2 + 4(L + 1)m2) states.

Notations:

• Let Gj,j′(k, x) represent the conditional probability that the QBD process, starting at time
t = 0 in the state (i, j) t = 0 and ends up in the state (i, j′) by making meticulously k left
jumps and obtaining both stages at the same period.

• Let the joint transform matrix

G̃j,j′(z, s) =
∞

∑
k=1

zk
∫ ∞

0
e−sxdGj,j′(k, x); |z| ≤ 1, Re(s) ≥ 0

.
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• The matrix G̃(z, s) = G̃j,j′(z, s). [ Neuts [25]]

• Except for the boundary states, the matrix G = Gjj′ = G̃(1, 0) be concerns the initial passage
times.

• At time t = 0, when returning from stage 1 to stage 0, the conditional probability that
described in the first return time and it is denoted as G(1,0)

jj′ (k, x).

• At time t = 0, when returning to stage 0, the conditional probability that described and it is
denoted as G(0,0)

jj′ (k, x).

• At time t = 0, let S1j represent the process’s average initial passage time between stages i
and i − 1 and in the state (i, j).

• At time t = 0, in the initial passage procedure between levels i and i − 1, which starts in the
state (i, j), let S2j be the average number of consumers that received service.

• S̃1, S̃2 be the column vectors along with S1j and S2j as their entries respectively.

• The expected first return time between stage 1 and stage 0 is represented by S̃(1,0)
1 .

• In the first return period from stage 1 to stage 0, the expected number of services completed
and it is represented by S̃(1,0)

2 .

• The expected initial return time to stage 0 is represented by S̃(0,0)
1 .

• During the initial return time to stage 0, the expected number of services were rendered
and it is represented by S̃(0,0)

2 .

We evaluate G̃(z, s) matrix which satisfies the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s).

After found the rate matrix R, we can evaluate G matrix by using logarithmic reduction algorithm
method which is given by Latouche and Ramaswami [21]

G = −(A1 + RA2)
−1 A2.

In the boundary states namely 1 and 0 and the equations represented by G̃(1,0)(z, s) and G̃(0,0)(z, s).

G̃(1,0)(z, s) = z(sI − B11)
−1B10 + (sI − B11)

−1B12G̃(2,1)(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(1,0)(z, s).

The matrices G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) are stochastic.

The instants can be calculated as obeys:

S̃1 = −∂G̃(z, s)
∂s

∣∣
s=0,z=1e = −[A0(G + I) + A1]

−1e,

S̃2 =
∂G̃(z, s)

∂z
∣∣
s=0,z=1e = −[A0(G + I) + A1]

−1]A2e,

S̃(1,0)
1 = −∂G̃(1,0)(z, s)

∂s
∣∣
s=0,z=1 = −[B11 + B12G̃(2,1)(1, 0)]−1[e + B12S̃(2,1)

1 ],

S̃(1,0)
2 =

∂G̃(1,0)(z, s)
∂z

∣∣
s=0,z=1e = −[B12G̃(2,1)(1, 0) + B11]

−1[B12S̃(2,1)
2 + B10e],

S̃(0,0)
1 = −∂G̃(0,0)(z, s)

∂s
∣∣
s=0,z=1e = −B−1

00 [B01S̃(1,0)
1 + e],

S̃(0,0)
2 =

∂G̃(0,0)(z, s)
∂z

∣∣
s=0,z=1e = −B−1

00 [B01S̃(1,0)
2 ].
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6. Performance Measure

• Probability of server being idle:

PSI =
L

∑
i2=0

m2

∑
a2=1

X0i21a2 .

• Probability of server to be busy with HP customers:

PBH =
∞

∑
i1=1

L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i21k1a1a2 .

• Probability of server to be busy with LP customers:

PBL =
L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

X0i23k1a1a2 +
∞

∑
i1=1

L

∑
i2=0

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i23k1a1a2 .

• Probability of server to be busy with optional service of HP customers:

PBHOS =
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

Xi1i22k2a1a2 .

• Probability of server being emergency vacation:

PEV =
L

∑
i2=0

m2

∑
a2=1

X0i25a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i25a2 .

• Probability of server being normal vacation:

PNV =
L

∑
i2=0

m2

∑
a2=1

X0i27a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i27a2 .

• Probability of server being closedown:

PCD =
L

∑
i2=0

m2

∑
a2=1

X0i26a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i26a2 .

• Probability of server being setup:

PSU =
L

∑
i2=0

m2

∑
a2=1

X0i28a2 +
∞

∑
i1=1

L

∑
i2=0

m2

∑
a2=1

Xi1i28a2 .

• Expected number of HP customers in the system:

ESystem =
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

i1Xi1i21k1a1a2 +
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

i1Xi1i22k2a1a2

+
∞

∑
i1=1

L

∑
i2=0

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

i1Xi1i23k2a1a2 +
∞

∑
i1=1

L

∑
i2=0

8

∑
j=4

m2

∑
a2=1

i2Xi1i2 ja2

= X1(I − R)−2e2(L+1)n1m1m2+(L+1)n2m1m2+(L+1)sm2+4(L+1)m2
.
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• Expected number of LP customers in the orbit:

EOrbit =
L

∑
i2=1

m2

∑
a2=1

i2X0i20a2 +
L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2X0i23k1a1a2 +
L

∑
i2=1

s

∑
b=1

m2

∑
a2=1

i2X0i24ba2

+
L

∑
i2=1

8

∑
j=5

m2

∑
a2=1

i2X0i2 ja2 +
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i21k1a1a2

+
∞

∑
i1=1

L

∑
i2=1

n2

∑
k2=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i2k2a1a2 +
∞

∑
i1=1

L

∑
i2=1

n1

∑
k1=1

m1

∑
a1=1

m2

∑
a2=1

i2Xi1i23k1a1a2

+
∞

∑
i1=1

L

∑
i2=1

s

∑
b=1

m2

∑
a2=1

i2Xi1i24ba2 +
∞

∑
i1=1

L

∑
i2=1

8

∑
j=5

m2

∑
a2=1

i2Xi1i2 ja2 .

7. Analysis of cost model

In this section, we introduce a cost function TC with the following assumption:

• TC - Total cost per unit time.

• CHh - Holding cost of each HP customer in the system at per unit time.

• CHl - Holding cost of each LP customer in the orbit at per unit time.

• CSI - Per unit time cost during the server is in idle period.

• CBH - Per unit time cost during the server is busy with HP customers.

• CBL - Per unit time cost during the server is busy with LP customers.

• CBHOS - Per unit time cost during the server is busy with optional service of HP customers.

• CR - Per unit time cost during the server is in under repair process.

• CEV - Per unit time cost during the server is in emergency vacation.

• CNV - Per unit time cost during the server is in normal vacation.

• CCD - Per unit time cost during the server is in closedown.

• CSU - Per unit time cost during the server is in setup.

• C1 - Cost obtained by the server in carrying out the normal service to HP/LP customers.

• C2 - Cost obtained by the server in carrying out the optional service to HP customers.

• C3 - Cost obtained by the server in carrying out the repair process.

• C4 - Cost obtained by the server in carrying out the breakdown.

• C5 - Cost obtained for the arrival of negative customers.

• C6 - Cost obtained by the server in carrying out the emergency vacation.

• C7 - Cost obtained by the server in carrying out the normal vacation.

• C8 - Cost obtained in carrying out the closedown process.

• C9 - Cost obtained by the server carrying out the setup process.

The total average cost per unit time is given by

TC = CHh ESystem + CHl EOrbit + CSI PSI + CBH PBH + CBLPBL + CBHOSPBHOS

+ CRPR + CEV PEV + CNV PNV + CCDPCD + CSU PSU + µC1 + µ1C2

+ σC3 + τC4 + λ3C5 + η1C6 + η2C7 + ϕC8 + ψC9.
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8. Numerical Results

From this part, we determine the results of our model by representing numerically and graphically.
The representations of MAP are distinct with the following variance and correlation structures,
each of which has a mean value of 1. The arrival process as ERL − A, EXP − A and HYP − A
correspond with renewal process, thus correlation is zero. This values are taken from Chakravarthy
[10].

Positive Arrival in Erlang of order 2 (ERL-A):

D0 =

[
−4 4
0 −4

]
, D1 =

[
0 0

2.8 0

]
, D2 =

[
0 0

1.2 0

]
Positive Arrival in Exponential (EXP-A):

D0 = [−1], D1 = [0.6], D2 = [0.4]

Positive Arrival in Hyper exponential (HYP-EXP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.026 0.114

0.1026 0.0114

]
, D2 =

[
0.684 0.076
0.0684 0.0076

]
Negative Arrival in Erlang of order 2 (ERL-A):

C0 =

[
−0.5 0.5

0 −0.5

]
, C1 =

[
0 0

0.5 0

]
Negative Arrival in Exponential (EXP-A):

C0 = [−0.1], C1 = [0.1]

Negative Arrival in Hyper exponential (HYP-EXP-A):

C0 =

[
−0.190 0

0 −0.019

]
, C1 =

[
0.1710 0.0190
0.0171 0.0019

]
Let us consider the service and repair process as PH-distributions and these values are in-

curred from Chakravarthy [10] which are as follows:

ERL-S (Normal Service in Erlang of order 2):

α = (1, 0), T =

[
−25 5

8 −25

]
ERL-S (Optional Service in Erlang of order 2):

α = (1, 0), T =

[
−2 2
0 −2

]
ERL-R (Repair in Erlang of order 2):

β = (1, 0), S =

[
−2 2
0 −2

]
EXP-S (Normal Service in Exponential):

α = (1), T = [−1]
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EXP-S (Optional Service in Exponential):

α1 = (1), T1 = [−1]

EXP-R (Repair in Exponential):

β = (1), S = [−1]

HYP-EXP-S (Normal Service in Hyper exponential):

α = (0.3, 0.7), T =

[
−9 7
8 −10

]
HYP-EXP-S (Optional Service in Hyper exponential):

α1 = (0.4, 0.6), T1 =

[
−12 6

5 −10

]
HYP-EXP-R (Repair in Hyper exponential):

β = (0.4, 0.6), S =

[
−6 4
3 −4

]

8.1. Illustration 1

In tables 1,2 and 3, we determine the outcome of the repair rate of server (σ) on the expected
system size (ES).
Fix λ1 = 0.8, λ2 = 0.2, λ3, µ = 45, µ1 = 40, η1 = 4, η2 = 3, φ = 12, ψ = 12, τ = 2, p = 0.5,
q = 0.5, b = 0.05, δ = 3, L = 3.

Table 1: Repair rate (σ) vs ES - EXP-S

σ EXP-A ERL-A HYP-A
10 0.351226 0.119414 0.000351

10.5 0.351418 0.119473 0.000358
11 0.351632 0.119539 0.000365

11.5 0.351862 0.119609 0.000371
12 0.352100 0.119681 0.000376

12.5 0.352343 0.119756 0.000381
13 0.352588 0.119831 0.000385

13.5 0.352832 0.119906 0.000389
14 0.353074 0.119980 0.000392

14.5 0.353312 0.120054 0.000396

Table 2: Repair rate (σ) vs ES - ERL-S

σ EXP-A ERL-A HYP-A
10 0.211804 0.350087 0.042376

10.5 0.211885 0.350782 0.042475
11 0.211978 0.351445 0.042566

11.5 0.212078 0.352002 0.042650
12 0.212182 0.352487 0.042728

12.5 0.212289 0.352955 0.042800
13 0.212397 0.353404 0.042867

13.5 0.212504 0.353836 0.042930
14 0.212612 0.354250 0.042989

14.5 0.212717 0.354647 0.043044
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Table 3: Repair rate (σ) vs ES - HYP-EXP-S

σ EXP-A ERL-A HYP-A
10 0.211852 0.112162 0.137225

10.5 0.211920 0.112284 0.137312
11 0.211995 0.112400 0.137393

11.5 0.212073 0.112509 0.137468
12 0.212154 0.112613 0.137538

12.5 0.212236 0.112712 0.137604
13 0.212319 0.112805 0.137666

13.5 0.212401 0.112893 0.137724
14 0.212481 0.112977 0.137779

14.5 0.212561 0.113057 0.137831

We observe that from the following tables 1,2, and 3.

• ES values rise for various combinations of arrival and service times as the server repair rate
(σ) increases.

• When comparing the values of various service times, it can be seen that the expected system
size increases more quickly for hyper exponential service times and slowly for Erlang
service times.

8.2. Illustration 2

Using the two-dimensional graphs 2 − 10, we investigate the impact of the normal service rate (µ)
on the possibility that the server will be busy with high-priority customers (PBH). Fix λ1 = 0.8,
λ2 = 0.2, λ3, µ1 = 40, σ = 10, η1 = 4, η2 = 3, τ = 2, φ = 12, ψ = 12, p = 0.5, q = 0.5, b = 0.05,
δ = 3, L = 3.
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Figure 2: Normal service rate (µ) vs. PBH
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Figure 3: Normal service rate (µ) vs. PBH
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Figure 4: Normal service rate (µ) vs. PBH
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Figure 5: Normal service rate (µ) vs. PBH
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Figure 6: Normal service rate (µ) vs. PBH
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Figure 7: Normal service rate (µ) vs. PBH
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According to Figures 2 − 10, as the normal service rate (µ) is raised, the probability that
the server is busy with service (PBH) increases for different arrival and service patterns. When
increasing normal service rate (µ) on PBH size increases much slower in Erlang arrival rather than
hyper-exponential arrival.

8.3. Illustration 3

We investigate the impact of the normal service rate (µ) and breakdown rate (τ) on the proba-
bility that the server is busy with the normal service of high priority clients (PBH) by using the
three-dimensional graphs 11 − 19. Fix λ1 = 0.8, λ2 = 0.2, λ3, µ1 = 40, σ = 10, η1 = 4, η2 = 3,
φ = 12, ψ = 12, p = 0.5, q = 0.5, b = 0.05, δ = 3, L = 3.
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The probability that the server is busy with the normal service (PBH) reduces for different
arrival and service patterns when both the normal service rate (µ) and the breakdown rate (τ) are
raised, as shown in Figures 11 − 19. Rather than increasing at a hyper-exponential arrival, the
Erlang arrival grows quickly. Similar to hyper-exponential services, the increment rate decreases
for Erlang services.

9. Conclusion

In this paper, we have developed the queueing model with non preemptive priority queue,
optional service, negative arrival, single vacation, emergency vacation, differentiate breakdown,
repair, closedown , setup and balking. A queue with two categories of consumers with positive
arrivals following MMAP, while negative arrival follows MAP and service times follows to be
phase type distribution. By using matrix analytic method, we found the stationary probabil-
ity since the queueing systems are Quasi Birth-Death process. The stability condition for the
MMAP/PH/1 queuing system has analyzed and some performance measures for queueing
system was selected and implemented in numerical illustrations by using three dimensional
graphs. For further work, the model can be investigate with batch arrival and batch service which
follows Markovian arrival process and various service rates with N-policy.
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Abstract 

 

Statistical Quality Control is an important field in production and maintenance of quality product 

in manufacturing environments. Reliability sampling plans (RSP) were widely employed in the 

sectors of manufacturing to monitor the quality of products in order to safe guard the producer as 

well as the consumer also the experimental costs and time can be saved. This article is developed on 

the reliability sampling plan when the evaluating life of the product is set to be truncated at pre-

determined time follows Exponential-Poisson (EP) distribution. The probability of acceptance criteria 

for the single sampling is designed to achieve the lowest sample size for such proposed two parameter 

probability distribution with the corresponding decision rule. This study is conducted to design plan 

parameters on the basis of desired quality levels such as Acceptable Reliability Quality Level (ARQL), 

Indifference Reliability Quality Level (IRQL) and Rejectable Reliability Quality Level (RRQL). This 

study computes the median life for the specified producer's risk, its OC curve is provided along with 

the minimum ratio values. Furthermore, it determines the minimum size of the samples and the 

acceptance number. Table values have been obtained and provided for single sampling plan. 

Additionally, suitable examples are provided to conduct a study on a real time situations. 

 

Keywords: Exponential – Poisson (EP) Distribution, Reliability, Median lifetime, 

Single Sampling Plan. 

 

1. Introduction 
 

 Quality has become an inevitable term in the modern statistical society, especially in 

manufacturing sector. In such environment, every product must satisfy the required quality 

standards to achieve the goal. The act of employing statistical techniques to monitoring the quality 

and to maintaining the quality of the manufactured product in a systematic way is known as 

Statistical Quality Control (SQC). Due to technological advancements through mass production, it 

is an impossible to inspect every single product from a lot (i.e. 100% inspection is not feasible) and 

accepting a lot without inspection is also not acceptable hence both consumer and producer facing 

certain risks. So acceptance sampling is an important statistical technique to safeguard the consumer 

as well as the producer also. Here, the risks are termed as Producer risk (𝛼) and Consumer risk (𝛽) 

are the risk involved in the process of decision making. 

Acceptance sampling is initially employed in the US military to test the quality of bullets 

from World War II and it acts as a vital tool in SQC, which focuses to make decisions about whether 

or not to accept a lot on the basis of the quality of randomly selected sample from a lot. This 

technique consists of the lot having size ‘N’ and ‘n’ is known to be the sample number of units and 
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‘c’ is the acceptance number. Reliability sampling plan is the one of the most important method in 

acceptance sampling which helps to assess the quality of product using time. Various techniques are 

employed to evaluate the quality of such a manufactured item to test the reliability of the item which 

is called as life test method here failure of an item follows a continuous probability distributions are 

adopted to model this methodology.  

This paper is studied under the attribute sampling plan is studied to discover the life of an 

item to test the lower confidence limit on median life. According to Gupta and Groll (1961)[6], the 

median life constitutes a superior quality parameter than that of the average life for a skewed 

distribution. Our aim is to decrease the financial expenses and also the investment of time of the 

experimenter simultaneously truncated life test is studied to test the test termination time for the 

fixed time ‘t’. One can count the total number of failures occur during this process within the 

specified time, if no c failures occur prior to the scheduled time limit. If not, the experiment is 

terminated after the (c+1)th failure. Based on the values of the operating characteristics, the 

methodology for the smallest sample size is to be necessary for guaranteeing that the product's 

designated median life has been given along with the associated producer risk is presented here. An 

appropriate example have been discussed with suitable illustrations. The foremost objective of this 

article is to constitute a time truncated single sampling plan for median life under Exponential 

Poisson (EP) distribution. 

 

2. Review of Literature 

 
There has been extensive research about reliability sampling plans on the basis of truncated 

life tests done by various authors. Baklizi and El Masri (2004) [1] were studied acceptance sampling 

for Birnbaum–Saunders model, Barreto-Souva and Silva (2013) [2] pointed out that EP is better 

alternative to the gamma distribution, Cameron. J.M. (1952) [3] were studied about the construction 

of tables based on OC function of single sampling plans, Dodge. H.F and H.G. Romig (1959) [4] 

conducted a study on sampling inspection tables, Epstein (1954) [5] proposed a truncated test for the 

exponential case, Gupta and Groll (1961) [6] were conducted a study about acceptance sampling  

under Gamma distribution, Kaviyarasu and Fawaz (2017) [7] carried out a study on acceptance 

sampling on the modified weibull distribution, Kus (2007) [8] introduced a new life time distribution 

called as Exponential Poisson distribution(EP), Schilling and John (1980) [9] constructed a set of 

tables for various sampling plans, Sobel and Tischendrof (1959) [10] were studied about new life test 

objectives for acceptance sampling. 

 

3. The Exponential-Poisson Distribution 

 
The Exponential Poisson (EP) distribution is a two parameter continuous probability 

distribution that is used to model the time between events in a real time to test the life of an item. EP 

distribution is a compounded distribution under Exponential and zero truncated Poisson 

distribution. This distribution has several real time applications such as Network traffic modelling, 

manufacturing quality control, service queue management and stock price modelling etc.,.  

According to Barreto-Souza and Silva (2013)[2], EP distribution is better alternative to the Gamma 

distribution. For a lifetime and reliability studies EP distribution performs a significant role in 

modelling the lifetime of the products. 

The Cumulative distribution function of Exponential - Poisson distribution is  

𝐹(𝑥; λ, β) = (𝑒𝜆exp(−𝛽𝑥) − 𝑒𝜆)(1 − 𝑒𝜆)-1                (1) 

The Probability density function of Exponential - Poisson distribution is 

𝑓(𝑥; λ, β) = 
𝜆𝛽

(1−𝑒−𝜆)
𝑒−𝜆−𝛽𝑥+𝜆exp(−𝛽𝑥)     (2) 

Here λ > 0, β > 0 are the shape and scale parameter. Where λ is also known as Poisson parameter. 

When λ→ 0, the Exponential distribution is obtained by reducing the EP distribution. 
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The median function of EP distribution is 

𝑙𝑜𝑔{log[2−1(𝑒𝜆 + 1)]−1𝜆}𝛽−1      (3) 

i.e. (T ≤𝛽0) =β 

𝛽0  = −𝛽−1 𝑙𝑜𝑔{log[2−1(𝑒𝜆 + 1)]−1𝜆}                  (4) 

𝜂 = −  𝑙𝑜𝑔{log[2−1(𝑒𝜆 + 1)]−1𝜆}                                     (5) 

⟹ 𝑡𝑞 =
𝜂
𝛽⁄  

⟹ 𝛽 = 
𝜂
𝛽0
⁄  

By substituting the scale parameter 𝛽 = 
𝜂
𝛽0
⁄ , the CDF of EP distribution becomes  

 F(t) = (𝑒
𝜆exp(−

𝑡

𝛽0
∗𝜂)

− 𝑒𝜆)(1 − 𝑒𝜆)-1     t >0, 𝜂 > 0 

  Let δ = 
𝑡

𝛽0
 

F(t; δ) =  (𝑒𝜆exp(δ) − 𝑒𝜆)(1 − 𝑒𝜆)-1       , t >0, δ > 0          (6) 

 

4. Truncated Acceptance Sampling Plan 

 
In acceptance sampling, a well-known simple plan is single sampling plan (SSP) and it has 

employed in many reliability studies. Here the product’s lifetime (T) is assumed to follows the 

Exponential – Poisson (EP) distribution. The shape parameter λ is considered as a known parameter. 

The product’s median life can be represented by m. In a truncated acceptance life test plans, the 

usual practice of testing the lifetime of the product is to terminating the experiment at a time (t) 

which has already determined. The decision of the acceptance criteria is purely based only the 

occurrence of defectives. If the total count of defectives is below the given acceptance number c, then 

it should be accepted. The main target of this experiment is to acquire a designated median life along 

with the help of probability P* (Consumer risk) and also to frame a lower confidence limit. For 

conducting a truncated life test experiment the following components should be considered. 

➢ The total number of sample units on the experiment (n); 

➢ The acceptance number (c); when the total count of defectives occurred is more than c at the 

final stage of pre-decided time then the inspected lot will be approved for the acceptance. 

➢ The ratio𝑡/𝛽0; Here ‘𝛽0’ is known to be a described median life and the maximum amount 

of time for the experiment is known as ‘t’. 

 

5. Minimum Sample Size 

 

The chance cause of accidently accepting a lot without knowing that the chosen  lot is a poor 

is known to be consumer risk (𝛼) and it is fixed to not greater than  1-P*. Since the chance of accepting 

a poor lot with a median is at the minimum of P*, then it is evident that P* represents the confidence 

level. The lot size must be taken into consideration as being infinite and must be assumed to be 

sufficiently large, so in this case binomial distribution is employed to evaluate the lot acceptance. To 

find smallest sample size (n) such that  

       ( ) *

0

11 ppp
x

n xnx
n

x

−−






 −

=

    (7) 

In table 1, the minimum values (n) were presented that satisfies the above inequality, for 
𝑡

𝛽0
=

0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3 and P* = 0.75, 0.90, 0.95, 0.99 and c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
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TABLE 1: Minimum sample sizes for the EP distribution. 
 

P* 

  

 N 

𝒕/𝜷𝟎 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 

0.75 0 7 4 3 2 2 2 2 1 1 1 

0.75 1 13 7 5 4 4 3 3 3 3 3 

0.75 2 19 11 8 6 6 5 5 4 4 4 

0.75 3 25 14 10 8 7 7 6 6 5 5 

0.75 4 31 17 13 10 9 8 8 7 7 7 

0.75 5 36 20 15 12 11 10 9 9 8 8 

0.75 6 42 23 17 14 12 11 11 10 9 9 

0.75 7 47 27 20 16 14 13 12 11 11 10 

0.75 8 53 30 22 18 16 14 13 13 12 12 

0.75 9 58 33 24 20 18 16 15 14 13 13 

0.75 10 64 36 27 22 19 18 16 15 15 14 

0.9 0 11 6 4 3 3 2 2 2 2 2 

0.9 1 18 10 8 6 5 4 4 4 3 3 

0.9 2 25 14 10 8 7 6 6 5 5 5 

0.9 3 32 17 13 10 9 8 7 7 6 6 

0.9 4 38 21 15 12 11 10 9 8 8 7 

0.9 5 44 24 18 14 13 11 10 10 9 9 

0.9 6 50 28 20 17 14 13 12 11 11 10 

0.9 7 56 31 23 19 16 15 13 13 12 11 

0.9 8 62 34 25 21 18 16 15 14 13 13 

0.9 9 68 38 28 23 20 18 16 15 15 14 

0.9 10 74 41 30 25 22 19 18 17 16 15 

0.95 0 13 7 5 4 3 3 3 2 2 2 

0.95 1 22 12 8 7 6 5 5 4 4 4 

0.95 2 29 14 11 9 8 7 6 6 5 5 

0.95 3 36 19 14 11 10 9 8 7 7 7 

0.95 4 43 23 17 14 12 10 10 9 8 8 

0.95 5 49 27 19 16 14 12 11 10 10 9 

0.95 6 55 30 22 18 16 14 13 12 11 11 

0.95 7 61 34 25 20 17 16 14 13 13 12 

0.95 8 68 37 27 22 19 17 16 15 14 13 

0.95 9 74 41 30 24 21 19 17 16 15 15 

0.95 10 80 44 32 26 23 21 19 18 17 16 

0.99 0 20 10 7 5 4 4 3 3 3 3 

0.99 1 30 15 10 8 7 6 5 5 5 4 

0.99 2 35 19 14 11 9 8 7 7 6 6 

0.99 3 45 24 17 13 11 10 9 8 8 7 

0.99 4 54 28 19 16 13 12 11 10 9 9 

0.99 5 61 32 22 18 16 14 13 12 11 10 

0.99 6 68 36 25 21 18 16 14 13 12 12 

0.99 7 75 40 29 23 20 17 16 16 14 13 

0.99 8 82 42 31 25 21 19 17 16 15 15 

0.99 9 88 48 34 27 23 21 19 18 17 16 

0.99 10 95 49 37 29 25 23 21 19 18 17 
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6. Operating Characteristic Function 

 
The Operating Characteristics (OC) function of the Acceptance sampling based on the 

Truncated Life Test (ASTLT) plan consists with the parameters of (𝑛, 𝑐,
𝑡

𝛽0
). For analysing the ASTLT, 

the probability is  

L(p) = Prob {Accepting a good lot} 

( )
=

−
−








=

c

x

xnx pp
x

n
pL

0

1)(                            (8) 

Where p = F(t; θ) is a monotonically decreasing function of 𝛽 > 𝛽0. Based on the above inequality 

the operating characteristics (OC) values of 
𝑡

𝛽0
  were displayed in table 2. 

 

TABLE 2: OC values for (n, c =4, t/𝛽0 = 0.60) for a given P* under EP distribution. 

 

P* 

 

N 

 
𝒕/𝜷𝟎 

𝜷/𝜷𝟎 

2 4 6 8 10 12 14 16 18 

0.75 31 0.3 0.1515 0.6882 0.8939 0.9587 0.9816 0.9909 0.9951 0.9972 0.9983 

0.75 17 0.6 0.1567 0.681 0.8883 0.9556 0.98 0.99 0.9946 0.9969 0.9981 

0.75 10 1.2 0.1726 0.6737 0.8801 0.9507 0.9772 0.9884 0.9937 0.9963 0.9977 

0.75 8 1.8 0.1542 0.6271 0.8507 0.935 0.9688 0.9837 0.9909 0.9946 0.9966 

0.75 7 2.4 0.1419 0.5882 0.8228 0.9188 0.9596 0.9783 0.9876 0.9925 0.9953 

0.75 7 3 0.0655 0.4278 0.707 0.8494 0.9188 0.9538 0.9724 0.9828 0.9888 

0.9 38 0.3 0.0182 0.3597 0.69 0.8515 0.9247 0.9593 0.9767 0.9859 0.9911 

0.9 21 0.6 0.0173 0.3358 0.6639 0.8338 0.9138 0.9526 0.9724 0.9832 0.9893 

0.9 12 1.2 0.0235 0.3399 0.6563 0.8251 0.9072 0.948 0.9694 0.9811 0.9879 

0.9 10 1.8 0.0115 0.2359 0.5407 0.7405 0.8515 0.912 0.9459 0.9655 0.9772 

0.9 8 2.4 0.0224 0.284 0.5814 0.7657 0.8662 0.9207 0.9511 0.9688 0.9794 

0.9 7 3 0.0303 0.301 0.5882 0.7662 0.8646 0.9188 0.9494 0.9674 0.9783 

0.95 43 0.3 0.0041 0.214 0.5458 0.7562 0.8667 0.924 0.9546 0.9718 0.9818 

0.95 23 0.6 0.0052 0.2158 0.5412 0.7503 0.8619 0.9205 0.9522 0.9701 0.9806 

0.95 14 1.2 0.0036 0.163 0.4595 0.6814 0.8129 0.8873 0.9299 0.9549 0.9701 

0.95 10 1.8 0.0082 0.2021 0.4986 0.7073 0.8285 0.8966 0.9355 0.9584 0.9724 

0.95 9 2.4 0.0042 0.1376 0.3977 0.6162 0.7595 0.8474 0.9009 0.934 0.9549 

0.95 8 3 0.0044 0.1294 0.3745 0.5889 0.7354 0.8282 0.8864 0.9232 0.9469 

0.99 54 0.3 0.0002 0.0659 0.3056 0.5499 0.719 0.8236 0.8869 0.9256 0.9498 

0.99 28 0.6 0.0004 0.0756 0.3209 0.562 0.7268 0.8284 0.8899 0.9275 0.951 

0.99 16 1.2 0.0026 0.0684 0.292 0.5251 0.6936 0.8021 0.8701 0.9129 0.9403 

0.99 12 1.8 0.0006 0.0634 0.269 0.4934 0.6633 0.7772 0.8507 0.8982 0.9292 

0.99 10 2.4 0.0007 0.0599 0.2507 0.4662 0.6359 0.7536 0.8318 0.8835 0.9178 

0.99 9 3 0.0005 0.0481 0.2132 0.4155 0.5862 0.711 0.7975 0.8566 0.897 

 

7. Producer Risk 
 

   The chance of rejecting a lot without knowing the chosen lot is satisfying the quality 

requirements is known as producer risk (𝛽), when 𝛽 > 𝛽0 it will be computed as 

Prob(p) = Prob {Rejecting a lot} = 1 - Prob {Accepting a lot} 

For a single sampling plan and the definite values of producer’s risk, one may very curious in finding 

the value estimates of 
𝛽

𝛽0
 is going to guarantee the producer's risk which is not greater than or equal 

to 0.05 on the basis of   the employed sampling plan. 
𝛽

𝛽0
is having the values which are known to be 

the smallest non-negative integer for 𝑝 = 𝐹 (
𝑡

𝛽0

𝛽0

𝛽
) which satisfies the below mentioned inequality. 

∑ (
𝑛
𝑥
)𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≥ 0.95𝑐

𝑖=1               (9)           
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The minimum values of 
𝑡

𝛽0
  satisfying the above inequality to the proposed sampling plan (𝑛, 𝑐,

𝑡

𝛽0
) 

at a specific confidence level P* were presented in table - 3.  

 

TABLE 3: Minimum ratio of true mean life over 𝛽0 at the producer’s risk of 0.05 

 

P* 

 

C 

𝒕/𝜷𝟎 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 

0.75 0 31.171 35.869 40.333 35.642 44.484 53.61 62.603 35.236 39.857 44.375 

0.75 1 24.053 24.977 25.813 26.566 33.198 27.825 32.642 37.306 41.727 46.363 

0.75 2 15.17 16.605 17.279 16.251 20.314 19.187 22.383 18.473 20.779 23.087 

0.75 3 11.794 12.401 12.452 12.512 13.017 15.62 14.602 16.689 13.883 15.507 

0.75 4 10.091 10.286 11.176 10.579 11.468 11.568 13.496 12.468 14.026 15.604 

0.75 5 8.764 8.9857 9.4756 9.4254 10.447 10.881 10.737 12.281 11.265 12.519 

0.75 6 8.1086 8.1481 8.4278 8.6487 8.6371 9.0264 10.531 10.292 9.5259 10.57 

0.75 7 7.4575 7.9256 8.1975 8.0653 8.3097 8.8619 9.0839 8.8853 9.9959 9.1862 

0.75 8 7.1177 7.4086 7.54 7.6484 8.0468 7.8036 7.9908 9.1324 8.8559 9.8399 

0.75 9 6.7202 7.0283 7.028 7.2891 7.8226 7.7769 8.1294 8.1754 7.9518 8.8354 

0.75 10 6.5121 6.7127 6.9987 7.0168 7.051 7.7368 7.3757 7.4428 8.3901 8.0692 

0.9 0 63.773 70.043 70.271 70.099 87.897 70.592 81.507 93.52 105.22 117.13 

0.9 1 14.854 16.199 19.378 19.065 19.77 18.346 21.481 24.549 19.835 22.132 

0.9 2 8.9139 9.7523 10.292 10.765 11.623 11.729 13.679 12.646 14.227 15.806 

0.9 3 6.8377 7.0802 7.9756 7.9752 8.8518 9.3044 9.3117 10.642 9.9191 11.022 

0.9 4 5.6044 6.0612 6.3422 6.6176 7.4869 8.0562 8.3495 8.2644 9.2975 8.7511 

0.9 5 4.9038 5.2175 5.7527 5.8153 6.675 6.6329 6.9162 7.9003 7.8167 8.6849 

0.9 6 4.426 4.846 5.074 5.6602 5.676 6.268 6.6585 6.8541 7.7109 7.6222 

0.9 7 4.0913 4.4232 4.8269 5.2174 5.3801 5.9826 5.9171 6.7624 6.9 6.8725 

0.9 8 3.841 4.1194 4.444 4.8948 5.1468 5.3923 5.8277 6.1435 6.3087 7.0097 

0.9 9 3.6471 3.9867 4.3196 4.6404 4.9662 5.2773 5.3647 5.6783 6.3881 6.5131 

0.9 10 3.4921 3.787 4.0623 4.443 4.8175 4.8834 5.3427 5.713 5.965 6.128 

0.95 0 75.159 81.468 87.582 93.706 87.907 105.88 123.15 93.52 105.47 117.38 

0.95 1 18.232 19.636 19.368 22.382 23.766 23.512 27.359 24.51 27.58 30.645 

0.95 2 10.412 9.7842 11.4 12.251 13.44 13.916 13.683 15.66 14.232 15.813 

0.95 3 7.7168 7.9544 8.6374 8.8752 9.9753 10.623 10.875 10.642 11.972 13.239 

0.95 4 6.3752 6.6457 7.2535 7.8503 8.277 8.0892 9.4373 9.5422 9.2972 10.359 

0.95 5 5.4765 5.8962 6.0749 6.7414 7.2681 7.3145 7.7384 7.9003 8.8878 8.6849 

0.95 6 4.8859 5.1978 5.6126 6.0094 6.6146 6.8245 7.2994 7.6096 7.7102 8.5677 

0.95 7 4.4704 4.882 5.2738 5.5147 5.7538 6.4561 6.4517 6.7624 7.6077 7.6667 

0.95 8 4.2249 4.4986 4.8191 5.1542 5.4735 5.7862 6.2791 6.6603 6.9115 7.0097 

0.95 9 3.9791 4.3181 4.6546 4.8692 5.2427 5.6116 5.7678 6.1244 6.3853 7.0948 

0.95 10 3.7839 4.0732 4.3627 4.6362 5.055 5.4839 5.6991 6.111 6.4303 6.6407 

0.99 0 116.71 114.93 121.94 117.08 115.67 138.58 121.54 140.99 158.8 176.56 

0.99 1 24.936 24.705 24.367 25.823 27.987 28.519 27.211 31.093 34.966 30.645 

0.99 2 12.575 13.457 14.693 15.215 15.315 16.127 16.23 18.622 17.617 19.575 

0.99 3 9.6924 10.114 10.59 10.629 11.091 11.973 12.369 12.43 13.983 13.239 

0.99 4 8.0504 8.172 8.1848 9.0434 9.0172 9.9322 10.493 10.74 10.735 11.924 

0.99 5 6.8508 7.0482 7.1377 7.6714 8.4186 8.6986 9.367 9.7673 9.9505 9.8752 

0.99 6 5.4395 5.5758 5.6231 6.0237 6.6008 6.8107 7.2994 7.6096 7.7102 7.6222 

0.99 7 5.5184 5.7897 6.1898 6.4359 6.8933 6.9043 7.5359 8.6124 8.2951 8.4531 

0.99 8 5.1131 5.141 5.6015 5.9245 6.1088 6.5678 6.7506 7.1953 7.4928 8.3253 

0.99 9 4.7508 5.0853 5.3166 5.5287 5.8006 6.2968 6.5557 7.0449 7.4067 7.6639 

0.99 10 4.5104 4.5646 5.0915 5.2251 5.5537 6.0677 6.3979 6.5112 6.8822 7.1316 
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8. Numerical Illustration 
 

In today's modern world, every region has its own food culture that is influenced by the 

environment, agriculture, whether, and so on. Nowadays, the beverage industry plays a significant 

role in the global food industry. Coca-Cola is the only beverage that is mass-produced and 

distributed globally. Coca-Cola was first sold in Atlanta in 1886. Despite the passage of many 

decades, the demand for Coca-Cola keeps on increasing on every single day. As a result, a beverage 

manufacturing company in the United States intends to increase Coca-Cola production. The 

exponential process is used to describe the increase in Coca-Cola production, and the Poisson 

process is used to describe the probability of manufacturing defects. Therefore, it is ensured that this 

production process is carried out using an exponential Poisson process. 

Here it is considered that the Exponential-Poisson distribution is the appropriate 

distribution for evaluating life time of an item with the parameters λ=2. The quality inspector desires 

to investigate the median lifetime of an item has 1000 hours when the confidence level is P*= 0.75. 

The test was terminated after 600 hours. This leads to the ratio 𝑡 𝛽0
⁄ =  600 1000⁄   = 0.6. The sampling 

plan which is used by the experimenter is (n=17, c=4, 𝑡 𝛽0
⁄ = 0.60). 

 

Table-4: OC curve for the plan (17, 4, 0.6) under EP for 𝑝∗ = 0.75 

P 2 4 6 8 10 12 14 16 18 

L(P) 0.15669 0.681 0.88834 0.95563 0.98003 0.99005 0.99462 0.9969 0.99811 

 

 

 
 

Figure-1: OC curve for the plan (17, 4, 0.6) under EP for 𝑝∗ = 0.75. 

 

9. Construction of tables 

 
Step 1: Set the parameters λ=2 and the test termination ratio 𝑡 𝛽0

⁄ such as 

            0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3 

Step 2: To find the value of η, substitute the parameters in the equation (5)  

One can obtain η as 0.332832. Substitute  𝛽 = 
𝜂
𝛽0
⁄  in (1),  

To find p, use the inequality p= 𝐹(𝑡, 𝛿) 
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Step 3: By satisfying the inequality, determine the smallest sample size n. 

∑(
𝑛
𝑖
)

𝑐

𝑖=0

𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≤ 1 − 𝑝∗ 

Step 4: Utilize the inequality to determine the OC values.   

𝐿(𝑝) = ∑(
𝑛
𝑖
)

𝑐

𝑖=0

𝑝𝑖 (1 − 𝑝)𝑛−𝑖 

Step 5: By satisfying the given inequality, determine the minimum mean ratio at      

                 Producer risk 𝛼 = 0.05  

      

∑(
𝑛
𝑖
)

𝑐

𝑖=0

𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≥ 1 − 𝛼 

 

10. Conclusion 
 

This article is developed for time truncated single sampling plan which follows a pre-fixed time 

when lifetime of the products follows an Exponential-Poisson distribution. The required minimum 

sample size and OC values of Producer risk were displayed in the given tables in order to guarantee 

the determined median life along with a confidence level that is given. This study reveals that the 

EP distribution proves that the sample size is much smaller than other statistical distributions which 

are used in acceptance sampling. Further, the table values are explained with suitable illustration. 
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Abstract 

The authors of this study set out to build a software reliability growth model (SRGM). Software 

reliability is a crucial attribute that has to be quantified and evaluated. In most cases, software 

errors happen at unpredictable times. In this article, the failure intensity of the single parameter 

length-biased exponential class SRGM has been characterized taking into account the Poisson 

process of the incidence of software faults. The parameters of the proposed SRGM under 

investigation are the scale parameter (𝜃1) and the total number of failures (𝜃0). It is considered that 

the experimenter may have previous knowledge of the parameters from past or earlier experiences in 

the form of gamma priors. The posterior probability may be obtained by combining the prior 

probability with the likelihood of the data, and Bayes estimators can then be suggested. 

 

Keywords: Binomial process, gamma prior, maximum likelihood estimator 

(MLE), Rayleigh class, software reliability growth model (SRGM), incomplete 

gamma function, confluent hyper-geometric function.  

 

 

I. Introduction 

 

Beginning in the early 1970s of the previous century, research on software reliability has advanced 

until the present. Various kinds of software have dominated many fields of the humanities, 

sciences, and technology as well as daily life for all people. The film industry, education sector, E-

commerce sector, medical and healthcare sectors, space agencies, banking sector and various 

government agencies, all employ different types of software for the convenience and development 

the fields.  

The software is the end product of several intricate code sequences developed by the 

humans according to the needs of above sectors within stipulated time period.  Due to huge 

magnitude of complicated code sequences, there is a greater likelihood of failures or ineffective 

performance. These software failures may result from a variety of issues, including memory faults, 

language-specific issues, calling third-party libraries, standard library issues, etc. Such flaws may 

have operational repercussions that cause system failure and unanticipated dangerous outcomes. 
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As a result, the aforementioned areas require software that operates reliably. Hence, the evaluation 

and quantification of the software's performance are therefore crucial. The reliability of the 

software is one of the performance indicators. To put it another way, it becomes crucial to create 

reliable software that serves the needs of users or systems. 

Software reliability is now thought to be a crucial factor in determining customer 

satisfaction, along with software functionality and performance. Software reliability growth 

models (SRGM) outline the broad link between software failure occurrences and the key process 

influences (such as fault introduction, fault removal, operational profile, etc.). The statistical 

relation between data on defects and the known characteristics of probabilistic behavior is known 

as the SRGM. The basic goal of software reliability modeling is to represent a relationship in 

which, when defects are found and removed, there is a reduction in the number of failures per 

time interval or an increase in the time interval between failures. The SRGM is often characterized 

by the mean failure function or failure intensity function. The pattern of occurrence of software 

failure is its type, and the mathematical functional form of failure intensity is its class. The software 

reliability growth models are categorized according to the system described by [8].  

The length-biased distributions have been presented by [2] and formalized by [9]. These 

distributions are sometimes referred to as size-biased probability distributions. Reliability theory 

may also use these distributions (see [4], [5], and [6]). Modeling software reliability may be done 

using length-biased distributions. In this study, using the Poisson pattern of occurrence of software 

failure and the length-biased exponential form of failure intensity, the Poisson type length-biased 

exponential class model is introduced as per the classification system provided by [8]. As this 

SRGM is being described, it is assumed that the failure occurring at time t has a Poisson occurrence 

(i.e., Type) and that the mean failure function's functional form is characterized by a length-biased 

exponential distribution (i.e., Class). The software failures in this model are presumed to be 

independent of one another and dependent on the duration of the time interval that comprises the 

same software failure. For the estimation part of parameters the gamma priors taking into account. 

The Bayes estimators of the parameters are obtained in this study by the methods of [7], [12], [10], 

and [11], and they are compared with MLEs in subsequent parts. 

 

II. Model Section 

 

 Suppose time to failure follows length biased exponential distribution denoted by  𝑓(𝑡) 

with scale parameter θ1 and software failures occur in Poisson pattern then 

𝑓(𝑡) =  {
𝑡𝜃1

2𝑒−𝜃1𝑡  ;  𝑡 > 0, 𝜃1 > 0, 𝐸[𝑡]  ≠ 0
0              ;                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

      (1) 

Also let the total number of faults remaining in the software at time 𝑡 = 0 is a Poisson random 

variate with mean θ0 then the failure intensity 𝜆(𝑡) = 𝜃0𝑓(𝑡) (cf. [7]) can be obtained as  

𝜆(𝑡) = 𝜃0𝑡𝜃1
2𝑒−𝜃1𝑡 ; 𝑡 > 0, 𝜃1 > 0, 𝜃0 > 0 and 𝐸[𝑡]  ≠ 0    (2) 

The mean failures function at time t comes out to be 

𝜇(𝑡) = 𝜃0 [1 − (1 + 𝜃1𝑡)𝑒−𝜃1𝑡]        (3) 

The details about number of failures experienced by time t, performance of failure intensity λ(t) 

and 𝜇(𝑡) have been discussed in [13]. 

 

 

III. Maximum Likelihood Estimation 
The most important and extensively used technique of point estimation is maximum likelihood 

estimation when underlying distribution of data is known. The maximum likelihood estimation is 

considered for failure times. The base of maximum likelihood estimation is likelihood function 
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which can be obtained by assuming that me failures are experienced at times 𝑡𝑖 , 𝑖 = 1,2, … , 𝑚𝑒 up to 

execution time is 𝑡𝑒 (≥ 𝑡𝑚𝑒
). Also using the failure intensity at each 𝑡𝑖, 𝑖 = 1,2, … , 𝑚𝑒 obtained in (2) 

and mean failure function at time 𝑡𝑒 obtained by replacing 𝑡 = 𝑡𝑒, the likelihood function of 𝜃0 and 

𝜃1 can be obtained as 𝐿(𝜃0, 𝜃1) = {∏ 𝜆(𝑡𝑖)
𝑚𝑒
𝑖=1 }𝑒𝑥𝑝 (−𝜇(𝑡𝑒))  (cf. Musa et al. (1987)).  

The 𝐿(𝜃0, 𝜃1) can take following form for this model 

𝐿(𝜃0, 𝜃1) = 𝜃0
𝑚𝑒𝜃1

2𝑚𝑒[∏ 𝑡𝑖
𝑚𝑒
𝑖=1 ] 𝑒−𝑇𝜃1𝑒−𝜃0 [1−(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]      (4) 

where 

 ∑ 𝑡𝑖
𝑚𝑒
𝑖=1 = 𝑇  

The Maximum Likelihood Estimators for the parameters 𝜃0 and 𝜃1 are 

�̂�𝑚0 =  𝑚𝑒(1 − (1 + �̂�𝑚1𝑡𝑒)𝑒−�̂�𝑚1𝑡𝑒)
−1

         (5) 

and 

�̂�𝑚1 =  [�̂�𝑚0
−1 𝑡𝑒

−2(2𝑚𝑒 − 𝑇𝜃𝑚1)𝑒�̂�𝑚1𝑡𝑒]
1

2⁄
         (6)   

respectively. The values of �̂�𝑚0 and �̂�𝑚1 can be obtained after simultaneous solution of equations 

(5) and (6).  

      

IV. Bayesian parameter estimation 
 

The bayesian technique is used to put the subjective and objective data sources together into the 

analysis. In this technique the parameters are considered as a random variables having known 

probability pattern. This known probability pattern is termed as prior in Bayesian technique. 

Whole the analysis is based on this prior and using Bayes theorem combines this prior and 

likelihood of data. In present case, it is considered that the experimenter have prior information 

about both the parameters θ0 and θ1in the form of gamma probability function. Then the following 

prior distributions 𝑔(𝜃0) and 𝑔(𝜃1) can be considered for parameters 𝜃0 and 𝜃1 respectively. 

𝑔(𝜃0)  ∝  {
𝜃0

𝜈−1𝑒−𝜂𝜃0         , 𝜃0𝜖 [0, ∞)
0                         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (7)  

and 

𝑔(𝜃1)  ∝  {
𝜃1

𝛼−1𝑒−𝛽𝜃1        , 𝜃1𝜖 [0, ∞)
0                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (8) 

Now, Consider the total execution time is 𝑡𝑒 and during this time 𝑚𝑒 failures are experienced at 

times 𝑡𝑖 ,   𝑖 = 1,2, … , 𝑚𝑒 then, the joint posterior of 𝜃0 and 𝜃1given 𝑡(= 𝑡𝑖, 𝑖 = 1,2, … , 𝑚𝑒) is  

𝜋(𝜃0, 𝜃1|𝑡) ∝ 𝜃0
𝑚𝑒+𝜈−1

𝜃1
2𝑚𝑒+𝛼−1

𝑒−(𝑇+𝛽)𝜃1𝑒−(𝜂+1)𝜃0 𝑒[𝜃0(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒] 𝜃0 > 𝑚𝑒  ,𝜃1 > 0   (9) 

 In this section, the point estimates (posterior mean) of both the parameters 𝜃0 and 𝜃1 under 

study are obtained by Bayesian technique considering the squared error loss as  

�̂�𝐵0 =  𝐷−1 ∑
𝛤(𝑚𝑒+𝜈+𝑗+1,(𝜂+1)𝑚𝑒)

𝑗!(𝜂+1)(𝑗+1) (2𝑚𝑒 + 𝛼, 2𝑚𝑒 + 𝛼 + 𝑗 + 1, 𝑇∗𝑡𝑒
−1)∞

𝑗=0     (10) 

and   

�̂�𝐵1 =
(2𝑚𝑒+𝛼)

𝐷𝑡𝑒
∑

𝛤(𝑚𝑒+𝜈+𝑗,(𝜂+1)𝑚𝑒)

𝑗!(𝜂+1)𝑗 (2𝑚𝑒 + 𝛼 + 1, 2𝑚𝑒 + 𝛼 + 𝑗 + 2, 𝑇∗𝑡𝑒
−1)∞

𝑗=0    (11) 

where  (, ; 𝑥) is Confluent Hypergeometric Function (cf. [1] and [3]), normalizing constant is  

𝐷 = ∑
𝛤(𝑚𝑒+𝜈+𝑗,(𝜂+1)𝑚𝑒)

𝑗!(𝜂+1)𝑗 (2𝑚𝑒 + 𝛼, 2𝑚𝑒 + 𝛼 + 𝑗 + 1, 𝑇∗𝑡𝑒
−1)∞

𝑗=0  

and   

 𝑇∗ = 𝑇 + 𝛽 + 𝑗𝑡𝑒. 

 

  

562



Rajesh Singh, Kailash R. Kale, Pritee Singh 
PTLBEC SRGM AND PARAMETER ESTIMATION 

RT&A, No 3 (74) 
Volume 18, September 2023 

 

 

V. Discussion 

I. SUBSECTION ONE 

The proposed Bayes estimators i.e. �̂�𝐵0 and �̂�𝐵1 are compared with corresponding maximum 

likelihood estimators i.e. �̂�𝑚0 and �̂�𝑚1 respectively on the basis of risk efficiencies 𝑅𝐸𝑗 = 𝑅𝑗
′𝑅𝑗

−1 

where 𝑅𝑗 = 𝐸[�̂�𝐵𝑗 − 𝜃𝑗]
2
 and 𝑅𝑗

′ = 𝐸[�̂�𝑚𝑗 − 𝜃𝑗]
2
; 𝑗 = 0,1. Here, the performance of proposed Bayes 

estimators �̂�𝐵0 and �̂�𝐵1 over MLEs �̂�𝑚0 and �̂�𝑚1 have been compared on the basis of risks 

efficiencies using Monte Carlo simulation technique. The risks efficiencies are obtained by 

generating sample of size, say me failures upto total execution time 𝑡𝑒 and it was repeated 103 

times from the length biased exponential distribution. Then, using Monte Carlo simulation 

technique risks efficiencies has been evaluated and is presented in the graphs Figure 1 to 9.  

 

 

Figure 1: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 for  𝑡𝑒 = 100; ϑ = 1, η = 1; α = 1, β = 1, 

 

Figure 2: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 125; ϑ = 1, η = 1; α = 1, β = 1 
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Figure 3: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 150; ϑ = 1, η = 1; α = 1, β = 1, 

 

Figure 4: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 200; ϑ = 1, η = 1; α = 1, β = 1 

 

Figure 5: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 100; ϑ = 10, η = 1; α = 10, β = 1, 
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Figure 6: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 100; ϑ = 10, η = 5; α = 10, β = 5, 

 

Figure 7: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 100; ϑ = 10, η = 10; α = 10, β = 10, 

 

Figure 8: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵1 𝑡𝑒 = 100; ϑ = 1, η = 10; α = 1, β = 10, 
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Figure 9: Risk Efficiencies 𝜃𝐵0 and 𝜃𝐵 𝑡𝑒 = 100; ϑ = 3, η = 10; α = 3, β = 10, 

II. SUBSECTION TWO 

Based on the above graphical representation from Figure 1 to Figure 9 of performance of proposed 

Bayes estimators against their corresponding MLE, it can be seen that the risk efficiencies 𝑅𝐸0 of 

�̂�𝐵0 decrease as 𝜃0 and 𝜃1 increase. It can also be seen that for large values of 𝜃1 and 𝜃0 the 

proposed Bayes estimator of 𝜃0 is not better than MLE otherwise proposed Bayes estimator �̂�𝐵0 is 

better than MLE. Moreover, when the value of 𝑡𝑒 is small, the values of 𝑅𝐸0 first increase, attain a 

maxima and then decrease as the value of 𝑡𝑒 increase. Similarly, it can be observed that the risk 

efficiencies of �̂�𝐵1 i.e. 𝑅𝐸1 decrease as the value of 𝜃1 and 𝜃0increase but the values of risk 

efficiencies 𝑅𝐸1 are almost constant for the increase in values of 𝜃0. Further, The values of 𝑅𝐸1 are 

uniform over the variation in value of 𝑡𝑒. It is important to note that the proposed Bayes estimator 

�̂�𝐵1 is always better than MLE. Due to increase in values of shape and scale parameter of both the 

priors the values of  𝑅𝐸0 decrease for constant values of scale parameters. 

 

On the basis of better performance of risk efficiencies of �̂�𝐵0 and �̂�𝐵1 over �̂�𝑚0 and �̂�𝑚0 following 

conclusions are drawn. 

 

VI. Conclusions 

 
After having experience or prior knowledge about the software failure process to researchers. 

These proposed Bayes estimators can perform better than their corresponding MLEs for the proper 

choices of prior parameters. The proposed Bayes estimator of θ0 can be preferred over MLE if it is 

felt that total number of failures may not be very large and failure rate may be small. The proposed 

Bayes estimator of θ1 can be preferred over MLE. Under this prior belief these estimators can be 

preferred for calendar time modeling. 
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Abstract 

 

 In this paper a power weighted Sujatha distribution, which includes power Sujatha distribution, 

weighted Sujatha distribution and Sujatha distribution as particular cases, has been proposed.  Its 

statistical properties including behavior of density function, moments, hazard rate function, and 

mean residual life function have been discussed. Estimation of parameters has been discussed using 

the method of maximum likelihood. A simulation study has been presented to know the performance 

of maximum likelihood estimates of parameters. Application of the proposed distribution have been 

explained with a real lifetime data relating to patients suffering from head and neck cancer and 

goodness of fit shows quite satisfactory fit. 

 

Keywords: Sujatha distribution, Weighted Sujatha distribution, Power Sujatha 

distribution, Hazard rate function, Mean residual life function, Maximum Likelihood 

estimation 

 

 

1. Introduction 
 

It has been observed that the survival times of patients suffering from head and neck cancer needs 

special consideration to find a suitable distribution which can be used to model the data. During 

recent decades several one parameter, two-parameter and three-parameter lifetime distributions 

have been proposed in statistics literature to model survival times of patients suffering from head 

and neck cancer and observed that all proposed distributions are not very much suitable  due to 

theoretical or applied point of view. It has been observed that, in general, the survival times of 

patients suffering from head and neck cancer are stochastic in nature and while discussing the 

goodness of fit of several one parameter , two-parameter and three-parameter well-known 

distributions which were earlier proposed by different researchers that these distribution does not 

give good fit.  
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Shanker [1] proposed a one parameter Sujatha distribution having its probability density function 

(pdf) and cumulative distribution function (cdf) as 

  

𝑓1(𝑦; 𝜃) =
𝜃3

𝜃2 + 𝜃 + 2
(1 + 𝑦 + 𝑦2)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0                                                                                    (1.1)  

 

                                 

𝐹1(𝑦; 𝜃) = 1 − [1 +
𝜃𝑦(𝜃𝑦+𝜃+2)

𝜃2+𝜃+2
] 𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0(1.2)                                                                                  (1.2)   

 

Shanker and Shukla [2], taking a weight function 𝑥𝛼−1in (1.1), proposed a two-parameter weighted 

Sujatha distribution (WSD) defined by its pdf and cdf 

𝑓2(𝑦; 𝜃, 𝛼) =
𝜃𝛼+2

𝜃2+𝛼𝜃+𝛼(𝛼+1)

𝑦𝛼−1

𝛤(𝛼)
(1 + 𝑦 + 𝑦2)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0              (1.3)  

                                 

𝐹2(𝑦; 𝜃, 𝛼) = 1 −
{𝜃2+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼,𝜃𝑦)+(𝜃𝑦)𝛼(𝜃𝑦+𝜃+𝛼+1)𝑒−𝜃𝑦

{𝜃2+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
,                    (1.4) 

where  𝛤(𝛼, 𝑧) = ∫ 𝑒−𝑦𝑦𝛼−1𝑑𝑦; 𝑦 ≥ 0, 𝛼 > 0
∞

𝑧
    is the upper incomplete gamma function. 

Shanker and Shukla [3], taking a power transformation 𝑥 = 𝑦
1

𝛽 in (1.1), proposed a two-parameter 

power Sujatha distribution(PSD) defined by its pdf and cdf 

 𝑓3(𝑥; 𝜃, 𝛼) =
𝛼𝜃3

𝜃2+𝜃+2
𝑥𝛼−1(1 + 𝑥𝛼 + 𝑥2𝛼)𝑒−𝜃𝑥𝛼

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0                             (1.5) 

𝐹3(𝑦; 𝜃, 𝛼) = 1 − [1 +
𝜃𝑦𝛼(𝜃𝑦𝛼+𝜃+2)

𝜃2+𝜃+2
] 𝑒−𝜃𝑦𝛼

; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0                             (1.6) 

Ghitany et al. [4] proposed a two-parameter weighted Lindley distribution (WLD) having 

parameters 𝜃 and 𝛼 defined by its probability density function (pdf) and cumulative distribution 

function (cdf)  

              𝑓4(𝑦; 𝜃, 𝛼) =
𝜃𝛼+1

𝜃+𝛼

𝑦𝛼−1

𝛤(𝛼+1)
(1 + 𝑦)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0                        (1.7) 

                 𝐹4(𝑦; 𝜃, 𝛼) = 1 −
(𝜃+𝛼)𝛤(𝛼,𝜃𝑦)+(𝜃𝑦)𝛼𝑒−𝜃𝑦

(𝜃+𝛼)𝛤(𝛼)
; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0,          (1.8) 

 where 𝛤(𝛼) and 𝛤(𝛼, 𝑧) are the complete gamma function and the upper incomplete gamma 

function. Its structural properties including moments, hazard rate function, mean residual life 

function, estimation of parameters and applications for modeling survival time data has been 

discussed by Ghitany et al. [4]. Shanker et al. [5] discussed various moments based properties 

including coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of 

dispersion of weighted Lindley distribution and its applications to model lifetime data from 

biomedical sciences and engineering.  

Ghitany et al. [6]  proposed a power Lindley distribution (PLD) having parameters 𝜃 and 𝛼 defined 

by its pdf and cdf  

                  𝑓5(𝑦; 𝜃, 𝛼) =
𝛼𝜃2

(𝜃+1)
𝑦𝛼−1(1 + 𝑦𝛼)𝑒−𝜃𝑦𝛼

; 𝑦 > 0, 𝜃 > 0, 𝛼 > 0                    (1.9) 

                   𝐹5(𝑥; 𝜃, 𝛼) = 1 − [1 +
𝜃𝑥𝛼

𝜃+1
] 𝑒−𝜃𝑥𝛼

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0                              (1.10) 

Note that the PLD is a convex combination of Weibull (𝛼, 𝜃) and a generalized gamma 

(2, 𝛼, 𝜃)distribution with mixing proportion
𝜃

𝜃+1
. Ghitany et al. [6] has discussed the properties of 

PLD including the shapes of the density, hazard rate functions, moments, skewness and kurtosis 

measures, estimation of parameters using maximum likelihood estimation and application to 

model a real lifetime data from engineering. Recall that at 𝛼 = 1 both WLD in (1.7) and PLD in (1.9) 

reduce to Lindley distribution introduced by Lindley [7] having pdf and cdf 

                                  𝑓6(𝑦; 𝜃) =
𝜃2

𝜃+1
(1 + 𝑦)𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0                                        (1.10) 

                                  𝐹6(𝑦; 𝜃) = 1 − [1 +
𝜃𝑦

𝜃+1
] 𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0                                   (1.11) 

Ghitany et al. [8] have discussed its various statistical and mathematical properties and application. 

Shanker et al. [9] have detailed study on modeling of lifetime data using both exponential and 
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Lindley distributions and observed that there are many lifetime data where exponential 

distribution gives better fit than Lindley distribution. 

Zakerzadeh and Dolati [10] have introduced a three parameter generalized Lindley distribution 

(GLD) having pdf and cdf given by 

    𝑓7(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼+1

𝜃+𝛽

𝑥𝛼−1

𝛤(𝛼+1)
(𝛼 + 𝛽𝑥)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0         (1.12) 

    𝐹7(𝑥; 𝜃, 𝛼, 𝛽) = 1 −
𝛼(𝛽+𝜃)𝛤(𝛼,𝜃𝑥)+𝛽(𝜃𝑥)𝛼𝑒−𝜃𝑥

(𝛽+𝜃)𝛤(𝛼+1)
; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0   (1.13) 

Lindley distribution, gamma distribution and weighted Lindley distribution (WLD) are particular 

cases of (1.9) at (𝛼 = 𝛽 = 1), (𝛽 = 0) and (𝛽 = 𝛼), respectively. Shanker [11] obtained various raw 

moments and central moments of GLD and discussed properties based on moments including 

coefficient of variation, skewness, kurtosis and index of dispersion of GLD and its comparative 

study with generalized gamma distribution (GGD) introduced by Stacy [12] to model various 

lifetime data from engineering and biomedical sciences and concluded that in many cases GGD 

gives much better fit than GLD. Shanker and Shukla [13] have detailed comparative study on 

modeling of real lifetime data from engineering and biomedical sciences using GLD and 

generalized gamma distribution (GGD) introduced by Stacy (1962) [12] and concluded that there 

are several lifetime data where GGD gives much better fit than GLD. 

In the present paper, a three - parameter power weighted Sujatha distribution (PWSD) which 

includes PSD, WSD and Sujatha distribution as particular cases, has been proposed and discussed. 

Its raw moments been obtained. The survival function and the hazard rate function of the 

distribution have been derived and their shapes have been discussed for varying values of the 

parameters. The estimation of its parameters has been discussed using maximum likelihood 

method. Finally, the goodness of fit and the application of the distribution have been explained 

through a real lifetime data relating to patients suffering from head and cancer and the fit has been 

compared with other one parameter, two-parameter and three-parameter lifetime distributions. 

 

2. Power weighted Sujatha distribution 

Assuming the power transformation 𝑋 = 𝑌
1

𝛽 in  the pdf of WSD (1.3), the pdf of the 

random variable 𝑋can be obtained as 

𝑓8(𝑥; 𝜃, 𝛼, 𝛽) =
𝛽𝜃𝛼+2

𝜃+𝛼𝜃+𝛼(𝛼+1)

𝑥𝛽𝛼−1

𝛤(𝛼)
(1 + 𝑥𝛽 + 𝑥2𝛽)𝑒−𝜃𝑥𝛽

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0       (2.1) 

           

 We would call the distribution in (2.1) as the power weighted Sujatha distribution (PWSD) and we 

denote it as PWSD(𝜃, 𝛼, 𝛽). It can be easily verified that the PWSD(𝜃, 𝛼, 𝛽) in (2.1) reduces to 

Sujatha distribution, WSD and PSD for(𝛼 = 𝛽 = 1),(𝛽 = 1) and(𝛼 = 1), respectively. It can be 

easily verified that PWSD is a convex combination of generalized gamma distributions with 

different parameters, namely GGD(𝜃, 𝛼, 𝛽), GGD(𝜃, 𝛼 + 1, 𝛽) and GGD(𝜃, 𝛼 + 2, 𝛽). That is  

 𝑓5(𝑥; 𝜃, 𝛼, 𝛽) = 𝑝1𝑔1(𝜃, 𝛼, 𝛽) + 𝑝2𝑔2(𝜃, 𝛼 + 1, 𝛽) + (1 − 𝑝1 − 𝑝2)𝑔3(𝜃, 𝛼 + 2, 𝛽), 

Where 

 𝑝1 =
𝜃2

𝜃2+𝛼𝜃+𝛼(𝛼+1)
,  𝑝2 =

𝛼𝜃

𝜃2+𝛼𝜃+𝛼(𝛼+1)
 

𝑔1(𝜃, 𝛼, 𝛽) =
𝛽𝜃𝛼

𝛤(𝛼)
𝑥𝛽𝛼−1𝑒−𝜃𝑥𝛽

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

𝑔2(𝜃, 𝛼 + 1, 𝛽) =
𝛽𝜃𝛼+1

𝛤(𝛼 + 1)
𝑥𝛽(𝛼+1)−1𝑒−𝜃𝑥𝛽

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

𝑔3(𝜃, 𝛼 + 2, 𝛽) =
𝛽𝜃𝛼+2

𝛤(𝛼 + 2)
𝑥𝛽(𝛼+2)−1𝑒−𝜃𝑥𝛽

; 𝑥 > 0, 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

  

Graphs of density function of PWSD for varying values of parameters 𝜃, 𝛼and𝛽 have been drawn 

and presented in figure 1. From the figure 1, It was observed that pdf of PWSD is increasing with 
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increased value of theta at fixed value of alpha and beta, whereas its value is decreasing with 

increased value of alpha at fixed valued of theta and beta. 

 

 

 

 

 
Figure 1: Graphs of the pdf of PWSD for varying values of parameters𝜃, 𝛼and𝛽 

 

3. Moments 
The 𝑟th moment about origin of PWSD (2.1) can be obtained as 

                       𝜇𝑟
′ =

𝛽𝜃𝛼+2

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
∫ 𝑥𝛽𝛼+𝑟−1∞

0
(1 + 𝑥𝛽 + 𝑥2𝛽)𝑒−𝜃𝑥𝛽

𝑑𝑥 

=
𝛽𝜃𝛼+2

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)
[∫ 𝑒−𝜃𝑥𝛽

𝑥𝛽𝛼+𝑟−1
∞

0

𝑑𝑥 + ∫ 𝑒−𝜃𝑥𝛽
𝑥𝛽𝛼+𝛽+𝑟−1

∞

0

𝑑𝑥 + ∫ 𝑒−𝜃𝑥𝛽
𝑥𝛽𝛼+2𝛽+𝑟−1

∞

0

𝑑𝑥] 
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Assuming 𝑢 = 𝜃𝑥𝛽, we have  𝑑𝑢 = 𝜃𝛽𝑥𝛽−1𝑑𝑥,  𝑥 = (
𝑢

𝜃
)

1

𝛽
and 𝑑𝑥 =

𝑑𝑢

𝜃𝛽(
𝑢

𝜃
)

𝛽−1
𝛽

 

Thus, we have 

 𝜇𝑟
′ =

𝜃𝛼+1

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)

[
 
 
 

1

𝜃
𝛼+

𝑟
𝛽

−1
∫ 𝑒−𝑢𝑢

𝛼+
𝑟

𝛽
−1∞

0
𝑑𝑢 +

1

𝜃
𝛼+

𝑟
𝛽
∫ 𝑒−𝑢𝑢

𝛼+
𝑟

𝛽
+1−1∞

0
𝑑𝑢

+
1

𝜃
𝛼+

𝑟
𝛽

+1
∫ 𝑒−𝑢𝑢

𝛼+
𝑟

𝛽
+2−1∞

0
𝑑𝑢

]
 
 
 

 

          =
𝜃𝛼+1

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
[
𝛤(𝛼+

𝑟

𝛽
)

𝜃
𝛼+

𝑟
𝛽

−1
+

𝛤(𝛼+
𝑟

𝛽
+1)

𝜃
𝛼+

𝑟
𝛽

+
𝛤(𝛼+

𝑟

𝛽
+2)

𝜃
𝛼+

𝑟
𝛽

+1
] 

            =
𝜃𝛼+1

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
[
𝜃2𝛤(𝛼+

𝑟

𝛽
)+𝜃𝛤(𝛼+

𝑟

𝛽
+1)+𝛤(𝛼+

𝑟

𝛽
+2)

𝜃
𝛼+

𝑟
𝛽

+1
] 

            =
𝜃2+𝜃(𝛼+

𝑟

𝛽
)+(𝛼+

𝑟

𝛽
)(𝛼+

𝑟

𝛽
+1)

𝜃

𝑟
𝛽{𝜃+𝛼𝜃+𝛼(𝛼+1)}

𝛤(𝛼+
𝑟

𝛽
)

𝛤(𝛼)
 

=
𝜃2𝛽2+𝜃𝛽(𝛼𝛽+𝑟)+(𝛼𝛽+𝑟)(𝛼𝛽+𝛽+𝑟)

𝛽𝜃

𝑟
𝛽{𝜃+𝛼𝜃+𝛼(𝛼+1)}

𝛤(𝛼+
𝑟

𝛽
)

𝛤(𝛼)
; 𝑟 = 1,2,3, . ..               (3.1) 

Substituting 𝑟 = 1,2,3 and 4 in (3.1), the first four moments about the origin of PWSD can be 

obtained. Again using the relationship between moments about origin and central moments, 

central moments can be obtained. Since the expressions for central moments are complicated, 

central moments are not being given. 

 

 4. Hazard Rate Function 
The survival function 𝑆(𝑥; 𝜃, 𝛼, 𝛽)of PWSD can be obtained as 

     𝑆(𝑥; 𝜃, 𝛼, 𝛽) = 𝑃(𝑋 > 𝑥) = ∫ 𝑓5(𝑡; 𝜃, 𝛼, 𝛽)
∞

𝑥
𝑑𝑡 

                                               =
𝛽𝜃𝛼+2

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
∫ 𝑡𝛽𝛼−1∞

𝑥
(1 + 𝑡𝛽 + 𝑡2𝛽)𝑒−𝜃𝑡𝛽

𝑑𝑡 

=
𝛽𝜃𝛼+2

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)
[∫ 𝑡𝛽𝛼−1

∞

𝑥

𝑒−𝜃𝑡𝛽
𝑑𝑡 + ∫ 𝑡𝛽𝛼+𝛽−1

∞

𝑥

𝑒−𝜃𝑡𝛽
𝑑𝑡 + ∫ 𝑡𝛽𝛼+2𝛽−1

∞

𝑥

𝑒−𝜃𝑡𝛽
𝑑𝑡] 

Taking 𝑢 = 𝑡𝛽and 𝑡 = (𝑢)
1

𝛽gives 𝑑𝑡 =
𝑑𝑢

𝛽𝑢

𝛽−1
𝛽

 and thus we have 

𝑆(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼+2

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)

[
 
 
 
 
 ∫ 𝑒−𝜃𝑢𝑢

𝛽𝛼−1
𝛽

𝑑𝑢

𝑢
𝛽−1
𝛽

∞

𝑥𝛽
+ ∫ 𝑒−𝜃𝑢𝑢

𝛽𝛼+𝛽−1
𝛽

𝑑𝑢

𝑢
𝛽−1
𝛽

∞

𝑥𝛽

+∫ 𝑒−𝜃𝑢𝑢
𝛽𝛼+2𝛽−1

𝛽
𝑑𝑢

𝑢
𝛽−1
𝛽

∞

𝑥𝛽 ]
 
 
 
 
 

 

=
𝜃𝛼+2

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)
[∫ 𝑒−𝜃𝑢𝑢𝛼−1𝑑𝑢

∞

𝑥𝛽
+ ∫ 𝑒−𝜃𝑢𝑢𝛼𝑑𝑢

∞

𝑥𝛽
+ ∫ 𝑒−𝜃𝑢𝑢𝛼+1𝑑𝑢

∞

𝑥𝛽
] 

=
𝜃𝛼+2

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)

[
 
 
 
 𝛤(𝛼, 𝜃𝑥𝛽)

𝜃𝛼
+

𝑒−𝜃𝑥𝛽
(𝜃𝑥𝛽)

𝛼
+ 𝛼𝛤(𝛼, 𝜃𝑥𝛽)

𝜃𝛼+1

+
𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽)
𝛼
(𝜃𝑥𝛽 + 𝛼 + 1) + 𝛼(𝛼 + 1)𝛤(𝛼, 𝜃𝑥𝛽)

𝜃𝛼+2 ]
 
 
 
 

 

=
𝜃2𝛤(𝛼,𝜃𝑥𝛽)+𝜃{𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽)
𝛼
+𝛼𝛤(𝛼,𝜃𝑥𝛽)}+𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽)
𝛼
(𝜃𝑥𝛽+𝛼+1)+𝛼(𝛼+1)𝛤(𝛼,𝜃𝑥𝛽)

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
  

=
{𝜃2 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼, 𝜃𝑥𝛽) + 𝜃𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽)
𝛼

+ 𝑒−𝜃𝑥𝛽
(𝜃𝑥𝛽)

𝛼
(𝜃𝑥𝛽 + 𝛼 + 1)

{𝜃 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼)
 

=
{𝜃2+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼,𝜃𝑥𝛽)+𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽+𝜃+𝛼+1)(𝜃𝑥𝛽)
𝛼

{𝜃+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼)
,                                          where 𝛤(𝛼, 𝜃𝑥𝛽) is the 

upper incomplete gamma function defined as 

                         𝛤(𝛼, 𝜃𝑥𝛽) = ∫ 𝑦𝛼−1𝑒−𝑦𝑑𝑦; 𝛼 > 0,
∞

𝜃𝑥𝛽 𝜃𝑥𝛽 > 0. 

It can be easily verified that at    (𝛽 = 1),(𝛼 = 1)and (𝛼 = 𝛽 = 1), the survival function of 

PWSD reduce to the survival function of WSD, PSD and Sujatha distribution, respectively. 
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Thus the cdf of PWSD can be obtained using𝐹5(𝑥; 𝜃, 𝛼, 𝛽) = 1 − 𝑆(𝑥; 𝜃, 𝛼, 𝛽).  

The hazard rate function, ℎ(𝑥; 𝜃, 𝛼, 𝛽), of PWSD can be given by 

     ℎ(𝑥; 𝜃, 𝛼, 𝛽) =
𝑓5(𝑥;𝜃,𝛼,𝛽)

𝑆(𝑥;𝜃,𝛼,𝛽)
                                                               

=
𝛽𝜃𝛼+2𝑥𝛽𝛼−1(1+𝑥𝛽+𝑥2𝛽)𝑒−𝜃𝑥𝛽

{𝜃2+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼,𝜃𝑥𝛽)+𝑒−𝜃𝑥𝛽
(𝜃𝑥𝛽+𝜃+𝛼+1)(𝜃𝑥𝛽)

𝛼. 

Graphs of ℎ(𝑥; 𝜃, 𝛼, 𝛽)for varying values of parameters 𝜃, 𝛼and𝛽 are shown in figure 2.  

 

 

 

 
Figure 2: Graphs of hazard rate function of PWSD for varying values of parameters𝜃, 𝛼and𝛽. 
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5. Mean Residual life function 
 

The mean residual life function of PWSD can be obtained as 

 

𝑚(𝑥; 𝜃, 𝛼, 𝛽) =
1

𝑆(𝑥; 𝜃, 𝛼, 𝛽)
∫ 𝑡𝑓(𝑡; 𝜃, 𝛼, 𝛽)

∞

𝑥

𝑑𝑡 − 𝑥 

 

 

=
𝛽𝜃𝛼+2

{𝜃2 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼, 𝜃𝑥𝛽) + 𝑒−𝜃𝑥𝛽(𝜃𝑥𝛽 + 𝜃 + 𝛼 + 1)(𝜃𝑥𝛽)𝛼
 

× ∫ 𝑡𝛽𝛼
∞

𝑥

(1 + 𝑡𝛽 + 𝑡2𝛽)𝑒−𝜃𝑡𝛽
𝑑𝑡 − 𝑥 

 

=
𝛽𝜃𝛼+2

{𝜃2 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼, 𝜃𝑥𝛽) + 𝑒−𝜃𝑥𝛽(𝜃𝑥𝛽 + 𝜃 + 𝛼 + 1)(𝜃𝑥𝛽)𝛼
 

× [∫ 𝑒−𝜃𝑡𝛽
∞

𝑥

𝑡𝛽𝛼𝑑𝑡 + ∫ 𝑒−𝜃𝑡𝛽
∞

𝑥

𝑡𝛽𝛼+𝛽𝑑𝑡 + ∫ 𝑒−𝜃𝑡𝛽
∞

𝑥

𝑡𝛽𝛼+2𝛽𝑑𝑡] − 𝑥 

 

 

Taking 𝑢 = 𝑡𝛽and 𝑡 = (𝑢)
1

𝛽gives 𝑑𝑡 =
𝑑𝑢

𝛽𝑢

𝛽−1
𝛽

 and thus we have 

 

𝑚(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃𝛼+2

{𝜃2 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼, 𝜃𝑥𝛽) + 𝑒−𝜃𝑥𝛽(𝜃𝑥𝛽 + 𝜃 + 𝛼 + 1)(𝜃𝑥𝛽)𝛼
 

× [∫ 𝑒−𝜃𝑢
∞

𝑥𝛽
𝑢

𝛼+
1
𝛽

−1
𝑑𝑢 + ∫ 𝑒−𝜃𝑢

∞

𝑥𝛽
𝑢

𝛼+
1
𝛽

+1−1
𝑑𝑢 + ∫ 𝑒−𝜃𝑢

∞

𝑥𝛽
𝑢

𝛼+
1
𝛽

+2−1
𝑑𝑢] − 𝑥 

 

 

=
𝜃𝛼+2

{𝜃2 + 𝛼𝜃 + 𝛼(𝛼 + 1)}𝛤(𝛼, 𝜃𝑥𝛽) + 𝑒−𝜃𝑥𝛽(𝜃𝑥𝛽 + 𝜃 + 𝛼 + 1)(𝜃𝑥𝛽)𝛼
 

× [
𝛤 (𝛼 +

1
𝛽

, 𝜃𝑥𝛽)

𝜃
𝛼+

1
𝛽

+
𝛤 (𝛼 +

1
𝛽

+ 1, 𝜃𝑥𝛽)

𝜃
𝛼+

1
𝛽

+1
+

𝛤 (𝛼 +
1
𝛽

+ 2, 𝜃𝑥𝛽)

𝜃
𝛼+

1
𝛽

+2
] − 𝑥 

 

=
𝜃2𝛤(𝛼+

1

𝛽
,𝜃𝑥𝛽)+𝜃𝛤(𝛼+

1

𝛽
+1,𝜃𝑥𝛽)+𝛤(𝛼+

1

𝛽
+2,𝜃𝑥𝛽)

𝜃

1
𝛽{𝜃2+𝛼𝜃+𝛼(𝛼+1)}𝛤(𝛼,𝜃𝑥𝛽)+𝑒−𝜃𝑥𝛽

(𝜃𝑥𝛽+𝜃+𝛼+1)(𝜃𝑥𝛽)
𝛼
− 𝑥. 

 

 

 

Graphs of mean residual function of PWSD for varying values of parameters 𝜃, 𝛼 and𝛽 have been 

drawn and presented in figure 3. From the figure 3, It was observed that mean residual of PWSD is 

decreasing with increased value of theta at fixed value of alpha and beta. 

 

 

 

 

 

574



 
Rama Shanker and Kamlesh Kumar Shukla 
PWSD WITH PROPERTIES & APPLICATION TO SURVIVAL TIMES...  

RT&A, No 3 (74) 
Volume 18, September 2023  

 

 

 
Figure 3: Graphs of mean residual life function of PWSD for varying values of parameters𝜃, 𝛼and𝛽. 

 

6. Maximum Likelihood Estimation of parameters 
 

Suppose (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) be a random sample of size 𝑛 from PWSD (2.1). The natural log 

likelihood function is thus obtained as 

𝑙𝑛 𝐿 = ∑𝑙𝑛 𝑓8 (𝑥𝑖; 𝜃, 𝛼, 𝛽)

𝑛

𝑖=1

 

      = 𝑛[𝑙𝑛 𝛽 + (𝛼 + 2) 𝑙𝑛 𝜃 − 𝑙𝑛(𝜃2 + 𝛼𝜃 + 𝛼2 + 𝛼) − 𝑙𝑛 𝛤 (𝛼)] + (𝛽𝛼 − 1) ∑ 𝑙𝑛(𝑥𝑖)
𝑛
𝑖=1  

+∑ 𝑙𝑛(1 + 𝑥𝑖
𝛽 + 𝑥𝑖

2𝛽)𝑛
𝑖=1 − 𝜃 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 .  
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The maximum likelihood estimates (MLEs) (�̂�, �̂�, �̂�) of parameters (𝜃, 𝛼, 𝛽) of PWSD are the 

solution of the following nonlinear log likelihood equations 

𝜕 𝑙𝑛 𝐿

𝜕𝜃
=

𝑛(𝛼 + 2)

𝜃
−

𝑛(2𝜃 + 𝛼)

𝜃2 + 𝛼𝜃 + 𝛼2 + 𝛼
− ∑ 𝑥𝑖

𝛽

𝑛

𝑖=1

= 0 

 

𝜕 𝑙𝑛 𝐿

𝜕𝛼
= 𝑛 𝑙𝑛 𝜃 −

𝑛(𝜃 + 2𝛼 + 1)

𝜃2 + 𝛼𝜃 + 𝛼2 + 𝛼
− 𝑛𝜓(𝛼) + 𝛽 ∑ 𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

= 0 

 

𝜕 𝑙𝑛 𝐿

𝜕𝛽
=

𝑛

𝛽
+ 𝛼 ∑𝑙𝑛 𝑥𝑖 + ∑

𝑥𝑖
𝛽(1 + 2𝑥𝑖

𝛽) 𝑙𝑛(𝑥𝑖)

1 + 𝑥𝑖
𝛽 + 𝑥𝑖

2𝛽

𝑛

𝑖=1

𝑛

𝑖=1

− 𝜃 ∑ 𝑥𝑖
𝛽 𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

= 0 

 where 𝜓(𝛼) =
𝑑

𝑑𝛼
𝑙𝑛 𝛤 (𝛼) is the digamma function.  

These three natural log likelihood equations do not seem to be solved directly, because they cannot 

be expressed in closed forms. The (MLE’s) (�̂�, �̂�, �̂�) of parameters  (𝜃, 𝛼, 𝛽) can be computed 

directly by solving the natural log likelihood equation using Newton-Raphson iteration method 

available in R-software till sufficiently close values of �̂�, �̂� and �̂� are obtained. The initial values of 

parameters 𝜃, 𝛼 and 𝛽 are taken as 𝜃 = 0.5,𝛼 = 0.5 and �̂� = 1.5.  

 

 

7. A Simulation Study 
In this section, a simulation study has been carried to check the performance of maximum 

likelihood estimates by taking sample sizes (n = 40,80,120,160) for values of  

 𝜃 = 0.5,1.0,1.5,2.0 and 𝛼 = 0.5 𝛽 = 1.0. Similarly 𝛼 = 0.5,2.0,4.0,5.0&𝜃 = 1.5,𝛽 = 1.0, and 𝛽 =

0.1,0.5,1.5,2.0 & 𝜃 = 1.5, 𝛼 = 2.5. Acceptance and rejection method is used to generate random 

number for data simulation using R-software. The process were repeated 1,000 times for the 

calculation of Average Bias error (ABE) and MSE (Mean square error) of parameters 𝜃, 𝛼and 𝛽are 

presented in tables1, 2 &3 respectively. 

 

 

Table1. ABE and MSE of MLE parameters 𝜃, 𝛼and 𝛽 for fixed value of 𝛼 = 0.5, 𝛽 = 1.0 

n 𝜃 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 

40 0.5 0.0183 0.0134 -0.0909 0.0005 0.0249 0.0495 

1.0 0.0058 0.0014 -0.0409 0.0669 0.0198 0.0316 

1.5 -0.0066 0.0017 -0.0909 0.3305 0.0074 0.0044 

2.0 -0.0192 0.0147 -0.1159 0.5374 0.0248 0.0495 

80 0.5 0.0131 0.0138 -0.0465 0.0006 0.0248 0.0495 

1.0 0.0068 0.0038 -0.0215 0.0369 0.0198 0.0316 

1.5 0.0006 0.0003 -0.0464 0.1729 0.0073 0.0043 

2.0 -0.0056 0.0025 -0.0589 0.2784 0.0011 0.0001 

120 0.5 0.0132 0.0210 -0.0295 0.0002 0.0112 0.0151 

1.0 0.0091 0.0098 -0.0129 0.0199 0.0078 0.0074 

1.5 0.0049 0.0028 -0.0296 0.10491 -0.0004 0.0002 

2.0 0.0007 0.0000 -0.0379 0.1723 -0.0046 0.0025 

160 0.5 0.0101 0.0164 -0.0219 0.0000 0.0080 0.0105 

1.0 0.0070 0.0078 -0.0095 0.0144 0.0056 0.0049 

1.5 0.0038 0.0024 -0.0219 0.0773 -0.0006 0.0007 

2.0 0.0007 0.0093 -0.0282 0.0127 -0.0037 0.0023 
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Table2.ABE and MSE of MLE parameters 𝜃, 𝛼and 𝛽 for fixed value of𝜃 = 1.5,𝛽 = 1.0 

 

N 𝛼 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 

40 0.5 0.0157 0.0099 -0.0903 0.0003 0.0594 0.1412 

2.0 0.0033 0.0004 -0.04033 0.0650 0.0494 0.0977 

4.0 -0.0092 0.0034 -0.0903 0.3263 0.0244 0.0238 

5.0 -0.0217 0.0188 -0.1153 0.5320 0.0119 0.0056 

80 0.5 0.0078 0.0049 -0.0451 0.0002 0.0297 0.0706 

2.0 0.0016 0.0002 -0.0201 0.0325 0.0247 0.0488 

4.0 -0.0046 0.0016 -0.0451 0.1632 0 .0122 0.0119 

5.0 -0.0108 0.0094 -0.0576 0.2660 0.0059 0.0028 

120 0.5 0.0071 0.0060 0.0293 0.0449 0.0185 0.0413 

2.5 0.0029 0.0010 0.0168 0.0341 0.0152 0.0277 

4.0 0.0293 0.1034 0.0012 0.0002 0.0068 0.0056 

5.0 0.0377 0.1704 0.0054 0.0035 0.0027 0.0008 

160 0.5 0.0056 0.0052 -0.0217 0.0000 0.0138 0.0305 

2.5 0.0025 0.0010 -0.0124 0.0245 0.0113 0.0204 

4.0 -0.0005 0.0005 -0.0217 0.0757 0.0051 0.0041 

5.0 -0.0037 0.0022 -0.0280 0.1256 0.0019 0.0005 

        

 

Table 3. ABE and MSE of MLE parameters 𝜃, 𝛼and 𝛽 for fixed value of 𝜃 = 1.5, 𝛼 = 2.5 

N 𝛽 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 𝐴𝐵𝐸(�̂�) 𝑀𝑆𝐸(�̂�) 

40 0.1 0.79609 25.3479 0.7246 26.3839 0.0121 0.0059 

40 0.5 0.7835519 24.5581 0.7621 23.2352 0.0021 0.0001 

40 1.5 0.7710519 23.7808 0.7246 21.0050 -0.0228 0.0208 

40 2.0 0.7585519 23.0160 0.6996 19.5807 -0.0353 0.0499 

80 

 

0.1 

 

1.24654 

 

93.2320 

 

1.2157 

 

97.3935 

 

0.0051 

 

0.0015 

80 0.5 1.2382 91.9897 1.2407 92.3639 -0.0015 0.0001 

80 1.5 1.2298 90.7557 1.2157 88.6793 -0.0182 0.0198 

80 2.0 1.2215 89.5300 1.1990 86.2645 -0.0265 0.0422 

120 0.1 

 

0.3259 12.7464 0.3011 13.0932 0.0025 7.7334 

120 0.5 0.3217 12.4226 0.3136 11.8053 -0.0007 7.5789 

120 1.5 0.3175 12.1029 0.3011 10.8831 -0.0091 9.9985 

120 2.0 0.3134 11.7874 0.2928 10.2891 -0.0132 2.1209 

160 0.1 

 

0.1996 6.3794 0.1856 6.8906 0.0018 5.7328 

160 0.5 0.1965 6.1813 0.1950 6.0855 -0.0006 5.8974 

160 1.5 0.1934 5.9863 0.1856 5.5145 -0.0068 7.5232 

160 2.0 0.1903 5.7944 0.1794 05.1495 -0.0099 1.5942 
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8. Applications 
 

The applications and goodness of fit of the power weighted Sujatha distribution (PWSD) has been 

discussed for one real dataset reported by Efron [14] relating to the survival times of a group of 

patients suffering from Head and Neck cancer disease and treated using a combination of 

radiotherapy and chemotherapy (RT+CT).The goodness of fit  is compared with exponential 

distribution, Lindley distribution, Weibull distribution introduced by Weibull [15], Gamma 

distribution, Generalized exponential distribution (GED) introduced by Gupta and Kundu [16] , 

Power Lindley distribution (PLD), Weighted Lindley distribution (WLD), Power Sujatha 

distribution (PSD), weighted Sujatha distribution (WSD), and Generalized Lindley distribution 

(GLD ).  The dataset is as follow:  

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 

63.47 68.46 78.26 74.47 81.43 84 92 94 110 112 

119 127 130 133 140 146 155 159 173 179 

194 195 209 249 281 319 339 432 469 519 

633 725 817 1776       

 

In order to compare the goodness of fit of the considered distributions for the dataset,  values of 

−2 𝑙𝑛 𝐿, AIC (Akaike information criterion),  K-S Statistic ( Kolmogorov-Smirnov Statistic) and p-

value for two datasets have been computed  The formulae for AIC and K-S Statistics are as follows:  

𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑘, and 𝐾 − 𝑆 = Sup
𝑥

|𝐹𝑛(𝑥) − 𝐹0(𝑥)|, where𝑘being the number of parameters 

involved in the respective distributions, 𝑛 is the sample size and 𝐹𝑛(𝑥)is the empirical distribution 

function. The best distribution corresponds to the lower values of−2 𝑙𝑛 𝐿, AIC and K-S statistic. 

Note that the estimates of parameters of the considered distributions are based on maximum 

likelihood estimates. The initial values of the parameters for ML estimates of PWSD have been 

selected as𝜃 = 1.5,𝛼 = 0.5 and𝛽 = 1.5, as the log-likelihood function is non-linear.  

The ML estimate of parameters of the considered distributions for dataset is given in table 4. The 

goodness of fit by K-S statistics for dataset with considered distributions are presented in tables 5. 

From the goodness of fit given in table 5, it is crystal clear that PWSD gives much closure fit to 

dataset relating to survival times of patients suffering from head and neck cancer and hence it can 

be considered as an important distribution for modeling data relating to survival times of patients 

suffering from head and neck cancer. The variance-covariance matrix of the parameters (𝜃, 𝛼, 𝛽) of 

PWSD for dataset is given in table 6. The survival plots for the dataset, fitted plot of cdf for given 

dataset, and the fitted plot of given dataset are presented in figures 4, 5 and 6 respectively.  

 

Table 4: Summary of the ML estimates of parameters for dataset 

Model                                    ML Estimates 

𝜃 �̂� �̂� 

PWSD 26.9742 50.3682 0.1325 

GLD 0.0047 0.0524 5.0750 

PSD 0.1539 ……… 0.5690 

WSD 0.0089 0.01637 ……. 

WLD 0.00531 0.21191 …… 

PLD 0.05301 0.68893 ……. 

GED 0.00482 1.09367 …… 

Gamma 0.00489 1.08501 …… 

Weibull 0.00710 0.92327 ……. 

Lindley 0.00892 ……. …….. 

Exponential 0.00447 …… ……. 
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Table 5: Summary of Goodness of fit by K-S Statistic for dataset 

Model −2 𝑙𝑛 𝐿 AIC K-S  p-value 

PWSD 555.41 561.41 0.104 0.572 

GLD 564.09 570.09 0.150 0.248 

PSD 559.45 563.45 0.135 0.512 

WSD 579.96 583.96 0.350 0.000 

WLD 565.91 569.91 0.161 0.181 

PLD 560.78 564.78 0.118 0.529 

GED 563.93 567.93 0.145 0.280 

Gamma 564.10 568.10 0.149 0.249 

Weibull 563.71 567.71 0.298 0.005 

Lindley 579.16 581.16 0.219 0.025 

Exponential 564.01 566.01 0.145 0.282 

 

Table 6: Variance-covariance matrix of the parameters 𝜃, 𝛼and 𝛽 of PWSD for dataset                                                                                                                

          �̂��̂��̂�                                                                        

�̂�
�̂�
�̂�

[
983.70956 1475.4914 −2.33334
1475.4914 2219.87726 −3.47289
−2.33334 −3.47289 0.005661

] 

 
Figure 4. Survival plots for the given dataset. 

 

 
 

Figure 5. Fitted plot of CDF on given dataset 
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Figure 6. Fitted plot of pdf of PWSD on dataset 

 

 

9. Concluding Remarks 
 

In this paper a three-parameter power weighted Sujatha distribution (PWSD) which includes 

weighted Sujatha distribution (WSD), power Sujatha distribution (PSD) and Sujatha distribution as 

particular cases, has been proposed.  Its statistical properties including behavior it density 

function, moments, hazard rate function, mean residual life function have been discussed. 

Estimation of parameters has been discussed using the method of maximum likelihood. A 

simulation study has been presented to know the performance of maximum likelihood estimates of 

parameters. Application of the proposed distribution have been explained with a real lifetime data 

which is related to patients suffering from head and neck cancer and its goodness of fit has been 

compared with other lifetime distributions. The proposed distribution shows better fit over the 

other one parameter, two-parameter and three-parameter distributions.  
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Abstract 

This article introduces a new four-parameter probability distribution called the q-Exponential-Weibull 

distribution based on the q-Exponential-G family of distribution. The proposed new distribution has to 

decrease and increase failure rates which are more common in reliability scenarios and can be used 

instead of Weibull and the exponential distribution. It also includes some sub-models like q-

Exponential-Exponential, q-Exponential-Rayleigh, Exponential-Weibull, Exponential-Exponential 

and Exponential-Rayleigh lifetime distributions.  Various Mathematical and statistical Properties are 

investigated, which include Limiting behavior, Moments and Moment Generating functions, Quantile 

function and Order Statistics. The Maximum Likelihood estimator is used for estimating the model 

parameters. This new distribution is compared with other lifetime distributions using different kinds 

of real-life failure time data. 

Keywords: q-Exponential-Weibull, Quantile, Reliability Measures, Maximum 

Likelihood Estimation, failure time data. 

1. Introduction

Lifetime distributions are very useful statistical tool for analyzing the various characteristics of 

lifetime data. The developments and applications of lifetime distribution are essential in numerous 

fields. Hence, the major aspects of generating new families of probability distributions are they offer 

greater flexibility and a better fit at the expense of one or more extra parameters. 

The non-extensive statistical mechanism plays a vital growth in the past few years. This new 

formulation is not based on the usual statistical mechanism, provided that will give a better 

description of the complex system developed by [26]. In the recent decade’s probability distribution, 

which emerge from the non-extensive statistical mechanism called q-type distribution attracted 

several statisticians to develop new distribution [11], [20] and [23]. Studying this type of distribution 

is quite interesting because of its complex system and power-law behavior. The application of this 

type of distribution has been found in many research areas like Physics, Biology, Mathematics, 

Chemistry, Economics, Medicine etc. 

  RT&A, No.3 (74)  
Volume 18, September 2023  

582



N. Sundaram, G. Jayakodi
A STUDY ON STATISTICAL PROPERTIES OF A NEW CLASS OF
Q-EXPONENTIAL-WEIBULL DISTRIBUTION
WITH APPLICATION TO REAL-LIFE FAILURE TIME DATA

The q-Exponential distribution emerged from maximizing the non-extensive statistical 

mechanism under appropriate constraints [26]. This theory is a generalization of the classical 

Boltzmann-Gibbs (BG) statistical mechanism. So, the q-Exponential distribution has found varieties 

of applications in the research field including in the field of complex systems. This article introduces 

a new four-parameter probability distribution called the q-Exponential Weibull distribution. 

The well-known q-distributions are q-Exponential distributions discussed by Malacarne et 

al. [15], q-Gamma distribution due to Duarte et al. [7], q-Weibull distribution due to Picoli et al. [21], 

q-Gaussian distribution due to Adrian et al. [1]. Picoli J.R. et al. [22] discussed q-distribution in

complex systems. Ana Claudia souza [3] studied the reliability data analysis of systems in the wear-

out phase using q-Exponential likelihood. Fode Zhang et al. [9] discovered the information geometry

on the curved q-Exponential family with application to survival analysis. Shalizi [25] express the

Maximum Likelihood Estimation for q-Exponential distribution. The geometry of q-exponential

distribution with dependent competing risk and accelerated life testing is given by Fode Zhang et

al. [10]. Keith Briggs [12] demonstrates the modelling train delay with the q-Exponential distribution.

The reliability of stress strength and its estimation of exponentiated q-Exponential distribution is

given by Mohammed et al [18]. Modelling censored survival data with q-Exponential distribution

discussed by Sundaram [19].

 In reliability and survival analysis most commonly, used distributions are Exponential and 

Weibull distributions [16], q-Exponential is an alternative one. The q-Exponential distribution is a 

higher version of an Exponential distribution. It has two parameters: 𝑞 and α, where 𝑞 is the shape 

parameter (entropy index/control parameter) and α is the scale parameter. As compared to the 

Exponential distribution that has just one parameter (α), the q-Exponential distribution has more 

flexibility regarding the decay of the pdf [3].  Indeed, the Exponential probability distribution is a 

special case of the q-Exponential when    𝑞 → 1. Another feature of this distribution is that it does 

not have the limitation of a constant hazard rate as the Exponential one, thus allowing the modelling 

of either system improvement (1 < 𝑞 < 2) or degradation (𝑞 < 1).  The pdf of q-Exponential distribution 

[26], is given by 

 𝑓q(x) = (2−𝑞) α [1− (1−𝑞) αx] 1/ (1-q)   for x, α > 0 ,q<2     (1) 

   This can also be rewritten as 

𝑓q(x) =(2-q) α eq (-αx) 

Where   eq(x) =  [1 + (1 − q) x]
1

1−𝑞

Which is the q-exponential if q ≠ 1. When q = 1, eq(x) is just exp(x). 

The cumulative distribution function (cdf) of the q-Exponential-generated family is given by. 

     F(x) = ∫ (2 − 𝑞)𝛼[1 − (1 − 𝑞)𝛼𝑥]
1

1−𝑞
𝐺(𝑥)/(1−𝐺(𝑥))

0
 (2) 

The simplified form of (2) is. 

      F(X) = 1 − [1 − (1 − q) α 
𝐺(𝑋)

1−𝐺(𝑋)
] 

2−𝑞

1−𝑞  x, α >0, q<2  (3) 

where 𝑞 is the shape parameter (entropy index) and α is the scale parameter. The corresponding 

probability density function is given by 

       f(x) = (2 − q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
 [1 − (1 − q) α 

𝐺(𝑋)

1−𝐺(𝑋)
]

1

1−𝑞  (4) 

where X>0, α >0, q<2. 
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The rest of the paper are as follows. In Section 2, The new class q-Exponential-Weibull 

distribution is introduced and presented its particular cases. The mathematical and statistical 

properties are discussed in section 3 and in section 4, the maximum likelihood estimation method 

and their asymptotic behaviors have been discussed. Simulation techniques has been explained in 

section 5. Real life failure time data has been applied and the results are presented in section 6. In 

section 7, we have discussed the conclusion of the new class of q-Exponential Weibull distribution. 

2. The q-Exponential-Weibull Distribution

The q-Exponential distribution combined with Weibull distribution gives the q-Exponential Weibull 

distribution. Here the q-exponential is the generator distribution, and the two-parameter Weibull 

distribution (Waloddi Weibull, 1951) is a parent distribution whose pdf and cdf are given by 

g (x, λ, γ) = λγxγ-1𝑒−𝜆𝑥𝛾
 x,𝛾, 𝜆 >0  (5) 

G (x, λ, γ) = 1 - 𝑒−𝜆𝑥𝛾
(6) 

using (6) in (3), we get the new cdf of q-Exponential-Weibull distribution. The simplified form of q-

Exponential-Weibull distribution is 

F (x, Ω) = 1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞  (7) 

where Ω = {q, α, λ, γ}be the set of parameters, here q and γ are the shape parameters and α, λ are the 

scale parameters. The equation (7) is called the cdf of q-Exponential-Weibull distribution. 

Substituting (5) and (6) in (4), we get the new pdf. The new pdf is, 

f (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1[1 −  (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
1

1−𝑞       (8) 

Rewriting the above equation (8), we get 

f (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1 eq [- α (𝑒𝜆𝑥𝛾

 – 1)]  (9) 

The equation (8) and (9) are called the pdf of q-Exponential-Weibull distribution (q-EW). The 

particular case of our new q-Exponential-Weibull distribution is presented in Table 1. 

Table 1: The particular case of q-Exponential-Weibull distribution 

Model 𝑞 𝛼 𝜆 𝛾 Cdf References 

q-Exponential-Exponential 𝑞 𝛼 𝜆 1 1- [1− (1−𝑞) α (𝑒𝜆𝑥– 1)] ^
2−𝑞

1−𝑞
New 

q- Exponential-Rayleigh 𝑞 𝛼 𝜆

2
2 

1- [1− (1−𝑞) α (𝑒
𝜆𝑥2

2 – 1)] ^ 
2−𝑞

1−𝑞

New 

Exponential – Weibull 1 𝛼 𝜆 𝛾 
1-𝑒−𝛼(𝑒𝜆𝑥𝛾

−1) New 

Exponential – Exponential 1 𝛼 𝜆 1 
1-𝑒−𝛼(𝑒𝜆𝑥−1)

Elgarhy et al. 

(2017) 

Exponential- Rayleigh 1 𝛼 𝜆

2
2 

1-𝑒−𝛼(𝑒
𝜆
2𝑥2

−1)

Kawsar Fatima 

and, S.P Ahmad 

(2017) 

  RT&A, No.3 (74)  
Volume 18, September 2023  

584



N. Sundaram, G. Jayakodi
A STUDY ON STATISTICAL PROPERTIES OF A NEW CLASS OF
Q-EXPONENTIAL-WEIBULL DISTRIBUTION
WITH APPLICATION TO REAL-LIFE FAILURE TIME DATA 

2.1 Reliability Measures: Survival function: (survivor function) 

The survivor function for the new distribution S(x) is defined to be the probability that the survival 

time is greater than or equal to t, and it is given by 

S(x) = 𝑃 (𝑋 ≥ 𝑡) = 1- F(x) 

S (x, Ω) =[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞  (10) 

2.2 Hazard function: 

The hazard function is used to express the risk or hazard of an event such as death occurring at some 

time t, and it is given by 

h (x) = 
𝑓(𝑥)

𝑠(𝑥)

Substituting (8) and (10) we get the hazard function of q-Exponential-Weibull distribution. which 

is defined below.  

h (x, Ω) = (2−𝑞) αλγ 𝑒𝜆𝑥𝛾
xγ-1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
−(1+𝑞)

(1−𝑞)  (11) 

2.3 Reverse hazard rate function 

The reverse hazard function of q-Exponential-Weibull distribution is defined by  

r (x) = 
𝑓(𝑥)

𝐹(𝑥)

r (x, Ω) = 
(2−q) αλγ 𝑒𝜆𝑥𝛾

𝑥𝛾−1[1− (1−q) α (𝑒𝜆𝑥𝛾
– 1)] 

1
1−𝑞

1−[1− (1−q) α (𝑒𝜆𝑥𝛾
 – 1)] 

2−𝑞
1−𝑞

 (12) 

2.4 Cumulative hazard function 

 Cumulative hazard function is presented below, 

H (x, Ω) = -log (1-F(x)) 

H (x, Ω) = -ln (s (x, Ω)) = -ln [[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)] 

2−𝑞

1−𝑞  ]                                           (13)

The above equation is known as cumulative hazard function of q-Exponential-Weibull distribution. 

2.5 Graphical Study of q-Exponential Weibull distribution under various functions: 

In this section, we studied the structure of the cdf, pdf, S(x) and h(x) of q-Exponential-Weibull 

distribution using different values of the parameters. The illustrative figures are presented below. 
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Figure 2.a cumulative density plot demonstrates the validity of the distribution as a 

probability distribution. The probability density function graphs (2.b1,2. b2 and 2.b3) shows that it 

is skewed and more adaptable for various parameter values. The graph of the hazard function (2.d) 

demonstrates that it can take on various shapes, including constant, increasing, and decreasing. As 

a result, fitting data sets of different forms may be done and which was quite well using the q-

Exponential Weibull distribution. 

Figure 2.a: The graph of the cdf of the q-EW distribution 

with different values of the parameter 

Figure 2.b1: Graph of the pdf of the q-EW distribution 

when all the parameters are changed 

Figure 2.b2:The graph of  the pdf of the q-EW 

distribution when changing first shape parameter (q) 

values and other parameters are fixed 

Figure 2.b3: The graph of the  pdf the of q-EW 

distribution when changing second shape parameter 

(𝛾)values and other parameters are fixed 

Figure 2.c: The graph of the survival function 

of the q-EW distribution with different 

parameter values 

Figure 2.d: The graph of the Hazard rate of the   q-EW 

distribution for with different parameter values 
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3.Properties

In this section we study some mathematical and statistical properties of q-Exponential-Weibull 

distribution. 

3.1 Mixture Representation: 

Several properties of the new distribution can be derived using the concept of exponentiated 

distribution. The mixture representation of q-exponential-Weibull distribution is derived in the 

following sections. 

Using the generalized binomial theorem, where β>0 is real non integer and |z|<1, 

(1 − 𝑧)𝛽−1 = ∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(𝑧)𝑘 

f(x) =(2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
[1 − (1 − q) α 

𝐺(𝑋)

1−𝐺(𝑋)
]

2−𝑞

1−𝑞
−1

since β = 
2−𝑞

1−𝑞

 = (2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
∑ (−1)𝑘∞

𝑘=0 (𝛽−1
𝑘

)(1-q) k αk [
𝐺(𝑋)

1−𝐺(𝑋)
]

𝑘

      = (2-q) α 
𝑔(𝑥)

[1−𝐺(𝑥)]^2
∑ (−1)𝑘∞

𝑘=0 (𝛽−1
𝑘

)(1-q) k αk 
[𝐺(𝑥)]𝑘

[1−𝐺(𝑥)]𝑘

  =∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q)  

𝑔(𝑥)  [𝐺(𝑥)]𝑘

[1−𝐺(𝑥)]𝑘+2

Generalized binomial theorem 

[1 − 𝐺(𝑥)]−(𝑘+2) = ∑
ᴦ(k+j+2)

𝑗! ᴦ(𝑘+2)

∞
𝑗=0  [𝐺(𝑥)]𝑗 

     = ∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q) ∑

ᴦ(k+j+2)

𝑗! ᴦ(𝑘+2)

∞
𝑗=0 g(x) [𝐺(𝑥)]𝑘+𝑗+1−1 

=∑ (−1)𝑘∞
𝑘=0 (𝛽−1

𝑘
)(1-q) k αk+1 (2-q) ∑

ᴦ(k+j+2)

𝑗!(𝑘+𝑗+1) ᴦ(𝑘+2)

∞
𝑗=0  (k+j+1) g(x) [𝐺(𝑥)]𝑘+𝑗+1−1 

    f (x, Ω) =  ∑ 𝑊𝑗,𝑘
∞
𝑗,𝑘=0 h(k+j+1) (x, Ω)    (14) 

where  𝑊𝑗,𝑘=  (−1)𝑘  (𝛽−1
𝑘

)(1-q) k αk+1 (2-q)
ᴦ(k+j+2)

𝑗!(𝑘+𝑗+1) ᴦ(𝑘+2)

ha (x, Ω) = a g (x, Ω) [ G (x, Ω)] a-1 

The q-Exponential Weibull density can be expressed as an infinite linear combination of 

exponentiated – G density function.  

Then, [𝐹(𝑥)]𝑅  = [1 − [1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)] 

2−𝑞

1−𝑞 ]𝑅 

Using the generalized binomial theorem, where β>0 is real non integer and |z|<1, 

(1 − 𝑧)𝛽−1 = ∑ (−1)𝑙∞
𝑙=0 (𝛽−1

𝑙
)(𝑧)𝑙 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙∞
𝑙=0 (𝑅

𝑙
) [1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)]
(2−𝑞)𝑙

(1−𝑞)
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Which can also be written as, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚=0 (𝑅

𝑙
)( 𝜗

𝑚
)(1-q) m αm (𝑒𝜆𝑥𝛾

 –  1)𝑚    where 𝜗 =  
(2−𝑞)𝑙

(1−𝑞)

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)   [

1−𝑒−𝜆𝑥𝛾

1−(1−𝑒−𝜆𝑥𝛾
)
]

𝑚

Using Generalized binomial theorem, the above equation can be written as, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚∞
𝑙,𝑚,𝑛=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)[1 − 𝑒−𝜆𝑥𝛾

]
𝑚+𝑛

Simply further we get, 

[𝐹(𝑥)]𝑅    =   ∑ (−1)𝑙+𝑚+𝑟∞
𝑙,𝑚,𝑛,𝑟=0 (1-q) m αm (𝑅

𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)(𝑚+𝑛

𝑟
) (𝑒−𝜆𝑥𝛾

)𝑟

     [𝐹(𝑥)]𝑅    =    ∑ 𝑊𝑙,𝑚,𝑛,𝑟(𝑒−𝜆𝑥𝛾
)𝑟∞

𝑙,𝑚,𝑛,𝑟=0  (15) 

Where 𝑊𝑙,𝑚,𝑛,𝑟 = (−1)𝑙+𝑚+𝑟  (1-q) m αm (𝑅
𝑙
)( 𝜗

𝑚
)(𝑚+𝑛−1

𝑛
)(𝑚+𝑛

𝑟
) 

3.2 Limiting Behavior: 

  Lemma 1:  The limit of the cdf of the q-Exponential-Weibull, F(x) as X approaches infinity, x→ is 

equal to one and limit of the cdf of the q-Exponential-Weibull, F(x) as X tends to zero, x → 0 is 

equal to zero. 

lim
𝑥→∞

𝐹(𝑥)  = 1 

Proof: The cdf of the q-Exponential Weibull F(x) as X approaches infinity (x → ), from 7 we get 

Using equation (9) 

lim
𝑥→∞

  F (x, Ω) =  lim
𝑥→∞

1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞

=    1-[1 − (1 − q) α (𝑒𝜆(∞)𝛾
 –  1)]

2−𝑞

1−𝑞

   =    [1 – 0 ]   = 1 

Hence, the lemma is proved under limiting property. 

lim
𝑥→0

𝐹(𝑥)  = 0 

lim
𝑥→0

  F (x, Ω)     =  lim
𝑥→0

1-[1 −  (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

2−𝑞

1−𝑞

= 1- [1− (1−𝑞) α (𝑒𝜆(0)𝛾
 – 1)] ^2-q/ (1-q) 

   = 1- [ 1- 0] = 0 

  Lemma 2: In probability theory, of a continuous random variable has the following property 

(i) f(x) ≥ 0; where -∞<x<∞

(ii) ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
   = 1

Using above definition, the validity of the model f(x) is checked. In our survival model the range of 

x is 0<x<∞.  

∫ 𝑓(𝑥)𝑑𝑥
∞

0
   = 1 
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=  ∫ (2 − q) αλγ 𝑒𝜆𝑥𝛾
𝑥𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)] 
1

1−𝑞𝑑𝑥
∞

0
 

= (2 − q) αλγ ∫  𝑒𝜆𝑥𝛾
𝑥𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝛾

 –  1)] 
1

1−𝑞𝑑𝑥
∞

0
 

Now y = [1 − (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

  𝑑𝑦

𝑑𝑥
= 0 – (1-q)αλγ𝑒𝜆𝑥𝛾

𝑥𝛾−1

𝑑𝑦

(1−q)αλγ𝑒𝜆𝑥𝛾
𝑥𝛾−1

   =    dx 

=  (2 − q) αλγ ∫
𝑒𝜆𝑥𝛾

𝑥𝛾−1

[1 − (1 − q) α (𝑒𝜆𝑥𝛾
 –  1)]

1

1−𝑞

∞

0
 ∗

𝑑𝑦

(1−q)αλγ𝑒𝜆𝑥𝛾
𝑥𝛾−1

 

=    - 
2−𝑞

1−𝑞
 ∫ 𝑦1/(1−𝑞)   dy

∞

0
 

∫ 𝑓(𝑥)𝑑𝑥
∞

0
      =   -[𝑦(2−𝑞)/(1−𝑞)]0

∞

= -{  [[1 − (1 − q)α (𝑒𝜆𝑥𝛾
 –  1)](2−𝑞)/(1−𝑞)]𝑥=∞  - [[1 −  (1 − q)α (𝑒𝜆𝑥𝛾

 –  1)](2−𝑞)/(1−𝑞)]𝑥=0 }

∫ 𝑓(𝑥)𝑑𝑥
∞

0
       = - [ 0 – 1] = 1 

 Hence q-Exponential-Weibull distribution is a valid pdf. 

3.3 Quantile Function: 

The quantile function of X= Q(u) = 𝐹−1(𝑢) can be obtained by inverting equation (7) as follows, 

Q(u) = [ 
1

𝜆
ln [1 +

1

(1−𝑞)𝛼
[1 − (1 − 𝑢)

1−𝑞

2−𝑞]]]
1

𝛾  (16) 

    Simulation of q-Exponential-Weibull random variable is straightforward. Let u be the 

uniform variable on the interval [0,1], then the random variable X = 𝐹−1(𝑢) follows q-Exponential-

Weibull distribution given in equation (8) with the parameters (q, α, λ, γ). By using equation (20), 

we can obtain the first, second and third quantiles by replacing u as 0.25, 0.5 and 0.75, respectively. 

3.4 Moments: 

This section provides the moment and moment generating function of q-Exponential-Weibull 

distribution.  The moments of the functions are quantitative measures related to the shape of the 

function. The first four moments, skewness and kurtosis of q-Exponential-Weibull distribution can 

be obtained as 
𝜇𝑟

′  = E [ xr]    =    ∫ 𝑥𝑟𝑓(𝑥, Ω)𝑑𝑥
∞

−∞
 

Using equation (13) we have, 

      𝜇𝑟
′   =  ∫ 𝑥𝑟 ∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1) (x, Ω)  𝑑𝑥

∞

−∞
 

  = ∑ 𝑊𝑗,𝑘
∞
𝑗,𝑘=0 ∫ 𝑥𝑟ℎ(𝑘+𝑗+1)(𝑥, Ω)𝑑𝑥

∞

−∞

Where 𝐼𝑗,𝑘( x,Ω) = ∫ 𝑥𝑟ℎ(𝑘+𝑗+1)(𝑥, Ω)𝑑𝑥
∞

−∞
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  𝜇𝑟
′  = E(xr) =  ∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (17) 

The mean, variance, skewness and kurtosis can be obtained from equation (14). 

when r =1 gives mean = E(x) 

variance = E(x2) – [E(x)]2 

skewness =  
𝜇3(𝜃)– 3 𝜇3(𝜃)𝜇2(𝜃)+2 𝜇1

3(𝜃)

[𝜇2(𝜃)− 𝜇1
2(𝜃)]3/2

kurtosis   = 
𝜇4(𝜃)– 4 𝜇1(𝜃)𝜇3(𝜃)+6𝜇1

2(𝜃)𝜇2(𝜃)− 3𝜇1
4(𝜃)

[𝜇2(𝜃)− 𝜇1
2(𝜃)]2

Generally, the moment generating function of q-Exponential-Weibull distribution is obtained 

through the following relation 

 𝑀𝑥(t, Ω) =∑
𝑡𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥

∞

0
 =  ∑

𝑡𝑟

𝑟!

∞
𝑟=0  E(xr) = ∑

𝑡𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (18) 

The Characteristic function of q-Exponential-Weibull distribution is obtained through the 

following relation 

  𝜙𝑥(t, Ω) =∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥

∞

0
 =  ∑

(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0  E(xr) = ∑

(𝑖𝑡)𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0   𝐼𝑗,𝑘( x, Ω)  (19) 

The cumulant generating function of q-Exponential-Weibull distribution is given by 

𝑘𝑥(t, Ω) = 𝑙𝑜𝑔[[∑
(𝑡)𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥]

∞

0
 = log [ ∑

(𝑡)𝑟

𝑟!

∞
𝑟=0  E(xr)] 

 = 𝑙𝑜𝑔[∑
(𝑡)𝑟

𝑟!
 𝑊𝑗,𝑘

∞
𝑟,𝑗,𝑘=0 𝐼𝑗,𝑘( x, Ω)]  (20) 

3.5 Order Statistics: 

Let 𝑋1:𝑛< 𝑋2:𝑛<𝑋3:𝑛<…<𝑋𝑛:𝑛 be the order statistics of a random sample of size n following 

q-Exponential-Weibull distribution with the parameter α, q, λ, γ then the probability density

function of 𝑝𝑡ℎ order statistic can be written as,

     𝑓(𝑥𝑝)[𝑥(𝑝)] = 
𝑓(𝑥𝑝)

𝐵(𝑝,𝑛−𝑝+1)
 ∑ (−1)𝑣 (

𝑛 − 𝑝
𝑣

)
𝑛−𝑝
𝑣=0 [𝐹(𝑥𝑝)]𝑣+𝑝−1  (21) 

Substituting (13) and (14) in (18) and replacing R= (𝑣 + 𝑝 − 1) we get 

𝑓(𝑥𝑝)[𝑥(𝑝)] = 
∑ 𝑊𝑗,𝑘

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1)(X,Ω)  

𝐵(𝑝,𝑛−𝑝+1)
 ∑ (−1)𝑣 (

𝑛 − 𝑝
𝑣

)
𝑛−𝑝
𝑣=0 ∑ 𝑊𝑙,𝑚,𝑛,𝑟(𝑒−𝜆𝑥𝛾

)𝑟∞
𝑙,𝑚,𝑛,𝑟=0

  𝑓(𝑥𝑝)[𝑥(𝑝)]  = 
1  

𝐵(𝑝,𝑛−𝑝+1)
  ∑ ∑ ∑ 𝜔∗∞

𝑙,𝑚,𝑛,𝑟=0
𝑛−𝑝
𝑣=0

∞
𝑗,𝑘=0 ℎ(𝑘+𝑗+1)(X, Ω)(𝑒−𝜆𝑥𝛾

)𝑟   (22) 

      Where  𝜔∗ = (−1)𝑣 (
𝑛 − 𝑝

𝑣
) 𝑊𝑗,𝑘𝑊𝑙,𝑚,𝑛,𝑟 

4. Method of Estimation

In this section, the maximum likelihood estimates (MLE) of the unknown parameters for the 

q-Exponential-Weibull distribution are determined based on complete samples. Let x1, x2…xn be a

random sample from q-Exponential-Weibull distribution with unknown parameter vector Ω = {q, α,

λ, γ}. The likelihood function for the proposed distribution ℒ is given by
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ℒ(x, Ω) = (2 − 𝑞)𝑛𝛼𝑛𝜆𝑛𝛾𝑛 ∏ 𝑒𝜆𝑥𝑖
𝛾

𝑥𝑖
𝛾−1[1 − (1 − q) α (𝑒𝜆𝑥𝑖

𝛾
 –  1)]

1

1−𝑞𝑛
𝑖=1

Then the log likelihood of the equation is 

ℓ (Ω) = log ℒ(t, Ω) = n log (2-q) + n log α + n log λ + n log γ + λ ∑ 𝑥𝑖
𝛾𝑛

𝑖=1 + (γ -1)

∑  log 𝑥𝑖
𝑛
𝑖=1 +(

1

1−𝑞
)  ∑  log [1 − (1 − q) α (𝑒𝜆𝑥𝑖

𝛾
 –  1)]𝑛 

𝑖=1
  (23) 

The maximum likelihood estimates of the parameters (q, α, λ, γ) are found by taking a partial 

derivative of ℓ (Ω)  with respect to q, α, λ, γ, equating the derivatives to zero, and evaluating them 

at �̂�, �̂�, �̂�, 𝛾. 

𝜕ℓ (Ω)

𝜕𝑞
 = 

𝑛

2−𝑞
+ ∑

1

1−𝑞
[

𝛼(𝑒𝜆𝑥𝑖
𝛾

−1)

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1   - ∑ log [1 −  (1 − q)α (𝑒𝜆𝑥𝑖
𝛾

 –  1)𝑛
𝑖=1  (24) 

𝜕ℓ (Ω)

𝜕𝛼
= 

𝑛

𝛼
- ∑

1

1−𝑞
[

(1−𝑞)(𝑒𝜆𝑥𝑖
𝛾

−1)

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1             (25) 

𝜕ℓ (Ω)

𝜕𝜆
= 

𝑛

𝜆
+ ∑ 𝑥𝑖

𝛾𝑛
𝑖=1 -∑

1

1−𝑞
[

𝛼(1−q) 𝑥𝑖
𝛾𝑒𝜆𝑥𝑖

𝛾

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
]𝑛

𝑖=1          (26) 

𝜕ℓ (Ω)

𝜕𝛾
= 

𝑛

𝛾
+ ∑  log 𝑥𝑖  

𝑛
𝑖=1 + ∑ 𝜆 𝑥𝛾 log 𝑥𝑖

𝑛
𝑖=1 - ∑

1

1−𝑞
[

𝛼𝜆(1−q) 𝑥𝑖
𝛾𝑒𝜆𝑥𝑖

𝛾
∗log 𝑥𝑖

1− (1−q) α (𝑒𝜆𝑥𝑖
𝛾

– 1)
] 𝑛

𝑖=1  (27) 

For solving these non-linear equation’s, we can use any iteration method such as Newton-Raphson 

technique. 

5. Generating random samples from q-Exponential Weibull distribution

The Inverse CDF method is used for generating random numbers from a particular distribution. In 

this method, random numbers from a particular distribution are generated by solving the equation 

obtained on equating CDF of a distribution to a number u. The number u is itself being generated 

from u~𝑈(0,1). In this section we made an attempt to q-Exponential-Weibull distribution to generate 

the random number using equation 16 at a fixed values of parameters (𝑞, 𝛼, 𝜆, 𝛾). 

X   =    𝐹−1(𝑢) 

X = [
1

𝜆
ln [1 +

1

(1−𝑞)𝛼
[1 − (1 − 𝑢)

1−𝑞

2−𝑞]]]

1

𝛾

 (28) 

 For uniform over (0,1) then x~𝑞 − 𝐸𝑊(1.2,2,1.1,1.7) can be generated random sample of size 50 are 

presented below. 

   0.2471, 0.8991, 0.9387, 1.5307, 0.6133, 0.8110, 0.8077, 0.7611, 0.8320, 1.5590,  

   1.0539, 1.7640, 1.4155, 0.8662, 1.2408, 1.9081, 1.0625, 0.6137, 0.5943, 0.7125, 

   0.9593, 0.3809, 0.1623, 0.2987, 0.9664, 1.31036, 0.6269, 1.3524, 0.6302, 1.0810, 

   2.1260, 1.4057, 1.1020, 0.6074, 1.7022, 1.1539, 1.1613, 0.5775, 0.1133, 0.9533, 

   1.1283, 1.2516, 1.6930, 0.9185, 1.3880, 0.8035, 0.9471, 0.1955, 2.4077, 0.7141 

Here we have used one of the goodness of fit tests “Kolmogorov-Smirnov (KS)” test for the 

above-generated data for testing the q-Exponential-Weibull distribution. The null hypothesis is that 
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the samples are drawn from the q-Exponential-Weibull distribution against the alternative 

hypothesis is that the samples are not drawn from the q-Exponential-Weibull distribution. The test 

statistic value of the KS test for the generated samples is (D value) 0.097 at 5% level of significance 

with the p-value of 0.76. Since the p-value is greater than 0.05, the null hypothesis is accepted. Hence, 

the samples are drawn from the proposed distribution. Therefore, the q-Exponential-Weibull 

distribution has satisfied the goodness of fit test. 

6. Application to real life data

In this section, we have used different kinds of real-life failure time data to show the suitability of 

the q-Exponential Weibull distribution, also we have compared to some other related distributions 

namely Exponentiated Weibull-Exponential (EWE) and Generalized Exponential-Weibull (GEW) 

distributions. The pdf of the respective distributions is represented below: 

• The Exponentiated Weibull-Exponential (EWE) distribution introduced by Elgarhy et.al [8],

with pdf

𝑓(𝑥) = 𝑞𝛼𝛾𝜆[𝑒𝜆𝑥 − 1]𝛾−1 exp[−{𝛼[𝑒𝜆𝑥 − 1]
𝛾

− 𝜆𝑥}] [ 1 − 𝑒𝑥 𝑝(−𝛼[𝑒𝜆𝑥 − 1]
𝛾

)]
𝑞−1

 x,𝑞, 𝛼, 𝜆, 𝛾 >0           (29) 

• The Generalized Exponential-Weibull (GEW) distribution introduced by Dikko and Faisal

[6], with the pdf

𝑓(𝑥) =  𝑞(𝛼 + 𝛾𝜆𝑥𝜆−1)𝑒−(𝛼𝑥+𝛾𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛾𝑥𝜆)]𝑞−1  x,𝛼, 𝛾, 𝜆, 𝑞 >0   (30) 

In order to assess the flexibility of the proposed distribution, we have considered some model 

selection criteria like, -2loglikelihood and AIC (Akaike Information Criterion) are used and analyses 

performed with the aid of R software. 

Dataset1:  The first data set is the failure times of 84 aircraft windshields. This failure time data set 

is available in Murthy et al’s book “Weibull Models” (2004, page 297). A large aircraft’s windscreen 

is a sophisticated piece of equipment made up of multiple layers of material, including a very touchy 

outer skin with a heated layer just behind it, all laminated under high temperature and pressure. 

These failures do not cause aircraft damage, but they do require the repair of the windscreen. The 

failure times of 84 aircraft windshields are given below: 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 

1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 

1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 

1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376, 4.663 

Table 2: Estimates of fitted distribution for aircraft windshield failure data 

Model 
    Estimated Parameters Model Selection 

�̂� �̂� �̂� 𝛾 -2LL AIC 

q-EW 1.729287 4.629657 0.006168 1.539852 251 259 

EWE 15.46262 1.38606 4.08592 0.07846 253 261 

GEW 0.04796 0.31873 0.43050 0.68102 419 427 
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Dataset 2:  The second data set represents the survival times (in days) of 72 guinea pigs infected with 

virulent tubercle bacilli, observed and reported by Bjerkedal. The data is presented below: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 

1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 

1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 

2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55. 

Table 3: Estimates of fitted distribution for guinea pig failure data 

Model 
    Estimated Parameters Model Selection 

       �̂� �̂� �̂� 𝛾 -2LL AIC 

q-EW 1.54493 33.49094 0.01988 2.98777 184 192 

EWE 1.08287 83.46078 0.01628 2.99604 187 195 

GEW 0.66675 0.07983 0.27917 0.45848 242 250 

We observed from the above tables 2 and 3, the -2LL and AIC values of the q-Exponential-

Weibull distribution have the smallest among the other distributions. Therefore, the q-Exponential-

Weibull distribution has performed well than the other distributions. So, we conclude from this 

section, the q-Exponential-Weibull distribution has achieved the goal of the suitability of the 

different kinds of real-life failure time data. 

8. Conclusion

In this research article, we have introduced a new class of four-parameter distribution referred to as 

“q-Exponential-Weibull distribution” by taking the Weibull distribution as the base distribution and 

the q-Exponential distribution as the generator distribution by using the generator technique. The 

q-Exponential-Weibull density can be expressed as a linear combination of exponentiated - G

densities. For checking the model properties, we have derived survival, hazard, cumulative hazard

and reverse hazard functions from q-Exponential-Weibull distribution, and also studied graphically.

In the graphical study of the q-Exponential-Weibull distribution under various functions with

different parameter values, the proposed distribution has achieved the properties of the density

function. The mathematical and statistical properties are applied to q-Exponential-Weibull

distribution. The q-Exponential-Weibull distribution has satisfied the above said properties. The

parameters of the q-Exponential-Weibull distributions are estimated using the maximum likelihood

estimation method. The random samples have been generated from the q-Exponential-Weibull

distribution and the goodness of fit test has been verified using Kolmogorov-Smirnov (KS) test, also

we have studied the application of real-time failure time data to q-Exponential-Weibull distribution.

The proposed distribution performed well than the other distribution based on the model selection

criteria. Based on the above-said results, the q-Exponential-Weibull distribution is more adaptable

and more flexible to fit the real-life failure time data. We hope that the proposed distribution would

draw more widespread applications in different areas of research such as reliability analysis,

medicine engineering and economics etc.
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Abstract

In this study, we construct a reliability acceptance sampling inspection plan to decide whether to accept or
reject a lot of products where the One Parameter Polynomial Exponential (OPPE) family of distributions
governs the lifetimes. The OPPE distribution has infinite support. To utilise finite support, it has
transformed into its unit form, i.e. having the support (0, 1). The design of the plan, Operating
characteristic curve, and Sampling procedure are discussed. Determination of the plan parameters using
an algorithm is stated. The optimal sample size is determined to protect the consumer’s confidence level.
Two simplest particular choices of the OPPE family - the exponential and the Lindley are chosen as
examples, and optimal plan parameters are tabulated and compared. The plan is executed with three
real-life data sets.

Keywords: Consumer’s risk, Operating characteristic function, Scale-invariant family of distribu-
tions, Truncated life test, unit-Lindley distribution.

1. Introduction

Quality control takes centre stage if one wants multiple copies of a product. The first question
that arises throughout the repetitive process is what should the quality features of the product be
for it to be satisfactory? The same prototype of products can be seen with the naked eye in the
early days. As a result, making items identical is one of the most crucial aspects. Variation in the
products is inevitable. In 1924, Walter A. Shewhart introduced many statistical approaches to
assess product quality variation.

The sampling inspection plan aims to sentence a lot of products and make decisions to reject
or accept that lot. In practice, two types of sampling plans are attribute sampling and variable
sampling. In attribute sampling, products of a lot are judged as defective or non-defective,
whereas the variable sampling plan measures the product’s actual quantitative information. The
main advantage of a variable sampling plan is that it requires fewer samples than an attribute
plan with the same protection.

Acceptance sampling is traditionally used to decide on acceptance or rejection of the lot, not to
determine the quality of the product by using estimation methods. As a result, most acceptance
sampling plans are not adequately designed and worrying truth because buying a lot without
knowing its quality seems risky. Therefore, to make an appropriate decision, it is better to develop
a procedure for evaluating the value of the fraction defective of the lot.

In a sampling inspection plan, if sample observations represent the lifetime of products in the
test, one may be interested in the hypothesis that the population average surpasses a specified
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average. Suppose the population average represents the average lifetime, defined as µ. If µ0 is
the specified minimum value, then one would like to test the hypothesis µ≥µ0, which means the
population average surpasses the specified average. In the test, n samples are placed for testing
over a period of time t. The lot cannot be accepted if the observed failures exceed acceptance
number (c). This sampling inspection plan is called Reliability Acceptance Sampling Plan (RASP)
and it is characterised by the triplet (n, c, t).

Many authors chalked out the RASP for quality characteristics following different parametric
distributions, like exponential [22] , Weibull [9] , Gamma [11], Normal and Log-Normal [10],
half Logistics [12], Log-Logistic [17], Birnbaum-Saunders [14] , exponential Frechet [1], three-
parameter kappa [2] , generalised inverse exponential [21], generalised Weibull[8], Ishita [3] ,
transmuted generalised inverse Weibull [4] , generalised Pareto [20] , Quasi Shanker [5], etc.

The popularity of exponential distribution is well known in the context of life testing because
of its simplicity in analysis. The constancy properties of failure rate and residual mean life limit
the distribution in the present industrial scenario. The Lindley distribution is an excellent alterna-
tive to an exponential distribution, but it is overlooked for life-testing purposes. It is a mixture of
two parametric distributions, exponential and gamma. The Lindley distribution is more flexible
than the exponential distribution because of its increasing, decreasing and upside-down bathtub
failure rate for the parameter at different values. [7] has proposed a new and unified approach
in generalizing the Lindley’s distribution. They investigated some structural properties like
moments, skewness, kurtosis, median, mean deviations, Lorenz curve, entropies and limiting
distribution of extreme order statistics; reliability properties like reliability function, hazard rate,
stress-strength reliability, stochastic ordering; and estimation methods like the method of moment
and maximum likelihood. We call the distribution as the one-parameter polynomial exponential
(OPPE) family of distributions. The proposed RASP will be constructed assuming only OPPE
distribution considering the rejectable quality level. The RASP for the Lindley distribution will be
discussed in detail as particular example and compare it with that of the exponential distribution.

Few works have been done on acceptance sampling inspection plans assuming the Lindley
distribution (see [15]; [?] ); [6] and [23] worked on an acceptance sampling plan under a truncated
life test assuming two-parameter Lindley distribution. Plan parameters are estimated based on
two-point approaches on Operating characteristic (OC) curve-acceptable and rejectable quality
levels.

Almost all works on RASP are done for scale-invariant distributions. Minimum sample size
n and acceptance number (c) are determined for different times per mean ( t

µ0
). However, the

OPPE distribution does not belong to a scale-invariant family of distributions. Therefore, the
utilisation of time per mean is beyond our scope. We may directly chalk the plan with plan
parameters (n, c, t). Since the OPPE distribution has support (0,∞), we may utilise it with
the finite support by transforming into its unit form, i.e. having the support (0,1) with the
transformation V = e−T . We make tables using the unit-Lindley form by choosing V and the
mean µv in the interval (0,1). Utilising this benefit, we choose optimal (n, c) and then revert to
plan parameter t from the relation of the transformation. So, in a nutshell, our objective is to
develop a RASP for the OPPE distributed quality characteristic. Based on the time-truncated
life test, the plan has the advantage of saving the organisation’s time and cost while also being
very helpful in determining whether to accept or reject a lot. The OC is derived for choosing
the optimal plan based on the consumer’s confidence level. Tables of minimum sample sizes
are examples for easy understanding and execution of the proposed plan. It is put into practice
for real-life experimental data, and the OC surface is depicted to provide a clear picture of the plan.

The following is the arrangement of the rest of the paper. The OPPE and unit-OPPE dis-
tributions are described in section 2. In section 3, we describe the sampling design, operating
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characteristics function, and operating procedure. In section 4, an algorithm for calculating the
minimal sample size of the proposed RASP is stated for the OPPE distribution, and examples for
the Lindley and exponential distributions, in particular, are presented in tabular form. In section
5, we use the said sampling plan to work on real-world data. Section 6 concludes.

2. The One Parameter Polynomial Exponential Distribution and its unit

version

The probability density function (PDF) of a random variable T of the OPPE distribution can be
written as

fT(t, θ) = h(θ)p(t)e−θt, t, θ > 0, (1)

where, h(θ) = 1
∑r

k=0 ak
Γ(k+1)
θk+1

, p(t) = ∑r
k=0 aktk, ak’s are known non-negative constants and r is

known non-negative integer.
The distribution can also be written as

fT(t, θ) = h(θ)
r

∑
k=0

aktke−θt

=
∑r

k=0 ak
Γ(k+1)

θk+1 fGA(t; k + 1, θ)

∑r
k=0 ak

Γ(k+1)
θk+1

, (2)

where fGA(t; k + 1, θ) is the PDF of a gamma distribution with shape parameter (k + 1) and scale
parameter θ. The distribution is a finite mixture of (r + 1) gamma distributions.

The cumulative density function (CDF) is given by

FT(t, θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,θt)
θk+1

∑r
k=0 ak

k!
θk+1

 , t, θ > 0, (3)

where Γ(m, t) = 1
Γ(m)

∫ ∞
t e−uum−1du.

The s-th order raw moment of OPPE is given by

µ′
s = E(Ts)

=
∑r

k=0 ak
Γ(k+s+1)

θk+s+1

∑r
k=0 ak

Γ(k+1)
θk+1

. (4)

Now, if we take a transformation V = e−T , then the OPPE turns into unit-OPPE in range of (0,1).
The PDF and CDF of unit-OPPE is given by ,

fV(v, θ) = h(θ)
r

∑
k=0

ak(− ln v)kvθ−1

=
∑r

k=0 ak
Γ(k+1)

θk+1 fUGA(v; k + 1, θ)

∑r
k=0 ak

Γ(k+1)
θk+1

, 0 < v < 1, (5)

where fUGA(v; k + 1, θ) = θk+1

Γ(k+1) (− ln v)k+1vθ−1 is the PDF of a unit-gamma distribution with
shape parameter (k + 1) and scale parameter θ, and

FV(v, θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,−θ ln v)
θk+1

∑r
k=0 ak

k!
θk+1

 , 0 < v < 1, θ > 0, (6)
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respectively.
The s-th order raw moment of unit-OPPE is given by

µ′
s = E(Vs)

=
∑r

k=0 ak
Γ(k+1)
(s+θ)k+1

∑r
k=0 ak

Γ(k+1)
θk+1

. (7)

The Lindley distribution (for r = 1, a0 = a1 = 1), introduced by Lindley (1958) to analyse failure
time data has the PDF, CDF and hazard rate function (HRF) as

fT(t; θ) =
θ2

θ + 1
(1 + t)e−θt t > 0, θ > 0, (8)

FT(t; θ) = 1 − 1 + θ + θt
θ + 1

e−θt (9)

and

hT(t; θ) =
θ2(1 + t)
1 + θ + θt

t > 0, θ > 0, (10)

respectively.

The mean of the random variable T is

µ =
θ + 2

θ(1 + θ)
. (11)

The unit-Lindley distribution with parameter θ has the PDF , CDF and HRF respectively , as
follows:

f (v; θ) =
θ2

1 + θ
(1 − log(v))

(
vθ−1

)
0 < v < 1, θ > 0, (12)

F(v; θ) =
vθ(1 + θ(1 − log(v)))

1 + θ
0 < v ≤ 1, θ > 0, (13)

h(v; θ) =
θ2(1 − log(v))

v(θlog(v)− (1 + θ)(1 − v−θ))
0 < v < 1, θ > 0. (14)

The shapes of the PDF, CDF and HRF of unit-Lindley distribution for different θ are shown in
Figure 1. Notably, the HRF is an increasing function. So, the distribution is capable of modeling
life time data. Furthermore, the first moment about the origin of unit-Lindley distribution can be

obtained as m′
1 = θ2(2+θ)

(1+θ)3 = µv.
For comparison purpose, we will choose the exponential distribution (r = 0, a0 = 1) and its
corresponding unit version. The unit version of the exponential distribution with parameter θ has
the PDF, CDF and HRF as

f (v, θ) = θvθ−1, 0 < v < 1, θ > 0, (15)

F(v, θ) = vθ , 0 < v ≤ 1, θ > 0, (16)

h(v, θ) =
θvθ−1

1 − vθ
, 0 < v < 1, θ > 0, (17)

respectively. In this case, µv = θ
1+θ implies θ = µv

1−µv
.

3. Reliability Acceptance Sampling Plan for OPPE distribution

According to the product’s mean life, a product lot is labelled as good or bad in this sampling
plan. The RASP has the plan parameters n, c, and t. For proper implementation of the plan,
engineers and practitioners use the tabulated value or algorithm. Tables are presented for fixed
t and c, the optimal value of n. Since the value of t ∈ (0, ∞), fixing t is tedious, whereas choosing
v ∈ (0, 1) is easy and comprehensive.
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Figure 1: PDF,CDF and HRF of unit-Lindley distribution for different θ

3.1. Design of the sampling plan

A product is defective if it fails before truncation time v. The fraction defective i.e. the probability
that a product is defective is

p(v) = F(v; θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,vθ)
θk+1

∑r
k=0 ak

k!
θk+1

 , 0 < v < 1, θ > 0. (18)

In particular, for the Lindley distribution,

p(v) = F(v; θ) =
vθ(1 + θ(1 − log(v)))

1 + θ
0 < v < 1, θ > 0. (19)

In this equation, we replace the shape parameter θ by product’s mean life (µ). We can say that θ =
g(µ), and we get the value of θ by solving the equation by numerical method and hence we have
p(v) = F(v, µv).
The Operating Characteristic (OC) function plays a vital role in product control techniques. It
gives the probability of acceptance of an individual lot from finite production. For some fixed
p, our sampling plan characterized by (n, c, t) or equivalently by (n, c, v), where v = e−t. For
sufficient large lots, the binomial distribution can be applied. The OC function can be formulated
as

π(p) = ∑c
i=0 (

n
i )pi(1 − p)n−i = 1 − Bp(c + 1, n − c)

with p = F(v; µv), and Bp(c + 1, n − c) is the incomplete beta function.
For determining small positive integer n for given c, v and µ0

v , we use

π(p0) =
c

∑
i=0

(
n
i

)
pi

0(1 − p0)
n−i ≤ 1 − P∗, (20)

where, P∗ is the level of confidence. If p is very small and n is very large, and β = np is finite,
then the binomial distribution can be approximated by the Poisson distribution. Then, the OC
function becomes

π(p) = ∑c
i=0 e−β βi

i! = 1 − Γ(c + 1, β),

with Γ(k, w) = 1
Γ(k)

∫ w
0 xk−1e−xdx, the incomplete gamma function.
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3.2. Sampling Procedure

The RASP is conducted as follows.

1. Put n items on test.

2. Choose the acceptance number c and specify the maximum test time t.

3. Perform the experiment and count the number of failures.

4. Accept the lot if the number of failures is at most c by the experiment time t.

5. Terminate the experiment as soon as (c+1)th failure occurs and reject the lot.

4. Estimation of the plan parameters

A sampling scheme for unit-OPPE distribution with parameter (n, c, v) satisfies the consumer’s
risk given in the previous section. To determine the smallest integer of sample size n for given
(c, v) is

Min(n|c,µ0
v ,P∗)n

subject to

c

∑
i=0

(
n
i

)
pi

0(1 − p0)
n−i ≤ 1 − P∗, (21)

where p0 = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,vg(µ0
v)

g(µ0
v)k+1

∑r
k=0 ak

k!
g(µ0

v)k+1

 , 0 < v < 1, g(µ0
v) > 0.

Algorithm for determination of the plan parameters is as follows.

1. Specify the confidence level P∗.

2. Choose t and µ0.

3. Calculate v = e−t and µ0
v =

∑r
k=0 ak

Γ(k+s+1)
θk+s+1

∑r
k=0 ak

Γ(k+1)
θk+1

, θ0 is obtained by solving µ0 =
∑r

k=0 ak
Γ(k+s+1)
θk+s+1

∑r
k=0 ak

Γ(k+1)
θk+1

numerically.

4. Choose a value of c.

5. For given (c,t,µ0
v), choose minimize n such that (21) satisfies.

The minimum values of n and c satisfying the inequality are obtained and shown in Table 1- 2
for the Lindley and that are in Tables 3-4 for the exponential distribution for P∗ = 0.95, 0.99.
The representative tables are shown for an easy and comprehensive understanding of the pro-
posed plan. The contents of each table are described as follows. The first row is reserved for
specifying confidence level (P∗). The first column represents the pre-specified mean value, µv

0
of unit-Lindley/unit-exponential distribution and the corresponding mean value, µ0 of Lind-
ley/exponential distribution in the parenthesis. The second row represents the truncation
time, v, of unit-Lindley/unit-exponential distribution and the corresponding time, t, of Lind-
ley/exponential distribution in the parenthesis. For a combination of (µv

0, v) or (µ0, t), in the cell,
the optimal choices of n, the sample size and c, the acceptance number are presented.
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Table 2: Determination of optimal sample size for Lindley set up

P∗ = 0.99
µ0

v(µ0)v(t) 6.74 × 10−3(5) 4.54 × 10−5(10) 3.05 × 10−8(15)
c n c n c n

0.1162(5) 0 3 0 5 0 8
1 5 1 8 1 12
2 6 2 10 2 16

0.0447(10) 0 2 0 2 0 3
1 3 1 4 1 5
2 4 2 5 2 6

0.0236(15) 0 1 0 2 0 2
1 3 1 3 1 3
2 4 2 4 2 5

Table 1: Determination of optimal sample size for Lindley set up

P∗ = 0.95
µ0

v(µ0)v(t) 6.74 × 10−3(5) 4.54 × 10−5(10) 3.05 × 10−8(15)
c n c n c n

0.1162(5) 0 2 0 3 0 6
1 4 1 6 1 9
2 5 2 8 2 12

0.0447(10) 0 1 0 2 0 2
1 3 1 3 1 4
2 4 2 4 2 5

0.0236(15) 0 1 0 1 0 2
1 2 1 3 1 3
2 3 2 4 2 4

Table 3: Determination of optimal sample size for Exponential set up

P∗ = 0.95
µ0

v(µ0)v(t) 6.74 × 10−3(5) 4.54 × 10−5(10) 3.05 × 10−8(15)
c n c n c n

0.1662(5) 0 7 0 21 0 94
1 11 1 34 1 150
2 15 2 45 2 197

0.0909(10) 0 4 0 7 0 16
1 6 1 11 1 25
2 8 2 15 2 34

0.0625(15) 0 3 0 5 0 8
1 5 1 8 1 14
2 7 2 10 2 18

A few observations from the Tables are noted below.
(i) With the confidence level (P∗) increase, the minimum sample size increases.
(ii) The optimal sample size for the Lindley distribution is smaller than that for the exponential
distribution.
(iii) The sample size increases with the increase of truncation time (t) or mean (µ) or both.
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Table 4: Determination of optimal sample size for Exponential set up

P∗ = 0.99
µ0

v(µ0)v(t) 6.74 × 10−3(5) 4.54 × 10−5(10) 3.05 × 10−8(15)
c n c n c n

0.1662(5) 0 10 0 32 0 72
1 15 1 46 1 122
2 20 2 60 2 166

0.0909(10) 0 5 0 11 0 12
1 8 1 16 1 21
2 11 2 20 2 27

0.0625(15) 0 4 0 7 0 7
1 6 1 10 1 11
2 8 2 13 2 16

5. Real life examples

Data Set 1 : The data is from [16] and arose in test on the cycle at which the yarn failed. The data
are the number of cycles until failure of the yarn(100 units):
15, 20, 20, 38, 38, 40, 40, 42, 55, 55, 61, 61, 65, 71, 76, 81, 86, 88, 90, 93, 98, 105, 121, 124, 124, 131,
135, 135, 137, 143, 146, 149, 151, 157, 166, 169, 175, 176, 180, 180, 180, 182, 185, 185, 186, 188, 188,
193, 194, 195, 196, 198, 198, 203, 203, 211, 220, 224, 229, 229, 236, 239, 244, 246, 246, 249, 250, 251,
262, 264, 264, 264, 277, 279, 282, 284, 286, 290, 292, 315, 321, 325, 337, 338, 341, 350, 353, 364, 393,
396, 398, 400, 400, 423, 497, 568, 571, 597, 653, 829.
First, we have checked whether the considered data set is well fitted with the exponential
or Lindley distribution by goodness-of-fit test. For this purpose, we have used the Akaike
Information Criterion [AIC=-2log(likelihood)+2k, k is the parameter number] to verify which
data fit better. The model that best fits the data could be the one with the lowest AIC value.

Table 5: Comparison of Exponential and Lindley Distribution for Data Set 1

Distribution Estimate of θ Negative Log-likelihood AIC
Exponential 0.00450 640.2587 1282.517

Lindley 0.0089687 625.6708 1253.3410

Table 5 shows that the Lindley distribution gives a better fit as the AIC value is less than the
exponential distribution. The histogram with fitted distributions and P-P plots is shown in Figure
2.
Suppose the truncation time of the testing number of cycles until failure of the yarn is 150, 200,
250 and 300. We construct the decision table for specified mean life as 150, 200, 150, and 300.
The estimated average life of the number of cycles is 221.98. The sample size n(=100) is fixed, so
Tables 6 and 7 are constructed for (c,v) or (c,t) values, and the decision regarding acceptance or
rejection of the lot is made accordingly for the Lindley and the exponential distributions.
Based on the observations, we must make a sentence for the lot, whether it will be accepted or
rejected. In this example, let us assume that truncation time, t is 200, that after transformation of
t (v = e−t), v is 0.0497, and that we take the specified mean of the Lindley distribution to be 150,
with the corresponding unit-Lindley mean to be 0.3001. We accept the lot only if the number of
failures before the specified mean,150, is less than or equal to acceptance number 60 (see Table
6). In this case, the decision is to accept the lot. We arrive at the same decision for exponential
assumption, but the acceptance number, c(=94), is larger than that for the Lindley distribution.
So, there may be a chance to come to a wrong decision if Lindley is a better fit, which will be
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Figure 2: Histogram with fitted distributions and P-P plot for Data Set 1

noticed in the case of Data Set 2. The OC surface of the plan for n = 100 and c = 72 has been
shown in Figure 3.

Table 6: RASP for Lindley distribution for Data Set 1

P∗ = 0.95
µ0

v(µ0)v(t) 0.1353 (150) 0.0497 (200) 0.0183 (250) 0.0067 (300)
c n decision c n decision c n decision c n decision

0.3001(150) 72 100 Accept 60 100 Accept 49 100 Accept 39 100 Accept
0.2065(200) 82 100 Accept 74 100 Accept 65 100 Accept 57 100 Accept
0.1515(250) 88 100 Accept 82 100 Accept 76 100 Accept 70 100 Accept
0.1162(300) 91 100 Accept 87 100 Accept 83 100 Accept 78 100 Accept

Table 7: RASP for Exponential distribution for Data set 1

P∗ = 0.95
µ0

v(µ0)v(t) 0.1353 (150) 0.0497 (200) 0.0183 (250) 0.0067 (300)
c n decision c n decision c n decision c n decision

0.0067(150) 96 100 Accept 94 100 Accept 93 100 Accept 93 100 Accept
0.0049(200) 96 100 Accept 95 100 Accept 95 100 Accept 94 100 Accept
0.0039(250) 97 100 Accept 96 100 Accept 95 100 Accept 95 100 Accept
0.0033(300) 97 100 Accept 96 100 Accept 96 100 Accept 95 100 Accept

Data Set 2:
This data represents the failure times in minutes for a sample of 15 electronic component in
accelerated life test (see, [13]), also used by [19] and [18] :
1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.
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Figure 4: Histogram with fitted distributions and P-P plot for Data Set 2

Table 8: Comparison of Exponential and Lindley Distributions for Data Set 2:

Distribution Estimate of θ Negative Log-likelihood AIC
Exponential 0.03630 64.7386 131.4764

Lindley 0.07025 64.40554 130.8110

Table 8 shows that the Lindley distribution gives a better fit as the AIC value is less than that
for the exponential distribution. The histogram with fitted distributions and the P-P plot shown
in Figure 4 substantiates the claim.
The estimated mean life is 27.54 for the fitted Lindley distribution. We have selected the testing
time for failure times as 20, 30, 35 and 40. The corresponding hypothesis for testing is µ ≥ µ0
against µ < µ0, where µ0 is the specified mean, and µ is the average lifetime. We construct Tables
9 and 10 with sample size n =15 for the Lindley and exponential distributions, respectively.
For example, let the truncation time is 30, and the specified mean is 35. The decision regarding
the lot is to reject under the Lindley assumption and accept under the exponential assumption.
Hence the exponential assumption leads to a wrong conclusion as the data fits better with the
Lindley distribution. Figure 5 shows the OC surface of the plan for n = 15 and c = 9.
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Table 9: RASP for the Lindley distribution for Data set 2

P∗ = 0.95
µ0

v(µ0)v(t) 0.3679 (20) 0.1353 (30) 0.0820 (35) 0.0498 (40)
c n decision c n decision c n decision c n decision

0.4853(20) 9 15 Accept 5 15 Accept 4 15 Reject 3 15 Reject
0.3002(30) 11 15 Accept 8 15 Reject 7 15 Reject 6 15 Reject
0.2465(35) 11 15 Accept 9 15 Reject 8 15 Reject 8 15 Reject
0.2065(40) 12 15 Accept 10 15 Reject 9 15 Reject 9 15 Reject

Table 10: RASP for Exponential distribution for Data set 2

P∗ = 0.95
µ0

v(µ0)v(t) 0.3679 (20) 0.1353 (30) 0.0820 (35) 0.0498 (40)
c n decision c n decision c n decision c n decision

0.0476(20) 12 15 Accept 11 15 Accept 10 15 Accept 10 15 Accept
0.0323(30) 12 15 Accept 11 15 Accept 11 15 Accept 11 15 Accept
0.0278(35) 12 15 Accept 12 15 Accept 11 15 Accept 11 15 Accept
0.0244(40) 12 15 Accept 12 15 Accept 11 15 Accept 11 15 Accept

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

oc values

0.0

0.2

0.4

0.6

0.8

1.0

OC surface for the plan with n=15, c=9

µv

v

Figure 5: OC Surface of the proposed plan for Data Set 2

Data set 3: This data set shows that the cycle-to-failure numbers for 25 (100-cm) specimens of
yarn tested at a particular strain level (see, [13]) are:
15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180, 180, 198, 220, 224, 251, 264, 282, 321,
325, 653.
Table 11 shows that the OPPE with a0 = 9, a1 = 4, a2 = 0.005 distribution is a better fit as the AIC
value is less than that for the exponential distribution. The histogram with fitted distributions
and the P-P plot in Figure 6 justifies the claim. Table 12 shows different plans and their decisions
for the fitted OPPE model. Table 13 shows that for the exponential model. The OPPE assumption
shows its superiority. The OC surface of the plan for n = 25 and c = 18 with the fitted OPPE is at
Figure 7.

  RT&A, No.3 (74)  
Volume 18, September 2023  

606



ANUMITA MONDAL AND SUDHANSU S. MAITI
RASP for OPPE

Table 11: Comparison of Exponential and OPPE(9,4,0.005) for Data Set 3

Distribution Estimate of θ Negative Log-likelihood AIC
Exponential 0.0056 154.5078 311.179

OPPE(9,4,0.005) 0.01115 152.5078 307.0156

Histogram and fitted density 
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Figure 6: Histogram with fitted distributions and P-P plot for Data Set 3

Table 12: RASP for the OPPE(9,4,0.005) distribution for Data set 3

P∗ = 0.95
µ0

v(µ0)v(t) 0.4065 (100) 0.2466 (150) 0.1469 (200) 0.0907 (250)
c n decision c n decision c n decision c n decision

0.5208(100) 18 25 Accept 11 25 Accept 8 25 Accept 6 25 Reject
0.4054(150) 16 25 Accept 14 25 Accept 11 25 Accept 9 25 Reject
0.3282(200) 18 25 Accept 16 25 Reject 13 25 Reject 12 25 Reject
0.2730(250) 19 25 Accept 17 25 Reject 15 25 Reject 14 25 Reject

Table 13: RASP for the Exponential distribution for Data set 3

P∗ = 0.95
µ0

v(µ0)v(t) 0.4065 (100) 0.2466 (150) 0.1469 (200) 0.0907 (250)
c n decision c n decision c n decision c n decision

0.0099(100) 23 25 Accept 23 25 Accept 22 25 Accept 22 25 Accept
0.0066(150) 23 25 Accept 23 25 Accept 23 25 Accept 22 25 Accept
0.0049(200) 23 25 Accept 23 25 Reject 23 25 Accept 23 25 Accept
0.0039(250) 23 25 Accept 23 25 Accept 23 25 Accept 23 25 Accept
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6. Concluding remarks

A reliability acceptance sampling plan is formulated for the OPPE distributed quality characteristic.
The OPPE family of distributions does not belong to the scale-invariant family, whereas most of
the RASP chalked out for the scale-invariant family in the literature. The optimal plan parameters
are estimated by transforming the OPPE distribution into its unit form to utilize the advantage of
finite range (in this case, (0,1)). A few examples are presented for finding optimal sample sizes for
the proposed plan for the Lindley distribution, a particular choice of the OPPE family, which will
be helpful to scientists and quality practitioners for implementation. Three data sets are analyzed
for implementing the proposed plan. The approach may be adopted to construct RASP for other
lifetime quality characteristic distributions that do not belong to the scale-invariant family.
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Abstract

Utilizing the auxiliary information in stratified population, in the current study, we have discussed two
classes for the regression type of estimators to estimate the ratio of two population means in the presence
of non-response with the unknown population mean of the auxiliary variable. To estimate the unknown
value of the population mean of auxiliary variable, we have used two-phase sampling method. For the
suggested classes of estimators, we have considered two situations for the use of auxiliary information
along with the non-response in the study variable such as incomplete information on the study variable
and incomplete information on the corresponding units of the auxiliary variable and in another situation
we have considered incomplete information on the study variable and complete information on the
auxiliary variable. To estimate the non-response in study variable and auxiliary variables, we have used
the Hansen and Hurwitz method of sub-sampling from the non-respondents. For the suggested classes
of estimators, some members have been recognized. Using large sample approximation, the expressions
for bias and mean square error have been derived for the suggested classes. The optimum values of the
constants involving in the expression of mean square error have also been calculated. Mean square errors
of the Suggested classes are found to be equal in theoretical study and real data study. An empirical study
has been conducted with the help of a real data set (The Primary Census Abstract-2011 published by
the Office of the Registrar General & Census Commissioner, India.) in order to compare the proposed
classes of estimators with the conventional estimator for the different rates of non-response and different
choices of sub-sampling fraction. The Suggested classes are found to be most efficient with respect to
the conventional estimator for the different rates of non-response and different choices of sub-sampling
fraction in empirical study.

Keywords: Ratio of two population means, Regression type estimator, Two-phase sampling,
Auxiliary variable, Non-response, Mean square error

1. Introduction

In the literature of sample surveys, the ratio of two population means plays a crucial role. In this
context to have a better understanding, we have several examples in the field of scientific and
Socio-economic studies such as:

• Agricultural surveys: The crop production per acre in a crop survey, agriculture labor per
cultivator and the ratio of production of corn acres to wheat acres, etc.

• Industrial surveys: the outlay of total expenses per employee, Proportion of liquid to total
asset, etc.
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• Medical surveys: In the estimation of growth index, the estimate of ratio using the measure-
ments on weight to height. The skull or chest circumference may be used as an auxiliary
variable.

In the case of finite population, the estimate for the ratio of two population means by using
known and unknown population mean of the auxiliary variable have been studied by several
authors such as Singh [13], Tripathi [17], Khare [3], Upadhyaya et al. [18], Singh and Naqvi
[14]and Kumar and Srivastava [10]. In a recent study, Ahuja et al.[16] have suggested a generalized
two-phase sampling estimator for ratio of two population means.

The occurrence of non-response is very common in the field of sample surveys. Hansen and
Hurwitz [2] have suggested a technique of sub-sampling from the non-respondents to treat the
problem of non-response. Further, El-Badry [1] has made some improvements to reduce the effect
of non-response. In case of finite population in the presence of non-response, the estimation of
ratio of two population means using known and unknown population mean of auxiliary variable
have been studied by Khare and Pandey [4], Khare and Sinha [[5],[6]], Khare and Sinha [7] and
Khare et al. [8].

For the stratified population in the presence of non-response, Khare and Jha [9] and Singh
et al. [12] have suggested the classes of estimators for estimating the population mean utilizing
auxiliary information with known and unknown population mean of auxiliary variable.

Following the research work of Singh et al. [12], we have made an effort by suggesting two
classes of regression type of estimators for the ratio of two population means utilizing two-phase
sampling method for the estimation of unknown population mean of auxiliary variable in the
presence of non-response for the stratified population. Some members of the suggested classes
of estimators have been recognized. The properties of the suggested classes have been obtained.
To support the effectiveness of the proposed classes of estimators with respect to the relevant
estimator, an empirical study is conducted with the help of a real data set.

2. Notations and Sampling Procedure

We have a heterogeneous population of size η : [η1, η2, η3...ηN ] study variables (y1, y2) and
auxiliary variable x with respective population means Y1, Y2 and population mean (X) of
auxiliary variable is unknown, which is divided into L homogeneous strata. The population
parameters used in this study are denoted as follows:

we have,

Y1 =
1
N

N

∑
i=1

y1i, Y2 =
1
N

N

∑
i=1

y2i, X =
1
N

N

∑
i=1

xi and R =
Ȳ1

Y2
(1)

In this present study, we are dealing with the stratified population with unknown X in the
presence of non-response. In such a situation, to estimate the unknown population mean of an
auxiliary variable, we use the technique of two-phase sampling which is described as follows:

In the very first step, we have the population of size N divided in L homogeneous strata
of sizes N1, N2, N3...NL. In the first-phase, using simple random sampling without replacement
(SRSWOR), we draw a larger preliminary sample of size n

′
i from ith stratum of size Ni.

Further, in the second-phase, we draw a relatively small sample of size n
′
i(ni < n

′
i) using

SRSWOR from n
′
i units of ith stratum.

For the study (y1, y2)variables and auxiliary variable (x), a sample of size ni, we draw from ith

stratum of size Ni. Due to the non-response in the population, we observe that in the sample of
size ni there are ni1 responding and ni2 non-responding units such that [ni = ni1 + ni2].

In the next step, to get the estimate of these ni2non-responding units, we draw a sub-sample
of size ri[=

ni2
li

, li > 1].

Hence, we have responding ni1 and ri sub-sampled units for the ith stratum which we use in
defining the Hansen and Hurwitz [2] estimators. The population means of the ith stratum for
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(y1, y2) and x are given by Y1i,Y2i and Xi and their estimators in the presence of non-response
using Hansen and Hurwitz [2] sub-sampling method from non-respondents are given as follows:

y∗1i =
ni1
ni

y1i(1) +
ni2
ni

y
′
1i(2), y∗2i =

ni1
ni

y2i(1) +
ni2
ni

y
′
2i(2) and x∗i =

ni1
ni

xi(1) +
ni2
ni

x
′
i(2). (2)

where, y1i(1), y2i(1) and xi(1) are the sample means for the variable (y1, y2) and x for the ni1

units in ith stratum. The sample means based on ri units sub-sampled from ni2 units in the ith

stratum are denoted by y
′
1i(2), y

′
2i(2) and x

′
i(2) for study variables (y1, y2) and the auxiliary variable

x.
In the presence of non-response, the stratified sample means for Y1,Y2 and X for the ith

stratum are given as follows:

y∗1st =
L

∑
i=1

Wiy∗1i, y∗2st =
L

∑
i=1

Wiy∗2i and x∗st =
L

∑
i=1

Wix∗i . (3)

For the auxiliary variable x,the stratified sample mean for estimating X based on first-phase
sample of size n

′
i is given as follows:

x
′
st =

L

∑
i=1

Wix
′
i. (4)

where,x
′
i is the sample mean based on first-phase sample of size n

′
i,(n

′
i > ni) drawn from Ni

units of the ith stratum is given as follows:

x
′
i =

1
n′

i

n
′
i

∑
i=1

xij (5)

.
The stratified sample mean based on ni units in ith stratum for auxiliary variable x is given as

follows:

xst =
L

∑
i=1

Wixi. (6)

.
The population variance and co-variance for ith stratum and non-responding part of the ith

stratum used in this study are given as follows:

S2
y1i =

1
(Ni − 1)

Ni

∑
j=1

(Y1i,j − Y1i)
2,

S2
y2i =

1
(Ni − 1)

Ni

∑
j=1

(Y2i,j − Y2i)
2,

S2
xi =

1
(Ni − 1)

Ni

∑
j=1

(Xij − X1i)
2,

S2
y1i(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Y1ij(2) − Y1i(2))
2,

S2
y2i(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Y2ij(2) − Y2i(2))
2,

S2
xi(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Xij(2) − Xi(2))
2,
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S2
y1iy2i =

1
(Ni − 1)

Ni

∑
j=1

(Y1i,j − Y1i)(Y2i,j − Y2i),

S2
y1ixi =

1
(Ni − 1)

Ni

∑
j=1

(Y1i,j − Y1i)(Xi,j − Xi),

S2
y2ixi =

1
(Ni − 1)

Ni

∑
j=1

(Y2i,j − Y2i)(Xi,j − Xi),

S2
y1iy2i(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Y1i,j(2) − Y1i(2))(Y2i,j(2) − Y2i(2)),

S2
y1ixi(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Y1i,j(2) − Y1i(2))(Xi,j(2) − Xi(2)),

S2
y2ixi(2) =

1
(Ni2 − 1)

Ni2

∑
j=1

(Y2i,j(2) − Y2i(2))(Xi,j(2) − Xi(2)). (7)

where, y1i,j: jth value of y1 in the ith stratum, y2i,j: jth value of y2 in the ith stratum, xi,j: jth

value of x in the ith stratum, y1i,j(2): jth value of y1 for non-responding units in the ith stratum,
y2i,j(2): jth value of y2 for non-responding units in the ith stratum and xi,j(2): jth value of x for
non-responding units in the ith stratum.

We denote,Wi1 = Ni1
Ni

,Wi2 = Ni2
Ni

such that [Ni = Ni1 + Ni2] ∀, i = 1, 2, 3...L. Where, Ni1 and
Ni2 are the size of the responding and non-responding units in ith stratum.

3. Proposed Classes of Regression Type of Estimators for R in Two-phase

Sampling

In the case of unknown population mean of the auxiliary variable, we are considering two
different situations of non-response i.e. incomplete information on y1, y2 and corresponding
information on the auxiliary variable x and also we use complete information on auxiliary variable
x. Here, we propose two classes of two-phase sampling regression type of estimators which are
given as follows:

R̂1st = [R̂st + α1x
′
st(u2 − 1)]ϕ(1)(u1) (8)

R̂2st = [R̂st + α2x
′
st(u1 − 1)]ϕ(1)(u2) (9)

where, R̂st =
y∗1st
y∗2st

, u1 =
x∗st
x′st

and u2 = xst
x′st

.

Such that,

ϕ1(1) = 1, ϕ1(2) = 1, ϕ1(1)(1) =
( δ

δu1
ϕ1(1)

)
1

and ϕ1(2)(1) =
( δ

δu2
ϕ2(1)

)
1

(10)

ϕ(1)(u1) and ϕ(2)(u2) are the function of u1 and u2 satisfy the regularity conditions given as
follows:

• The functions of u1 and u1 assume values in a bounded closed convex subset U∗ of the
two-dimensional real line containing the point (1).

• In U∗, the function of u1 and u2 are continuous and bounded.

• The first-order and second-order partial derivatives of the given function of u1 and u1 exist
and are continuous and bounded U∗.
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The first and second-order partial derivatives of the function ϕ(1)(u1) w.r.to u1 and ϕ(2)(u2)
w.r.to u2 are denoted by [ϕ1(1)(u1), ϕ11(1)(u1)] and [ϕ1(2)(u2), ϕ11(2)(u2)] respectively.

Now, using Taylor’s series expansion we expand the function ϕ(1)(u1) and ϕ(2)(u2) upto the
second-order partial derivative about the point (1), we have

R̂1st = [R̂st + α1x
′
st(u2 − 1)][ϕ(1)(1) + (u1 − 1)ϕ1(1)(1) +

1
2
(u1 − 1)2ϕ11(1)(1)] (11)

R̂2st = [R̂st + α2x
′
st(u1 − 1)][ϕ(2)(1) + (u2 − 1)ϕ1(2)(1) +

1
2
(u2 − 1)2ϕ11(2)(1)] (12)

Using the condition given in equation (10) and regularity conditions, the expression (11) and
(12) can be written as:

R̂1st = [R̂st + α1x
′
st(u2 − 1)][1 + (u1 − 1)ϕ1(1)(1) +

1
2
(u1 − 1)2ϕ11(1)(1)]

= R̂st + R̂st(u1 − 1)ϕ1(1)(1) + R̂st
1
2
(u1 − 1)2ϕ11(1)(1) + α1x

′
st(u2 − 1)

+ α1x
′
st(u1 − 1)(u2 − 1)ϕ1(1)(1) +

1
2

α1x
′
st(u1 − 1)2(u2 − 1)ϕ11(1)(1) (13)

R̂2st = [R̂st + α2x
′
st(u1 − 1)][1 + (u2 − 1)ϕ1(2)(1) +

1
2
(u2 − 1)2ϕ11(1)(2)]

= R̂st + R̂st(u2 − 1)ϕ1(2)(1) + R̂st
1
2
(u2 − 1)2ϕ11(2)(1) + α2x

′
st(u1 − 1)

+ α2x
′
st(u1 − 1)(u2 − 1)ϕ1(2)(1) +

1
2

α2x
′
st(u2 − 1)2(u1 − 1)ϕ11(2)(1) (14)

4. Properties of the proposed classes of regression type of estimators

To obtain the expression for bias and MSE of the suggested classes of estimators, we define:

y∗1st = Y1(1 + ϵ0) , y∗2st = Y2(1 + ϵ1), xst = X(1 + ϵ2), x
′
st = X(1 + ϵ3)

x∗st = X1(1 + ϵ4) (15)

such that, |ϵi| < 1 and E(ϵi) = 0 ∀ i = 1, 2, 3, 4.
Here, we ignore the finite population correction term because the population size is large

enough under consideration. i.e. by using large sample approximation, we have

E(ϵ2
0) =

V(y∗1st)

Y2
1

=
1

Y2
1

L

∑
i=1

[W2
i λiS2

y1i
+

(li − 1)
ni

Wi2S2
y1i(2)

],

E(ϵ2
1) =

V(y∗2st)

Y2
2

=
1

Y2
2

L

∑
i=1

[W2
i λiS2

y2i
+

(li − 1)
ni

Wi2S2
y2i(2)

],

E(ϵ2
2) = E(ϵ2ϵ4) =

V(xst)

X2 =
1

X2

L

∑
i=1

[W2
i λiS2

xi
],

E(ϵ2
3) = E(ϵ2ϵ3) = E(ϵ3ϵ4) =

V(x
′
st)

X2 =
1

X2

L

∑
i=1

[W2
i λ

′
iS

2
xi
],

E(ϵ2
4) =

V(x∗st)

X2 =
1

X2

L

∑
i=1

{
W2

i λiS2
xi
+

(li − 1)
ni

Wi2S2
xi(2)

}
,

(16)
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E(ϵ0ϵ1) =
Cov(y∗1sty

∗
1st)

Y1Y2
=

1
Y1Y2

L

∑
i=1

W2
i

{
λiSy1iy2i +

(li − 1)
ni

Wi2Sy1iy2i(2)

}
,

E(ϵ0ϵ4) =
Cov(y∗1stx

∗
st)

Y1X
=

1
Y1X

L

∑
i=1

W2
i

{
λiSy1ixi +

(li − 1)
ni

Wi2Sy1ixi(2)

}
,

E(ϵ1ϵ4) =
Cov(y∗2stx

∗
st)

Y2X
=

1
Y2X

L

∑
i=1

W2
i

{
λiSy2ixi +

(li − 1)
ni

Wi2Sy2ixi(2)

}
,

E(ϵ0ϵ2) =
Cov(y∗1stxst)

Y1X
=

1
Y1X

L

∑
i=1

W2
i

{
λiSyixi

}
,

E(ϵ0ϵ3) =
Cov(y∗1stx

′
st)

Y1X
=

1
Y1X

L

∑
i=1

W2
i

{
λ
′
iSy1ixi

}
,

E(ϵ1ϵ3) =
Cov(y∗2stx

′
st)

Y2X
=

1
Y2X

L

∑
i=1

W2
i

{
λ
′
iSy2ixi

}

E(ϵ1ϵ2) =
Cov(y∗2stxst)

Y2X
=

1
Y2X

L

∑
i=1

W2
i

{
λiSy2ixi

}
(17)

Where, λi =

(
1
ni
− 1

Ni

)
and λ

′
i =

(
1
n′

i
− 1

Ni

)
Now, using the condition given in equations (15) and (16) on equations (13) and (14), The

expressions for bias and MSE of suggested classes of estimators are given as follows:

Bias(R̂1st) = Bias(R̂st) + R[E(ϵ0ϵ4)− E(ϵ0ϵ3)− E(ϵ3ϵ4) + E(ϵ1ϵ4) + E(ϵ1ϵ3)

+ E(ϵ2
3)]ϕ1(1)(1) + X[E(ϵ2ϵ4)− E(ϵ2ϵ3)− E(ϵ3ϵ4)− E(ϵ2

3)]α1ϕ1(1)(1) (18)

MSE(R̂1st) = MSE(R̂st) + Aϕ2
1(1)(1) + Bα2

1 + 2Cϕ1(1)(1) + 2Dα1 + 2Eα1ϕ1(1)(1) (19)

Bias(R̂2st) = Bias(R̂st) + R[E(ϵ0ϵ2)− E(ϵ0ϵ3)− E(ϵ3ϵ2) + E(ϵ1ϵ2) + E(ϵ1ϵ3)

+ E(ϵ2
3)]ϕ1(2)(1) + X[E(ϵ2ϵ4)− E(ϵ4ϵ3)− E(ϵ2ϵ3)− E(ϵ2

3)]α2ϕ1(2)(1) (20)

MSE(R̂2st) = MSE(R̂st) + A1ϕ2
1(2)(1) + B1α2

2 + 2C1ϕ1(2)(1) + 2D1α2 + 2E1α2ϕ1(2)(1) (21)

The optimum values of ϕ1(1)(1), ϕ1(2)(1), α1 and α2 are obtained to get the minimum value of
mean square error. These are given as follows:

ϕ1(1)(1) =
(CE − AD)

(AB − E2)
, α1 =

(DE − BC)
(AB − E2)

(22)

ϕ1(2)(1) =
(C1E1 − A1D1)

(A1B1 − E2
1)

, α2 =
(D1E1 − B1C1)

(A1B1 − E2
1)

(23)

The expressions for the minimum MSEs after substituting the optimum values of ϕ1(1)(1), α1,
ϕ1(2)(1) and α2 from equations (21) and (22) in equations (18) and (20). we get,

MSE( ˆR1st) = MSE(R̂st)−
[

BC2 + AD2 − 2CDE
AB − E2

]
(24)

MSE( ˆR2st) = MSE(R̂st)−
[

B1C2
1 + A1D2

1 − 2C1D1E1

A1B1 − E2
1

]
(25)
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where,

A = R2

[
E(ϵ2

3) + E(ϵ2
4)− 2E(ϵ3ϵ4)

]
,

B = X2
[

E(ϵ2
2) + E(ϵ2

3)− 2E(ϵ2ϵ3)

]
,

C = R2

[
E(ϵ0ϵ4)− E(ϵ1ϵ4)− E(ϵ0ϵ3) + E(ϵ1ϵ3)

]
,

D = RX

[
E(ϵ0ϵ2)− E(ϵ1ϵ2)− E(ϵ0ϵ3) + E(ϵ1ϵ3)

]
,

E = RX

[
E(ϵ2ϵ4)− E(ϵ2ϵ3)− E(ϵ3ϵ4) + E(ϵ2

3)

]
,

A1 = R2

[
E(ϵ2

2) + E(ϵ2
3)− 2E(ϵ2ϵ3)

]
,

B1 = X2
[

E(ϵ2
3) + E(ϵ2

4)− 2E(ϵ3ϵ4)

]
,

C1 = R2

[
E(ϵ0ϵ2)− E(ϵ1ϵ2)− E(ϵ0ϵ3) + E(ϵ1ϵ3)

]
,

D1 = RX

[
E(ϵ0ϵ4)− E(ϵ1ϵ4)− E(ϵ0ϵ3) + E(ϵ1ϵ3)

]
,

E1 = RX

[
E(ϵ2ϵ4)− E(ϵ2ϵ3)− E(ϵ3ϵ4) + E(ϵ2

3)

]
and

MSE(R̂st) = R2[E(ϵ2
0) + E(ϵ2

1)− E(ϵ0ϵ1)] (26)

Here, we observe that A1 = R2 B
X2 , B1 = X2 A

R2 , C1 = R D
X

, D1 = X C
R and E1 = E.

After substituting these values in equation (24), we find that MSE(R̂1st) and MSE(R̂2st) are
equal. i.e. MSE(R̂1st) =MSE(R̂2st) The optimum MSE of R̂1st and R̂2st are the same because they
are utilizing the same information on y1, y2 and x in both cases.

5. Members of the Suggested classes

All the members of the suggested classes satisfy the conditions given in equation (10). Hence
if the optimum values of the constants presented in suggested members are calculated by the
expression given in equations (21) and (22) then all the members shown in table 1 will attain
the minimum mean square error equal to the expression of MSE given in equation (23) and
(24). The optimum values of constants are sometimes in the form of some unknown parameters
and sometimes in the form of value of unknown constants. The optimum values of constants,
in this situation, may be obtained from past data on the value (Reddy [11]), or by estimating
the parameters included in the optimum value of the constant based on sample values. The
minimum values of mean square error of the estimator up to the term of order 1

n are unchanged
if we estimate the optimum values of the constants by using the sample values [Srivastava and
Jhajj [15]]. If the condition given in equation (10) is satisfied by any parametric function ϕ(1)(u1)
and ϕ(2)(u2) then they can generate a class of asymptotic estimators. Such classes have a large
number of members. Some of them are given as follows:
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Table 1: Members of the classes

Member of class R̂1st Member of class R̂2st

R̂11st =
[

y∗1st
y∗2st

+ α1x
′
st(u2 − 1)

]
(u1)

γ R̂21st =
[

y∗1st
y∗2st

+ α2x
′
st(u1 − 1)

]
(u2)

γ

R̂12st =
[

y∗1st
y∗2st

+ α1x
′
st(u2 − 1)

](
exp(u1−1)
exp(u1+1)

)
R̂22st =

[
y∗1st
y∗2st

+ α2x
′
st(u1 − 1)

](
exp(u2−1)
exp(u2+1)

)

R̂13st =
[

y∗1st
y∗2st

+ α1x
′
st(u2 − 1)

]
(2 − u1

β) R̂23st =
[

y∗1st
y∗2st

+ α2x
′
st(u1 − 1)

]
(2 − u2

β)

Here, γ and β are the constants.

6. An Empirical study

Table 2: Population parameters for each stratum

Parameters (i) (ii) (iii) (iv) (v) (vi)
Ni 152 112 85 82 109 96
n
′
i 108 79 60 58 77 68

ni 42 31 24 23 30 27
ρxiy1i -0.3075 -0.0559 -0.0514 -0.2213 -0.6455 -0.5745
ρxiy2i 0.0739 0.6171 0.6025 0.1958 -0.245 0.5606
ρy1iy2i 0.2427 0.1695 0.4927 -0.0041 0.3483 -0.4074

Y1i 107.96 68.95 74.19 161.05 68.98 120.38
Y2i 203.1 190.41 282.74 222.39 251.98 250.28
Xi 581.75 575.71 651.97 631.26 692.6 643.72

Sy1i 52.07 37.79 61.75 80.31 50.22 57.27
Sy2i 34.01 40.19 71.51 29.3 27.97 39.47
Sxi 83.32 107.88 97.21 99.47 100.12 96.2

10% Non-resposne ρxiy1i(2) -0.6188 0.3031 0.535 -0.6709 -0.8781 -0.5204
ρxiy2i(2) 0.3532 -0.2579 0.8087 -0.228 -0.3799 0.1083
ρy1iy2i(2) -0.3266 -0.0073 0.6923 -0.3547 0.4499 -0.2732
Sy1i(2) 61.7 22.09 79.44 65.24 68.36 29.71
Sy2i(2) 18.6 9.05 26.63 65.41 38.7 25.43
Sxi(2) 13.06 12.36 90.48 62.8 12.52 21.67

20 % Non-response ρxiy1i(2) -0.4829 -0.2723 0.0952 -0.7095 -0.8498 -0.263
ρxiy2i(2) 0.1189 -0.653 0.7614 0.0035 0.0355 0.1717
ρy1iy2i(2) -0.0311 -0.3092 0.3305 -0.0823 -0.1392 -0.118
Sy1i(2) 67.53 52.33 69.71 77.85 59.14 60.05
Sy2i(2) 30.65 9.76 29.04 63.53 33.07 34.87
Sxi(2) 15.18 22.89 64.53 53.64 15.05 18.7

30% Non-response ρxiy1i(2) -0.4373 -0.1605 0.2785 -0.2861 -0.5 -0.3592
ρxiy2i(2) 0.0884 -0.428 0.605 0.0022 0.2985 0.2831
ρy1iy2i(2) 0.1563 0.2582 0.7877 -0.0932 -0.092 0.2379
Sy1i(2) 64.88 61.92 97.94 105.66 64.33 58.05
Sy2i(2) 31.78 10.76 72.99 76.89 32.25 46.2
Sxi(2) 20.39 20.51 88.09 43.81 15.46 26.26
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The data used in the study has been taken from the Primary Census Abstract-2011 published by
the Office of the Registrar General & Census Commissioner, India.

The number of cultivators=y1 (Study variable)
The number of main workers=y2 (Study variable)
The number of literate persons= x (auxiliary variable)
Here, we are considering the number of cultivators, main workers and literate persons per

thousand population.
In the given population, we have six strata which are given as: Strata (i) = Central states, Strata
(ii)= Eastern states, Strata (iii) = Northern states, Strata (iv)=North- East states, Strata (v) =
Southern states, and Strata (vi) = Western states. And their parameters are given in table 2.

For the different choices of sub-sampling fraction i.e. 1
l = 1

2 , 1
l = 1

3 and 1
l = 1

4 and for the
different non-response rates 10%, 20% and 30% the optimum values of ϕ1(1)(1),ϕ1(2)(1), α1 and
α2 are given in table 3.

Table 3: Optimum values of ϕ1(1)(1),ϕ1(2)(1), α1 and α2

Non-response rate(%) Constants 1/l = 1
2 1/l = 1

3 1/l = 1
4

10 ϕ1(1)(1) 1.1023 1.1985 1.2786
α1 0.00063 0.00059 0.00056
ϕ1(2)(1) 0.92 0.8672 0.8233
α2 0.00075 0.00082 0.00087

20 ϕ1(1)(1) 1.1784 1.3019 1.3875
α1 0.0006 0.00055 0.00052
ϕ1(2)(1) 0.8783 0.8105 0.7636
α2 0.00081 0.00089 0.00095

30 ϕ1(1)(1) 1.0054 1.0144 1.0204
α1 0.00067 0.00066 0.00066
ϕ1(2)(1) 0.9732 0.9679 0.9649
α2 0.00069 0.00069 0.0007

Table 4: The percentage relative efficiency (PRE) of R̂1st and R̂1st with R̂st

Non-response
rates(%)

Estimators (N=636)

1/l

1/2 1/3 1/4
10 R̂st 100(124.85) 100(134.11) 100(143.37)

R̂1st = R̂2st 122.20(102.16) 122.53(109.45) 122.91(116.64)
20 R̂st 100(134.73) 100(153.88) 100(173.02)

R̂1st = R̂2st 122.54(109.94) 123.26(124.83) 123.97(139.56)
30 R̂st 100(155.29) 100(194.99) 100(234.69)

R̂1st = R̂2st 118.21(131.36) 116.08(167.97) 114.72(204.57)
Note:Figures in parenthesis show MSE of the estimators in 10-6.

7. Discussion

Table 4 shows the PREs and MSEs (Figures in parenthesis) of the estimators R̂st, R̂1st and R̂2st for
the different rates of non-response and choices of the sub-sampling fraction. We can see that in
table 4, as we increase the non-response rates the MSE increases for each sub-sampling fractions.
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The PRE for the 10% and 20% non-response rates shows almost same value. However, for 30%
non-response rate the PRE decreases for each sub-sampling fraction.

By increasing the value of l the MSE increases and PRE for 10% and 20% non-response rates
are almost same and PRE decreases slightly for 30% non-response rate.

The MSE and PRE of the suggested classes of estimators are found to be equal for different
rates of non-response and different choices of sub-sampling fraction.

8. Conclusion

Hence, the findings on the basis of empirical study are justified that the proposed classes of
estimators for estimating the ratio of two population means with unknown population mean of
auxiliary variable in the presence of non-response for stratified population performed better than
the usual estimator R̂st. So, we recommend the suggested classes of estimators for the use in
practice.
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Abstract 

Erlang Truncated Exponential Distributions are characterized by distributional properties of 
order statistics. These characterizations include known results for ordinary order statistics based 
on two non-adjacent order statistics coming from two independent Erlang truncated exponential 
distributions. Using this method and compared with an efficient recent method given by [20], 
three examples of real lifetime data-sets are analyzed by that deals with non-random samples. 
Such type of examples predicts the accumulative new cases per million foe infection of the new 
COVID-19.  Corollaries for Pareto and power function distributions are also derived.  

Keywords: Order statistics; characterization of distributions; reliability characteristics; Erlang 
truncated exponential; random translation 

1. Introduction

Various characterizations of Erlang truncated exponential distributions based on 
distributional properties of order statistics are found in the literature. Let 𝑋 , , 𝑋 , , ⋯ 𝑋 ,  denote 
the order statistics of a identically independent distributed (i.i.d) random variables 𝑋 , 𝑋 , ⋯ , 𝑋 ,

𝑛 ≥ 2, each with distribution function F (𝑥). Furthermore, a variety of other models of ordered 
random variables are contained in this concept. For a detailed discussion of several of these 
models, such as sequential order statistics, 𝑘  record values and Pfeifer’s record model.  

In this paper we present characterizations of Erlang truncated exponential distributions 
DF exp(βα ), with mean 

( )
 , β >  0, ∝> 0, λ > 0. via distributional properties of generalized 

order statistics including the known results for ordinary order statistics. 

Consider a sequence of real numbers  𝑋 , 𝑋 , ⋯ , 𝑋  which are independently and 
identically, distributed with common cumulative distribution (DF) 𝐹 (𝑥 ) and the probability 
density function PDF 𝑓 (𝑥) and the distribution function Then the PDF and DF of 𝑋 ( ), 𝑟  upper 
record is [5] and [9]. 

 𝑓
( )

(𝑥) =
( )!

 [𝑅(𝑥)] 𝑓(𝑥)  (1) 

and 

𝐹
( )

(𝑥) =  1 − 𝐹
( )

(𝑥) = 𝑒 ( ) ∑
[ ( )]

!
(2)
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where 
R(x) = −lnF(x), 𝐹(𝑥) = 1 − 𝐹(𝑥)  (3) 

The PDF and DF of 𝑋 :  , the 𝑟  order statistic from a sample of size n is given as [ 8] and [13]. 

𝑓
:

(𝑥) =
!

( )!( )!
 [𝐹(𝑥)] [1 − 𝐹(𝑥)] 𝑓(𝑥)  (4) 

and 

𝐹
:

(𝑥) = ∑  
𝑛
𝑗 [𝐹(𝑥)] [1 − 𝐹(𝑥)]  (5) 

2. Model
The cumulative distribution function CDF 𝐹 (𝑥)and probability density function PDF 𝑓 (𝑥) of 
the Extended Erlang-Truncated Exponential (EETE) distribution are given by 
F (𝑥) = [1 − 𝑒 ( ) ]  ,  0 ≤ 𝑥 < ∞, 𝛼, β,   λ >  0,                                  (6)  

and 

𝑓 (𝑥) = 𝛼 β (𝛼 ) 𝑒 ( ) [1 − 𝑒 ( ) ]   , 0 ≤ 𝑥 < ∞, 𝛼, β, λ >  0       (7) 

where α and β are the shape parameters and λ is the scale parameter. 

        Figure 1. Possible shapes of the probability density function 𝑓(𝑥) (left) and cumulative distribution 
function 𝐹(𝑥)  (right) of the Extended Erlang-Truncated Exponential (EETE) distribution for fixed 
parameter values of 𝛽 and 𝜆. 

The Extended Erlang-Truncated Exponential (EETE) distribution reduces to Erlang-Truncated 
Exponential (ETE) when α = 1.  

Erlang-Truncated Exponential (ETE) distribution was originally introduced by [15] as an 
extension of the standard one parameter exponential distribution. The Erlang-Truncated 
Exponential (ETE) distribution results from the mixture of Erlang distribution and the left 
truncated one-parameter exponential distribution. The cumulative distribution function CDF 
𝐹 (𝑥), and probability density function PDF𝑓 (𝑥) of the Erlang-Truncated Exponential (ETE) 
distribution are given by 

F (𝑥) = [1 − 𝑒 ( ) ] ,  0 ≤ 𝑥 < ∞, β,   λ >  0,  (8) 
where 𝛼 = 1 − 𝑒   

and 

𝑓 (𝑥) = β (𝛼 ) 𝑒 ( )  , 0 ≤ 𝑥 < ∞, β, λ >  0 (9)
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respectively, where β is the shape parameter and λ is the scale parameter. The Erlang-Truncated 
Exponential (ETE) distribution collapses to the classical one-parameter exponential distribution 
with parameter β and λ → ∞. 

𝑋 ~ Par(𝛽(𝛼 )) 

if 𝑋 has a Pareto distribution with the DF 

𝐹(𝑥) = [1 − 𝑥 ( )] ,   1 < 𝑥 < ∞ , β >  0, α >  0         (10) 

𝑋 ~ pow (𝛽(𝛼 )) 

if 𝑋 has a power function distribution with the DF 

𝐹(𝑥) = 𝑥 ( ) , 0 < 𝑥 < 1 , β >  0, α >  0  (11) 

It may further be noted that 

if log X ~ Erlang-truncated exp (β(α )) then  X ~ Par (β(α ))  (12) 

if −log X ~ Erlang-truncated exp (β(α )) then X ~  pow (β(α ))  (13)
. 

3. RELIABILITY CHARACTERISTICS
The reliability function R(x) is an important tool for characterizing life phenomenon. R(x) is 
analytically expressed as R(x) = 1 − F(x). Under certain predefined conditions, the reliability 
function R(x) gives the probability that a system will operate without failure until a specified time 
x. The reliability function of the Extended Erlang-Truncated Exponential (EETE) distribution is
given by
𝑅(𝑥) = 1 − 1 − 𝑒 ( )  , 0 ≤ 𝑥 < ∞, 𝛼, β,   λ >  0  (14) 
Another important reliability characteristics is the failure rate function. The failure rate function 
gives the probability of failure for a system that has survived up to time x. The failure rate 
function h(x)  is mathematically expressed h(x) = f(x)/R(x) . The failure rate function the 
Extended Erlang-Truncated Exponential (EETE) distribution is given by: 

 ℎ(𝑥) =
  ( ) [ ]  

[ ]
,  0 ≤ 𝑥 < ∞, 𝛼, β, λ >  0

Figure 2. Possible shapes of the reliability function 𝑅(𝑥) (left) and failure rate function ℎ(𝑥) (right) of the 
Extended Erlang-Truncated Exponential (EETE) distribution for fixed parameter values of 𝛽 and 𝜆 
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4. CHARACTERISTION RESULTS BASED ON UPPER RECORDS

In this section we consider a relation characterizing the Erlang-Truncated Exponential 
distribution based on order statistics and record statistics. This generalizes some previous 
characterization results and uses upper as well as lower order statistics. It has been assumed here 
throughout that the df is differentiable w.r.t. its argument.  

THEOREM 4.1 :- 

 A random variable X ( ) be a sequence of i.i.d. non-negative random variables with an absolutely 
continuous distribution having the  r  upper statistic from a sample of size n drawn from a 
continuous DF F  (x) with PDF f (x).  Furthermore, let Y ( )  be the r  upper statistic based on a 
sample of size n, which is drawn from a continuous DF 𝐹 (𝑧) = 𝑃(𝑍 ≤ 𝑧), where Y is independent 
of X. Finally, let the relation 

 𝑋 ( ) 𝑋 ( ) +  𝑍 (15) 

be satisfied for all  1 ≤ 𝑅 < 𝑁 ≤ 𝑛, Then,  �̃�    𝑋 ( ) and Z ~ Erlang truncated exponential 
(βα ) if and  if  𝑌 ~ Erlang truncated exponential(βα ), β >  0, α >  0, λ > 0. 
Proof. We first prove the necessary part. Let the moment generating function (MGF) of 
𝑋 ( ) be 𝑀

( )
(𝑡). Then, (15) implies that

𝑀
( )

(𝑡) = 𝑀
( )

(𝑡) ∙  𝑀 (𝑡)            (16)
Let us now derive the MGF of the 𝑋 ( )based on Erlang truncated exp(βα ). Clearly, in view of 
(15), we get 

𝑀
( )

(𝑡) =
( )

( )!
∫ 𝑒 (( )𝑥 𝑑𝑥 =

∝

∝
 (17) 

Where Γ(. ) is the usual gamma function. On the other hand, in view of (16) 

𝑀 (𝑡) =
( )

( )

( )
( )

=
∝

∝
 (18) 

On comparing (18) with (17), we deduce that 𝑀 (𝑡) is the MGF of Y(𝑁 − 𝑅), i.e., the (𝑁 − R)  
upper record statistics from a sample of size R and is independent of 𝑋 ( )drawn from the DF 
Erlang truncated exp(𝛽(𝛼 ). Hence the proved Necessity part. 

W To prove the sufficiency part. In view of (15) be satisfied with 𝑍    𝑌 ( )  and 
Y ~ exp(𝛽(𝛼 )). Furthermore, let 𝑋 ( )and 𝑋 ( ) in (15) be upper statistic, which are based on an 
unknown DF 𝐹 (x) and they are independent of 𝑌 ( ). Therefore, the convolution relation (3.1) 
implies that  

𝑓
( )

(𝑥) = ∫ 𝑓
 ( )

(𝑦)𝑓
( )

(𝑥 − 𝑦)𝑑𝑦  

 = ( ( ))  

( )!
∫ 𝑒 ( )( ) × [𝑥 − 𝑦] 𝑓

( )
(𝑦)𝑑𝑦   (19) 

Differentiating both the sides of (19) 𝑤. 𝑟. 𝑡. x, we get 
𝑑

𝑑𝑥
𝑓

( )
(𝑥) =

(𝛽(𝛼 ))

(𝑁 − 𝑅 − 2)!
𝑒 ( )( ) × [𝑥 − 𝑦] 𝑓

( )
(𝑦)𝑑𝑦

−
( ( ))

( )!
∫ 𝑒 ( )( ) × [𝑥 − 𝑦] 𝑓

( )
(𝑦)𝑑𝑦  (20) 

and by using the representation (19), we get 

𝑓
( )

(𝑥) =
( ( ))  

( )!
∫ 𝑒 ( )( ) × [𝑥 − 𝑦] 𝑓

( )
(𝑦)𝑑𝑦  (21) 

and by combing (20) and (21), weget 
𝑓

( )
(𝑥) = 𝛽(𝛼 )[𝑓

( )
(𝑥) − 𝑓

( )
(𝑥)] 

or equivalently, by integrating from 0 to x 
𝑓

( )
(𝑥) = 𝛽(𝛼 )[𝐹

( )
(𝑥) − 𝐹

( )
(𝑥)] (22)
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Now, by using the relation (II) of  [5] and [9] on page 75, we get 

𝐹
( )

(𝑥) − 𝐹
( )

(𝑥) =
[ ( )]

( )!
 [𝐹 (𝑥)]  (23) 

Therefore, by combing (1), (22) and (323), we have 
𝑓 (𝑥)

𝐹 (𝑥)
= 𝛽(𝛼 )  

Hence, the complete sufficient part, F (𝑥) = [1 − 𝑒 ( ) ] , 𝑥 > 0, β >  0, ∝>  0, λ > 0. 
Remark 4.1. ([7], Remark 1) have shown that for two adjacent upper records 
𝑋 ( )  𝑋 ( ) +  𝑌

Then, 𝑌 𝑋 ( ) and Y ~ exp(βα ) if and  if  𝑋 ~ exp(1), β >  0, ∝> 0, λ > 0 . 
Remark 4.2. [14] and [6] have shown that 
𝑋 ( ) 𝑋 ( ) +  𝑍 
Then,  𝑍    𝑋 ( ) and Y ~ exp(βα ) if and  if  𝑋 ~ exp(1), β >  0, ∝> 0, λ > 0.

Remark 4.3. [11]  have shown  
𝑋 ( ) 𝑋 ( ) +  𝑍 
Then,  𝑍    𝑋 ( ) and Y ~ Ga(𝑁 − 𝑅, 1) if and  if  𝑋 ~ exp(1), β >  0, ∝> 0, λ > 0. 
Corollary 4.1. Assume that the RVs X and Y are independent, as we assumed in Theorem 4.1. By 
replacing the additive relation (15) by the multiplication relation 
𝑋 ( ) 𝑋 ( ) +  𝑍 (24) 
be satisfied for all  1 ≤ 𝑅 < 𝑁 ≤ 𝑛, Then,  𝑍    𝑋 ( ) and Y ~ exp(βα ) if and  if  𝑋 ~ 𝑃𝑎𝑟(βα ), 
β >  0, ∝> 0, λ > 0. 
Proof. Here the proof immediately follows, by noting that if X ~   𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼 )) , then 
log 𝑋~ 𝑒𝑥𝑝 (𝛽(𝛼 )) and 
log 𝑋 ( )      log 𝑋 ( ) + log 𝑍 
which implies 

𝑋 ( ) 𝑋 ( ) +  𝑍 

 Corollary 4.2. Assume that the RVs X and Y are independent, as we assumed in Theorem 4.1. By 
replacing the additive relation (15) by the multiplication relation 
𝑋 ( ) 𝑋 ( ) +  𝑍  (25) 
be satisfied for all  1 ≤ 𝑅 < 𝑁 ≤ 𝑛, Then,  𝑍    𝑋 ( ) and Y ~ exp(βα ) if and  if  𝑋 ~ 𝑃𝑜𝑤(βα ), 
β >  0, ∝> 0, λ > 0. 
Proof. The Corollary can be proved by considering if X ~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼 ))  , then 
−logX ~  𝑒𝑥𝑝(𝛽(𝛼 )) and

−𝑙𝑜𝑔𝑋 ( )
∗ − 𝑙𝑜𝑔 𝑋∗𝑋 ( )

∗ − log 𝑌∗

which implies 
𝑋 ( )

∗ 𝑋 ( )
∗    𝑌∗ 

5. CHARACTERISTION RESULTS BASED ON ORDER STATISTICS

THEOREM 5.1 :- 
 A random variable 𝑋 :  be a sequence of i.i.d. non-negative random variables with an absolutely 
continuous distribution having the 𝑅  order statistics from a sample of size 𝑛  drawn from a 
continuous DF 𝐹  (x) with PDF 𝑓 (𝑥).  Furthermore, let 𝑌 :  be the 𝑟  order statistics based on a 
sample of size n , which is drawn from a continuous DF 𝐹 (𝑦), where Y is independent of X. 
Finally, let the relation  

𝑋 : 𝑋 : +  𝑍,  (26) 
be satisfied for all  1 ≤ 𝑅 < 𝑁 , Then,  𝑍    𝑋 :  and Y ~ exp(βα ) if and  if  𝑋 ~ exp(βα ), 
β >  0, ∝>  0, λ > 0. 
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 Proof. The necessary part can be proved easily using mgf. Namely, let in view of (26) be satisfied 
with 𝑋 :  be 𝑀

:
(𝑡). Then, (26) implies that 

𝑀
:  (𝑡) = 𝑀

:
(𝑡) ∙  𝑀 (𝑡)  (27) 

Let us now derive the MGF of the 𝑋
:  based on Erlang truncated exp(βα ). Clearly, in view of 

(26), we get 

𝑀
:  (𝑡) =

( ) ( )

( )! ( )
∫ [𝑒 ( )]   [1 − 𝑒 ( ]   𝑒 ( )𝑑𝑥  (28) 

Which by using the transformation y = 𝑒 ( ) takes the form 

𝑀
:  (𝑡) =

( ) (
∝

)

( ) (
∝

)
 (29) 

Where Γ(. ) is the usual gamma function. On the other hand, in view of (28) 

𝑀 (𝑡) =
:  ( )

:  ( )
=

( ) (
∝

)

( ) (
∝

)
 (30) 

On comparing (30) with (29), we deduce that 𝑀 (𝑡) is the MGF of  𝑌 : , i.e., the (𝑁 − R)  
order statistics from a sample of size (n − R)drawn from the DF Erlang truncated exp(𝛽(𝛼 )) and 
is independent of 𝑋 :  drawn from . This completes the proof of the necessity part.  
while the proof of the sufficiency part follows closely as the sufficiency part of Theorem 5.1. 
Namely, let the representation (26) be satisfied with 𝑌    𝑋 : and Y ~  exp( βα ). 
Furthermore, let 𝑋 :  and 𝑋 :  in (26) be order statistics, which are based on an unknown 
DF 𝐹 (x) and they are independent of 𝑋 : . Therefore, the convolution relation (26) implies that  

𝑓
:

(𝑥) = 𝑓
:

(𝑦)𝑓
:

(𝑥 − 𝑦)𝑑𝑦 

 = ( ) ( )!

( )! ( )!
∫ 𝑒 ( )( ) × [1 − (𝑒 ( )( ))] 𝑓

:
(𝑦)dy  (31) 

By differentiating both the sides of (31) with respect to x, we get 

 :
( )

=
( ( ))  ( ) ( )!

( )! ( )!
∫ [𝑒 ( ) ( )]( ) × [1 − 𝑒 ( )( )] 𝑓

:
(𝑦)d 

−
( ( ))  ( ) ( )!

( )! ( )!
∫ [𝑒 ( )( )] × [1 − (𝑒 ( )( )) ] 𝑓

:
(𝑦)dy 

        = 𝛽(𝛼 ) (𝑛 − 𝑁 + 1) [𝑓
:

(𝑥) − 𝑓
:

(𝑥)] 

Or equivalently, by integrating from 0 to x,   

       𝑓 ( , )(𝑥) = 𝛽(𝛼 )(𝑛 − 𝑁 + 1)[𝐹 ( , )(𝑥) − 𝐹 ( , )(𝑥)]  (32) 

Now, by using the relation of [13], 
( )

( )
= 𝛽(𝛼 ) 

which implies that 

F (𝑥) = [1 − 𝑒 ( ) ], β >  0, ∝ >  0, λ > 0, x > 0  

This complete the proof of the sufficiency part, as well as the proof of Theorem 4.1. 

Corollary 5.1. A random variables (RVs)  X and Y are independent, as we assumed in Theorem 
5.1. By replacing the additive relation (26) by the multiplicative relation 

𝑋 : 𝑋 :    . 𝑍  (33) 
 Then,   𝑍    𝑌 :  and Y ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼 )) if and only if  X ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼 )) 
Proof. The  proof  follows exactly as the proof of Corollary 4.1. 
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Remark 5.1. [7] have proved that 
𝑋 :   𝑋 :  +   𝑈 

Where U ~ exp (n − R + 1) if and only if 𝑋 ~exp (1). 
Remark 5.2. [11] have shown that  

𝑋 :  𝑋 :  +   𝑈 
Where U    −𝑙𝑜𝑔 𝑀  W ~ Be (n − R + 1, 𝑁 − R  if and only if 𝑋 ~exp (1). 
Corollary 5.2. A random variables (RVs)  X and Y are independent, as we assumed in Theorem 
5.1. By replacing the additive relation (26) by the multiplicative relation 

𝑋∗
: 𝑋∗

: ∙  𝑍∗ ,  (34) 
Then,  𝑍∗ 𝑌∗

:  and 𝑌∗~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼 )) if and  if  𝑋∗ ~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼 ), β > 0, ∝>  0, λ > 0 . 
Proof.  To prove the corollary, we note that 
−log𝑋 : −𝑙𝑜𝑔 𝑋 : − 𝑙𝑜𝑔𝑋 :

implies 
𝑋 : 𝑋 :  +   𝑋 :  
Or, 
𝑋 : 𝑋 :  +   𝑋 :  

THEOREM 5.2 :- 

A random variable X :  be a sequence of i.i.d. non-negative random variables with an absolutely 
continuous distribution having the R  order statistics from a sample of size n drawn from a 
continuous DF F  (x) with PDF f (x).  Furthermore, let Y :  be the R  order statistics based on a 
sample of size n , which is drawn from a continuous DF F (z), where Z is independent of X. 
Finally, let the relation  

𝑋 : 𝑋 : +  𝑍,  (35) 
be satisfied for all  1 ≤ 𝑅 < 𝑁 , Then,  𝑍    𝑋 :  and Y ~ exp(βα ) if and  if  𝑋 ~ exp(βα ),  β >  0,

∝>  0, λ > 0. 
 Proof. We first prove the necessary part. Let the moment generating function (MGF) of 
𝑋 :  be 𝑀

:
(𝑡). Then, (38) implies that 

𝑀
:  (𝑡) = 𝑀

:
(𝑡) ∙  𝑀 (𝑡)  (36) 

Let us now derive the MGF of the 𝑋
:  based on Erlang truncated exp(βα ). Clearly, in view of 

(26), we get 

𝑀
:  (𝑡) =

( ) ( )

( )! ( )
∫ [𝑒 ( )]   [1 − 𝑒 ( ]   𝑒 ( )𝑑𝑥  (37) 

Which by using the transformation y = 𝑒 ( ) takes the form 

𝑀
:  (𝑡) =

( ) (
∝

)

( ) (
∝

)
 (38) 

Where Γ(. ) is the usual gamma function. On the other hand, in view of (3.14) 

𝑀 (𝑡) =
:  ( )

:  ( )
=

( ) (
∝

)

( ) (
∝

)
 (39) 

On comparing (39) with (38), we deduce that 𝑀 (𝑡) is the MGF of  𝑌 : , i.e., the (𝑁 − R)  
order statistics from a sample of size (n − R)drawn from the DF Erlang truncated exp(𝛽(𝛼 )) and 
is independent of 𝑋 :  drawn from . This completes the proof of the necessity part.  
while the proof of the sufficiency part follows closely as the sufficiency part of Theorem 4.1. 
Namely, let the representation (26) be satisfied with 𝑍    𝑋 : and Y ~  exp( βα ). 
Furthermore, let 𝑋 :  and 𝑋 :  in (26) be order statistics, which are based on an unknown 
DF 𝐹 (x) and they are independent of 𝑋 : . Therefore, the convolution relation (26) implies that   
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𝑓
:

(𝑥) = 𝑓
:

(𝑦)𝑓
:

(𝑥 − 𝑦)𝑑𝑦 

=
( ) 

(  , )
∫ 𝑒 ( )( )  × [1 − (𝑒 ( )( ))] 𝑓

:
(𝑦)dy  (40) 

By differentiating both the sides of (40) with respect to x, we get 

:
( )

=
( ( ))   ( )

(  , )
∫ [𝑒 ( ) ( )]( ) × [1 − 𝑒 ( )( )] 𝑓

:
(𝑦)dy 

−
(𝛽(𝛼 ))  (𝑛 − 𝑅 + 1)

𝐵(𝑛 − 𝑅 + 1 , 𝑅)
[𝑒 ( )( )] × [1 − (𝑒 ( )( ))] 𝑓

:
(𝑦)𝑑𝑦 

 = 𝛽(𝛼 ) (𝑛) [𝑓
:

(𝑥) − 𝑓
:

(𝑥)] 

Or equivalently, by integrating from 0 to x, 

        𝑓
:

(𝑥) = 𝛽(𝛼 )(𝑛)[𝐹 ( , )(𝑥) − 𝐹 ( , )(𝑥)]  (41) 

Now, by using the relation of [13], we get 

𝐹 ( , )(𝑥) − 𝐹 ( , )(𝑥) =
𝑛 − 1

𝑁 − 1
[𝐹 (𝑥)] [1 − 𝐹 (𝑥)]   (42) 

Therefore, by combing (1), (41) and (42), we get 

𝑓 (𝑥)

𝐹 (𝑥)
= 𝛽(𝛼 ) 

which implies that 

F (𝑥) = [1 − 𝑒 ( ) ], β >  0, ∝ >  0, λ > 0, x > 0  

This complete the proof of the sufficiency part, as well as the proof of Theorem 4.1. 

Corollary 5.1. A random variables (RVs) X and Y are independent, as we assumed in Theorem 
5.2. By replacing the additive relation (35) by the multiplicative relation 

𝑋 : 𝑋 :    . 𝑍  (43) 
 Then,   𝑍    𝑌 :  and Y ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼 )) if and only if  X ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼 )). 
Proof. The proof follows exactly as the proof of Corollary 4.1. 
Corollary 5.2. A random variables (RVs) X and Y are independent, as we assumed in Theorem 
3.2. By replacing the additive relation (26) by the multiplicative relation 

𝑋∗
: 𝑋∗

: ∙  𝑍∗ ,  (44) 
Then,  𝑍∗   𝑌∗

:  and 𝑌∗~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼 )) if and  if  𝑋∗ ~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼 ), β > 0, ∝>  0, λ > 0 . 
Proof.  To prove the corollary, in view of (11) and (20).  

6. APPLICATIONS

Many authors have considered prediction problems based on samples of random 
sizes, The importance of the order statistics in the reliability theory is attributed to the fact that 
the 𝑟  order statistics (n − r + 1)   out-of-n  system made up of 𝑛  identical components with 
independent life lengths. On the other hand, in dealing with censored samples, where the life-
test is terminated after observing the 𝑟  failure (Type II censoring), or the termination of the test 
occurs after a given time lapse (Type I censoring), the complete survival times can not usually be 
observed (due to time or cost). In many biological and agriculture problems, we often come across 
a situation where the sample size is not deterministic because either some observations get lost 
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 for various reasons, or the size of the target population and its representative sample cannot be  
determined well. For example, assume that the inhabitants of a populous town are exposed to a 
dose of radiation resulting from an atomic accident, or exposed to an infection of an unknown 
epidemic. Furthermore, assume that our interest focuses on the time at which r persons would 
die among a big random sample of size n that is drawn from the residents of this town. Since the 
number of infected people in this town is unknown and changes randomly with time, the drawn 
sample contains a random number of infected and non-infected people. Accordingly, the sample 
size of the sub-sample of the infected people will be a non-negative integer valued RV, e.g.N, and 
it will be described by a sequence of independent and identically distributed RVs 
𝑋 , 𝑋 , ⋯ , 𝑋 . Therefore, the 𝑟  smallest order statistic will be denoted by 𝑋 : , which represents 
the time at which r persons will die. 

7. CONCLUSIONS

In this paper we consider the equality by distribution of the form Y   XV, where X and V are two 
independent random variables. It should be noted that the random contraction–dilation schemes 
have important applications in many areas such as economic modeling and reliability. The 
characterization results given in Section 4 can be used in developing goodness-of-fit tests for the 
corresponding probability distributions. This paper deals with the generalized order statistics 
and dual generalized order statistics within a class of Erlang-Truncated Exponential distribution. 
Two theorems for characterizing the general form of distribution based on generalized order 
statistics dual generalized order statistics are given. Special cases are also deduced. 
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Abstract

The geometric process (GP) has been applied to estimate constant stress accelerated life testing for the
Frechet failure item with time-censored data. A geometric process (GP) is developed by the failure time
of tested items when stress levels are constantly rising. The estimates of the various parameters are
calculated using the maximum likelihood estimation procedure. The asymptotic variance of estimates
is obtained using a Fisher information matrix. The asymptotic variance is then used to calculate the
distribution parameter asymptotic interval values. The statistical properties and confidence intervals of
the required parameters are then illustrated using a simulation technique.

Keywords: Frechet Distribution, Geometric Process, Maximum Liklihood Estimate, Asymptotic
Confidence Interval Estimate, Simulation Study.

I. Introduction

The most common approach to product evaluation is accelerated life testing (ALT), which gives
the necessary details on the product’s life under normal usage. It’s widely employed in the
manufacturing sector for the purpose of enhancing product quality. In order to gather data
swiftly than under normal conditions, it enables the researcher to enhance the stresses on the life
distribution parameters. Because working under normal conditions would be time consuming, it
is impractical to test items under greater stress than is normal in order to induce early failure.
The life distribution of a product, as well as any related characteristics under normal stress, must
be extrapolated from test data using accelerated life analysis. Comparing such a test to tests
conducted under normal conditions, time and money are saved.

Making the decision as to what stress should be imposed and how is the most challenging job
in Accelerated Life Testing. The ALT contains a variety of stress loading types, such as constant
stress , progressive stress, step stress, random stress and cyclic stress. ALT has mainly two
types of data that is complete (every failure time is available) and censored (some failure time is
unavailable).
Numerous authors have given their perspective on accelerated life testing (for constant stress),
references includes [1, 2, 3, 4]. Yang[5], introduced optimal design using a four-level ALT and
compared it with three-level ALT for different censoring schemes. ALT utilised Lam’s[6] GP
concept to investigate the problem of repair replacement. ALT plans for Generalized Exponential
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Distribution under GP was analyse by Lone[7]. A great number of literature on ALT under GP
model are (see,[8, 11, 9, 10]). Zhou[12] showed ALT with progressive hybrid censoring under
geometric process for Rayleigh distribution. And the same time Huang[13] preseneted GP for
exponential failure model in respect of complete as well censored observation. Fan [14] explored
the constant ALT design for the generalised gamma model. For life distributions like exponential
and lognormal distributions, Chen[15] discovered Bayesian approximations of the parameters
in a generalised linear model (GP). So many works has done on GP in ALT, see Lone SA[16],
Kamal M[17], Lone SA[18], Kamal M[19], Zarrin S[20], Lone SA[22], Lone SA[23], Ismail[24],
Lone SA[25], Aly H[26], Alam I[27]. Using Informative and Noninformative Priors, Sindhu[28]
performed a Bayesian Study for Censored Shifted Gompertz Mixture Distributions. Nassr, SG[29]
extended Weibull distribution under adaptive type II progressive hybrid censoring. Hemmati,
F[30] provided the log-normal distribution under type-II progressive hybrid censoring . For
the Modified Kies exponential distribution, Hussam E[31] investigated simple and multiple
ramp-stres ALT design for type-II censored data and Binomial Removal.

II. Model Description and Testing Procedure

I. Geometric Process (GP)

A sequence of stochastic variable {Xn}, n = 1, 2, 3... is referred to as a Geometric Process (GP) if
{λn−1Xn, n = 1, 2, 3...} established a renewal process. Where, ratio of GP λ(> 0) is a real valued.
It may be demonstrated that if {Xn}, n = 1, 2, 3... develops a GP and there exist a random variable
having pdf f (x) with mean γ and variance σ2 then the subsequent pdf of Xn will be given as
λn−1 f (λn−1x) with mean E(Xn) = γ/λn−1 and variance V(Xn) = σ2/λ2(n−1).

II. Frechet Failure Model

Probability density function of the Frechet variable is :

f (x) = αβαx−α−1e−(
x
β )
−α

, x > 0, α > 0, β > 0 (1)

where, α(shape) and β (scale) are parameters of the life distribution:

Figure 1: PDF at different shapes and fixed scale (β = 2)
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Figure 2: CDF at different shapes and fixed scale (β = 2)

CDF of Frechet variable takes the following expression:

F(x) = e−(
x
β )
−α

, x > 0, α > 0, β > 0 (2)

Survival function for the Frechet variable is given as:

S(x) = 1− e−(
x
β )
−α

, x > 0 (3)

The hazard function (HF) is

h(x) =
αβαx−α−1e−(

x
β )
−α

1− e−(
x
β )
−α (4)

III. Assumptions

1. The lifetime of failed items follows Frechet distribution at each stress.

2. Supoose a life test is organized with s number of stresses(increasing order). A random
sample of n items are place on each stress and begin to operate simultaneously. Let the
failure time of ith(ranges from 1 to n) item in kth(ranges from 1 to s) stress is denoted by xki.
Now, failed items are removed and the test will run till the complete sample is exhausted at
a predetermined t(censoring time)at each stress.

3. Stress is a log-linear function of the scale parameter β i.e., log(βk) = a + bSk, where a and b
are unknown parameters, values dependind on the nature of products and test method.

4. Let say the lifespan of items on each stress is represented by random variables X0, X1, X2, ..., Xs,
where X0 is the lifespan of the items under normal stress and sequence Xk, k = 1, 2, ...s for-
mulates a GP with ratio parameter λ > 0.

All of the preceding assumptions, except for the last one assumption (4th assumption), are
generally accepted in the ALT. Last one is based on the notion of a geometric procedure that
is better than the traditional one without making computation more difficult. The following
theorem, which presupposes a log linear function between life and stress is demonstrates as:

Theorem 1. If stresses in an ALT increases constantly, then the lifespan of products at each stress
develops a GP. i.e., if the difference (Sk+1 − Sk) = (∆S )constant, for k = 1, 2, ..., s− 1, then {Xk},
k = 1, 2, ..., s develops a GP.

  RT&A, No.3 (74)  
Volume 18, September 2023  

633



Abdul Kalam, Cheng Weihu, Ahmadur Rahman, Mohammad Ahmad
ESTIMATION OF FRECHET PARAMETERS WITH TIME-CENSORED DATA
IN ACCELERATED LIFE TESTING UTILISING THE GEOMETRIC PROCESS

Proof.Last assumption (4th assumption) states that,

log
(

βk+1
βk

)
= b(Sk+1 − Sk) = b (∆S ) (5)

This demonstrates that the excessive stresses comprise an arithmetic series with a difference ∆S.
(constant ) Now, the previous expression can be rewritten as:

βk+1
βk

= eb∆S =
1
λ

, (6)

from (6), we have

βk =
1
λ

βk−1 =
1

λ2 βk−2 = ... =
1

λk β

The lifetime pdf of an object has the following structure at the kth stress level

f (x) = αβαx−α−1e−(
x
β )
−α

fXk (x) = λ−αkrk αrk βαrk xki e

(
− λk xki

β

)
(7)

And the cdf is written as

FXk (x) = e

(
− λk xki

β

)
(8)

This shows that
fXk (x) = λk fX0(λ

kx) (9)

Hence, from the theory of GP and using the equation(9) it is obvious that if the pdf of
lifespan of the X0 (normal stress) is fX0(x), then the pdf of the lifespan Xk (kth stress) is given
by λk fX0(λ

kx). Finally , it is evident that lifespan of a arithmetically increasing stresses results a
GP. �

IV. Maximum Likelihood Estimation

The most significant and frequently applied estimation technique is the maximum likelihood
(ML) approach. The applicability of other methods is restricted, whereas it can be used with any
probability distribution. ML estimation achievement in ALT is more complicated, and closed-form
estimates of parameters are typically unavailable. Consequently, to calculate them, an arithmetic
technique Newton Raphson (NR) method has been used.
Let’s say the test is stopped at time t for each stress level, and only xki(≤ t) failures are recorded.
Suppose that rk ≤ n failures at the kth stress levels are obtained prior to suspending the test,
and remaing (n− rk) items are survived till the entire test without any failure. The likelihood
function of a particular stress is provided for time-censored Frechet failure data under GP with s
number of stress:

Lk =
n!

(n− rk)!

[
λ−αkrk αrk βαrk

rk

∏
i=1

xki e

(
− λk xki

β

)][
1− e

(
− λkt

β

)]n−rk

(10)

Consequently, the likelihood function for overall stresses is
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Ls(α, β, λ) =
k

∏
s=1

Lk

=
s

∏
k=1

n!
(n− rk)!

[
λ−αkrk αrk βαrk

rk

∏
i=1

xki e

(
− λk xki

β

)][
1− e

(
− λkt

β

)−α]n−rk
(11)

Taking log both sides and the likelihood function for the above equation is

l = ln Ls(α, β, λ)

=
s

∑
k=1

[
ln
(

n!
(n− rk)!

)
+ rk(ln α + ln β− αk ln λ)− (α + 1)

rk

∑
i=1

ln xki −
(

λk

β

)−α rk

∑
i=1

x−α
ki

+ (n− rk) ln

1− e

(
− λkt

β

)−α

] (12)

MLE’s of different parameters α, β and λ has found after solving the these normal equations
∂l
∂α , ∂l

∂β and ∂l
∂λ = 0.

∂l
∂α

=
s

∑
k=1

[
− k rk ln λ + α−1rk −

rk

∑
i=1

ln xki +

(
λk

β

)−α

ln

(
λk

β

)
rk

∑
i=1

xki − (n− rk)A−1

×

e

(
− λkt

β

)−α (
−λkt

β

)−α

ln

(
−λkt

β

)
] (13)

∂l
∂β

=
s

∑
k=1

[
β−1rk −

(
λk

β

)−α

ln β
rk

∑
i=1

xki + (n− rk)A−1

e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β


]

(14)

∂l
∂λ

=
s

∑
k=1

[
− α k rkλ−1− βαα k λ−(αk+1)

rk

∑
i=1

xki− (n− rk)A−1

α k λ−(αk+1)
(

t
β

)−α

e

(
− λkt

β

)−α

]

(15)

where A = 1− e

(
− λkt

β

)−α

As we can see,expressions(13), (14) and (15) are not linear. Consequently, it is challenging
to find a closed-form answer. Therefore, the estimate of α, β and λ is obtained by concurrently
solving these expressions using the NR method.

V. Asymptotic Confidence Interval

Under some specific regularity restrictions, large sample theory assures the consistency and
normality of ML estimators. Because the estimate of parameters are not forming closed form,
exact confidence intervals of the parameters cannot be determined . As a consequence, asymptotic
confidence intervals rather than exact confidence intervals develop using the asymptotic property
of MLE’s.
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Providing the The Fisher Information Matrix (FIM) as:

F =


− ∂2l

∂α2 − ∂2l
∂α∂β − ∂2l

∂α∂λ

− ∂2l
∂β∂α − ∂2l

∂β2 − ∂2l
∂β∂λ

− ∂2l
∂λ∂α − ∂2l

∂λ∂β − ∂2l
∂λ2


The components of FIM can be obtained as follows:

∂2l
∂α2 =

s

∑
k=1

[
− α−1rk −

(
λk

β

)−α{
ln

(
λk

β

)}2 rk

∑
i=1

xki − (n− rk)A−2

×

e

(
− λkt

β

)−α (
−λkt

β

)−α

ln

(
−λkt

β

)
A

(λkt
β

)−α

− 1

− e

(
− λkt

β

)−α (
−λkt

β

)−α

]

(16)

∂2l
∂β2 =

s

∑
k=1

[
β−2 rk −

(
λk

β

)−α

(ln β)2
rk

∑
i=1

xki + (n− rk)A−2

×

e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β

A

βα ln β− e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β

− 1


] (17)

∂2l
∂λ2 =

s

∑
k=1

[
− α k rkλ−2 + βα α(α + 1) k λ−(αk+2)

rk

∑
i=1

xki + (n− rk)A−2

×

α k λ−(αk+2)
(

t
β

)−α

e

(
− λkt

β

)−α
A

(
α kλ−(αk+1)

(
t
β

)−α
)
+

(
t
β

)−α

e

(
− λkt

β

)−α


]
(18)

∂2l
∂α∂β

=
s

∑
k=1

[
−
(

λk

β

)−α (
1
β

)(
1 + α ln

(
λk

β

))
rk

∑
i=1

xki + (n− rk)A−2

×

e

(
− λkt

β

)−α (
−λkt

β

)−α (
1
β
+ α ln

(
λk

β

))
+

(
1
β

)
ln β− e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β


]

(19)

∂2l
∂α∂λ

=
s

∑
k=1

[
− λ−1k rk +

(
λk

β

)−α
k
λ

 1
β
+ α ln

(
λk

β

)−α
+ (n− rk)A−2

×

α k λ−(αk−1)

(
−λkt

β

)−α

e

(
− λkt

β

)−α (
α kλ−(αk+1)

(
t
β

)−α
)
+

(
t
β

)−α

e

(
− λkt

β

)−α

]

(20)
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∂2l
∂β∂λ

=
s

∑
k=1

[
− λ−1kα

(
λk

β

)−α

ln β
rk

∑
i=1

xki − (n− rk)A−2

×

e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β

(
1
β
+ α ln

(
λk

β

))
− e

(
− λkt

β

)−α (
−λkt

β

)−α

ln β


] (21)

The var-covariance matrix is:

F−1 =


− ∂2l

∂α2 − ∂2l
∂α∂β − ∂2l

∂α∂λ

− ∂2l
∂β∂α − ∂2l

∂β2 − ∂2l
∂β∂λ

− ∂2l
∂λ∂α − ∂2l

∂λ∂β − ∂2l
∂λ2


−1

The diagonal elements in the above matrix are representing variances terms, and the non-diagonal
are indicating covariances .

Estimates of asymptotic confidence interval for the proposed parameters α, β and λ are written
as: [

α̂± Z1− ϕ
2

(
SE(α̂)

)]
,
[

β̂± Z1− ϕ
2

(
SE(β̂)

)]
and

[
λ̂± Z1− ϕ

2

(
SE(λ̂)

)]
respectively.

III. Simulation study

Simulation study is a computational approach to analyze the behavior of the function. The
uniform distribution has used to better understand the characteristics of the parameters. The
proposed simulation method going through these steps.

1. Generating a pseudo random sample using the distribution u[0, 1].

2. Inverse-cdf method applied to transform the equation (8) in terms of u. Expression of
xki(≤ t) is:

xki =
β

λk (− log u)1/α

3. 5000 random samples of size 25, 50, 80, 120 and 150 have been produced from the Frechet
Distribution.

4. Opted a fixed censoring time t = 3.5 at normal condition.

5. Taken values of number of failed items rk = (0.8× n), where n is sample size.

6. Chosen stress levels are s = 4, 6 and 8 along with parameter values α = 1.4, λ = 0.5, β = 1.1.

7. Finally, optim () function in R-Programming Software has been used to calculate the ML
estimates of mean along with various statistical measurements such as root mean squared
error (RMSE), relative absolute bias (RAB), and lower and upper limit of 95% confidence
intervals for different samples of different sizes.
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Table 1: Simulation findings for α = 1.4, λ = 0.5, β = 1.1 and s = 4

Sample
size(n)

Failed
items(rk)

Estimates Mean RMSE RAB Lower
limit

Upper
limit

α 1.3478 0.0721 0.0373 1.2065 1.4891

25 20 λ 0.4010 0.0523 0.1980 0.2985 0.5035

β 1.0501 0.1230 0.0454 0.8090 1.2912

α 1.3731 0.0515 0.0192 1.2722 1.4740

50 40 λ 0.3044 0.0415 0.3912 0.2231 0.3857

β 1.0623 0.0871 0.0343 0.8916 1.2330

α 1.3836 0.0409 0.0117 1.3034 1.4638

80 64 λ 0.7133 0.0328 0.4266 0.6490 0.7776

β 1.0603 0.0688 0.0361 0.9255 1.1951

α 1.3926 0.0335 0.0053 1.3269 1.4583

120 96 λ 0.5040 0.0456 0.0080 0.4146 0.5934

β 1.0847 0.0561 0.0139 0.9747 1.1946

α 1.3963 0.0300 0.0026 1.3375 1.4551

150 120 λ 0.4659 0.0431 0.0688 0.3814 0.5504

β 1.0847 0.0501 0.0139 0.9865 1.1829

Table 2: Simulation findings for α = 1.4, λ = 0.5, β = 1.1 and s = 6

Sample
size(n)

Failed
items(rk)

Estimates Mean RMSE RAB Lower
limit

Upper
limit

α 1.3218 0.0508 0.0558 1.2222 1.4214

25 20 λ 0.8050 0.0714 0.6100 0.6651 0.9449

β 1.1030 0.1230 0.0027 0.8619 1.3441

α 1.3429 0.0363 0.0407 1.2718 1.4140

50 50 λ 0.8024 0.0513 0.6048 0.7019 0.9029

β 1.1260 0.0710 0.0236 0.9868 1.2652

α 1.3571 0.0288 0.0306 1.3006 1.4135

80 64 λ 0.3097 0.0363 0.3806 0.2386 0.3808

β 1.0979 0.0561 0.0019 0.9879 1.2079

α 1.3648 0.0236 0.0251 1.3185 1.4110

120 96 λ 0.1058 0.0213 0.7884 0.0641 0.1475

β 1.0921 0.0459 0.0072 1.0021 1.1821

α 1.3683 0.0212 0.0226 1.3267 1.4098

150 120 λ 0.0504 0.0113 0.8992 0.0283 0.0725

β 1.0900 0.0411 0.0091 1.0094 1.1706
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Table 3: Simulation findings for α = 1.4, λ = 0.5, β = 1.1 and s = 8

Sample
size(n)

Failed
items(rk)

Estimates Mean RMSE RAB Lower
limit

Upper
limit

α 1.3812 0.0454 0.0134 1.2922 1.4702

25 20 λ 0.2087 0.0583 0.5826 0.0944 0.3229

β 1.1030 0.0977 0.0027 0.9115 1.2945

α 1.3690 0.0285 0.0221 1.3131 1.4249

50 40 λ 0.8024 0.0367 0.6048 0.7305 0.8743

β 1.1505 0.0614 0.0459 1.0301 1.2708

α 1.3692 0.0226 0.0220 1.3249 1.4135

80 64 λ 0.7041 0.0513 0.4082 0.6035 0.8046

β 1.1447 0.0484 0.0406 1.0498 1.2396

α 1.3742 0.0184 0.0184 1.3381 1.4103

120 96 λ 0.7084 0.0273 0.4168 0.6549 0.7619

β 1.1943 0.0395 0.0857 1.1169 1.2717

α 1.3767 0.0165 0.0166 1.3443 1.4090

150 120 λ 0.6099 0.0127 0.2198 0.5850 0.6348

β 1.1681 0.0355 0.0619 1.0985 1.2376

In this study, various measures such as average mean values, RMSE and RAB are calculated
using 5000 replications of different samples to avoid randomness. The results presented in Table
1-3 are based on different sample sizes with parameter values α = 1.4, λ = 0.5, β = 1.1 and
stresses s = 4, 6 and 8 to analyse the performance of the MLEs of the Frechet parameters.
Table 1-3 shows that, nearly all of the parameter estimates in Table 3 result in lesser RMSEs and
RABs compared with the estimates in Table 1-2. In every situation, the RMSEs of the MLEs of the
parameters in Table 1-3 decrease as sample size increases.

IV. Conclusion

In the current study, a Frechet failure item accelerated life testing (ALT) design with time-censored
data has been taken into consideration. The likelihood equation for the Frechet parameter is
built using a geometric process, which is produced by the failure time of tested objects under
constantly increasing stress leveles. Since the likelihood equation does not have the closed-form,
the Newton-Raphson technique is used to calculate the mean, root mean square error (RMSE),
and relative absolute bias (RAB) for the parameters. The results provided in Table 1-3 show that
the estimates are reasonably near to their true values with low RMSEs. A larger sample number
results in lower RMSE values and a narrower confidence interval. This work can be extended for
various censoring schemes such progressive censoring.
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Abstract  

 

The current study aims to assess the structure's reliability using stochastic Hermite surface 

methodology. This approach uses series expansion of standard normal random variables to model 

uncertainty. (i.e., polynomial chaos expansion). The coefficients of the polynomial chaos expansion 

are found through stochastic collocation, which only requires a few performance function evaluations. 

After determining the order of the polynomial and its coefficients, first order methods calculates the 

reliability index. To demonstrate the applicability of the suggested based reliability analysis, failure 

rates were used and the duration for the evaluated were set to be 360 days. Numerical result are 

provided on monthly basics. On the other hand, to achieve our goal, we proposed the 2-parameter 

modified Weibull distribution. The simulation was performed using Maple software. The evaluation 

for each subsystem was displayed in the result and analyses section. The conclusion, however, draws 

a broad conclusion about the study. 

                                        

               Keywords:Reliability, Variables, Polynomials, Stochastic, Simulation, Distributions 

 

 

I. Introduction 

 
Derivatives are challenging to assess. For reliability analysis in this situation, Bucher and Bourgand 

[1] developed the response surface method (RSM). Near the failure region, a multidimensional 

quadratic polynomial in RSM is used to approximate the unknown limit surface. This method has 

recently been widely used by engineers and researchers for a variety of applications, including 

performance evaluation, crash simulation, and reliability-based design optimization. However, since 

the failure region is close to the polynomial approximation of the original limit state, it is frequently 

challenging to determine the ideal separation for limit states with multiple design 

points.Additionally, because this is a deterministic representation, it is unable to accurately depict 
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the stochastic features of the initial limit state. The Askey-Wilson polynomials, which share the 

characteristics of more conventional orthogonal polynomials like the Legendre polynomials or the 

spherical harmonics, are the most general orthogonal polynomials [2].  

A new dynamic reliability assessment method based on the decomposition method and the Hermite 

polynomials approximation is presented for the dynamic reliability analysis of stochastic structures 

under stationary random excitation. In this method, a multi-dimensional dynamic reliability response 

function is additively broken down into a one-dimensional function, and the one-dimensional 

dynamic reliability response function is then approximated using Hermite polynomials. Last but not 

least, the Maple software simulation yields the unconditional reliability of the explicit response 

function, and two expressions show the logic of the suggested approach. A systematic account of 

analytical calculus for distributions can be found in Potthoff-Yan [3]. Ordinary differentiation and 

integration can be thought of as being generalized to arbitrary order in the calculus of fractional order. 

The uncertainty of the rational order of the derivation gave rise to G.W [4]. Leibniz's question, which 

gave rise to the fractional calculus, in 1695 [5]. Recent years have seen a significant increase in interest 

in both theory and application for Jacobi polynomials. For the purpose of solving the multi-term 

fractional differential equations, the shifted Jacobi operational matrix of fractional derivatives and the 

spectral tau approach are combined. [6]. To calculate multi-term FDEs, a new explicit solution is 

created that is targeted for shifted Chebyshev polynomials with flexible degree and fractional order. 

The work in [7] can be used to solve the same linear problem. Laguerre polynomials have been used 

in a number of attempts to solve FDEs using various spectral methods within the realm of numerical 

methods [8]. The research done in [9] led to the creation of a novel time-dependent problem-targeting 

algorithm built on spectral Laguerre approximations. A novel tau method was proposed in a recent 

paper that examined the modified Laguerre functions [10]. Comparative analyses of Weibull 

distribution with Reliability, Availability, Maintainability, and Dependability analyses of an 

industrial system was conducted [14]. The reliability analyses of filtration system using Copula 

approach was conducted [15]. Complex reverse osmosis system was studied by [16] and [17] using 

RAMD analyses. And that of Photovoltaic using the same RAMD analyses was conducted by [18]. 

There is no comparison of the industrial system's performance using the Hermite polynomial and the 

two-parameter Weibull distribution in the literature currently available, this prompt our research. 

Additionally, notice how an industrial process innovation is developing.  

 

II. Methods 

 
Initial value conditions of multi-term fractional differential equations serve as a driving force 

behind many practical issues. The Hermite tau method is modified in this section to include the 

operational matrix in order to solve fractional differential equations. The following lists every step in 

the entire process.  

2.2. The Properties of Hermite Polynomials 
Let  𝛼 = (−∞, ∞) and 𝛾(𝑙) = 𝑒−𝑙2

be the reliability function on 𝛼. Hermite polynomials of degree m 

are defined in their analytical form [11] 

𝑅𝑚(𝑙) = ∑
(−1)𝑘𝑚!(2𝑙)𝑚−2𝑑

𝑑!(𝑚−2𝑑)!

[
𝑚

2
]

𝑑=0                                                                                                                             (1) 

where  𝑅0(𝑙) = 1 and 𝑅1(𝑙) = 2𝑙 

This recurrence relation is satisfied by hermite polynomials.       

    𝑅𝑚+1(𝑙) = 2𝑙𝑅𝑚(𝑙) + 2𝑚𝑅𝑚−1(𝑙)                                                                                                               (2) 
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An orthogonal system is one in which the set of Hermite polynomials is an orthogonal polynomial                                         

∫ 𝑅𝑚(𝑙)𝑅𝑗(𝑙)𝛾(𝑙)𝑑𝑥 = ℎ𝑗𝛿𝑚𝑗
∞

−∞
                                                                                                                        (3) 

 

where  𝛿𝑚𝑗 = 0 ∀ 𝑚 ≠ 𝑗  and 𝛿𝑚𝑗 = 𝑚 ∀ 𝑚 = 𝑗  describes the role of Kronecker and ℎ𝑗 = 2𝑗𝑗! √𝜋 

 

2.3. Fractional integration hermite operational reliability 
We aim to derive a modified reliability equation of an industrial system for Hermite polynomials in 

this section. 

 Let 𝜆(𝑙) ∈ 𝐿2(α), subsequently, 𝜆(𝑙) can be defined as follows using Hermite polynomials 

     𝜆(𝑙) = ∑ 𝑎𝑗𝑅𝑗(𝑙)∞
𝑗=0                                                                                                                                        (4) 

Then, coefficient 𝑎𝑗 can be written as 

    𝑎𝑗 =
1

2𝑗𝑗!√𝜋
∫ 𝜆(𝑙)𝑅𝑗(𝑙)𝛾(𝑙)𝑑𝑙

∞

−∞
,    𝑗 = 0,1, …  .                                                                                              (5) 

The initial (𝑁 + 1) the only consideration is given to terms of Hermite polynomials, such that the 

modified failure rate of the industrial system is in the equation below: 

                                  

    𝜆𝑁(𝑙) = ∑ 𝑎𝑗𝑅𝑗(𝑙)𝑁
𝑗=0 = 𝐴𝑇𝛒(𝑙)                                                                                                                     (6) 

where  

  𝐴𝑇 = [𝑎0 𝑎1 … 𝑎𝑁]  and  𝜙(𝑙) = [𝑅0(𝑙) 𝑅1(𝑙) … 𝑅𝑁(𝑙)]𝑇                                                            (7) 

 

Integration of Hermite vector 𝛒(𝑥) by 𝐽𝑞𝛒(𝑥) the system reliability in table 1 is obtained from the 

following equation. 

     𝐽𝑞𝜙(𝑙) = 𝑷(𝑞)𝛒(𝑙)                                                                                                                                        (8) 

where 𝑞 indicates a fined integer value and 𝑷(𝑞) represents the actual operational reliability of 

integrated  𝛒(𝑙). 

2.4. For the reliability analyses using 2-parameter Weibull distribution 

It is clearly stated by Quek and Ang [12]. If the lifetimes follow the Weibull distribution, the p.d.f. 

 

𝑓(𝑡) = 𝛽𝛼−𝛽𝑡𝛽−1𝑒−(
𝑡

𝛼
)𝛽

                                                                                                                                     (9) 

Where 𝛼  and  𝛽 are the scale and shape parameter of the Weibull distribution respectively. 

The size of the units in which the random variable, t, is measured is reflected by the scale parameter, 

𝛼. The distribution's form changes depending on the shape parameter, 

𝛽. We can create a diverse set of curves that reflect real lifetime failure distributions by modifying the 

value of 𝛽. 

From (1), the Cumulative Distribution Function is given by: 

 

𝐹(𝑡) = 1 − 𝑒−(
𝑡

𝛼
)𝛽

                                                                                                                                            (10) 

From the relation, 

 𝑅(𝑡) = 1 − 𝐹(𝑡)                                                                                                                                              (11) 

We can substitute (2) into (3), and we have: 

       𝑅(𝑡) = 𝑒−(
𝑡

𝛼
)𝛽

                                                                                                                                            (12) 
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Where 𝑅(𝑡) is the reliability or survival function. 

The failure rate function or the hazard function can therefore be derived from the following relation: 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
                                                                                                                                                        (13) 

Substituting (9) and (12) into (13) we have: 

ℎ(𝑡) =
𝛽𝛼−𝛽𝑡𝛽−1𝑒

−(
𝑡
𝛼)𝛽

𝑒
−(

𝑡
𝛼)𝛽

                                                                                                                                      (14) 

ℎ(𝑡) = 𝛽𝛼−𝛽𝑡𝛽−1                                                                                                                                             (15) 

If we consider 𝑀0 to be the number of hours in a year (the size of the population). Out of which 𝑀𝑠 

units (the number of hours that the system is upstate) survive the test. While 𝑀𝑓 fail, then reliability 

function 𝑅(𝑡) is given by: 

𝑅(𝑡) =
𝑀𝑠

𝑀0
=

𝑀0−𝑀𝑓

𝑀0
                                                                                                                                          (16) 

Differentiating both sides of (16) and taking 𝑀0 fixed, the following equation will result 
𝑑𝑅(𝑡)

𝑑𝑡
=

1

𝑀0

𝑑𝑀𝑓

𝑑𝑡
                                                                                                                                                   (17) 

The rate at which component fails can therefore be defined as: 
𝑑𝑀𝑓

𝑑𝑡
= −𝑀0

𝑑𝑅(𝑡)

𝑑𝑡
                                                                                                                                               (18) 

Dividing both sides of the above equation by𝑀𝑠, we obtain the instantaneous probability 𝑔(𝑡) of 

failure, this is: 

𝑔(𝑡) =
1

𝑀𝑆

𝑑𝑀𝑓

𝑑𝑡
= −

𝑀0

𝑀𝑆

𝑑𝑅(𝑡)

𝑑𝑡
                                                                                                                              (19) 

Using equation (16) into (19) we get: 

𝑔(𝑡) = −
1

𝑅(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
                                                                                                                                            (20) 

Integrating both sides of the equation (20) we have: 

∫ 𝑔(𝑡)𝑑𝑡 = − log 𝑅(𝑡)                                                                                                                                     (21) 

 

From the above equation, the 𝑅(𝑡) will be:  

𝑅(𝑡) = 𝑒− ∫ 𝑔(𝑡)𝑑𝑡
𝑥

0                                                                                                                                            (22) 

Where 𝑥 is variable. 

The function 𝑔(𝑡) is called the hazard function or failure rate. Equation (22) can be considered as a 

generic expression of failure as it is applicable to both exponential and non-exponential failure 

distribution. 

 

For our modified Weibull distribution, we compared (22) with (12) 

  (
𝑡

𝛼
)𝛽 = ∫ 𝑔(𝑡)𝑑𝑡

𝑥

0
                                                                                                                                            (23) 

For, 

𝑔(𝑡) = −
1

𝑅(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
 , and the below facts: 

The derivative of a definite integral of a function is the function itself only when the lower limit of 

the integral is a constant and the upper limit is the variable with respect to which we are 

differentiating. To summarize Ulrich et al. [13]: 

• The derivative of an indefinite integral of a function is the function itself. i.e., 
𝑑

𝑑𝑥
∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑥)  

• The derivative of a definite integral with constant limits is 0. i.e., 
𝑑

𝑑𝑥
∫ 𝑓(𝑥)𝑑𝑥 = 0

𝑏

𝑎
   

• The derivative of a definite integral where the lower limit is a constant and the upper limit is a 

variable is a function itself in terms of the given variable (upper bound). 

i.e., 
𝑑

𝑑𝑥
∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑥)

𝑥

𝑎
 where 'a' is a constant and 'x' is a variable. 

(
𝑡

𝛼
)𝛽 = −

𝑀0

𝑀𝑆
(𝑅(𝑡))                                                                                                                                   (24) 

The NMW proposed for the present research follows; 

 

𝑅(𝑡) = −
𝑀𝑆

𝑀0
(

𝑡

𝛼
)𝛽                                                                            (25) 
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III. Results 

 
The numerical values for the 2-parameter Weibull distribution and Hermite polynomial derived 

equations were presented in this section. For the two approaches, comparative analyses were 

conducted. 360 days were allotted for the analyses using the failure rate range of 0.75 to 0.95. 

 
Table 1: Hermite Polynomials reliability with time 

 

 

Tim

e↓  

X→ 

0.75 0.85 0.95 Exp(-

m) 

30 0.9483 0.9385 0.8383 0.7653 

60 0.9245 0.9134 0.8134 0.7446 

90 0.9188 0.9076 0.8075 0.7146 

120 0.9176 0.8962 0.8056 0.7087 

150 0.9171 0.8759 0.7946 0.6801 

180 0.9148 0.8451 0.7676 0.6479 

210 0.9117 0.8153 0.7373 0.6178 

240 0.9092 0.8009 0.7187 0.5929 

270 0.8977 0.7852 0.7089 0.5708 

300 0.8832 0.7657 0.6806 0.5479 

330 0.8633 0.7352 0.6735 0.5188 

360 0.8558 0.7143 0.6566 0.5070 

 

Table 2: 2-Parameter Weibull distribution’s reliability with time 
 

 

Time↓  𝛼→ 0.75 0.85 0.95 Exp(-m) 

30 0.9954 0.7854 0.5855 0.3667 

60 0.9857 0.7789 0.5734 0.3584 

90 0.9787 0.7607 0.5677 0.3499 

120 0.9644 0.7525 0.5537 0.3312 

150 0.9567 0.7457 0.5344 0.3290 

180 0.9439 0.7346 0.5270 0.3043 

210 0.9387 0.7277 0.5145 0.2932 

240 0.9298 0.7190 0.5044 0.2823 

270 0.9124 0.6932 0.4944 0.2732 

300 0.9097 0.6854 0.4797 0.2617 

330 0.8934 0.6724 0.4653 0.2476 

360 0.8862 0.6656 0.4522 0.2332 
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Figure 1: Reliability analyses For failure against repair rate of a system using Hermite Polynomial 
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Figure 2: Reliability analyses For failure against repair rate of a system using 2-parameter Weibull distribution 

 

IV. Discussion 

 
Using the Hermite polynomial method, the result shown in table 1 that corresponds to Figure 1 

demonstrated how the reliability of an industrial system is impacted by the rise in failure rate.  The 

reliability of an industrial system was then shown to be affected as the failure rate was changed from 

0.75 to 0.95 in table 2 that corresponds to Figure 2. When comparing the results in figures 1 and 2, it 

is obvious that the 2-parameter Weibull yields a more accurate result than the Hermite polynomials 

in terms of reliability estimation. Therefore, it is advised that future studies modify the Hermite 

polynomial to increase the dependability of industrial systems. 
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Abstract 

 

The real world is vague, unclear and full of ambiguity, and are inevitable. The classical statistics disregards 

the extreme, aberrant, uncertain values, and hence a new appropriate tool had to surface. The Analysis of 

Variance (ANOVA) method is used to compare the response variable's means between several groups that 

are specified by the factor variable. Another method of data analysis offered by ANOVA is one that is based 

on statistics and is experimental design-driven, or Design of Experiment (DOE). In DOE, there are single 

and two-factor experimental designs depending on, observing the effect of number of factor(s) on output 

variable as a primary interest. Among all the single factor experimental designs, Completely Randomized 

Design (CRD) is the simplest and flexible design. In this design, treatments are randomly allocated to the 

experimental units over the entire experimental material. Each treatment is repeated to increase the 

efficiency of the design. CRD is more appropriate to use when the data is homogenous. The objective that 

deals with the preparation and analysis of experiments is experimental design. The treatments are 

apportioned to the exploratory units at random in the fully randomized experimental design. When the 

observed data are fuzzy observations rather than precise numerical values, the CRD is expanded in this 

study. In this paper, an innovative Triangular Fuzzy Number (TFN) in the fuzzy Completely Randomized 

Design (FCRD) analysis statistical method for evaluating CRD model hypotheses on fuzzy data is 

presented. To convert the fuzzy totally randomized design model into two crisps CRD models using the 

suggested way, and then convert to lower and upper models are used in fuzzy hypothesis. Determine the 

fuzzy hypothesis for the fuzzy CRD model based on the hypotheses of the two crisp CRD models using the 

decision rules.  The fuzzy test appears to be a competitive tool in circumstances with ambiguous data, 

particularly linguistic ambiguity because it is more adaptable than the conventional test of significance. 

This paper presents and illustrates a novel fuzzy triangular number-based approach to fuzzy CRD analysis. 

This paper also explores how flexible a CRD may be when handling uncertain elements. This study 

provides an example of a new method for fuzzy CRD analysis employing TFN.   

 

Keywords: Fuzzy Set, CRD, Fuzzy CRD, Triangular Fuzzy Number, Decision Rules 

 

 

1. Introduction 
 

The Analysis of Variance (ANOVA) was introduced in the 1920s by Prof. R.A. Fisher. This method 

can be used to solve the problems of variations, especially in the agricultural sector. The ANOVA 

has many independent demographic variables and it is a most powerful tool of the test of 

significance. The significance test in terms of t-distribution is the only adequate procedure to test 

the significance of the difference between the two-sample means. In such a situation, when three or 
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more sample means are considered simultaneously, an alternative procedure is needed to test the 

hypothesis that all samples are taken from the same population. This is called ANOVA. The 

foundation for experimental designs was laid in 1935 by Prof. R.A. Fisher. The term design of tests 

is said to be the logical construction of tests, in which the degree of uncertainty can be well 

defined. The basic principles of experimental designs are randomization, replication, and local 

control. The local control is the method of increasing efficiency in test designs. A Completely 

Randomized Design (CRD) means that treatments are assigned to a completely randomized group 

so that each test unit has the same chance of receiving any one treatment. Since the principle of 

local control is not used, the CRD is considered simple and the experimental material is observed, 

but it is seen that the experimental material is not completely homogeneous. It is specifically 

designed to address mathematical uncertainty and inadequate specification and provide a 

systematic tool for dealing with the inherent fuzzy of many problems. The word fuzzy means 

ambiguity (vagueness). Fuzziness occurs when the boundary of information is not clearly cut. In 

1965s Lotfi .A. Zadeh introduced fuzzy sets as an extension of the set with classical notations. The 

classical set theory allows membership of elements in a set of binary terms to be inside. Fuzzy sets 

theory allows the estimated membership function in intervals [0,1]. Sometimes, agricultural data is 

not recorded for natural calamities.  

Therefore, fuzzy synthesis is the most inevitable. In both cases, the observed variable of the 

fuzziness often occurs. In the first case, due to technical problems, the response variable cannot be 

measured properly. So, in this case the data cannot be clearly recorded with the exact numbers and 

the measurement errors are computed linguistically to justify the required tolerance. The second 

phenomenon is that the response variable is presented in terms of linguistic forms such as a special 

linguistic report or variance report. As for his products, they are not counted. In both of the above 

cases the data can be represented by the concept of fuzzy sets for analyzing the test (Zadeh [23]). 

An example is cited by H.C. Wu [21], to illustrate in this situation. There are many real-life 

populations in which imprecise values can be assigned to their experimental outcomes. Some 

practical reasons may not be accurate for the agricultural observations so that fuzzy sets used and 

the fuzzy was introduced by Zadeh [22], to represent manipulate data and in order to non-

statistical uncertainties.  D. Dubois et al. Brett [6], defined any fuzzy numbers as a fuzzy subset of 

the real line. The symmetric triangular fuzzy approximation was presented by M. Ma et al. [15].    

S. Chanas [2], presented a formula for determining approximations of intervals under humming 

distance. S. Chandrasekaran et al. Tamilmani [3], proposed the arithmetic operations of fuzzy 

numbers using the alpha-cut interval method.  The Triangular Fuzzy Numbers (TFNs) result from 

addition or subtraction between TFNs results. Therefore, addition and subtraction between fuzzy 

numbers become a TFNs.  Such areas include approximate reasoning, decision making, 

optimization, control, and so on. R.R. Hocking [11], has been the traditional statistical testing, the 

sample observations are crisp and a statistical experiment leads to a binary conclusion. 

Applying fuzzy set theory to Statistics. K.G. Manton et al. [16], proposed a fuzzy test for 

testing hypotheses with fuzzy data and fuzzy testing created the acceptance of null and alternative 

hypotheses. Statistical hypothesis testing for ambiguous data by presenting the notions of 

pessimism and pessimism by H.C. Wu [20]. We provide decision rules that can be used to accept 

or reject ambiguous null and alternative hypotheses. The observed values of the classical random 

variable can be considered an ambiguous number, while the model for the observed values in the 

linear model. Note that Filsmoser and Viertl [7] and Viertl [17], use a similar idea. The proposed 

technique, ambiguous data as well, given the vague assumptions of the tests were imprecise data, 

along with two hypothesis test, replacing CRD models crisp data, that is the lower-level model and 

the upper-level model, then each CRD hypothesis, testing the crisp data, models and results, 

getting after using the results obtained in terms of the provisions of the proposed decision of the 

population receive the decision. In the decision rules of the proposed test technique, we did not 
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use the confidence, distrust, and h-level set used in the H.C. Wu [21]. In this way, fuzzy numbers 

are appropriate models for formalizing and manipulating these populations (Gill et al. [9]). 

According to Kumari et al. [13] the methodology was expanded by introducing a fuzzy regression 

approach to randomized block designs that takes into account qualitative predictor factors in 

multiple linear regression. The concept from this study was a helpful thread for developing 

thorough connectedness between regression and randomized block designs. According to the 

researchers, fuzzy MLR can predict far more accurately than MLR alone. By comparing the RMSEs 

from various forecasting techniques, Koul et al. [12] suggested a study to identify the variance 

analysis experimental model approach between stock exchange trends. In this paper, we introduce 

a new technique using triangular fuzzy numbers in the fuzzy CRD analysis with an example. 

 

2. Preliminaries 

2.1 Completely Randomized Design (CRD) 
 

CRD is the basic single factor design. In this design the treatments are assigned completely at 

random so that each experimental unit has the same chance of receiving any one treatment. But 

CRD is appropriate only when the experimental material is homogeneous. As there is generally 

large variation among experimental plots due to many factors CRD is not preferred in field 

experiments. In laboratory experiments and greenhouse studies it is easy to achieve homogeneity 

of experimental materials and therefore CRD is most useful in such experiments. 

 

2.2 Triangular Fuzzy Number 
 The triangular fuzzy number membership function is defined by 

;

( )

;
A

x a
a x b

b a
x

x c
b x c

b c



−
  −

= 
−  

 −

 

Where a  is indicate lower point, b  is indicate centre point and c  is indicate upper point. 

A Triangular fuzzy number can be represented as an interval number form as follows. 

   ( ) ; ( ) ; 0 , 1.
L U

A b a r a d c h c r h = − + − − +  
 

 

 
 

                Figure 1: Figure Triangular Fuzzy Numbers 

 

Note that r  is the level of pessimistic value and h  is the level of optimistic value of the fuzzy 

number  ( , , )A a b c= . 
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3. Statistical Analysis of CRD 
The CRD is the one in which all the experimental units are taken in a single group which are 

homogeneous as far as possible. Suppose there are t  treatments in an experiment.  Let 
thi  

treatment be replicates 
in  times then, the total number of experimental units in the design is 

1

t

i

i

n N
=

= . Then, the treatment is allocated at random to entire experimental area.  In this design 

provides a one-way classified data with different levels of a single factor is called treatments. For 

instance, 
ijy   can be the productivity of the thj week in the thi  varieties, or the paddy seedling of the 

thj  week grown of the thj  type of shelf display. Since the number of cases or trials for the 
thi  

factor level is denoted by N , so, 1,2,..., ij n= . Now, the Statistical analysis of CRD is analogue to 

ANOVA one-way classified data, linear model becomes    

                                    
ij i ijy   = + +  ; 1,2,...,i t= ; 1,2,..., ij n=                               (1) 

In which,
ijy ’s is the thj observations of the thi treatment;  is the general mean effect which is 

fixed;  
i  is the fixed effect due to the 

thi treatment and ij is the random error effect which 

distributed  as normal 2(0, )N  ; 1,2,...,i t=  and 1,2,..., ij n= . 

          The grand total of n observations of CRD is 
1 1

..
int

ij

i j

y y G
= =

= = ; the correction factor is 
2

..ycf
N

=  

and the 
thi treatment total taken is 

.

1 1

int

ij i i

i j

y y T
= =

= = . 

 Apply the ANOVA for one way classify and compute the total sum of squares ( )sst , the 

treatment sum of squares ( )sstr  and the error sum of squares ( )sse  are given below;  

                           
2

2 2 ..

1 1 1 1

( ..)
i in nr r

sst ij ij

i j i j

y
Q y y y

N= = = =

= − = −                                              (2)                                                          

                   
2 2

2 . ..
. ..

1 1

( )
r r

i
sstr i i

i i i

y y
Q n y y

n N= =

= − = −                                                     (3) 

 and             
2

2 2 .
.

1 1 1 1 1

( )
i in nr r r

i
sse ij i ij

i j i j i i

y
Q y y y

n= = = = =

= − = −                                        (4) 

 

Where, sst , sstr and sse  which has ( 1)N − , ( 1)t −  and ( )N t−  degrees of freedom (df), 

respectively. The mean sum squares are obtained as follows: 

                                            
1

sstr
msstr

t
=

−
 and sse

msse
N t

=
−

                                                          (5) 

Where, msstr  and msse  stands for treatment mean square and error mean square.  

In order to test whether or not the factor level means   are equal, the following classical 

testing hypotheses are considered.   

0 1 2: ... tH   = = =   Vs  
1 1 2: ... tH       

                                The test statistic to be used is  

                                                    
( 1),( 1)t N

msstr
F F

msse
− −=                                                              (6) 

When the null hypothesis 
0H  holds true, it is known that  F  is distributed as with degrees of 

freedom ( 1)t −  and ( )N t−  that is
( 1),( )t N tF − −

. 

All these values are referring in the ANOVA table and inference is drawn. 
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Table 1: ANOVA table for CRD 

 

      sv df              ss           mss                 F ratio−     

Between 

Treatmen

ts 

 
( 1)t −        

sstrQ      msstr           
msstr

F
msse

=   
 

 

Within 

Treatmen

ts 

 
( )N t−       sseQ        msse  

 Total  
( 1)N −        sstQ  

 
 

 

Decision Rule: 

The decision rules in the F test to accept or reject the null hypothesis and alternative hypothesis are 

the level of significance     is given by  

     (i)  If msstr msse  and 
c t

msstr
F F

msse
=   where 

tF  and 
cF  is the tabulated and calculated  values 

of F  with ( 1)t − ( )N t− , degrees of freedom at   level of significance, then we accept the null 

hypothesis 
0H ,  otherwise the alternative  hypothesis 

1H  is accepted. 

    (ii)  If msstr msse  and 
C T

msse
F F

msstr
=   where 

tF  and 
cF  is the tabulated and calculated values of  

F  with ( )N t− ( 1)t − , degrees of   level of significance, then we accept then null hypothesis 
0H , 

otherwise the alternative hypothesis 
1H  is accepted.  

 

3.1 Statistical Analysis of Fuzzy CRD 

 
In this real-world, sometimes agricultural data cannot be accurately recorded. For example, the 

growth of seeds grown in a field due to fluctuation cannot be exactly measured. Therefore, the 

fuzzy set theory provides an appropriate tool for processing naturally imprecise data. Under this 

consideration, the more appropriate way to describe the paddy seedlings level is to say that the 

initial stage paddy seedlings are around 10 centimeters. The phrase about 10 centimeters should be 

considered an ambiguous number, which is realized by the fuzzy set theory. Therefore, our aim is 

the statistical analysis of fuzzy CRD using the TFNs method. In this case, observations and 

recorded data are treated as TFNs. Statistical hypotheses and populations parameter are crisp and 

hence the linear model is considered as 
ij i ijy   = + + ; in which ijy ’s is the thj observations of the 

thi treatment;  is the general mean effect which is fixed;  
i  is the fixed effect due to the 

thi treatment and ij is the random error effect which distributed  as normal 

2(0, )N  ; 1,2,...,i t=  and 1,2,..., ij n= . 

Statistical hypotheses are considered as classical ones: 

0 1 2 ... tH   = = = =  Vs 
1 1 2: ... .tH       

But one point that deviates from the classical ANOVA assumptions in the linear model is that the 

sample observations did not change anything else in the CRD model before collecting TFNs and 

data rather than actual numbers. Regarding the fuzzy arithmetic of TFNs described in the observed 

values of statistics for simplicity of calculations, Zadeh's [20] fuzzy extension principle can be 

explained lower level and upper-level model as follows:             
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               2

1 1

int
L

ssro ij

i j

Q y
= =
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.

1

..
t

L

G i

i

Q y y
=

= = ; 
2

..ycf
N

= ;
.

1

in

i ij

j

y y
=

=                                                       (7)                                                                            

2
2 ..

1 1

int
L

sst ij

i j

y
Q y

N= =

= −                                                         (8) 

                                                                   
2 2

. ..

1

t
L i
sstr

i i

y y
Q

n N=

= −                                                              (9) 

                                          and                             
L L L

sse sst sstrQ Q Q= −                                                           (10) 

 
Table 2: ANOVA table for lower level Fuzzy CRD 

 

      sv df             ss           mss                F ratio−     

Between 

Treatmen

ts 

 
( 1)t −        

L

sstrQ      Lmsstr        L msstr
F

msse
=   

 

 

Within 

Treatmen

ts 

 
( )N t−       L

sseQ        Lmsse  

 Total  
( 1)N −        

L

sstQ  

 

 

 

2

1 1

int
U

ssro ij

i j

Q y
= =

= ;
.

1

..
t

U

G i

i

Q y y
=

= = ; 
2

..ycf
N

= ;
.

1

in

i ij

j

y y
=

=                                                         (11) 

                                                                               
2

2 ..

1 1

int
U

sst ij

i j

y
Q y

N= =

= −                                            (12) 

                                                                  
2 2

. ..

1

t
U i
sstr

i i

y y
Q

n N=

= −                                               (13) 

                                             and                               U U U

sse tss sstrQ Q Q= −                                                  (14) 

 

 
Table 3: ANOVA table for upper level Fuzzy CRD 

 

      sv df               ss             mss                F ratio−     

Between 

Treatmen

ts 

 
( 1)t −        

U

sstrQ       Umsstr          U msstr
F

msse
=   

 

 

Within 

Treatmen

ts 

 
( )N t−       U

sseQ         Umsse  

 Total  
( 1)N −        U

sstQ  

 

3.2 Fuzzy Decision Rules of F -Test  
 

Suppose that if at    level of significance, the null hypothesis of the lower level model is accepted 

for 0 th F   where 0 1tF   and the null hypothesis of the upper level model is accepted for 

0 tr F   where 0 1tF   then, the fuzzy null hypothesis of the fuzzy ANOVA model is 

accepted for and at   level of significance. Otherwise, the fuzzy alternative hypothesis of the 

fuzzy ANOVA model is accepted at   level of significance. 
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4. Applications 

 
Following application to each of the three types of paddy in a CRD, the yield in kilograms (kgs.) 

per four plots. Due to some unforeseen circumstances, it is impossible to record the precise amount 

of yields in kgs. in a sample; nonetheless, there is some fuzzy information available. Below are the 

triangular fuzzy data: 

Table 4: Fuzzy CRD table forTFNs 

 

Yields in kgs. (i)  Varieties of paddy (j) 

V1 V2 V3 

Y1 4,6,8 6,8,10 - 

Y2 5,7,10 4,6,8 6,8,10 

Y3 7,9,11 8,10,12 9,12,14 

Y4 5,9,12 7,9,11  - 

 

Test that there is a significant difference in the varieties of paddy performance of the yields in kgs. 

per plots. 

Let i  be the mean number of varieties of paddy for the 
thi  yields in kgs. per plots. 

Now, the null hypothesis, 
0 1 2 3 4:H    = = =  and the alternative hypothesis,  :AH  not all 

i ’s are equal. 

Now, the ANOVA model for “ r is the lower level of pessimistic value” and “ h is the upper level 

of optimistic value” the interval model for the triangular fuzzy number is given below:  

 

Table 5: Fuzzy CRD table for lower and upper level models 

 

Yields in kgs. (i)  Varieties of paddy (j) 

         V1         V2 V3 

Y1 2 4,8 2r h+ −  2 6,10 2r h+ −  - 

Y2 2 5,10 3r h+ −  2 4,8 2r h+ −  2 6,10 2r h+ −  

Y3 2 7,11 2r h+ −  2 8,12 2r h+ −  9 3,14 2r h+ −  

Y4 4 5,12 3r h+ −   2 7,11 2r h+ −  - 

 

Table 6: Fuzzy CRD table for lower level model 

  

Yields in kgs. (i) Varieties of paddy (j) 

V1 V2 V3 

Y1 2 4r +  2 6r +  - 

Y2 2 5r +  2 4r +  2 6r +  

Y3 2 7r +  2 8r +  3 9r +  

Y4 4 5r +   2 7r +  - 

 

The null hypothesis 
0 1 2 3 4:LL LL LL LL LLH    = = = against the alternative hypothesis :LL

AH  not all 
LL

i ’ s are equal.  

 

Here, 10N =  and 2, 3, 3, 2ni =  the yields in kgs. per plot and the varieties of paddy for the 

1,2,3,4 respectively.  
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Total sum of squares for lower level model is 
24.1 1.4 24.9L

rsst r r= + +  

 

Treatment sum of squares of lower level model is 
21.4 3.4 16.9L

rsstr r r= + +   

 

Error sum of squares of lower level model is 
22.7 2 8L

rsse r r= − +  

 

MSTR and MSE lower level model is                                
20.47 1.13 5.63L

rmsstr r r= + +  and 20.45 0.33 1.33L

rmsse r r= − +  

 

F  – Ratio of lower level model is 
2

2

0.47 1.13 5.63

0.45 0.33 1.33

L

r

r r
F

r r

+ +
=

− +
 

All these values are referring in ANOVA table and inference is drawn. 

Table 7:  ANOVA table for Lower Level of Fuzzy CRD 

 

sv df ss  mss F ratio−  

Between 

Treatments 

 

3 

 

21.4 3.4 16.9r r+ +  20.47 1.13 5.63r r+ +  
2

2

0.47 1.13 5.63

0.45 0.33 1.33

r r

r r

+ +

− +
 

Within 

Treatments 
6 22.7 2 8r r− +  20.45 0.33 1.33r r− +  

Total 9
 

24.1 1.4 24.9r r+ +
 

- - 

 

Now, L L

r tF F , for all ;0 0.33r r  where 4.76L

tF =  is the F table value of   at 5%  level of 

significance with (3,6)degrees of freedom. Therefore, the null hypothesis 
0

LH of the lower level 

model is accepted for the ;0 0.33r r  . 

 

Table 8:  Fuzzy CRD table for upper level model 

 

Yields in kgs. (i) 
Varieties of paddy (j) 

V1 V2 V3 

Y1 8 2h−  10 2h−  - 

Y2 10 3h−  8 2h−  10 2h−  

Y3 11 2h−  12 2h−  14 2h−  

Y4 12 3h−   11 2h−  - 

 

The null hypothesis 
0 1 2 3 4:UL UL UL UL ULH    = = = against the alternative hypothesis :UL

AH  not all 

UL

i ’ s are equal.  

Here, 10N =  and 2, 3, 3, 2ni =  the varieties of yields in kg. 1,2,3,4 respectively.  

Total sum of squares for upper level model is 
21.6 1.6 30.4U

hsst h h= − +  
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Treatment sum of squares of upper level model is 
20.43 0.73 20.57U

hsstr h h= + +   

Error sum of squares of upper level model is 
21.17 2.33 9.83U

hsse h h= − +  

MSTR and MSE upper level model is                                
20.14 0.24 6.85U

hmsstr h h= + +  and 20.19 0.38 1.64U

hmsse h h= − +  

F  – Ratio of upper level model is 
2

2

0.14 0.24 6.85

0.19 0.38 1.64

U

h

h h
F

h h

+ +
=

− +
 

All these values are referring in ANOVA table and inference is drawn. 

 

Table 9:  ANOVA table for Upper Level of Fuzzy CRD 

sv df ss  mss F ratio−  

Between 

Treatments 

3 

 
20.43 0.73 20.57h h+ +  20.14 0.24 6.85h h+ +  

2

2

0.14 0.24 6.85

0.19 0.38 1.64

h h

h h

+ +

− +
 

Within 

Treatments 
6 21.17 2.33 9.83h h− +  20.19 0.38 1.64h h− +  

Total 9
 

21.6 1.6 30.4h h− +
 

- - 

 

Now, U U

h tF F , for all ;0 0.61h h   where 4.76U

tF =  is the F table value of 5%  at   level of 

significance with (3,6)degrees of freedom. Therefore, the null hypothesis 
0

UH of the upper level 

model is accepted for the ;0 0.61h h  .  

Thus, since the null hypothesis 
0

LH and 
0

UH  of the lower level data and upper level data 

are accepted for all ;0 0.33r r   and ;0 0.61h h   (note that null hypotheses are not rejected at 

1r =  and 1h = , that is the centre level), the fuzzy null hypothesis 
0H  of the fuzzy ANOVA model 

is accepted for all ;0 0.33r r   and ;0 0.61h h  . Thus, we conclude that four yields of kgs. 

per plots are equal only if ;0 0.33r r   and ;0 0.61h h  . That is, the maximum level of 

pessimistic value is 0.33 and the maximum level of optimistic value is 0.61. From the applications, 

thus observe that the acceptance of the fuzzy null hypothesis for not all r and h always, but for 

some specific levels of r and h, that is ;0 0.42r r   and ;0 0.61h h  . 

 

5. Conclusion 
 

In this paper, the propose a new statistical fuzzy hypothesis testing of completely randomized 

design model with the fuzzy data. In the proposed technique, do transfer the fuzzy completely 

randomized design model into two crisp CRD models. Based on the decisions of hypotheses of   

two crisp CRD models, to take a decision on the fuzzy hypothesis of the fuzzy CRD model.  Since 

our fuzzy test is more flexible than the traditional test of significance, it seems to be a competitive 

tool in situations with imprecise data, especially of the linguistic type. Since the proposed 

technique in this paper is mainly based only on the crisp models, the proposed technique can be 

extended to the experimental design analysis having fuzzy data and RBD, LSD etc.   
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Abstract 

The aim of this paper is to develop a probabilistic model for a cold standby system that consists of an 

imperfect switching device and a servicing facility. The model aims to address the issue of unexpected 

random failures of the switch by implementing preventive maintenance measures. The system has 

two identical units. It starts with one unit in active operation and another unit in cold standby mode. 

In standby mode the unit remains in perfect state. No failure is allowed in standby mode. As the 

operating unit fails, the standby unit needs to be switched into operation, to keep the system working. 

A servicing facility is present in the system to perform necessary servicing related tasks.  The 

servicing facility referred to as the server, also takes care of all necessary remedial activities like 

preventive maintenance and repairs. The switch used as switching mechanism to place the standby 

unit into operation may found imperfect when needed. Similarly, the server too can fail while doing 

job. A preventive maintenance scheme is used for the switch whereas treatment is given to server.  

The method of semi-Markov process and regenerative point technique is used for model developing 

and solving, respectively. The expressions are derived to determine different system performance 

measures such as mean time to system failure, availability, busy period, expected number of 

preventive maintenances and the profit. The distributions of random time elapsed in repairs, 

replacements, preventive maintenances and treatments are general. This study highlights the 

usefulness of switch’s preventive maintenance in long run. To study the asymptotic behavior of the 

system model, all the expressions for system performance measures are obtained in steady state.  A 

simulation study is conducted using a presumed data set and assuming a Weibull probability 

distribution. The numerical results are shown in tabular form. The simulation results serve to 

highlight the significance of preventive maintenance for the switch. The findings of the paper can 

provide guidelines to the people engaged in designing, framing and implementing standby switching 

systems in real applications.      

Keywords: Cold standby, Transition probabilities, Imperfect switch, Server, 

Preventive maintenance, Semi-Markov process, Steady state, Regenerative point 

techniques, Weibull distribution. 

1. Introduction

The standby redundancy is always at the core of a backup system. A cold standby system is 

primarily characterized by the standby unit and the switch mechanism, needed to switch the 

standby into operation at the failure of operating unit. Implementing an appropriate standby scheme 

results in improved system performance. Though the operating time of a system can be enhanced  
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by using standby redundancy but impossible to make it full failure proof. The working component 

of a standby system may fail due to aging, deterioration and some other factors such as shocks [1]. 

Such factors that are responsible for failures need appropriate repairs to improve system’s 

functioning [2]. Different types of failures demand for different repair strategies like in-house repairs 

or specialized repairs, carried out by internal or external repairmen [3]. The availability of repairmen 

and their skills can have a significant impact on system performance and reliability.  

Therefore another crucial element of a functioning system is the server; as an efficient and 

robust server can keep a system functioning for long. The server may get exhausted after working 

for a long and then needs some short of refreshment [4]. Employing additional repairmen can 

address the issue of system downtime caused by refreshing the server [5]. In addition to cold standby 

systems, the server is capable of handling failures in various other types of standby systems as well 

[6]. The primary task of repairmen in cold standby systems is to activate the cold standby unit which 

is accomplished through the switching mechanism.  

The switch plays a vital role in standby system as it is responsible for switching a failed unit 

with a standby one. The decision to switch can be made either at a predetermined time or when the 

operating unit fails [7]. The functioning of the system can be impacted if the switch mechanism itself 

fails [8]. When a switch failure occurs the process of rebooting and repairing a standby system can 

have a notable impact on its overall reliability [9]. The switch in the standby system can exhibit either 

perfect or imperfect behavior depending on its level of functionality [10]. Due to the prevalence of 

switch failures the switching mechanism in standby systems is some time regarded as imperfect. 

[11]. The imperfections in the switching mechanism of both cold standby and warm systems have a 

negative impact on their reliability [12]. The combination of switch and server in a system plays a 

vital role in maintaining system reliability. The switch activates cold standby unit when the main 

unit fails while the server handles all repair activities. Such configuration effectively reduces system 

downtime. However, if either the server or the switch or both fail during task performance the 

system performance declines [13]. In case of failure the switch may be found imperfect and the server 

may be unreliable both adversely affect the profit of the system [14]. In such cases the repair process 

may be disrupted that leads to reduced system performance. So to examine impact of such failures 

on the profit and availability of the system a probabilistic model may be helpful [15].  

A standby system requires regular maintenance and repair to ensure higher availability and 

reliability as it deteriorates with time [16]. Neglecting the maintenance and repair can lead to 

equipment failure and financial losses. So a robust maintenance or repair plan is the necessity for 

optimal system performance [17]. Condition-based maintenance is an effective approach among 

several others to optimize maintenance costs and ensure efficient operation of standby systems [18]. 

Though, maintenance presents challenges stemming from factors such as complexity, cost and 

competition but implementing suitable strategies can significantly reduce maintenance costs [19]. In 

most of cases the cost of breakdown maintenance is typically higher than preventive maintenance. 

Therefore implementing a preventive maintenance scheme can help minimize the risk of equipment 

failure and reduce overall maintenance costs while increasing availability and reliability [20]. 

Periodic system’s inspections are usually conducted to decide about maintenance strategy [21]. In 

some cases preference is given to preventive maintenance over others [22]. Optimizing the 

inspection intervals is necessary to achieve the goal of effective preventive maintenance [23]. An 

effective maintenance plan may involves interval based inspections or multiple inspections in stages 

[24].  

In this paper, we have developed a stochastic model for a cold standby system consisting of 

two identical units, a switch and a server. The switch is responsible for activating the standby unit 

and can experience random failures. It undergoes preventive maintenance after a specific time 

threshold. Similarly the server handles all remedial activities but can only perform one operation at 

a time and is also prone to failure during tasks. The model gives priority to switch repairs over other 
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remedial activities. It assumes perfect repairs and server treatments. The study focuses on analyzing 

the impact of switch preventive maintenance on system performance. Steady state expressions for 

system performance measures are derived considering all random variables as statistically 

independent. The system model is developed using the theory of semi-Markov processes. The 

regenerative point technique and Laplace transforms are used to solve the model. A simulation 

study is conducted using a dataset and Weibull probability distribution with the results presented 

graphically. 

2. Notations

O: The unit is in operative mode. 

Cs: The unit is kept as cold standby. 

Sh: The switch is ok 

Sv: The server is ok. 

Csw: The cold standby unit is in waiting. 

p/q: Probability that switch is operational/failed.

Fur/ FUR: The unit is under repair/ continuously under repair from the previous state. 

Fwr/FWR: The failed unit is waiting for repair/ waiting for repair continuously from the 

previous state. 

ShFur /ShFUR: The switch is under repair / under repair continuously from the previous state. 

Shpm/ShFPM: The switch is under preventive maintenance / under continuously preventive 

maintenance from the previous state. 

ShFwr/ShFWR: The switch is waiting for repair / continuously from the previous state. 

SvFut/SvFUT: The server is under treatment/ continuously from the previous state. 

z(t)/ Z(t): pdf/ cdf of the failure time of the unit. 

r (t)/ R(t): pdf / cdf of the failure time of the server. 

f(t)/ F(t): pdf / cdf of repair time of the failed unit. 

h(t)/ H(t): pdf / cdf of repair time of the failed switch. 

s(t)/ S(t): pdf / cdf of the treatment time of the server. 

qij(t)/Qij(t): pdf / cdf of direct transition time from a regenerative state Si to a regenerative state 

Sj without visiting any other regenerative state. 

qij.k(t)/Qij.k(t):   pdf / cdf of first passage time from a regenerative state Si to a regenerative state Sj or 

to a failed state Sj visiting state Sk once in (0,t]. 

 (s)/(c):   Symbol for Stieltjes convolution / Laplace convolution. 

῀ / * : Symbol for Laplace Stieltjes Transform(LST) / Laplace Transform(LT). 

3. Model Development

3.1. States of the System 
The following are the possible states of the system model Figure 1. 

The regenerative up states: 

S0 = (O, Cs, Sh, Sv),   S1 = (Fur, O), S3 = (Fwr, O, SvFut
),   S4 = (O, Csw, Shpm)

The failed regenerative down state: 
S2 = (Fwr, Csw, ShFur) 

Non-regenerative states: 

S5 = (Fwr, Csw, Sh𝑃𝑀),      S6 = (FUR, Fwr),    S7 = (Fwr, FWR, SvFut
),     S8 = (FWR, Csw, Shwr, SvFut

),

S9 = (Fwr, FWR, SvFUT
),       S10 = (Fur, FWR),      S11 = (FWR, Csw, ShFur),
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3.2. State Transition Diagram 

Figure 1: State transition diagram 

3.3. Transition Probabilities and Mean Sojourn Times 
Simple probabilistic considerations yield the following expressions for the non-zero elements 

𝑝𝑖𝑗 =  𝑄𝑖𝑗(∞) = ∫ 𝑞𝑖𝑗(𝑡)𝑑𝑡  (1)
∞

0

 

Also, the Mean Sojourn time μi in state Si are given by: 

𝜇𝑖 = 𝐸(𝑡) = ∫ 𝑃(𝑇 > 𝑡)𝑑𝑡
∞

0

  (2) 

We get 

p01 = ∫ pz(t)U̅(t)dt,
∞

0

 p02 = ∫ qz(t)U̅(t)dt,
∞

0

  p10 = ∫ f(t)�̅�(t)Z̅(t)dt,
∞

0

 

p13 = ∫ r(t)F̅(t)Z̅(t)dt,
∞

0

  p16 = ∫ z(t)R̅(t)F̅(t)dt,
∞

0

  p21 = ∫ h(t)R̅(t)dt,
∞

0

 

p27 = ∫ r(t)H̅(t)dt,
∞

0

  p31 = ∫ s(t)Z̅(t)dt,
∞

0

 p39 = ∫ z(t)S̅(t)dt,
∞

0

 

p40 = ∫ k(t)Z̅(t)dt,
∞

0

  p45 = ∫ z(t)F̅(t)dt,
∞

0

 p51 = ∫ k(t)dt,
∞

0

 

p61 = ∫ f(t)�̅�(t)dt,
∞

0

 p67 = ∫ z(t)F̅(t)dt,
∞

0

  p7,10 = ∫ s(t)dt,
∞

0

 

 p8,11 = ∫ s(t)dt,
∞

0

 p9,11 = ∫ s(t)dt,
∞

0

 p10,1 = ∫ f(t)R̅(t)dt,
∞

0

 

p10,7 = ∫ r(t)F̅(t)dt,
∞

0

 p11,1 = ∫ h(t)R̅(t)dt,
∞

0

 p11,8 = ∫ r(t)H̅(t)dt,
∞

0

 

Here, it can be checked that sum of simple probabilities originating from a single state is unity. The 

expressions for mean sojourn times are as follows: 

𝜇0 = ∫ �̅�(𝑡)𝑑𝑡,  
∞

0

𝜇1 = ∫ �̅�(𝑡)�̅�(𝑡)�̅�(𝑡)𝑑𝑡, 𝜇2 = ∫ �̅�(𝑡)𝐻(𝑡)𝑑𝑡,
∞

0

∞

0

𝜇3 = ∫ 𝑆̅(𝑡)�̅�(𝑡)𝑑𝑡
∞

0

,   𝜇4 = ∫ 𝐾(𝑡)�̅�(𝑡)𝑑𝑡
∞

0
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4. System’s Performance Measures

4.1. MTSF 

Let ∅i(t) be the c.d.f of the first passage time from the regenerative state Si to a failed state. Regarding 

the failed state as an absorbing state, we have the following recursive relations for ∅i(t): 

∅0(𝑡) =  𝑄01(𝑡) (𝑠) ∅1(𝑡) + 𝑄04(𝑡) (𝑠) ∅4(𝑡) + 𝑄02(𝑡) 
∅1(𝑡) =  𝑄10(𝑡) (𝑠) ∅0(𝑡) +  𝑄13(𝑡) (𝑠) ∅3(𝑡) + 𝑄16(𝑡)       
∅3(𝑡) =  𝑄31(𝑡) (𝑠) ∅1(𝑡) + 𝑄39(𝑡) 

∅4(𝑡) =  𝑄40(𝑡) (𝑠) ∅1(𝑡) + 𝑄45(𝑡)                         (4) 

Taking LST of equation (4) and solving for ∅0̃(s), we have

 𝑅∗(𝑠) =  
1 − ∅0̃(𝑠)

𝑠
                                                                                                                  (5) 

The reliability R(t) can be obtained by taking the inverse Laplace transition of (5) and MTSF is given 

by 

 𝑀𝑇𝑆𝐹 = 𝑙𝑖𝑚
𝑠→0

𝑅∗(𝑠) = 𝑙𝑖𝑚
𝑠→0

 
1 − ∅0̃(𝑠)

𝑠
 (6) 

 𝑀𝑇𝑆𝐹 =  
(𝜇0 + 𝑝04𝜇4)(1 − 𝑝13𝑝31) + 𝑝01(𝜇1 + 𝑝13𝜇3)

(1 − 𝑝13𝑝31)(1 − 𝑝04𝑝40) − 𝑝01𝑝10

 (7) 

4.2. Steady State Availability 

Mi(t) is the probability that the system is up initially in state Si ∈  E is up at time t without visiting to 

any other regenerative state, we have 

𝑀0 = ∫ �̅�(𝑡)𝑑𝑡,
∞

0

𝑀1 = ∫ �̅�(𝑡)�̅�(𝑡)�̅�(𝑡)𝑑𝑡,
∞

0

𝑀3 = ∫ 𝑆̅(𝑡)�̅�(𝑡)𝑑𝑡
∞

0

Let Ai(t) be the probability that the system is in up-state at an instant ‘t’ given that the system entered 

regenerative state Si at t=0. The recursive relations for Ai(t) are as follows: 

𝐴0(𝑡) =  𝑀0(𝑡) + 𝑞01(𝑡) (𝑐) 𝐴1(𝑡) + 𝑞02(𝑡)(𝑐)𝐴2(𝑡) 

𝐴1(𝑡) =  𝑀1(𝑡) + 𝑞10(𝑡) (𝑐) 𝐴0(𝑡) + (𝑞1,1.6(𝑡)(𝑡) + 𝑞1,1.6,(7,10)𝑛)(𝑐)𝐴1(𝑡) + 𝑞13(𝑡) (𝑐) 𝐴3(𝑡) 

𝐴2(𝑡) =  (𝑞21(𝑡)  + 𝑞2,1.8,11(𝑡))(𝑐)𝐴1(𝑡)       

𝐴3(𝑡) =  𝑀3(𝑡) + (𝑞31(𝑡)  + 𝑞3,1.9,10(𝑡) + 𝑞3,1.9,(10,7)𝑛(𝑡)) (𝑐)𝐴1(𝑡) 

𝐴4(𝑡) =  𝑀4(𝑡) + 𝑞4,0(𝑡) (𝑐) 𝐴0(𝑡) + 𝑞4,1.5(𝑡)(𝑐)𝐴1(𝑡)                                                                                          (8) 

Where Sj is any successive regenerative state to which the regenerative state Si can transit through n 

transitions. Taking LT of equation (8) and solving for A0
∗ (s), the steady state availability is given 

𝐴0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝐴0
∗ (𝑠) =

(𝜇0 + 𝑝04𝜇4)𝑝1,0 + (1 − 𝑝13𝑝31)(𝜇1 + 𝑝13𝜇3)

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (9) 

4.3. Busy period Analysis for the Server 

Let Bi(t) be the probability that the server is busy in repair of the unit or switch at an instant t given 

that the system entered regenerative state Si at t = 0. The recursive relations for Bi(t) are as follows: 

𝐵0(𝑡) =  𝑞01(𝑡) (𝑐) 𝐵1(𝑡) + 𝑞02(𝑡)(𝑐)𝐵2(𝑡) 
𝐵1(𝑡) =  𝑊1(𝑡) + 𝑞10(𝑡) (𝑐) 𝐵0(𝑡) +  𝑞13(𝑡) (𝑐) 𝐵3(𝑡) + 𝑞11.6(𝑡)(𝑐)𝐵1(𝑡) + 𝑞11.6,(7,10)𝑛(𝑐)𝐵1(𝑡) 

𝐵2(𝑡) =  𝑊2(𝑡) + 𝑞21(𝑡) (𝑐) 𝐵1(𝑡) + 𝑞21.8,11(𝑡)(𝑐)𝐵1(𝑡)       

𝐵3(𝑡) =  𝑞31(𝑡) (𝑐) 𝐵1(𝑡) + 𝑞31.9,10(𝑡)(𝑐)𝐵1(𝑡) + 𝑞31.9,(10,7)𝑛(𝑡)(𝑐)𝐵1(𝑡) 

𝐵4(𝑡) =  𝑞4,0(𝑡) (𝑐) 𝐵0(𝑡) + 𝑞4,1.5(𝑡)(𝑐)𝐵1(𝑡)                                                                                                         (10) 

Wi(t) be the probability that the server is busy in state Si due to repair of the unit or switch up to 

time ‘t’ without making any transition to any other regenerative state or returning to the same via 
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one or more non-regenerative state 

W1(t) = Z̅(t)F̅(t)R̅(t) + (z((t)F̅(t)R̅(t)©1)F̅(t) + (z(t)F̅(t)R̅(t)©r(t)F̅(t)©1)S̅(t)

+ (z(t)F̅(t)R̅(t)©r(t)F̅(t)©s(t)©1)F̅(t)

W2(t) =  R̅(t)H̅(t) + (r(t)R̅(t)©1)S̅(t) + (r(t)R̅(t)©s(t)©1)H̅(t) 

Using LT, of equation (10) and solving for  B0
∗(s), the time for which server is busy due to repair of 

unit or switch is given by 

𝐵0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝐵0
∗(𝑠) =

𝑊1
∗(0)(1 − 𝑝04𝑝40) + 𝑝02𝑝10𝑊2

∗(0)

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (11) 

4.4. Busy Period Analysis for the Server due to Switch Preventive Maintenance 

Let BP
i(t) be the probability that the server is busy in preventive maintenance of switch after a fixed

time period at an instant t given that the system entered regenerative state Si at t = 0. The recursive 

relations for Bi(t) are as follows: 

BP
0(t) =  q01(t) (c) BP

1(t) + q02(t)(c)BP
2(t)  + q04(t)(c)BP

4(t)

BP
1(t) =  q10(t) (c) BP

0(t) +  q13(t) (c) BP
3(t) + q11.6(t) + q11.6,(7,10)n(c)BP

1(t)

BP
2(t) =  q21(t) (c) BP

1(t) + q21.8,11(t)(c)BP
1(t)

BP
3(t) =  q31(t) (c) BP

1(t) + q31.9,10(t)(c)BP
1(t) + q31.9,(10,7)n(t)(c)BP

1(t)

BP
4(t) =  W4(t) + q4,0(t) (c) BP

0(t) + q4,1.5(t)(c)BP
1(t)                                                                                   (12)

Wi(t) be the probability that the server is busy in state Si due to switch preventive maintenance up 

to time ‘t’ without making any transition to any other regenerative state or returning to the same via 

one or more non-regenerative state 

𝑊4(𝑡) = �̅�(𝑡)𝐾(𝑡) + (𝑧(𝑡)©1)𝐾(𝑡)

Using LT, of equation (12) and solving for BP
0
∗

(s) , the time for which server is busy due to switch

preventive maintenance is given by 

𝐵𝑃
0 = 𝑙𝑖𝑚

𝑠→0
𝑠𝐵𝑃

0
∗

(𝑠) =  
𝑝04𝑝10𝑊4

∗(0)

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (13) 

4.5. Expected Number of Server Treatments 

Let Ti(t)  be the expected number of treatments given to the server in (0,t ] given that the system 

entered regenerative state Si at t=0. The recursive relations for Ti(t) are as follow: 

𝑇0(𝑡) =  𝑄01(𝑡) (𝑠) 𝑇1(𝑡) + 𝑄02(𝑡)(𝑠)𝑇2(𝑡)  + 𝑄04(𝑡)(𝑠)𝑇4(𝑡) 
𝑇1(𝑡) =  𝑄10(𝑡) (𝑠) 𝑇0(𝑡) +  𝑄13(𝑡) (𝑠) 𝑇3(𝑡) + 𝑄11.6(𝑡)(𝑠)𝑇1(𝑡) + 𝑄11.6,(7,10)𝑛(𝑠)𝑇1(𝑡)      

𝑇2(𝑡) =  𝑄21(𝑡) (𝑠) 𝑇1(𝑡) + 𝑄21.8,11(𝑡)(𝑠)𝑇1(𝑡) 

𝑇3(𝑡) =  𝑄31(𝑡) (𝑠) (1 + 𝑇1(𝑡)) + 𝑄31.9,10(𝑡)(𝑠)𝑇1(𝑡) + 𝑄31.9,(10,7)𝑛(𝑡)(𝑠)𝑇1(𝑡) 

𝑇4(𝑡) =  𝑄4,0(𝑡) (𝑠) 𝑇0(𝑡) + 𝑄4,1.5(𝑡)(𝑠)𝑇1(𝑡)                                                                                                         (14) 

Using LT, of equation (14) and solving for T0̃(s), the expected number of the treatments given to the 

server are given by 

𝑇0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝑇0̃(𝑠) =
𝑝31𝑝13(1 − 𝑝04𝑝40)

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (15) 

4.6. Expected Number of Switch Repairs  
Let Ui(t) be the expected number of repairs given to the switch in (0,t ] given that the system entered 

regenerative state Si at t=0. The recursive relations for Ui(t) are as follow: 

𝑈0(𝑡) =  𝑄01(𝑡) (𝑠) 𝑈1(𝑡) + 𝑄02(𝑡)(𝑠)𝑈2(𝑡) + 𝑄04(𝑡)(𝑠)𝑈4(𝑡) 
𝑈1(𝑡) =  𝑄10(𝑡) (𝑠) 𝑈0(𝑡) +  𝑄13(𝑡) (𝑠) 𝑈3(𝑡) + 𝑄11.6(𝑡)(𝑠)𝑈1(𝑡) + 𝑄11.6,(7,10)𝑛(𝑠)𝑈1(𝑡)     

𝑈2(𝑡) =  𝑄21(𝑡) (𝑠) (1 + 𝑈1(𝑡)) + 𝑄21.8,11(𝑡)(𝑠)(1 + 𝑈1(𝑡)) 

𝑈3(𝑡) =  𝑄31(𝑡) (𝑠) 𝑈1(𝑡) + 𝑄31.9,10(𝑡)(𝑠)𝑈1(𝑡) + 𝑄31.9,(10,6)𝑛(𝑡)(𝑠)𝑈1(𝑡) 

𝑈4(𝑡) =  𝑄4,0(𝑡) (𝑠) 𝑈0(𝑡) + 𝑄4,1.5(𝑡)(𝑠)𝑈1(𝑡)                                                                                                      (16) 
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Using LT, of equation (16) and solving for U0̃(s), the expected number of the repairs given to the

switch are given by 

𝑈0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝑈0̃(𝑠) =
𝑝02𝑝10

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (17) 

4.7. Expected Number of Repairs of the Unit 

Let Oi(t) be the expected number of repairs given to the server in (0,t] given that the system entered 

regenerative state Si at t=0. The recursive relations for Oi(t) are as follow: 

O0(t) =  Q01(t) (s) O1(t) + Q02(t)(s)O2(t)  + Q04(t)(s)O4(t) 
O1(t) =  Q10(t) (s) (1 + O0(t)) +  Q13(t) (s) O3(t) + Q11.6(t)(s)(1 + O1(t)) + Q11.6,(7,10)n(s)(1 + O1(t)) 

O2(t) =  Q21(t) (s) O1(t) + Q21.8,11(t)(s)O1(t)         

O3(t) =  Q31(t) (s) O1(t) + Q31.9,10(t)(s)(1 + O1(t)) + Q31.9,(10,6)n(t)(s)(1 + O1(t)) 

O4(t) =  Q4,0(t) (s) O0(t) + Q4,1.5(t)(𝑠)O1(t)                                                                                                        (18) 

Where  Sj is any regenerative state to which the given regenerative state  Si transits. Using LT, of 

equation (18) and solving for O0̃(s), the expected number of the repairs given to the unit are given

by 

𝑂0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝑂0̃(𝑠) =
(𝑝10 + 𝑝11,6 + 𝑝11,6,(7,10)𝑛)(1 − 𝑝04𝑝40)

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (19) 

4.8. Expected Number of Switch Preventive Maintenances 
Let Ni(t) be the expected number of preventive maintenance given to switch after a fixed time in (0,t] 

given that the system entered regenerative state Si at t=0. The recursive relations for are as follows: 

N0(t) =  Q01(t) (s) N1(t) + Q02(t)(s)N2(t) + Q04(t)(s)N4(t) 
N1(t) =  Q10(t) (s) N0(t) +  Q13(t) (s) N3(t) + Q11.6(t)(s)N1(t) + Q11.6,(7,10)n(s)N1(t) 

N2(t) =  Q21(t) (s) N1(t) + Q21.8,11(t)(s)N1(t)       

N3(t) =  Q31(t) (s)(1 + N1(t)) + Q31.9,10(t)(s)N1(t) + Q31.9,(10,7)n(t)(s)N1(t) 

N4(t) =  Q4,0(t) (s) (1 + N0(t)) + Q4,1.5(t)(𝑠)(1 + N1(t))                                                                                 (20) 

Where Sj is any regenerative state to which the given regenerative state Si transits. Using LT, of 

equation (20) and solving for  N0̃(s), the expected number of PM of switch are given by

𝑁0 = 𝑙𝑖𝑚
𝑠→0

𝑠𝑁0(𝑠) =
𝑝04𝑝10

(𝜇0 + 𝑝04𝜇4
′ )𝑝1,0 + (1 − 𝑝04𝑝40)(𝜇1

′ + 𝑝13𝜇3
′ ) + 𝑝10𝑝02𝜇2

′  (21) 

4.9. Cost Analysis 

The Profit incurred to the system is given by 

P = C0A0 − C1B0 − C2BP − C3T0 − C4U0 − C5O0 − C6N0  (22 ) 

C0 = Revenue per unit up time of the system. 

C1 = Cost per unit time for which server is busy in repairing 

C2 = Cost per unit time for which server is busy in preventive maintenance. 

C3 = Cost per treatment of the server. 

C4 = Cost per repair of the switch. 

C5 = Cost per repair of the unit. 

C6 = Cost per preventive maintenance of the switch. 

5. Simulation Study (Weibull Distribution)

Let us suppose that all the random variables follow Weibull distribution as given below: 

z(t) =  λƞ𝑡ƞ−1e−λ𝑡ƞ
,         f(t) = αƞ𝑡ƞ−1e−α𝑡ƞ
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r(t) =  µƞ𝑡ƞ−1e−µƞ𝑡ƞ
, s(t) =  βƞ𝑡ƞ−1e−β𝑡ƞ

h(t) =  ϒƞ𝑡ƞ−1e−ϒ𝑡ƞ
, k(t) =  ϴƞ𝑡ƞ−1e−ϴ𝑡ƞ

,     u(t) =  ξƞ𝑡ƞ−1e−ξ𝑡ƞ

For simulation, we assumed values of different parameters and costs. The impact of different 

parameters on system performance is shown in the tables.  

Table 1: Effect of various parameters on MTSF 

MTSF η=0.5 

Failure 

rate 

(λ) 

α = 0.2,  β
= 0.7, 
ϒ = 0.3, µ
= 0.03, 

ϴ = 0.77, ξ

= 0.4  p
= 0.4 

γ=0.4 α=0.5 β=0.8 p=0.7 θ=0.9 ξ=0.8 

0.01 896.56 896.56 918.05 917.72 917.51 997.48 1195.09 

0.02 409.57 409.57 420.27 419.97 419.77 492.65 509.27 

0.03 251.26 251.26 258.36 258.07 257.89 324.51 294.96 

0.04 174.47 174.47 179.76 179.48 179.32 240.53 194.91 

0.05 129.91 129.91 134.11 133.85 133.70 190.21 138.91 

 η=1 

0.01 108.16 108.16 110.72 110.74 110.74 117.63 283.87 

0.02 54.43 54.43 55.82 55.84 55.83 58.56 143.77 

0.03 36.51 36.51 37.52 37.53 37.53 38.89 96.62 

0.04 27.55 27.55 28.36 28.38 28.37 29.07 72.79 

0.05 22.18 22.18 22.86 22.88 22.88 23.18 58.32 

 η=2 

0.01 43.09 43.09 44.15 44.14 44.14 47.54 74.30 

0.02 22.77 22.77 23.40 23.38 23.39 22.95 41.47 

0.03 15.98 15.98 16.46 16.45 16.45 14.83 30.27 

0.04 12.57 12.57 12.98 12.97 12.97 10.81 24.50 

0.05 10.51 10.51 10.88 10.87 10.87 8.44 20.92 

Table1 summarizes significant findings on Mean Time to System Failure (MTSF). It reveals the 

impact of different parameter values on MTSF. Higher values of failure rates (λ) lead to decreased 

MTSF implying shorter system lifespans. Increasing the value of shape parameter (η) also lowers 

MTSF and system reliability. Notably, increasing values of switch repair rate (γ) from 0.3 to 0.4, rate 

of switch goes under preventive maintenance (ξ) from 0.4 to 0.8, server treatment rate (β) from 0.8 

to 0.9, unit repair rate (α) from 0.2 to 0.5 and switch preventive maintenance rate (ϴ) from 0.77 to 0.9 

all enhance the observed trends of MTSF. It implies that the switch preventive maintenance impacts 

the system reliability significantly. 

Likewise, Tables 2 shows similar trends of system availability. The measure declines with 

higher values of shape parameter (η). It demonstrate that higher failure rate of the unit reduces 

system availability. For a fixed value of failure rates (λ) the system’s availability improves with 
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increasing values of rate with which switch goes under preventive maintenance (ξ), server treatment 

rate (β), repair rate of unit (α) and switch preventive maintenance rate (ϴ). The values of system 

availability also rises significantly along with improved switch preventive maintenance.    

Table 2: Effect of various parameters on Availability 

Availability η=0.5 

Failure 

rate 

(λ) 

α = 0.2,  β
= 0.7, 
ϒ = 0.3, µ
= 0.03, 

ϴ = 0.77, ξ

= 0.4  p
= 0.4 

γ=0.4 α=0.5 β=0.8 p=0.7 θ=0.9 ξ=0.8 

0.01 0.9787 0.9912 0.9900 0.9902 0.9908 0.9888 0.9996 

0.02 0.9574 0.9813 0.9797 0.9799 0.9806 0.9768 0.9986 

0.03 0.9362 0.9704 0.9689 0.9689 0.9695 0.9640 0.9976 

0.04 0.9151 0.9586 0.9578 0.9575 0.9575 0.9505 0.9961 

0.05 0.8943 0.9461 0.9464 0.9456 0.9449 0.9364 0.9941 

 η=1 

0.01 0.9102 0.9912 0.9921 0.9921 0.9855 0.9926 0.9940 

0.02 0.8388 0.9813 0.9839 0.9837 0.9707 0.9844 0.9887 

0.03 0.7807 0.9704 0.9754 0.9748 0.9557 0.9755 0.9816 

0.04 0.7325 0.9586 0.9667 0.9656 0.9405 0.9659 0.9737 

0.05 0.6918 0.9461 0.9578 0.9560 0.9253 0.9557 0.9651 

 η=2 

0.01 0.8422 0.9901 0.9899 0.9929 0.9916 0.9884 0.9880 

0.02 0.8331 0.9822 0.9816 0.9876 0.9850 0.9789 0.9785 

0.03 0.8237 0.9737 0.9726 0.9819 0.9780 0.9691 0.9687 

0.04 0.8141 0.9649 0.9632 0.9757 0.9705 0.9589 0.9586 

0.05 0.8045 0.9557 0.9533 0.9692 0.9627 0.9485 0.9484 

The table 3 highlights the effect of various parameters on system profit. It reveals that system profit 

declines with an increasing failure rate of unit (λ) as well as higher values of shape parameter (η). 

The profit expands with repairs, treatments and preventive maintenance.  

The numerical simulation results have indicated that effect of preventive maintenance on 

overall system’s performance is encouraging. All the performance measures MTSF, availability and 

the profit improves with switch preventive maintenance rate (ϴ). The higher frequency of preventive 

maintenance (ξ) too ensures improved system performance. The MTSF almost doubles with change 

in value of shape parameter (η) from 0.5 to 1. These results underline the importance of managing 

failure rates and implementing effective preventive maintenance strategies to keep a system reliable 

and profitable.  
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Table 3: Effect of various parameters on system profit 

Profit η=0.5 

Failure 

rate 

(λ) 

α = 0.2,  β
= 0.7, 
ϒ = 0.3, µ
= 0.03, 

ϴ = 0.77, ξ

= 0.4,   p = 0.4 

γ=0.4 α=0.5 β=0.8 p=0.7 θ=0.9 ξ=0.8 

0.01 7324.6 7931.7 8351.3 8796.9 9412.2 8178.6 9195.4 

0.02 7048.7 7610.7 8095.4 8519.8 9097.0 7917.9 8536.6 

0.03 6809.4 7338.3 7876.9 8238.1 8760.1 7663.9 7967.8 

0.04 6590.2 7093.0 7678.5 7984.0 8460.9 7416.7 7470.4 

0.05 6384.4 6865.4 7492.8 7747.6 8185.9 7176.4 7030.8 

η=1 

0.01 8028.0 8784.7 9666.5 9662.9 9590.1 9253.3 9759.9 

0.02 7907.3 8723.4 9361.3 9379.0 9252.0 8905.2 9434.4 

0.03 7780.8 8654.9 9089.5 9130.8 8958.1 8604.7 9134.0 

0.04 7649.1 8580.5 8840.1 8904.5 8691.3 8332.6 8850.1 

0.05 7513.2 8501.3 8607.8 8693.8 8444.0 8080.8 8601.8 

 η=2 

0.01 8085.3 8534.8 8369.4 9045.3 9723.2 9664.2 8571.4 

0.02 7797.9 8263.8 8108.4 8753.1 9393.2 8694.1 8547.5 

0.03 7530.9 8019.6 7872.4 8488.7 9096.0 7899.1 7799.3 

0.04 7280.6 7795.7 7655.6 8245.9 8823.7 7234.4 7178.6 

0.05 7047.3 7588.6 7454.7 8021.0 8572.2 6670.1 6655.2 

6. Applications

In practice the switch is an integral component that holds significant importance in various 

applications. It plays a critical role in diverse sectors few including Rail Tracking, Wind Power 

Plants, and DSLAM Networks. In Rail Tracking systems switches are responsible for ensuring the 

safe and efficient movement of trains by facilitating the switching of tracks. In Wind Power Plants 

switches are utilized to control the flow of electricity from the turbines to the grid. Similarly in 

DSLAM Networks the switches manage the traffic and direct data packets to their intended 

destinations. As the switch preventive maintenance refers to the proactive measures taken to 

anticipate and mitigate potential failures before they actually occur. Hence by conducting regular 

inspections and performing necessary preventive maintenance helps minimize the risk of sudden 

failures within systems using switching phenomena. 
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7. Conclusion

The occurrence of unexpected system breakdowns significantly reduces system outputs. Therefore 

implementing appropriate maintenance schemas are always required. These schemas aimed to 

enhance system performance by minimizing sudden breakdowns. In this paper the application of 

preventive maintenance specifically to the switch is focused on. The idea of implementing 

preventive maintenance effectively reduces the failure likelihood of switch. The simulation results 

have illustrated the impact of switch preventive maintenance on mean time to system failure, system 

availability and profitability. These findings indicated that switch preventive maintenance 

influences overall system performance and profitability. 
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Abstract

Bootstrap method was initially used to determine accuracy measures for sample estimates of independent
and identical distributions (i.i.d.). In order to apply bootstrap method to time-dependent data, blocking
technique is introduced to preserve serial correlation of the original time series data. In the past, resampling
techniques for time-dependent data were implemented using Non-overlapping Block Bootstrap (NBB)
method but its dichotomous block arrangement restricts the number of blocks. As a result, improvement
becomes necessary. Although the Moving Block Bootstrap (MBB) method improves upon NBB with
regard to many more blocks, it introduces an uneven representation of the time series elements which
eventually influences its accuracy. In this paper, an innovative method called Moving Block Bootstrap
Method with better element Representation (MBBR) is developed to ensure that the time series elements
within the block are better represented with minimum number of elements. To compare MBB and MBBR,
simulated studies were carried out on some set time series data following each classes of Autoregressive
Moving Average (ARMA) model with different parameters, sample sizes and standard deviation using
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Results show that by improving
the representation of time series data in the blocking arrangement, the accuracy of the proposed method
(MBBR) consistently outperforms the existing one (MBB) and thus, provides more efficient estimates of
the dependent variable.

Keywords: Bootstrap method, Autoregressive Moving Average (ARMA), measures of accuracy,
Moving block bootstrap (MBB), Moving Block Bootstrap Method with better element Representa-
tion.

1. Introduction

Statistics, the bedrock of rational and scientific decision-making, often relies on random samples
of observations to draw conclusions. As a result, one can safely say that proper sampling is the
backbone of Statistics, and bootstrapping is one of its dynamics. Bootstrap method relies on
using original sample or some parts of it as an artificial population from which random samples
are selected. [5] introduced the concept of bootstrap which keeps spreading like bushfire in the
field of statistical sciences in a couple of decades. The resampling scheme as provided by [5]
is discussed as follows. Suppose that Xι = x1, x2, · · · , xn is a random sample of observation
from independently identical distribution (i.i.d.). If X∗

ι is selected at random from Xι (that
is x∗1 , x∗2 , · · · , x∗k from x1, x2, · · · , xn) with probability P(Xι) = 1

n , ι = 1, 2, · · · , n; To generate a
bootstrap random sample by resampling Xι, generate n random integers ι = 1, 2, · · · , n and select
the bootstrap sample X∗

ι = x∗1 , · · · , x∗k with replacement. Suppose θ is the parameter of interest (θ
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could be a vector), and θ̂ is an estimator of θ.

The moving block bootstrap (MBB) was developed in [8] as an improvement of the Non-
overlapping Block Bootstrap NBB. The MBB was developed to give room for more blocks
as against the NBB in [3]. However, while making provision for more blocks, some elements
appear less frequently than others, especially the extreme values. Thus, this eventually became a
problem as such uneven representation lower its accuracy values. Illustration of MBB method as
demonstrated by [8] shows the problem as follows: think of X = x1, x2, · · · , x10 as the original
time series data. If a block length of l = 3 is considered such that B1 = x1, x2, x3, B2 = x2, x3, x4,
B3 = x3, x4, x5, B4 = x4, x5, x6, B5 = x5, x6, x7, B6 = x6, x7, x8, B7 = x7, x8, x9, B8 = x8, x9, x10, it
is therefore observed that x1, x10 each appears once and x2, x9 each appears just twice while
every other observation appears three times each in the MBB blocking scheme. This portrays the
problem of uneven representation of the time series elements within the block arrangement at
the two edges of the original the time series data. The presence of such uneven representation is
capable of influencing the accuracy measure of MBB method. To profile solution to the problem
of this uneven representation without creating additional one, effort is made in this paper to
design a synthetic blocking scheme within its block pot as an improvement on the MBB

In [3], data-based Markov chain to sample blocks is prioritized in order to increase the possibility
that subsequent blocks match at their conclusion. The description of the circumstances in which
the bias of a bootstrap estimator of a variance is reduced by this matched-block bootstrap is
made. However, the moving block bootstrap only accelerates the pace of bias convergence when
a Markov process generates the data. The estimator’s variance is not decreased by the moving
block bootstrap. Extension of the bootstrap method proposed by [5] through [8]. Series was
split into nl + 1 overlapping blocks of length l. Observations 1 to l is considered to be block
1, observations 2 to l + 1 is considered to be block 2, etc until all the elements of the the time
series data are exhausted. Then, s f racnl blocks were generated at random with replacement from
these nl + 1 blocks. Following that, aligning the s f racnl blocks in the selection order yields the
bootstrap observations. Although the bootstrapped observations are no longer steady with this
construction, this type of bootstrap approach still works with dependent data. However, [16]
stressed that the issue can be solved by arbitrarily changing the block length. The stationary
bootstrap is the name of this technique. Under the condition that ρ−1 is roughly equal to l, where
l is the block length and the parameter of the geometric distribution, the stationary bootstrap
estimate of variance and the moving block estimate of variance are relatively close ([17]). The
Markovian bootstrap and a stationary bootstrap approach that matches succeeding blocks based
on standard deviation matching are other related variants of the moving block bootstrap ([6]).

Circular Block Bootstrap (CBB), Moving Block Bootstrap (MBB), and Stationary Block Bootstrap
(SBB) are asymptotically comparable in the sense of mean squared error, according to [10], who
compared the asymptotic minimal values of the mean square error of each of the four block
bootstrap methods (MSE). The study confirmed that, even with moderately sized samples, there
are benefits to employing MBB and CBB rather than the stationary block bootstrap approach.
Investigated on how the optimal block bootstrap method might be particularly sensitive to the
choice of block size was made by [1], While [12] pointed out the stationary difficulty of the resam-
pled series by the moving block bootstrapping. Tapered Block Bootstrap was proposed by [13], a
new variation of the block bootstrap covering approximately linear statistics, and represented an
improvement over the original block bootstrap ([5]). Tapered block bootstraps are shown to have
asymptotic validity and favorable bias properties for smooth functions of means and M-estimators.
Instead of using the block bootstrap, tapering is typically applied to the random weights in the
bootstrapped empirical distribution ([15]; [14]). A detailed discussion of optimally selecting win-
dow shapes and block sizes were also presented along with some finite-sample simulations by [14].

A new block bootstrap procedure for time series data called the extended tapered block bootstrap
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for estimating the variance and estimating the sampling distribution of a large category of
approximately linear statistics was proposed by [20]. The paper established the consistency of the
distribution approximation under the smooth function model by obtaining asymptotic bias and
variance expansions. The extended tapered block bootstrap has a wider applicability than the
tapered block bootstrap, while preserving the favorable bias and mean squared error properties
of the tapered block bootstrap. A small simulation study was done to compares the performance
of block-based bootstrapping methods on a finite-sample basis. ARIMA methodology was
introduced by [2]. Before then, statisticians analyzed time series data without taking into account
how non-stationarity might affect their analyses. It was shown that non-stationary data could
be made stationary by ”differencing” the time series data. In this way, one could pull apart
a juicy trend at a specific time period from a growth/decline that would be expected anyway.
For an instance, given the non-stationarity of the time series data. They also stressed that the
Partial Autocorrelation Function (PAF) ϕk is non-zero for k less than or equal to ρ and zero for k
greater than ρ for an autoregressive process of order ρ. In other words, a cut-off after lag k is
present in the partial autocorrelation function (PAF) of the ρth order autoregressive process. The
autoregressive model is typically expressed as:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + . . . + ϕpXt−p + εt (1)

The complexity of this model was given a relief by [2]. When an autocorrelation coefficient
deviates from their confidence range, they established a cut off. The Box and Jenkins ARIMA
approaches are predicated on the notion that a time series with highly correlated successive
values can be viewed as having been produced by a string of independent shocks.

Using dependent data, [9] developed a novel fast bootstrap theory. In our scheme, smoothed
moment indicators were resampled. Effectiveness of this method is demonstrated for parametric
as well as semi-parametric estimation problems. The novel method’s asymptotic improvements
demonstrate that it is higher-order correct under reasonable time series, estimating function, and
smoothing kernel assumptions. The use and benefits of the generalized technique of moments
estimation, generalized empirical likelihood estimation, and the M-estimation method were shown
by [9] using the method described in this article. The autoregressive conditional duration approach
was put up against other current, frequently used first- and higher-order correct methods in
a Monte Carlo research. The innovative bootstrap generates higher-order accurate confidence
intervals while being computationally lighter than higher-order correct rivals. A real-data example
on the dynamics of trading volumes of US stocks serves as an excellent example of the empirical
applicability of our methodology. It was pointed by [4] that a brand-new bootstrap method
based on generative adversarial networks for time series data (GANs). They show that GANs can
understand the dynamics of typical stationary time series processes and that they can be used
to produce additional samples from processes using GANs trained on a single sample path. A
vector chosen from a normal distribution with a zero mean and an identity variance-covariance
matrix can be utilized in the study to create credible samples, and temporal convolutional neural
networks have a design that works well as both a generator and a discriminator. The simulations
used in the article to evaluate the performance of the recommended bootstrap to circular block
bootstrapping when resampling an AR(1) time series process also highlight the finite sample
features of GAN sampling. According to the study, resampling with the GAN can provide better
empirical coverage than circular block bootstrapping. The Sharpe ratio was given an empirical
application at the end.

2. Methods

2.1. The Existing and Proposed Methods

The existing method considered in this research is the Moving Block Bootstrap (MBB) upon which
the proposed method called the Moving Block Bootstrap with better element Representation
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(MBBR) is built. Detail of the existing and the proposed methods is discussed below.

The Existing Method

The MBB is an extension of Non-overlapping Block Bootstrap (NBB) presented in [3] in which
rooms are provided for observations in the original observation(s) that are cut off from the
last block because, n which is the sample size may not be divisible by l, the block length. It
invariably provides for more number of blocks than the NBB method. Given a time series data,
{Xt} = {x1, x2, · · · , xn} which follows an AR, MA or ARMA process presented in Equation 7
and the statistic of interest θ̂MBB = f (Xt) = f (x1, x2, · · · , xn), Bι is defined as the block of size l
consecutive observations starting from xι, that is:

Bι = {Xι, . . . , Xι+l−1}; ι = 1, 2, · · · , b for

 lim
l,n→∞

l
n → ∞

b = n − l + 1
(2)

Let b = n − l + 1 and n∗ = k × l, while k and n∗ are positive integers, such that n∗ is the smallest
multiple of l ⩾ n. A random sample of k blocks, (n < k < ∞), {B∗

1 , B∗
2 , · · · , B∗

k} is resampled
independently with replacement from {B1, · · · , Bb} ∼ uni f (1, b) with probability of b−1; where
each Bι, ι = 1, 2, · · · , k has a block of size l; (n > l > 1). If l = 1, the block bootstrap returns to
independent and identically distributed bootstrap originally proposed by [5]. Figure 1 provides a
schematic representation of Equation 2 as a blocking scheme for moving block bootstrap.

x1 x2 x3 . . . xl xl+1 xl+2 . . . xl∗b . . . xn

B1

B2

B3

Bk. . .

Figure 1: Moving Block Bootstrap

The MBB is then formed by collapsing elements of B∗
ι ; ι = 1, 2, · · · , k into a single time series data

to form
{X∗

ι } = {x∗(ι−1)l+1, · · · , x∗n∗}

= {x∗1 , x∗2 , · · · , x∗n∗}
(3)

where n∗ = k × l length of the resampled series. The resampled statistics is then calculated
according to θ̂MBB = fn∗({x∗1 , x∗2 , · · · , x∗n∗}). One keep varying the block length to test for the
minimum

√
(MSE) For instance, given a time series data as Xt = x1, x2, · · · , x10, is chunked into

equal block length of 3 as can be seen in array of Equation 4.

Xt =



x1 x2 x3 B1
x2 x3 x4 B2

x3 x4 x5 B3
x4 x5 x6 B4

x5 x6 x7 B5
x6 x7 x8 B6

x7 x8 x9 B7
x8 x9 x10 B8


(4)

The Proposed Method

Consider modifications to the following already existing block resampling techniques for de-
pendent data: the MBB in [8]. The reason for modification is to introduce equal number of
presence of every element of the parent time series in the blocking procedure. Take for instance,
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given a time series data as Xt = x1, x2, · · · , x10, is chunked into blocks as follows according
to each method (MBB and MBBR). The Moving Block Bootstrap Method with better element
Representation (MBBR) is formed to reduce the less representative presence of extreme member
of the time series data from 2l to just 2. as can be seen by comparing Equation 4 and 6. Reduction
of less-represented elements of the time series data helps to increase the performance of model
evaluation metrics (RMSE and MAE). The MBBR method is an extension of MBB method from
[8]. Given a time series data, {Xt} = {x1, x2, · · · , xn} which follows an AR MA or ARMA process
of Equation 7 and the statistic of interest θ̂MBB = f (Xt) = f (x1, x2, · · · , xn), Bι is defined as the
block of size l consecutive observations starting from xι, that is:

Bι = {Xι, . . . , Xι+(ι−1)}; ι = 1, 2, · · · , b for

 lim
l,n→∞

l
n → ∞

b = n − 2(l − 1)
(5)

Let b = n − 2(l − 1) and n∗ = k × l, while k and n∗ are positive integers, such that n∗ is the
smallest multiple of l ⩾ n.

A random sample of k blocks, (n < k < ∞), {B∗
1 , B∗

2 , · · · , B∗
k} is resampled independently with

replacement from {B1, · · · , Bb} ∼ uni f (1, b) with probability of b−1; where each Bι, ι = 1, 2, · · · , k
has a block of size l; (n > l > 1). If l = 1, the block bootstrap returns to independent and
identically distributed bootstrap originally proposed by [5]. Figure 1 provides a schematic
representation of Equation 5 as a blocking scheme for moving block bootstrap. The array in
Equation 6 demonstrates the churning procedure of a typical time series data of n = 10 sample
size with a block length of l = 3. This proposed method can be executed with the help of an R
package in [7] using R programming Language in [19] as demonstrated in Listing 1.

Xt =



x1 x2 x3 B1
x2 x3 x4 B2

x4 x5 x6 B3
x5 x6 x7 B4

x7 x8 x9 B5
x8 x9 x10 B6

 (6)

Listing 1: OBL Package for Minimum RMSE Values
> install.packages(OBL)
> df <- OBL:: blockboot(ts, 10, 123, 4)
> df$RMSE [2]
# [1] 0.3398036
> df$RMSE [4]
# [1] 0.3303526

2.2. Data Generation for Simulation Study

2.2.1 Time Series Data Using ARIMA Model Methodology

Recall that:
Xt = x1, x2, · · · , xn (7)
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obtained from an AR(p), MA(q) or ARMA(p, q) process is given as follows:

Xt =µ +
p

∑
t=1

ϕjXt−j +
q

∑
t=1

θkεt−k + εt; εt ∼ N(0, σε)

for



j = 1, 2, · · · , p;
k = 1, 2, · · · , q;
t = 1, 2, · · · , n;
0 ⩽ |ϕj| ⩽ 1;
0 ⩽ |θk| ⩽ 1;
ϕj ̸= θk;

n
∑

t=1
εt = 0;

εt ∼ N(0, σ2);
σ2

ε = σ2;
|µ| ≥ 0.

(8)

The use of ”R” package demonstrated in R code Listing 2 below shows commands written for
”R” to grid-search for a ”seed” that produces exactly or approximately an ARIMA(1, 0, 0) with
φ = 0.8 and sample size (n = 10) starting from seed 280000 to 290000 with an increase of one unit.
From the grid-search result printed, seed 289805 is deemed appropriate for the example. Similar
effort is put in for every time series data simulated for this study to ensure that the output of
each simulated time series data depict its specified parameters.

Listing 2: Seed Searching Using ”ARIMASS” Package in R
devtools :: install_github("sta189332/searchar")
# @example
# searchar :: arsearch(a = 280000 , z = 290000 , n = 10, p = 1, d = 0, q = 0, ar11 = 0.8, sd = 1,

j1 = 4, arr1 = "0.80")
# ar1 seed
# 7 0.8079816 282327
# 5 0.8062789 283176
# 6 0.8074425 284165
# 8 0.8081475 284461
# 4 0.8026127 287720
# 9 0.8084755 288160
# 3 0.8023778 289053
# 1 0.8000000 289805
# 2 0.8000368 289989

Haven got the set of program seeds that simulates the specified parameters of the ARIMA time
series data that is described in each simulated data, one can then use such program seed to
simulate the desired ARIMA time series data. In Listing 3 bellow, ”seed(289805)” is used as a
demonstration to simulate for the ARIMA(1, 0, 0) with sample size (n = 10) and φ = 0.8 in line 1
while on line 2 one checked for the empirical characteristics of the ARIMA(1, 0, 0) to make sure
that the simulated data does not just come from the population of ARIMA(1, 0, 0) and φ = 0.8
alone but that the simulated data itself has the characteristics one calls for. The below paragraphs
show how time series data for AR, MA and ARMA are simulated with there respective parameters.

Listing 3: Illustration of ARIMA Time Series Data Simulation
set.seed (289805)
ar_1 <- stats :: arima.sim(n = 10, model = list(ar = c(0.8), order = c(1, 0, 0)), sd = 1)
forecast ::auto.arima(ar_1, ic = "aicc")
# Series: ar_1
# ARIMA (1,0,0) with zero mean
# Coefficients:
# ar1
# 0.8000
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Data Simulation for Autoregressive (AR) Model

Forty eight (48) time series data were simulated to follow (AR(1) models with different parameters
coefficients φ = (0.8, 0.9, 0.95), sample size n = (10, 15, 20, 25) and standard deviation of varying
levels values sd = (1, 3, 5, 10). Stationary conditions are confirmed to be true for AR(1) time series
data with different levels of φ values in Equation 9. AR(1) models of consideration are spelled
out in the below Equation 9 with their different levels of autocorrelation (φ), standard deviation
(σ) and sample sizes (n).

X̂t =φX̂t−1 + εt; εt ∼ N(0, σε)

for


φ = 0.8, 0.9, 0.95;
σε = 1, 3, 5, 10;
n = 10, 15, 20, 25;
|φ| ⩽ 1.

(9)

Forty eight (48) time series data were simulated to follow AR(2) models with different parameters
coefficients φ = ((0.4, 0.4), (0.45, 0.45), (0.35, 0.6)), sample size n = (10, 15, 20, 25) and standard
deviation of varying levels values sd = (1, 3, 5, 10). Stationary conditions are confirmed to be true
for AR(2) time series data at different levels of φ values; φ = (0.4, 0.4), (0.45, 0.45), (0.35, 0.6) in
Equation 10.

X̂t =φ1X̂t−1 + φ2X̂t−2 + εt; εt ∼ N(0, σε)

for



φ1 = 0.4, 0.45, 0.35;
φ2 = 0.4, 0.45, 0.6;
σε = 1, 3, 5, 10;
|φ1| ⩽ 1;
|φ2| ⩽ 1;
n = 10, 15, 20, 25;
|φ1|+ |φ2| ⩽ 1;
|φ1| − |φ2| ⩽ 1.

(10)

Data Simulation for Moving Average (MA) Model

Forty eight (48) time series data were simulated to follow MA(1) models with different parameters
coefficients ϑ = (0.8, 0.9, 0.95), sample size n = (10, 15, 20, 25) and standard deviation of varying
levels values sd = (1, 3, 5, 10). Stationary conditions are confirmed to be true for MA(1) time
series data with different levels of ϑ values in Equation 11. MA(1) models of consideration are
spelled out in the below Equation 11 with their different levels of autocorrelation and standard
deviation.

X̂t =ϑX̂t−1 + εt; εt ∼ N(0, σε)

for


ϑ = 0.8, 0.9, 0.95;
σε = 1, 3, 5, 10;
n = 10, 15, 20, 25;
|φ| ⩽ 1.

(11)

Forty eight (48) time series data were simulated to follow MA(2) models with different parameters
coefficients ϑ = ((0.4, 0.4), (0.45, 0.45), (0.35, 0.6)), sample size n = (10, 15, 20, 25) and standard
deviation of varying levels values sd = (1, 3, 5, 10). Stationary conditions are confirmed to be true
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for AR(2) time series data at different levels of ϑ values; ϑ = (0.4, 0.4), (0.45, 0.45), (0.35, 0.6) in
Equation 12.

X̂t =ϑ1X̂t−1 + ϑ2X̂t−2 + εt; εt ∼ N(0, σε)

for



ϑ1 = 0.4, 0.45, 0.35;
ϑ2 = 0.4, 0.45, 0.6;
σε = 1, 3, 5, 10;
n = 10, 15, 20, 25;
|ϑ1| ⩽ 1;
|ϑ2| ⩽ 1;
|ϑ1|+ |ϑ2| ⩽ 1;
|ϑ1| − |ϑ2| ⩽ 1.

(12)

Data Simulation for Autoregressive Moving Average (ARMA) Model

Forty eight (48) time series data were simulated to follow ARMA(1, 1)) models with differ-
ent parameters coefficients ψ = ((0.5, 0.3), (0.5, 0.4), (0.35, 0.6)), sample size n = (10, 15, 20, 25)
and standard deviation of varying levels values sd = (1, 3, 5, 10). Stationary conditions are
confirmed to be true for ARMA(1, 1) time series data at different levels of ψ values; ψ =
(0.4, 0.4), (0.45, 0.45), (0.35, 0.6) in Equation 13.

X̂t =ϕXt−1 + θεt−1; εt ∼ N(0, σε)

for



ϕ = 0.5, 0.5, 0.35;
θ = 0.3, 0.4, 0.6;
σε = 1, 3, 5, 10;
n = 10, 15, 20, 25;
|ϕ| < 1;
|θ| < 1;
ϕ ̸= θ.

(13)

2.3. Criteria for Model and Method Selection

In order to choose the better-performing method between the two methods (MBB and MBBR)
discussed above, Root Mean Squared Error (RMSE) is used to choose the best-performing model
that results in the better method. Note that [18] deployed RMSE to choose the best-performing
method for forecasting the carbon dioxide (CO2) emission of Bahrain. Mean Absolute Error
(MAE) is another metric used in this paper for method evaluation. To evaluate the robustness
of data-model comparisons, [11] concluded that RMSE is not enough, rather MAE or other
relevant measures are needed. The most common accuracy-fit-performance metric is RMSE.
Prediction quality is often evaluated by the root mean square error or root mean square deviation.
Based on Euclidean distance, it shows how far predictions differ from measured true values. To
calculate RMSE, calculate the residual (difference between prediction and truth) for each data
point, compute its norm, calculate its mean, and then take its square root. As RMSE relies on and
requires true measurements at every predicted data point.

RMSE =

√
1
n

n

∑
ι=1

(Xι − X̂ι)2 (14)

MAE =
1
n

n

∑
ι=1

|Xι − X̂ι| (15)
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From the above Equations 14 and 15, n is the number of data points, Xι is the i-th measurement,
and X̂ι is its corresponding prediction. MAE also has the same units as RMSE. Usually, MAE is
smaller than RMSE, although it can be the opposite if the predicted values are very close to the
observed ones.

3. Results

Methods Comparison for AR(1) Models

It can be seen in Table 1 and Figure 2 that MBBR method has smaller RMSE and MAE values
indicating that the newly proposed method (MBBR) presents a better quality of prediction than
the existing method (MBB). It can also be seen in Table 1 and Figure 2 that RMSE and MAE
values increase as the value of standard deviation increases. Comparing the values of RMSE in
Table 1 with the values of MAE in Figure 2 pairwise, MAE values are smaller than that of RMSE.
The proposed method (MBBR) has minimum elements yet has better representation and more
efficient than the existing method MBB as seen in 1 and Figure 2.

Methods Comparison for AR(2) Models

It can be seen in Table 2 and Figure 3 that MBBR method has smaller RMSE and MAE values
indicating that the newly proposed method (MBBR) presents a better quality of prediction than
the existing method (MBB). It can also be seen in Table 2 and Figure 3 that RMSE and MAE
values increase as the value of standard deviation increases. Comparing the values of RMSE in
Table 2 with the values of MAE in Figure 3 pairwise, MAE values are smaller than that of RMSE.
The proposed method (MBBR) has minimum elements yet has better representation and more
efficient than the existing method MBB as seen in 2 and Figure 3.

Methods Comparison for MA(1) Models

It can be seen in Table 3 and Figure 4 that MBBR method has smaller RMSE and MAE values
indicating that the newly proposed method (MBBR) presents a better quality of prediction than
the existing method (MBB). It can also be seen in Table 3 and Figure 4 that RMSE and MAE
values increase as the value of standard deviation increases. Comparing the values of RMSE in
Table 3 with the values of MAE in Figure 4 pairwise, MAE values are smaller than that of RMSE.
The proposed method (MBBR) has minimum elements yet has better representation and more
efficient than the existing method MBB as seen in 3 and Figure 4.

Methods Comparison for MA(2) Models

It can be seen in Table 4 and Figure 5 that MBBR method has smaller RMSE and MAE values
indicating that the newly proposed method (MBBR) presents a better quality of prediction than
the existing method (MBB). It can also be seen in Table 4 and Figure 5 that RMSE and MAE
values increase as the value of standard deviation increases. Comparing the values of RMSE in
Table 4 with the values of MAE in Figure 5 pairwise, MAE values are smaller than that of RMSE.
The proposed method (MBBR) has minimum elements yet has better representation and more
efficient than the existing method MBB as seen in 4 and Figure 5.

Methods Comparison for ARMA(1, 1) Models

It can be seen in Table 5 and Figure 6 that MBBR method has smaller RMSE and MAE values
indicating that the newly proposed method (MBBR) presents a better quality of prediction than
the existing method (MBB). It can also be seen in Table 5 and Figure 6 that RMSE and MAE
values increase as the value of standard deviation increases. Comparing the values of RMSE in
Table 5 with the values of MAE in Figure 6 pairwise, MAE values are smaller than that of RMSE.
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The proposed method (MBBR) has minimum elements yet has better representation and more
efficient than the existing method MBB as seen in 5 and Figure 6.

Table 1: Minimum RMSE Criterion of MBB and MBBR Methods for AR(1)

φ = 0.8 φ = 0.9 φ = 0.95

n 10 15 20 25 10 15 20 25 10 15 20 25

MBB 1.58 0.89 1.50 1.85 0.89 1.20 1.45 1.39 1.26 0.88 1.29 1.01

sd
=

1

MBBR 1.58 0.80 1.43 1.85 0.83 1.01 1.40 1.34 1.12 0.17 1.21 0.87

MBB 4.75 2.67 4.65 5.55 2.67 3.60 4.72 4.18 3.79 3.21 4.01 3.03

sd
=

3

MBBR 4.73 2.41 4.29 5.55 2.50 3.04 4.19 4.02 3.37 2.63 3.64 2.60

MBB 7.92 4.45 7.76 9.26 4.45 6.01 7.87 6.97 6.32 5.34 6.69 5.0

sd
=

5

MBBR 7.89 4.02 7.15 9.26 4.17 5.07 6.98 6.70 5.62 4.39 6.07 4.34

MBB 15.83 8.90 15.52 18.52 8.90 12.01 15.74 13.93 12.65 10.68 13.38 10.11

sd
=

10

MBBR 15.77 8.04 14.30 18.51 8.34 10.13 13.96 13.41 11.23 8.78 12.14 8.68

Table 2: Minimum RMSE Criterion of MBB and MBBR Methods for AR(2)

φ1 = 0.4, φ2 = 0.4 φ1 = 0.45, φ2 = 0.45 φ1 = 0.35, φ2 = 0.6

n 10 15 20 25 10 15 20 25 10 15 20 25

MBB 0.81 1.37 1.11 1.28 1.15 1.08 1.47 1.26 1.22 1.09 1.39 1.29

sd
=

1
MBBR 2.42 4.1 3.33 3.83 3.45 3.25 4.4 3.79 3.67 3.27 4.18 3.88

MBB 2.42 4.1 3.33 3.83 3.45 3.25 4.4 3.79 3.67 3.27 4.18 3.88

sd
=

3

MBBR 2.28 4.05 3.28 3.32 3.3 3.16 4.3 3.54 3.66 3.15 3.70 3.39

MBB 4.03 6.83 5.55 6.38 5.74 5.42 7.34 6.32 6.12 5.45 6.97 6.46

sd
=

5

MBBR 3.8 6.76 5.46 5.53 5.55 5.27 7.17 5.9 6.11 5.25 6.17 5.66

MBB 12.1 13.66 11.11 12.76 11.48 10.85 14.68 12.65 12.24 10.89 13.94 12.92

sd
=

10

MBBR 8.06 13.51 10.93 11.05 11 10.55 14.34 11.81 12.21 10.5 12.33 11.31
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Figure 2: Facet-Line Plot Showing Minimum MAE of MBB and MBBR Methods for AR(1)
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Figure 3: Facet-Line Plot Showing Minimum MAE of MBB and MBBR Methods for AR(2)
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Table 3: Minimum RMSE Criterion of MBB and MBBR Methods for MA(1)

ϑ = 0.8 ϑ = 0.9 ϑ = 0.95

n 10 15 20 25 10 15 20 25 10 15 20 25

MBB 0.77 0.96 1.29 1.63 1.21 0.98 1.25 1.27 1.46 1.26 1.12 1.31

sd
=

1

MBBR 0.72 0.94 1.29 1.57 1.13 0.92 1.24 1.16 1.42 1.23 1.09 1.31

MBB 2.30 2.88 3.88 4.89 3.63 2.93 3.76 3.8 4.38 3.77 3.37 3.93

sd
=

3

MBBR 2.15 2.81 3.84 4.71 3.39 2.76 3.25 3.49 4.25 3.68 3.17 3.93

MBB 3.83 4.80 6.46 8.15 6.05 4.88 6.27 6.33 7.3 6.29 5.62 6.55

sd
=

5

MBBR 3.59 4.68 6.40 7.85 5.64 4.59 5.42 5.81 7.17 6.13 5.28 6.54

MBB 7.66 9.61 12.92 16.31 12.1 9.76 12.53 12.66 14.6 12.58 11.23 13.1

sd
=

10

MBBR 7.17 9.36 12.81 15.7 11.28 9.19 10.83 11.63 14.17 12.26 10.55 13.08

Table 4: Minimum RMSE Criterion of MBB and MBBR Methods for MA(2)

ϑ1 = 0.4, ϑ2 = 0.4 ϑ1 = 0.45, ϑ2 = 0.45 ϑ1 = 0.35, ϑ2 = 0.6

n 10 15 20 25 10 15 20 25 10 15 20 25

MBB 0.86 1.35 1.22 1.27 1.74 1.29 1.49 1.3 1.23 1.28 1.17 1.23

sd
=

1

MBBR 0.90 1.35 1.21 1.27 1.73 1.29 1.49 1.3 1.23 1.23 1.16 1.22

MBB 2.69 4.04 3.67 3.8 5.22 3.87 4.48 3.91 3.70 3.83 3.52 3.69

sd
=

3
MBBR 2.59 4.04 3.62 3.8 5.19 3.87 4.48 3.9 3.70 3.69 3.49 3.65

MBB 4.49 6.74 6.12 6.34 8.69 6.45 7.47 6.52 6.17 6.38 5.87 6.15

sd
=

5

MBBR 4.32 6.74 6.03 6.33 8.66 6.45 7.47 6.5 6.17 6.15 5.82 6.08

MBB 11.77 13.48 12.24 12.67 17.38 12.91 14.94 12.99 12.34 12.75 11.74 12.30

sd
=

10

MBBR 8.97 13.48 12.07 12.65 17.31 12.91 14.94 13.01 12.33 12.31 11.65 12.16

  RT&A, No.3 (74)  
Volume 18, September 2023  

683



AYINDE et al.
MBBR FOR UNIVARIATE TIME SERIES DATA

ϑ = 0.8 ϑ = 0.9 ϑ = 0.95

s
d

=
1

s
d

=
3

s
d

=
5

s
d

=
1

0

1
0

1
5

2
0

2
5

1
0

1
5

2
0

2
5

1
0

1
5

2
0

2
5

0.7

0.9

1.1

1.3

2.0

2.5

3.0

3.5

3

4

5

6

7

9

11

13

Sample Size

M
A

E

Methods

MBB

MBBR

Figure 4: Facet-Line Plot Showing Minimum RMSE of MBB and MBBR Methods for MA(1)
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Figure 5: Facet-Line Plot Showing Minimum MAE of MBB and MBBR Methods for MA(2)
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Figure 6: Facet-Line Plot Showing Minimum MAE of MBB and MBBR Methods for ARMA(1, 1)
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Table 5: Minimum RMSE Criterion of MBB and MBBR Methods for ARMA(1, 1)

φ1 = 0.5, ϑ2 = 0.3 φ1 = 0.5, ϑ2 = 0.4 φ1 = 0.35, ϑ2 = 0.6

n 10 15 20 25 10 15 20 25 10 15 20 25

MBB 1.23 1.09 1.5 1.35 1.29 1.62 1.95 1.07 1.27 1.19 1.43 1.34

sd
=

1

MBBR 1.17 1.01 1.49 1.21 1.2 1.62 1.93 1.04 1.11 1.12 1.41 1.31

MBB 3.68 3.27 4.5 4.05 3.87 4.87 5.84 3.2 3.81 3.57 4.29 4.03

sd
=

3

MBBR 3.5 3.03 4.48 3.62 3.61 4.85 5.78 3.12 3.34 3.37 4.24 3.93

MBB 6.14 5.45 7.5 6.75 6.45 8.11 9.73 5.34 6.34 5.96 7.15 6.72

sd
=

5

MBBR 5.83 5.06 7.47 6.03 6.01 8.08 9.63 5.2 5.57 5.62 7.07 6.56

MBB 12.28 10.91 15 13.49 12.9 16.22 19.45 10.67 12.69 11.91 14.3 13.44

sd
=

10

MBBR 12.08 10.11 14.95 12.06 12.02 16.17 19.27 10.4 11.14 11.23 14.15 13.11

4. Discussion

It is important to mention interesting points that emerge from this study. The study shows that the
newly proposed method (MBBR) represents a better quality of prediction than the existing method
(MBB). It is also shown that neither the sample size nor the model parameter(s) has significant
impact on the accuracy measures. It is also worthy of note that the varying level of standard
deviation has a direct and positive impact the values of accuracy measure. In general, MAE
values are smaller than their corresponding values of RMSE. The proposed method has minimum
elements yet has better representation than the existing method. Although this research focus
mainly on comparison of Moving Block Bootstrap method with the newly proposed (Moving
Block Bootstrap with better element representation), Future research will focus on comparing the
proposed method with other existing methods of block bootstrap.

References

[1] Berkowitz, J. and Kilian, L. (2000). Recent developments in bootstrapping time series. Econo-
metric Reviews, 19(1):1–48.

[2] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting
and control. John Wiley & Sons.

[3] Carlstein, E. (1986). The use of subseries values for estimating the variance of a general
statistic from a stationary sequence. The annals of statistics, pages 1171–1179.

[4] Dahl, C. M. and Sørensen, E. N. (2022). Time series (re) sampling using generative adversarial
networks. Neural Networks.

[5] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):569–593.
[6] Horowitz, J. L. (2003). Bootstrap methods for markov processes. Econometrica, 71(4):1049–1082.
[7] James, D. and Kayode, A. (2022). OBL: Optimum Block Length. R package version 0.2.1.
[8] Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The

annals of Statistics, pages 1217–1241.
[9] La Vecchia, D., Moor, A., and Scaillet, O. (2022). A higher-order correct fast moving-average

bootstrap for dependent data. Journal of Econometrics.
[10] Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. Annals of Statistics,

pages 386–404.

  RT&A, No.3 (74)  
Volume 18, September 2023  

687



AYINDE et al.
MBBR FOR UNIVARIATE TIME SERIES DATA

[11] Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., and Mukhopad-
hyay, A. (2021). Rmse is not enough: Guidelines to robust data-model comparisons for
magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218:105624.

[12] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak
dependence. Exploring the limits of bootstrap, 225.

[13] Paparoditis, E. and Politis, D. (2002a). The tapered block bootstrap for general statistics from
stationary sequences. The Econometrics Journal, 5(1):131–148.

[14] Paparoditis, E. and Politis, D. (2002b). The tapered block bootstrap for general statistics from
stationary sequences. The Econometrics Journal, 5(1):131–148.

[15] Paparoditis, E. and Politis, D. N. (2001). Tapered block bootstrap. Biometrika, 88(4):1105–1119.
[16] Politis, D. and Romano, J. (1992). Circular block’resampling procedure for stationary data,

rin lepage, r. and billard, l.(eds) exploring the limits of bootstrap. Wiley: New York, 263:270.
[17] Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples

under minimal assumptions. The Annals of Statistics, pages 2031–2050.
[18] Qader, M. R., Khan, S., Kamal, M., Usman, M., and Haseeb, M. (2022). Forecasting carbon

emissions due to electricity power generation in bahrain. Environmental Science and Pollution
Research, 29(12):17346–17357.

[19] R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

[20] Shao, X. (2010). Extended tapered block bootstrap. Statistica Sinica, pages 807–821.

  RT&A, No.3 (74)  
Volume 18, September 2023  

688



Kajal Sachdeva, Gulshan Taneja, Amit Manocha
RELIABILITY AND SENSITIVITY ANALYSIS OF A SYSTEM
WITH CONDITIONAL AND EXTENDED WARRANTY

RELIABILITY AND SENSITIVITY ANALYSIS OF A
SYSTEM WITH CONDITIONAL AND EXTENDED

WARRANTY

Kajal Sachdeva

•
Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana, India

kajal.rs.maths@mdurohtak.ac.in
Gulshan Taneja

•
Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana, India

drgtaneja@gmail.com
Amit Manocha*

•
Department of Applied Sciences, TITS Bhiwani, Haryana, India

amitmanocha80@yahoo.com
*Corresponding Author

Abstract

System reliability and maintenance cost are the most crucial and decisive factors influencing consumers’
buying behaviour. The manufacturer attempts to address the consumer concern by offering a warranty
in accordance with the reliability of the system and maintenance costs. This study aims to examine the
stochastic behaviour of a single unit system operating in three different time frames, namely normal,
extended and expired warranty time duration. The system user can prolong the normal warranty period
at an extra cost. This prolonged warranty is termed an ‘Extended Warranty’. However, the manufacturer
provides a warranty on a system with certain conditions. If the failures are covered under the warranty
conditions, the repair/replacement is done free of cost; otherwise, all charges are borne by the system user.
Markov and regenerative processes are used to derive the system’s reliability and other performability
measures. Time distributions used in the study are taken as arbitrary. The profit function for the
manufacturer and the user is formulated and analysed. Sensitivity analysis for system availabilities in
different time zones and profit functions is also done. Numerical examples for exponential, Weibull and
Erlang time distributions are discussed to illustrate the derived measures.

Keywords: Reliability; Extended warranty; Regenerative process; Profit function; Sensitivity
analysis.

1. Introduction

The recent advancement in various technological aspects has paved the way for endless technolo-
gies and innovations to hit the mainstream, forcing manufacturers to offer a gamut of consumer
options. Despite the numerous advantages of technological development, the flip side is the
system’s complexity. Consequently, the consumers are apprehensive of system reliability which
may adversely affect the sales of the developed product. Hence, in the pursuit of ensuring system

  RT&A, No.3 (74)  
Volume 18, September 2023  

689

mailto:kajal.rs.maths@mdurohtak.ac.in
mailto:drgtaneja@gmail.com
mailto:amitmanocha80@yahoo.com


Kajal Sachdeva, Gulshan Taneja, Amit Manocha
RELIABILITY AND SENSITIVITY ANALYSIS OF A SYSTEM
WITH CONDITIONAL AND EXTENDED WARRANTY

reliability and addressing the consumer’s concerns and dilemmas, the manufacturer offers a war-
ranty and extended warranty. System reliability and warranty may be considered as interrelated
concepts. Warranty is the written agreement provided to system users for cumulative product
acceptance without any strain of product manufacturing or faults. Ives and Vitale [1], Ritchken et
al. [2], Singpurwalla and Wilson [3] proposed that the warranty on various products caters to
risk reduction, quality bench-marking and enhanced market competitiveness. Different types of
warranty policies were introduced to optimize profit. Free Replacement Warranty, Full-Service
Warranty and Renewing Pro-Rata Warranty were described by Blischke, and Murthy [4], Jain and
Maheshwari [5], Bai and Pham [6] respectively. Huang et al. [7] discussed the future problems
and challenges in reliability and warranty. Kadyan and Ramniwas [8] proposed a probabilistic
model for a single-unit system protected by warranty conditions. Rahman and Chattopadhyay [9]
developed cost models on long-term/service contract policies. Pham and Bai [10] discussed
warranty costs, compared different warranty policies and evaluated the warranty benefits. The
warranties offered to consumers can safeguard them from exorbitant maintenance costs consider-
ing the ever-increasing maintenance cost resulting from advancements. A conditional warranty
covers the cost associated with defects stipulated in the agreement at the time of purchase.
Taneja [11] developed a stochastic model in which repair/replacement is done by the manu-
facturer on predefined warranty conditions. Lei et al. [12] discussed the characterization of
warranty price policies and optimized the product price, which is profitable to the user. Further,
Solkhe and Taneja [13] considered the system with conditional warranty and compared the
performability measures before and after the expiry of warranty periods. Niwas [14] analysed
a warranted system with waiting time for repair and cost paid by the user if failures happen
due to unauthorised modifications. Hooti et al. [15] optimised the warranty duration and the
repair. Another type of warranty, known as an extended warranty, is worth considering these
days. There are systems used in daily life for which manufacturers, dealers or third parties
provide extended warranties, such as home appliances and electronic equipment, particularly in
the automotive industry. Though optional, it offers users a sense of security regarding system
reliability, maintenance costs, etc. Suiter and Lorson [16] described the pros and cons of an
extended warranty for the system user. Huang [17] considered a system with minor, degraded
and catastrophic failures where warranty was provided for either one year at a fixed lump sum
price or monthly warranty plan which may be extended for another month. Salmasnia and
Hatami [18] considered a model with an extended warranty where the failures are controlled
using technology and non-periodic maintenance activities.
However, stochastic modelling of a system with prolonged conditional warranty and identification
of key parameters influencing the most on the manufacturer/user profit is yet to be reported
in the literature. So, the objective of our study is to stochastically analyze a system functioning
in normal, extended and beyond warranty periods with a focus on its reliability characteristics
and economic viability. The study also identifies the parameter that significantly impacts system
profitability from the manufacturer and user perspectives. This article is structured as follows.
System description and assumptions made are described in Section 2. Various notations used
in the study are cited in Section 3. A probabilistic model for the described system is developed
in Section 4. Transition probabilities and mean sojourn times are also evaluated in this Section.
Expressions for reliability indices and metrics impacting the system’s profitability are derived
in Sections 5, 6 and 7, respectively. In Section 8, the profit functions for the manufacturer and
the user are established. Section 9 focused on the sensitivity analysis of availabilities and profit
functions. To illustrate the developed model, numerical examples for different density functions
are discussed in Section 10. Conclusions regarding reliability, system availabilities, the profitability
of the manufacturer/user and their sensitivity are also drawn in this Section. Finally, Section 11
provides several concluding insightful interpretations.
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2. System Descriptions and Assumptions

Descriptions for the system under consideration and assumptions made for the analysis are as
follows:

1. System has a single unit that operates in three different warranty periods named normal,
extended and expiry warranty periods.

2. The failed system is inspected by the manufacturer or external source to ensure

(a) Whether faults occur in a system comes under warranty claims or not.

(b) Whether the system is repairable or needs replacement.

3. If an inspection reveals that a fault falls inside the purview of a normal or extended warranty
conditions, the manufacturer is liable for paying the cost of repair/replacement. Otherwise,
all the charges are borne by the user itself.

4. In the expiry (beyond warranty) period, the user manages the expenditure for repair/replacement.

5. Transition time distributions have been taken general.

NoYes

Figure 1: System description.

Figure 1 shows the description of the system. Markov and regenerative processes are applied
to develop a stochastic model for the system defined. Mathematical expressions for reliability,
Mean time to failure (MTTF), availabilities, expected busy period of repairman, and the number
of replacements are derived. Profit functions are formulated. Sensitivity analysis is also done for
availabilities in three different time zones and for the profit function of the manufacturer and the
user. Exponential, Weibull and Erlang distributions are used for numerical calculations. Various
conclusions on reliability indices, profitability and sensitivity, are drawn.

3. Nomenclature

The notations for various probabilities/transition densities are:
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S0 state of system at t=0
⊙ symbol for Laplace transform
p/q probability that fault is covered/not covered by warranty terms.
p1/p2/p3 probability that system gets failed during normal/extended/

expired warranty period.
r1/r2 probability that fault is repairable/ irreparable and only to be replaced.
f (t) p.d.f. of failure time.
im(t)/iu(t) p.d.f. of inspection time by the repairman engaged by manufacturer/

user itself.
gk(t)/hk(t) p.d.f. of repair/replacement time within warranty period ‘k=n/et/ex’
Ik
i (t) P{repairman of manufacturer is engaged in inspection at instant t | S0 = i

within warranty period ‘k’}.
BMk

i (t)(BUk
i (t)) P{manufacturer repairman is occupied with repair/replacement when the

associated cost are to be paid by the manufacturer (user) at instant
t | S0 = i within warranty period ‘k’}.

RMk
i (t)(RUk

i (t)) expected number of replacement in (0,t], when expenses are met by
manufacturer(user) | S0 = i during warranty period ‘k’.

where k denotes normal(n), extended(et), expired(ex).

4. Stochastic Model

The probable states of described system are:

State 0: (Onw); State 1: (Fin); State 2: (F(m)
rn );

State 3: (F(m)
rpn ); State 4: (F(u)

rn ); State 5: (F(u)
rpn);

State 6: (Fiet); State 7: (F(u)
ret ); State 8: (F(u)

rpet );

State 9: (F(m)
ret ); State 10: (F(m)

rpet); State 11: (Oetw);

State 12: (Fiex); State 13: (F(u)
rex ); State 14: (F(u)

rpex );
State 15: (Oexw);

where,

Okw operative system in warranty period ‘k’.
Fik failed system under inspection in warranty period ‘k’.
F(m)

rn (F(m)
rpn )/F(m)

ret (F(m)
rpet) failed system under repair(replacement) in normal/extended

warranty period, for which expenses are to
be borne by manufacturer.

F(u)
rk /F(u)

rpk failed system under repair/ replacement in warranty
period ‘k’, for which charges are to be borne
by user itself.

Here, k denotes normal(n), extended(et), expired(ex).
By employing markov and regenerative process, the transition between various states is repre-
sented by Figure 2. The state space constitutes the set of regenerative states i.e., S={0, 1, 2, ..., 15},
where O={0, 11, 15} is operative, and F={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14} is failed state space
respectively.
The transition densities from state i to state j (Qij(t)) are:

Q01(t) =
∫ t

0 dF(u), Q12(t) = pr1
∫ t

0 dIm(u), Q13(t) = pr2
∫ t

0 dIm(u),
Q14(t) = qr1

∫ t
0 dIm(u), Q15(t) = qr2

∫ t
0 dIm(u), Q20(t) =

∫ t
0 dGn(u),

Q30(t) =
∫ t

0 dHn(u), Q40(t) =
∫ t

0 dGn(u), Q50(t) =
∫ t

0 dHn(u),
Q06(t) =

∫ t
0 dF(u), Q67(t) = qr1

∫ t
0 dIm(u), Q68(t) = qr2

∫ t
0 dIm(u),
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Q69(t) = pr1
∫ t

0 dIm(u), Q6,10(t) = pr2
∫ t

0 dIm(u), Q7,11(t) =
∫ t

0 dGet(u),
Q8,11(t) =

∫ t
0 dHet(u), Q9,11(t) =

∫ t
0 dGet(u), Q10,11(t) =

∫ t
0 dHet(u),

Q0,12(t) =
∫ t

0 dF(u), Q11,12(t) =
∫ t

0 dF(u), Q11,6(t) =
∫ t

0 dF(u),
Q12,13(t) = r1

∫ t
0 dIu(u), Q12,14(t) = r2

∫ t
0 dIu(u), Q13,15(t) =

∫ t
0 dGex(u),

Q14,15(t) =
∫ t

0 dHex(u), Q15,12(t) =
∫ t

0 dF(u).

12
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9 10
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(Oetw)

(Fin)

(Fiex)

(Fiet)

(Frn
(m))

(Frpn
(u))

(Frn
(u))

(Frpn
(m))

(Fret
(m))
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Figure 2: State transition diagram

Thus, transition probabilities from state i to j are:

pij = lim
s→0

q∗ij(s), where qij(t) =
dQij(t)

dt
.

These probabilities follow the property of transition probability matrix for each measure of system
effectiveness.
Mean sojourn time (µi) in state i are:

µ0 =
∫ ∞

0
t f (t)dt =

∫ ∞

0
F(t)dt.

Similarly,

µ1 =
∫ ∞

0
Im(t)dt, µ2 =

∫ ∞

0
Gn(t)dt, µ3 =

∫ ∞

0
Hn(t)dt, µ4 =

∫ ∞

0
Gn(t)dt,

µ5 =
∫ ∞

0
Hn(t)dt, µ6 =

∫ ∞

0
Im(t)dt, µ7 =

∫ ∞

0
Get(t)dt, µ8 =

∫ ∞

0
Het(t)dt,

µ9 =
∫ ∞

0
Get(t)dt, µ10 =

∫ ∞

0
Het(t)dt, µ11 =

∫ ∞

0
F(t)dt, µ12 =

∫ ∞

0
Iu(t)dt,

µ13 =
∫ ∞

0
Gex(t)dt, µ14 =

∫ ∞

0
Hex(t)dt, µ15 =

∫ ∞

0
F(t)dt.
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Defining mij= E(qij(t))=
∫ ∞

0 tqij(t)dt, we have

m01 =
∫ ∞

0
tq01(t)dt =

∫ ∞

0
t f (t)dt = µ0.

Similarly, we get the following relations

m06 = m0,12 = µ0, m20 = µ2, m30 = µ3, m40 = µ4,
m50 = µ5, m7,11 = µ7, m8,11 = µ8, m9,11 = µ9,
m10,11 = µ10, m11,6 = m11,12 = µ11, m12,13 + m12,14 = µ12, m13,15 = µ13,
m14,15 = µ14, m15,12 = µ15, m12 + m13 + m14 + m15 = µ1,
m67 + m68 + m69 + m6,10 = µ6.

The reliability and performance-indicating characteristics of the system are determined in the
following section.

5. Reliability (R(t)) and Mean Time to Failure (MTTF)

Theorem 1. R(t) and MTTF are given as

R(t) = F(t), MTTF = µ0.

Proof. Let ψ0(t)=P[system is operative until time t | S0 = 0], then using probabilistic
arguments, it can be seen from transition diagram, that

ψ0(t) = p1Q01(t) + p2Q06(t) + p3Q0,12(t). (1)

The expression on R.H.S. of equation (1) shows the system transit from state 0 to failed state
1 or 6 or 12, with probability p1Q01(t), p2Q06(t) and p3Q0,12(t) respectively in time t. Taking
Laplace-Stieltjes transformation of the above equation, we get

ψ∗∗
0 (s) = p1Q∗∗

01 (s) + p2Q∗∗
06 (s) + p3Q∗∗

0,12(s). (2)

Thus,

R(t) = L−1[
1 − ψ∗∗

0 (s)
s

]

= L−1[
1 − (p1Q∗∗

01 (s) + p2Q∗∗
06 (s) + p3Q∗∗

0,12(s))
s

] [Substituting(2)]

= L−1[
1
s
]− p1L−1[

Q∗∗
01 (s)
s

]− p2L−1[
Q∗∗

06 (s)
s

]− p3L−1[
Q∗∗

0,12(s)
s

]

= 1 − p1

∫ t

0
dF(u)− p2

∫ t

0
dF(u)− p3

∫ t

0
dF(u) [Using transition densities]

= 1 − (p1 + p2 + p3)
∫ t

0
dF(u)

= 1 −
∫ t

0
dF(u) (∵ p1 + p2 + p3 = 1)

= 1 −
∫ t

0
f (u)du = 1 − F(t) = F(t).

(3)

and

MTTF = lim
s→0

[
1 − ψ∗∗

0 (s)
s

] [
0
0
]

= −ψ∗∗′
0 (0). (4)
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Differentiating eqn (2) both sides w.r.t. s and then taking lim s → 0, we get

ψ∗∗′
0 (0) = p1Q∗∗′

01 (0) + p2Q∗∗′
06 (0) + p3Q∗∗′

0,12(0)

= −µ0. (5)

From eqn (4) and (5),

MTTF=µ0.

■

6. System Availability

Theorem 2. The Laplace transformation of point-wise availability during extended warranty
period is given by

Aet∗
0 (s) =

Net∗
1 (s)

Det∗
1 (s)

,

where
Net∗

1 (s)= ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗
0(s) −q∗06(s) 0 0 0 0 0
0 1 −q∗67(s) −q∗68(s) −q∗69(s) −q∗6,10(s) 0
0 0 1 0 0 0 −q∗7,11(s)
0 0 0 1 0 0 −q∗8,11(s)
0 0 0 0 1 0 −q∗9,11(s)
0 0 0 0 0 1 −q∗10,11(s)

M∗
11(s) −q∗11,6(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M∗

0(s) = M∗
11(s) =

1− f ∗(s)
s ,

Det∗
1 (s)= ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −q∗06(s) 0 0 0 0 0
0 1 −q∗67(s) −q∗68(s) −q∗69(s) −q∗6,10(s) 0
0 0 1 0 0 0 −q∗7,11(s)
0 0 0 1 0 0 −q∗8,11(s)
0 0 0 0 1 0 −q∗9,11(s)
0 0 0 0 0 1 −q∗10,11(s)
0 −q∗11,6(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The system steady-state availability is given as

Aet
0 =

Net
1

Det
1

,

where

Net
1 = µ11,

and

Det
1 = µ11 + µ6 + µ7qr1 + µ8qr2 + µ9 pr1 + µ10 pr2.
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Proof. Considering Aet
0 (t) = P(system is operative at time t in extended warranty period |

S0 = 0), then from transition diagram, we have

Aet
0 (t) = F(t) +

∫ t

0
q06(u)Aet

6 (t − u)du

= M0(t) + q06(t)⊙ Aet
6 (t) (6)

where M0(t) represents that the system remains operative in state 0 instead of moving to any
other state. The term q06(t) denotes the system transition probability from state 0 to state 6 in
time u<t and thereafter remains operative from state 6 onwards for t-u time.
Similarly,

Aet
6 (t) = q67(t)⊙ Aet

7 (t) + q68(t)⊙ Aet
8 (t) + q69(t)⊙ Aet

9 (t) + q6,10(t)⊙ Aet
10(t),

Aet
7 (t) = q7,11(t)⊙ Aet

11(t),
Aet

8 (t) = q8,11(t)⊙ Aet
11(t),

Aet
9 (t) = q9,11(t)⊙ Aet

11(t),
Aet

10(t) = q10,11(t)⊙ Aet
11(t),

Aet
11(t) = M11(t) + q11,6(t)⊙ Aet

6 (t).

(7)

Taking Laplace Transformation of eqn(6)-(7) and solving them for Aet∗
0 (s) by method of determi-

nants, we get

Aet∗
0 (s) =

L1(s)
M1(s)

,

L1(s) = M∗
o (s) + M∗

11(s)q
∗
06(s)q

∗
67(s)q

∗
7,11(s) + M∗

11(s)q
∗
06(s)q

∗
68(s)q

∗
8,11(s)

+M∗
11(s)q

∗
06(s)q

∗
69(s)q

∗
9,11(s) + M∗

11(s)q
∗
06(s)q

∗
6,10(s)q

∗
10,11(s)

−M∗
o (s)q

∗
67(s)q

∗
11,6(s)q

∗
7,11(s)− M∗

o (s)q
∗
68(s)q

∗
11,6(s)q

∗
8,11(s)

−M∗
o (s)q

∗
69(s)q

∗
11,6(s)q

∗
9,11(s)− M∗

o (s)q
∗
11,6(s)q

∗
6,10(s)q

∗
10,11(s)

= Net∗
1 (s) (8)

M1(s) = 1 − q∗68(s)q
∗
11,6(s)q

∗
8,11(s)− q∗69(s)q

∗
11,6(s)q

∗
9,11(s)− q∗11,6(s)q

∗
6,10(s)q

∗
10,11(s)

−q∗67(s)q
∗
11,6(s)q

∗
7,11(s)

= Det∗
1 (s) (9)

Using Abel’s lemma, the system’s steady state availability is

Aet
0 = lim

s→0
sAet∗

0 (s) =
Net∗

1 (0)

Det∗′
1 (0)

=
Net

1
Det

1
, (10)

Differentiating eqn (9) w.r.t. s,

Det∗′
1 (s) = q∗11,6

′(s)(−q∗67(s)q
∗
7,11(s)− q∗68(s)q

∗
8,11(s)− q∗69(s)q

∗
9,11(s)− q∗6,10(s)q

∗
10,11(s))

−q∗67
′(s)q∗7,11(s)q

∗
11,6(s)− q∗68

′(s)q∗8,11(s)q
∗
11,6(s)− q∗69

′(s)q∗9,11(s)q
∗
11,6(s)

−q∗6,10
′(s)q∗10,11(s)q

∗
11,6(s)− q∗7,11

′(s)q∗11,6(s)q
∗
6,7(s)

−q∗8,11
′(s)q∗11,6(s)q

∗
6,8(s)− q∗9,11

′(s)q∗11,6(s)q
∗
6,9(s)

−q∗10,11
′(s)q∗11,6(s)q

∗
6,11(s). (11)

Setting lim s → 0 in eqn (8) and (11), we obtain

Net
1 = µ11, (12)
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Det
1 = µ11(pr1 + pr2 + qr1 + qr2) + pr1µ9 + m69 + pr2µ10 + m6,10 + qr1µ7

+m67 + m68 + µ8qr2

= µ11 + µ6 + µ9 pr1 + µ10 pr2 + µ7qr1 + µ8qr2. (13)

■
Similarly, availabilities during normal and expired warranty period are given as

An
0 =

Nn
1

Dn
1

, Aex
0 =

Nex
1

Dex
1

. (14)

where

Nn
1 = µ0, Dn

1 = µ0 + µ1 + µ2 pr1 + µ3 pr2 + µ4qr1 + µ5qr2,

Nex
1 = µ15, Dex

1 = µ15 + µ12 + µ13r1 + µ14r2. (15)

7. Expected Busy Period and Number of Replacements

Employing the definitions of BUk
i , BMk

i and Ik
i , i ∈ S (defined in Section 3) and follow the

same probabilistic arguments as discussed in preceding Section 6, the expected time for which
repairman remain involved in repair/replacement/inspection of a failed system in different
warranty zones, in steady-state given as:

BUk
0 =

Nk
2

Dk
1
; BMk

0 =
Nk

3
Dk

1
; Ik

0 =
Nk

4
Dk

1
; k=n,et,ex.

Nn
2 = q(µ4r1 + µ5r2); Net

2 = q(µ7r1 + µ8r2); Nex
2 = µ13r1 + µ14r2;

Nn
3 = p(µ2r1 + µ3r2); Net

3 = p(µ9r1 + µ10r2); Nn
4 = µ1;

Net
4 = µ6; Nex

4 = µ12;

Further, by definitions of RUk
i and RMk

i ,i ∈ S (defined in Section 3), in steady state, the expected
number of replacements during different warranty time zones are:

RUk
0 =

Nk
5

Dk
1
; RMk

0 =
Nk

6
Dk

1
; k=n,et,ex

Nn
5 = qr2; Net

5 = qr2; Nex
5 = r2;

Nn
6 = pr2; Net

6 = pr2;

Dn
1 , Det

1 and Dex
1 are mentioned in eqn (13) and (15).

Focusing on economic viability of defined system, cost-benefit analysis is performed in the
succeeding section. Profitability analysis assists both the manufacturer and the user in categorizing
the parameters which may cause long-term loss.

8. Cost-Benefit Analysis

To carry out a cost-benefit analysis, the profit function is defined for the manufacturer and user.
Mathematically, the profit function for a system is the difference between total revenue generated
and total expenditure incurred in a given period. So, in steady-state, the profit function for the
manufacturer and user is formulated as follows:
Manufacturer Profit

Pm = CP + EC − MC − Cm
1 (p1 In

0 + p2 Iet
0 )− Cm

2 (p1BMn
0 + p2BMet

0 )

−Cm
3 (p1RMn

0 + p2RMet
0 ). (16)
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User Profit

Pu = C0(p1 An
0 + p2 Aet

0 + p3 Aex
0 )− Cu

1 (p3 Iex
0 )− Cu

2 (p1BUn
0 + p2BUet

0 + p3BUex
0 )

−Cu
3 (p1RUn

0 + p2RUet
0 + p3RUex

0 )− CP − EC. (17)

where,
CP=Cost price of the system
MC=Manufacturing cost of the system
EC=Cost for extended the warranty period.
C0=Revenue generated by system.
Cm

1 (Cu
1 )= Cost of engaging the repairman by the manufacturer(user) for inspection.

Cm
2 (Cu

2 )=Cost of engaging the repairman by the manufacturer(user) for repair/replacement.
Cm

3 (Cu
3 )=Cost per replacement of system borne by manufacturer(user).

The above-mentioned costs are considered per unit of time.

9. Sensitivity Analysis

Sensitivity analysis is a concept that determines as to which parameter (independent variable)
the obtained measures (dependent variable) are highly or least affected. Relative sensitivity
analysis is used to assess the impact of different parameters because the numerical values for
various parameters differ significantly. A normalised form of a sensitivity function is known as
relative sensitivity function. Using the eqns (10), (14), (16) and (17), the sensitivity (Dk

y, Zs
y) and

relative sensitivity functions (dk
y, zs

y) for availabilities (An
0 , Aet

0 , Aex
0 ) and profit functions (Pm,Pu)

respectively are defined as

Dk
y =

∂(Ak
0)

∂y
; dk

y =
Dk

yy

Ak
0

; k = n, et, ex. (18)

and

Zs
y =

∂(Ps)

∂y
; zs

y =
Zs

yy
Ps ; s = u, m. (19)

10. Results and Discussions

In this section, measures obtained in Sections 5-9 respectively are illustrated via numerical
examples.
Expressions for various measures have been derived using general probability time distributions.
The system user may choose specific values for the parameters involved to illustrate the model
based on records of failures, repairs, costs, and available probabilities. The particular distribution
can be identified by applying the appropriate test to such data. Because real data on failures,
repairs, costs, etc., could not be collected in our study, we used exponential, Weibull and Erlang
distributions and assumed values for parameters involved to illustrate the model numerically.

10.1. Example 1:All the Time Distributions follows Exponential Distribution

Assuming failure/inspection/replacement/repair times are exponentially distributed with their
p.d.f. given as:

f (t) = λ0e−λ0t, im(t) = γme−γmt, iu(t) = γue−γut, hn(t) = βne−βnt,

het(t) = βete−βett, gn(t) = αne−αnt, get(t) = αete−αett, gex(t) = αexe−αext,

hex(t) = βexe−βext.

(20)
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Consider the value of parameters as

p = 0.7, q = 0.3, p1 = 0.2, p2 = 0.3, p3 = 0.5, r1 = 0.7, r2 = 0.3, λ0 = 0.0005,

γm = 1.5, γu = 1.2, αn = 0.5, αet = 0.4, βn = 0.02, βet = 0.02, αex = 0.25,

βex = 0.01, CP = 150, EC = 15, MC = 120, C0 = 500, Cm
1 = 80, Cm

2 = 100,

Cm
3 = 15, 000, Cu

1 = 100, Cu
2 = 120, Cu

3 = 15, 000. (21)

10.1.1 Effect of Time (t) and Failure Rate (λ0) on Reliability Measures

Taking the values of other parameters constant as mentioned in eqn (21), the effect of parameters
(t, λ0) on reliability function (R(t)) is shown in Figure 3.
As both the parameters t and λ0 increase, R(t) decreases. Further, Table 1 represents the values
of availabilities (An

0 , Aet
0 ,Aex

0 ) in three different time zones for varied λ0. All three availabilities
decrease with an increase in λ0. Also for any particular λ0, the availabilities satisfy the relation
An

0>Aet
0 >Aex

0 . In other words, during the expired warranty period, the system’s availability is
much influenced by λ0 as compared to the other time zones.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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o
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o
=0.0005

Figure 3: Reliability w.r.t varied t and λ0

Table 1: Value of Availability for varied λ0

Availability
λ0 An

0 Aet
0 Aex

0
0.001 0.9832 0.9829 0.9675
0.002 0.9670 0.9663 0.9370
0.003 0.9513 0.9503 0.9083
0.004 0.9361 0.9349 0.8814
0.005 0.9214 0.9199 0.8560
0.006 0.9071 0.9054 0.8321
0.007 0.8933 0.8913 0.8094
0.008 0.8799 0.8777 0.7880
0.009 0.8669 0.8645 0.7676
0.010 0.8542 0.8517 0.7483
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10.1.2 Effect of Various Rates / Costs on Profit Functions

The outcomes of profit functions, Pm for varied (EC, MC), (CP, p) and Pu for varied (C0, Cu
3 ), (λ0,

r1) are studied. The other parameters are kept fixed, and their values are taken as in eqn(21). The
results obtained are represented by Figure 4, 5, 6, 7 and Table 2 respectively and summarised as
follows:

1. Pm goes down as MC and p increases but hike in its value is observed when EC and CP
increases.

2. As the parameter C0 increases, Pu increases. Moreover, the rise in the values of λ0, r1, Cu
3

respectively, results in the decreasing Pu.

50 100 150 200 250
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P
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Figure 4: Variation in Pm for varied MC and EC
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Figure 5: Variation in Pu for varied C0 and Cu
3
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3. The system should remain profitable for user as well as manufacturer.
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Figure 6: Variation in Pu for varied λ0 and r1
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Figure 7: Variation in Pm for varied CP and p

Keeping that in mind, the bounds for some of the parameters are evaluated as:

(a) For EC=25, Pm > 0 iff MC < 175

(b) For Cu
3 = 2000, Pu > 0 iff C0 > 168

(c) For r1=0.1, Pu > 0 iff λ0 < 0.038

(d) For p=0.1, Pm > 0 iff CP > 105.112

Bounds for other values of EC, Cu
3 and r1 are also mentioned in Table 2.
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Table 2: Bounds for Revenue/Cost/Rate

Cost/Revenue/Rate Varied Bounds For
Parameter Profitability(Pu/Pm>0)

EC=25 MC<175
MC EC=50 MC<200

EC=75 MC< 220
Cu

3 =2000 C0>168
C0 Cu

3 =10000 C0>169
Cu

3 =20000 C0>170
r1 = 0.1 λ0< 0.038

λ0 r1 = 0.5 λ0< 0.039
r1 = 0.9 λ0< 0.040
p = 0.1 CP>105.112

CP p = 0.5 CP>105.784
p = 0.9 CP>106.396

10.2. Example 2: Failure Time follows Weibull Distribution

Assuming the failure time follows Weibull distribution with p.d.f.

f (t) =
δ

η
.(

t
n
)δ−1.e−( t

n )
δ

(22)

where δ and η are shape and scale parameters respectively.
All the other time distributions follows exponential distribution with same p.d.f. and numerical
value as taken in Section 10.1. Figure 8 reveals that the reliability decreases with time and for
t<200, it is on the higher side for higher values of η and δ. However, the reverse trend of its
values for η and δ is noticed for t>200.
Taking δ=0.3 and η=150, the behaviour of An

0 , Aet
0 w.r.t γm and Aex

0 w.r.t γu is shown in Ta-
ble 3. The increasing trend of availabilities with an increase in γu and γm respectively are
observed.However,the system availability (Aex

0 ) during expired warranty period is lesser as
compared to An

0 , Aet
0 for any particular value of γu(=γm).
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Figure 8: Reliability w.r.t. varied t,η and δ
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Table 3: Value of Availabilities for varied γm/γu

Availability
γm/γu An

0 Aet
0 Aex

0
0.1 0.9813 0.9811 0.9701
0.2 0.9848 0.9846 0.9735
0.3 0.9860 0.9857 0.9746
0.4 0.9866 0.9863 0.9752
0.5 0.9869 0.9867 0.9756
0.6 0.9872 0.9869 0.9758
0.7 0.9873 0.9871 0.9760
0.8 0.9875 0.9872 0.9761
0.9 0.9876 0.9873 0.9762
1.0 0.9876 0.9874 0.9762

10.3. Example 3: Repair Time follows Erlang Distribution

Considering the repair time in different warranty time follows Erlang distribution with p.d.f.
gn(x) = ξn. xkn−1.e−ξn x

(kn−1)!

get(x) = ξet. xket−1.e−ξet x

(ket−1)!

gex(x) = ξex. xkex−1.e−ξex x

(kex−1)!

(23)

where
kn/ket/kex and ξn/ξet/ξex are shape and scale parameter during normal/extended/expired
warranty period,
All of the other time distributions have the same p.d.f. ,i.e., exponential distribution and numerical
values as in Section 10.1.

Table 4: Value of Availabilities for varied λo

Availability
λo An

o Aet
o Aex

o
0.0001 0.9907 0.9396 0.9383
0.0002 0.9817 0.8861 0.8837
0.0003 0.9727 0.8383 0.8351
0.0004 0.9640 0.7955 0.7916
0.0005 0.9554 0.7568 0.7524
0.0006 0.9469 0.7216 0.7169
0.0007 0.9386 0.6897 0.6846
0.0008 0.9304 0.6604 0.6551
0.0009 0.9224 0.6335 0.6280
0.001 0.9145 0.6087 0.6031

Taking ξn=ξet=ξex=0.5 and kn=ket=kex=7, the behaviour of An
0 , Aet

0 and Aex
0 w.r.t λo is shown

in Table 4. The decreasing trend of availabilities with an increase in λo is observed.

10.4. Numerical Calculations for Sensitivity Analysis

Considering all the p.d.f. involved as exponential as taken in eqn (20) and assuming the values of
parameters as mentioned in eqn (21), the sensitivity analysis is performed. Using eqn (18) and
(19), the outcomes for the sensitivity and relative sensitivity functions of availability and profit
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functions are summarized in Table 5, 6 and 7 respectively. The magnitude of these functions
is taken into account while drawing inferences about parameters and the order in which they
influence the different measures.

Table 5: Sensitivity and relative sensitivity analysis of Availabilities

Parameter Sensitivity Function Relative
Sensitivity Function

(y) Dy = ∂(A0)
∂y dy =

Dyy
A0

Normal Warranty Period
λ0 -16.7791 -0.0085

γm 2.1848 × 10−4 3.3052 × 10−4

αn 0.0014 7.0597 × 10−4

βn 0.3687 0.0074

p -0.0081 -0.0057

q -0.0081 -0.0025

r1 −9.8315 × 10−4 −6.9408 × 10−4

r2 -0.0246 -0.0073

Extended Warranty Period
λ0 -16.1172 -0.0086

γm 2.1840 × 10−4 3.3045 × 10−4

αet 0.0021 8.4732 × 10−4

βet 0.3686 0.0074

p -0.0082 -0.0058

q -0.0082 -0.0025

r1 -0.0012 −8.4732 × 10−4

r2 -0.0246 -0.0074

Expired Warranty Period
λ0 -32.54 -0.0166

αex 0.0053 0.0015

βex 1.4507 0.0147

γu 3.3582 × 10−4 4.0978 × 10−4

r1 -0.0019 −0.0014

r2 -0.0484 -0.0148

It has been determined that

1. Availabilities (An
0 , Aet

0 , Aex
0 ) in three different periods are highly influenced by λ0. Though

these are least affected by variation in γu and γm respectively.

2. Pm and Pu both the profit functions are extremely sensitive to λ0.

3. Variation in Cu
3 and Cm

3 results in a nominal change in Pm and Pu respectively.
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Table 6: Sensitivity and relative sensitivity analysis of User Profit

Parameter Sensitivity Function Relative
Sensitivity Function

(y) Zu
y = ∂(Pu)

∂y zu
y=

Zu
y y

Pu

λ0 −1.7455 × 104 -0.0268

αex 1.6730 0.0013

βex 448.1202 0.0137

γu 0.1003 3.6900 × 10−4

γm 0.0545 2.5063 × 10−4

αn 0.1474 2.2597 × 10−4

βn 39.4737 0.0024

αet 0.3453 4.2349 × 10−4

βet 59.1900 0.0036

C0 0.9874 1.5137

Cu
1 −2.0489 × 10−4 −6.2816 × 10−5

Cu
2 -0.0093 -0.0034

Cu
3 −9.6069 × 10−5 -0.0044

CP -1 -0.4599

EC -1 -0.0460

p -2.0369 -0.0044

q -3.6463 -0.0034

r1 -0.9001 -0.0019

r2 -26.3183 -0.0242

p1 494.8074 0.3034

p2 494.7154 0.4551

p3 487.5415 0.7474

Moreover, the order or sequence in which different parameters influence the availabilities (An
0 ,

Aet
0 , Aex

0 ) and profit functions (Pm,Pu) are

• Availability(An
0 ): λ0>βn>r2>p>q>αn>r1>γm.

• Availability(Aet
0 ): λ0>βet>r2>αet>p>q>r1>γm.

• Availability(Aex
0 ): λ0>βex>r2>αex>r1>γu.

• Profit Function(Pu):C0>p3>CPp2>p1>>EC>λ0>r2>βex>Cu
3 p>>βet>

Cu
2>q>βn>r1>αex>αet>γu>γm>αn>Cu

1 .

• Profit Function(Pm):CP>MC>EC>λ0>p>r2>Cm
3 >p2>p1>Cm

2 >βet>Cm
1 >

βn>r1>αet>αn>γm>q.
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Table 7: Sensitivity and relative sensitivity analysis of Manufacturer Profit

Parameter Sensitivity Function Relative
Sensitivity Function

(y) Zm
y = ∂(Pm)

∂y zm
y =

Zm
y y

Pm

λ0 −2.1458 × 103 -0.0244
γm 0.0086 2.9373 × 10−4

αn 0.0188 2.1404 × 10−4

βn 5.0452 0.0023
αet 0.0441 4.0166 × 10−4

βet 7.5651 0.0034
Cm

1 −1.6524 × 10−4 −3.0100 × 10−4

Cm
2 -0.0029 -0.0066

Cm
3 −5.2050 × 10−5 -0.0178

CP 1 3.4155
EC 1 0.3415
MC -1 -2.7324

p -1.5181 -0.0242
q -0.0089 6.0795 × 10−5

r1 -0.0387 −6.1683 × 10−4

r2 -3.4432 -0.0235
p1 -2.1573 -0.0098
p2 -2.1690 -0.0148

11. Conclusion

A stochastic model of system functioning in normal, extended and expiry warranty conditions
is developed in this paper. Markov and regenerative processes are employed to derive various
reliability characteristics and profit functions for the manufacturer as well as the user of the
system. The derived measures are further illustrated by discussing numerical examples for
exponential, Weibull and Erlang cases. System is found available for a longer period in normal
as compared to extended or expiry warranty periods. Upper/ lower bounds are obtained for
involved rates/ costs, which can affect the system’s profitability. Availabilities and profit functions
are observed to be most sensitive to the failure rate. Further, for cost consideration, manufacturer
and user profit functions are influenced most by the cost price of the system (CP) and revenue
generated (Co), respectively. Since the results for a described system are obtained using general
probability time distribution, the finding of the study is lucrative from the standpoints of both
the manufacturer and the user if they have real data on failures, repairs, costs, and so on.
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Abstract

Load sharing systems have the ability to distribute the workload among its components. For analyzing
a two component parallel load sharing system, the accelerated failure time (AFT) based model with
component lifetimes as linear failure rate distribution have been recently proposed in the literature. In the
present study, the component lifetimes are assumed to follow a modified Weibull distribution, which is the
generalization of many standard lifetime distributions such as exponential, Weibull, Rayleigh, and linear
failure rate. The use of modified Weibull distribution leads to a new family of bivariate distributions for
ordered random variables. We have also looked into the associated inference techniques for the proposed
model. In order to evaluate the effectiveness of the suggested estimating approaches, we conducted a
simulation study. In order to provide a practical application and better understanding, we carefully
examine a dataset related to motors.

Keywords: accelerated failure time model, conditional distribution, load sharing, modified
Weibull distribution, order statistics

1. Introduction

Load sharing systems are characterized by their ability to distribute the workload among multiple
components, such that if one component fails, the remaining components bear the additional
workload. This can either increase or decrease the load on each surviving component. Load
sharing systems have been extensively investigated in various engineering domains, such as soft-
ware and hardware reliability, power plants, computing workload analysis, and fiber composites
(Wang et al. [1]).

Liu [2] presents various instances that illustrate the concept of load sharing systems. These
include scenarios like electric generators distributing an electrical load within a power plant, CPUs
operating in a multiprocessor computer system, cables supporting a suspension bridge, bolts
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fastening a wheel assembly onto a truck, and valves or pumps functioning in a hydraulic system.
When any of these components fail, the remaining components must bear an additional load,
which can elevate their failure rates. In an intriguing study by Drummond et al. [3] conducted
on vertebrate species, it was observed that when a litter mate dies due to food shortage, the
surviving offsprings receive a larger portion of the available food supply, leading to improved
growth. This finding highlights how the failure of one individual can inadvertently benefit the
surviving members. Furthermore, in the realm of software testing, the detection of a fault can
uncover previously undetected critical faults. This demonstrates that a component’s failure can
facilitate the discovery of other hidden issues, thereby enhancing the overall reliability of the
system. These examples collectively illustrate that when a component fails, it can actually enhance
the remaining components’ remaining lifespan, resulting in a higher growth rate for the surviving
components.

Daniels [4] conducted the first study on the phenomenon of load sharing and load sharing
systems. A thorough analysis of load sharing systems up till 2009 is present in Dewan and
Naik-Nimbalkar [5]. Deshpande et al. [6], Park [7], Singh and Gupta [8], Park [9], Gurov and
Utkin [10], Sutar and Naik-Nimbalkar [11]-[12], Krivtsov et al. [13], Wang et al. [1] and Sutar and
Naik-Nimbalkar [14] have all published studies and modeled the load sharing phenomenon since
then.

The study of load-sharing systems with a k-out-of-m configuration was suggested by Sutar
and Naik-Nimbalkar [11] with modelling strategy based on the accelerated failure time (AFT)
model. They concentrated on a particular configuration, a parallel load sharing system consisting
of two components with baseline as the linear failure rate distribution. The associated inference
techniques were also covered by the researchers. The distributions used there in for the ordered
random variables are a subset of a larger family of distributions known as sequential order
statistics. Kamps [15] first described this family of distributions and Cramer and Kamps [16]
further developed them.

This study utilizes the load sharing model based on accelerated failure time (AFT), proposed
by Sutar and Naik-Nimbalkar [11], to examine the load sharing phenomenon within a parallel
system consisting of two components. We adopt a modified Weibull distribution (MWD) as
the baseline distribution for the components in the system, which is characterized by three
parameters: λ1, λ2, and λ3. The introduction of this three-parameter MWD was done by Sarhan
and Zaindin [17].

It is important to highlight that the three-parameter MWD provides a comprehensive repre-
sentation of various distributions, including exponential, Weibull, Rayleigh and linear failure rate.
Thus, the MWD serves as a versatile baseline distribution for the component lifetime in any load
sharing system. The subsequent sections of this paper are organized as follows.

In Section 2, we address the AFT-based load-sharing model for a parallel load sharing system
consisting of two components and with a modified Weibull distribution for component lifetimes.
In Section 3, the inference procedures are thoroughly examined, while Section 4 focuses on the
simulation study. Section 5 demonstrates an application using real data, and the last section
presents the concluding remarks.

2. Proposed AFT based Load sharing model

We investigate a parallel system consisting of two components. The cumulative distribution
function (c.d.f.) of the components follows a MWD characterized by three parameters: λ1, λ2,
and λ3. The probability density function (p.d.f.), survival function (s.f.), and hazard rate function
of the MWD with parameters λ1, λ2, and λ3 are provided as follows.

f (u) =
(

λ1 + λ2λ3uλ3−1
)

exp
{
−
(

λ1u + λ2uλ3
)}

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0 (1)
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F̄(u) = exp
{
−
(

λ1u + λ2uλ3
)}

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0

h(u) =
(

λ1 + λ2λ3uλ3−1
)

, u > 0, λ1, λ2, λ3 ≥ 0, λ1 + λ2 > 0

The three-parameter modified Weibull distribution, denoted as MWD(λ1, λ2, λ3), serves as a
generalization of the following distributions.

(a) It represents the Exponential distribution, ED(λ1), when λ2 is set to 0 and λ3 is finite.

(b) It encompasses the Weibull distribution, WD(λ2, λ3), when λ1 is set to 0.

(c) It corresponds to the Rayleigh distribution, RD(λ2), when λ3 is set to 2 and λ1 is set to 0.

(d) It encompasses the Linear failure rate, LFR(λ1, λ2), when λ3 is set to 2.

For more details on MWD(λ1, λ2, λ3), one can refer Sarhan and Zaindin [17] and references cited
therein.

The load sharing behavior observed in a system comprising two components is captured by
the AFT model, which was introduced by Sutar and Naik-Nimbalkar [11]. We denote the lifetimes
of the two components in the system as V1 and V2. These lifetimes are considered independent
and identically distributed random variables. The baseline densities of V1 and V2 are denoted as
f1(·) and f2(·), respectively, while their corresponding baseline survival functions are denoted as
F̄1(·) and F̄2(·). Let X = min(V1, V2) denote time of the first failure and Y = max(V1, V2) denote
the time of the second failure or the system failure time. Consequently, the marginal density of
the first failure can be expressed as follows.

g(x) =
(

2λ1 + 2λ2λ3xλ3−1
)

exp
{
−
(

2λ1x + 2λ2xλ3
)}

, x > 0, λ1 > 0, λ2, λ3 ≥ 0, λ1 + λ2 > 0.
(2)

It is worth mentioning that the distribution of the first failure is identical to the baseline
distribution, which is a modified Weibull distribution with parameters (2λ1, 2λ2, λ3). Following
the AFT load sharing model, the conditional density of variable Y given that X = x, as well as
the joint density of the variables X and Y, can be expressed in the following manner.

g(y|x) =
{

λ1

β
+

λ2λ3yλ3−1

βλ3

}
exp

{
−λ1

β
(y− x)− λ2

βλ3
(yλ3 − xλ3)

}
, (3)

0 < x < y < ∞, β > 0, λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, λ1 + λ2 > 0,

g(x, y) = 2
(

λ1 + λ2λ3xλ3−1
){λ1

β
+

λ2λ3yλ3−1

βλ3

}
× exp

{
−λ1

β
(y− x)− λ2

βλ3
(yλ3 − xλ3)−

(
2λ1x + 2λ2xλ3

)}
, (4)

0 < x < y < ∞, β > 0, λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, λ1 + λ2 > 0,
It is important to note that when the parameter β is equal to 1, the joint density described in

equation (4) simplifies to the joint density of independent random variables X and Y. Essentially,
when β = 1, it indicates no load sharing effect, and hence the occurrences of the two failures (first
and second) are independent of each other. The parameter β is referred to as the load sharing
parameter in this context. In the following section, we will delve into the inference procedures
associated with this concept.
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3. Inference procedures

In this section, we examine different methods for estimating the unknown parameters and
introduce a testing procedure to assess the presence of the load sharing effect.

3.1. Direct estimation procedure

The complete data, denoted as (x, y) = {(xi, yi) : xi ≤ yi; i = 1, 2, ..., n}, represents the set of
observations. The log-likelihood function based on this complete data can be expressed as
follows.

log L = n log 2 +
n

∑
i=1

log
(

λ1 + λ2λ3xλ3−1
i

)
+

n

∑
i=1

log
(

λ1βλ3 + λ2λ3βyλ3−1
i

)
− n(λ3 + 1) log β

− λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )− 2λ1

n

∑
i=1

xi − 2λ2

n

∑
i=1

xλ3
i .

We observe that, the log-likelihood equations ∂ log L
∂β = 0, ∂ log L

∂λ1
= 0, ∂ log L

∂λ2
= 0 and ∂ log L

∂λ3
= 0 do

not have explicit solutions for the parameters λ1, λ2, λ3, β. The mathematical expressions for
the score functions, specifically ∂ log L

∂β = 0, ∂ log L
∂λ1

= 0, ∂ log L
∂λ2

= 0, and ∂ log L
∂λ3

= 0, can be found in
Appendix (A).

In the following subsection, we outline a two-step approach for determining the values of the
unknown parameters λ1, λ2, λ3, and β.

3.2. Two-step parameter estimation procedure

The process of estimating the values of λ1, λ2, λ3, and β has been conducted using a two-step
methodology.
Step 1. We observe the first failure, X, and estimate baseline parameters, namely, λ1, λ2 and λ3
by using the MCEM procedure proposed by Sutar [18].
Step 2. In order to estimate the load sharing parameter β, we utilize the conditional distribution
of Y given X = x, as expressed in equation (3). The estimates of λ1, λ2, and λ3 obtained in Step
1 are then substituted into that equation to perform the estimation. We refer to this estimation
process as a two-step estimation procedure, and the subsequent subsections outline these two
steps in detail.

3.2.1 Estimation of λ1, λ2 and λ3 (Step 1)

It is worth noting that the distribution of the first failure, X, is also a modified Weibull distribution
(MWD) with parameters 2λ1, 2λ2, and λ3. Let us denote 2λ1 = γ1, 2λ2 = γ2, thus distribution of
X is MWD with parameters γ1, γ2 and λ3. We use the MCEM algorithm proposed by Sutar [18]
for finding the estimates of γ1, γ2 and λ3. To implement the proposed MCEM algorithm, we take
two independent random variables U1 and U2, which has exponential (γ1) and Weibull (γ2, λ3)
distributions, with their respective survival functions as exp(−γ1u1) and exp(−γ2uλ3

2 ). Let γ̂1,
γ̂2 and λ̂3 be the MLEs of γ1, γ2 and λ3 obtained through MCEM algorithm, then the MLEs of
λ1, λ2 and λ3 can be obtained as λ̂1 = γ̂1

2 , λ̂2 = γ̂2
2 and λ̂3.

3.2.2 Estimation of β (Step 2)

To estimate the load sharing parameter β, we utilize the conditional distribution of Y given X = x
as described in equation (3). In this study, two methods are proposed for estimating β, which are
discussed as follows.
Method I : It can be noted, the conditional distribution of Y given X = x as truncated MWD
with parameters λ1

β = θ1(say), λ2
βλ3

= θ2 (say), λ3 = θ3 (say) truncated at X = x. Furthermore, the

conditional distribution mentioned is equivalent to the distribution of the minimum value between
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two independent random variables, denoted as W1 and W2. Specifically, W1 follows a truncated
exponential distribution, which is truncated below x and has a parameter θ1. On the other hand,
W2 follows a truncated Weibull distribution, also truncated below x, with parameters θ2 and θ3.
The survival functions of W1 and W2 are exp{−θ1(w1− x)} and exp{−θ2(wθ3

2 − xθ3)}, respectively.
Let us consider the complete data for i = 1, 2, ..., n as a set of 2n independent random variables
denoted as (W1i, W2i). The random variables W1i represent truncated exponential distributions,
truncated below xi, with a parameter θ1, while W2i represent truncated Weibull distributions,
truncated at xi, with parameters (θ2, θ3). Additionally, we define Z2i as the minimum value
between W1i and W2i. Consequently, Z2i follows a truncated MWD (Minimum of Weibull and
Exponential Distribution) distribution, characterized by a probability density function (p.d.f)

g(z2i) =
(

θ1 + θ2θ3zθ3−1
2i

)
exp

{
−θ1(z2i − xi)− θ2(zθ3

2i − xθ3
i )
}

,

0 < xi < z2i < ∞, β > 0, θ1 > 0, θ2 ≥ 0, θ3 ≥ 0, θ1 + θ2 > 0.
We can regard the observed values y ≡ (y1, y2, ..., yn) as corresponding to the values of Z2 ≡
(Z21, Z22, ..., Z2n).

The joint density of W1 and W2 given X = x(≡ (x1, x2, ..., xn)) can be written as

g(w1, w2|x) = {θ1, θ2, θ3}n
n

∏
i=1

wθ3−1
2i exp

{
−θ1(w1i − xi)− θ2(wθ3

2i − xθ3
i )
}

, (5)

The log-likelihood can be expressed in the following manner.

log L = n log (θ1θ2θ3) + θ3

n

∑
i=1

log(u2i)− θ1

n

∑
i=1

u1i − θ2

n

∑
i=1

uθ3
2i .

In order to perform the E step, it is necessary to calculate the conditional expectation of
Ec [log L|Z2]. This can be represented as follows.

Ec [log L|Z2] = n log (θ∗1 θ∗2 θ∗3 ) + θ∗3 Ec

[
n

∑
i=1

log(U2i)|Z2

]

− θ∗1 Ec

[
n

∑
i=1

U1i|Z2

]
− θ∗2 Ec

[
n

∑
i=1

Uθ∗3
2i |Z2

]
. (6)

Remark 1. For i equal to 1, 2, and 3, the variables θi and θ∗i represent the values of θi at the
current iteration and the next iteration of the MCEM (Monte Carlo Expectation-Maximization)
algorithm. Specifically, if θi = θ

(p)
i represents the estimated value of θi at the p-th iteration,

and θ∗i = θ
(p+1)
i represents the estimated value of θi at the (p + 1)-th iteration, then θi and θ∗i

respectively denote the values of θi at the p-th and (p + 1)-th iterations of the MCEM algorithm.

The conditional density of W11 given X = x and Z21 = z21 is a mixed probability density
function (p.d.f.) and can be expressed as follows.

g(w1|x, z21) =
θ1(

θ1 + θ2θ3zθ3−1
21

) {I(w1=z21) + θ2θ3zθ3−1
21 exp {−θ1(w1 − z21)} I(w1>z21)

}
.

where, IA(·) is indicator function defined on set A. The details regarding the same are Appendix
(B). Thus, the conditional expectation of W11 given X and Z21 can be obtained as

E(W1|X, Z21) =
∫

w1g(w1|x, z21)dw1

=
θ1(

θ1 + θ2θ3zθ3−1
21

) {Z21 + θ2θ3Zθ3−1
21 exp {θ1Z21}

∫ ∞

Z21

w1 exp {−θ1w1} dw1

}
.
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By using the result, ∫ ∞

Z21

w1 exp{−θ1w1}dw1 =
(θ1Z21 + 1) exp {−θ1Z21}

θ2
1

,

we get

E(W1|X, Z21) =
θ1(

θ1 + θ2θ3zθ3−1
21

) {Z21 + θ2θ3Zθ3−1
21

exp{θ1Z21}(θ1Z21 + 1) exp{−θ1Z21}
θ2

1

}

=
1
θ1

+
{

Z21 −
(

θ1 + θ2θ3Zθ3−1
21

)−1
}

= K(Z21)(say),

and hence

E

(
n

∑
i=1

W1i|X, Z2

)
=

n
θ1

+
n

∑
i=1

Z2i −
n

∑
i=1

1(
θ1 + θ2θ3Zθ3−1

21

) .

Thus, given {Z2i = yi, i = 1, 2, ..., n} and {Xi = xi, i = 1, 2, ..., n}, we get

E

(
n

∑
i=1

W1i|x, y

)
=

n
θ1

+
n

∑
i=1

yi −
n

∑
i=1

1(
θ1 + θ2θ3yθ3−1

i

) .

Likewise, the conditional density function of W21 given X = x, Z21 = z21, and the corresponding
conditional expectation can be expressed as follows.

g(w2|x, z21) =
θ2θ3(

θ1 + θ2θ3zθ3−1
21

){zθ3−1
21 I(w2=z21) + θ1wθ3−1

2 e{−θ2(W
θ3
2 −z

θ3
21)} I(w2>z21)

}

and

Ec

{
Wθ∗3

21 |X, Z21

}
=

θ2θ3Zθ∗3 +θ3+1
21(

θ1 + θ2θ3Zθ3−1
21

) +
θ1θ2θ3eθ2Z

θ3
21(

θ1 + θ2θ3Zθ3−1
21

) ∫ ∞

Z1

Wθ∗3 +θ3−1
2 e−θ2W2

θ3 dW2.

After simplification, we get,

Ec

{
Wθ∗3

21 |X, Z21

}
=

θ2θ3Zθ∗3 +θ3+1
21(

θ1 + θ2θ3Zθ3−1
21

) +
θ1θ
− θ∗3

θ3
2(

θ1 + θ2θ3Zθ3−1
21

) ∫ ∞

0

(
u + θ2Zθ3

21

) θ∗3
θ3 e−udu

Let

T =
∫ ∞

0

(
u + θ2Zθ3

21

) θ∗3
θ3 e−udu = E

[
V + θ2Zθ3

21

] θ∗3
θ3 ,

where V has an exponential distribution with mean 1. By employing the Monte Carlo technique,
we can replace T with a Monte Carlo sum, which is given as follows.

T = E
[
V + θ2Zθ3

21

] θ∗3
θ3 =

1
m

m

∑
j=1

(
vj + θ2Zθ3

21

) θ∗3
θ3 ,

where, {v1, v2, ..., vm} is random sample of size m (sufficiently large) from exponential distribution
with mean 1. Thus, we get

Ec

{
n

∑
i=1

Wθ∗3
2i |X, Z2

}
=

n

∑
i=1

 θ2θ3Zθ∗3 +θ3−1
2i(

θ1 + θ2θ3Zθ3−1
2i

) +
θ1θ
− θ∗3

θ3
2

m
(

θ1 + θ2θ3Zθ3−1
2i

) m

∑
j=1

(
vj + θ2Zθ3

2i

) θ∗3
θ3
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and hence {Z2i = yi, i = 1, 2, ..., n}, that is Z2 = y, we get

Ec

{
n

∑
i=1

Wθ∗3
2i |x, y

}
=

n

∑
i=1

 θ2θ3yθ∗3 +θ3−1
i(

θ1 + θ2θ3yθ3−1
i

) +
θ1θ
− θ∗3

θ3
2

m
(

θ1 + θ2θ3yθ3−1
i

) m

∑
j=1

(
vj + θ2yθ3

i

) θ∗3
θ3

 .

By applying similar arguments to calculate Ec

{
∑n

i=1 log (W2i) |x, y
}

, we obtain

Ec

{
n

∑
i=1

log (W2i) |x, y

}
=

n

∑
i=1

 θ2θ3 log yi(
θ1 + θ2θ3yθ3−1

i

)


+
n

∑
i=1

 θ1

mθ2

(
θ1 + θ2θ3yθ3−1

i

) ( m

∑
j=1

(
vj + θ2yθ3

i

)
− log θ2

) .

To carry out the M-step, we obtain the following expression from equation (6).

∂Ec [log L|X, Z2]
∂θ∗1

=
n
θ∗1
− Ec

[
n

∑
i=1

W1i|X, Z2

]
, (7)

∂Ec [log L|X, Z2]
∂θ∗2

=
n
θ∗2
− Ec

[
n

∑
i=1

Wθ∗3
2i |X, Z2

]
, (8)

∂Ec [log L|X, Z2]
∂θ∗3

=
n
θ∗3
− Ec

[
n

∑
i=1

log(W2i)|X, Z2

]
− θ∗2

∂Ec

[
∑n

i=1 Wθ∗3
2i |X, Z2

]
∂θ∗3

. (9)

From (7) and (8), we get

∂Ec [log L|X, Z2]
∂θ∗1

= 0⇒ θ∗1 =
n

Ec [∑n
i=1 W1i|X, Z2]

, (10)

∂Ec [log L|X, Z2]
∂θ∗2

= 0⇒ θ∗2 =
n

Ec

[
∑n

i=1 W
θ∗3
2i |X, Z2

] . (11)

Based on the expression (5), it can be inferred that t(W1) = ∑n
i=1 W1i serves as the sufficient

statistic for θ1. In order to carry out the M-step, we equate the sufficient statistic to its expectation,
which takes the following form in our scenario.

E[W1] =
1
θ1

. (12)

The EM iterations alternate between expressions (12) and (10). Let θ
(p)
1 represent the estimate

of θ1 at the p-th iteration step of the MCEM algorithm. The updated estimate θ
(p+1)
1 is determined

by the following equation.

θ
(p+1)
1 =


1

θ
(p)
1

+
1
n

 n

∑
i=1

(yi − xi)−
n

∑
i=1

1(
θ
(p)
1 + θ

(p)
2 θ

(p)
3 y

θ
(p)
3 −1

i

)


−1

. (13)

To estimate θ3, we substitute equation (11) into equation (9), resulting in a nonlinear equation in
terms of θ3. This equation can be expressed as follows.

∂Ec

[
log L|x, y

]
∂θ∗3

=
n
θ∗3
− Ec

[
n

∑
i=1

(log(W2i)) |x, y

]
− n

 ∂Ec

[
log W

θ∗3
2i |x,y

]
∂θ∗3


Ec

[
∑n

i=1 W
θ∗3
2i |x, y

] .
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We employ the Newton-Raphson iterative method to estimate θ∗3 . Let θ
(r)
3 denote the estimate of θ3

at the r-th iteration of the Newton-Raphson method. The updated estimate θ
(r+1)
3 is determined

by the following equation.

θ
(r+1)
3 = θ

(r)
3 −

{
∂Ec[log L|x,y]

∂θ
(r)
3

}
{

∂2Ec[log L|x,y]
∂(θ

(r)
3 )2

} . (14)

The detailed expressions used in equation (14) can be found in Appendix (C). The process should
be iterated until the convergence criterion is satisfied. The value of θ3 at the (p + 1)-th iteration
of MCEM, denoted as θ∗3 = θ

(p+1)
3 , represents the stabilized value of θ3 obtained through the

Newton-Raphson method. Once we get the estimate of θ3, we can obtain θ2 at (p + 1)th iteration
by substituting (14) in (11). That is θ

(p+1)
2 is given by

θ
(p+1)
2 =

n

Ec

[
∑n

i=1 W
θ
(p+1)
3

2i |x, y
] . (15)

Thus, we get the estimates θ̂1 = (̂λ1/β), θ̂2 = ̂(λ2/βλ3) of (λ1/β) and
(
λ2/βλ3

)
respectively.

Now, we have the two estimates of β as β̂1 = (λ̂1/θ̂1) and β̂2 = (λ̂2/θ̂2)1/λ̂3 .Here, λ̂1, λ̂2, and λ̂3
represent the estimates of λ1, λ2, and λ3, respectively, obtained in Step 1. The estimate of β is
obtained by taking the average of β̂1 and β̂2. This estimation method is referred to as the ’average
method’ for estimating β.
Method II : The likelihood, based on the conditional density of Y given X = x, can be expressed
as follows.

L =
n

∏
i=1

{
λ1

β
+

λ2λ3yλ3−1
i

βλ3

}
exp

{
−λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )

}
.

Then the log-likelihood can be written as

log L =
n

∑
i=1

log

{
λ1

β
+

λ2λ3yλ3−1
i

βλ3

}
− λ1

β

n

∑
i=1

(yi − xi)−
λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i ).

Then we have,

∂

∂β
log L = −

n

∑
i=1

{
λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}
{

λ1
β + λ2λ3y

λ3−1
i

βλ3

} +
λ1

β2

n

∑
i=1

(yi − xi)−
λ2λ3

βλ3+1

n

∑
i=1

(yλ3
i − xλ3

i ),

∂2

∂β2 log L = −
n

∑
i=1

{
λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}{
2λ1
β3 + λ2λ2

3(λ3+1)y
λ3−1
i

βλ3+2

}
+
{

λ1
β2 + λ2λ2

3y
λ3−1
i

βλ3+1

}2

{
λ1
β + λ2λ3y

λ3−1
i

βλ3

}2

−2λ1

β3

n

∑
i=1

(yi − xi)−
λ2λ3(λ3 + 1)

βλ3+2

n

∑
i=1

(yλ3
i − xλ3

i ).

To estimate the load sharing parameter β, we substitute the maximum likelihood estimates
(MLEs) λ̂1, λ̂2, and λ̂3 of λ1, λ2, and λ3, respectively, into the aforementioned expressions. The
Newton-Raphson iteration method is then employed to obtain the estimate of β. Let β(m) be the
estimate of β at mth iteration. The estimate of β at (m + 1)th iteration is given by

β(m+1) = β(m) −

(
∂

∂β log L
)
|(λ̂1,λ̂2,λ̂3)(

∂2

∂β2 log L
)
|(λ̂1,λ̂2,λ̂3)

.
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We termed this procedure to estimate β as the ‘iteration method’. The subsequent section presents
the test procedure used to assess the presence of the load sharing effect.

3.3. Test Procedure

To test the load sharing effect, we set up the null hypothesis H0 stating that the failure of a
component does not affect the survival components, and the alternative hypothesis H1 stating that
there exists a load sharing phenomenon. Specifically, we express the null hypothesis as H0 : β = 1,
indicating no load sharing effect, and the alternative hypothesis as H1 : β 6= 1, indicating the
presence of a load sharing effect. To test these hypotheses, we employ a score type test, as used
by Sutar and Naik-Nimbalkar [11]. The test statistic follows an asymptotic χ2 distribution with 1
degree of freedom.

In the subsequent section, we present a simulation study to evaluate and compare the
performance of two estimation methods: the average method and the iterative method. The
simulation study aims to assess the accuracy and efficiency of these methods under various
scenarios and conditions. By conducting simulations and analyzing the results, we can gain
insights into the strengths and limitations of each method and make informed decisions about
their suitability for practical applications.

4. Simulation study

In this section, we performed a simulation study to assess the performance of the proposed
estimation procedure in estimating unknown parameters. We generated a total of 10,000 samples
from the joint density described in equation (4) for different combinations of sample sizes (n)
and parameter values. This allowed us to examine the behavior and accuracy of the estimation
procedure under various scenarios and conditions.

For sample sizes of n = 20, 30, 50, and 100, we considered different parameter combina-
tions, namely (λ1, λ2, λ3, β) as (1,2,0.5,0.5), (1,2,0.5,1), (1,2,0.5,1.5), (1,2,1,0.5), (1,2,1,1), (1,2,1,1.5),
(1,2,2,0.5), (1,2,2,1), (1,2,2,1.5), (2,2,0.5,0.5), (2,2,0.5,1), (2,2,0.5,1.5), (2,2,1,0.5), (2,2,1,1), (2,2,1,1.5),
(2,2,2,0.5), (2,2,2,1), and (2,2,2,1.5).

The average estimates of the unknown parameters (λ1, λ2, λ3, β) obtained through Method-I
(Two-step Procedure), denoted as (λ̂1, λ̂2, λ̂3, β̂), along with their corresponding standard errors
(SE), i.e., SE(λ̂1), SE(λ̂2), SE(λ̂3), and SE(β̂), are presented in Table 1 and Table 2. The simulation
results reveal a clear pattern: as the sample size grows larger, the standard errors exhibit a
decreasing trend. This indicates that larger sample sizes lead to enhanced precision in estimating
the parameters, implying that the estimates become more accurate and reliable.

We also conducted a simulation study for the iterative method. We generated 10,000 samples
with sizes n = 30, 50, and 100 from the joint density given in equation (4). We considered different
parameter combinations as (1,2,0.5,0.5), (1,2,0.5,1), (1,2,0.5,1.5), (1,2,1,0.5), (1,2,1,1), (1,2,1,1.5),
(1,2,2,0.5), (1,2,2,1), (1,2,2,1.5).

The estimates of the unknown parameters (λ1, λ2, λ3, β), where the estimate of β obtained
through the Method-II (iterative method), along with their corresponding standard errors (SE(λ̂1),
SE(λ̂2), SE(λ̂3), and SE(β̂)), are reported in Table 3. We observed that compared to the estimates
obtained by the average method, the estimates obtained by the iterative method had higher
standard errors and tended to be overestimated.

Same phenomenon is observed for the simulation for study corresponding to the parameter
combination (λ1, λ2, λ3, β) as (2,2,0.5,0.5), (2,2,0.5,1), (2,2,0.5,1.5), (2,2,1,0.5), (2,2,1,1), (2,2,1,1.5),
(2,2,2,0.5), (2,2,2,1) and (2,2,2,1.5). Hence, we decided not to report the simulation results
corresponding to these parameter combination.
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Table 1: The average estimates of (λ1, λ2, λ3, β) obtained through the two-step procedure.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 1 2 0.5 0.5 1.6347 3.2042 1.4232 0.7157 0.0798 0.0854 0.0693 0.0516

50 1 2 0.5 0.5 1.5741 2.5862 1.0873 0.6217 0.0759 0.0871 0.0669 0.0463

100 1 2 0.5 0.5 1.2432 2.3124 0.7554 0.5482 0.0748 0.0854 0.0675 0.0454

30 1 2 0.5 1 1.6865 3.256 1.8661 1.4245 0.0981 0.0847 0.0775 0.0611

50 1 2 0.5 1 1.4885 2.5789 1.0832 1.3029 0.0868 0.1001 0.0798 0.0579

100 1 2 0.5 1 1.1941 2.2879 0.7286 1.1229 0.0782 0.0861 0.0692 0.0461

30 1 2 0.5 1.5 1.8624 3.2677 1.9431 1.8289 0.1031 0.0962 0.0885 0.0721

50 1 2 0.5 1.5 1.5765 2.4989 0.9867 1.7110 0.0887 0.1042 0.0875 0.0598

100 1 2 0.5 1.5 1.2299 2.3093 0.7589 1.5603 0.0798 0.0954 0.0781 0.0476

30 1 2 1 0.5 1.8921 3.2776 2.4102 0.7372 0.0986 0.0865 0.0703 0.0627

50 1 2 1 0.5 1.5132 2.5867 1.5305 0.6134 0.0764 0.0967 0.0686 0.0511

100 1 2 1 0.5 1.2389 2.3123 1.2397 0.5623 0.0831 0.0876 0.0779 0.0467

30 1 2 1 1 1.7868 3.2682 2.3405 1.4321 0.1031 0.0881 0.0832 0.0684

50 1 2 1 1 1.5105 2.6105 1.5193 1.3139 0.0872 0.0989 0.0794 0.0673

100 1 2 1 1 1.1962 2.2961 1.2204 1.1283 0.0864 0.0872 0.0689 0.0551

30 1 2 1 1.5 1.8611 3.2692 2.3952 1.8382 0.1084 0.1051 0.0967 0.0685

50 1 2 1 1.5 1.5902 2.5156 1.4734 1.7102 0.0972 0.1098 0.0935 0.0637

100 1 2 1 1.5 1.2346 2.3203 1.2087 1.5589 0.0876 0.0971 0.0798 0.0472

30 1 2 2 0.5 1.9614 3.2658 3.4231 0.7267 0.0889 0.0847 0.0704 0.0542

50 1 2 2 0.5 1.5837 2.5991 2.5237 0.6079 0.0769 0.0885 0.0679 0.0476

100 1 2 2 0.5 1.2437 2.2984 2.2389 0.5472 0.0768 0.0853 0.0672 0.0462

30 1 2 2 1 1.8773 3.2674 3.4212 1.4298 0.0974 0.0869 0.0773 0.0616

50 1 2 2 1 1.4932 2.5813 2.5326 1.2998 0.0867 0.0983 0.0795 0.0568

100 1 2 2 1 1.2167 2.2916 2.2193 1.1183 0.0792 0.0851 0.0693 0.0463

30 1 2 2 1.5 1.8823 3.2593 3.4261 1.8672 0.1006 0.0975 0.0869 0.0578

50 1 2 2 1.5 1.5824 2.5139 2.4934 1.6672 0.0891 0.1092 0.0879 0.0573

100 1 2 2 1.5 1.2305 2.3027 2.1979 1.5723 0.07967 0.0945 0.0797 0.0493
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Table 2: The average estimates of (λ1, λ2, λ3, β) obtained through the two-step procedure.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 2 2 0.5 0.5 2.9587 3.2681 1.9672 0.7361 0.0893 0.0842 0.0669 0.0578

50 2 2 0.5 0.5 2.5831 2.5951 1.0851 0.6138 0.0765 0.0879 0.0677 0.0456

100 2 2 0.5 0.5 2.2360 2.3013 0.7542 0.5479 0.0754 0.0851 0.0679 0.0442

30 2 2 0.5 1 2.8476 3.2821 1.8567 1.4310 0.0981 0.0843 0.0774 0.0621

50 2 2 0.5 1 2.4881 2.5813 1.0829 1.3021 0.0870 0.0995 0.0792 0.0582

100 2 2 0.5 1 2.1933 2.2929 0.7300 1.1232 0.0798 0.0856 0.0686 0.0450

30 2 2 0.5 1.5 2.8621 3.2713 1.9413 1.8348 0.1116 0.0961 0.0873 0.0635

50 2 2 0.5 1.5 2.5855 2.5018 0.9964 1.7027 0.0877 0.1030 0.0862 0.0604

100 2 2 0.5 1.5 2.2320 2.3058 0.7542 1.5590 0.0802 0.0934 0.0770 0.0482

30 2 2 1 0.5 2.9745 3.2799 2.3941 0.7416 0.0971 0.0845 0.0689 0.0618

50 2 2 1 0.5 2.5941 2.5979 1.5238 0.6156 0.0771 0.0962 0.0690 0.0504

100 2 2 1 0.5 2.2468 2.3015 1.2416 0.5601 0.0815 0.0860 0.0758 0.0485

30 2 2 1 1 2.8891 3.2801 2.3407 1.4392 0.1028 0.0871 0.0817 0.0671

50 2 2 1 1 2.4932 2.5918 1.5262 1.3124 0.0881 0.0998 0.0811 0.0656

100 2 2 1 1 2.2003 2.3056 1.2185 1.1273 0.0841 0.0887 0.0694 0.0529

30 2 2 1 1.5 2.8601 3.2713 2.4006 1.8425 0.1061 0.1027 0.0946 0.0684

50 2 2 1 1.5 2.5888 2.5139 1.4866 1.7073 0.0926 0.1115 0.0915 0.0630

100 2 2 1 1.5 2.2387 2.3117 1.2032 1.5622 0.0857 0.0965 0.0831 0.0490

30 2 2 2 0.5 2.9601 3.2589 3.4098 0.7244 0.0862 0.0818 0.0671 0.0512

50 2 2 2 0.5 2.5785 2.5853 2.5164 0.6021 0.0741 0.0861 0.0664 0.0447

100 2 2 2 0.5 2.2351 2.2937 2.2336 0.5423 0.0727 0.0815 0.0639 0.0413

30 2 2 2 1 2.8744 3.2701 3.4189 1.4251 0.0948 0.0841 0.0751 0.0591

50 2 2 2 1 2.4821 2.5784 2.5261 1.2982 0.0836 0.0971 0.0783 0.0555

100 2 2 2 1 2.1927 2.2891 2.2164 1.1153 0.0774 0.0816 0.0683 0.0436

30 2 2 2 1.5 2.8513 3.2587 3.4228 1.8294 0.0987 0.0939 0.0849 0.0611

50 2 2 2 1.5 2.5751 2.4992 2.4839 1.6982 0.0838 0.1018 0.0839 0.0572

100 2 2 2 1.5 2.2194 2.2943 2.1926 1.5468 0.0782 0.0896 0.0744 0.0451
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Table 3: The average estimates of (λ1, λ2, λ3, β) obtained through the iterative method.

n λ1 λ2 λ3 β λ̂1 λ̂2 λ̂3 β̂ SE(λ̂1) SE(λ̂2) SE(λ̂13) SE(β̂)

30 1 2 0.5 0.5 1.9887 3.3081 1.9873 0.8154 0.0893 0.0902 0.0678 0.0603

50 1 2 0.5 0.5 1.6912 2.6332 1.0923 0.7385 0.0782 0.0893 0.0691 0.0472

100 1 2 0.5 0.5 1.3497 2.3213 0.7743 0.6293 0.0772 0.0869 0.0695 0.0449

30 1 2 0.5 1 1.9534 3.3109 1.9576 1.4734 0.1023 0.0953 0.0867 0.0703

50 1 2 0.5 1 1.5934 2.6156 1.0921 1.3921 0.0899 0.1012 0.0823 0.0612

100 1 2 0.5 1 1.3173 2.4679 0.7591 1.1581 0.0823 0.0897 0.0728 0.0499

30 1 2 0.5 1.5 1.9727 3.3278 1.9825 1.9568 0.1792 0.1034 0.0957 0.0684

50 1 2 0.5 1.5 1.7455 2.5357 0.9764 1.8627 0.0893 0.1125 0.0897 0.0692

100 1 2 0.5 1.5 1.5671 2.3513 0.7934 1.6193 0.0934 0.1045 0.0842 0.0502

30 1 2 1 0.5 1.9834 3.2895 2.4231 0.8245 0.1034 0.0957 0.0725 0.0769

50 1 2 1 0.5 1.6761 2.6281 1.5482 0.7372 0.0821 0.0993 0.0723 0.0584

100 1 2 1 0.5 1.3182 2.3756 1.2949 0.6429 0.0902 0.0931 0.0784 0.0521

30 1 2 1 1 1.9233 3.2956 2.3756 1.5334 0.1342 0.0913 0.0882 0.0705

50 1 2 1 1 1.5421 2.6492 1.5849 1.4294 0.0917 0.1034 0.0942 0.0736

100 1 2 1 1 1.2951 2.3682 1.2735 1.2661 0.0879 0.0921 0.0704 0.0569

30 1 2 1 1.5 1.9349 3.2937 2.4623 1.9173 0.1236 0.1412 0.1034 0.0756

50 1 2 1 1.5 1.5923 2.5634 1.4954 1.8728 0.1054 0.1532 0.1031 0.0713

100 1 2 1 1.5 1.3681 2.3542 1.2348 1.6212 0.0886 0.0993 0.0902 0.0534

30 1 2 2 0.5 1.9789 3.2782 3.4267 0.8178 0.0921 0.0941 0.0714 0.0589

50 1 2 2 0.5 1.5845 2.5936 2.5372 0.6912 0.0797 0.0901 0.0686 0.0484

100 1 2 2 0.5 1.3383 2.3417 2.2756 0.6389 0.0810 0.0889 0.0725 0.0467

30 1 2 2 1 1.8972 3.2852 3.4462 1.5343 0.1034 0.0872 0.0792 0.0602

50 1 2 2 1 1.4939 2.5789 2.5319 1.4014 0.0913 0.0989 0.0810 0.0579

100 1 2 2 1 1.3214 2.2973 2.2682 1.2314 0.0824 0.0901 0.0713 0.0498

30 1 2 2 1.5 1.9344 3.2604 3.4610 1.9282 0.1083 0.0991 0.0892 0.0659

50 1 2 2 1.5 1.6952 2.5021 2.4934 1.8317 0.0884 0.1153 0.0897 0.0604

100 1 2 2 1.5 1.3156 2.3023 2.2103 1.7116 0.0816 0.0927 0.0829 0.0523

5. Illustration

In this section, we have applied the AFT based load sharing model and estimation procedures to
motor data obtained from Reliability Edge Home [19]. The dataset consists of 18 systems, each
consisting of two motors operating continuously in parallel. The failure times of both motors,
along with their identification labels A and B, were recorded.

Our objectives were twofold. Firstly, we aimed to determine whether the modified Weibull
distribution (MWD) is an appropriate baseline distribution for modeling the lifetimes of both
components. Secondly, we aimed to test whether there exists a load sharing phenomenon, where
the failure of one motor affects the working of the other.

To assess the appropriateness of the MWD as the baseline distribution, we conducted a
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Kolmogorov-Smirnov type test, which confirmed its suitability. However, it should be noted that
the test was conservative due to the estimation of unknown parameters. We utilized a two-step
estimation procedure, with the estimation of β being conducted using the ’average method’. The
estimated values of λ1, λ2, λ3, and β were found to be 0.0028, 2.08168× 1016, 31.6118, and 1.9847,
respectively.

To investigate the presence of load sharing among the motor failure times, we employed
a score-type test proposed by Sutar and Naik-Nimbalkar [11]. The computed test statistic
value was 19.564, which surpassed the critical values at both the 1% and 5% significance levels.
Consequently, we can infer that the failure of one motor has a significant impact on the lifetime
of the other. This finding supports the existence of a load sharing phenomenon, where the
failures of individual components influence the performance of the remaining components in the
system. This conclusion is further supported by the estimated value of β̂ being 1.9847 (significatly
different than 1), suggesting that these 18 parallel systems exhibit load sharing or a load sharing
phenomenon among the component failures.

6. Conclusions

In our study, we focused on a two-component parallel load sharing system and utilized the
accelerated failure time based load sharing model to capture the load sharing behavior observed
in this system. We chose the modified Weibull distribution as the baseline distribution for the
component lifetime. We proposed two procedures for estimating the model parameters within
this framework and also discussed a test procedure for assessing the presence of load sharing
in such systems. Furthermore, we conducted a simulation study to evaluate the performance
of the proposed estimation procedures, which demonstrated satisfactory results. To illustrate
the practical applicability of the load sharing system, we analyzed a specific dataset. It is worth
mentioning that the modeling and analysis of load sharing phenomena can be extended to more
complex systems, such as a k-out-of-m system.
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Appendix (A): Expressions involved in Score functions

∂ log L
∂β

=
n

∑
i=1

(
λ1λ3βλ3−1 + λ2λ3yλ3−1

i

)
(

λ1βλ3 + λ2λ3βyλ3−1
i

) − n(λ3 + 1)
β

+
λ1

β2

n

∑
i=1

(yi − xi)

− λ2λ3

βλ3+1

n

∑
i=1

(yλ3
i − xλ3

i ) = 0, (16)

∂ log L
∂λ1

=
n

∑
i=1

βλ3−1(
λ1βλ3 + λ2λ3βyλ3−1

i

) +
n

∑
i=1

1(
λ1 + λ2λ3xλ3−1

i

)
− 1

β

n

∑
i=1

(yi − xi)− 2
n

∑
i=1

xi = 0,

∂ log L
∂λ2

=
n

∑
i=1

βλ3yλ3−1
i(

λ1βλ3 + λ2λ3βyλ3−1
i

) +
n

∑
i=1

λ3xλ3−1
i(

λ1 + λ2λ3xλ3−1
i

)
− λ2

βλ3

n

∑
i=1

(yλ3
i − xλ3

i )− 2λ2

n

∑
i=1

xλ3
i = 0,

and

∂ log L
∂λ3

=
n

∑
i=1

(
λ1βλ3 log β + λ2βyλ3−1

i + λ2λ3βyλ3−1
i log yi

)
(

λ1βλ3 + λ2λ3βyλ3−1
i

)
+

n

∑
i=1

λ2xλ3−1
i + λ2λ3xλ3−1

i log(xi)(
λ1 + λ2λ3xλ3−1

i

) − n log β− λ2

n

∑
i=1

(
yi
β

)λ3

log
(

xi
β

)

− λ2

n

∑
i=1

(
xi
β

)λ3

log
(

yi
β

)
− 2λ2

n

∑
i=1

xλ3
i log(xi) = 0.
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Appendix (B): The information pertaining to the conditional density of

W11 given X = x and Z21 = z21

Consider

Ḡ(w1, z21|X = x) = P(Z21 > z21, W11 > w1|X = x)
= F̄W1|X=x(max(z21, w1))F̄W2|X=x(z21)

= exp
{
−θ1[max(z21, w1)− x]− θ2(zθ3

21 − xθ3)
}

.

Due to ordering in z21 and w1, we have following three cases-

1. z21 > w1 i.e. max(z21, w1) = z21.

2. z21 < w1 i.e. max(z21, w1) = w1.

3. z21 = w1 i.e. max(z21, w1) = z21 or w1.

When, z21 > w1 we have,

Ḡ(w1, z21|X = x) = exp
{
−θ1(z21 − x)− θ2(zθ3

21 − xθ3)
}

.

Thus, we have

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) = 0, z21 > w1 > 0.

When, z21 < w1 we have,

Ḡ(w1, z21|X = x) = exp
{
−θ1(w1 − x)− θ2(zθ3

21 − xθ3)
}

, w1 > z21 > 0,

and hence

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) , w1 > z21 > 0.

That is

g(w1, z21|X = x) = θ1θ2θ3zθ3−1
21 exp

{
−θ1(w1 − x)− θ2(zθ3

21 − xθ3)
}

, w1 > z21 > 0.

When, z21 = w1 we have,

Ḡ(w1, z21|X = x) = exp{−θ1(z21 − x)− θ2(zθ3
21 − xθ3)} , w1 = z21 > 0.

Thus, we have

g(w1, z21|X = x) =
∂2

∂z21∂w1
Ḡ(z21, w1|x) , w1 = z21 > 0

= θ1 exp
{
−θ1(z21 − x)− θ2(zθ3

21 − xθ3)}
}

, z21 = w1 , w1 = z21 > 0.

Thus, by combining all the above cases, we can write the joint density as

g(w1, z21|X = x) = θ1θ2θ3zθ3−1
21 exp{−θ1(w1 − x)− θ2(zθ3

21 − xθ3)}I(z21 = w1)

+θ1 exp{−θ1(z21 − x)− θ2(zθ3
21 − xθ3)}I(z21 < w1).

Hence, the conditional density of W11 given X = x, Z21 = z21 can be obtained as

g(w1|x, z21) =
g(w1, z21|X = x)

g(z21|X = x)

=
θ1(

θ1 + θ2θ3zθ3−1
21

) {I(w1=z21) + θ2θ3zθ3−1
21 exp {−θ1(w1 − z21)} I(w1>z21)

}
.
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Appendix (C): Expressions involved in (14)
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Abstract 

 

On the basis of the statistics, ANOVA also provides a method of data analysis that is motivated by 

consideration of the experimental design or Design of Experiment (DOE). Experimental design plays 

an essential part in statistical analysis and data interpretation. One factor of criteria forms the basis 

of a one-way classification. Two factors or two criteria form the basis of two-way classification. 

Innovations and creations require experimentation as their foundation. Replication, randomization, 

and local control are the three fundamental tenets of experimental designs, which are used to 

determine the cause and effect of interactions. The error of any treatment can be isolated and any 

number of treatments may be omitted from the analysis without complicating it. The data provided 

in this study are vague and need an extended version of the RBD to investigate these vague 

observations. The simplest of all designs based on the principles of randomization and replication are 

Completely Randomized Designs (CRD). When the experimental materials aren't uniform in some 

circumstances. Divide the experimental region into smaller, homogeneous blocks in RBD. The 

treatment is applied at random to each block, and each block is reproduced. Since uncertainty is a 

common feature of all real-world issues and denotes fuzziness and unpredictability, Randomized 

Block Design has long been widely used in the agricultural and industrial sectors. It is therefore 

impossible to avoid using statistical RBD analysis with fuzzy observations. The objective of this study 

was to develop the problem of a Randomized Block Design (RBD) test for Triangular Fuzzy Numbers 

(TFN) is discussed in this paper. However, in a scenario that is actual, the underlying relationship is 

not a clear-cut function of a particular form; it has some ambiguity or imprecision. The estimated 

numbers are very similar to the actual ones. This approach may generally be used for any real-time 

triangle fuzzy number calculation. In this proposed methodology, it is obvious that if the value of the 

observed fuzzy test statistics is similar to real numbers in the testing crisp hypotheses, then fuzzy 

RBD is very sensitive for making the determinations as to whether to accept or reject the fuzzy null 

hypotheses and also debates the application of the method for example. 

 

Keywords: RBD, Fuzzy RBD, TFN, Decision Rule 

 

 

1. Introduction 
 

The Completely Randomized Design (CRD) was simple because the principle of local control was 

not used, and experimental material was assumed to be homogeneous, but it is noted that the 

experimental material is not absolutely homogeneous. A fertility gradient in one direction is often 

present in agricultural field experiments. The simple method of regulating the variability of the 
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experimental material in such a situation consists of stratifying or grouping the entire experimental 

area into relatively homogeneous strata or subgroups (called blocks) perpendicular to the fertility 

gradient direction. These blocks are so designed that plots are homogeneous within a block, and 

heterogeneous between blocks. In other words, inside a block there might be less variation, and the 

main difference or variation between blocks. It should be held in mind that for an effective blocking 

of the content, familiarity with the design of experimental units is important. The method of dividing 

experimental material into a number of blocks gives rise to a design known as RBD that can be 

described as an arrangement of t treatments in r blocks such that each treatment takes place exactly 

once in each block. Fuzzy set theory [23] was extended to several areas that need to handle 

ambiguous and unclear data. These areas include estimated logic, decision-making, optimization, 

power, etc.  

The sample findings are crisp in conventional statistical research, and a statistical test leads 

to the binary decision. Many authors have studied the statistical theories that are evaluated in fuzzy 

environments using the fuzzy set theory principles introduced by Zadeh [24]. Chachi et al. [4] are 

proposing a new approach to the issue of evaluating statistical hypotheses. As a fuzzy subset of the 

real line, Dubois and Prade [6] identified some of the fuzzy numbers. Mikihiko Konishi et al. [16] 

suggested an Analysis of Variance (ANOVA) for the fuzzy interval data using the definition of the 

fuzzy set. Wu [21, 22] introduced hypothesis testing of a single factor ANOVA model for fuzzy data 

by solving optimization problems using the h-level and the notions of pessimistic degree and 

optimistic degree. The two-factor ANOVA test were analysed by Gajivaradhan and Parthiban [8] 

using an alpha cut interval method for trapezoidal fuzzy numbers. A bootstrap approach to the 

multi-sample test of means with imprecise data was suggested by Gil et al. [10]. When both the 

theories and the available data are fuzzy, Arefi and Taheri [2] formed the testing hypothesis. 

Filzmoser and Viertl [7], proposed to test hypotheses on the fuzzy p value with fuzzy data. Nakama 

et al. [15] Discuss derive statistical tests that are ideal for testing the null hypotheses, and develop a 

bootstrap scheme to estimate the p values of the test statistics observed. Ahmed et, al. [1], proposed, 

a new dimension of the methodology involving a fuzzy regression approach to RBD introduced, 

which is involving qualitative predictor variables under consideration on multiple linear regression. 

The idea from this research will be a useful thread for establishing comprehensive connectivity 

between RBD and regression. The researchers concluded that fuzzy MLR can predict much better 

compared to MLR itself. Mariappan and Pachamuthu [14] suggested the statistical testing of 

hypotheses for fuzzy CRD using TFN. Magno do N et, al. [13], developed a fuzzy model that could 

predict weight loss as a function of the rapid cooling of table grapes in different plastic film bags. 

Modelling was performed using three types of plastic film bags (micro-perforated, macro-

perforated, and non-perforated) at three levels of palletization (lower, intermediate, and upper), 

arranged in an experimental design in randomized blocks, in a 3 × 3 factorial scheme, with three 

blocks. The influence of the relative humidity and amplitude of humidity on the variable weight loss 

percentage of the Arra 15 grape variety was measured. The average percentage error of the fuzzy 

model was 9.78%. The intermediate level alone showed an error of 4.02%. Thus, the developed fuzzy 

model provided a good prediction of the weight loss of table grapes. The classical RBD model for 

TFN is analyzed in this paper using a numerical example. 

 

2. Preliminaries 

2.1 Triangular Fuzzy Number 

A triangular fuzzy number A  is a fuzzy number fully specified by tribles ( , ,a b c ) such that 

a b c   with membership function defined as 
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where a  is the indicates of  lower point, b  is the indicates of centre point and c  is the 

indicates of upper point. 

The triangular fuzzy number is represented diagramatically as  

 
Figure 1: Triangular Fuzzy Numbers 

 

The form of a fuzzy interval number can be expressed as a triangular fuzzy number follows:

   ( ) ; ( ) ;0 , 1
L U

A b a r a b c h c h r = − + − +  
 

 

where r  is the  level of pessimistic and h  is the level of optimistic of the fuzzy numbers  

( , , )A a b c= . 

 

3. Statistical Analysis of RBD 

 
Through proving the local control (blocking) measure in the design, an increase in CRD can 

be obtained. One such design is entirely RBD. ANOVA technique for two-way data classification is 

applicable to the RBD layout experiment. The data obtained from the experiment is graded by two 

factors namely treatments and blocks according to different levels. For RBD, the linear model is 

described by                                                                                                                      

; 1,2,..., ; 1,2,...,ij i j ijy a b e i t j b= + + + = =  

where, 
ijy is the observations corresponding to the thi treatment and 

thj block,  is the 

general mean effect which is fixed, ia is the fixed effect due to the thi treatment, 
jb is the fixed effect 

due to the 
thj block and 

ije is the random error effect. To determine whether the factor level means 

i  equal or not. The following testing hypotheses are known as  

0 1 2 3 4:H    = = =  against 1 :H not all i  are equal 

Let 
..

tb

ij

ij

y y G= =  be the grand total of tb observations, 
.

tb

ij i i

ij

y y T= =  be the thi

treatment total, 
.

tb

ij j j

ij

y y B= =  is the 
thj block total and also 

2G
cf

kr
= . Then, the various sum of 

squares, mean sum of squares and F Ratio listed given below: 
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2
2

tb

SST ij

ij

G
SST Q y

kr
= = −  which has  ( 1)tb− df, 

2 2tb
i

SSBTR

ij

T G
SSBTR Q

r kr
= = −   which has 

( 1)t −  df , 
2 2tb
j

SSB

ij

B G
SSB Q

k kr
= = −  which has ( 1)b−  df , 

SSE SST SSBTR SSBBSSE Q Q Q Q= = − −  

which has ( 1)( 1)t b− −  df , 
( 1)

SSBTR
MSBTR

t
=

−

,
( 1)

SSBB
MSBB

b
=

−

,
( 1)( 1)

SSE
MSE

t b
=

− −
, 

BTR

MSBTR
F

MSE
=

 and  
BB

MSBB
F

MSE
= .                                                        

In the ANOVA table, all these values are referred to and inferences are drawn.  
 

Table 1: ANOVA Table for Crisp RBD 

 

SV df SS MSS F Ratio 

Between Treatments ( 1)t −  
SSBTRQ  MSBTR  BTRF  

Between Blocks ( 1)b−  
SSBBQ  MSBB  

BBF  

Experimental Error ( 1)( 1)t b− −  
SSEQ  MSE  - 

Total ( 1)tb−  
SSTQ  - - 

 
 

 

3.1 Decision Rule of Between Treatments and Between Blocks 
 

The decision rules of F test to accept or reject between treatments and between blocks at %
significance level the null hypothesis and alternative hypothesis. Suppose that if T CF F , [where 

TF  is the tabulated value for ( 1),( 1)( 1)t t b− − −  and ( 1),( 1)( 1)b t b− − − degrees of freedom, and 

CF  is the calculated value], then the null hypothesis 0H  is rejected. Otherwise, alternative 

hypothesis 0H  is rejected. 

 

3.2 Fuzzy Analysis of RBD 

 
The triangular fuzzy approach to the fuzzy statistical analysis of RBD. Throughout this case, the data 

recorded as well as the observations are regarded as TFN. Below is the mathematical general linear 

model:  

                                          ;ij i j ijy a b e= + + + 1,2,..., ; 1,2,...,i t j b= =                                          

In the fuzzy interval RBD models, the general linear model of classical RBD is classified; the fuzzy 

lower and upper level models are regarded as: ( ) ( ) ( ) ( )L L L L L

ij r i r j r ij ry a b = + + +  and 

( ) ( ) ( ) ( )U U U U U

ij h i h j h ij hy a b = + + +  in which ( )Lij ry  and ( )Uij hy  is the observation corresponding 

to the thi  level of factor A  and 
thj  level of factor B . ( )Lr  and ( )Uh is the general mean effect 

which is fixed. ( )Li ra  and ( )Ui ha is the fixed effect due to the thi  level of factor A . ( )Lj rb  and ( )Uj hb

is the fixed effect due to the 
thj  level of factor B . ( )Lij r  and ( )Uij h is the random error effect 

which is independent identically distributed ( )iid  with mean is 0  and constant variance is 2 ;

1,2,...,i t=  and 1,2,...,j b= . After this, to test the lower and upper level model and the fuzzy 

null hypotheses and fuzzy alternative hypotheses respectively, utilizing classical RBD methods. 

The simplest the fuzzy null hypotheses 
0 1 2: ... rH   = = =  against the fuzzy alternative 

hypotheses 
1 1 2: ... rH      . This implies the following two sets (Lower and Upper levels) 

of hypotheses are given below. 
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3.3 Fuzzy Hypotheses of Lower and Upper Level Models 

 
The fuzzy null hypotheses of between treatment and between block is 

0 1 2: ...L L L L

rH   = = =

against the fuzzy alternative hypotheses between treatment and between block is 

1 1 2: ...L L L L

rH      .  

The fuzzy null hypotheses of between treatment and between block is 

0 1 2: ...U U U U

rH   = = =  against the fuzzy alternative hypotheses of between treatment and 

between block is 
1 1 2: ...U U U U

rH      .  

In TFN pessimistic and optimistic for the fuzzy lower and upper level models from the null 

hypothesis of acceptance or rejection direction levels. Through the use of triangular fuzzy lower and 

upper levels formulas are ( )ij ij ijb a r a− +  where 0 ;0i t j b     and  

( )ij ij ijb c h c− + where 0 ;0i t j b    . (Note that 1Lr = and 1Uh = , centre level). Then 

the required formula for lower level of fuzzy RBD is given below: 
2

..

1 1

[( ) ]
[( ) ]

Lt b
L L r
r ij r

i j

y
SST y

tb= =

= − ,  
2 2

. ..

1

[( ) ] [( ) ]L Lt
L i r r
r

i

y y
SSBTR

b tb=

= −  

2 2

. ..

1

[( ) ] [( ) ]U Ub
L i h h
r

j

y y
SSBB

t tb=

= − ,  L L L L

r r r rSSE SST SSBTR SSBB= − −  

( 1)

L
L r
r

SSBTR
MSBTR

t
=

−
 ,  

( 1)

L
L r
r

SSBB
MSBB

b
=

−
  and  

( 1)( 1)

L
L r
r

SSE
MSE

t b
=

− −
 

                                                       
( )LBTR r

MSBTR
F

MSE
=

  and ( )LBB r

MSBB
F

MSE
=                                   

In the lower level of ANOVA table for fuzzy RBD table, all these values are represented and fuzzy 

decision rule is drawn. 

Table 2: ANOVA Table for Lower Level of Fuzzy RBD 

 

SV df SS  MSS F Ratio−  

Between Treatments ( 1)t −
 

L

rSSBTR  
L

rMSBTR

 
( )LBTR rF  

Between Blocks ( 1)b−  L

rSSBB  L

rMSBB
 

( )LBB rF  

 Experimental Error  ( 1)( 1)t p− −  L

rSSE  L

rMSE
 

- 

Total ( 1)tb−  L

rSST  - - 

 

 

3.2 Fuzzy Decision Rule of (Lower and Upper levels) Between Treatments and Between                 

       Blocks 

 

Suppose that if  
T CF F , [where 

TF  is the tabulated value for ( 1),( 1)( 1)t t b− − −  and 

( 1),( 1)( 1)b t b− − − degrees of freedom, and 
CF  is the calculated value (using 3.1)], then the fuzzy 

null hypotheses of lower level for 
0

LH  and fuzzy null hypotheses of upper level for 
0

UH  is rejected 

for 0 L

Tr r   where 0 1Tr   and 0 U

Th h   where 0 1Th  . Otherwise, fuzzy alternative 

hypotheses of lower level for 
0

LH  and fuzzy alternative hypotheses of upper level for 
0

UH  is rejected 

for 0 U

Th h   where 0 1Th  .   

  The proposed classical technique for evaluating RBD model fuzzy hypotheses with fuzzy 
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data is illustrated with an example below. 
 

𝑒 =  𝑚𝑐2                                                                           (1) 

 

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. 

Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut 

lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque 

vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec 

luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. 

Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio. 

 

4. Applications 

 
In our study, to collect the yields of primary data groundnut varieties at Omalur, Salem District of 

Tamil Nādu. Three replicates of various groundnut varieties (TMV 2, TMV 7, VRI 2) in kilograms 

and four yields of (Y1, Y2, Y3, Y4). Via an RBD, with four replications of groundnut in kilograms for 

yields per plot, three varieties of crops are tested, the layout being TFN due to certain work friction 

is given as below. 

Table 3: Table for Classical RBD using TFN 

 

Varieties of 

Groundnut 

Yields in kilograms 

Y1 Y2 Y3 Y4 

TMV 2 56,58,60 54,58,62 53,56,59 54,58,62 

TMV 7 58,60,62 53,58,63 56,59,62 57,60,63 

VRI 2 59,62,65 58,60,62 57,60,63 57,59,61 

 

To test if there is any substantial difference between the production of the groundnut varieties in the 

yields in kilograms per plot. Let i  be the mean number of yields in kilograms per plots for the thi

varieties of groundnut. Now, the null hypothesis, 
0 1 2 3 4:H    = = =  and the alternative 

hypothesis,  
1 :H  not all 

i ’s are equal.  

              
0 :H  To test whether groundnut varieties do not vary significantly with respect to yields. 

                
1 :H  To test if groundnut varieties vary significantly with respect to yields. 

Let us consider the lower-level model is given below 

 

4.1. Lower Level Model 

 
Table 4: Table for Upper Level Model 

 

Varieties of  

Groundnut 

Yields in kilograms  

Y1 Y2 Y3 Y4 

TMV 2 2 56r +  4 54r +  3 53r +  4 54r +  

TMV 7 2 58r +  5 53r +  3 56r +  3 57r +  

VRI 2 3 59r +  2 58r +  3 57r +  2 57r +  

 
210 30 46L

rSST r r= − + ,  21.5 10.5 24.5L

rSSBTR r r= − +   

22.67 10.67 12.67L

rSSBB r r= − + , 25.83 8.83 8.83L

rSSE r r= − +
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20.75 5.25 12.25L

rMSBTR r r= − + , 20.89 3.56 4.22L

rMSBB r r= − + ,
20.97 1.47 1.47L

rMSE r r= − +  

2

2

0.75 5.25 12.25
( )

0.97 1.47 1.47

L

BTR r

r r
F

r r

− +
=

− +
,  

2

2

0.89 3.56 4.22
( )

0.97 1.47 1.47

L

BB r

r r
F

r r

− +
=

− +
 

 

4.2. Fuzzy Decision Rule of Between Treatments 
 

If 
L

r TF F , for all ;0 1r r   where 5.14TF =  is the F table value of    at 5%  level of 

significance with (2,6) df   then, the fuzzy null hypotheses 
0

LH  is rejected for the ;0 1r r  .  Thus, 

the disparity between the treatments is substantial. Therefore, groundnut varieties vary greatly in 

yields. 

 

4.3. Fuzzy Decision Rule of Between Blocks 

 

If 
L

r TF F , for all ;0 1r r   where 4.76TF =  is the F table value of    at 5%  level of 

significance with (3,6)df  then, the fuzzy null hypotheses 
0

LH  is accepted for the ;0 1r r  . 

Furthermore, the difference between treatments is not significant. Therefore, the groundnut varieties 

are not substantially different in terms of yields. 

Let us consider the upper level model is given below 

 

4.4. Upper Level Model 

 
Table 4: Table for Upper Level Model 

 

Varieties of  

Groundnut 

Yields in kilograms   

Y1 Y2 Y3 Y4 

TMV 2 2 60h− +  4 62h− +  3 59h− +  4 62h− +  

TMV 7 2 62h− +  5 63h− +  3 62h− +  3 63h− +  

VRI 2 3 65h− +  2 62h− +  3 63h− +  2 61h− +  

 

Likewise, upper level models of ambiguous RBD use formula and table, thus avoiding calculation. 

 

4.5. Fuzzy Decision Rule of Between Treatments 

 
If U

T hF F , for all ;0 1h h  where 5.14TF =  is the F table value of  at 5%  level of 

significance with (2,6) df then, the fuzzy null hypotheses 
0

UH  is accepted for the ;0 1h h  . 

Consequently, the disparity between treatments is not significant. Therefore, with regard to yields 

in kilograms, groundnut varieties do not vary significantly. 

 

4.6. Fuzzy Decision Rule of Between Blocks 

 
If U

T hF F , for all ;0 1h h  where 8.14TF =  is the F table value of   at 5%  level of 

significance with (6,3) df then, the null hypothesis of the  
0

UH is accepted for the ;0 1h h  . 

Therefore, the discrepancy between treatments is not significant. Consequently, with regard to 

yields in kilograms, groundnut varieties do not vary significantly. 
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Therefore, so because fuzzy null hypotheses between treatments 
0

LH  and 
0

UH  of the lower 

level data is rejected and upper level data is accepted for all ;0 1r r   and ;0 1h h   (note that 

null hypotheses of accepted or rejected at 1r =  and 1h = , that is the centre level), the between 

blocks of fuzzy null hypothesis 
0

LH  and 
0

UH  of the lower and upper level data is accepted for all 

;0 1r r   and ;0 1h h   the fuzzy null hypotheses 
0H  of the fuzzy RBD model is accepted and 

rejected for all ;0 1r r   and ;0 1h h  . Thus, we conclude that four yields of groundnut 

kilograms are equal if ;0 1r r   and ;0 1h h  .  

 

5. Conclusion 
 

A statistical test of the hypothesis for RBD model using TFN for fuzzy data is suggested in this study. 

Can make a decision on the fuzzy RBD model hypothesis based on the hypothesis determinations 

of two crisp RBD models. Since our fuzzy test is rather than standard significance tests, it appears to 

be a useful method in circumstances with imprecise data and also extend the crisp RBD to LSD, 

BIBD, PBIBD for fuzzy environments. 
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Abstract

This article is dedicated to the study of the new class of distributions and one of its particular members.
Based on the ratio of CDF G(x) and 1+G(x) of the baseline distribution, we have developed the new
trigonometric family of distributions by transforming the sine function, and we named it the new class
sin-G (NCS-G) family of distributions. The general properties of the suggested family of distributions are
provided. Using the inverted Weibull distribution as a baseline distribution, we have introduced a member
of the suggested family having a reverse-j or increasing, or inverted bathtub-shaped hazard function. Some
statistical properties of this NCS-IW distribution are explored. The associated parameters of the new
distribution are estimated through the MLE method. To assess the estimation procedure, we conducted a
Monte Carlo simulation and found that even for small samples, biases and mean square errors decreased
as the size of the sample increased. Two real medical data sets are considered for the application of
the NCS-IW distribution. Using some criteria for model selection and goodness of fit test statistics, we
empirically proved that the suggested model performs better than six other existing models (most of which
have more parameters).

Keywords: Sine-G distribution, Inverse Weibull distribution, Maximum Likelihood Estimation, Entropy,
Quantile Function

1. INTRODUCTION

Statistical distributions are frequently used to investigate real-world phenomena. The theory of statistical
distributions is extensively studied, as are new developments in their application. Several families of
distributions have been developed to describe various real-world phenomena. In reality, this new development
in distribution theory is a continuing practice. Many probability distributions proposed in the literature have
a large number of parameters to make the model more versatile. However, obtaining estimates for these
parameters can be challenging using numerical resources, as per some authors Marshall and Olkin [17].
Hence, it is better to create models with fewer parameters and greater flexibility for modeling actual data.
To achieve this objective, a group of researchers searched for new distributions employing trigonometric
functions. In the last few years, researchers have been attracted to trigonometric models due to their flexibility
and mathematical tractability. Among the various trigonometric G-family members, Kumar et al. [15] have
defined a new class of distribution using the sine trigonometric function and defined the sin-exponential
model as its member. The cumulative distribution function (CDF) of this family is given by

F (x; χ) = sin
{

π

2
K (x; χ)

}
x ∈ R, (1)

where K (x; χ) is the CDF of any base continuous distribution. Instantaneously, Souza [24] introduced
another trigonometric model based on the sine function and Gomez-Deniz and Caldern-Ojeda [9] define
the arc-tan-G family of distributions using the arctangent function. Gomez-Deniz and Caldern-Ojeda [9]
demonstrated the new distribution family that was used to characterize Norwegian fire insurance data.

  RT&A, No.3 (74)  
Volume 18, September 2023  

734

mailto:lpsapkota75@gmail.com


Laxmi Prasad Sapkota, Pankaj Kumar and Vijay Kumar
A NEW CLASS OF SIN-G FAMILY OF DISTRIBUTIONS

This distribution family was introduced for an underlying Pareto distribution and a new model named the
Pareto arctan distribution, and it was discovered that when compared to other well-known distributions,
this distribution offers an excellent fit. Similarly, the hyperbolic cosine-F families of distributions were
defined using a hyperbolic trigonometric function by Kharazmi and Saadatinik [14], and the hyperbolic
cosine Rayleigh distribution was defined by Sakthivel and Rajkumar [22]. Using a similar technique as
used in sin-G, the Cos-G family of distributions was introduced by Souza et al.[25] who also introduce the
Cos-Weibull distribution as a member of Cos-G class. Similarly, Souza et al. [26] have introduced another
sin-G class as defined by Kumar et al. [15] with bathtub-shaped or reverse-j, or increasing failure rate
function, and studied the Sine inverse Weibull distribution as a particular member. The CDF of the Sin-G
class of distribution is

F(x;ω) =

π
2 K(x;ω)∫

0

cos(t)dt = sin
[

π

2
K(x;ω)

]
;x ∈ R (2)

where K(x;ω) is the CDF of any parent distribution and ω > 0 is the vector of parameters of the parent
distribution. Also, Mahmood et al. [16] have developed the new sin-G family and analyzed the sin-inverse
Weibull model in particular. Chesneau and Jamal [6] have defined the sine Kumaraswamy-G family of
distributions as having two extra parameters to this family. Muhammad et al. [19] have defined the
exponentiated sine-G family and analyzed the particular distribution as an exponentiated sine-Weibull
distribution. Another trigonometric function-related probability model introduced by Chaudhary et al.[3] is
called Arctan generalized exponential distribution. Using the sine-G family of distributions, Isa et al. [12]
have developed a new two-parameter model called the sine Burr XII distribution. Hence, we have noticed
that the simple functions are associated with trigonometric distributions and are mathematically tractable
(see [15], [26]). Further, the sine transformation can remarkably enhance the flexibility of G(x) without any
additional parameters Chesneau and Jamal [6]. Due to these pleasant features, we are motivated towards the
sine transformation family. In this study, we have developed a new family of trigonometric models using
the sine function, and we called it the "new class of sine-G family" (NCS-G) of distributions. The other
parts of this study are organized as follows: Section 2 introduces the model development methodology as
well as some key functions of the distribution family. Some general properties and parameter estimation of
the NCS-G family are presented in Sections 3 and 4 respectively. In Section 5, a particular member of the
NCS-G family is introduced. A detailed study and application of this model are also presented in this section.
Finally, we present the conclusion in Section 6.

2. THE NCS-G FAMILY OF DISTRIBUTION (NCS-G FD)

Using the T-X approach proposed by Alzaatreh et al. [1], this study proposes a new family of distributions
known as the NCS-G family of distributions. Let G(x;ξ ) be a baseline CDF of a continuous random variable
X and ξ > 0 be a vector of associated parameters, and then the CDF F(x;ξ ) of the NCS-G FD is defined as

F(x;ξ ) =

π

(
G(x;ξ )

1+G(x;ξ )

)∫
0

cos(t)dt = sin
[

π
G(x;ξ )

1+G(x;ξ )

]
;x ∈ R. (3)

Differentiating the CDF defined in Equation (3), the PDF f (x;ξ ) of the family is expressed as

f (x;ξ ) = π cos
[

π
G(x;ξ )

1+G(x;ξ )

]
g(x;ξ )

(1+G(x;ξ ))2 ;x ∈ R. (4)

2.1. Reliability Function

The Reliability function of NCS-G FD is given by

R(x;ξ ) = 1− sin
[

π
G(x;ξ )

1+G(x;ξ )

]
;x ∈ R. (5)
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2.2. Hazard Function

The Hazard function of NCS-G FD is given as

H(x;ξ ) = π cos
[

π
G(x;ξ )

1+G(x;ξ )

]
g(x;ξ )

(1+G(x;ξ ))2

[
1− sin

(
π

G(x;ξ )

1+G(x;ξ )

)]−1

;x ∈ R (6)

2.3. The Quantile Function (QF)

The pth quantile can be calculated by solving, Q(p) = F−1(p). Now the QF of NCS-G FD is given by

QX (p;ξ ) = G−1
[

sin−1 (p)
π − sin−1 (p)

]
, (7)

where p has U(0,1) distribution.

2.4. Random Deviate Generation

Random deviate for the NCS-G FD can be generated

x = G−1
[

sin−1 u
π − sin−1 u

]
(8)

where u ∈U(0,1) distribution.

2.5. Skewness and Kurtosis

Bowley’s measure of skewness was defined by Kenney and Keeping [13] as,

Sk(B) =
Q(3/4;ξ )+Q(1/4;ξ )−2Q(1/2;ξ )

Q(3/4;ξ )−Q(1/4;ξ )
(9)

and the coefficient of Moor’s kurtosis defined by Moors [18] is given by

Ku(M) =
Q(0.875;ξ )−Q(0.625;ξ )+Q(0.375;ξ )−Q(0.125;ξ )

Q(3/4;ξ )−Q(1/4;ξ )
. (10)

3. GENERAL PROPERTIES OF NCS-G FD

3.1. Linear form

Using the following Taylor series expansions, we can express the density function of NCS-G FD in a linear
form as

cosx =
∞

∑
n=0

(−1)2n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
−·· · ;−∞ < x < ∞. (11)

(1+ x)c =
∞

∑
n=0

(
c
n

)
xn = 1+

c
1!

x+
c(c−1)

2!
x2 +

c(c−1)(c−2)
3!

x3 + · · · ; |x|< 1. (12)

The PDF of NCS-G FD is

f (x;ξ ) = g(x;ξ )
∞

∑
i=0

π2i+1(−1)2i

(2i)!
(1+G(x;ξ ))2(i−1) (G(x;ξ ))2i . (13)

Further expanding Equation (13) using generalized binomial series expansion. The expression for f (x;ξ )
becomes

f (x;ξ ) = g(x;ξ )
∞

∑
i=0

∞

∑
j=0

Ti j {G(x;ξ )}2i+ j;x ∈ R (14)

here

Ti j =
π2i+1(−1)2i

(2i)!

(
2(i−1)

j

)
. (15)
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3.2. Moments

The rth order non-central moment (µ
′
r) for the NCS-G FD is

µ
′
r = E(X r) =

∞∫
−∞

xr f (x)dx

=
∞

∑
i=0

∞

∑
j=0

Ti j

∞∫
−∞

xr (G(x;ξ ))2i+ j g(x;ξ )dx

(16)

Further moments can also be calculated using the quantile function for more detail (see Balakrishnan and
Cohen [2]). Let G(x;ξ ) = p ⇒ g(x;ξ )dx = d p;0 ⩽ p ⩽ 1, then rth moment can be computed using

µ
′
r =

∞

∑
i=0

∞

∑
j=0

Ti j

1∫
0

p2i+ jQr
G(p)d p; 0 < p < 1. (17)

where QG(p) is the QF of any distribution.

3.3. Moment Generating Function

The MGF (MX (t)) for the NCS-G FD is

MX (t) =
∞

∑
k=0

tk

k!
µ

′
r

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tk

k!
Ti j

∞∫
−∞

xrg(x;ξ ) (G(x;ξ ))2i+ j dx.
(18)

Using the quantile function, MGF can be expressed as

MX (t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tk

k!
Ti j

1∫
0

p2i+ jQr
G(p)d p, 0 < p < 1. (19)

where QG(p) is the QF of any distribution.

3.4. Incomplete Moment

The incomplete moment can be defined as Mr(y) =
y∫

0
xr f (x)dx. Therefore incomplete moment for NCS-G

FD is given by

Mr(y) =
∞

∑
i=0

∞

∑
j=0

y∫
−∞

Ti jxrg(x;ξ ){G(x;ξ )}2i+ j dx (20)

Alternately, Mr(y) may be expressed in terms of QF as

Mr(y) =
∞

∑
i=0

∞

∑
j=0

Ti j

G(y)∫
0

p2i+ jQr
G(p)d p; 0 < p < 1 (21)

3.5. Mean Residual Life (MRL)

The MRL of the random variable X is defined as

M̄(y) =
1

F(y)

µ −
y∫

−∞

x f (x)dx

− y. (22)
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Therefore, MRL for NCS-G FD is given by

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

Ti j

y∫
−∞

xg(x;ξ ){G(x;ξ )}2i+ j dx

− y. (23)

Alternately, M̄(y) can be expressed in terms of QF as

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

Ti j

G(y)∫
0

p2i+ jQG(p)d p

− y. (24)

3.6. Inequality Measure

In several fields, including insurance, econometrics, and reliability, we can employ Lorenz and Bonferroni
curves to measures such as income, poverty, etc.
i) Lorenz Curve
The function of the Lorenz curve is written as hence Lorenz curve for NCS-G FD is given by

LF(y) =
1
µ

∞

∑
i=0

∞

∑
j=0

Ti j

y∫
−∞

xg(x;ξ ) (G(x;ξ ))2i+ j dx. (25)

Alternatively, it can be written in terms of QF as

LF(y) =
1
µ

∞

∑
i=0

∞

∑
j=0

Ti j

G(y)∫
−∞

p2i+ jQG(p)d p. (26)

ii) Boneferroni Curve
The Boneferroni curve can be calculated using BF(y) =

LF(y)
F(y) . From Equation (25), the Boneferroni curve for

the NCS-G FD is calculated as

BF(y) =
1

µF(y)

∞

∑
i=0

∞

∑
j=0

Ti j

y∫
−∞

xg(x;ξ ) (G(x;ξ ))2i+ j dx (27)

3.7. Entropy

Entropy quantifies the uncertainty or variation of a random variable. Its application spans numerous
disciplines, including econometrics, probability theory, engineering, and life sciences in general. There are
several types of entropy, some of which are as follows:
i) Renyi’s Entropy
Entropy is used as a measure of uncertainty or variation in a random variable in many disciplines, including
engineering, econometrics, insurance, etc. Renyi [20] introduced entropy measures, which can be used to
calculate the variability of uncertainty.

Rρ (X) =
1

1−ρ
log

∞∫
−∞

{ f (x)}ρ dx (28)

and ρ ̸= 1. The PDF of NCS-G FD [ f (x,ξ )]ρ can be defined in the form of

[ f (x;ξ )]ρ = π
ρ (g(x;ξ ))ρ

[
cos
(

π
G(x;ξ )

1+G(x;ξ )

)]ρ

(1+G(x;ξ ))−2ρ (29)

By considering the Taylor series of the function[
cos
(

π
G(x;ξ )

1+G(x;ξ )

)]ρ

(30)
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at the point s=1/4, we can write

[cos (πs)]ρ =
∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−r

(
1
4

)k−r

sr (31)

where ak =
1
k!

[
{cos (πs)}ρ

](k)∣∣∣
s= 1

4

using this relation Equation (29) becomes

[ f (x;ξ )]ρ = π
ρ (g(x;ξ ))ρ

∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−r

(
1
4

)k−r

(G(x;ξ ))r (1+G(x;ξ ))−(2ρ+r) (32)

Further expanding Equation (32) using generalized binomial series expansion. The expression for [ f (x;ξ )]ρ

becomes

[ f (x;ξ )]ρ = π
ρ

∞

∑
k=0

k

∑
r=0

∞

∑
m=0

(−1)m+k−rak

(
k
r

)(
1
4

)k−r((2ρ+r)+m−1

m

)
(G(x;ξ ))r+m (g(x;ξ ))ρ (33)

Substituting [ f (x,ξ )]ρ into the expression defining Equation (28), Renyi’s entropy for NCS-G FD is given
by

Rρ (X) =
1

1−ρ
log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

Zkrm

∞∫
−∞

(g(x;ξ ))ρ (G(x;ξ ))r+m dx

 (34)

where Zkrm = (−1)m+k−r
πρ ak

(
k
r

)( 1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
The q-entropy is given by

H(ρ) =
1

1−ρ
log

1−
∞∫

−∞

{ f (x)}ρ dx

 . (35)

ρ > 0 and ρ ̸= 1. Substituting [ f (x;ξ )]ρ from Equation (32) into the expression for H(ρ), the q-Entropy
for NCS-G FD is given by

H(ρ) =
1

1−ρ
log

1−
∞

∑
k=0

k

∑
r=0

∞

∑
m=0

Zkrm

∞∫
−∞

(g(x;ξ ))ρ (G(x,ξ ))r+m dx

 (36)

where ρ > 0 and ρ ̸= 1.
iii) Shannon’s Entropy
When ρ ↑ 1, Shannon’s entropy for a random variable X with PDF f (x) is a particular case of Renyi’s
entropy. Shannon entropy is defined as ηX = E(− log f (x)) . For the NCS-G FD is given by

ηX = E

[
− log

{
∞

∑
i=0

∞

∑
j=0

Ti jg(x;ξ ) (G(x;ξ ))2i+ j

}]
. (37)

4. ESTIMATION METHOD NCS-G FD

4.1. Maximum Likelihood Estimation (MLE)

In this section, the parameters of the NCS-G FD are estimated using the MLE method. Given a random
sample x1, ...,xn of size n with parameters vector ξ from the NCS-G FD, we can compute the MLEs. Let
u = ξ T be (p× 1) parameter vectors, the log density and total log-likelihood function, respectively, are
given by

L(x;ξ ) = logπ + log
[

cos
{

π
G(x;ξ )

1+G(x;ξ )

}]
−2log (1+G(x;ξ ))+ logg(x;ξ ), (38)
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and

l(x,ξ ) = n logπ +
n

∑
i=1

log
[

cos
{

π
G(xi;ξ )

1+G(xi;ξ )

}]
−2

n

∑
i=1

log (1+G(xi;ξ ))+
n

∑
i=1

logg(xi;ξ ). (39)

Partially differentiating the Equation (39) with respect to ξ gives the score function’s components of the

V (u) =
(

∂ l
∂ξ

)T
as follows

∂ l
∂ξ

= −π

n

∑
i=1

tan
{

π
G(xi;ξ )

1+G(xi;ξ )

}
G

′
k(xi;ξ )

(1+G(xi;ξ ))2 −2
n

∑
i=1

G
′
k(xi;ξ )

(1+G(xi;ξ ))
+

n

∑
i=1

g
′
k(xi;ξ )

g(xi;ξ )
,

where g
′
k(xi;ξ ) = dg(xi;ξ )

dξ
, g

′
k(xi;ξ ) = d2g(xi;ξ )

d2ξ
, G

′
k(xi;ξ ) = dG(xi;ξ )

dξ
and G

′
k(xi;ξ ) = d2G(xi;ξ )

d2ξ
.

4.2. Method of Least Square Estimation (LSE)

Another method of estimation was introduced by Swain et al. [27] named the ordinary LSE and weighted
LSE to estimate the distribution parameters. Consider x(1), ...,x(n) be order statistics of the random sample of
size n from F(x,ξ ). The LSE for the NCS-G FD can be obtained by minimizing

K(X ;ξ ) =
n

∑
i=1

[
F(x(i);ξ )− i

n+ 1

]2

. (40)

with respect to ξ . The least-square estimates for the NCS-G FD also become

K(X ;ξ ) =
n

∑
i=1

[
sin

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
− i

n+ 1

]2

. (41)

Now differentiating Equation (41) with respect to ξ we get

∂K
∂ξ

= 2π

n

∑
i=1

[
sin

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
− i

n+ 1

]
cos

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
G

′
k(x(i);ξ )(

1+G(x(i);ξ )
)2 . (42)

where G
′
k(xi;ξ ) =

dG(x(i);ξ )
dξ

. By solving dK
dξ

= 0 , we will get the LSEs.

4.3. Cramer-von Mises Minimum Distance Estimator (CVME)

Cramer-von Mises estimators (CVMEs) are specific types of statistical estimators that minimize the difference
between the estimated and the empirical CDF. These estimators are considered to have a lower bias compared
to other minimum distance estimators. In the context of estimating parameters for the NCS-G FD distribution,
CVMEs can be used to obtain more accurate estimates by minimizing

C(X ;ξ ) =
1

12n
+

n

∑
i=1

[
F(x(i);ξ )− 2i−1

2n

]2

. (43)

with respect to ξ . The CVMEs for the NCS-G FD also become

C(X ;ξ ) =
n

∑
i=1

[
sin

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
− 2i−1

2n

]2

(44)

Now differentiating Equation (44) with respect to ξ we get

∂C
∂ξ

= 2π

n

∑
i=1

[
sin

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
− 2i−1

2n

]
cos

[
π

G(x(i);ξ )

1+G(x(i);ξ )

]
G

′
k(x(i);ξ )(

1+G(x(i);ξ )
)2 , (45)

where G
′
k(x(i);ξ ) =

dG(x(i);ξ )
dξ

. By solving dC
dξ

= 0, we will get the CVMEs.
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5. SPECIAL MEMBER OF NCS-G FD

Generalization of several distributions can be made using the NCS-G FD. Here we have considered the
inverse Weibull (IW) distribution as a parent distribution to introduce a special member.

5.1. A New Class Sin Inverse Weibull (NCS-IW) Distribution

The CDF and PDF of the IW distribution are respectively given by

G(x;δ ,θ ) = exp(−θx−δ );x > 0,δ > 0,θ > 0

and
g(x;δ ,θ ) = δθx−(δ+1)exp(−θx−δ ).

The CDF and PDF of the NCS-IW distribution are given by

F(x;θ ,δ ) = sin

[
π

exp(−θx−δ )

1+ exp(−θx−δ )

]
;x > 0. (46)

f (x;θ ,δ ) = πθδx−(δ+1) cos

[
π

exp(−θx−δ )

1+ exp(−θx−δ )

]
exp(−θx−δ )(

1+ exp(−θx−δ )
)2 ;x > 0. (47)

The reliability and hazard functions, respectively, are given by

R(x;θ ,δ ) = 1− sin

[
π

exp(−θx−δ )

1+ exp(−θx−δ )

]
;x > 0. (48)

and

h(x;θ ,δ ) = πθδx−(δ+1) exp(−θx−δ )(
1+ exp(−θx−δ )

)2 cos

[
π

exp(−θx−δ )

1+ exp(−θx−δ )

]
[

1− sin

(
π

exp(−θx−δ )

1+ exp(−θx−δ )

)]−1

;x > 0.

(49)

The possible shapes of PDF and HRF of NCS-IW distribution are shown in Figure (1) and it is observed that
HRF can have reverse-j, or inverted bathtub or increasing hazard function. The quantile function and random
deviate generation for the NCS-IW distribution, respectively, are given by

QX (p) =
[
− 1

θ
log
(

sin−1 p
π − sin−1 p

)]− 1
δ

. (50)

and

x =
[
− 1

θ
log
(

sin−1 u
π − sin−1 u

)]− 1
δ

. (51)

5.2. Linear Expansion

Using Equation (14), Equation (47) can be expressed in linear form as

f (x;ξ ) =
∞

∑
i=0

∞

∑
j=0

Bi jx−(δ+1) exp
{
−(2i+ j+ 1)θx−δ

}
(52)

where Bi j =
(−1)2iθδπ2i+1

(2i)!

(
2(i−1)

j

)
.
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Figure 1: Shapes of PDF and HRF of NCS-IW distribution

5.3. Moments

Using the PDF defined in Equation (52), the rth order non-central moment (µ
′
r) for the NCS-IW distribution

can be presented as

µ
′
r =

∞

∑
i=0

∞

∑
j=0

B∗
i j

Γ
(

δ−r
δ

)
[θ{(2i+ j)+ 1}]

δ−r
δ

; ∀δ > r, (53)

where B∗
i j =

(−1)2iθπ2i+1

(2i)!

(
2(i−1)

j

)
and Γ(.) is the gamma function.

5.4. Moment Generating Function (MGF)

The MGF (MX (t)) for the NCS-IW distribution is

MX (t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tkB∗
i j

k!

Γ
(

δ−r
δ

)
[θ{(2i+ j)+ 1}]

δ−r
δ

; ∀δ > r. (54)

5.5. Incomplete moment

The incomplete moment for NCS-IW distribution is presented as

Mr(y) =
∞

∑
i=0

∞

∑
j=0

Bi j

y∫
0

xr−(δ+1) exp
{
−(2i+ j+ 1)θx−δ

}
dx

=
1
δ

∞

∑
i=0

∞

∑
j=0

Bi j

γ

(
δ−r

δ
, (2i+ j+ 1)θy−δ

)
{(2i+ j+ 1)θ}

δ−r
δ

,

(55)

where γ(.) incomplete gamma function.
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5.6. Mean Residual Life

The MRL for NCS-IW distribution is given by

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

Bi j

y∫
0

x−δ exp
{
−(2i+ j+ 1)θx−δ

}
dx

− y

=
1

F(y)

µ − 1
δ

∞

∑
i=0

∞

∑
j=0

Bi j

γ

(
δ−1

δ
, (2i+ j+ 1)θy−δ

)
{(2i+ j+ 1)θ}

δ−1
δ

− y,

(56)

where γ(.) is the incomplete gamma function. Using the Equations (9 and 10) for NCS-IW distribution, we
have plotted the graphs of skewness and kurtosis in Figure (2) for different values of the parameters δ and θ .
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Figure 2: Skewness and Kurtosis plots of NCS-IW distribution.

5.7. Entropy

i) Renyi’s Entropy
Renyi’s entropy for NCS-IW distribution is given by

Rρ (X) =
1

1−ρ
log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

Zkrm (δθ )ρ

∞∫
0

x−ρ(δ+1) exp(−(r+m+ρ)θx−δ )dx


=

1
1−ρ

log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

Zkrm
(δθ )ρ

δ

Γ
{

(ρ−1)(δ+1)
δ

+ 1
}

{(r+m+ρ)θ}
(ρ−1)(δ+1)

δ
+1

 ,

(57)

where Zkrm = (−1)m+k−r
πρ ak

(
k
r

)( 1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
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The q-Entropy for NCS-IW distribution is given by

H(ρ) =
1

1−ρ
log

1−Zkrm (δθ )ρ

∞∫
0

x−ρ(δ+1) exp(−(r+m+ρ)θx−δ )dx


=

1
1−ρ

log

1−Zkrm
(δθ )ρ

δ

Γ
{

(ρ−1)(δ+1)
δ

+ 1
}

{(r+m+ρ)θ}
(ρ−1)(δ+1)

δ
+1

 (58)

where ρ > 0 and ρ ̸= 1. where Zkrm = (−1)m+k−r
πρ ak

(
k
r

)( 1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

iii) Shannon’s Entropy
The Shannon entropy for the NCS-IW distribution is given by

ηX = E

[
− log

{
∞

∑
i=0

∞

∑
j=0

π2i+1(−1)2i

(2i)!

(
2(i−1)

j

)
x−(δ+1) exp(−θ (2i+ j+ 1)x−δ )

}]
. (59)

5.8. Inequality Measure

i) Lorentz Curve
The Lorenz curve for NCS-IW distribution is given by

LF(y) =
δθ

µ

∞

∑
i=0

∞

∑
j=0

Bi j

y∫
0

x−δ exp(−θ (2i+ j+ 1)x−δ )dx

=
θ

µ

∞

∑
i=0

∞

∑
j=0

Bi j

γ

(
δ−1

δ
, (2i+ j+ 1)θy−δ

)
{(2i+ j+ 1)θ}

δ−1
δ

.

(60)

where γ(.) is the incomplete gamma function.
ii) Boneferroni Curve
The Boneferroni curve for the NCS-IW distribution is given by

BF(y) =
1

µF(y)

∞

∑
i=0

∞

∑
j=0

Bi j

y∫
0

x−δ exp(−θ (2i+ j+ 1)x−δ )dx

=
1

δ µF(y)

∞

∑
i=0

∞

∑
j=0

Bi j

γ

(
δ−1

δ
, (2i+ j+ 1)θy−δ

)
{(2i+ j+ 1)θ}

δ−1
δ

.

(61)

where γ(.) is the incomplete gamma function.

5.9. Estimation MLE for NCS-IW distribution

We now investigate the MLE for estimating the parameters of the NCS-IW model. As a result, we intend
to compute MLEs for the parameters δ and θ . Let X = (x1, ...,xn)T be a vector of size n of independent
random variables from the NCS-IW distribution. Then, the log-likelihood is given by

l(x;δ ,θ ) = n log(πθδ )−(δ +1)
n

∑
i=1

logxi+
n

∑
i=1

logcos

[
π

exp(−θx−δ

i )

1+ exp(−θx−δ

i )

]
−2

n

∑
i=1

log
(

1+ exp(−θx−δ

i )
)
−θ

n

∑
i=1

x−δ

i

(62)
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Partially differentiating the Equation (62) with respect to δ and θ gives the score function’s components of

V (u) =
(

∂ l
∂δ

, ∂ l
∂θ

)T
as,

∂ l
∂δ

=
n
δ
−

n

∑
i=1

logxi +πθ

n

∑
i=1

x−δ

i log(xi)exp(−θx−δ

i )(
1+ exp(−θx−δ

i )
)2 tan

[
π

exp(−θx−δ

i )

1+ exp(−θx−δ

i )

]

+ 2θ

n

∑
i=1

x−δ

i log(xi)exp(−θx−δ

i )(
1+ exp(−θx−δ

i )
) +θ

n

∑
i=1

x−δ

i log(xi)

(63)

and

∂ l
∂θ

=
n
θ
−π

n

∑
i=1

x−δ

i exp(−θx−δ

i )(
1+ exp(−θx−δ

i )
)2 tan

[
π

exp(−θx−δ

i )

1+ exp(−θx−δ

i )

]
−2

n

∑
i=1

x−δ

i exp(−θx−δ

i )(
1+ exp(−θx−δ

i )
) −

n

∑
i=1

x−δ

i

(64)
The MLEs of δ and θ are obtained by maximizing l(x;δ ,θ ) in δ and θ , which can be done by solving
simultaneously the equations ∂ l

∂δ
= 0 and ∂ l

∂θ
= 0.

5.10. Simulation

Using the maxLik R package introduced by Henningsen and Toomet [10], we generated samples from the
quantile function defined in Equation (50) for various parameter combinations of the NCS-IW distribution
and calculated the MLEs for each sample using the maxLik() function with the BFGS algorithm. This
allows us to test parameter estimation problems such as the sharpness or flatness of the likelihood function,
as well as estimate the size and direction (underestimate or overestimate) of the MLEs bias. Sample sizes of
20, 30, 40, 50, and 75 are used in the simulation. The procedure is repeated 10,000 times, and the average
estimate value, bias, and mean square error (MSE) are calculated. The experiment is summarized in Table 1,
which shows the average estimate, bias, and MSEs for each parameter. As can be seen, the MLE method
consistently overestimates the parameter δ and underestimates the parameter θ , but as sample size increases,
MLEs gradually approach the actual values of δ and θ .

Table 1: The estimated values, Biases, and MSEs based on 10000 simulations of NCS-IW distribution.

Actual values MLEs Bias MSEs
n delta theta δ̂ θ̂ δ̂ θ̂ δ̂ θ̂

20
0.25 0.50 0.268 0.4796 0.018 -0.0204 0.0029 0.0219
0.50 0.75 0.5372 0.7263 0.0372 -0.0237 0.0115 0.0318
0.75 1.00 0.805 0.9816 0.055 -0.0184 0.026 0.0415

30
0.25 0.50 0.2621 0.4869 0.0121 -0.0131 0.0016 0.0142
0.50 0.75 0.5241 0.7343 0.0241 -0.0157 0.0066 0.0215
0.75 1.00 0.7874 0.9848 0.0374 -0.0152 0.0154 0.0277

40
0.25 0.50 0.2593 0.4889 0.0093 -0.0111 0.0012 0.0109
0.50 0.75 0.5175 0.7377 0.0175 -0.0123 0.0046 0.0157
0.75 11.00 0.7768 0.9911 0.0268 -0.0089 0.0103 0.0201

50
0.25 0.50 0.257 0.4919 0.007 -0.0081 0.0009 0.0087
0.50 0.75 0.5146 0.7398 0.0146 -0.0102 0.0037 0.0129
0.75 1.00 0.7696 0.992 0.0196 -0.008 0.0078 0.0159

75
0.25 0.50 0.2546 0.4943 0.0046 -0.0057 0.0006 0.0059
0.50 0.75 0.5089 0.7444 0.0089 -0.0056 0.0022 0.0084
0.75 1.00 0.7646 0.994 0.0146 -0.006 0.0052 0.0105
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5.11. Application

Employing two real data sets, we exhibit the application of the NCS-IW distribution in this section. The data
sets employed for the application of the suggested distribution are given as follows
i) Data set
Data set 1 (cancer data):
The data set contains information on the survival times of 44 patients. These patients who received radiother-
apy have head and neck cancer, and this data set was reported by Efron [8].
"12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92,
94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469,
519, 633, 725, 817, 1776".
Data set 2 (relief time data):
The real data set is considered from Clark and Gross [7], which provides the relief times of 20 patients
receiving an analgesic. The data are:
"1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0".
ii) Model Analysis
We calculate some well-known goodness-of-fit statistics to analyze data sets 1 and 2 and the fitted models are
evaluated using the log-likelihood value (-2logL), Akaike information criterion (AIC), Hannan-Quinn infor-
mation criterion (HQIC), Anderson-Darling (AD), Kolmogrov-Smirnov (KS) with p-values, and Cram’er-von
Mises (CVM) for more detail (see Chen and Balakrishnan [5]). All the essential computations are carried
out in R-software. For the comparison of fitting capability, we have selected some models such as inverse
Weibull (IW), transformed sine Weibull (TSW) Sakthivel and Rajkumar [23], arctan generalized exponential
(AGE) Chaudhary et al. [3], arctan Lomax (ALomx) Chaudhary and Kumar [4], arcsine exponential (ASE)
Rahman [21], and arcsine exponentiated Weibull (ASEW) He et al. [11]. The PDFs of candidate models are
as follows

fIW (x;δ ,θ ) = δθx−δ−1e−θx−δ

,x,δ ,θ > 0.

fT SW (x;α ,β ,λ ) =
π

2
αβxβ−1e−αxβ

[
πλ

2

(
1− e−αxβ

)
cos
(

π

2
e−αxβ

)
− (1−λ ) sin

(
π

2
e−αxβ

)]
,x,α ,β ,λ > 0.

fAGE (x;α ,β ,λ ) =
αβλe−λx

(
1− e−λx

)β−1

arc tan (α)

[
1+

{
α

(
1−
(
1− e−λx

)β
)}2

] ;x,α ,β ,λ > 0.

fALomx (x;α ,β ,λ ) =
αβλ

arc tan (α)

(1+βx)−λ−1[
1+

{
α (1+βx)−λ

}2
] ;x,α ,β ,λ > 0.

fASE (x;α) =

√
e−x/α

πα

√
1− e−x/α

;x,α > 0.

fASEW (x;α ,β ,λ ) =
2
π

αβλxα−1e−λxα

(
1− e−λxα

)β−1

√
1−
(
1− e−λxα

)2β

;x,α ,β ,λ > 0.

In Tables 2 and 3, we have presented the estimated values of the parameters and their associated standard
error (SE in parentheses) of the models under study using the MLE method for cancer and relief time
data. Similarly, in Tables 4 and 5, we have presented the model selection and goodness of fit statistics like
log-likelihood, HQIC, AIC, KS, AD, and CVM for both data sets. It has been observed that the suggested
model has the least statistics as compared to IW, AGE, ALomx, ASE, ASEW, and TSW. Hence NCS-IW is
more flexible (even four trigonometric distributions having three parameters) and provides a good fit. Also,
we have displayed the graphical illustrations of the fitted models in Figures 5 and 6. These figures also
verified that the NCS-IW model can perform well as compared to candidate models
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Figure 3: KS and P-P plots (data-I).
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Figure 4: KS and P-P plots (data-II).

Table 2: MLEs with SE (in parentheses) (data-I).

Distribution Parameter(SE) Parameter(SE) Parameter(SE)
NCS-IW(δ ,θ ) 0.6317(0.0508) 32.4048(6.9827) –
IW(δ ,θ ) 0.9985(0.0393) 75.557(4.4651) –
AGE(α ,β ,λ ) 0.0179(0.5939) 1.0688(0.2216) 0.0047(9.00E-04)
ALomx(α ,β ,λ ) 27.525(5.8997) 0.0640(0.0335) 1.5273(0.2833)
ASE(α) 341.8104(4.1943) – –
ASEW(α ,β ,λ ) 0.4578(0.0133) 13.1876(4.5521) 0.4031(0.0919)
TSW(α ,β ,λ ) 0.0039(0.0025) 0.9742(0.1073) 0.1327(0.1312)
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Table 3: MLEs with SE (in parentheses) (data-II).

Distribution Parameter(SE) Parameter(SE) Parameter(SE)
NCS-IW(δ ,θ ) 2.3934(0.4249) 6.0185(1.3910) –
IW(δ ,θ ) 4.0175(0.706) 6.0224(2.0083) –
AGE(α ,β ,λ ) 29.0366(6.6483) 2.9010(3.1180) 2.5293(0.567)
ALomx(α ,β ,λ ) 187.9197(5.1477) 0.2891(0.3043) 12.8568(11.0058)
ASE(α) 127.8946(4.8432) – –
ASEW(α ,β ,λ ) 1.0488(0.1284) 104.561(19.0921) 3.1656(0.1303)
TSW(α ,β ,λ ) 0.0811(0.0398) 2.9331(0.4532) 0.1297(0.1388)

Table 4: Some selection criteria and goodness-of-fit statistics (data-I).

Distribution -2logL AIC HQIC KS(p-value) CVM(p-value) AD(p-value)
NCS-IW 556.1646 560.1646 561.4879 0.0706(0.9698) 0.0302(0.9768) 0.2106(0.9873)
IW 559.1617 563.1617 564.4851 0.0916(0.8218) 0.0806(0.6906) 0.5084(0.7373)
AGE 563.9111 569.9111 571.8961 0.1496(0.2518) 0.1963(0.2753) 1.0219(0.3455)
ALomx 556.8248 562.8248 564.8098 0.0532(0.9990) 0.0142(0.9998) 0.1482(0.9988)
ASE 587.1019 589.1019 589.7636 0.2771(0.0018) 1.0569(0.0017) 5.3298(0.0020)
ASEW 554.7389 560.7389 562.7239 0.0634(0.9896) 0.0214(0.9959) 0.1351(0.9994)
TSW 561.8178 567.8178 569.8028 0.1126(0.5930) 0.1014(0.5799) 0.6674(0.5857)

Table 5: Some selection criteria and goodness-of-fit statistics (data-I).

Distribution -2logL AIC HQIC KS(p-value) CVM(p-value) AD(p-value)
NCS-IW 31.0171 35.0171 35.4059 0.0975(0.9913) 0.0254(0.9906) 0.1594(0.9979)
IW 30.8174 34.8174 35.2062 0.1020(0.9854) 0.0266(0.988) 0.1545(0.9984)
AGE 36.8149 42.8149 43.398 0.1193(0.9385) 0.0577(0.8338) 0.5597(0.6847)
ALomx 35.4117 41.4117 41.9949 0.1136(0.9587) 0.0565(0.8416) 0.4783(0.7670)
ASE 154.7472 156.7472 156.9416 0.8863(0.0000) 5.1247(0.0000) 31.4397(0.0000)
ASEW 31.1885 37.1885 37.7716 0.1170(0.9470) 0.0363(0.9551) 0.2096(0.9877)
TSW 39.7066 45.7066 46.2898 0.1694(0.6147) 0.1415(0.4194) 0.8932(0.4170)
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Figure 5: Estimated PDF (left) and empirical vs estimated CDF (right) (data-I).
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Figure 6: Estimated PDF (left) and empirical vs estimated CDF (right) (data-II).

6. CONCLUSION

Based on the ratio of CDF G(x) and 1+G(x) of baseline distribution, we developed the new trigonometric
family of distributions by transforming the sine function and we named it the new class sin-G family of
distributions. General properties of the suggested family of distributions are provided. Using Inverse Weibull
distribution as a baseline distribution, we have introduced a member of the suggested family having reverse-j
or increasing or inverted bathtub-shaped hazard function. Some statistical characteristics of this NCS-IW
distribution are explored. The associated parameters of the new distribution are estimated through the MLE
method. To assess the estimation procedure, we conducted a Monte Carlo simulation and found that even
for small samples, biases and mean square errors decreased as the size of the sample increased. Two real
medical data sets are considered for the application of the NCS-IW distribution. Using some model selection
criteria and goodness of fit test statistics, we empirically proved that the suggested model performs better
than six other existing models (most of which have more parameters). Hence, we expect that the suggested
family and its member distribution can be used in broader areas like medical science, reliability engineering,
survival analysis, etc., and one can generate a new model using this family of distributions in the future.

REFERENCES

[1] Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous
distributions. Metron, 71(1), 63-79.

[2] Balakrishnan, N., & Cohen, A. C. (1991). Order statistics & inference: estimation methods. Academic
Press, London.

[3] Chaudhary, A. K., Sapkota, L. P. & Kumar, V. (2021). Some properties and applications of arctan gen-
eralized exponential distribution. International Journal of Innovative Research in Science, Engineering
and Technology (IJIRSET), 10(1), 456-468.

[4] Chaudhary, A. K., & Kumar, V. (2021). The ArcTan Lomax distribution with properties and applications.
International Journal of Scientific Research in Science, Engineering and Technology, 4099, 117-125.

[5] Chen, G., & Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of
Quality Technology, 27(2), 154-161.

[6] Chesneau, C., & Jamal, F. (2020). The sine Kumaraswamy-G family of distributions. Journal of
Mathematical Extension, 15.

[7] Clark, V. A., & Gross, A. J. (1975). Survival distributions: reliability applications in the biomedical
sciences. New York, John Wiley Sons.

  RT&A, No.3 (74)  
Volume 18, September 2023  

749



Laxmi Prasad Sapkota, Pankaj Kumar and Vijay Kumar
A NEW CLASS OF SIN-G FAMILY OF DISTRIBUTIONS

[8] Efron, B. (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the
American Statistical Association, 83(402), 414-425.

[9] Gomez-Deniz, E., & Calderin-Ojeda, E. (2015). Modelling insurance data with the Pareto ArcTan
distribution. ASTIN Bulletin: The Journal of the IAA, 45(3), 639-660.

[10] Henningsen, A., & Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R.
Computational Statistics, 26, 443-458.

[11] He, W., Ahmad, Z., Afify, A. Z., & Goual, H. (2020). The arcsine exponentiated-X family: validation
and insurance application. Complexity, 1-18.

[12] Isa, A. M., Ali, B. A., & Zannah, U. (2022). Sine Burr XII Distribution: Properties and Application to
Real Data Sets. AJBAR, 1(3), 48-58.

[13] Kenney, J. F. & Keeping, E. S. (1962). Mathematics of Statistics, 3 edn, Chapman and Hall Ltd, New
Jersey.

[14] Kharazmi, O. & Saadatinik, A. (2016). Hyperbolic cosine-F families of distributions with an application
to exponential distribution. Gazi University Journal of Science, 29(4), 811-829.

[15] Kumar, D., Singh, U., & Singh, S. K. (2015). A new distribution using sine function-its application to
bladder cancer patients data. Journal of Statistics Applications & Probability, 4(3), 417.

[16] Mahmood, Z., Chesneau, C., & Tahir, M. H. (2019). A new sine-G family of distributions: properties
and applications. Bull. Comput. Appl. Math., 7(1), 53-81.

[17] Marshall, A. W., & Olkin, I. (2007). Life distributions (Vol. 13). Springer, New York.
[18] Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society:

Series D (The Statistician), 37(1), 25-32.
[19] Muhammad, M., Alshanbari, H. M., Alanzi, A. R., Liu, L., Sami, W., Chesneau, C., & Jamal, F. (2021).

A new generator of probability models: the exponentiated sine-G family for lifetime studies. Entropy,
23(11), 1394.

[20] Renyi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics (Vol. 4, pp. 547-562). University of California Press.

[21] Rahman, M. M. (2021). Arcsine-G Family of Distributions. J. Stat. Appl. Pro. Lett. 8(3), 169-179.
[22] Sakthivel, K. M. and Rajkumar, J. (2020). Hyperbolic cosine Rayleigh distribution and its application

to breaking stress of carbon fibers. Journal of Indian Society and Probability Statistics, 21(2), 471-485.
[23] Sakthivel, K. M., & Rajkumar, J. (2021). Transmuted sine-G family of distributions: theory and

applications. Statistics and Applications,(Accepted: 10 August 2021).
[24] Souza, L. (2015). New trigonometric classes of probabilistic distributions (Doctoral dissertation,

Thesis, Universidade Federal Rural de Pernambuco).
[25] Souza, L., Junior, W. R. D. O., de Brito, C. C. R., Ferreira, T. A., & Soares, L. G. (2019a). General

properties for the Cos-G class of distributions with applications. Eurasian Bulletin of Mathematics
(ISSN: 2687-5632), 63-79.

[26] Souza, L., Junior, W., De Brito, C., Chesneau, C., Ferreira, T., & Soares, L. (2019b). On the Sin-G class
of distributions: theory, model and application. Journal of Mathematical Modeling, 7(3), 357-379.

[27] Swain, J. J., Venkatraman, S., & Wilson, J. R. (1988). Least-squares estimation of distribution functions
in Johnson’s translation system. Journal of Statistical Computation and Simulation, 29(4), 271-297.

  RT&A, No.3 (74)  
Volume 18, September 2023  

750



 
Mykhailo Katsman, Viacheslav Matsiuk, Victor Myronenko  
STUDY OF THE FUNCTIONING OF A MULTI-COMPONENT … 

RT&A, No 3 (74) 
Volume 18, September 2023  

 

 

STUDY OF THE FUNCTIONING OF A MULTI-

COMPONENT AND MULTI-PHASE QUEUING SYSTEM 

ON THE EXAMPLE OF A VEHICLE REPAIR ENTERPRISE 

M.D. Katsman 

• 
The Joint-Stock Company of Railway Transport of Ukraine "Ukrzaliznytsia", Kyiv, Ukraine 

mdkatsman@gmail.com 

V.I. Matsiuk 

• 
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine 

vimatsiuk@gmail.com 

V.K. Myronenko 

• 
State University of Infrastructure And Technologies, Kyiv, Ukraine 

pupil7591@gmail.com 

 

Abstract 

 

The purpose of the work is to build, on the basis of multi-component and multi-phase models of queuing 

systems (QS), mathematical models of maintenance and repair of vehicles by repair enterprises to increase 

the efficiency of their use. Results. The article considers multi-component and multi-stage mathematical 

models of QSs with the distribution of the arrival flow simultaneously between the system components, 

which consist of a certain number of service channels and waiting places in the queue. The same service 

channels can have different performance depending on the type of customers which they serve. Customers 

go through several stages of service and waiting. Considered are service of customers without a lack of 

time to stay in the service channel and waiting and with a lack of such time. The service process in the QS 

of each component consists of several (𝑘𝑒) stages with the corresponding duration, the full-service period 

will be equal to the sum of such time intervals. Stage durations have certain probability distributions 

with appropriate parameters, then the total duration of the service process will have a generalized Erlang 

distribution with parameters of probability distributions of stages of order 𝑘𝑒 . The number of components 

and their parameters correspond to the similar characteristics of the production divisions of the repair 

enterprise. The study of the effectiveness of the repair enterprise operation as a multi-component and 

multi-stage QS consists in determining the probability of service and the probability of failure of QS 

components and the system as a whole, the number of service channels, the number of customers in 

components, the number of customers in component queues, the duration of maintenance of customers in 

components and the system, the duration of being customers in queues of components and QSs, duration 

of stay of requirements in QSs and duration of customer waiting in QS queues. The model is 

implemented using Any Logic University Researcher. The AnyLogic University Researcher development 

environment allowed to combine the principles of system dynamics with the paradigms of agent and 

discrete-event modeling. In addition, thanks to the built-in Java SE compiler, a library of ready-made 

solutions is available, including generators of random variables, which significantly expands the 

possibilities of developing and implementing experiments. In particular, experiments on optimization 

(relative to a defined criterion), sensitivity of the model, stability of the model, etc. are available.  
 

Keywords: vehicle repair enterprise, maintenance and repair, queuing theory 

application, multi-component and multi-phase queuing system, simulation, modeling, 

reliability 
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I. Introduction 
 

The problem of ensuring the resource and reliability of vehicles is part of the general problem of 

transport safety and the efficiency of the use of such vehicles. Ensuring high reliability primarily 

depends on the effectiveness of the maintenance and repair strategy and the quality of work. 

Maintenance and repair of railway, including special rolling stock, is carried out in accordance 

with the requirements of the Regulations [1] at repair plants, depots, track engineering stations, 

workshops and maintenance points. 

Requirements for the condition of rolling stock, the procedure for its maintenance and repair, 

sending it to repair bodies, as well as technical instructions and typical technological processes for 

maintenance and repair of rolling stock are determined by Ukrzaliznytsia [1]. 

The aircraft maintenance system is designed to maintain and restore the airworthiness and 

serviceability of aircraft and prepare them for flight. Technical operation is carried out by 

operators, aviation and technical bases, maintenance and repair enterprises, repair enterprises, 

aviation and technical services of airports [2]. 

Aircraft maintenance is carried out during major and other repairs (or during equivalent 

works), inspections, modifications, upgrade, elimination of defects, which are carried out by 

aircraft repair enterprises both individually and collectively in the relevant workshops, production 

divisions and areas, laboratories, stands, etc. [3]. 

  Maintenance and repair of motor vehicles and their components is performed in order to 

maintain them in proper condition and ensure the technical characteristics established by the 

manufacturer for use, storage or maintenance during the period of operation [4]. Requirements for 

maintenance and repair of motor vehicles and the services provided by them (work to be 

performed) are established by technical regulations. The work is carried out in workshops of motor 

vehicle enterprises and car repair enterprises. 

The work [5] is devoted to the creation and introduction into the practice of air transport of 

information and advisory systems for the maintenance of passenger aircraft based on modern 

computer technologies and mathematical methods of information processing. 

In [6], the structure of the methodical apparatus for ensuring a given level of serviceability of 

on-board equipment products, in particular optoelectronic sighting systems of military aircraft of 

the Air Force of Ukraine, is proposed. 

Methodical approaches to the structural and parametric determination of general 

requirements for ground flight maintenance facilities are considered in [7], which can also be used 

to develop a methodology for conducting tests and assessing the quality of modern weapons 

systems and military equipment at all stages of the life cycle. 

Based on the analysis of the existing methods of calculating the durability indicators of the 

radio-electronic system of the aircraft, the factors affecting its reliability were identified in [8], and 

measures were also proposed to improve the existing scientific and methodological apparatus for 

calculating such indicators. 

Works [9] and [10] are devoted to the analysis of the causes of failure situations at the airport. 

The aircraft maintenance system was analyzed, it was shown that ensuring uninterrupted 

operation of the airport, execution of the daily flight plan in extraordinary situations is possible 

only by introducing into the control circuit of the aircraft ground handling system an intelligent 

decision support system for dispatchers, which will take into account the positive experience of 

their actions in typical, emergency and failure situations. This will allow, in particular, to reduce 

the time to get out of a malfunctioning situation and to optimize the operational planning of the 

ground maintenance of aircraft, considering the available equipment and special technical means. 

In work [11], organizational measures are given with the help of which it is possible to 
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minimize the lack of transport aviation during the transportation of general and oversized cargo. 

Data on incidents related to aircraft ground handling are given, the causes of the events are 

indicated. The main ways of eliminating the problems of standardization of airfield technical 

support in the conditions of interaction with NATO and in the processes of international 

integration are defined. 

The work [12] is devoted to the solution of the problem of minimizing the risks of import 

substitution in the process of factory repair of military aviation equipment in the conditions of a 

special period, the issue of providing post-repair military aviation equipment by adjusting the 

production of necessary component parts by domestic enterprises in the process of import 

substitution is analyzed. 

The work [13] presents the results of the quality of repair of aircraft equipment at aircraft 

repair enterprises. A significant proportion of the failures detected during the operation of aviation 

equipment after major (medium) repairs are the result of manufacturing defects of components 

(parts) that were installed on aircraft. Technological methods for ensuring sufficient repair quality 

and significantly reducing the risks of production defects are proposed. 

The work [14] is devoted to the problem of mathematical modeling of the processes of 

technical operation of military aircraft. The results of the analysis show that the most acceptable 

modeling method in terms of the compliance of the models with the proposed requirements is the 

simulation modeling method, and the more accepted class for creating a stochastic model of 

aircraft maintenance and repair processes is the class of semi-Markov models. 

In work [15], a three-dimensional model of an aircraft skin element with riveted seams was 

built using the Sold Works software, wind load simulation was carried out in the ANSYS software 

package, which allowed to determine the stress-strain state of the aircraft skin elements in the 

presence of multifocal damage to the riveted seams. 

Modern methods and approaches to modeling technological systems are considered in [16]. 

Basic definitions and concepts are given. New approaches to solving problems that arise during 

the development of models of mechanisms, systems and processes of machine-building production 

are proposed. 

In work [17], it is proposed to consider the production of car service enterprises as an open 

multi-channel QS, in which random processes occur due to the combined action of random 

variables. As a result of the experimental study, information was obtained about the indicators 

characterizing maintenance and repair, as well as affecting the change in the parameters of these 

processes. The developed model makes it possible to take into account the specifics of managing 

car maintenance stations. 

The paper [18] considered a model for assessing the technical condition of radio-electronic 

elements of water transport vehicles using control and diagnostic equipment as a QS with a limited 

number of channels and a storage of customers to be served. On the basis of various optimization 

criteria, it is possible to establish a rational system for assessing the technical condition of such 

elements, to determine the expediency (rational, optimal) of developing a number of different 

types of control and diagnostic equipment and the effectiveness of new assessment methods. 

The work [19] is devoted to the development of a simulation model of the influence of an 

accurate assessment of the readiness factor of mobile control and diagnostic complexes on the 

reliability of control of radio-electronic systems of marine transport. 

In the paper [20], a new model of the task of managing the processes of diagnosis and 

monitoring of automation tools is proposed for the objects of rail-water transport connection, 

compiled on the basis of the experimental research results and mathematical description using 

Markov chains with an informative parameter in the form of damage intensity, aimed at increasing 

the efficiency of forecasting the technical condition of automation equipment. 

The work [21] describes workshops for repairing locomotives in the form of multi-channel QS 
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with a limited queue. A simulation model of such a workshop as a QS was developed, which 

allowed rational use of equipment, labor force, as well as distribution of repair work time. 

In work [22], the issue of modeling the processes of maintenance and repair of technical 

systems of a distributed information system is considered. The model is based on a joint 

presentation of the serviced system and its technical operation system in the form of a closed non-

homogeneous QS consisting of two types of QS. The QS of the first type simulates the functioning 

processes of repair bodies to meet the received requirements. 

In work [23], a study of the actions of emergency units of railway transport as processes of 

functioning of mass service systems was carried out. The authors established quantitative 

relationships between the intensity of the influence of dangerous factors of a railway emergency 

situation, the time of arrival, deployment and productivity of actions of emergency aftermath 

liquidation units and the effectiveness of liquidation works due to the implementation of the 

principles of network-centric management of complex dynamic hierarchical transport systems. 

Thus, to improve the management processes of material, human, financial and informational 

resources during the maintenance and repair of aviation equipment, in particular on-board power 

supply systems, a wide range of operations research methods, the theory of mass service systems 

and simulation modeling are currently used. 

 

II. Methods 
 

The on-hand practical experience of the organization of maintenance and repair of vehicle 

equipment indicates that certain types of their technical systems that require various types of 

repair work, modifications, upgrade, inspections, elimination of defects, etc. are sent to specific 

production divisions of the repair enterprise, which, according to their purpose, carry out the 

necessary types of work according to the specified technologies. 

To simulate the processes of maintenance and repair of vehicle, which are carried out by the 

production divisions of the repair enterprise, it is advisable to use multi-component and multi-

phase QSs, which can be of both Markov and non-Markov types, capable of serving the arriving 

flows of non-priority, in general, heterogeneous (mixed) customers. At the same time, the system 

can have an arbitrary number of common service channels of the same type, and each component 

can also have an arbitrary number of places in the queue. 

The same service channels can have different performance depending on the type of 

requirements for which they are involved: when the j-component of the system receives uniform 

requirements with the rate λj determined by the overall rate λ of the source, in the general case, of 

mixed customers. The magnitude of the source of mixed customers entering the system has an 

intensity (arrival rate) of 
 

𝜆 = ∑ 𝜆𝑗,                   𝑗 = 1, 𝐿,

𝐿

𝑗=1

  

 

where L is the number of components in the QS. 

The service process in each component of the QS consists of several stages (phases) with the 

corresponding duration Tі, then the full-service period Т𝑠 is equal to  
 

Т𝑠 = ∑ 𝑇𝑖

К𝑝

𝑖=1

 

 

where 𝐾𝑝 is the number of such phases. 
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All Ті durations have certain probability distributions with the appropriate parameters, then 

Т𝑠 will have a generalized Erlang distribution with the parameters of the probability distributions 

of order 𝐾𝑝. 

The number of components and their parameters correspond to similar characteristics of the 

repair enterprise. 

The study of the operation effectiveness of a vehicle repair enterprise as a multi-component 

QS will consist in determining the probability and time characteristics of each component and the 

QS as a whole. 

Let's consider several examples. 

Example 1. Two-component QS with M/E4/2/3 in the first component and M/E3/1/2 in the 

second component without restrictions. 

The graph of states of such a QS is presented in fig. 1. 
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Figure 1: State graph of QS of M/E4/2/3 type in the first component and M/E3/1/2 type in the second component 

without constraints  

 

There are no constraints in the QS because customers do not leave the service channel during 

service and the queue during the service waiting period due to the lack of time for them to be in 

service and in the queue. 

Using the well-known algorithm for solving the Kolmogorov equations, we obtain the 

probabilities of the system statesР1і
′  ,  Р2і

′  ,  Р3і
′  ,  Р4і

′    Р5і
′   (i =1,4̅̅ ̅̅ ) та  Р1і

′′  ,  Р2і
′′  ,  Р3і

′′   (i =1,3̅̅ ̅̅ ). 

Service in the QS of the first component consists of four phases of duration Т1
′ ,   Т2

′ , Т3
′    and 

Т4
′ , the full-service time Т′𝑠 has a generalized Erlang distribution of the 4th order with a 

mathematical expectation of 1/μ1. 
 

Т′𝑠 = ∑ Т𝑖
′

4

𝑖=1

,  
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where Т𝑖
′   have an exponential distribution with parameter 𝜇′ = 4𝜇1. 

Service in the second component of the QS consists of three phases of durationТ1
′ , Т2

′  and Т3
′ , 

the full-service time Т"𝑠 has a generalized Erlang distribution of the 3rd order with a mathematical 

expectation of 1/μ2. 
 

Т𝑠
" = ∑ 𝑇𝑖

"

3

𝑖=1

, 

 

where 𝑇𝑖
" have an exponential distribution with parameter 𝜇"= 3μ1. 

The QS states of the first component are characterized by the following probabilities [24]: 
 

Рс
′ = ∑ 𝑃𝑐𝑗

′4
𝑗=1 , 𝑐 = 1,5 ; 𝑗 = 1,4, 

 

where: 

Р1
′ = ∑ Р1

′ 𝑗

𝐾𝑝
′

𝑗=1

 
is the probability of one server busy in the QS component (1 customer in 

component 1); 

Р2
′ = ∑ Р2

′ 𝑗

𝐾𝑝
′

𝑗=1

 
is the probability of two servers busy in the QS component (2 customers in 

component 1); 

Р3
′ = ∑ Р3

′ 𝑗

𝐾𝑝
′

𝑗=1

 
is the probability of 3 customers being in the component, of which 2 are 

served, one is in the queue; 

Р4
′ = ∑ Р4

′ 𝑗

𝐾𝑝
′

𝑗=1

 
is the probability of 4 customers being in the component, of which 2 are 

served, 2 are in the queue; 

Р5
′ = ∑ Р5

′ 𝑗

𝐾𝑝
′

𝑗=1

 
is the probability of 5 customers being in the component, of which 2 are 

served, 3 are in the queue. 

 

Similarly, for the QS states of the second component: 
 

Рс
" = ∑ 𝑃𝑐𝑗

"

3

𝑗=1

, 𝑐 = 1,3 ; 𝑗 = 1,3, 

 

where: 

Р1
" = ∑ 𝑃1

"𝑗

𝐾𝑝
"

𝑗=1

 is the probability of one customer being served in the component; 

Р2
" = ∑ 𝑃2

"𝑗

𝐾𝑝
"

𝑗=1

 
is the probability of two customers being in the component, one served, one 

in the queue; 

Р3
" = ∑ 𝑃3

"𝑗

𝐾𝑝
"

𝑗=1

 
is the probability of three customers being in the component, one served, two 

in the queue. 

The number of busy service channels in the component: 
 

𝑘1 = 𝑃1
′ + 2 ∑ 𝑃𝑐

′

5

𝑐=2

4;   ⁄    𝑘2 = ∑ 𝑃𝑐
"

3

𝑐=1

3.⁄  
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Probability of service in the first component: 
 

Р𝑠
′ = 1 − Р𝑙𝑠

′ − ∑ 𝑃𝑐
" = 1 −

(𝑛+𝑚)"

𝑐=1

Р𝑓𝑙
′ − ∑ 𝑃𝑐

" ,

(𝑛+𝑚)"

𝑐=1

   

 

where Р𝑙𝑠
′  is the probability of loss of a customer;  

Р𝑓𝑙
′  is the probability of failure of serving a customer. 

Here, "failure" means the impossibility of servicing a customer (client) in a system component 

(for example, due to insufficient service rate compared to the arrival flow rate). "Loss" means 

leaving the queue for service by a customer (loss of a client by the system) due to the impossibility 

of waiting for service. Example, cars needing gasoline and service arrive to the gas or car service 

station. However, if the station already is being used, fully busy with servicing other cars, these 

potential customers may balk to another service station. 
 

Рс
" = ∑ 𝑃𝑐𝑗

"

𝑘Е
"

𝑗=1

, 𝑐 = 1, (𝑛 + 𝑚) ;    Р𝑓𝑙
′ =  𝑃(𝑛+𝑚)′

′ = ∑ 𝑃𝑐𝑗
′  

(𝑛+𝑚)′

𝑐=2

𝑘′Е;   ⁄  

𝑃′𝑏𝑜 = ∑(𝑑 − 1)𝑃(𝑏−1)𝑗
′

𝑘Е

𝑑=2
𝑗=2

,       𝑏 = 2, (𝑛 + 𝑚)′  

𝑃𝑙𝑠
′ = 𝑃5

′ − ∑ 𝑃𝑏о
′

5

𝑏=5

4⁄ ,  

𝑃20
′ = 𝑃12

′ + 2𝑃13
′ + 3𝑃14

′ ;  𝑃30
′ = 𝑃22

′ + 2𝑃23
′ + 3𝑃24

′ ; 

𝑃40
′ = 𝑃32

′ + 2𝑃33
′ + 3𝑃44

′ ;   𝑃50
′ = 𝑃42

′ + 2𝑃43
′ + 3𝑃44

′  ; 

𝑃1
" = 𝑃11

" + 𝑃12
" + 𝑃13

" ;     𝑃2
" = 𝑃21

" + 𝑃22
" + 𝑃23

" ;    𝑃3
" = 𝑃31

" + 𝑃32
" + 𝑃33

" . 

 

Then  
 

Р𝑠
′ = 1 − Р5

′ + ∑ 𝑃𝑏о
′

5

𝑏=2

4⁄ − ∑ 𝑃𝑐
"

3

𝑖=1

.   𝑃𝑠
" = 1 − 𝑃𝑙𝑠

" − ∑ 𝑃𝑐
′.

5

с=1

 

 

The probability of service in the second component 𝑃𝑠
" is determined considering the fact that 

 

𝑃𝑙𝑠
" = 𝑃𝑓𝑙

" = 𝑃3
" −

𝑃20
" +𝑃30

"

3
 ;    𝑃20

" = 𝑃12
" + 2𝑃13

" ; 𝑃30
" = 𝑃22

" + 2𝑃23
" . 

                                             

Whence 
 

𝑃𝑠
" = 1 − 𝑃3

" +
𝑃20

" + 𝑃30
"

3
− ∑ 𝑃𝑐

′

5

𝑐=1

.   

 

The average number of customers 𝑁
(𝑖)

 in the i-component: 
 

𝑁
(1)

= ∑ 𝑖

(𝑛+𝑚)′

𝑖=1

𝑃𝑖
′/𝑘𝐸

′ = ( 1 ∙ Р1
′ + 2 ⋅ Р2

′ + 3 ⋅ Р3
′ + 4 ⋅ Р4

′ + 5 ⋅ Р5
′ )/4, 

𝑁
(2)

= ∑ 𝑖

(𝑛+𝑚)"

𝑖=1

𝑃𝑖
′/𝑘𝐸

" = ( 1 ∙ Р1
′ + 2 ⋅ Р2

′ + 3 ⋅ Р3
′ /3. 
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The average number of requests 𝑁𝑞

(і)
 that are in the queue and waiting for service in the i-

component: 
 

𝑁𝑞

(1)
= ∑ 𝑞𝑃(𝑛+𝑞)

′

𝑚′

𝑞=1

/𝑘𝐸
′ = (1 ∙ Р3

′ + 2 ⋅ Р4
′ + 3 ⋅ Р5

′ )/4: 

𝑁𝑞

(1)
=   ∑ 𝑞𝑃(𝑛+𝑞)

"

𝑚"

𝑞=1

/𝑘𝐸
" = (1 ∙ Р2

" + 2 ⋅ Р3
" )/3. 

 

Duration of waiting time for the customer in the queue for the i-component equals: 
 

 

𝑊𝑞

(1)
=

𝑁𝑞

(1)

𝜆1

;  𝑊𝑞

(2)
=

𝑁𝑞

(2)

𝜆2

. 

 

Customer service time in the QS: 
 

𝑡s𝑞𝑠 =
𝜆1

𝜆1+𝜆2
𝑡𝑠

(1)
+

𝜆2

𝜆1+𝜆2
𝑡𝑠

(2)
, 

𝑡𝑠
(1)

=
𝑁

(1)

𝜆1
;       𝑡𝑠

(2)
 =

𝑁
(2)

𝜆2
. 

 

Duration of waiting for customers in QS queues: 
 

𝑤𝑤𝑞𝑠 =
𝜆1

𝜆1 + 𝜆2

𝑤𝑞
(1)

+
𝜆2

𝜆1 + 𝜆2

𝑤𝑞
(2)

. 

 

Probability of QS failure: 
 

𝑃𝑓𝑙
𝑞𝑠

=
𝜆1

𝜆1 + 𝜆2

Р𝑓𝑙1
+

𝜆1

𝜆1 + 𝜆2

Р𝑓𝑙2
. 

 

It should be noted that in the L-component QS in a steady mode, the value of the probability 

of customer service in the j-component can be determined as follows [24]: 
 

Р𝑠𝑗
= 1 − Р𝑙𝑠𝑗

− ∑ ( ∑ 𝑃𝑖

𝑛+𝑚

𝑖=1

)

𝜓

,

𝐿

𝜓≠𝑗

 

𝜓 = 1, 𝐿 = 1,2,3 … , 𝑗 … , 𝐿; 

𝑖 = 0, (𝑛 + 𝑚); 

Р𝑆𝑞𝑠
= ∑

𝜆𝑗

𝜆
Р𝑆𝑗

,

𝐿

𝑗=1

 

𝜆 = ∑ 𝜆𝑗 .

𝐿

𝑗=1

 

 

During the maintenance and repair of aircraft, force majeure circumstances may arise, related 

to the time limitations of customer service for maintenance and waiting in the queue, so let's 

consider the following example. 
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Example 2. Two-component QS of M/E4/2/3 type in the first component and of M/E3/1/2 in the 

second component with restrictions on the time spent in the service period β1,2 and waiting γ1,2. 

The graph of the states of this QS coincides with the graph of the states of the QS presented in 

fig. 1. 

At each service stage of the first channel, the service duration has an exponential distribution 

with the parameter μ'+β, in the second service channel 2μ'+2β, in queues 2μ'+2γ1. 

In the second component, the parameter μ"+β2 at the service stages, and μ"+γ2 at the stages of 

waiting in the queue. 

The expressions for the probabilities of the QS states of the first and second components are 

similar to the QS considered above. 

Service probability for the first component [24]: 
 

𝑃𝑆
′ = 1 − 𝑃𝑙𝑠

′ − ∑ 𝑃𝑐
"

3

𝑖=1

, 

𝑃𝑙𝑠
′ = 𝑃𝑓𝑙

′ + 𝑃𝑙𝑣
𝑠

′ +𝑃𝑙𝑣
𝑞

′ , 

 

where 

 𝑃𝑙𝑣
𝑠

′  is the probability of the customer leaving the system in the service channel; 

𝑃𝑙𝑣
𝑞

′  is the probability of the customer leaving the system in the queue. 

 

𝑃𝑓𝑙
′ = 𝑃5

′ − ∑ 𝑃𝑏о
′5

𝑏=1 5⁄ , 

𝑃𝑙𝑣
𝑠

′ =
𝛽1

𝜆1

𝑘1. 

 

The average number of customers in the queue 

 

𝑁𝑞

(1)
= ∑ 𝑞𝑃(𝑛+𝑞)

′

𝑚′

𝑞=1

𝑘𝐸
′⁄ = (1 ∙ 𝑃3

′ + 2 ⋅ 𝑃4
′ + 3 ⋅ 𝑃5

′) 4⁄ . 

 

If β1 = γ1, then 
 

𝑃𝑙𝑣
𝑞

′ =
𝛽1

𝜆1

𝑁𝑞

(1)
 . 

 

Hence 
 

𝑃𝑙𝑠
′ = 𝑃5

′ − ∑ 𝑃𝑏о
′

𝑘𝜖
′

𝑏=2

𝑘𝐸
′⁄ +

𝛽1

𝜆1

𝑘1 +
𝛾1

𝜆1

 𝑁𝑞

(1)
, 

𝑃𝑆
′ = 𝑃𝑙𝑠

′ − ∑ Рс
" .

3

с=1

 

 

The probability of customer service in the second component is 
 

𝑃𝑆
" = 1 − 𝑃𝑙𝑠

" − ∑ Рс
′ ,

5

с=1

 

 

where 
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𝑃𝑙𝑠
” = 𝑃𝑓𝑙

” + 𝑃𝑙𝑣
𝑠

” +𝑃𝑙𝑣
𝑞

” , 

𝑃𝑓𝑙
" = 𝑃3

" −
𝑃20

" + 𝑃30
"

𝜆2

, 

𝑃𝑙𝑣
𝑞

" =
𝛽2

𝜆2

𝑘2, 

𝑁𝑞

(2)
=

1 ⋅ 𝑃2
" + 2 ⋅ 𝑃3

"

3
. 

 

Then 
  

𝑃𝑙𝑣
𝑞

" =
𝛾2

𝜆2

𝑁𝑞

(2)
. 

 

Provided that β2 = γ2,  
 

𝑃𝑙𝑣
𝑞

" =
𝛽2

𝜆2
𝑁𝑞

(2)
. 

 

When applying the proposed mathematical models, it is advisable to consider the following: 

- in multi-component QSs, the performance of any component decreases compared to a single-

component system at the same rates of service stages. With the same values of the parameters of 

each component of the QS, the performance of multi-component and single-component systems 

will be the same; 

- if one of the components is a QS with a queue, and the second component is a QS with 

failures, then the QS with a queue has a higher performance, simultaneously reducing the 

performance of the second component; 

- with small values (0 ≤ РS ≤ 0.1), the impact on the system as a whole or on a separate 

component of the intensities of customers leaving the system during the service period and being 

in the queue is insignificant. When these intensities change, the PS value will fluctuate relative to 

its average value. 

Example 3. Consider a two-component QS of M/E2/1/2 type in each component. 

Factors of the effectiveness of the functioning of such a QS include: service probabilities Р𝑆1
 

and Р𝑆2
, failure probabilities Р𝑓𝑙1

, Р𝑓𝑙2
 and Р𝑓𝑙

(𝑄𝑆)
, the number of service channels  𝑘1 and  𝑘2, the 

total number of customers in components 𝑁
(1)

  and 𝑁
(2)

, the number of customers in component 

queues 𝑁𝑞

(1)
 and 𝑁𝑞

(2)
, service time in components  𝑡1 та   𝑡2, waiting time in component queues  𝑤1 

and   𝑤2 and the customers service time duration in channels and waiting time in the queues of the 

QS. 

 

III. Results of experiments and discussion of the results 
 

The values of these factors are determined according to the formulas given above. 

Graphs of dependencies of some factors’ impact on the QS functioning effectiveness are 

constructed using AnyLogic production process simulation software and presented in fig. 2 – 8 for 

one of the 15 series of computer experiments. 
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Figure 2: Dependence of probabilities Р𝑆1
 and Р𝑆2

on service rate 𝜇′′ at 𝜇′ = 0.05; 0.1; 0.15 

 

 

 

Figure 3: Dependence of number of service channels  𝑘1 and 𝑘2 on service rate 𝜇′′ at 𝜇′ = 0.05; 0.1; 0.15 

 

  

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,
00

1

0,
03

1

0,
06

1

0,
09

1

0,
12

1

0,
15

1

0,
18

1

0,
21

1

0,
24

1

0,
27

1

0,
30

1

0,
33

1

0,
36

1

0,
39

1

0,
42

1

0,
45

1

0,
48

1

0,
51

1

0,
54

1

0,
57

1

0,
60

1

P
s.

μ//

Ps.1 (μ1 = 0.05) Ps.1 (μ1 = 0.1)

Ps.1 (μ1 = 0.15) Ps.2 (μ1 = 0.05)

Ps.2 (μ1 = 0.1) Ps.2 (μ1 = 0.15)

0,0

0,1

0,1

0,2

0,2

0,3

0,3

0,4

0,4

0,5

0,5

0,
00

1

0,
03

1

0,
06

1

0,
09

1

0,
12

1

0,
15

1

0,
18

1

0,
21

1

0,
24

1

0,
27

1

0,
30

1

0,
33

1

0,
36

1

0,
39

1

0,
42

1

0,
45

1

0,
48

1

0,
51

1

0,
54

1

0,
57

1

0,
60

1

N
u

m
b

er
 o

f 
se

rv
is

e 
ch

an
n

el
s

𝜇′′

K1 (μ1 = 0.05) K1 (μ1 = 0.1) K1 (μ1 = 0.15)

K2 (μ1 = 0.05) K2 (μ1 = 0.1) K2 (μ1 = 0.15)

761



 
Mykhailo Katsman, Viacheslav Matsiuk, Victor Myronenko  
STUDY OF THE FUNCTIONING OF A MULTI-COMPONENT … 

RT&A, No 3 (74) 
Volume 18, September 2023  

 

 

 
 

Figure 4: Dependence of number of customers 𝑁
(1)

 and 𝑁
(2)

in components on service rate 𝜇′′ at 𝜇′ = 0.05; 

0.1; 0.15 

  

 
 

Figure 5: Dependence of number of customers in queues by component 𝑁𝑞

(1)
and 𝑁𝑞

(2)
 on service rate 𝜇′′ at 𝜇′ 

= 0.05; 0.1; 0.15 
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Figure 6: Dependence of waiting time in queues in components 𝑤1 and 𝑤1 on service rate 𝜇′′ at 𝜇′ = 0.05; 

0.1; 0.15 

 

 
 

Figure 7: Dependence of customer service time Т and waiting time in QS queues 𝑊 on service rate 𝜇′′ at 𝜇′ 

= 0.05; 0.1; 0.15 
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Figure 8: Dependence of failure probabilities Р𝑓𝑙1
 та Р𝑓𝑙2

 in components and in QS Р𝑓𝑙𝑄𝑆
 on service rate 𝜇′′ 

at 𝜇′ = 0.05; 0.1; 0.15 

  

The AnyLogic University Researcher development environment allows you to combine the 

principles of system dynamics with the paradigms of agent and discrete-event modeling. In 

addition, thanks to the built-in Java SE compiler, a library of ready-made solutions is available, 

including generators of random variables, which significantly expands the possibilities of 

developing and implementing experiments. In particular, experiments on optimization (relative to 

a defined criterion), model sensitivity, model stability, etc. are available [23], [24], [25], [26], [27]. 

From the graphs presented in fg. 2 – 8, it can be seen that with a time interval between the 

arriving customers of 8 hours (λ1 = λ2 = 0.125), with an increase in 𝜇′, the values of Р𝑆1
and Р𝑆2

 

increase from 0.24 to 0.38 and from 0.19 to 0.37, respectively, but are at an insufficient level. 

The average number of busy service channels of the first component  𝑘1 decreases from 0.4 to 

0.28, and the values of  𝑘2  increase from 0.1 to 0.19, which indicates a weak system utilisation. 

The total number of customers in the first component 𝑁
(1)

 decreases from 2.1 to 1.48 due to 

small values of 𝜇′, and 𝑁
(2)

, on the contrary, increases from 0.48 to 1.6. 

The average number of customers in the queue of the first component 𝑁
(1)

  decreases from 1.4 

to 0.75, and in the second component 𝑁
(2)

 increases from 0.26 to 0.48. 

The duration of waiting time  𝑤1 in the queue of the first component decreases from 10.1 

hours to 6 hours, and the value of  𝑤2 increases from 2.2 hours to 4 hours. 

The duration   of service time 𝑡 𝑠
𝑞𝑠

 in the QS is reduced from 10 h to 8.5 h, as well as the 

duration of waiting time in queues 𝑤𝑞𝑠 from 6.1 h to 3 h. 

The probability of failure Рfl decreases from 0.34 to 0.19. 

As we can see, the availability of the presented mathematical model contributes to the 

determination of measures aimed at increasing the operation effectiveness of the QS, which 

simulates the work of a vehicle maintenance and repair enterprise, that will ultimately allow to 

organize more efficient work of such an enterprise. 
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Conclusions 
 

The theoretical approach proposed by the authors is implemented on the example of the 

modeling of vehicle maintenance and repair processes by production divisions of a repair 

enterprise as a multi-component and multi-phase queuing system (QS) and allows to determine 

the effectiveness of the functioning of such a QS, identify "bottlenecks", unreliable components and 

obtain arguments for improving the efficiency of the enterprise in rapidly changing conditions.  

The presented mathematical apparatus and used simulation modeling tools show their 

relevance to real processes and can be applied to improve the performance of not only vehicle 

repair enterprises, but also a greater variety of objects that can be described as QSs of various 

types, according to conditions of their functioning.  

The conducted comprehensive research and its results make it possible to increase the 

reliability and efficiency of the functioning of a wide class of objects and systems, as they allow to 

evaluate the quantitative, qualitative and probabilistic characteristics of various technological 

processes and organizational measures as processes in mass service QSs, and therefore to minimize 

delays, failures in maintenance and related losses and optimize production, transport-logistics, 

military and other complex systems. 
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Abstract 

 

A weighted entropy measure of information is provided by a probabilistic experiment whose basic 

events are described by their objective probabilities and some qualitative (objective or subjective) 

weights. Weighted entropy has also been applied to equity the amount of information and degree of 

homogeneity related with a partition of data in classes. These measures have tremendous applications 

and are found to be quite helpful in many fields. In the present paper, a new weighted Renyi’s entropy 

measure is proposed for the discrete distributions when probabilities are unknown and weights are 

known. The various characteristics of the measure are investigated. The measure is also studied taking 

into a particular case. In the last, numerical computation and graphical analysis is also done. Based 

on the graphical analysis, it is concluded that the proposed measure varies with values of weights and 

is concave in nature. The developed weighted information measure is useful for the discrete 

distribution when probabilities are unknown and weights are known. 

 

Keywords: Shannon entropy, Renyi entropy, Weighted entropy, Symmetry, 

Concavity. 

 

I. Introduction 
 

Shannon’s [22] entropy is widely prevalent in the study of probabilistic phenomena 

pertaining to abroad spectrum of problems. It was given by Shannon as a mathematical function to 

measure the uncertainty involved in a probabilistic experiment. Shannon entropy for a discrete 

source is defined as follows: 

Let X be a probabilistic experiment with sample space x and probability distribution P, 

where i ip(x ) or p  is the probability of outcome ix X . Then the average amount of information is 

given by 

n n

i i i i
i=1 i=1

H(P) = - p(x )logp(x ) = - p lnp 
                                                     

(1) 

Renyi [19] introduced a flexible extension of Shannon entropy and also, it is one parameter 

generalization of Shannon entropy. In the analysis of quantum systems and measure of randomness, 

Renyi entropy is mostly used. Renyi defined entropy as 
n

α

i
i=1

α n

i
i=1

> 0

p
1

H (P) = log , α 1,α
1-α

p






                                    (2)           
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which is also known as Renyi’s entropy measure of order α . Notice that Shannon’s entropy measure 

is the limiting case of Renyi’s entropy measure when α 1→  .

   
The probabilistic measure of entropy (1) acquires a number of interesting properties. After the 

development of this measure, researchers found the potential of the application of this measure as 

an important quantity in many fields, from probability theory to engineering, ecology, and 

neuroscience. On the basis of this a large number of other information theoretic measures have also 

been derived. 

Occasionally, standard distributions in statistical modelling are not appropriate for our data and we 

need to study weighted distribution. This concept has been applied in a variety of statistical fields, 

including family size analysis, human heredity, world life population study, renewal theory, 

biomedical and statistical ecology.  

Fisher [5] originated the concept of a weighted distribution from his research into the impact of 

ascertainment methods on frequency estimates. Rao [17,18] expanded on Fisher's core ideas by 

discussing the need for a unifying idea and identifying several sample scenarios that can be 

replicated by what he called weighted distributions. The particular case of weighted distribution is 

the Size-biased distribution. These distributions naturally appear in real-world situations when 

observations from a sample are recorded with unequal probability. The utility distribution 

1 2 n
W = (w ,w ,......w )  , where each 

i
w  is a non-negative real number, is proposed by Belis and Guiasu 

[1] to measure utility aspect of the outcomes.  

The applications of the measure to the theory of questionnaires were given by Guiasu and Picard 

[7]. Longo [12] applied this useful measure to coding theory. Moreover, in many situations, there is 

need of a measure of uncertainty of a distribution whenever probabilities are unknown and however 

weights for each value of the random variable are known, i.e. if X be a discrete random variable 

having values 
1 2 n

x ,x ,......x  having weights 
1 2 n

w ,w ,......w respectively but 
1 2 n

p ,p ,......p are 

unknown. Patsakis et al. [16] gave the applications of the measure in security quantification. 

The suitable generalization of classical entropy is the weighted entropy, which has been proposed 

by Belis and Guiasu [1], Guiasu [6]. A detailed discussion on weighted entropies have been made by 

Suhov and sekeh [24]. Mahdy [13] studied the weighted entropy measures and its application in 

Reliability theory and stochastic. Using two weighted entropy measures, Singh et al. [23] provided 

the applications of Holder’s inequality to coding theory. Some other substantial measures of 

weighted entropy introduced by Kapur [9] are as under:  

• 
n

α

α i i i
i=1

H (P : W) = - w p Inp , 1 2 α 1 
                                                             

(3) 

• 

n n

a i i i i i i
i=1 i=1

n

min. i
i=1

H (P : W) = - w p Inp + 1 a w (1+ ap )In(1+ ap )

-w (1+ a)In(1+ a)p

 


    ,                               (4) 

where  
min. 1 2 3

w = min(w ,w ,.........w )  

Some characterizations and generalizations of the weighted measure have been provided by Longo 

[12], Hooda and Tuteja [8], Taneja and Hooda [25], Parkash and Taneja [15], Taneja and Tuteja [26], 

Kapur [9], Kumar et.al. [10, 11], Endo and Kudo [4], Mohammadi [14], Savita and Kumar [21], Bhat 

and Pundir [2], Sahni and Kumar [20] etc. Thus, weighted measures of information find tremendous 

applications and are quite helpful to the researchers in many fields.  
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II. Average Weighted Entropy Measure 

 

Average weighted Renyi’s entropy measure is proposed as under: 

               

n n
α

1 i i
i=1 i=1

1
H (w) = ln (w ) / w

1-α

 
 
 
 
 

                                                           (5) 

where 
i

w > 0  and 
n

i

i=1

w = w  (constant).   

The important characteristics of the measure (5) are investigated as under: 

• It is a continuous and non -increasing function of α. 

• It is permutationally symmetric function of 
1 2 n

w ,w ,......w , i.e., it does not change when 

1 2 n
w ,w ,......w are permuted among themselves. 

• 1H (w)

 

is non-negative for α < 0
 
and negative for 0.   

• Expansible property: This property is satisfied for the measure (5) which states that entropy 

does not change by the addition of weight with zero value. 

1 1 2 n 1 1 2 nH (w ,w ,.......,w ,0) = H (w ,w ,.......,w )
 

Here we use convention 0α =0 for all real values of α. 

• The maximum value of the function can be obtained by considering following         

Lagrangian: 

n n n
α

i i i

i=1 i=1 i=1

1
L = ln (w ) / w - λ( w -w)

1-α

 
 
 
 
  

 

α-1
1

n
α1

i
i=1

αwL 1
Now = - λ

w (1-α)
w

 
 
 

  
 
 
  

α-1
2

n
α2

i
i=1

αwL 1
= - λ

w (1-α)
w

 
 
 

  
 
 
  

Continuing like this 

α-1
n

n
αn

i
i=1

αwL 1
= - λ

w (1-α)
w

 
 
 

  
 
 
             

                     i

L
Now = 0

w




 

 
1 2 3 n

L L L L
= = = .......... = = 0

w w w w

   


   
 

                       

α-1 α-1 α-1
1 2 n

n n n
α α α

i i i
i=1 i=1 i=1

αw αw αw1 1 1
- λ = - λ = ........... = - λ

(1-α) (1- α) (1- α)
w w w

     
     
     
     
     
     
    

                         

α-1 α-1 α-1 α-1
1 2 3 nw = w = w = ............ = w
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            which is possible only if 1 2 3 nw = w = w = ............ = w  

            Also,  
n

i i i

i=1

w
w = w nw = w w =

n
    

               Thus, the maximum value of function will exist at  i

w
w =

n
 and is given by  

                    

( )
αn

α-1 α

i=1
1

w
lnw - ln n -1n1

H (w) = ln =
(1-α) w (1-α)

 
 
 



     

 

• Additive property: The measure (5) is additive in nature since when  

                        
n n

α
n1 i i

i=1 i=1

1
H (w) = ln (w ) / w

1-α

 
 
 
 
 

   

m m
' ' α '

m1 j j

j=1 j=1

1
and H (w ) = ln (w ) / w

1-α

 
 
 
 
   

        

n m
' α

i j

i=1 j=1' '
n1+m1 n1 m1n m

'
i j

i=1 j=1

(w w )
1

Then H (w w ) = ln = H (w) + H (w )
(1-α)

w w

  
  
  
  

 
 
 
 



                            

    

 

 

• Concave property:  Since for the measure (5),   

n
α

i

i=1
1 n

i

i=1

(w )
1

H (w) = ln
1-α

w

 
 
 
 
 
 
 



  

n
α-1

i

i=1'
1 n

α
i

i=1

α (w )
1

H (w) =
(1-α)

w

 
 
 
 



 

2n n
α-2 2 α-1

i i

i=1 i=1''
1 2n n

α α
i i

i=1 i=1

α (w ) α (w )

H (w) = - -

w (1-α) w

   
   
   
   

   
         

 

 
 

     Thus, the measure (5) is concave upward for α > 1. 

I. Particular Cases 

•  i ii, 1w p 0hen w = p 
 

then measure (5) becomes Renyi type entropy measure. 

•  i i, i0 p 1 and α 1when w = p   →
 

then measure (5) becomes Shannon type entropy measure.  

•  when α 1→  

then measure (5) reduces to average weighted Shannon’s entropy measure. 
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III. Numerical Computation and Graphical Analysis  

 
For computation of various values of the measure 1H (w) given in (5), three values of weights 

1 2 3w ,w  and w such that 1 2 3w = w + w + w  are considered. Total weights w  are assumed to take 

values 50, 100 and 150 and α = 3. The computed values of these cases are presented in table 1. Various 

graphs are plotted for the obtained values of 1H (w) w.r.t. different weights to study the behavior of 

the information measure (5). 

 
Table 1:  Average weighted entropy measure  

 

 

W=150 

1H (w)  

 W=100 

1H (w)  

 W=50 

1H (w)  w1 w2 w3 w1 w2 w3 w1 w2 w3 

5 50 95 -4.3936 5 30 65 -4.0061 5 10 35 -3.3900 

10 50 90 -4.3241 10 30 70 -3.8999 10 10 30 -3.1815 

15 50 85 -4.2536 15 30 55 -3.7923 15 10 25 -2.9957 

20 50 80 -4.1832 20 30 50 -3.6889 20 10 20 -2.9145 

25 50 75 -4.1148 25 30 45 -3.5993 25 10 15 -2.9957 

30 50 70 -4.0508 30 30 40 -3.5366 30 10 10 -3.1815 

35 50 65 -3.9948 35 30 35 -3.5139 35 10 5 -3.3900 

40 50 60 -3.9505 40 30 30 -3.5366 

45 50 55 -3.9219 45 30 25 -3.5993 

50 50 50 -3.9120 50 30 20 -3.6889 

55 50 45 -3.9219 55 30 15 -3.7923 

60 50 40 -3.9505 60 30 10 -3.8999 

65 50 35 -3.9948 65 30 5 -4.0061 

70 50 30 -4.0508 

75 50 25 -4.1148 

80 50 20 -4.1832 

85 50 15 -4.2536 

90 50 10 -4.3241 

95 50 5 -4.3936 

 

 

   
Figure 1: Information measure 1H (w) w.r.t. 1w  for 

50=w and 2 5=w                                                                               

Figure 2: Information measure 1H (w) w.r.t. 1w  for

50=w  and 2 10=w  
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Figure 1 and Figure 2 depict the graph between 1H (w)
 
and 1w  for different values of iw , total 

weight w = 50 and we have fixed 2w  = 5,10. From the graphs, it can be seen that 1H (w)
 
increases as 

weights increases up to i

w
w =

n
, and thereafter it decreases.    

   
Figure 3: Information measure 1H (w) w.r.t. 1w  for

100=w and 2 10=w                                                                                        

Figure 4: Information measure 1H (w) w.r.t. 1w  for

100=w and 2 30=w                                   

 

Figure 3 and Figure 4 depict the graph between 1H (w)
 
and 1w  for different values of iw , total 

weight w = 100 and we have fixed 2w  = 10, 20, 30. From the graphs, it can be seen that 1H (w)
 

increases as weights increases up to i

w
w =

n
, and thereafter it decreases.    

 

  
Figure 5: Information measure 1H (w) w.r.t. 1w  for 

150=w and 2 20=w                                                               

Figure 6: Information measure 1H (w) w.r.t. 1w  for

150=w and 2 40=w    

 

Figure 5 and Figure 6 depict the graph between 1H (w)
 
and 1w  for different values of iw , total 

weight w = 150 and we have fixed 2w  = 10, 20, 30, 40, 50. From the graphs, it can be seen that 1H (w)
 

increases as weights increases up to i

w
w =

n
, and thereafter it decreases.    
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IV. Conclusion  
 

The proposed weighted Renyi’s measure varies with values of weights and is concave in nature. In 

case, weights of the distribution are their probabilities, the average weighted Renyi entropy measure 

reduces to Renyi ‘s entropy. In the weighted sense, this is in fact generalizations of the Shannon [22] 

entropy and Burg [3] entropy. The developed weighted information measure is useful for the 

discrete distributions when probabilities are unknown and weights are known. 
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Abstract 

There are several other methods for improving efficiency in a control chart. The use of a control chart alone is 

not advised. Other process improvement methods should always be used in addition to control charts. To trace 

the evolution of a process variable across time, use a control chart. The variable is applicable to all industries, 

including service, manufacturing, non-profit, and healthcare. It illustrates how a process variable changes over 

time and provides information on the kinds of variations that deal with ongoing improvement. Having a solid 

understanding of variation is necessary for effective control chart usage. Queuing models with constant or 

variable sizes are extensively used in the modeling of road and transport systems, sophisticated information 

and computer systems, and inventory replenishment systems. The control chart technique helps in tracking the 

performance of these queues, because of the single-server Markovian queue with encouraged arrival (SSMQEA 

model) the company which is running with fewer customers can increase the number of customers and hence 

the company finance level increase also this SSMQEA method will improve the points in share market. The 

major measurable performance characteristics of any queuing system are average queue length and average 

waiting time. Control limits are defined in this study for the 𝑀[𝑋]/M/1 encouraged arrival queuing model 

where the batch size follows a geometric distribution. To highlight its uses, numerical observations are also 

included. Little' s law is also satisfied. 

Keywords: Encouraged arrival, batch size, central limit, upper control limit, 

Lower control limit, Little’s law 

1. Introduction

    A control chart has plenty of other techniques for increasing efficiency. A control chart 

should not be used in isolation. Along with control charts, other process improvement 

techniques should always be employed. A control chart is used to track the progression of a 

process variable across time. The variable may occur in any sort of business or organisation, 

encompassing service, manufacturing, non-profit and healthcare. It depicts the process 

variable over time and informs the sort of variation that are dealing with continuous 

improvement. Understanding variance is essential for efficiently using control charts. 

       In general, queueing models assume that customers arrive at the service facility 

individually. Unfortunately, this assumption is broken in many real-world queueing 

scenarios. People arriving at a post office, ships coming in a convoy at a port, people 
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attending a wedding reception are all instances of queuing scenarios in which consumers 

come in groups [1].  

       The bulk arrival queuing model from a Bayesian point of view is considered in [2]. 

Statistical process control is a quality control technique that was first established to monitor 

manufacturing operations. Investigation on server abandonment dynamics in [3]. For 
quality control in industrial enterprises, [4] provides a number of Shewhart control chart 

solutions. For the M/M/S queuing model's random queue length, [5] built a control chart. 

       While [6] created Shewhart control charts for the G/G/S queuing system utilizing. 

The M/M/1 queuing model's random queue length was controlled using a control chart 

made using the stacked variance method [7]. 

      The number of customers in a M/Ek/1 wait was examined by [8] using a control chart 

approach.  M/M/1/N queuing systems with encouraged arrival were examined by [9 and 

10]. The control diagram for the 𝑀𝑥/M/1 queuing system was explored in [11]. 

2. Model Recitation

    Now we describe the single-server Markovian queue with encouraged arrival (SSMQEA 

model) as follows: 

 The arrivals occur one at a time in line with the Poisson process with parameter 𝜆

(1+𝜂), where indicates the percentage change in the number of customers calculated

from preceding or clear vision. For example, if a business previously gave discounts

and the percentage change in number of consumers was 10% or 30%, then  𝜂 = 0.1 to 𝜂

= 0.3, respectively.

 Let 𝑝𝑛 be the probability that the system now contains n customers.

 Let 𝑑𝑛 represent the batch size distribution.

  The steady-state equations that control this model are as follows: 

0=−(𝜆(1 + 𝜂) + 𝜇)𝑝𝑛 + 𝜇𝑝𝑛+1 + 𝜆(1 + 𝜂)∑ 𝑝𝑛−𝜀𝑑𝜀      (𝑛 ≥ 1)
𝑛
𝜀=1 , 

0=−(𝜆(1 + 𝜂)𝑝0 + 𝜇𝑝1 .                                                                                                                                       (1) 

The generating function technique may be used to solve the system of equations (1). 

 Define the generating functions for the steady state probability and the batch size 

distribution as follows: 

P(a)=∑ 𝑝𝑛𝑎
𝑛 ,     |𝑎| ≤ 1∞

𝑛=0 , 

D(a)=∑ 𝑑𝑛𝑎
𝑛 ,     |𝑎| ≤ 1,∞

𝑛=0

    Equation (1) is obtained by summing and multiplying by the necessary powers of z. 

0=−𝜆(1 + 𝜂)∑ 𝑝𝑛𝑎
𝑛 − 𝜇∑ 𝑝𝑛𝑎

𝑛 +
𝜇

𝑎
∑ 𝑝𝑛𝑎

𝑛 + 𝜆(1 + 𝜂)∑ ∑ 𝑝𝑛−𝜀𝑑𝜀𝑎
𝑛 ,  (2)∞

𝜀=0
∞
𝑛=1

∞
𝑛=1

∞
𝑛=1

∞
𝑛=0  

Contemplate∑ ∑ 𝑝𝑛−𝜀𝑑𝜀𝑎
𝑛 =∞

𝜀=0
∞
𝑛=1 ∑ 𝑑𝜀𝑎

𝜀 ∑ 𝑝𝑛−𝜀𝑎
𝑛−𝜀 = 𝑑(𝑎)𝑝(𝑎).  (3)∞

𝑛=𝜀
∞
𝜀=1  

 Equation (2) becomes Equation (3). 

    0=−𝜆(1 + 𝜂)𝑝(𝑎) − 𝜇(𝑝(𝑎) − 𝑝0) + 𝜆(1 + 𝜂)𝑑(𝑎)𝑝(𝑎). 

    Solving for p(a), we get 

    P(a)=
𝜇𝑝0(1−𝑎)

𝜇(1−𝑎)−𝜆(1+𝜂)𝑎(1−𝑑(𝑎))
,|𝑎| ≤ 1.  (4) 

The complimentary batch size possibilities' production function P(X>X)=1-𝑑𝑥 = 𝑑𝑥
~ is

given by 𝑑𝑥
~ = ∑ 𝑑𝑥

~𝑎𝑛 =
1−𝑑(𝑎)

1−𝑎

∞
𝑛−1 . 

We took R=
𝜆(1+𝜂)

𝜇
, equation (4) yields 

P(a)=
𝑝0

1−𝑅𝑎𝑑𝑥
~(𝑎)

. 

Clearly, 𝑑𝑥
~(1) = 𝐸(𝑥)𝑎𝑛𝑑 𝑑𝑥

~′(1) =
𝐸(𝑥(𝑥−1))

2
.

Making use of the normalising conditions, we got 𝑝0 = 1 − 𝜌,where 𝜌 =
𝜆(1+𝜂)

𝜇
𝐸(𝑥).

If 𝐾𝑠 and 𝐾𝑞  are the number of consumers in the system and the queue, respectively, then 
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𝐾𝑠 =

𝜆(1+𝜂)

𝜇
𝐸(𝑥)+𝑅𝐸(𝑥2)

2(1−
𝜆(1+𝜂)

𝜇
𝐸(𝑥))

, 

and 𝐾𝑞 = 𝐾𝑠 −
𝜆(1+𝜂)

𝜇
𝐸(𝑥). 

Assume that the number of consumers in any arriving batch is geometrically distributed 

with parameter 𝛽. The probability mass function of batch size is then calculated 
𝑑𝑥 = (1 − 𝛽)𝛽

𝑥−1, 0 < 𝛽 < 1.

Then d(a)=
𝑎(1−𝛽)

1−𝛽𝑎
, 

    and  

E(x)=
1

1−𝛽
 𝑤𝑖𝑡ℎ 𝜌 =

𝜆(1+𝜂)

𝜇

1−𝛽
 .  (5) 

    From equation (1) to (5), we get 

P(a)=( (1 −
𝜆(1+𝜂)

𝜇
𝐸(𝑥))∑ (𝛽 + (1 − 𝛽)

𝜆(1+𝜂)

𝜇
𝐸(𝑥))

𝑛

− ∑ (𝛽 + (1 − 𝛽)
𝜆(1+𝜂)

𝜇
𝐸(𝑥))

𝑛

𝑧𝑛+1∞
𝑛=0

∞
𝑛=0 ) 

    "a" on both sides when performance is compared to results in 

 𝑝𝑛 =
𝜆(1+𝜂)

𝜇

1−𝛽
(1 − 

𝜆(1+𝜂)

𝜇

1−𝛽
)(1 − 𝛽)(𝛽 + (1 − 𝛽)

𝜆(1+𝜂)

𝜇

1−𝛽
)𝑛−1, 𝑛 > 0. 

 Thus, the value 𝐴0
−1 is evaluated. 

 To obtained the equations mean and variance 

 Let 𝐾𝑠represent the total number of consumers in the system (both in queue and in service). 

 The anticipated number of clients in the system is then 

 E(𝐾𝑠) = (

𝜆(1+𝜂)
𝜇

1−𝛽

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

).  (6) 

    And the variance of the number of consumers in the system is, 

    Var(𝐾𝑠) =

(

𝜆(1+𝜂)
𝜇

1−𝛽
(1+𝛽(1−

𝜆(1+𝜂)
𝜇

1−𝛽
))

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)2∗(1−𝛽)2

)

.  (7) 

According to the concept that the number of consumers in the system maintains a normal 

distribution, the parameters of the control chart are given by 

Upper Control Limit=E

(

𝜆(1+𝜂)
𝜇

1−𝛽

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

) + 3√

𝜆(1+𝜂)
𝜇

1−𝛽
(1+𝛽(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)2∗(1−𝛽)2

)

 
,  (8) 

Central Limit=E (

𝜆(1+𝜂)
𝜇

1−𝛽

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

),  (9) 

 Lower Contral Limit= E 

(

𝜆(1+𝜂)
𝜇

1−𝛽

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

) − 3√

𝜆(1+𝜂)
𝜇

1−𝛽
(1+𝛽(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)2∗(1−𝛽)2

)

 
. (10)
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 Using (6) and (7) in (8), the control chart parameters for the 𝑀[𝑋]/M/1 queuing model are 

determined. 

 Central Limit=

(

𝜆(1+𝜂)
𝜇

1−𝛽

(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)(1−𝛽)

)

, 

 Upper Central Limit = 

(

𝜆(1+𝜂)
𝜇

1−𝛽
+3√

𝜆(1+𝜂)
𝜇

1−𝛽
(1+𝛽(1−

𝜆(1+𝜂)
𝜇

1−𝛽
))

(1−𝛽)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

)

, 

   Lower Central Limit= 

(

𝜆(1+𝜂)
𝜇
1−𝛽

−3√
𝜆(1+𝜂)
𝜇
1−𝛽

(1+𝛽(1−

𝜆(1+𝜂)
𝜇
1−𝛽

)

(1−𝛽)(1−

𝜆(1+𝜂)
𝜇

1−𝛽
)

)

 
. 

The anticipated number of waiting units 

i. 𝐿𝑞 =
𝜌𝜆(1+𝜂)

𝜇−𝜆(1+𝜂)
.

The average number of occupied (serviced) units 

ii. 𝐿𝑠 =
𝜆(1+𝜂)

𝜇−𝜆(1+𝜂)
. 

The Service time estimate. 

iii. 𝑊𝑠 =
1

𝜇−𝜆(1+𝜂)
. 

The expected Waiting time in line is 

iv. 𝑊𝑞 =
𝜌

𝜇−𝜆(1+𝜂)
. 

3. Numerical Illustration

   The situation that a system encountered when an organization announced incentives and 
discounts gave origin to the expression "encouraged arrivals." The modern application of 

queuing theory to consumer behavior encouraged arrivals. The "essential component" that 

distinguishes control charts from a conventional line graph or run chart is control limits. 

Your data is used to calculate control limits. They are sometimes mistaken with 

specification restrictions offered by your customer. A UCL can be described as an 
acceptable range of values for particular parameters. 

   The performance of the queuing system is analyzed numerically with reference to the 

parameters, and LCL values are negative for the specified parameter values 𝜆(1 +

𝜂), 𝜇 𝑎𝑛𝑑 𝛽 they are treated as zero and are not displayed as a distinct column in the table.𝜂 

represent discounts values 10% to 30% of the table and figure. 

      The table displays the parameters for the control chart and traffic intensity for the 

number of customers in the queuing system for various values of 𝜆(1 + 𝜂), 𝜇 and 𝛽 
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Table 1: We provide Encouraged arrival 10% discount 𝑀[𝑋]/M/1 Control chart in the queuing system

S.NO 𝜆(1 + 𝜂) 𝜇 𝛽 𝜌 CL UCL 

1 4.4 10 0.15 0.5177 1.2630 6.6994 

2 4.4 10 0.16 0.5238 1.3095 6.9399 

3 4.4 10 0.17 0.5301 1.3592 7.1789 

4 4.4 10 0.18 0.5366 1.4125 7.4329 

5 4.4 15 0.15 0.3447 0.6188 3.9329 

6 4.4 15 0.16 0.3488 0.6377 4.0411 

7 4.4 15 0.17 0.353 0.6575 4.1549 

8 4.4 15 0.18 0.3573 0.6779 4.2721 

9 4.4 20 0.15 0.2588 0.4108 2.9647 

10 4.4 20 0.16 0.2619 0.4224 3.0409 

11 4.4 20 0.17 0.2651 0.4347 3.1206 

12 4.4 20 0.18 0.2683 0.4472 3.2024 

13 6.6 10 0.15 0.7765 4.0874 18.2359 

14 6.6 10 0.16 0.7857 4.3647 19.3911 

15 6.6 10 0.17 0.7951 4.6772 20.6823 

16 6.6 10 0.18 0.8049 5.0313 22.1489 

17 6.6 15 0.15 0.5177 1.2628 6.7521 

18 6.6 15 0.16 0.5238 1.3095 6.9399 

19 6.6 15 0.17 0.5301 1.3592 7.1793 

20 6.6 15 0.18 0.5366 1.4125 7.4329 

21 6.6 20 0.15 0.3882 0.7466 4.5029 

22 6.6 20 0.16 0.3929 0.7705 4.6329 

23 6.6 20 0.17 0.3976 0.7952 4.7676 

24 6.6 20 0.18 0.4024 0.8213 4.9086 

Table 2: We provide encouraged arrival 10% discounts Little’s Law verification table 

S.NO λ(1 + η) μ ρ Ls Ws Ls = λ(1 + η)Ws 

1 4.4 10 0.44 0.7857 0.1785 0.7857 

2 4.4 15 0.29 0.415 0.0943 0.415 

3 4.4 20 0.22 0.282 0.0641 0.282 

4 6.6 10 0.66 1.9411 0.2941 1.9411 

5 6.6 15 0.44 0.7857 0.119 0.7857 
6 6.6 20 0.33 0.4925 0.0746 0.4925 

Figure 1: We provide Pictorial representation encouraged arrival 10% discounts Control Chart. 
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From the figure 1, with 10% discounts of encouraged arrival, the number of arrival is more 

the Poisson arrival Process [11]. 

Table 3: We provide Encouraged arrival 20% discount  𝑀[𝑋]/M/1 Control chart in the queuing system. 

Table 4: We provide encouraged arrival 20% discounts Little’s law verification table 

S.NO λ(1 + η) Μ Ρ Ls Ws Ls = λ(1 + η)Ws 

1 4.8 10 0.48 0.923 0.1923 0.923 

2 4.8 15 0.32 0.4705 0.098 0.4705 

3 4.8 20 0.24 0.3157 0.0657 0.3157 

4 7.2 10 0.72 2.5714 0.3571 2.5714 

5 7.2 15 0.48 0.923 0.1282 0.923 

6 7.2 20 0.36 0.5625 0.0781 0.5625 

𝝀 𝝁 𝜷 𝜼 
𝟒, 𝟔 10,15,20 0.15,0.16,0.17,0.18 𝟎. 𝟐 𝒐𝒓 𝟐𝟎% 

S.NO 𝜆(1 + 𝜂) 𝜇 𝛽 𝜌 CL UCL 

1 4.8 10 0.15 0.5647 1.5262 7.8148 

2 4.8 10 0.16 0.5714 1.5874 8.0995 

3 4.8 10 0.17 0.5783 1.6522 8.3998 

4 4.8 10 0.18 0.5854 1.7219 8.7209 

5 4.8 15 0.15 0.3765 0.7104 4.3422 

6 4.8 15 0.16 0.3809 0.7326 4.4656 

7 4.8 15 0.17 0.3855 0.7559 4.594 

8 4.8 15 0.18 0.3902 0.7804 4.7286 

9 4.8 20 0.15 0.2824 0.4629 3.2137 

10 4.8 20 0.16 0.2857 0.4762 3.2975 

11 4.8 20 0.17 0.2892 0.4902 3.3855 

12 4.8 20 0.18 0.2927 0.5047 3.4759 

13 7.2 10 0.15 0.8471 6.5177 28.0118 

14 7.2 10 0.16 0.8572 7.1463 30.5638 

15 7.2 10 0.17 0.8675 7.8877 33.5764 

16 7.2 10 0.18 0.878 8.7765 37.1868 

17 7.2 15 0.15 0.5647 1.5263 7.8149 

18 7.2 15 0.16 0.5714 1.5871 8.0982 

19 7.2 15 0.17 0.5783 1.6522 8.4005 

20 7.2 15 0.18 0.5854 1.7219 8.7209 

21 7.2 20 0.15 0.4235 0.8642 5.0166 

22 7.2 20 0.16 0.4286 0.8929 5.1677 

23 7.2 20 0.17 0.4337 0.9227 5.3242 

24 7.2 20 0.18 0.439 0.9544 5.4888 
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Figure 2: We provide Pictorial representation encouraged arrival 20% discounts Control Chart. 

From the figure 2, with 20% discounts of encouraged arrival, the number of arrival is more 

the Poisson arrival Process [11]. 

Table 5: We provide Encouraged arrival 30% discount  𝑀[𝑋]/M/1 Control chart in the queuing system 

S.NO 𝝀(𝟏 + 𝜼) 𝝁 𝜷 𝝆 CL UCL 

1 5.2 10 0.15 0.6118 1.8541 9.1694 

2 5.2 10 0.16 0.6191 1.9353 9.5331 

3 5.2 10 0.17 0.6265 2.0209 9.9201 

4 5.2 10 0.18 0.6289 2.0667 10.1416 

5 5.2 15 0.15 0.4082 0.8115 4.7875 

6 5.2 15 0.16 0.4131 0.8379 4.9283 

7 5.2 15 0.17 0.4181 0.8656 5.0759 

8 5.2 15 0.18 0.4232 0.8946 5.2298 

9 5.2 20 0.15 0.3059 0.5185 3.4736 

10 5.2 20 0.16 0.3095 0.5336 3.5752 

11 5.2 20 0.17 0.3132 0.5495 3.6622 

12 5.2 20 0.18 0.317 0.5662 3.7628 

13 7.8 10 0.15 0.9177 13.1175 54.4512 

14 7.8 10 0.16 0.9286 15.4818 63.9578 

15 7.8 10 0.17 0.9397 18.7756 77.1462 

16 7.8 10 0.18 0.9512 23.7756 97.2152 

17 7.8 15 0.15 0.6118 1.8541 9.1694 

18 7.8 15 0.16 0.6191 1.9353 9.5331 

19 7.8 15 0.17 0.6265 2.0209 9.9201 

20 7.8 15 0.18 0.6289 2.0667 10.1416 

21 7.8 20 0.15 0.4588 0.9974 5.5907 

22 7.8 20 0.16 0.4643 1.0318 5.7658 

23 7.8 20 0.17 0.4699 1.0679 5.9479 

24 7.8 20 0.18 0.4756 1.106 6.1394 
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Table 6: We provide encouraged arrival 30% discounts Little’s law verification table 

S.NO λ(1 + η) μ Ρ Ls Ws Ls = λ(1 + η)Ws 

1 5.2 10 0.52 10.833 0.2083 10.833 

2 5.2 15 0.34 0.5306 0.102 0.5306 

3 5.2 20 0.26 0.3513 0.0675 0.3513 

4 7.8 10 0.78 3.545 0.4545 3.545 

5 7.8 15 0.52 1.0833 0.1388 1.0833 

6 7.8 20 0.39 0.6393 0.0819 0.6393 

Figure 3: We provide Pictorial representation encouraged arrival 30% discounts Control Chart. 

From the figure 3, with 30% discounts of encouraged arrival, the number of arrivals is  

more the Poisson arrival Process [11].We have identified that as the discounts rate increases 

the arrival rate also increases with SSMQEA model.  

4. Result and Discussion

In this model, encouraged arrival, with a maximum 30% discount applicable in this model. 

Because the system size maximum has increased in this research model, we can expect a 

maximum profit when we apply this research concept to share markets. The average waiting 

time and the anticipated maximum waiting time both decrease with an increase in service rate 

and a constant encouraged arrival rate. The average wait time and anticipated maximum wait 

time are reduced with an increase in servers. 

5. Conclusion

The model provided here has practical applications in systems such as manufacturing, 

telephony, share markets, and computer networks. From the figure 3, with 30% discounts of 

encouraged arrival, the number of arrivals is more the Poisson arrival Process [11]. Because 

the maximum system size in this research model has risen. In this SSMQEA model the 

company which are running with less customers can increase the number of customers and 

hence the company finance level increase also this SSMQEA method will improve the points 

in share market. 

0

20

40

60

80

100

120

CL UCL

  RT&A, No.3 (74)  
Volume 18, September 2023  

783



Ismailkhan Enayathulla Khan, Rajendran Paramasivam 
REDUCTION IN WAITING TIME OF SINGLE SERVER 

References 

[1] Gross, D. and Harris, M. Fundamentals of queueing theory, 5th edition, John Wiley and

Sons, Inc, 1998.

[2] Armero, C. and Conesa, D. (2000).  Prediction in Markovian Bulk arrival queues. Queueing

systems, 34:327-350.

[3] Down, D.G. Koole, D. and Lewis, M.E. (2011). Dynamic control of a single server with

abandonments. Queueing systems, 67:63-90.

[4] Montgomery, D.C. Introduction to statistical quality control, 5th edition, John Wiley &

Sons, Inc, 2005.

[5] Shore, H. (2000). General control charts for attributes. IIE transactions, 32:1149-1160.

[6] Shore, H. (2006). Control charts for the queue length in a G/G/S System. IIE Transactions,

38:1117-113.

[7] Khaparde, V. and Dhabe, S.D. (2010). Control chart for random queue length N for

(M/M/1): (∞/FCFS) queueing model. International Journal of Agricultural and Statistical

sciences, 1:319-334.

[8] Poongodi, T. and Muthulakshmi, S. (2012). Random queue length control chart for

(M/Ek/1): (∞/FCFS) queueing model. International Journal of Mathematical Archive, 3:3340-

3344.

[9] Som, B.K. and Seth, S. (2017). An M/M/1/N Queuing system with Encouraged Arrivals.

Global Journal of Pure and Applied Mathematics, 13:3443-3453.

[10]Khan,I.E. Paramasivam, R. (2022). Reduction in waiting time in an M/M/1/N encouraged

arrival queue with feedback, balking and maintaining of reneged customers. Symmetry,

14:1743.

[11] Poongodi, T. and Muthulakshmi, S. (2014). Control chart for number of customers in the

system  𝑀[𝑋]/M/1 queuing system. International Journal of Innovative Research in Science

Engineering and Technology, 3:1-3.

  RT&A, No.3 (74)  
Volume 18, September 2023  

784



Jacob Ehiwario, John Igabari and Peter Ezimadu 
THE APTIITL-G FAMILY OF DISTRIBUTIONS 

THEORY AND APPLICATIONS OF THE ALPHA POWER 

TYPE II TOPP-LEONE- GENERATED FAMILY OF 

DISTRIBUTIONS 

Jacob C. Ehiwario1

John N. Igabari2

Peter E. Ezimadu3

1 Department of Statistics, University of Delta, Agbor, Delta State, Nigeria. 
2,3 Department of Mathematics, Delta State University, Abraka, Nigeria. 

jacobehiwario@gmail.com1

jn_igabari@delsu.edu.ng2

peterezimadu@yahoo.com3

Abstract 

This paper introduces a composition of two single parameter generalized family of 

distributions: the alpha power transform and type II Topp-Leone-G families of 

distributions. Some basic mathematical treatments of the family of distributions are 

studied. The parameter estimates of the proposed family of distributions are derived via 

maximum likelihood estimation method and a Monte Carlo simulation study was 

conducted to examine the asymptotic behaviour of the parameter estimates of sub-model 

belonging to the proposed family of distributions. To illustrate the applicability of the 

proposed family of distributions in real world data fittings, two data sets consisting of the 

daily recovery and mortality rates of Covid-19 patients in Nigeria, from May 1 to June 30, 

2020, was employed. The APTIITLK distribution arising from the proposed family of 

distributions, alongside with some bounded non-nested distributions was used to fit the 

two data sets and results obtained from the analysis clearly revealed that the APTIITLK 

distribution outperformed all the non-nested distributions used in fitting the two data sets. 

Some informative graphical plots for goodness of fit test were investigated to further 

validate the flexibility of the APTIITLK distribution over the competing distributions. 

Keywords: Alpha Power Transformation; Type II Topp-Leone Generated; Quantile; 

Simulation Study  

1. INTRODUCTION

The theory of statistical analysis has received a reasonable attention in the area of developing lifetime 

distributions. several lifetime distributions have been proposed to analyze real world phenomena in 

literature. Its utility has found tremendous applications in research fields such as engineering, 
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biological sciences, machine learning, actuarial sciences, demography, agricultural sciences, etc. 

Regardless the numerous lifetime distributions in literature, an insatiable quest to develop more 

flexible and tractable models have evolved among researchers in the field of statistical distribution 

theory. It is noteworthy that many existing lifetime distributions have failed in providing good fit 

for certain complex datasets, thus, the drive to develop new ones. Several novel methodologies have 

been introduced to expand the utility of existing lifetime distributions. Thanks to [1] who developed 

the exponentiated Weibull family of distributions, [2] introduced the Marshall-Olkin extended 

family, [3] studied the beta-G class of distributions, [4] proposed the transmuted-G method, [5] used 

the idea of [3] to introduce the Kumaraswamy-G method, [6] proposed the transformed-transformer 

(T-X) method, and [7] developed the Weibull-G method. 

Recently, [8] have suggested a new method of adding extra parameter to an existing lifetime 

distribution which they called “alpha-power transformation method”. Let ( )G t  denote the cdf of 

any continuous random variable T, [8] defined the alpha-power transformation of ( )G t  as 

( )
1

, 0, 1
1

( , )

( ), 1

G t

APT

if

F t

G t if


 







 −
 

−


= 



=

 (1) 

The pdf associated to (1) is defined as 

( )log
( ) , 0, 1

1

( , )

( ), 1

G t

APT

g t if

f t

g t if


  








 

−
= 



=

 (2) 

The methodology defined in (1) and (2) has been adopted by researchers to generalize existing 

lifetime distributions. Such generalizations include the alpha-power Raleigh distribution by [9], 

alpha-power transformed Lindley distribution by [10], alpha-power transformed power Lindley 

distribution by [11], alpha-power inverse Lomax distribution by [12], alpha-power Tessier 

distribution by [13], alpha-power Topp-Leone distribution by [14], etc. 

Another tractable method of generalization is the type II Topp-Leone-G family of distributions 

proposed by [15]. They adopted the idea of [16] to generalize the Topp-Leone distribution with the 

cdf defined by 

( ) ( )
( )1 , 11

0
( , , ) 1 2 1 2 ,

F t

TIITL GG t t t t dt
   

− −−
− = − − −

( )( )21 1 , ,F t


= − −  (3) 

and pdf obtained as 

( ) ( ) ( )
1

2( , , ) 2 , , 1 , , 0, 0.TIITL Gg t f t F t F t t


      
−

−
 = −  
 

  (4) 

The one-parameter special case of the Topp-Leone distribution developed by [17] happens to be the 

simplest (single parameter) distribution with a bathtub hazard rate property and this unique feature 

has also motivated researchers to study different modification of the distribution to enhance its 

flexibility in data fitting. [18] developed the Topp-Leone inverse Weibull distribution, [19] proposed 

the Topp-Leone Weibull distribution, [20] discussed the Topp-Leone generated Weibull distribution, 

[21] studied the Topp-Leone power Lindley distribution, [22] developed the transmuted version of

the Marshall-Olkin Topp-Leone distribution studied in [23], etc.
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Inspired by the idea of [24], we construct a novel and more suitable two-parameter generalized class 

of distributions by considering the cdf defined in (3) as the new baseline distribution in (1). The cdf 

of the new two-parameter generalized class of distributions is thus, defined as 

( )( )

( )( )
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2

1
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1

( , , , )
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− − =

,  (5) 

the density function associated to (5) is obtained as 
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.      (6) 

The random variable T in (5) and (6) is said to follow the alpha power type II Topp-Leone-G family 

of distributions (APTIITL-G for short). The survival function (sf) and hazard rate function (hrf) of 

the APTIITL-G family are, respectively, defined as 
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and 
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.       (8) 

The basic objectives for developing the APTIITL-G family in practice are: 

(i) to capture distributions with exponentially decreasing (reversed-J), negatively-skewed,

positively-skewed, symmetric shaped property;

(ii) to construct distributions that span various forms of hazard rate property;
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(iii) to produce distributions with consistently better fits than existing nested and non-

nested distributions.

The rest of this paper is structured into the following sections. In Section 2 presents the materials 

and method. In detail, we derive the linear representation of the APTIITL-G density function, 

introduce some special sub-models generated from the APTIITL-G family. Some statistical 

properties of the APTIITL-G family are studied and the parameter estimation of the APTIITL-G 

family are obtained via the maximum likelihood method. A simulation study is conducted to 

investigate the asymptotic behavior of the parameter estimates. In Section 3, two data sets are used 

to illustrate the potential of sub-model from the APTIITL-G family. Section 4 concludes the paper. 

2. MATERIALS AND METHOD

2.1 The density function of APTIITL-G family: linear representation 

Most generalized distributions lack closed form expression for some of their statistical properties, 

thus limiting their utility in data analysis. Statistical properties such as moments, moment 

generating function, probability weighted moments, etc., are derived from the density function of 

the distribution. Hence, there is a clear need to obtain the series representation of the density 

function. To obtain the series representation of the density function of APTIITL-G family, we 

consider the following useful expansions. 
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(See [25], pg. 26, 2007). 

Using (9) and (10) in (6), we have 

( )( ) ( )
( )( )

21 1 ,
2

0

log( )
1 1 , ,

!

j jF t

j

F t
j


 

 

  − − 
 

=

 
= − −  


( )( ) ( ) ( )( )2 2

0

1 1 , 1 1 , ,

jj
kk

k

j
F t F t

k

 
 

=

  
− − = − −     



( )( ) ( ) ( )
( 1) 1

( 1) 1 22

0

( 1) 1
1 , 1 , ,

k
k m m

m

k
F t F t

m


 

 

+ −
+ −

=

+ − 
− = − 

 


By inserting into (6), we have 
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where, 
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The pdf of APTIITL-G family defined in (11) is expressed as an infinite linear combination of exp-G 

  RT&A, No.3 (74)  
Volume 18, September 2023  

788



Jacob Ehiwario, John Igabari and Peter Ezimadu 
THE APTIITL-G FAMILY OF DISTRIBUTIONS 

densities with power parameter ( )2 1m+ . Whereas, the cdf of APTIITL-G family is expressed as a 

linear combination of the exp-G cdfs as 

( )
( 1) 1

, , 2( 1)

, 0 0 0

( , , , ) , , ,

j k

APTIITL G j k m m

j k m
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Where ( )2( 1) , , ,m t   + is the exp-G cdf with power parameter ( )2 1m+ . 

2.2 Some special sub-models of APTTIITL-G family 

In this section, the authors introduced five special sub-models from APTIITL-G family by allowing 

the baseline distribution in (5) to follow Kumaraswamy, Weibull, log-logistic, Lindley and Bur XII 

distributions.  

2.2.1 The alpha power type II Topp-Leone Kumaraswamy (APTIITLK) 

distribution 

The Kumaraswamy distribution is a bounded lifetime distribution developed by [26], with cdf and 

pdf, respectively, defined by 

( ) ( ), , 1 1 , , 0, 0 1,F t t t


   = − −      (13) 

and 

( ) ( )
1

1, , 1 , , 0, 0 1.f t t t t


     
−

−= −     (14) 

By inserting (13) into (5), the authors defined the cdf of alpha power type II Topp-Leone 

Kumaraswamy (APTIITLK) distribution by 
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and the associated pdf defined as 

( ) ( ) ( )
( )

( ) ( ) ( )

2

1 1 1 1 12
1

1

1
2

1
1

log
2 1 1 1 1 1 1 , 0, 1

1

( )

2 1 1 1 1 1 1 , 1

t

APTIITLK

t t t t if

f t

t t t t if





  

   


  

   


   



 

    −  − − − −    −  −   

−
−

−




     
− − − − − −        −      


= 


      − − − − − − =          

 (16) 

The sf and hrf of APTIITLK distribution are obtained, respectively, as 
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The plots of the pdf and hrf of APTIITLK distribution are shown in Figure 1. 

Figure 1: The pdf plot (a) and hrf plot (b) of APTIITLK distribution for different parameter value. 

Figure 1 reveals that the pdf of APTIITLK distribution exhibits a decreasing (reserved J-shape), 

negatively-skewed, positively-skewed, symmetric and bathtub shapes, whereas, the hrf plots 

indicate an increasing, bathtub and inverted bathtub hazard properties. 

2.2.2 The alpha power type II Topp-Leone Weibull (APTIITLW) distribution 

Suppose the baseline distribution in (5) follow the Weibull distribution with ( ), 1 tF t e


 −= − and

( ) 1, ,tf t t e
  − −=  where 0   is the shape parameter, the authors defined the cdf of alpha 

power type II Topp-Leone Weibull (APTIITLW) distribution by 
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and the pdf of APTIITLW distribution is obtained as 
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The sf and hrf of the APTIITLW distribution are obtained, respectively, as 
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Figure 2 presents the pdf and hrf plots of the APTIITLW distribution for some selected values of the 

parameters. 
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Figure 2: The pdf plot (a) and hrf plot (b) of the APTIITLW distribution for varying choices of 

parameter. 

Clearly, the pdf plot in Figure 2 indicates a decreasing (reserved J-shape), negatively-skewed, 

positively-skewed, and symmetric shapes, whereas, the hrf plot indicate a decreasing, increasing, 

and inverted bathtub hazard properties. 

2.2.3 The alpha power type II Topp-Leone log-logistic (APTIITL3) distribution 

Let T be a random variable having the log-logistic cumulative distribution function (cdf), 
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, 1 1F t t
−

= − +  and density function (pdf), ( ) ( )
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−= + It is easy to define the cdf 

and pdf of a new distribution from (5) and (6), respectively, as 

( )

( )

2
1

3

1 1 1 1

2
1

1
, 0, 1

1

( )

1 1 1 1 , 1

t

APTIITL

if

F t

t if










 





−
     − − − +       

−





−  
 −


= 


    − − − + =      

,  (23) 

and 

( ) ( )
( ) ( )

( )

( )
( ) ( )

2
1

3

1 1 1 1 121 1 1

2

1
21 1 1

2

log( )2
1 1 1 1 1 , 0, 1

1 1

( )

2
1 1 1 1 1 , 1

1

t

APTIITL

t
t t if

t

f t

t
t t if

t






 






 



 
  






−
    −  − − − + −    − −    

−
− − −




     
− + − − +             − +




= 


      − + − − + =          +

.  (24) 

The cdf and pdf of the APTIITL3 distribution are readily defined by (23) and (24). The sf and hrf 

associated to (23) and (24) are obtained, respectively, as 
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The pdf and hrf plots of APTIITL3 distribution for selected values of the parameters are displayed 

in Figure 3. 

Figure 3: The pdf plot (a) and hrf plot (b) of APTIITL3 distribution for varying choices of parameter. 

The pdf plots in Figure 3 indicates a decreasing (reserved J-shape), positively-skewed, and 

symmetric shapes, whereas, the hrf plots indicate a decreasing and inverted bathtub hazard 

properties. 
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2.2.4 The alpha power type II Topp-Leone Lindley (APTIITLL) distribution 

The one-parameter Lindley distribution proposed by [27] is defined by the cdf and pdf, respectively, 

as  
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 (27) 
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+
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By inserting (27) and (28) into (5) and (6), the authors obtained the cdf and pdf of alpha power type 

II Topp-Leone Lindley (APTIITLL) distribution, respectively, as 
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The sf and hrf of APTIITLL distribution are obtained, respectively, as 
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and 
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Figure 4 displays the pdf and hrf plots of the APTIITLL distribution for selected parameter values. 

Figure 4: The pdf plot (a) and hrf plot (b) of APTIITLL distribution for varying choices of parameter. 

From Figure 4, we observe that the pdf plots of APTIITLL distribution accommodates a positively-

skewed and symmetric shapes, whereas, the hrf plots exhibit an increasing and inverted bathtub 

hazard properties. 

2.2.5 The alpha power type II Topp-Leone Burr XII (APTIITLBXII) distribution 

The Burr XII distribution is one of the most commonly used models among the twelve (12) special 

models introduced by [28]. The cdf and pdf of Burr XII distribution are defined, respectively, as 
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and 
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Utilizing the cdf defined in (33) as the baseline distribution in (5), the authors obtained the cdf of 

alpha power type II Topp-Leone Burr XII (APTIITLBXII) distribution by 
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The sf and hrf of APTIITLBXII distribution are obtained, respectively, as 
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Some useful pdf and hrf plots of the APTIITLBXII distribution are displayed in Figure 5. 
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Figure 5: The pdf plot (a) and hrf plot (b) of APTIITLBXII distribution for different values of the 

parameters. 

The density plots of the APTIITLBXII distribution displayed in Figure 5, shows a decreasing, 

positively-skewed and symmetric shapes, whereas, the hrf plots exhibit a decreasing, increasing and 

inverted bathtub hazard properties. 

2.3 Statistical Properties 

This section is devoted to derivation of some statistical properties of APTIITL-G family. In particular, 

the quantiles, rth-moments, moment generating function, probability weighted moments (PWMs), 

Renyi entropy and order statistics are derived.  

2.3.1 Quantile Function 

The quantile function of APTIITL-G family of distributions is obtained as 

( )
1

1
log ( 1) 1

( ) 1 1 , (0,1).
log( )

T

u
Q u F u





−

 
 − + 

= − −   
   

 

 (39) 

By inserting 0.5u =  in (39), we obtain the median of APTIITL-G family as 

( ) ( )
1

1
log 1 log 2

(0.5) 1 1 .
log( )

TQ F




−

 
 + − 

= − −  
   

 

  (40) 

The utility of (39) is most essential in generating random sample from the distribution. 

2.3.2 Moments and Incomplete Moments 

Let T be a random variable having the density function of the APTIITL-G family, then from (11), the 

rth moments of T is defined by 
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( )
( 1) 1

'
, , 2( 1)

, 0 0 0

( ) , , , , 1, 2, 3, 4, ...

j k
r r

r j k m m

j k m

E T t t dt r



     

+ − 

+
−

= = =

= = =    (41) 

The integral part of (41) can be expressed as 2( 1)
r

mE Y +
 
 

, which is the rth moments of the exp-G family 

with power parameter ( )2 1m+ . 

The mean ( )'1 of the APTIITL-G family is obtained from (41) when 1r = . The variance ( )2 , 

skewness ( )kS and kurtosis ( )sK are obtained as 

variance ( )2 ( )
2

' '

2 1 = − , skewness ( )kS
( )

( )( )

3
' ' ' '

3 2 1 1

3
2 2' '

2 1

3 2
,

   

 

− +
=

−

kurtosis ( )sK
( ) ( )

( )( )

2 4
' ' ' ' ' '

4 3 1 3 1 1

2
2

' '

2 1

4 6 3
.

     

 

− + −
=

−

furthermore, we deduce the 
thr  lower incomplete moment of APTIITL-G family from (31) as 

( )
( 1) 1

, , 2( 1)

, 0 0 0

( ) , , , .

j k
q

r
r j k m m

j k m

q t t dt



     

+ −

+
−

= = =

=    (42) 

Table 1 holds numerical values of the mean ( )'1 , variance ( )2 , measures of skewness ( )kS  and 

kurtosis ( )sK of alpha power type II Topp-Leone Kumaraswamy (APTIITLK) distribution for some

selected values of the parameters. Observations from the table reveal that APTIITLK distribution is 

negatively-skewed, positively-skewed, symmetric, platykurtic, leptokurtic as well as exhibiting a 

mesokurtic properties. 

Table 1: The rth-moments of APTIITLK distribution for ( )2, 3 = =  

  '

1
2 S K

0.2 2 0.4423 0.0200 0.1322 3.0658 

4 0.3248 0.0123 0.3264 3.3290 

6 0.2686 0.0089 0.4609 3.1114 

1.5 2 0.5236 0.0208 -0.2296 2.9934 

4 0.3896 0.0137 0.0230 2.7440 

6 0.3238 0.0101 0.0834 2.6767 

3.0 2 0.5513 0.0198 -0.3418 3.0006 

4 0.4121 0.0134 -0.1413 2.7469 

6 0.3431 0.0099 -0.0618 2.5109 

2.3.3 Moment generating function (mgf) and probability weighted moments 

(PWMs) 

The mgf of APTIITL-G family is obtained as 

( ) ( ) ,qT qt
TM q E e e f t dt



−

 = =
  

( 1) 1
*
, , , 2( 1)

, 0 0 0

,

j k
n

j k m n m

j n k m

E Y





+ −

+

= = =

 =
    (43)
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where, 

( )

( ) ( )
( )

1

*
, , ,

log( ) ( 1) 1
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! ! 1 1

jn
k m

j k m n

q j k

k mj n m

  




+

++ −   
= −   

+ −    

and 2( 1)
n

mE Y +
 
 

is the nth moment of the exp-G family with power parameter 2( 1).m +

The PWMs of a random variable T as defined in [29] is given as 

, ( ) ( ) ( ) .r q r q
q r E T F t t f t F t dt



−

 = =
     (44) 

By inserting (5) and (6) into (44), the authors obtained the ( ),
th

q r  PWMs of APTIITL-G family as

( )
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Further simplification of (45) and substituting into (44), yields 
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, , 2( 1)

, 0

,r
q r k m m

l j

E Y 


+

=

 =
    (46) 

where, 

( ) ( )

( ) ( )
( )

1( 1) 1
**
, 1

0 0

1 log( ) ( 1) 1
1 .

! 1 1

j jj k
q l k m

k m q
k m

l q j k

l k mj m

   




++ −
− + +

+
= =

+ + −     
= −     

     + −
 

2.3.4 Renyi Entropy 

The Renyi entropy of a random variable T with a known pdf, ( )f t  is given by 

( ) ( )
1

log , 0, 1.
1

R f t dt   




−
=  

−   (47) 

Applying (6) in (47), the Renyi entropy of APTIITL-G family is defined as follows. 

( ) ( ) ( )( )
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Employing (11) and (12) into (48), yields 
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2.3.5 Order Statistics 

Suppose that 
1 2, , ..., nT T T are random samples generated from a known probability distribution. Let 

:r nT denote the rth order statistic, then the pdf of 
:r nT is defined as 

( )
( )

( ) 1
:

0

1
1 ( ) ( ) ,

, 1

n r
p r p

r n

p

n r
f t f t F t

pB r n r

−
+ −

=

− 
= − 

− +  
  (50) 

By inserting (5) and (6) into (50), the authors obtained the pdf of APTIITL-G rth order statistics as 

follows. 

( )
( )

( )( )
( ) ( )( )21 1 1 ,111 2
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1 log
( ) ( ) 1 2 ( , ) ( , ) 1 ,

1
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(51)
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Employing similar approach in (45),  (51) is further simplified as 

( ) ( )
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so that (50) now becomes 
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where, 
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Whereas, the sth moment of APTIITL-G rth order statistic can be expressed as 

( )
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where 2( 1)
s

mE Y +
 
 

 is the sth moment of exp-G family with power parameter 2( 1)m+ . 

2.4 Parameter Estimation and Simulation Study 

2.4.1 Maximum Likelihood Estimation 

The method of maximum likelihood estimation is adopted to estimate the unknown parameters of 

APTIITL-G family of distributions. Suppose ( )1 2, , ..., nt t t  are random samples generated from 

APTIITL-G family, then the log-likelihood function is given as 
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The score function ( )
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associated with the log-likelihood 

function in (55) is obtained by taking the first derivative of (55) with respect to the parameters. These 

are expressed as 
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,
, ,

i

i
j

f t
f t







=


and j is the thj element of the vector of parameter .

The maximum likelihood estimates (MLEs) of   say ( )ˆ ˆˆ ˆ , , ,   =  are obtained by solving the

system of nonlinear equation ( ), 0.iU t  = Statistical packages such as bbmle and optim in R 

software can be used to numerically compute the parameter estimates  
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2.4.2 Simulation Study 

Again, taking the Kumaraswamy distribution as the generator, the study investigates the 

performance of the parameter estimates of the APTIITLK distribution via a Monte Carlo simulation 

study. Random samples of size ( )100, 200,500,800,1000n =  are generated from the APTIITLK

distribution at two distinct sets of parameter values ( )0.2, 0.8, 3, 2   = = = =  and

( )0.2, 0.8, 3, 2   = = = = . At each case, the simulation is repeated 3000 times and the following 

quantities are computed: 

i) mean estimate ( )
1

1
ˆ ,

N

i

i
N

 
=

= 

ii) average bias ( )
1

1
ˆ ,

N

i

i
N

 
=

= −

iii) root mean square error (RMSE) ( )
2

1

1
ˆ .

N

i

i
N

 
=

= −

Tables 2 and 3 display the mean estimate, average bias and root mean square errors of the estimates 

of APTIITLK distribution. 

Table 2: Simulation results of APTIITLK distribution for ( )0.7, 0.8, 0.5, 2   = = = =

Parameters N Mean Bias RMSE 

100 0.6672 0.6648 1.0672 

200 0.6708 0.5707 0.9121 

 500 0.6827 0.4825 0.3039 

800 0.6902 0.2401 0.0751 

1000 0.7121 0.1361 0.0022 

100 0.7646 0.1846 0.0721 

200 0.7920 0.0920 0.0352 

 500 0.8014 0.0614 0.0191 

800 0.8022 0.0355 0.0075 

1000 0.8155 0.0252 0.0013 

100 0.4635 0.0233 2.0535 

200 0.4669 0.0151 1.8012 
 500 0.4702 -0.5750 0.9453 

800 0.4847 -1.2353 0.0413 

1000 0.5177 -1.3023 0.0085 

100 1.8647 0.4106 1.8287 

200 1.8707 0.2651 0.9518 

 500 1.9237 0.1291 0.4737 

800 2.1101 0.0120 0.2042 

1000 2.1261 0.0014 0.0134 
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Table 3: Simulation results of APTIITLK distribution for ( )0.2, 2, 0.2, 0.5   = = = =

Parameters n Mean Bias RMSE 

100 0.1789 0.7149 2.0312 

200 0.1820 0.4812 1.3635 

 500 0.2002 0.2102 0.2738 

800 0.2016 0.1650 0.0225 

1000 0.2106 0.0567 0.0061 

100 1.8981 0.3981 0.3534 

200 1.9017 0.1517 0.2197 

 500 1.9157 0.8573 0.0536 

800 2.1195 0.0995 0.0129 

1000 2.2014 0.0418 0.0031 

100 0.1845 0.4459 0.5416 

200 0.1886 0.1325 0.3162 
 500 0.2051 0.0640 0.1916 

800 0.2073 -0.9782 0.0177 

1000 0.2105 -1.1086 0.0042 

100 0.4749 0.8951 0.6725 

200 0.4850 0.6232 0.2524 

 500 0.5002 0.3589 0.1626 

800 0.5160 0.1242 0.0884 

1000 0.5167 0.0253 0.0152 

From the results in Tables 2 and 3, the following remarks were observed: 

(i) the mean estimate for the parameters approaches the true parameter value as n

increases;

(ii) parameter estimates ,   and   are positively biased, while parameter estimate   

can both be positively and negatively biased;

(iii) the bias and root mean square error for all the parameters decrease as n increases.

These remarks are consistent with the properties of a good estimator. 

3. DATA ANALYSIS, RESULTS AND DISCUSSIONS

In this Section, we illustrate the potential of alpha power type II Topp-Leone Kumaraswamy 

distribution (APTIITLKD) belonging to the APTIITL-G family of distributions using two real data 

sets. The data sets are concerned with the recovery and mortality rates of Covid-19 patients in 

Nigeria, covering a duration of two (2) months (May 1 to June 30, 2020). 

The flexibility of APTIITLK distribution in data fittings is investigated by comparing its fit with the 

ones obtained from existing bounded non-nested models. The density function of these competitor 

distributions is defined as follows: 

1. Odd log-logistic Kumaraswamy distribution (OLLKD) studied by [30];

( ) ( )

( )( ) ( )

1
1

1

2

1 1 1

( , , , ) ;

1 1 1

b b
a a a

b b
a a

ab x x x

f x a b

x x



 




−
−

−  − − −
  

=
 

− − + − 
 

2. Unit-Burr XII distribution (UBXIID) developed by [31];
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( ) ( )( )
( )111( , , ) log 1 log ;f x x x x


 
  

− +
−−= − + −

3. Unit-Burr III distribution (UBIIID) proposed by [32];

( ) ( )( )
( )11

2 1 1( , , ) 1 1 1 ;f x x x x
 

  
− +

−
− − −= − + −

4. Beta distribution reported in [33];

( )

( )
( )

( ) ( )

( )

11 1
( , , ) , , ;

,

bax x a b
f x a b B a b

B a b a b

−− −  
= =

 +

5. Kumaraswamy distribution (KwD) developed by [26];

( )
1

1( , , ) 1 .
b

a af x a b abx x
−

−= −

Data set 1: This data set comprises of the daily recovery rate of Covid-19 patients in Nigeria within 

the period of 2 months (May 1 to June 30, 2020). The data set is obtained from the ratio of total daily 

recovery and the total confirmed cases. The data is presented as follows:  

0.1617512, 0.1469849, 0.1563722, 0.1488223, 0.1630508, 0.1697933, 0.1704481, 0.1735685, 0.1794748, 

0.1768584, 0.1943547, 0.2003342, 0.2152484, 0.2285936, 0.2422018, 0.2618751, 0.2674945, 0.2662348, 

0.2708952, 0.2755729, 0.2718073, 0.2764082, 0.2888653, 0.2886848, 0.2864403, 0.2858341, 0.2863850, 

0.2907459, 0.2899376, 0.2898021, 0.2959063, 0.2951409, 0.2994731, 0.2981372, 0.3069642, 0.3120567, 

0.3127606, 0.3170751, 0.3156003, 0.3123886, 0.3136308, 0.3087811, 0.3221790, 0.3252774, 0.3245260, 

0.3211070, 0.3279100, 0.3364533, 0.3412879, 0.3437092, 0.3391559, 0.3398044, 0.3398346, 0.3433625, 

0.3457312, 0.3458919, 0.3542364, 0.3582257, 0.3666300, 0.3740898, 0.3793103 

Data set 2: This data set holds the daily records of mortality rate of Covid-19 patients in Nigeria 

within the same time frame in the first data set. It is computed from the ratio of daily death cases 

and the total confirmed cases. The data is given as follows: 0.003225806, 0.004187605, 0.005863956, 

0.0007137759, 0.002033898, 0.001589825, 0.001418037, 0.001022495, 0.002409058, 0.002500568, 

0.003232062, 0.001462294, 0.001609334, 0.001162340, 0.0005504587, 0.000711617, 0.0008390670, 

0.0009716599, 0.001406030, 0.0001497679, 0.001425314, 0.001239499, 0.0009301090,  0.0003827019, 

0.0006197323, 0.0008389262, 0.001832131, 0.0005608525, 0.0005375188, 0.0002029427, 0.001180870, 

0.001323502, 0.001109160, 0.001343364, 0.00008683571, 0.0006754475, 0.0008174610, 0.0007208073, 

0.0009374268, 0.0005199049, 0.0002883298, 0.001168064, 0.0003293591, 0.0002550695, 0.0009325459, 

0.0008404370, 0.0002332634, 0.001747956, 0.0007575758, 0.0003133650, 0.0006058158, 0.0009385497, 

0.0005736412, 0.0003275467, 0.0003633061, 0.0003979836, 0.0003004550, 0.0002076671, 0.0001628200, 

0.0002785183, 0.0003113567. 

Model selection criteria such as the maximized log-likelihood (Log-Lik), Akaike information 

criterion (AIC), and some goodness of fit test statistics including the Komolgorov-Smirnov (K-S) and 

Crammer von Mises (W*) test statistics with their corresponding p-value are employed for model 

comparison. Tables 4 and 5 present the summary statistics of the recovery and mortality rate of 

Covid-19 patients in Nigeria, respectively. 
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Table 4: Summary Statistics of the Covid-19 Recovery Data set 

Models Estimates Log-Lik  AIC K-S W* 

(p-value) (p-value) 

APTIITLKD 3.5166 = 85.3897 -165.7794 0.1223 0.2019 

2.7647 = (0.2963)  (0.2641) 

11.4660 =

10.7149 =

OLLKD  0.5458a = 78.4359 -150.8717 0.1366 0.2883 

0.9851b = (0.1867)  (0.1458) 

6.7200 =

UBXIID  0.0802 = 84.7801 -165.5602 0.1370 0.2756 

50.7525 = (0.1848)  (0.1586) 

UBIIID 0.0496 = 40.7476 -77.4952 0.4037 2.6963 

20.8434 = (1.711e-9) (2.644e-7) 

Beta 12.4278a = 79.0322 -154.0643 0.1897 0.4963 

31.8699b = (0.0214)  (0.0404) 

Kumaraswamy 5.6206a = 84.5196 -165.0392 0.1375 0.2452 

785.6500b = (0.1815)  (0.1948) 

Table 5: Summary Statistics of the Covid-19 Mortality Data set 

Models Estimates Log-Lik  AIC K-S W* 

(p-value) (p-value) 

APTIITLKD 68.5111 = 369.706 -721.412 0.0549 0.0284 

0.4399 = (0.9880)  (0.9819) 

8.7893 =

12.7477 =

OLLKD  0.2645a = 360.7049 -715.4097 0.0726 0.0349 

4.2375b = (0.8811)  (0.9586) 

5.0911 =

UBXIID  0.0651 = 216.3316 -428.6632 0.5653 5.3930 

7.7576 = (1.665e-15) (2.2e-16) 

UBIIID 0.0636 = 257.1764 -510.3529 0.5169 4.7144 

2.1849 = (1.887e-15) (2.2e-16) 

Beta 1.5592a = 359.0777 -714.1554 0.0725 0.0639 

1446.418b = (0.8821)  (0.7913) 

Kumaraswamy 1.2125a =  357.7849 -711.5698 0.0843 0.0844 

3639.133b = (0.7469)  (0.6686) 
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3.1 Discussion of Results 

By way of discussing the results in Tables 4 and 5, it is well known that the most appropriate model 

in fitting any real data set, corresponds to the one having the maximum value of log-likelihood and 

the minimum value in respect to AIC, K-S and W* with the highest p-value. Clearly, from these tables 

we observed that the APTIITLK distribution satisfying the conditions, outperformed the rest 

competitor distributions. Thus, becoming the appropriate model in fitting the two data sets 

considered. Furthermore, we illustrate the flexibility of the APTIITLK distribution over the 

competitor distribution through graphical plots such as the density and distribution fits of the 

distributions for each data set as shown in Figures 6 and 7, respectively. 

Figure 6: The fitted pdf and cdf of the distributions for Covid-19 recovery data set 

Figure 7: The fitted pdf and cdf of the distributions for Covid-19 mortality data set 

4. CONCLUSION

In this paper, we have developed a new family of distributions called “Alpha Power Type II Topp-

Leone-generated family of distributions” and some of its mathematical properties were derived. The 

maximum likelihood estimation method was adopted to obtain the parameter estimate of the family 
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of distributions. A Monte Carlo simulation study was conducted in other to investigated the 

performance of the parameter estimates of sub-model belonging to the proposed family of 

distributions. Two data sets comprising of the daily recovery and mortality rates of Covid-19 

patients in Nigeria, from May 1 to June 30, 2020, was employed to illustrate the potential of the 

proposed family in real world data fittings. Results obtained from the analysis clearly revealed that 

the APTIITLK distribution from the proposed family performed reasonably better than the 

compared non-nested distributions in analyzing the two Covid-19 datasets under study. 
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Abstract

This work proposes a new one-parameter model titled the type II Topp Leone half logistic (TIITLHL)
model which is characterized by an increasing and decreasing hazard rate function quite dependent on the
shape parameter. Some structural properties and basic functions used in reliability analysis are derived.
Simulations are carried out for both uncensored and censored samples. The uncensored simulation results
indicated that the estimators perform quite well in producing good parameter estimates at finite sample
sizes. However, the Anderson Darling estimator (ADE) average estimate tend to the true parameter
value faster than other methods with minimum bias. More so, simulation based on censored samples
using different censoring proportions showed that the bias, MSE and MRE values decrease as the sample
size increases for the different censoring proportions. Two uncensored and censored datasets from the
medical and environmental sciences were analysed to show the relevance, flexibility and adaptability of
the TIITLHL model, and the new model achieved the best performance when compared with six other
competing lifetime models. In addition, the log-TIITLHL regression model constructed and compared with
two existing models showed that this model will be a useful option in survival investigation.

Keywords: Half-logistic distribution, Classical estimation methods, Monte-Carlo simulation, type
II censoring, Type-II-Topp-Leone-G class

1. Introduction

The standard half-Logistic (HL) model pioneered by [1] has gained a lot of popularity as a
significant model given its extensive applicability in lifetime modeling and reliability analysis.
The cumulative density function (CDF) of the standard HL model is

G(k) =
1 − e−k

1 + e−k , k > 0, (1)

and the corresponding probability density function (PDF) to (??) is

g(k) =
2e−k

(1 + e−k)2 , k > 0, (2)

Several authors have pioneered various extensions of the HL model such as the type I HL family
of distributions by [2], inverse HL model by [3], Poisson HL model by [4], type II HL family of
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distributions by [5], Kumaraswamy HL model by [6], extended HL model by [7], Transmuted HL
model by [8], new type I HL model by [9], odd Lindley HL model by [10], weighted HL model
by [11], modified HL model by [12], Poisson-logarithmic HL model by [13], extended type I HL
family of distributions by [14] and Gamma power HL model by [15].

The type II Topp Leone-G (TIITL-G) class of distributions was pioneered by [16]. The TIITL-G
class has just one parameter which imply that the proposed extended HL model in this study
will have a single shape parameter. The CDF and PDF of the TIITL-G class are

F (k) = 1 −
[
1 − G2 (k)

]τ
, (3)

and
f (k) = 2τg (k) G (k)

[
1 − G2 (k)

]τ−1
, (4)

where τ > 0 is a shape parameter, G(k) and g(k) are considered as the CDF and PDF of the
baseline model. The novelty of this study is the creation of a new one-parameter lifetime model
titled the TIITLHL model, investigation of six different estimation methods for the new model
with applicability to uncensored and censored survival time datasets, and introduction of a new
log-TIITLHL regression model for analysing censored response variable.

The remaining parts are outlined like this: Part 2 introduces the CDF and PDF of the TIITLHL
model. Part 3 presents reliability analysis and several important structural properties of the
TIITLHL model. Six classical estimation approaches are discussed in Part 4 to appreciate the
parameters of the TIITLHL model for uncensored sample. The maximum likelihood estimator
based on the type-II right censored scheme is presented in Part 5. The finite sample performance
of the TIITLHL estimators is presented in Part 6 using Monte Carlo experiments. Part 7 deals with
a new TIITLHL regression model. The applications and empirical results are presented in Part 8.
Finally, Part 9 presents the conclusion.

2. Model Genesis

This part introduces a new one-parameter model called the TIITLHL model by inserting Eqs (1)
and (2) into Eqs (3) and (4), then the CDF, PDF, survival function and hazard rate function (HRF)
of the TIITLHL model are

F(k, τ) = 1 −

1 −
(

1 − e−k

1 + e−k

)2
τ

, k > 0, τ > 0, (5)

f (k, τ) =
4τe−k

(1 + e−k)2

(
1 − e−k

1 + e−k

)1 −
(

1 − e−k

1 + e−k

)2
τ−1

, k > 0, τ > 0, (6)

Figure 1 depicts the graphical shapes of the TIITLHL density function (PDF) with selected values
for τ. The density function (PDF) is uni-modal, right-skewness, and heavy-tailed. The survival
(Reliability) function (SF) and hazard (failure) rate (HRF) of the TIITLHL model, take the forms

S(k, τ) =

1 −
(

1 − e−k

1 + e−k

)2
τ

, (7)

and

h(k, τ) =
4τe−k

(1 + e−k)2

(
1 − e−k

1 + e−k

)1 −
(

1 − e−k

1 + e−k

)2
−1

, (8)

More so, the reversed HRF of the TIITLHL model is
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Figure 1: The density function (PDF) plots of the TIITLHL model.

r(k, τ) =
4τe−k

(1 + e−k)2

(
1 − e−k

1 + e−k

)1 −
(

1 − e−k

1 + e−k

)2
τ−11 −

1 −
(

1 − e−k

1 + e−k

)2
τ

−1

, (9)

and the cumulative HRF takes the form

H(k, τ) = −τ log

1 −
(

1 − e−k

1 + e−k

)2
 . (10)

The graphical shapes of the HRF for TIITLHL model with various selected values of τ are depicted
in Figure 2. The model is characterized by an increasing-decreasing HRF.

3. Structural Properties

This part describes the statistical properties of the TIITLHL model..

3.1. Quantile function, Bowley’s skewness and Moor’s kurtosis

If the random variable (r.v) K ∼ TIITLHL(τ), then the quantile function by inverting Eq (5) takes
the form

k = − log

{
1 − [1 − (1 − u)

1
τ ]

1
2

1 + [1 − (1 − u)
1
τ ]

1
2

}
, (11)

where u ∼ uni f orm(0, 1). By setting u = 0.5 in Eq (11), the median (M) of the TIITLHL model
takes the form
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Figure 2: Survival function plot (a), hazard rate function plot (b), reversed HRF plot (c) and cumulative HRF plot (d)
of the TIITLHL model.

k = − log

{
1 − [1 − (0.5)

1
τ ]

1
2

1 + [1 − (0.5)
1
τ ]

1
2

}
. (12)

The Bowley’s skewness [17] and Moor’s kurtosis [18] are found using the following expressions,
respectively.

Sk =
Q
( 3

4 ; τ
)
− 2Q

(
1
2 ; τ
)
+ Q

(
1
4 ; τ
)

Q
( 3

4 ; τ
)
− Q

(
1
4 ; τ
) . (13)

Ku =
Q
( 7

8 ; τ
)
− Q

( 5
8 ; τ
)
− Q

( 3
8 ; τ
)
+ Q

(
1
8 ; τ
)

Q
( 6

8 ; τ
)
− Q

( 2
8 ; τ
) . (14)

where Q(.) is the quantile function.

3.2. Dispersion index and Coefficient of variation

The dispersion index (DI) tells when a model is suitable for modeling equi-dispersed (DI = 1),
under-dispersed (DI < 1) and over-dispersed (DI > 1). The coefficient of variation (CV) is a
relative measure of variability and a high CV value shows higher variability. The expressions for
the DI and CV functions are
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DI =
Var(X)

E(X)
=

Q( 3
4 ;τ)−Q( 1

4 ;τ)
1.35

Q( 3
4 ;τ)+Q( 1

2 ;τ)+Q( 1
4 ;τ)

3

. (15)

and

CV =
(Var(X))

1
2

E(X)
=

(
Q( 3

4 ;τ)−Q( 1
4 ;τ)

1.35 )
1
2

Q( 3
4 ;τ)+Q( 1

2 ;τ)+Q( 1
4 ;τ)

3

. (16)

where Q(.) is the quantile function.
Table 1 reports the numerical values of the mean (ME), variance (VAR), standard deviation

(STD), median (M), skewness (Sk), kurtosis (Ku), Dispersion index (DI) and Coefficient of variation
(CV) for the TIITLHL model using selected values of τ.

Table 1: The numerical values of ME, VAR, STD, M, Sk, Ku, DI and CV

τ ME VAR STD M Sk Ku DI CV

0.2 5.282 17.356 4.166 4.836 0.238 0.629 3.286 0.789
0.5 2.784 3.531 1.879 2.634 0.177 0.484 1.268 0.675
1.0 1.832 1.293 1.137 1.763 0.135 0.370 0.706 0.621
1.5 1.459 0.769 0.877 1.412 0.117 0.321 0.527 0.601
2.0 1.247 0.543 0.737 1.212 0.108 0.294 0.436 0.591
2.5 1.107 0.419 0.647 1.078 0.102 0.277 0.378 0.584
3.0 1.006 0.341 0.584 0.980 0.097 0.266 0.339 0.581
3.5 0.928 0.287 0.536 0.905 0.095 0.257 0.310 0.578
4.0 0.865 0.248 0.498 0.845 0.092 0.251 0.287 0.576
4.5 0.814 0.218 0.467 0.795 0.091 0.246 0.268 0.574
5.0 0.771 0.194 0.441 0.753 0.089 0.242 0.252 0.572

The ME, STD, Sk and Ku values of the TIITLHL model decrease as the selected values of τ increase.
The TIITLHL model is positively skewed and beneficial for over-and-under dispersed datasets.
Figure 3 depict the plots of the ME, VAR, Sk and Ku of the TIITLHL for selected values of τ and
support the conclusion reached using Table 1.

3.3. Moments and Moment generating function

The rth raw moment of the TIITLHL model is given as

µ′
r =

τ−1

∑
a=0

∞

∑
b,c=0

ϑa,b,c (b + c + 1)−r−1 Γ (r + 1) . (17)

Proof. The rth raw moment of the TIITLHL model is found using

µ′
r =

∫ ∞
0 kr f (k; τ) dk,

= 4τ
∫ ∞

0 kr e−k

(1+e−k)2

(
1−e−k

1+e−k

) [
1 −

(
1−e−k

1+e−k

)2
]τ−1

dk,
(18)

By utilising Taylor series expansions in Eq (??), we have

µ′
r =

τ−1

∑
a=0

∞

∑
b,c=0

ϑa,b,c

∫ ∞

0
kre−k(b+c+1)dk, (19)

where ϑa,b,c = 4τ (−1)a+b+c
(

τ − 1
a

)(
2a + 1

b

)(
−2 (1 + a)− 1

c

)
.

Let
z = k (b + c + 1) ⇒ k = z

(b+c+1) ,
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Figure 3: The Mean, Variance, skewness and kurtosis plots of the TIITLHL model.

dk
dz = 1

(b+c+1) ⇒ dk = dz
(b+c+1) .

Hence,

µ′
r =

τ−1

∑
a=0

∞

∑
b,c=0

ϑa,b,c

∫ ∞

0

(
z

(b + c + 1)

)r
e−z dz

(b + c + 1)
, (20)

µ′
r =

τ−1

∑
a=0

∞

∑
b,c=0

ϑa,b,c (b + c + 1)−r−1
∫ ∞

0
zre−zdz, (21)

By utilising the gamma integral function Γ (α + 1) =
∫ ∞

0 zαe−zdz. The rth raw moments of the
TIITLHL model takes the form

µ′
r =

τ−1

∑
a=0

∞

∑
b,c=0

ϑa,b,c (b + c + 1)−r−1 Γ (r + 1) . (22)

The first four moments are found by inserting r = 1, 2, 3, 4 into Eq (22), respectively. ■
The moment generating function (MGF) of the TIITLHL model is given as

MK (t) =
∞

∑
r=0

τ−1

∑
a=0

∞

∑
b,c=0

trϑa,b,c

r!
(b + c + 1)−r−1 Γ (r + 1) , (23)

Proof.
The MGF of the TIITLHL model, say MK (t) is found using
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MK (t) = E
(

etk
)
=

∞

∑
r=0

tr

r!

∫ ∞

0
Kr f (k; τ) dk =

∞

∑
r=0

tr

r!
µ′

r, (24)

By inserting Eq (7) into Eq (24), the MGF takes the form

MK (t) =
∞

∑
r=0

τ−1

∑
a=0

∞

∑
b,c=0

trϑa,b,c

r!
(b + c + 1)−r−1 Γ (r + 1) . (25)

■

3.4. Order statistics

If k1, k2, . . . , kn be a random sample from the TIITLHL model with k1:n < k2:n < . . . < kn:n as the
order statistics (O.S). The pdf of the pth O.S of the TIITLHL model is

fp:n (k) =
4τe−k(1 + e−k)−2 (φ) n!

(p − 1)! (n − p)!

{
1 −

[
1 − (φ)2

]τ}p−1 [
1 − (φ)2

]τ[(n−p)+1]−1
. (26)

Proof. The pdf of the pth O.S can be found using

fp:n (k) =
n!

(p − 1)! (n − p)!
g (k) [G (k)]p−1 [1 − G (k)]n−p , (27)

where B (., .) is the beta function. By inserting Eqs (5) and (6) into Eq (27), the pdf of the pth O.S
of the TIITLHL model after some simplification takes the form

fp:n (k) =
4τe−k(1 + e−k)−2 (φ) n!

(p − 1)! (n − p)!

{
1 −

[
1 − (φ)2

]τ}p−1 [
1 − (φ)2

]τ[(n−p)+1]−1
, (28)

where φ =
(

1−e−k

1+e−k

)
. By substituting p = 1 and p = n into Eq (28), the lowest and highest order

statistics are obtained. ■

4. Methods of estimation for uncensored sample

In this part, the parameter of the TIITLHL model is estimated via the maximum likelihood
estimation (MLE), maximum product spacing estimation (MPSE), Anderson Darling estimation
(ADE), least square estimation (LSE), weighted least square estimation (WLSE), and Cramer Von
Mises estimation (CVME).

4.1. The MLE

If k1, k2, . . . , kn be the random observed values from TIITLHL model. Then, the MLE function L(τ)
takes the form

L (τ) = (4τ)n
n

∏
i=1

e−ki(
1 + e−ki

)2 (φi)
[
1 − (φi)

2
]τ−1

(29)

where φi =
(

1−e−ki

1+e−ki

)
. The log-likelihood function of the TIITLHL model takes the form

log (L (τ)) = n log(4τ)−
n

∑
i=1

ki − 2
n

∑
i=1

log
(

1 + e−ki
)
+

n

∑
i=1

log (φi) + (τ − 1)
n

∑
i=1

log
[
1 − (φi)

2
]

,

(30)
The first derivative of Eq (30) with respect to τ is
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∂ log (L (τ))

∂τ
=

n
τ
+

n

∑
i=1

log
[
1 − (φi)

2
]

. (31)

The R (optim function) is employed to estimate the TIITLHL parameter using numerical approaches.

4.2. The LSE and WLSE

Minimizing with respect to τ, the LS estimate τ̂LS can be found using

LS (τ) =
n

∑
i=1

1 −

1 −
(

1 − e−k

1 + e−k

)2
τ

− i
n + 1

2

. (32)

Likewise, minimizing with respect to τ, the WLS estimates τ̂WLS can be found using

WLS (τ) =
n

∑
i=1

(n + 2)(n + 1)2

i (n − i + 1)

1 −

1 −
(

1 − e−k

1 + e−k

)2
τ

− i
n + 1

2

. (33)

4.3. The MPSE

The MPS for the TIITLHL model with ordered sample k(1:n), k(2:n), . . . , k(n:n) is given as follows

GM (τ|kn:n) =

[
n+1

∏
i=1

Di (ki, τ)

] 1
n+1

, (34)

where Di (ki, τ) = F
(

k(i:n) |τ
)
− F

(
k(i−1:n) |τ

)
; i = 1, 2, . . . , n + 1. and F (k, τ) is given in Eq (5).

4.4. The ADE

Minimizing with respect τ, the AD estimate τ̂AD can be found using

AD (τ) = −n − 1
n

n

∑
i=1

(2i − 1)
[
log F

(
k(i:n) |τ

)
+ log F̄

(
k(n+1−i:n) |τ

)]
, (35)

where F̄ (k, τ) = 1 − F (k, τ) and F (k, τ) is given in Eq (5).

4.5. The CVME

Minimizing with respect τ, the CVM estimates τ̂CVM can be found using

CVM (τ) =
1
12

+
n

∑
i=1

1 −

1 −
(

1 − e−k

1 + e−k

)2
τ

− 2(i − 1) + 1
2n

2

. (36)

5. MLE for type II right censoring

Given that a fixed number of failed units have been observed, a life testing experiment is concluded.
Then the remaining units are designated as type-II-censored. Let k(1), k(2), . . . , k(p), p ≤ n denote
the ordered values of a random sample (r.s) k1, k2, . . . , kn (failure times) and observations cease
after the pth unsuccessful unit occurs, then the likelihood function is given

L (τ; k) =
n!

(n − p)!
[
R
(
kp; τ

)]n−p
p

∏
i=1

f (ki; τ) . (37)
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If k1, k2, . . . , kn be r.s from the TIITLHL (τ), then the likelihood function is

L (τ; k) =
n!

(n − p)!

1 −
(

1 − e−kp

1 + e−kp

)2
τ(n−p)

p

∏
i=1


4τeki

(
1−e−ki

1+e−ki

)
(1 + e−ki )2

1 −
(

1 − e−ki

1 + e−ki

)2
τ−1

 .

(38)
The log-likelihood function without the constant term is

l (τ; k) ∝ p [log (4) + log (τ)] + τ (n − p) log
[

1 −
(

1−e−kp

1+e−kp

)2
]
− ∑

p
i=1 ki

−2 ∑
p
i=1 log(1 + e−ki ) + ∑

p
i=1 log

(
1−e−ki

1+e−ki

)
+ (τ − 1)∑

p
i=1 log

[
1 −

(
1−e−ki

1+e−ki

)2
]

.
(39)

Setting ∂
∂τ l (τ; k) = 0. The MLE (τ̂) can be found as solution of

p
τ
+ (n − p) log

1 −
(

1 − e−kp

1 + e−kp

)2
+

p

∑
i=1

log

1 −
(

1 − e−ki

1 + e−ki

)2
 (40)

Using the R (optim function), the non-linear equation in Eq (40) is solved numerically to obtain the
MLE τ̂.

6. Simulation

The Monte Carlo simulations for uncensored and censored samples are executed for the TIITLHL
parameter (Pa.).

6.1. Simulation based on uncensored sample

The simulations using MLE, LSE, WLSE, MPSE, ADE, and CVME approaches for the TIITLHL
parameter are presented in this subpart. The simulation is carried out as follows:

• Set the parameter value τ = 0.5, 2.5 for the Monte Carlo simulation process.

• Random samples of sizes n = 20, 70, 150, 250, 350 with replicates N = 5000 generated using
Eq (11).

• The MLE, LSE, WLSE, MPSE, ADE, and CVME processes are executed to find the estimates
of parameter (τ).

• Compute the average estimate (AVEs), absolute biases (ABs), mean square errors (MSEs)
and mean relative error (MREs) using the information in the preceding step.

Tables 2 and 3 reports the AVEs, ABs, MSEs and MREs for the MLE, LSE, WLSE, MPSE, ADE, and
CVME methods with different sample sizes. The results are graphically summarized in Figures 4
and 5. As seen from these graphs, the ABs, MSEs and MREs tend to zero as n increases for the
six estimation methods. However, the ADE average estimate tend to the true parameter value
faster than other estimation methods with minimum AB.

Table 2: The six estimators AVE for τ = 0.5 based on uncensored sample.

n Measures MLE MPSE ADE LSE WLSE CVME

20 AVE 0.527 0.489 0.518 0.522 0.520 0.526
70 AVE 0.507 0.492 0.504 0.505 0.505 0.506
150 AVE 0.503 0.495 0.502 0.502 0.502 0.503
250 AVE 0.502 0.496 0.501 0.501 0.501 0.501
350 AVE 0.501 0.497 0.500 0.500 0.500 0.500
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Figure 4: AB, MSE and MRE of Estimators in Table 2.

Table 3: The six estimators AVE for τ = 2.5 based on uncensored sample.

n Measures MLE MPSE ADE LSE WLSE CVME

20 AVE 2.637 2.444 2.591 2.610 2.598 2.632
70 AVE 2.536 2.460 2.521 2.525 2.524 2.531
150 AVE 2.517 2.475 2.509 2.511 2.511 2.514
250 AVE 2.508 2.480 2.503 2.504 2.504 2.505
350 AVE 2.504 2.483 2.500 2.501 2.501 2.502

Figure 5: AB, MSE and MRE of Estimators in Table 3.
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6.2. Simulation based on type-II-right censored sample

The simulation is executed for the MLE using different random sample sizes n = (20, 70, 150, 250, 350)
generated with Eq (11). The length of censored sample test is given by p = nm, where (m) is the
censoring proportion (0 < m < 1). Table 4 reports that the bias, MSE and MRE values decrease
as the sample size increases for the different censoring proportions considered.

Table 4: The MLE, Bias, MSE and MRE based on censored sample.

n m τ τ̂ Bias MSE MRE

20 0.3 0.5 0.881 0.381 0.145 0.762
2.5 4.405 1.905 3.629 0.762

0.5 0.5 0.752 0.252 0.063 0.503
2.5 3.758 1.258 1.583 0.503

0.7 0.5 0.781 0.281 0.079 0.562
2.5 3.906 1.406 1.976 0.562

70 0.3 0.5 0.611 0.111 0.012 0.223
2.5 3.057 0.557 0.310 0.223

0.5 0.5 0.650 0.150 0.022 0.299
2.5 3.248 0.748 0.560 0.299

0.7 0.5 0.657 0.157 0.025 0.315
2.5 3.287 0.787 0.620 0.315

150 0.3 0.5 0.551 0.051 0.003 0.101
2.5 2.753 0.253 0.064 0.101

0.5 0.5 0.554 0.054 0.003 0.108
2.5 2.771 0.271 0.073 0.108

0.7 0.5 0.573 0.073 0.005 0.145
2.5 2.863 0.363 0.132 0.145

250 0.3 0.5 0.567 0.066 0.004 0.132
2.5 2.831 0.331 0.110 0.132

0.5 0.5 0.587 0.087 0.008 0.175
2.5 2.936 0.436 0.190 0.175

0.7 0.5 0.579 0.079 0.006 0.158
2.5 2.896 0.396 0.157 0.158

350 0.3 0.5 0.485 -0.015 2E-04 0.030
2.5 2.424 -0.076 0.006 0.030

0.5 0.5 0.453 -0.047 0.002 0.095
2.5 2.264 -0.236 0.056 0.095

0.7 0.5 0.424 -0.076 0.006 0.153
2.5 2.118 -0.382 0.146 0.153

7. The log-TIITLHL regression model

Let K denotes a random variable which follows the TIITLHL model with parameter τ. Utilizing
the transformation Y = log (K) with location and scale parameters added, the density of Y is

fTIITLHL(y, τ, µ, σ) = 4τ
σ exp

[(
y−µ

σ

)
− exp

(
y−µ

σ

)] {
1 + exp

[
− exp

(
y−µ

σ

)]}−2

×
{

1−exp[− exp( y−µ
σ )]

1+exp[− exp( y−µ
σ )]

}(
1 −

{
1−exp[− exp( y−µ

σ )]
1+exp[− exp( y−µ

σ )]

}2
)τ−1

,
(41)

where τ, σ > 0, y, µ ∈ ℜ. The random variable Y has the log-TIITLHL (LTIITLHL) model with
location µ and scale σ parameters, respectively. The survival function to Eq (41) is

STIITLHL(y, τ, µ, σ) =

1 −

1 − exp
[
− exp

(
y−µ

σ

)]
1 + exp

[
− exp

(
y−µ

σ

)]


2
τ

. (42)

By inserting z = (y − µ)
/

σ, z ∈ ℜ into Eq (41). The standardized log-TIITLHL density takes
the form

fTIITLHL(z, τ) = 4τ
σ exp [(z)− exp (z)] {1 + exp [− exp (z)]}−2

×
{

1−exp[− exp(z)]
1+exp[− exp(z)]

}(
1 −

{
1−exp[− exp(z)]
1+exp[− exp(z)]

}2
)τ−1

.
(43)
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Let Ki = (ki1, . . . , kim)
T be the explanatory vector associated with the ith response variable yi for

i = 1, . . . , n. A regression model based on the TIITLHL density function is given by

yi = KT
i β + σzi, i = 1, . . . , n, (44)

where zi is the random error which follows the density function Eq (43), β = (β1, . . . , βm)
T , σ >

0, τ > 0 are unknown parameters and Ki is modeling µi = KT
i β. The density and survival

functions of yi are

fTIITLHL(yi; τ, σ, βT) = 4τ
σ exp [zi − exp (zi)] {1 + exp [− exp (zi)]}−2

. ×
{

1−exp[− exp(zi)]
1+exp[− exp(zi)]

}(
1 −

{
1−exp[− exp(zi)]
1+exp[− exp(zi)]

}2
)τ−1

,
(45)

and

STIITLHL(yi; τ, σ, βT) =

(
1 −

{
1 − exp [− exp (zi)]

1 + exp [− exp (zi)]

}2
)τ

, (46)

Let F and C denote the sets of units for which yi is the log-lifetime or log-censoring, respectively.

The log-likelihood for ϑ =
(

τ, σ, βT
)T

from Eq (44) is

l (ϑ) = r log
(

4τ
σ

)
+ ∑i∈F [zi − exp (zi)]− 2 ∑i∈F log {1 + exp [− exp (zi)]}

+∑i∈F log
{

1−exp[− exp(zi)]
1+exp[− exp(zi)]

}
+ (τ − 1)∑i∈F log

(
1 −

{
1−exp[− exp(zi)]
1+exp[− exp(zi)]

}2
)

+τ ∑i∈C log
(

1 −
{

1−exp[− exp(zi)]
1+exp[− exp(zi)]

}2
)

.

(47)

where zi =
(
yi − KT

i β
) /

σ and r is the number of uncensored observations (failures). The MLE ϑ̂
of ϑ can be obtained by maximizing Eq (47) using the R (optim function).

8. Applications

The potentiality of the introduced model is illustrated by means of five applications.

8.1. Applications to uncensored data

The first dataset consist of survival time of 72 Guinea pigs infected with virulent tubercle bacilli.
The data was initially reported by [19], and analysed by [6] and [20]. The second dataset, discussed
by [21] consists of 30 observations of March precipitation (in inches) in Minneapolis/St Paul.

Figure 6: Box, TTT, kernel-density, strip, and Violin plots of first uncensored data.

Figures 6 and 7 depict the box plot, TTT plot, kernel density plot, strip plot, and Violin plot
of the first and second datasets to check for outliers and symmetric nature. As depicted, both
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Figure 7: Box, TTT, kernel-density, strip, and Violin plots of second uncensored data.

datasets have certain outliers and are asymmetrical in nature. More so, the total test time (TTT)
plot depicts that the utilized datasets have increasing HRF which means that the TIITLHL model
can be used to model these datasets.

We fit the datasets with the TIITLHL, odd Lindley HL (OLIHL), Generalized HL (GHL), Inverse
Lindley (ILIN), Rayleigh (R), Inverse Rayleigh (IR), and Muth (M) models. The MLEs for all the
models are computed in R-software via the BFGS method (optim function ). The W∗, A∗ and KS
measures (we used abbreviations) for model comparisons. The MLEs and their standard errors
(SEs) in parentheses, log-likelihood (LL), and the information criteria are presented in Tables 5
and 6 for both datasets, respectively. The measures reveal that the TIITLHL model provides an
appropriate fit to both datasets (with lowest values of the goodness-of-fit statistics).

Table 5: The MLEs and SEs of the fitted models with goodness-of-fit measures for first uncensored data.

Model MLEs(SEs) LL W* A* CAIC AIC BIC HQIC KS(P-Value)

TIITLHL 1.257(0.148) -96.83 0.074 0.498 195.7 195.7 197.9 196.6 0.088(0.636)
OLIHL 0.289()0.024 -157.28 0.891 4.940 316.6 316.6 318.8 317.5 0.393(0.000)
GHL 0.786(0.093) -104.94 0.080 0.531 211.9 211.9 214.2 212.8 0.218(0.002)
ILIN 1.359(0.124) -129.20 0.929 5.634 260.5 260.4 262.7 261.3 0.232(0.001)

R 1.442(0.085) -98.96 0.133 0.814 200.0 199.9 202.2 200.8 0.107(0.376)
IR 0.480(0.028) -204.82 1.632 9.214 411.7 411.6 413.9 412.5 0.623(0.000)
M 0.480(0.028) -123.46 0.118 0.735 249.0 248.9 251.2 249.8 0.434(0.000)

Figure 8: The fitted pdfs (left panel) and cdfs (top-left,right panel) of competing models, fitted HRF (top-right,right
panel), P-P plot (bottom-left,right panel) and Q-Q plot (bottom-right,right panel) of the TIITLHL model for
first uncensored data.
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Table 6: The MLEs and SEs of the fitted models with goodness-of-fit measures for second uncensored data.

Model MLEs (SEs) LL W* A* CAIC AIC BIC HQIC KS(P-Value)

TIITLHL 1.351(0.247) -38.34 0.01483 0.1155 78.83 78.68 80.08 79.13 0.059(0.999)
OLIHL 0.364(0.048) -56.22 0.25812 1.6009 114.58 114.44 115.84 114.89 0.307(0.007)
GHL 0.828(0.151) -42.43 0.01530 0.1195 87.01 86.87 88.27 87.32 0.182(0.274)
ILIN 1.583(0.227) -45.22 0.09750 0.6014 92.59 92.44 93.84 92.89 0.228(0.089)

R 1.376(0.125) -38.92 0.02607 0.1979 79.99 79.85 81.25 80.30 0.084(0.985)
IR -0.927(0.085) -44.14 0.16293 0.9881 90.42 90.27 91.67 90.72 0.240(0.064)
M 0.185(0.091) -48.72 0.02471 0.1898 99.59 99.45 100.85 99.89 0.367(0.001)

Figures 8 and 9 display the histogram and Kaplan-Meier empirical cdf in conjunction with
fitted pdfs and cdfs of the TIITLHL and competing models for both datasets. Figures 8 and 9, also
depict the fitted HRF of the TIITLHL model with corresponding probability-probability (P-P) and
quantile-quantile (Q-Q) plots. The superiority of the TIITLHL model is supported by these figures.

Figure 9: The fitted pdfs (left panel) and cdfs (top-left,right panel) of competing models, fitted HRF (top-right,right
panel), P-P plot (bottom-left,right panel) and Q-Q plot (bottom-right,right panel) of the TIITLHL model for
second uncensored data.

Tables 7 and 8 report the estimation of the TIITLHL parameter based on six estimation methods
for the both uncensored datasets. From the results in Tables 7, the MPSE and WLSE are considered
as the appropriate methods with smaller KS and larger P-values than the other methods. Likewise,
the results in Table 8 attest that the MLE, ADE and WLSE are the appropriate methods with
smaller KS and larger P-values than the other methods.

Table 7: The results of the six estimation methods for first uncensored data.

Estimate↓Method→ MLE MPSE CVME ADE LSE WLSE

τ 1.257 1.215 1.279 1.262 1.266 1.229
KS 0.088 0.081 0.091 0.089 0.089 0.083

P-Value 0.600 0.700 0.600 0.600 0.610 0.700

Table 8: The results of the six estimation methods for second uncensored data.

Estimate↓Method→ MLE MPSE CVME ADE LSE WLSE

τ 1.351 1.266 1.354 1.347 1.011 1.351
KS 0.059 0.073 0.060 0.059 0.155 0.059

P-Value 0.999 0.999 0.999 0.999 0.470 0.999
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8.2. Applications to censored data

The first dataset represents the relief times (in minutes) of twenty patients receiving an analgesic.
The data was initially reported by [22] and the complete sample analysed by [23] and [24]. The
censored sample (number of failures) p, is chosen as 50% (censoring scheme). The MLE, KS and
P-Value for the TIITLHL model are reported in Table 9.

Table 9: The MLE and performance measure for the first censored data.

Models MLE KS P-Value

TIITLHL τ = 0.877 0.230 0.240

The second dataset represents the survival time of 72 Guinea pigs infected with virulent
tubercle bacilli. The complete sample was analysed by [6] and [20]. The censored sample (number
of failures) p, is chosen as 70% (censoring scheme). The MLE, KS and P-Value for the TIITLHL
model are reported in Table 10. It is evident that the TIITLHL appropriately fits the two survival
time censored datasets.

Table 10: The MLE and performance measure for the second censored data.

Models MLE KS P-Value

TIITLHL τ = 1.174 0.077 0.790

It is evident that the TIITLHL appropriately fits the two censored samples.

8.3. Regression model application

The usefulness of log-TIITLHL regression model is demonstrated by means of a real data analysis.
The log-TIITLHL regression model is compared with log-exponential (LE) and log-Burr-Hatke-
exponential (LBHE) regression models [25]. The utilized dataset contains 100 individuals having
HIV+ obtained from the Bolstad2 package in R-software. The observed survival times (yi), in
months, with censoring indicator (0 = alive and 1 = death) is analysed with two explanatory
variables: ki1, (0 = no and 1 = yes) represent the history of drug usage and ki2 represent the ages
of patients . The proposed regression model is

yi = β0 + β1ki1 + β2ki2 + σzi (48)

where zi has density Eq (43). The MLE method is utilized in estimating the unknown parameters
of log-TIITLHL, LE and LBHE regression models. Table 11 reports the regression models estimated
parameters, -LL and performance measures (AIC, BIC, AICc and HIQC values). The results
provided in Table 11 indicates that the LTIITLHL regression model has the lowest value of -LL and
performance measures values, respectively. Hence, it is concluded that log-TIITLHL regression
model provides appropriate fit than LE and LBHE regression models. More so, the estimated
regression parameters β0, β1 and β2 are statistically significant at 5% level of significance.
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Table 11: The regression models estimated parameters and performance measures.

LBHE L-E Log-TIITLHL

Parameters Estimates SE P-Value Estimates SE P-Value Estimates SE P-Value
τ 1.508 13.659 - 1.599 13.783 - 26.968 48.251 -
σ 0.778 0.067 - 0.839 0.072 - 1.684 0.143 -
β0 6.883 7.064 0.330 6.542 7.256 0.367 2.303 0.130 <0.001
β1 -0.091 0.014 <0.001 -0.091 0.014 <0.001 -0.023 0.009 0.020
β2 -1.021 0.193 <0.001 -1.049 0.189 <0.001 -0.261 0.109 0.017

−LL 128.059 128.502 128.051
AIC 266.12 267.00 266.10
BIC 279.14 280.03 279.13

AICc 266.76 267.64 266.74
HQIC 271.39 272.28 271.37

9. Conclusion

This work introduced a new one-parameter model titled the TIITLHL model and provided
some of its properties. The consistency of the maximum likelihood estimator and five other
estimators are proven by uncensored and censored simulation studies. Applications to real
medical and environmental sciences datasets revealed its flexibility and adaptability. The log-
TIITLHL regression model constructed and fitted to HIV+ data, and compared with other existing
models showed that the model will be a useful choice in survival investigation for practitioners.
Overall, the five applications showed the usefulness of the new model for asymmetric, uncensored
and censored data. In future works, the Bayesian analysis of TIITLHL accelerated failure time
model, the TIITLHL–G family of distributions and the discrete case of the TIITLHL model will be
addressed.
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Abstract 

 

The memory type control charts based on auxiliary information have been introduced in the 

literature for improved monitoring of the process parameters for normally distributed process. In 

this paper, we design moving average and double moving average control charts based on auxiliary 

information for efficient monitoring the shifts in the process variability. Regression estimator of 

process variance in the form of auxiliary and study variables is considered to construct charting 

statistics for the proposed charts. The average run length (ARL) and standard deviation of run 

length (SDRL) performance of the proposed charts is investigated using simulation study and is 

compared with the originally proposed Shewhart control charts based on auxiliary information and 

without auxiliary information. The proposed auxiliary information based moving average and 

double moving average charts are found to be efficient for monitoring the process variance of 

normally distributed process. An illustrative example based on simulated data set is provided to 

show the implementation of the proposed charts in detecting shifts in the process standard 

deviation. 

Keywords: Control chart, average run length, auxiliary information, moving 

average, double   moving average.  

 

 

1. Introduction 
 

Statistical process control (SPC) is a powerful statistical technique used to determine the 

performance of the process accurately. It has been widely used in manufacturing and service 

industries. A control chart is one of the most widely known tools in SPC which is extensively used 

to monitor process quality. It is designed to identify and detect timely assignable causes in the 

process. In general, control chart is used to detect changes in the process parameters. Two types of 

control charts are generally used to monitor production processes namely the location chart and 

the variability chart. The location chart is used to monitor process mean and the variability chart is 

used to monitor process variability. It is a standard practice to use Shewhart �̅� chart for monitoring 

the process mean and R or S charts for monitoring the process variability. Some practioners 

recommend a control chart based directly on the sample variance 𝑆2 control chart for monitoring 

process variability. A major disadvantage of Shewhart type control charts is that they use only 
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information of last sample observation and ignores the past information of the process which 

makes it insensitive to small shifts in process parameters.  

      Memory type control charts are most commonly used in process monitoring to detect small to 

moderate shifts in the process parameters. They are constructed using past information regarding 

the production process and are more sensitive to monitor the small and moderate shifts in the 

process parameters. These control charts includes cumulative sum (CUSUM), exponentially 

weighted moving average (EWMA) and moving average (MA).  Relative to CUSUM chart, the 

EWMA and MA charts are quite basic. The EWMA chart uses a weighted average as the chart 

statistic while the time weighted MA chart is based on simple moving average. The moving 

average statistics of width 𝑤 is simply the average of the w most recent observations and are more 

sensitive to monitor the small and moderate shifts in the process parameters. Wong et al. [1] 

developed simple procedures for the design of an individual MA chart and a combined MA-

Shewhart scheme. Khoo and Yap [2] proposed the use of single MA chart for joint monitoring of 

the process mean and variance by combining �̅� and 𝑆 charts into a single chart.  Adeoti and 

Olaomi [3] proposed a moving average control chart based on sample standard deviation for 

detecting small shifts in process variability. Ghute and Rajmanya [4] developed moving average 

control chart based on Downton’s D statistic and Gini’s mean difference G statistic for detecting 

small shifts in the process standard deviation. The proposed moving average control charts are 

found to be more efficient for monitoring process variability. In multivariate setup, Ghute and 

Shirke [5] developed a multivariate moving average 𝑇2 control chart for monitoring mean vector of 

multivariate process. It was shown that the proposed chart performs better than the Hotelling’s 𝑇2 

chart in the detection of small to moderate shifts in the process mean vector. Ghute and Shirke [6] 

also developed a multivariate moving average |𝑆|control chart for monitoring covariance matrix of 

multivariate normally distributed process. It was shown that proposed chart performs better than 

Shewhart-type |𝑆| chart in the detection of small to moderate changes in the process covariance 

matrix.  

 The double moving average (DMA) control charts have been proposed in the literature to 

further improve the performance of moving average (MA) control charts. Khoo and Wong [7] 

introduced the DMA chart by computing moving averages twice for early detection of small to 

moderate shifts in the process mean. It was shown that the DMA control chart performs better 

than the MA chart for the detection of small to moderate shifts in the mean. Adeoti et al. [8] 

proposed a DMA control chart based on sample standard deviation for detecting shifts in the 

process variability. Sukparungsee et al. [9] developed a mixed Tukey-Double moving average 

control chart for monitoring process mean of symmetric and asymmetric processes. They 

compared ARL performance of the proposed chart with the existing charts. It was shown that the 

proposed chart is an effective competitor to the existing counterparts. Taboran and Sukparungsee 

[10] designed a new EWMA-DMA control chart for detecting change of mean of the process with 

normal, Laplace, exponential and gamma distributions. They compared ARL performance of the 

proposed chart with other existing charts. It was shown that the proposed chart has best detection 

ability for certain level of shifts in process mean.  

 In order to increase the sensitivity of the traditional control charts many new modifications 

and improvements in the control charting procedure have been suggested in the SPC literature. 

One of such modifications is the development of auxiliary-information-based (AIB) control charts 

which have an excellent speed in detecting shift in the process parameters than those based 

without it. Such control charts are based on a statistic that utilizes information from both the study 

and auxiliary variables. The information on auxiliary variable is generally known prior to the 

sampling procedure and it assists in estimating the study variable with increased accuracy. There 

are many AIB control charts available in literature with Shewhart type and memory type charting 

structures for monitoring process mean and process variability. Riaz [11] first suggested AIB-
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Shewhart that is based on regression-type mean estimator for monitoring shifts in process mean. It 

was shown that the AIB-Shewhart chart using the regression estimator performs better than the 

Shewhart chart for detecting shifts in the process mean.  Riaz and Does [12] developed a Shewhart-

type variability chart using ratio-type variance estimator for the Phase I quality control. It was 

shown that AIB Shewhart variability chart is more powerful than the existing Shewhart variance 

chart. Riaz [13] proposed a Shewhart-type control chart for an improved monitoring of mean level 

of quality characteristic of interest Y using the information on a single auxiliary characteristic X on 

product difference pattern. Riaz et al. [14] suggested new AIB-Shewhart chart based on regression 

estimator for monitoring the process variability. They have shown that the Shewhart chart using 

regression estimator outperforms the other Shewhart charts when detecting increase in the process 

variability. Abbas et al. [15] introduced the EWMA chart with the auxiliary information, using 

regression estimator for monitoring location of the process. It was shown that proposed chart 

performs better than its existing control charts. Abbasi and Riaz [16] made dual use of auxiliary 

information to propose new chart for process location. Riaz et al. [17] made dual use of auxiliary 

information to propose a chart for process variability. Sanusi et al. [18] studied CUSUM charts 

using different estimators based on auxiliary information. Haq [19] proposed new EWMA charts 

using auxiliary information for efficiently monitoring the process dispersion. Recently, Amir et al. 

[20] developed auxiliary information based moving average control chart (denoted as AB-MA 

chart) for effective monitoring of shifts in the process location parameter. They compared the 

performance of proposed chart with existing control chart and shown that chart outperforms in 

detecting small and medium shifts in the process location parameter. Amir et al. [21] designed 

auxiliary information based double moving average control chart (denoted as ADMA chart) for 

effective monitoring of the process location parameter. They compared the performance of the 

proposed ADMA chart with its memory-type counterparts and shown that the proposed ADMA 

chart performs uniformly better than the EWMA and CUSUM charts when correlation between 

auxiliary variable and study variable is high. 

 Most of the studies on AIB memory-type charts have been concentrated on monitoring 

process mean. Often, monitoring shifts in the variance of related study variable is also important. 

The purpose of this paper is to develop auxiliary information based MA and DMA control charts 

for efficient monitoring of process variability of normally distributed process in Phase II. By 

getting motivation of improved performance of auxiliary information based MA and DMA charts 

for monitoring process mean recently proposed by Amir et al. [20] and Amir et al. [21] 

respectively, in the present paper, we develop new MA and DMA charts using auxiliary 

information for efficiently monitoring the process variability in phase II. We expect that the 

proposed MA and DMA control charts will be more sensitive for efficiently monitoring process 

variability.  The regression estimator of the process variance in the form of auxiliary and study 

variables is considered to construct charting statistics for the proposed MA and DMA charts. The 

performance of the proposed charts is evaluated in terms of the average run length (ARL) and 

standard deviation of run length (SDRL) criteria. Monte Carlo simulations are used to study the 

run length profiles of the proposed AIB-MA-V and AIB-DMA-V charts. The performance of the 

proposed charts is compared with its Shewhart-type counterparts. 

  Rest of the paper is organized as follows: In Section 2, traditional 𝑆2 chart for monitoring 

process variability is discussed. The auxiliary information based Shewhart-type control chart for 

monitoring process variability is presented in Section 3. The design procedure of proposed 

auxiliary information based moving average and double moving average control charts are 

presented in Section 4 and Section 5 respectively.  In Section 6, a simulation study is conducted to 

evaluate the performance of proposed control charts in comparison to that of Shewhart-type 

charts. An illustrative example is presented in Section 7 to demonstrate the implementation of the 

proposed charts. Finally, Section 8 concludes the findings of the paper.   
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2. Shewhart control chart for process variability. 
 

In this Section, we discuss the traditional 𝑆2control chart for monitoring process variability that 

has been constructed without using the auxiliary information.  Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2 , … 𝑌𝑖𝑛) 𝑖 − 1,2, …. be 

independent random samples of size 𝑛 (𝑛 ≥ 2) from a normally distributed process with mean 𝜇𝑦 

and variance 𝜎𝑦
2. Here our objective is to monitor the changes in the process variance. We assume 

that 𝜇𝑦 = 𝜇𝑦,0 and 𝜎𝑦 = 𝜎𝑦,0 are known, even if, in practice, these parameters have to be estimated 

from an in-control population. It is assumed that the process is in-control with variance 𝜎𝑦,0
2 . When 

shift in process variance 𝜎𝑦,0
2  occurs, we have change from in-control value 𝜎𝑦,0

2  to the out-of-control 

value𝜎𝑦,1
2 . Let 𝜆 = 𝜎𝑦,1/𝜎𝑦,0(0 < 𝜆 ≤ 1) denotes the amount of shift in the in-control process 

standard deviation𝜎𝑦,1. When𝜆 = 1, the process is considered to be in-control, otherwise the 

process is considered to be out-of-control. Let �̅�𝑖 =
1

𝑛
∑ 𝑌𝑖𝑗
𝑛
𝑗=1   the sample mean at stage 𝑖. The 𝑆2 

chart can be constructed by plotting sample variances  

𝑆𝑖
2 =

1

𝑛−1
∑ (𝑌𝑖𝑗 − �̅�)

2𝑛
𝑗=1 , 𝑖 = 1,2, ….    (1) 

 

With lower and upper control limits set as 

𝐿𝐶𝐿 =
𝜎2

𝑛−1
𝜒𝑛−1,1−𝛼/2
2 , 𝑈𝐶𝐿 =

𝜎2

𝑛−1
𝜒𝑛−1,𝛼/2
2        (2) 

 

 Where 𝜒𝛼/2,
2  𝜒1−𝛼/2,

2  denotes the upper and lower 𝛼/2percentage points of the Chi-square 

distribution with 𝑛 − 1degrees of freedom. The 𝑆2chart for monitoring process variability gives a 

signal if 𝑆𝑖
2exceeds the control limits. 

 

3. AIB Shewhart-type V Chart for Process variability  
 

In this Section, we discuss AIB Shewhart-type control chart using regression estimator of the 

variance for monitoring shifts in process variability. Assume that a process has a quality 

characteristic of interest 𝑌 which is correlated with an auxiliary variable 𝑋. The pairs (𝑌𝑖 ,  𝑋𝑖)are 

assumed to follow bivariate normal distribution with 𝑁2(𝜇𝑦, 𝜇𝑥, 𝜎𝑦
2, 𝜎𝑥

2, 𝜌). Here 𝜌 represents the 

correlation coefficient between study variable 𝑌 and auxiliary variable 𝑋. The observations of 𝑌 

and 𝑋 are obtained in the paired form for each sample and the population parameters are assumed 

to be known. 

 Let (𝑌1, 𝑋1), (𝑌2, 𝑋2),… . (𝑌𝑛, 𝑋𝑛) represents a sample of size 𝑛 from the bivariate normal 

distribution. The auxiliary information based unbiased regression estimator of population variance 

𝜎𝑦
2 of study variable 𝑌 using a single auxiliary variable 𝑋 for a bivariate random sample of size 𝑛 is 

given by (Haq,(2017)) 

𝑉 = 𝑆𝑦
2 + 𝜌2

𝜎𝑦
2

𝜎𝑥
2 (𝜎𝑥

2 − 𝑆𝑥
2)          (3) 

 

 Where 𝑆𝑦
2 =

1

𝑛−1
∑ (𝑌𝑖 − �̅�)

2𝑛
𝑗=1 , 𝑆𝑥

2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)

2𝑛
𝑗=1  represent sample variances of 𝑌 and 𝑋 

respectively and �̅� =
1

𝑛
∑ 𝑌𝑖
𝑛
𝑗=1 , �̅� =

1

𝑛
∑ 𝑋𝑖
𝑛
𝑗=1  represent sample means of 𝑌 and 𝑋 respectively. 

The mean and variance of 𝑉 are as follows: 

𝐸(𝑉) = 𝜎𝑦
2 and 𝑉𝑎𝑟(𝑉) = 𝜎𝑉

2 =
2𝜎𝑦

4

𝑛−1
(1 − 𝜌4) 

 

  Riaz et al. (2014) suggested AIB-Shewhart chart based on regression estimator 𝑉 of process 

variance 𝜎𝑦
2 for monitoring process variability. We denote the chart as AIB-Shewhart-V chart. In 

the construction of AIB-Shewhart-V control chart for monitoring the process variability, the 
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statistic 𝑉 is plotted on the chart against the sample number. The control limits of the AIB-

Shewhart-V chart are  

𝐿𝐶𝐿 = 𝜎𝑦
2 − 𝐿𝜎𝑦

2√
2(1−𝜌4)

𝑛−1
 and 𝑈𝐶𝐿 = 𝜎𝑦

2 + 𝐿𝜎𝑦
2√

2(1−𝜌4)

𝑛−1
                             (4) 

 

Where the value of 𝐿 determines the in-control ARL of the AIB-Shewhart-V chart. 

 

4. AIB Moving Average Control Chart for Process Variability 
  

In this Section, we develop moving average control chart for detecting changes produced in the 

process variability. The proposed moving average chart is based on auxiliary information based 𝑉 

statistic and chart is denoted as AIB-MA-V chart. The construction of the chart is based on 

computing the moving averages of 𝑉 statistics given in Eq. (3). The moving average statistic of 

span w at time i for a sequence of 𝑉 statistics are computed as 

𝑀𝐴𝑖 =
𝑉𝑖+𝑉𝑖−1+⋯+𝑉𝑖−𝑤+1

𝑤
, 𝑓𝑜𝑟 𝑖 ≥ 𝑤    (5) 

 For periods 𝑖 < 𝑤 we compute the average of available charting statistic. In other words, 

average of all 𝑉 observations up to period i defines moving average. For𝑖 > 𝑤, mean and variance 

of 𝑀𝐴𝑖statistic for in-control process are given as 

𝐸(𝑀𝐴𝑖) = 𝜎𝑦
2 and 𝑉𝑎𝑟(𝑀𝐴𝑖) =

2𝜎𝑦
4

𝑤 (𝑛−1)
(1 − 𝜌4) 

 

The control limits of MA-V chart are as follows:  

𝑈𝐶𝐿/𝐿𝐶𝐿 =

{
 

 𝜎𝑦
2 ± 𝐿𝜎𝑦

2√
2(1−𝜌4)

𝑤(𝑛−1)
,   𝑓𝑜𝑟 𝑖 ≥ 𝑤

𝜎𝑦
2 ± 𝐿𝜎𝑦

2√
2(1−𝜌4)

𝑖(𝑛−1)
,   𝑓𝑜𝑟 𝑖 < 𝑤

    (6) 

 

 Where 𝐿 is a constant chosen to specify in-control ARL for the AIB-MA-V chart. The AIB-

MA-V chart is constructed by plotting the 𝑀𝐴𝑖 statistics on the chart against the sample number i. 

An out-of-control signal is issued when 𝑀𝐴𝑖is smaller than LCL or larger than the UCL. 

 

5. AIB Double Moving Average Control Chart for Process Variability 
  

In this Section, we present the design of double moving average control chart for detecting changes 

produced in the process variability. The proposed chart is denoted as AIB-DMA-V chart. The 

double moving average (DMA) statistic is based on the twice the subgroup average of the MA 

statistic. The moving average statistic for sequence of subgroup variances with time 𝑖 and width 𝑤 

is given in Eq. (5). For interval 𝑖 < 𝑤 the DMA statistic can be calculated as the mean of all 

subgroup variances up to interval 𝑖 while for interval 𝑖 ≥ 𝑤, the plotting statistic of AIB-DMA-V 

chart is given by 

𝐷𝑀𝐴𝑖 =
𝑀𝐴𝑖+𝑀𝐴𝑖−1+⋯+𝑀𝐴𝑖−𝑤+1

𝑤
, 𝑓𝑜𝑟 𝑖 ≥ 𝑤    (7) 

 where 𝑤 represents the span at time 𝑖 for computing 𝐷𝑀𝐴𝑖statistic. The in-control mean of 

𝐷𝑀𝐴𝑖statistic calculated for 𝑖 ≥ 𝑤 is given by, 

𝐸(𝐷𝑀𝐴𝑖) =
1

𝑤
𝐸 ( ∑ 𝑀𝐴𝑗

𝑖

𝑗=𝑖−𝑤+1

) =
1

𝑤
(𝑤𝜎𝑦

2) = 𝜎𝑦
2 

The in-control variance of 𝐷𝑀𝐴𝑖 is given by 
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𝑉𝑎𝑟(𝐷𝑀𝐴𝑖) =

{
 
 

 
 

𝜎𝑦
42(1−𝜌4)

𝑖2(𝑛−1)
∑

1

𝑗
  , 𝑖 ≤ 𝑤𝑖

𝑗=1

𝜎𝑦
42(1−𝜌4)

𝑤2(𝑛−1)
∑

1

𝑗
+ (𝑖 − 𝑤 + 1)

1

𝑤
  , 𝑤 < 𝑖 < 2𝑤 − 1𝑤−1

𝑗=𝑖−𝑤+1

𝜎𝑦
42(1−𝜌4)

𝑤2(𝑛−1)
,    𝑖 ≥ 2𝑤 − 1

  (8) 

 For the 𝑤 = 2, the variance of the DMA is calculated using the 1st and 3rd lines of the above Eq. (8). 

The control limits of the proposed AIB-DMA-V chart are given as 

𝑈𝐶𝐿/𝐿𝐶𝐿 =

{
  
 

  
 𝜎𝑦

2 ±
𝐿 𝜎𝑦

2

𝑖
√
2(1−𝜌4)

𝑛−1
∑

1

𝑗
  𝑖

𝑗=1 , 𝑖 ≤ 𝑤

𝜎𝑦
2 ±

𝐿 𝜎𝑦
2

𝑤
√
2(1−𝜌4)

𝑛−1
∑

1

𝑗
+ (𝑖 − 𝑤 + 1)

1

𝑤
 𝑤−1

𝑗=𝑖−𝑤+1    , 𝑤 < 𝑖 < 2𝑤 − 1

𝜎𝑦
2 ±

𝐿 𝜎𝑦
2

𝑤
√
2(1−𝜌4)

𝑛−1
   , 𝑖 ≥ 2𝑤 − 1

 (9) 

 

The control limits for 𝑤 = 2 are calculated based on the using the 1st and 3rd lines of the above Eq. 

(9). 𝐿 is the constant that is set according to the desired in-control ARL for the AIB-DMA-V control 

chart. 

 

6. Performance Evaluation and Comparison 
 

Performance of a control chart is typically measured in terms of average run length (ARL) and 

standard deviation of run length (SDRL). The ARL is the average number of sample points that is 

plotted on a chart before the first out-of-control signal is detected, whereas, the SDRL measures the 

spread of the run length distribution. When the process is out-of-control, it is desirable to have 

small values of ARL and SDRL. The performance of the control chart is measured in terms of in-

control ARL (denoted as𝐴𝑅𝐿0) and out-of-control ARL (denoted as𝐴𝑅𝐿1). To compare the 

efficiency of two control charts for detecting the shift in process parameter, the general practice is 

to adjust their control limits so that their 𝐴𝑅𝐿0values become same and then compare 𝐴𝑅𝐿1values 

at various shifts in process parameter. A chart with smaller 𝐴𝑅𝐿1 is considered to be more efficient 

to detect pre-assigned shift in the process parameter.  

 In this Section, we evaluate the performance of the proposed AIB-MA-V and AIB-DMA-V 

charts for detecting shifts in Phase II monitoring. Monte Carlo simulation approach is used to 

evaluate the run length performance of the proposed charts in comparison with that of the AIB-

Shewhart-V and 𝑆2charts. Simulation study based on sample of size 𝑛 = 10,15,20 with 𝜌 =

0.3,0.6,0.9 is carried out to assess the performance of the proposed AIB-MA-V, AIB-DMA-V and 

AIB-Shewhart-V charts. It is assumed that the in-control process is a bivariate normal distribution. 

Without loss of generality a standard bivariate normal distribution (i.e.𝑁2(0,0,1,1, 𝜌) is considered 

as in-control process distribution. The out-of-control process is a bivariate normal with the same 

means of both auxiliary and study variables with changed variance of study variable𝑌. That is, we 

consider out-of-control procedure as𝑁2(0,0, 𝜆, 1, 𝜌). Using the simulation, the control limit constant 

𝐿 of the AIB-MA-V and AIB-DMA-V charts are obtained for 𝑤 = 2,3 and 4  so that𝐴𝑅𝐿0 of the chart 

is approximately 200. The ARL and SDRL values of the chart are found with 50000 simulations for 

each shift of magnitude 𝜆 in the process variance of the study variable 𝑌. The magnitude of shift in 

the standard deviation of the study variable is considered as𝜆 = 1.0(0.1)2.0,2.5,3.0. To compare the 

performance of the proposed AIB-MA-V and AIB-DMA-V charts with AIB-Shewhart-V chart and 

Shewhart 𝑆2chart, each chart is designed so that 𝐴𝑅𝐿0 is approximately 200. The control limits, 

ARL and SDRL values of the AIB-Shewhart-V chart are obtained using simulation. The exact ARL 

values of the traditional 𝑆2chart are computed using Excel. 

 Tables 1 to 3 represent the ARL and SDRL (shown in parenthesis) values of the proposed 

control chart with 𝑛 = 10,15,20 according to the variance shift when the correlation coefficient is 
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0.3, 0.6 and 0.9 respectively. Here control limit constant 𝐿 is chosen so that the value of 𝐴𝑅𝐿0is close 

to 200. 

 

Table 1: Run length profiles of the charts with 𝑛 = 10 and 𝐴𝑅𝐿0 = 200 

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

𝜌 = 0.3 

1.0 200.65 

(197.87) 

199.95 

(197.86) 

199.03 

(200.71) 

200.54 

(200.13) 

200.93 

(200.79) 

199.90 

(199.54) 

200.73 

(200.53) 

200.38 

(198.33) 

1.1 72.98 

(72.48) 

46.54 

(45.94) 

36.11 

(35.64) 

31.68 

(30.92) 

29.23 

(28.56) 

34.65 

(33.80) 

30.36 

(29.01) 

29.01 

(26.72) 

1.2 25.23 

(24.18) 

16.68 

(16.25) 

12.11 

(11.42) 

10.38 

(9.56) 

9.46 

(8.65) 

11.69 

(10.68) 

10.40 

(8.76) 

10.25 

(8.01) 

1.3 11.00 

(10.40) 

8.03 

(7.48) 

5.89 

(5.22) 

5.18 

(4.46) 

4.83 

(4.04) 

5.89 

(4.89) 

5.55 

(4.04) 

5.80 

(3.76) 

1.4 6.09 

(5.52) 

4.66 

(4.11) 

3.62 

(2.99) 

3.29 

(2.57) 

3.12 

(2.42) 

3.75 

(2.76) 

3.76 

(2.43) 

4.03 

(2.37) 

1.5 3.92 

(3.34) 

3.17 

(2.61) 

2.58 

(1.93) 

2.40 

(1.72) 

2.28 

(1.61) 

2.76 

(1.84) 

2.87 

(1.72) 

3.12 

(1.82) 

1.6 2.83 

(2.26) 

2.38 

(1.82) 

2.02 

(1.37) 

1.91 

(1.23) 

1.85 

(1.19) 

2.22 

(1.36) 

2.34 

(1.35) 

2.52 

(1.48) 

1.7 2.20 

(1.66) 

1.92 

(1.33) 

1.70 

(1.05) 

1.62 

(0.95) 

1.58 

(0.91) 

1.87 

(1.07) 

1.99 

(1.12) 

2.12 

(1.23) 

1.8 1.81 

(1.22) 

1.63 

(1.02) 

1.49 

(0.82) 

1.44 

(0.75) 

1.41 

(0.72) 

1.64 

(0.88) 

1.73 

(0.95) 

1.83 

(1.04) 

1.9 1.57 

(0.96) 

1.46 

(0.82) 

1.36 

(0.67) 

1.32 

(0.62) 

1.29 

(0.59) 

1.48 

(0.74) 

1.55 

(0.81) 

1.62 

(0.88) 

2.0 1.42 

(0.77) 

1.33 

(0.67) 

1.26 

(0.55) 

1.23 

(0.51) 

1.21 

(0.49) 

1.35 

(0.63) 

1.40 

(0.69) 

1.46 

(0.74) 

2.5 1.10 

(0.33) 

1.06 

(0.24) 

1.06 

(0.26) 

1.05 

(0.24) 

1.05 

(0.23) 

1.09 

(0.31) 

1.11 

(0.34) 

1.13 

(0.37) 

3.0 1.03 

(0.17) 

1.33 

(0.66) 

1.02 

(0.13) 

1.02 

(0.13) 

1.01 

(0.12) 

1.03 

(0.17) 

1.03 

(0.18) 

1.04 

(0.20) 

𝐿 --- 3.431 3.090 2.909 2.789 3.742 4.045 4.342 

𝜌 = 0.6 

1.0 200.65 

(197.87) 

200.97 

(201.34) 

200.80 

(201.53) 

199.06 

(200.18) 

200.21 

(201.40) 

200.76 

(200.75) 

199.56 

(198.82) 

200.79 

(198.20) 

1.1 72.98 

(72.48) 

42.69 

(42.50) 

33.12 

(32.96) 

28.76 

(28.04) 

26.55 

(25.97) 

31.50 

(30.78) 

27.92 

(26.32) 

26.79 

(24.47) 

1.2 25.23 

(24.18) 

14.79 

(14.34) 

10.66 

(9.95) 

9.29 

(8.54) 

8.55 

(7.63) 

10.37 

(9.36) 

9.35 

(7.75) 

9.21 

(6.93) 

1.3 11.00 

(10.40) 

6.94 

(6.43) 

5.22 

(4.52) 

4.59 

(3.84) 

4.36 

(3.62) 

5.26 

(4.23) 

5.08 

(3.60) 

5.33 

(3.34) 

1.4 6.09 

(5.52) 

4.14 

(3.59) 

3.26 

(2.61) 

2.98 

(2.30) 

2.83 

(2.12) 

3.40 

(2.42) 

3.45 

(2.15) 

3.77 

(2.18) 

 

 

 

 

    

   

831



 
Vikas Ghute and Sarika Pawar  
MA AND DMA CHARTS FOR PROCESS VARIABILITY USING AIB  

RT&A, No 3 (74) 
Volume 18, September 2023  

 

Table 1 continued 

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

    𝜌 = 0.6     

1.5 3.92 

(3.34) 

2.83 

(2.29) 

2.34 

(1.68) 

2.19 

(1.52) 

2.11 

(1.42) 

2.52 

(1.62) 

2.68 

(1.55) 

2.92 

(1.69) 

1.6 2.83 

(2.26) 

2.14 

(1.56) 

1.87 

(1.22) 

1.78 

(1.11) 

1.72 

(1.06) 

2.05 

(1.22) 

2.19 

(1.25) 

2.36 

(1.38) 

1.7 2.20 

(1.66) 

1.76 

(1.16) 

1.58 

(0.92) 

1.52 

(0.84) 

1.49 

(0.81) 

1.74 

(0.96) 

1.86 

(1.03) 

1.97 

(1.13) 

1.8 1.81 

(1.22) 

1.52 

(0.89) 

1.40 

(0.72) 

1.37 

(0.67) 

1.34 

(0.64) 

1.54 

(0.80) 

1.63 

(0.88) 

1.72 

(0.96) 

1.9 1.57 

(0.96) 

1.37 

(0.72) 

1.29 

(0.59) 

1.26 

(0.56) 

1.24 

(0.53) 

1.39 

(0.66) 

1.47 

(0.74) 

1.53 

(0.80) 

2.0 1.42 

(0.77) 

1.27 

(0.58) 

1.21 

(0.49) 

1.19 

(0.46) 

1.18 

(0.45) 

1.29 

(0.57) 

1.35 

(0.63) 

1.40 

(0.68) 

2.5 1.10 

(0.33) 

1.05 

(0.22) 

1.05 

(0.23) 

1.04 

(0.21) 

1.04 

(0.20) 

1.07 

(0.28) 

1.09 

(0.30) 

1.10 

(0.33) 

3.0 1.03 

(0.17) 

1.26 

(0.57) 

1.01 

(0.12) 

1.01 

(0.11) 

1.01 

(0.10) 

1.02 

(0.14) 

1.02 

(0.16) 

1.03 

(0.17) 

𝐿 --- 3.360 3.045 2.877 2.774 3.680 4.015 4.332 

𝜌 = 0.9 

1.0 200.65 

(197.87) 

200.46 

(199.21) 

200.25 

(198.55) 

200.41 

(199.40) 

199.09 

(200.01) 

199.40 

(198.33) 

199.88 

(199.47) 

199.83 

(198.62) 

1.1 72.98 

(72.48) 

24.31 

(23.72) 

17.98 

(17.24) 

15.48 

(14.62) 

14.28 

(13.42) 

17.01 

(16.04) 

14.96 

(13.29) 

14.38 

(11.85) 

1.2 25.23 

(24.18) 

6.72 

(6.19) 

5.02 

(4.30) 

4.51 

(3.68) 

4.20 

(3.33) 

5.00 

(3.91) 

4.86 

(3.26) 

5.16 

(3.08) 

1.3 11.00 

(10.40) 

3.17 

(2.62) 

2.60 

(1.92) 

2.42 

(1.69) 

2.33 

(1.59) 

2.76 

(1.78) 

2.93 

(1.66) 

3.21 

(1.75) 

1.4 6.09 

(5.52) 

2.04 

(1.47) 

1.78 

(1.11) 

1.72 

(1.02) 

1.68 

(0.97) 

1.97 

(1.11) 

2.14 

(1.15) 

2.32 

(1.28) 

1.5 3.92 

(3.34) 

1.56 

(0.94) 

1.44 

(0.75) 

1.41 

(0.71) 

1.39 

(0.68) 

1.59 

(0.82) 

1.71 

(0.89) 

1.83 

(0.98) 

1.6 2.83 

(2.26) 

1.33 

(0.66) 

1.26 

(0.55) 

1.24 

(0.52) 

1.23 

(0.51) 

1.37 

(0.63) 

1.46 

(0.70) 

1.53 

(0.76) 

1.7 2.20 

(1.66) 

1.20 

(0.48) 

1.16 

(0.42) 

1.15 

(0.40) 

1.14 

(0.39) 

1.24 

(0.50) 

1.29 

(0.56) 

1.35 

(0.61) 

1.8 1.81 

(1.22) 

1.13 

(0.38) 

1.11 

(0.33) 

1.09 

(0.31) 

1.09 

(0.31) 

1.16 

(0.40) 

1.20 

(0.46) 

1.23 

(0.49) 

1.9 1.57 

(0.96) 

1.08 

(0.30) 

1.07 

(0.26) 

1.06 

(0.25) 

1.06 

(0.25) 

1.10 

(0.33) 

1.13 

(0.37) 

1.16 

(0.41) 

2.0 1.42 

(0.77) 

1.05 

(0.24) 

1.04 

(0.21) 

1.04 

(0.21) 

1.04 

(0.20) 

1.07 

(0.27) 

1.09 

(0.30) 

1.11 

(0.33) 

2.5 1.10 

(0.33) 

1.01 

(0.10) 

1.01 

(0.08) 

1.01 

(0.08) 

1.01 

(0.07) 

1.01 

(0.11) 

1.02 

(0.12) 

1.02 

(0.14) 

3.0 1.03 

(0.17) 

1.05 

(0.24) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.05) 

1.00 

(0.06) 

1.00 

(0.06) 

𝐿 --- 3.176 2.952 2.842 2.763 3.579 3.984 4.333 
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Table 2: Run length profiles of the charts with 𝑛 = 15 and 𝐴𝑅𝐿0 = 200 

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

𝜌 = 0.3 

1.0 200.49 

(201.15) 

199.97 

(200.70) 

199.21 

(200.38) 

199.29 

(198.87) 

199.17 

(199.22) 

200.77 

(199.73) 

199.40 

(198.08) 

200.93 

(199.18) 

1.1 59.44 

(58.56) 

37.14 

(36.65) 

27.73 

(27.04) 

23.65 

(22.94) 

21.79 

(20.94) 

25.84 

(24.94) 

22.80 

(21.19) 

21.72 

(19.33) 

1.2 17.34 

(16.74) 

11.87 

(11.39) 

8.41 

(7.75) 

7.20 

(6.38) 

6.64 

(5.71) 

8.03 

(6.92) 

7.33 

(5.71) 

7.48 

(5.20) 

1.3 7.29 

(6.76) 

5.39 

(4.82) 

4.02 

(3.32) 

3.60 

(2.84) 

3.41 

(2.63) 

4.10 

(3.08) 

4.06 

(2.56) 

4.38 

(2.51) 

1.4 3.95 

(3.38) 

3.16 

(2.63) 

2.52 

(1.85) 

2.34 

(1.64) 

2.24 

(1.52) 

2.69 

(1.71) 

2.83 

(1.60) 

3.10 

(1.72) 

1.5 2.59 

(2.02) 

2.19 

(1.62) 

1.87 

(1.19) 

1.77 

(1.07) 

1.73 

(1.02) 

2.04 

(1.17) 

2.20 

(1.21) 

2.40 

(1.33) 

1.6 1.93 

(1.34) 

1.69 

(1.08) 

1.52 

(0.84) 

1.46 

(0.77) 

1.44 

(0.74) 

1.68 

(0.88) 

1.80 

(0.96) 

1.94 

(1.05) 

1.7 1.56 

(0.93) 

1.43 

(0.78) 

1.33 

(0.63) 

1.29 

(0.58) 

1.28 

(0.56) 

1.45 

(0.70) 

1.54 

(0.78) 

1.63 

(0.84) 

1.8 1.35 

(0.70) 

1.27 

(0.58) 

1.21 

(0.48) 

1.19 

(0.45) 

1.18 

(0.44) 

1.30 

(0.57) 

1.37 

(0.63) 

1.43 

(0.68) 

1.9 1.23 

(0.52) 

1.17 

(0.45) 

1.14 

(0.38) 

1.12 

(0.36) 

1.11 

(0.34) 

1.20 

(0.47) 

1.25 

(0.51) 

1.29 

(0.55) 

2.0 1.15 

(0.41) 

1.11 

(0.35) 

1.09 

(0.30) 

1.08 

(0.28) 

1.07 

(0.27) 

1.14 

(0.38) 

1.17 

(0.42) 

1.20 

(0.46) 

2.5 1.02 

(0.14) 

1.01 

(0.12) 

1.01 

(0.10) 

1.01 

(0.10) 

1.01 

(0.09) 

1.02 

(0.13) 

1.03 

(0.16) 

1.03 

(0.18) 

3.0 1.00 

(0.05) 

1.11 

(0.35) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.03) 

1.00 

(0.06) 

1.00 

(0.06) 

1.00 

(0.07) 

𝐿 --- 3.268 2.991 2.837 2.750 3.608 3.964 4.299 

𝜌 = 0.6 

1.0 200.49 

(201.15) 

200.57 

(198.84) 

200.93 

(199.00) 

200.57 

(198.47) 

200.71 

(199.68) 

199.40 

(198.47) 

199.46 

(198.53) 

199.77 

(198.65) 

1.1 59.44 

(58.56) 

33.38 

(33.15) 

24.94 

(24.29) 

21.55 

(20.67) 

19.84 

(18.89) 

23.27 

(22.06) 

20.92 

(19.16) 

19.95 

(17.47) 

1.2 17.34 

(16.74) 

10.23 

(9.67) 

7.41 

(6.74) 

6.44 

(5.60) 

5.97 

(5.08) 

7.13 

(6.03) 

6.66 

(5.03) 

6.84 

(4.57) 

1.3 7.29 

(6.76) 

4.69 

(4.16) 

3.61 

(2.95) 

3.25 

(2.49) 

3.10 

(2.32) 

3.68 

(2.64) 

3.74 

(2.28) 

4.05 

(2.25) 

1.4 3.95 

(3.38) 

2.77 

(2.22) 

2.28 

(1.61) 

2.13 

(1.43) 

2.08 

(1.36) 

2.46 

(1.52) 

2.65 

(1.46) 

2.90 

(1.59) 

1.5 2.59 

(2.02) 

1.96 

(1.37) 

1.71 

(1.03) 

1.64 

(0.95) 

1.61 

(0.92) 

1.89 

(1.05) 

2.06 

(1.10) 

2.23 

(1.23) 

1.6 1.93 

(1.34) 

1.55 

(0.92) 

1.42 

(0.73) 

1.39 

(0.68) 

1.36 

(0.65) 

1.57 

(0.80) 

1.70 

(0.88) 

1.81 

(0.97) 

1.7 1.56 

(0.93) 

1.34 

(0.67) 

1.26 

(0.54) 

1.24 

(0.52) 

1.23 

(0.50) 

1.37 

(0.63) 

1.46 

(0.70) 

1.53 

(0.76) 
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Table 2 continued 

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

    𝜌 = 0.6     

1.8 1.35 

(0.70) 

1.21 

(0.50) 

1.16 

(0.42) 

1.15 

(0.40) 

1.14 

(0.39) 

1.25 

(0.51) 

1.30 

(0.57) 

1.36 

(0.62) 

1.9 1.23 

(0.52) 

1.13 

(0.38) 

1.11 

(0.33) 

1.09 

(0.31) 

1.09 

(0.31) 

1.16 

(0.41) 

1.20 

(0.46) 

1.24 

(0.50) 

2.0 1.15 

(0.41) 

1.08 

(0.30) 

1.06 

(0.25) 

1.06 

(0.25) 

1.06 

(0.24) 

1.10 

(0.33) 

1.13 

(0.37) 

1.16 

(0.41) 

2.5 1.02 

(0.14) 

1.01 

(0.10) 

1.01 

(0.09) 

1.01 

(0.08) 

1.01 

(0.08) 

1.01 

(0.11) 

1.02 

(0.13) 

1.02 

(0.15) 

3.0 1.00 

(0.05) 

1.08 

(0.30) 

1.00 

(0.03) 

1.00 

(0.03) 

1.00 

(0.03) 

1.00 

(0.04) 

1.00 

(0.05) 

1.00 

(0.06) 

𝐿 --- 3.206 2.958 2.826 2.746 3.563 3.950 4.289 

𝜌 = 0.9 

1.0 200.49 

(201.15) 

199.36 

(199.21) 

199.00 

(198.65) 

200.65 

(200.28) 

199.10 

(198.94) 

199.60 

(200.21) 

200.81 

(199.91) 

200.19 

(198.89) 

1.1 59.44 

(58.56) 

17.49 

(16.93) 

12.61 

(11.79) 

10.81 

(9.81) 

9.83 

(8.69) 

11.87 

(10.73) 

10.41 

(8.60) 

10.13 

(7.65) 

1.2 17.34 

(16.74) 

4.44 

(3.93) 

3.42 

(2.70) 

3.10 

(2.27) 

2.94 

(2.11) 

3.49 

(2.40) 

3.58 

(2.04) 

3.92 

(2.05) 

1.3 7.29 

(6.76) 

2.15 

(1.58) 

1.85 

(1.15) 

1.78 

(1.05) 

1.74 

(1.00) 

2.05 

(1.13) 

2.25 

(1.15) 

2.47 

(1.27) 

1.4 3.95 

(3.38) 

1.48 

(0.84) 

1.37 

(0.67) 

1.34 

(0.62) 

1.33 

(0.61) 

1.53 

(0.74) 

1.66 

(0.82) 

1.78 

(0.900 

1.5 2.59 

(2.02) 

1.23 

(0.53) 

1.18 

(0.43) 

1.17 

(0.41) 

1.16 

(0.40) 

1.28 

(0.53) 

1.35 

(0.59) 

1.43 

(0.65) 

1.6 1.93 

(1.34) 

1.11 

(0.34) 

1.09 

(0.30) 

1.08 

(0.29) 

1.08 

(0.28) 

1.15 

(0.38) 

1.19 

(0.44) 

1.24 

(0.49) 

1.7 1.56 

(0.93) 

1.05 

(0.23) 

1.05 

(0.22) 

1.04 

(0.20) 

1.04 

(0.19) 

1.08 

(0.28) 

1.10 

(0.32) 

1.13 

(0.36) 

1.8 1.35 

(0.70) 

1.03 

(0.16) 

1.02 

(0.15) 

1.02 

(0.14) 

1.02 

(0.14) 

1.04 

(0.20) 

1.06 

(0.24) 

1.07 

(0.27) 

1.9 1.23 

(0.52) 

1.01 

(0.12) 

1.01 

(0.11) 

1.01 

(0.10) 

1.01 

(0.10) 

1.02 

(0.15) 

1.03 

(0.18) 

1.04 

(0.20) 

2.0 1.15 

(0.41) 

1.01 

(0.09) 

1.01 

(0.08) 

1.01 

(0.07) 

1.00 

(0.07) 

1.01 

(0.11) 

1.02 

(0.13) 

1.02 

(0.15) 

2.5 1.02 

(0.14) 

1.00 

(0.02) 

1.00 

(0.02) 

1.00 

(0.02) 

1.00 

(0.02) 

1.00 

(0.03) 

1.00 

(0.03) 

1.00 

(0.04) 

3.0 1.00 

(0.05) 

1.01 

(0.09) 

1.00 

(0.01) 

1.00 

(0.00) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

𝐿 --- 3.061 2.895 2.809 2.741 3.505 3.934 4.299 
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Table 3: Run length profiles of the charts with 𝑛 = 20 and 𝐴𝑅𝐿0 = 200 

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

𝜌 = 0.3 

1.0 199.83 

(200.31) 

200.49 

(200.63) 

199.47 

(200.17) 

199.24 

(200.61) 

200.78 

(200.42) 

200.14 

(199.60) 

200.10 

(198.72) 

200.53 

(198.39) 

1.1 49.93 

(49.41) 

30.87 

(30.30) 

22.43 

(21.83) 

19.05 

(18.29) 

17.72 

(16.74) 

20.97 

(19.91) 

18.30 

(16.66) 

17.63 

(15.13) 

1.2 13.04 

(12.55) 

9.05 

(8.54) 

6.38 

(5.67) 

5.56 

(4.68) 

5.17 

(4.24) 

6.21 

(5.08) 

5.80 

(4.19) 

6.07 

(3.79) 

1.3 5.26 

(4.72) 

4.03 

(3.50) 

3.09 

(2.38) 

2.80 

(2.06) 

2.70 

(1.92) 

3.21 

(2.20) 

3.32 

(1.90) 

3.64 

(1.96) 

1.4 2.91 

(2.41) 

2.40 

(1.83) 

2.00 

(1.33) 

1.89 

(1.18) 

1.85 

(1.12) 

2.18 

(1.25) 

2.36 

(1.25) 

2.60 

(1.39) 

1.5 1.95 

(1.38) 

1.72 

(1.12) 

1.53 

(0.84) 

1.48 

(0.76) 

1.46 

(0.75) 

1.70 

(0.88) 

1.84 

(0.95) 

1.99 

(1.04) 

1.6 1.53 

(0.89) 

1.39 

(0.73) 

1.30 

(0.59) 

1.27 

(0.55) 

1.25 

(0.53) 

1.42 

(0.66) 

1.52 

(0.74) 

1.62 

(0.80) 

1.7 1.29 

(0.62) 

1.21 

(0.51) 

1.17 

(0.42) 

1.15 

(0.40) 

1.14 

(0.39) 

1.25 

(0.51) 

1.32 

(0.57) 

1.39 

(0.63) 

1.8 1.17 

(0.44) 

1.12 

(0.36) 

1.09 

(0.31) 

1.08 

(0.29) 

1.08 

(0.29) 

1.15 

(0.39) 

1.20 

(0.45) 

1.24 

(0.49) 

1.9 1.10 

(0.33) 

1.07 

(0.27) 

1.05 

(0.23) 

1.05 

(0.22) 

1.05 

(0.21) 

1.09 

(0.30) 

1.12 

(0.35) 

1.15 

(0.39) 

2.0 1.05 

(0.24) 

1.04 

(0.20) 

1.03 

(0.18) 

1.03 

(0.17) 

1.03 

(0.16) 

1.05 

(0.23) 

1.07 

(0.27) 

1.09 

(0.30) 

2.5 1.00 

(0.06) 

1.00 

(0.05) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.01) 

1.00 

(0.06) 

1.01 

(0.07) 

1.01 

(0.08) 

3.0 1.00 

(0.02) 

1.04 

(0.20) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.02) 

1.00 

(0.02) 

1.00 

(0.03) 

𝐿 --- 3.173 2.934 2.808 2.735 3.545 3.926 4.279 

𝜌 = 0.6 

1.0 199.83 

(200.31) 

199.36 

(199.22) 

199.39 

(197.10) 

199.37 

(199.03) 

199.88 

(198.13) 

199.44 

(198.89) 

199.19 

(196.75) 

200.34 

(198.49) 

1.1 49.93 

(49.41) 

27.68 

(27.23) 

19.98 

(19.26) 

17.16 

(16.30) 

15.97 

(15.05) 

18.90 

(17.97) 

16.74 

(14.94) 

16.07 

(13.58) 

1.2 13.04 

(12.55) 

7.80 

(7.26) 

5.61 

(4.86) 

4.94 

(4.10) 

4.63 

(3.73) 

5.49 

(4.38) 

5.28 

(3.64) 

5.57 

(3.36) 

1.3 5.26 

(4.72) 

3.53 

(2.99) 

2.76 

(2.07) 

2.57 

(1.81) 

2.45 

(1.67) 

2.90 

(1.89) 

3.07 

(1.70) 

3.38 

(1.78) 

1.4 2.91 

(2.41) 

2.13 

(1.56) 

1.84 

(1.14) 

1.75 

(1.04) 

1.71 

(0.99) 

2.03 

(1.13) 

2.21 

(1.16) 

2.41 

(1.27) 

1.5 1.95 

(1.38) 

1.57 

(0.94) 

1.43 

(0.72) 

1.39 

(0.68) 

1.37 

(0.66) 

1.59 

(0.80) 

1.73 

(0.87) 

1.86 

(0.96) 

1.6 1.53 

(0.89) 

1.30 

(0.62) 

1.23 

(0.50) 

1.21 

(0.48) 

1.20 

(0.46) 

1.35 

(0.60) 

1.43 

(0.67) 

1.52 

(0.73) 

1.7 1.29 

(0.62) 

1.16 

(0.43) 

1.13 

(0.36) 

1.12 

(0.35) 

1.11 

(0.33) 

1.20 

(0.46) 

1.26 

(0.51) 

1.32 

(0.57) 

1.8 1.17 

(0.44) 

1.09 

(0.31) 

1.07 

(0.26) 

1.06 

(0.25) 

1.06 

(0.25) 

1.12 

(0.34) 

1.15 

(0.39) 

1.19 

(0.44) 
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Table 3 continued       

Shift 

𝜆 
𝑆2chart 

AIB-V 

chart 

AIB-MA-V chart AIB-DMA-V chart 

𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 2 𝑤 = 3 𝑤 = 4 

    𝜌 = 0.6     

1.9 1.10 

(0.33) 

1.05 

(0.22) 

1.04 

(0.20) 

1.03 

(0.18) 

1.03 

(0.18) 

1.07 

(0.26) 

1.09 

(0.30) 

1.12 

(0.34) 

2.0 1.05 

(0.24) 

1.03 

(0.16) 

1.02 

(0.15) 

1.02 

(0.14) 

1.02 

(0.14) 

1.04 

(0.20) 

1.05 

(0.23) 

1.07 

(0.26) 

2.5 1.00 

(0.06) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.03) 

1.00 

(0.03) 

1.00 

(0.05) 

1.00 

(0.06) 

1.00 

(0.07) 

3.0 1.00 

(0.02) 

1.03 

(0.16) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.02) 

𝐿 --- 3.118 2.906 2.799 2.731 3.510 3.919 4.277 

𝜌 = 0.9 

1.0 199.83 

(200.31) 

200.67 

(200.68) 

199.75 

(197.77) 

199.31 

(198.84) 

200.17 

(199.80) 

199.85 

(200.61) 

200.14 

(197.25) 

199.57 

(196.52) 

1.1 49.93 

(49.41) 

13.74 

(13.20) 

9.66 

(8.88) 

8.19 

(7.18) 

7.45 

(6.32) 

9.04 

(7.85) 

8.07 

(6.29) 

7.99 

(5.47) 

1.2 13.04 

(12.55) 

3.33 

(2.77) 

2.62 

(1.90) 

2.43 

(1.62) 

2.36 

(1.53) 

2.78 

(1.70) 

2.97 

(1.54) 

3.27 

(1.61) 

1.3 5.26 

(4.72) 

1.69 

(1.07) 

1.52 

(0.82) 

1.48 

(0.75) 

1.46 

(0.72) 

1.71 

(0.85) 

1.89 

(0.92) 

2.05 

(1.01) 

1.4 2.91 

(2.41) 

1.25 

(0.56) 

1.20 

(0.46) 

1.19 

(0.44) 

1.17 

(0.42) 

1.31 

(0.55) 

1.41 

(0.63) 

1.51 

(0.69) 

1.5 1.95 

(1.38) 

1.09 

(0.32) 

1.08 

(0.28) 

1.07 

(0.27) 

1.07 

(0.26) 

1.14 

(0.37) 

1.19 

(0.43) 

1.24 

(0.48) 

1.6 1.53 

(0.89) 

1.04 

(0.20) 

1.03 

(0.17) 

1.03 

(0.16) 

1.03 

(0.16) 

1.06 

(0.24) 

1.08 

(0.28) 

1.11 

(0.32) 

1.7 1.29 

(0.62) 

1.01 

(0.12) 

1.01 

(0.11) 

1.01 

(0.10) 

1.01 

(0.10) 

1.02 

(0.15) 

1.04 

(0.19) 

1.05 

(0.22) 

1.8 1.17 

(0.44) 

1.01 

(0.08) 

1.00 

(0.07) 

1.00 

(0.06) 

1.00 

(0.06) 

1.01 

(0.10) 

1.01 

(0.12) 

1.02 

(0.15) 

1.9 1.10 

(0.33) 

1.00 

(0.05) 

1.00 

(0.05) 

1.00 

(0.04) 

1.00 

(0.04) 

1.00 

(0.06) 

1.01 

(0.08) 

1.01 

(0.10) 

2.0 1.05 

(0.24) 

1.00 

(0.04) 

1.00 

(0.02) 

1.00 

(0.03) 

1.00 

(0.02) 

1.00 

(0.04) 

1.00 

(0.06) 

1.01 

(0.07) 

2.5 1.00 

(0.06) 

1.00 

(0.01) 

1.00 

(0.01) 

1.00 

(0.00) 

1.00 

(0.01) 

1.00 

(0.00) 

1.00 

(0.01) 

1.00 

(0.01) 

3.0 1.00 

(0.02) 

1.00 

(0.03) 

1.00 

(0.00) 

1.00 

(0.00) 

1.00 

(0.00) 

1.00 

(0.00) 

1.00 

(0.00) 

1.00 

(0.00) 

𝐿 --- 3.002 2.868 2.790 2.733 3.471 3.917 4.280 

 

Observations from Tables 1-3: 

• For any range of shifts in process standard deviation, the proposed AIB-DMA-V and AIB-

MA-V charts consistently produces smaller out-of-control ARL values than the AIB-

Shewhart-V chart and Shewhart 𝑆2 chart. For example, in Table 1, with 𝜆 = 1.3,  the 

traditional 𝑆2chart requires on an average 11 samples to signal, the Shewhart AIB-V chart 

requires 8.03 samples to signal, the ARL reduces to 5.89 with 𝑤 = 2,  5.18 with  𝑤 = 3 and 

4.83 with 𝑤 = 4 for proposed AIB-MA-V chart and ARL reduces to 5.89 with 𝑤 = 2, 5.55 

with 𝑤 = 3  and 5.80 with 𝑤 = 4  for proposed AIB-DMA-V chart. That means, proposed 
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AIB-DMA-V and AIB-MA-V charts early detect shifts in process standard deviation earlier 

than the other two charts. 

• The sensitivity of the proposed control charts increases as the span of moving average 

increases. For example, in Table 3, with 𝜆 = 1.2 and 𝑤 = 2, the proposed AIB-DMA-V chart 

requires on an average 6.21 samples to signal, the ARL reduces to 5.80 and 6.07 with  𝑤 = 3  

and 𝑤 = 4 respectively. The similar performance is observed for AIB-MA-V chart. 

• The out-of-control ARL values of proposed AIB-DMA-V chart decreases when the 

correlation between study and auxiliary variables increases. For example, from Table 1, 

with fixed 𝜆 = 1.3and 𝑤 = 2, the proposed AIB-DMA-V chart requires on an average 5.89 

samples to signal when 𝜌 = 0.3, the ARL reduces to 5.26 and 2.76 when 𝜌 = 0.6 and 𝜌 = 0.9 

respectively. The similar performance is observed for AIB-MA-V and Shewhart-AIB-V 

charts. 

• The performance of the proposed AIB-DMA-V and AIB-MA-V charts keeps improving 

with an increase in sample size 𝑛. For example, from Tables 1-3, with fixed 𝜆 = 1.2, 𝑤 = 3  

and 𝜌 = 0.6, the proposed AIB-DMA-V chart requires on an average 9.35 samples to signal 

when 𝑛 = 10, the ARL reduces to 6.66 and 5.28 when 𝑛 = 15 and 𝑛 = 20 respectively. 

 

7. An Example 

 
In this Section, we provide an illustrative example in order to demonstrate the practical application 

of AIB-MA-V, AIB-DMA-V charts for monitoring process variability using auxiliary information. 

Here we consider a simulated dataset to present implementation of AIB-Shewhart-V, AIB-MA-V 

and AIB-DMA-V control charts. To identify the performance of these control charts, the in-control 

ARL value is set as𝐴𝑅𝐿0 = 200. We have considered the paired information on (𝑌, 𝑋) where 𝑋 is used 

as auxiliary variable and 𝑌 as the study variable of interest. The bivariate data set in the form of 15 

sub-groups each of size 𝑛 = 10 are simulated from𝑁2(𝜇𝑦, 𝜇𝑥, 𝜎𝑦
2, 𝜎𝑥

2, 𝜌) distribution. For in-control 

state, the first 7 samples are generated from𝑁2(0,0,1,1,0.6). Thus the process is stable with respect 

to process variability for first 7 samples. We add 8 samples to simulate an out-of-control process. 

Starting from sample 8, new samples are generated from a process by introducing a shift 𝜆 = 1.5 in 

𝜎𝑦. Based on 15 subgroups, the values of the control chart statistic for AIB-MA-V and AIB-DMA-V 

control charts for span 𝑤 = 3 and AIB-Shewhart-V chart are displayed in Table 4.  The control 

limits of AIB-Shewhart-V chart are computed using Eq. (4) while those of AIB-MA-V and AIB-

DMA-V charts are computed using Eq. (6) and Eq. (9) respectively. Implementation of the said 

charts is presented in Figure 1. 

From Figure 1, it can be seen that the process remains in-control at the first seven samples.  For 

detecting shift of size 𝜆 = 1.5 in process standard deviation, the AIB-Shewhart-V chart does not 

produce any out-of-control signal for detecting the shift. So AIB-Shewhart-V chart fail to detect a 

shift in process standard deviation when the shift occur. The AIB-MA-V chart shows first out-of-

control signal at point 13. AIB-DMA-V chart shows first out-of-control signal at point 11 which is 

earlier than that of AIB-MA-V chart. Hence the proposed AIB-DMA-V chart is effective in 

detecting shifts in process standard deviation than AIB-MA-V and AIB-Shewhart-V charts. 

 

 

Table 4: Chart statistics based on simulated data 

Sample Number AIB-V AIB-MA-V AIB-DMA-V 

1 0.91 0.91 0.91 

2 0.63 0.77 0.84 

3 1.56 1.03 0.91 

4 1.65 1.28 1.03 

5 0.74 1.31 1.21 
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Table 4 continued    

6 0.95 1.11 1.23 

7 0.56 0.75 1.06 

8 1.88 1.13 1.00 

9 2.30 1.58 1.15 

10 0.80 1.66 1.46 

11 2.07 1.72 1.65 

12 1.71 1.53 1.64 

13 2.02 1.93 1.73 

14 1.54 1.76 1.74 

15 1.03 1.53 1.74 

 

 
Figure 1:  AIB-Shewhart, AIB-MA and AIB-DMA Charts for process variability  
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8. Conclusions 
  

 In this paper, we have proposed the AIB-MA and AIB-DMA control charts to efficiently 

monitoring the variability of normally distributed process. These charts are based on regression 

estimator of the process variance that utilizes information on a study variable as well as any 

related auxiliary variable. The construction, performance assessment and an illustrative example of 

proposed charts are presented in this paper. Using extensive Monte Carlo simulations, ARL and 

SDRL of the proposed AIB-MA-V and AIB-DMA-V chart has been computed with various choices 

of correlation coefficient 𝜌 and span 𝑤. From the simulation results it is observed that with an 

increase in the value of w , the performance of the AIB-MA-V and AIB-DMA-V charts is improved. 

The performance of the proposed charts keep improving with an increase in the values of sample 

size 𝑛, level of correlation between study variable and auxiliary variable 𝜌 and size of shift 𝜆 in 

process standard deviation at a fixed𝐴𝑅𝐿0. The SDRL values of the charts are approximately the 

same as ARL values. The performance of the proposed charts is also compared to its existing 

counterparts incorporated in this study. It has been found that AIB-DMA-V and AIB-MA-V charts 

perform uniformly better than the AIB-Shewhart-V and𝑆2 charts for different kind of shifts in the 

process variability. Among AIB-DMA-V perform better than the AIB-MA-V chart for a span 

of 𝑤 =  2, 3; while for span of 𝑤 =  4, performance of both proposed charts is similar. 
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Abstract

Inflated models are used whenever there are too many frequencies at a given count. In this regard, Poisson
moment exponential distribution and a distribution to a point mass at zero are used to create a zero-
inflated model namely Zero-Inflated Poisson Moment Exponential Distribution. Its distributional and
reliability characteristics are investigated in some detail. A simulation exercise is undertaken to evaluate
the effectiveness of the maximum likelihood estimators. The adaptability of the suggested distribution
is demonstrated using three real datasets from various domains (e.g., vaccine adverse events, medical
science data, epileptic seizure counts). The suggested distribution and the Poisson moment exponential
distribution are distinguished by using the two different test procedures.

Keywords: goodness of fit, poisson Moment exponential distribution, likelihood ratio test, zero-
inflation, wald test

1. Introduction

Statistical modelling of count observations is an essential part in several areas of scientific research.
Frequent zeros in count observations are so common in areas like ecology, epidemiology, public
health, engineering, etc. Examples of such data includes the number of foetal movements count
per 5 seconds by Leroux et.al [16], number of HIV infected patients count by Van den Broek
[32] in 1995, number of migrants count at household level by Shukla et.al[28] in 2006, number
of accidents count due to heavy vehicular traffic for the year 2010 by Sharma et.al [27] in 2013,
number of suicide cases count due to COVID-19 in India by Rahman et.al [23] in 2022, number of
antenatal care service visits count by Bekalo et.al [4] in 2021. In order to model count observations
with frequent zeros, number of Zero-Inflated models have been studied in the literature. The idea
of zero-inflation was first given by Neyman [22] in 1939 and feller [9] in 1943 to overcome the
situation of more zeros. Zero-inflated Poisson distribution (ZIPD) introduced by Mullahy [20] in
1986 as a mixture between Poisson distribution and a distribution at point mass zero with mixing
probability (δ). The probability mass function of the distribution X (δ, ζ) is as follows.

P(x, δ, ζ) =

{
δ + (1− δ)e−ζ ; x = 0

(1− δ) e−ζ ζx

x! ; x > 0

where δ is a zero-inflation parameter (0<δ<1), ζ ≥ 0 and if δ=0, the distribution reduces to
Poisson distribution. Several authors investigated ZIPD such as Singh [30] in 1962, Martin
and Katti [17] in 1965, Goralski [10] in 1977, Lambert [14] in 1992, Bohning [5] in 1998 and
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sim et.al [29] in 2018. Gupta [11] developed a generalized version of Zero-inflated Poisson
model called as zero adjusted generalized Poisson model. The parameters of the zero-inflated
Poisson model were estimated by Nanjundan and Naika [21] in 2012 by using moment method
of estimation and compared with maximum likelihood estimators. Beckett et.al [3] used some
natural calamities data to study the zero-inflated Poisson model and compared moment method
and maximum likelihood method of estimation. Hall [12] in 2000 introduced the zero-inflated
binomial distribution. Zero-inflated negative binomial distribution (ZINBD) was distinguished
by Suresh et.al [31] in 2015. Zero-inflated negative binomial distribution studied by Mwalili et.al
[19] in 2008 to accommodate extravagant zeros. Ahmad et.al [1] in 2014 studied the zero-inflated
generalized power series distribution using Bayes estimators of functions of parameters under
varied loss functions. Sandhyaa et.al [25] in introduced a model called Inflated-parameter Harris
Distribution. Several structural properties were explored and characterization on the basis of
probability generating function was also given. To check the applicability of the model, real
life-data was also considered. Junnumtuam et.al [13] introduced a new discrete distribution
called the Zero-Inflated Cosine Geometric (ZICG) Distribution for modelling over dispersed data
with excessive zeros. Various structural properties like moment generating function, mean and
variance were also obtained. Furthermore, confidence interval was also constructed by using
the Wald method. The Bayesian method with highest posterior density method was also used
to estimate the true confidence intervals. Dara and Ahmad [7] in 2012 introduced the Moment
exponential distribution (ME) by weighting the exponential distribution in conformity with
Fishers theory (1934). Scollnik [26] in 2022 obtained Bayesian analyses of an exponential-Poisson
and related zero augmented type models. Maya et.al [18] in 2023 analysed the applications of
Poisson moment exponential distribution in the contexts of time series analysis and regression
analysis for real world phenomenon. Ahsan-ul-Haq [2] in 2022 introduced the Poisson moment
exponential distribution (PMExD) by combining the Moment exponential and Poisson distribution
by compounding technique and showed that the model is over dispersed and flexible for statistical
data analysis. The probability mass function (p.m.f) of the PMExD is as follows.

P(Y = y) =
ζy(1 + y)
(1 + ζ)2+y ,

Where y=0, 1, 2, 3, ..., and ζ > 0. The PMExD has been found in immense applications in various
fields of medical sciences, engineering, entomology and education.
Since in many practical situations the different models like Poisson distribution, zero-inflated
Poisson distribution, negative binomial distribution, discrete Weibull distribution, zero-inflated
negative binomial distribution etc. are not preferable. In such cases, zero-inflated version of the
PMExD provides better fit. For example, in the application section, different real-life datasets
are considered. Only the zero-inflated version of PMExD gives best fit in comparison to existing
models. So, in this paper we introduce zero-inflated poisson moment exponential distribution
(ZIPMExD) along with distributional properties and other important aspects.
This paper is organized as follows. In section 2, we show the derivation of the ZIPMExD,
cumulative distribution function. Also, the shapes of probability mass function (p.m.f) and
cumulative distribution function (c.d.f) are presented in this section. In section 3, we have
obtained the various structural properties along with reliability characteristics and generating
functions. In section 4, we discuss the estimation of the parameters of the ZIPMExD by two
different methods. A rigorous simulation study is also discussed in this section. In section 5,
to check the significance of the inflation parameter, different test procedures are applied for
examination. Certain real life data applications are considered in section 6 for highlighting the
functionality of the model. Also, it is important to highlight that zero-inflated version of PMExD
is not studied yet in the literature.
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2. Zero-Inflated Poisson Moment Exponential Distribution

In this part, we present Zero-Inflated Poisson Moment Exponential distribution (ZIPMExD).
We have derived the propability mass function of the proposed model along with cumulative
distribution function.
Theorem 1. Let Y ∼ ZIPMExD (π, δ). Then the probability mass function (p.m.f) of Y is given as

P(Y = y) =


π + (1− π) 1

(1+δ)2 ; y = 0

(1− π) δy(1+y)
(1+δ)y+2 ; y = 1, 2, 3, ...,

Proof: If Y is a random variable of Poisson Moment Exponential distribution, then the probability
mass function (p.m.f) of Y can be defined as

h(y) =
δy(1 + y)
(1 + δ)y+2 ; y = 0, 1, 2, ..., ; δ > 0

The Zero-inflated distribution is an extra proportion added to the proportion of zero, then the
probability mass function of Zero-inflated distribution is given as

p(Y = y) =

{
π + (1− π)h(y = 0) ; y = 0
(1− π)h(y) ; y = 1, 2, ...

where 0 < π < 1.
Then, the p.m.f of the ZIPMExD(π, δ) is obtained by substituting the probability mass function of
the Poisson moment exponential random variable into Zero-inflated model. Therefore, it can be
written as 

π + (1− π) 1
(1+δ)2 ; y = 0

(1− π) δy(1+y)
(1+δ)y+2 ; y = 1, 2, 3, ...,

(1)

where 0 < π < 1 and δ > 0

The Cumulative Distribution Function of ZIPMExD (π, δ) can be given as

F(Y) = P(Y ≤ y)

=
y

∑
z=0

P(Y = z)

= π +
(1− π)

(1 + δ)2

y

∑
z=0

δz(1 + z)
(1 + δ)z

= [1− (1− π)(y + δ + 2)δy+1(1 + δ)−(y+2)] (2)
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Figure 1: The Pmf plots of ZIPMExD
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3. Structural properties along with reliability characteristics and

generating functions.

In this part, we have obtained the survival function, hazard rate function, generating functions
along with associated measures like index of dispersion (ID), skewness (β1) and kurtosis (β2) of
the ZIPMExD (π, δ).

3.1. Survival Function (SF):

The Survival Function of ZIPMExD (π, δ) is as follows.

S(Y) = 1− F(Y)

= (1− π)

[
(y + δ + 2)δy+1

(1 + δ)y+2

]
(3)

3.2. Hazard Rate (HR):

Let y1, y2, y3 ,..., yn be a random sample from ZIPMEx (π, δ) distribution as given by equation (1)
Define Z be the number of y′i s taking the value zero. Then equation (1) can be written as follows

P(Y = yi) =

[
π + (1− π)

1
(1 + δ)2

]Z [
(1− π)

δy(1 + y)
(1 + δ)y+2

]1−Z

Now, using S(Y) from equation (3). The Hazard Rate of ZIPMExD (π, δ) is given as

H(y) =
P(y)
S(y)

=

[
π + (1− π) 1

(1+δ)2

]Z [
(1− π) δy(1+y)

(1+δ)y+2

]1−Z

[
(1− π) (y+δ+2)δy+1

(1+δ)y+2

]
3.3. Reverse Hazard Rate (RHR):

R(y) =
P(y)
F(y)

=

[
π + (1− π) 1

(1+δ)2

]Z [
(1− π) δy(1+y)

(1+δ)y+2

]1−Z

[1− (1− π)(y + δ + 2)δy+1(1 + δ)−(y+2)]

3.4. Moments and associated measures

3.4.1 Moment Generating Function:

The Moment Generating Function, My(t) of ZIPMExD (π, δ) distribution is given as

My(t) = E(etx) =
∞

∑
y=0

etyP(Y = y)

= π +
(1− π)

(1 + δ)2

∞

∑
y=0

ety
[

δy(1 + y)
(1 + δ)y

]

= π +
(1− π)

(1 + δ)2

[
∞

∑
y=0

(etδ)y

(1 + δ)y +
∞

∑
y=0

y
(etδ)y

(1 + δ)y

]
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= π +
(1− π)

(1 + δ)2

[
(1 + δ)

(1 + δ− etδ)2

]
(4)

Putting et = eit in equation (4), the Characteristic Function, φy(t) of ZIPMExD (π, δ) is defined as

φy(t) = π +
(1− π)

(1 + δ)2

[
(1 + δ)

(1 + δ− eitδ)2

]
(5)

Through MGF, we have derived the first four raw moments of the proposed distribution by
differentiating equation (4) at t=0. The first four raw moments of the proposed distribution are as
fallows.

µ′1 = (1− π)2δ (6)

µ′2 = (1− π)2δ(1 + 3δ) (7)

µ′3 = (1− π)[2δ(1 + 9δ + 12δ2)] (8)

µ′4 = (1− π)[2δ(1 + 21δ + 72δ2 + 60δ3)] (9)

3.4.2 Central Moments:

The first four central moments of the proposed distribution are obtained by using the relationship
between raw moments and central moments. These are as follows

µ2 = (1− π)2δ[1 + δ + 2πδ] (10)

µ3 = (1− π)2δ[1 + 3δ + 2δ2 + 6πδ + 34πδ2 + 8π2δ2] (11)

µ4 = (1− π)2δ[1 + 13δ + 24δ2 + 12δ3 + 24πδ2 + 8πδ + 24πδ + 24πδ3 + 24π2δ2 + 24π3δ3] (12)

Remark 4.1: The ZIPMExD is over dispersed for any δ > 0 and π = [0, 1].

proof: Suppose that the ZIPMExD is under dispersed. Then clearly
Mean>Variance, which implies that

(1− π)2δ > (1− π)2δ[1 + δ + 2πδ]

⇒ 1 > [1 + δ + 2πδ]

which shows that [1 + δ + 2πδ] < −1, which is impossible for any δ > 0 and π = [0, 1]. Hence
the proof. The dispersion index (DI) of the proposed distribution is

DispersionIndex =
var(y)

mean(y)
=

(1− π)2δ[1 + δ + 2πδ]

(1− π)2δ

= [1 + δ + 2πδ] > 1 (13)

Further, Coefficient of variation(CV), Skewness and Kurtosis of the proposed model are given as
follows:

CV =
SD(y)

Mean(y)
=

√
(1− π)2δ[1 + δ + 2πδ]

(1− π)2δ
(14)
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Skewness(
√

β1) =
[1 + 3δ + 2δ2 + 6πδ + 8π2δ2 + 34πδ2]√

(1− π)(2δ)(1 + δ + 2πδ)3
(15)

Kurtosis(β2) =
[1 + 13δ + 24δ2 + 12δ3 + 8πδ + 24πδ2 + 24πδ3 + 24π2δ2 + 24π3δ3]

(1− π)2δ[1 + δ + 2πδ]2
(16)

Table 1: Behaviour of the model’s descriptive statistics for various parameter values.

π=0.1 π=0.3 π=0.6
δ→ 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

Mean 0.900 1.800 2.700 3.600 4.500 0.700 1.400 2.100 2.800 3.500 0.400 0.800 1.200 1.600 2.000

Variance 1.440 3.960 7.560 12.240 18.000 1.260 3.640 7.140 11.760 17.5 0.840 2.560 5.160 8.640 13.000

DI 1.600 2.200 2.800 3.400 4.000 1.800 2.600 3.400 4.200 5.000 2.100 3.200 4.300 5.400 6.500

CV 1.300 1.105 1.018 0.971 0.942 1.603 1.362 1.272 1.224 1.195 2.292 2.000 1.892 1.837 1.802

β1 2.171 2.302 2.432 2.532 2.607 3.281 3.777 4.102 4.324 4.482 5.517 6.421 6.939 7.260 7.488

β2 6.754 6.136 5.929 5.828 5.769 7.548 6.594 6.250 6.074 5.967 11.795 10.134 9.524 9.204 9.005

From the above table, it can be seen that for different combinations of parameters, the value of
dispersion index is greater than one. So, the proposed model is over dispersed. For skewness,
it can be seen that model is rightly skewed as the value of skewness increases for different
combinations of parameters. Furthermore, from the table, it can be observed that the ZIPMExD is
leptokurtic as the value of kurtosis is greater than three for different combinations of parameters.

4. Parametric Estimation

In this part, we have discussed the parametric estimation of the ZIPMExD (π, δ) by moment
method of estimation and maximum likelihood method of estimation.

4.1. Moment Method of Estimation (MME)

The parameters π and δ of the proposed model can be obtained using this method as follows:
Considering the first two raw moments from equation number (6) and (7)

δ̂ =
µ′1

2− 2π
(17)

Now, from equation number (7), we have

µ′2 = (1− π)2δ(1 + 3δ) (18)

Putting the value of δ from (17) to (18), we get

µ′2 = 2
[

µ′1
2− 2π

]
+ 6

[
µ′1

2− 2π

]2

− 2π

[
µ′1

2− 2π

]
− 6π

[
µ′1

2− 2π

]2

2(µ′2 − µ′1)π
2 − (4µ′2 − 4µ′1 − 3µ2

1)π + (2µ′2 − 2µ′1 − 3µ2
1) = 0 (19)

we can get estimated value of π on solving the above quadratic equation and that value of π has
been used to estimate the value of δ in equation (17).
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4.2. Maximum Likelihood Estimation Method (MLE)

The parameters π and δ of equation (1) can be obtained using this method as follows:
Let y1, y2, y3, ... , yn be a random sample from ZIPMExD (π, δ) as given by equation (1) and let
for i=1, 2, 3, ... , n

bi =

{
1; i f yi = 0
0; otherwise

then, for i=1, 2, 3, ..., n equation (1) can be expressed as follows

P(Y = yi) =

[
π +

(1− π)

(1 + δ)2

]bi
[
(1− π)(1 + yi)δ

yi

(1 + δ)2+yi

]1−bi

Hence the likelihood function; L=L(π, δ; y1, y2, y3, ..., yn) will be

L =
n

∏
i=1

[
π +

(1− π)

(1 + δ)2

]bi
[
(1− π)(1 + yi)δ

yi

(1 + δ)2+yi

]1−bi

=

[
π +

(1− π)

(1 + δ)2

]n0 n

∏
i=1

[
(1− π)(1 + yi)δ

yi

(1 + δ)2+yi

]di

Where di=1-bi, n0=∑n
i=1bi. Note that the number of zeros in the sample are represented by n0.

Therefore,

log L = n0 log
[

π +
(1 + π)

(1 + δ)2

]
+ (n− n0) log(1− π) + log δ

n

∑
i=1

diyi + log(1 + δ)
n

∑
i=1

di(yi + 2)

∂ log L
∂π

=
n0[(1 + δ)2 − 1]

(1 + δ)2π + (1− π)
− (n− n0)

(1− π)
(20)

∂ log L
∂δ

= − 2n0(1− π)

π(1 + δ)3 + (1− π)(1 + δ)
+

1
δ

n

∑
i=1

diyi −
1

(1 + δ)

n

∑
i=1

di(yi + 2) (21)

Let, p = π +
(1− π)

(1 + δ)2 (22)

Now, let ∂log L
∂π =0, then from equation (20) and using equation (22),

1− π =
p(n− n0)(1 + δ)2

n0[(1 + δ)2 − 1]
(23)

Now, letting ∂log L
∂δ =0, using equation (22), equation (21) reduces

−n0[2(1− π)]

p(1 + δ)3 +
n

∑
i=1

diyi
δ
−

n

∑
i=1

di(yi + 2)
(1 + δ)

= 0 (24)

Now, if we replace p by their sample relative frequencies, i.e., by their sample estimates, the
proportion of zeros in the sample, i.e., p̂=n0/n and then Equation (23) reduces to

1− π =
(n− n0)(1 + δ)2

n[(1 + δ)2 − 1]
(25)
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Now using equation (23), equation (24) can be written as

− [2(n− n0)(1 + δ)2]

[(1 + δ)2 − 1]
+

n

∑
i=1

diyi
δ
−

n

∑
i=1

di(yi + 2)
(1 + δ)

= 0

⇒ M(δ) = 0 (26)

Where, M(δ) = − [2(n−n0)(1+δ)2]
[(1+δ)2−1] + ∑n

i=1
diyi

δ −∑n
i=1

di(yi+2)
(1+δ)

Hence by any numerical means, say Newton Rapson method. Equation (26) can be solved to
obtain δ̂ numerically. i.e., M (δ̂ )=0
similarly, using equation (22), π can be estimated

π̂ =
1
n

[
n0 −

(n− n0)

[(1 + δ)2 − 1]

]
(27)

Therefore, the maximum likelihood estimates (MLE) of the parameters δ and π are given by
solving equation (26) numerically to find δ̂ and π̂ given by equation (27) respectively.
In order to calculate the asymptotic variance-covariance matrix of the estimates the second order
differentiations of the log-likelihood function are given here

∂log L
∂π2 = − n0[(1 + δ)2 − 1]2

[(1 + δ)2π + (1− π)]2
− (n− n0)

(1− π)2

∂log L
∂δ2 =

2no(1− π)[2(1 + δ)2π + (1− π)]

[π(1 + δ)3 + (1− π)(1 + δ)]2
−

n

∑
i=1

diyi
δ2 +

n

∑
i=1

di(yi + 2)
(1 + δ)2

∂log L
∂δ∂π

=

[
2n0[π(1 + δ)2 + (1− π)]− 2n0(1− π)[(1 + δ)2 − 1]

[π(1 + δ)2 + (1− π)]2

]
By inverting the Fisher’s information matrix (I), the asymptotic variance-covariance matrix of the
maximum likelihood estimates of δ and π for ZIPMExD (δ, π) can be obtained as

I=


E
(
− ∂log L

∂π2

)
E
(
− ∂log L

∂δ∂π

)
E
(
− ∂log L

∂π∂δ

)
E
(
− ∂log L

∂δ2

)


The ingredients of the above Fisher’s information matrix can be obtained as

E
(
−∂log L

∂π2

)
=

(
−∂log L

∂π2

) ∣∣∣∣∣
π=π̂,δ=δ̂

(28)

The asymptotic distribution of the maximum likelihood estimator (δ̂, π̂) is given by

√
n
(

δ̂

π̂

)
MLE

L−→AN

((
δ̂

π̂

)
, I−1

)
, asn→ ∞

5. Testing

In this part, we have checked the significance of inflation parameter (π) by likelihood ratio test
and score test.
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5.1. Likelihood Ratio Test

In order to test the significance of the inflation parameter π of the ZIPMExD, The Likelihood
Ratio Test (LRT) is carried out to distinguish between PMExD (ζ) and ZIPMExD (π, δ). Here the
null hypothesis is

Ho : π = 0VsH1π 6= 0

In case of LRT, test statistic is given by

−2lnξ = 2(l1 − l2), (29)

where, l1 = lnL(θ̂; y), Where θ̂ is the maximum likelihood estimator for θ = (π, δ) without
limitation, and l2 = lnL(θ̂∗, y), in which θ̂∗ is the maximum likelihood estimator for θ under the
null hypothesis Ho. The test statistic described in equation (29) is asymptotically distributed as
χ2 with one degree of freedom.

Table 2: Calculated value of test statistic in case of Likelihood Ratio Test.

lnL(θ̂∗; y) lnL(θ̂; y) Test statistic
Dataset 1 -6752.66 -6736.52 32.28
Dataset 2 -476.68 -430.85 91.66
Dataset 3 -595.86 -593.64 4.44

Since the critical value at 5% level of significance is 3.84 at one degree of freedom. It can be
seen from the above table that the null hypothesis is rejected in all the three data sets. Hence we
can say that the additional parameter in the model is significant.

5.2. Wald test

Here for testing the significance of inflation parameter π of ZIPMExD we assess the Wald test. To
test the null hypothesis

H0 : π = 0VsH1 : π 6= 0

In case of Wald test, test statistic is given by

Wπ =
π̂2

Var(π̂)
, (30)

Where Var(π̂) represents the diagonal element of Fisher information matrix at π = π̂ and
δ = δ̂.The test statistic given in equation (30) is asymptotically distributed as chi2 with one degree
of freedom.

Table 3: Calculated value of test statistic in case of Wald Test.

Test statistic
Dataset 1 39.73
Dataset 2 283.96
Dataset 3 4.72

Since at one degree of freedom, the critical value at 5% level of significance is 3.84. It can be
seen from the above table that the null hypothesis is rejected in all the three data sets. Hence we
can say that the additional parameter in the model is significant.
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5.3. Simulation

In this section, we carry a simulation study to investigate the finite sample behaviour of the
maximum likelihood estimators for different sample sizes (n=25,75,100,300,600) on various
parameter settings. The procedure was repeated 1000 times for calculation of Bias, Variance,
Mean Square Error (MSE) and Coverage Probability and the results are given in Table2. It can be
seen from the table, that as the sample size increases, the bias, variance and mean square error
decreases and are close to zero for large sample sizes. Also, the coverage probability tends to
0.95 as the sample size increases. These results suggest that maximum likelihood estimates are
consistent and therefore can be used in estimating the unknown parameters of the proposed
model.

Table 4: Simulation table of MLE’s for proposed model

Sample π = 0.3, δ = 0.9 π = 0.5, δ = 2
Size(n) Parameter Bias Variance MSE Coverage Bias Variance MSE Coverage

probability (95%) probability (95%)

‘
25

π̂ -0.06354 0.02335 0.02739 0.98 -0.03026 0.00832 0.00923 1.00
δ̂ -0.08737 0.06415 0.07178 0.90 -0.00590 0.24814 0.24818 1.00

75
π̂ -0.01913 0.00818 0.00854 0.98 -0.01438 0.00422 0.00442 0.96
δ̂ -0.03034 0.02751 0.02843 0.92 0.00707 0.06000 0.06005 0.98

100
π̂ 0.00948 0.00646 0.00655 0.96 -0.00521 0.00188 0.00191 1.00
δ̂ 0.03178 0.02177 0.02278 0.94 0.00771 0.04532 0.04538 1.00

300
π̂ -0.01206 0.00241 0.00256 0.92 -0.00828 0.00088 0.00095 1.00
δ̂ -0.00248 0.00565 0.00565 0.98 -0.03233 0.01900 0.02005 0.96

600
π̂ -0.01220 0.00065 0.00080 0.98 0.00144 0.00064 0.00064 0.94
δ̂ -0.00941 0.00263 0.00272 0.96 0.02842 0.01513 0.01594 0.90

Sample π = 0.5, δ = 2.5 π = 0.5, δ = 0.85
Size(n) Parameter Bias Variance MSE Coverage Bias Variance MSE Coverage

probability (95%) probability (95%)

25
π̂ -0.00174 0.01119 0.01120 0.94 -0.05718 0.02309 0.02636 0.98
δ̂ -0.01929 0.62737 0.62775 0.90 -0.00713 0.11008 0.11013 0.94

75
π̂ -0.01586 0.00481 0.00506 0.96 0.02007 0.00812 0.00853 0.94
δ̂ -0.03521 0.09355 0.09479 0.94 0.01183 0.03575 0.03589 0.92

100
π̂ -0.00893 0.00341 0.00349 0.94 0.00874 0.00646 0.00654 0.94
δ̂ -0.05368 0.09101 0.09389 0.98 0.00454 0.02240 0.02242 0.96

300
π̂ 0.00236 0.00110 0.00111 0.98 -0.00032 0.00243 0.00243 0.92
δ̂ 0.01784 0.03013 0.03045 0.98 0.00635 0.00626 0.00630 0.98

600
π̂ -0.00198 0.00034 0.00035 1.00 0.00133 0.00097 0.00097 0.94
δ̂ 0.02452 0.01711 0.01771 0.96 -0.00472 0.00378 0.00381 0.96

Sample π = 0.1, δ = 0.5 π = 0.5, δ = 1.6
Size(n) Parameter Bias Variance MSE Coverage Bias Variance MSE Coverage

probability (95%) probability (95%)

25
α̂ -0.01360 0.00971 0.00989 0.98 -0.02185 0.01302 0.01350 0.98
θ̂ 0.00515 0.05491 0.05494 0.96 -0.14024 0.15844 0.17811 0.90

75
α̂ 0.00575 0.00632 0.00635 0.98 -0.01570 0.00438 0.00463 0.96
θ̂ 0.01937 0.01274 0.01312 0.98 -0.03387 0.09477 0.09592 0.86

100
α̂ 0.00114 0.00623 0.00624 0.94 -0.00752 0.00470 0.00476 0.94
θ̂ 0.01932 0.01359 0.01396 1.00 -0.04282 0.05458 0.05642 0.94

300
α̂ -0.00765 0.00200 0.00206 1.00 0.00347 0.00127 0.00128 0.96
θ̂ -0.01014 0.00706 0.00717 0.90 0.02095 0.01841 0.01885 0.96

600
α̂ -0.00306 0.00152 0.00153 0.92 -0.00371 0.00066 0.00067 0.96
θ̂ -0.00216 0.00262 0.00263 0.94 -0.02580 0.01039 0.01105 0.88

6. Applications

In this part, we study the practical significance of Zero-Inflated Poisson Moment Exponential
Distribution(ZIPMExD). Three real life data sets are taken to compare Zero-Inflated Poisson
Moment Exponential Distribution (ZIPMED) with few other distributions.
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6.1. Data set 1

The dataset from Table 5 consists of frequencies regarding the number of vaccine adverse events
originally given by Rose et.al [24] in 2006. Total number of events were recorded after each of
the four injections for the 1005 study participants, which results in 4020 observations. Daret.al
[8] recently used Poisson weighted exponential distribution to fit the number of vaccine adverse
events data. After analysing data through R software, we can see that our model performs
better than other competing models because of highest p-value i.e., (0.928) among all other
competing distributions and we can also see that our model favours the criteria i.e., Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) among all other competing
models because of lowest values. The other competing models we use in this paper are Poisson
Moment distribution (PMD), Zero-inflated Poisson Distribution (ZIPD), Poisson Distribution (PD),
Negative Binomial Distribution (NBD), Discrete Weibull Distribution (DWD) and Zero-inflated
Negative Binomial Distribution (ZINBD).

Table 5: Expected frequencies and χ2 values for fitted models

Claims observed count ZIPMExD PMExD ZIPD PD NBD DWD ZINBD
0 1437 1437 1307 1437 891 1119 1411 1437
1 1010 1009 1124 787 1342 1225 1066 958
2 660 681 724 803 1011 838 668 708
3 428 408 415 546 508 459 393 436
4 236 230 223 279 191 220 223 241
5 122 124 115 114 58 96 123 125
6 62 65 58 39 14 39 66 61
7 34 33 28 11 3 15 35 29
8 14 17 14 3 1 6 18 13
9 8 8 7 1 0 2 9 6

10 4 4 3 0 0 1 5 3
11 4 2 1 0 0 0 2 1
12 1 1 1 0 0 0 1 1

Degrees of Freedom 8 8 5 6 9 8 7
ML Estimates π̂=0.0836 δ̂=0.7534 λ̂=2.0405 λ̂=1.5069 p̂=0.5032 q̂=0.6491 p̂=0.6020

δ̂=0.8324 π̂=0.2614 r̂=1.5267 β̂=1.1469 r̂=2.6000
â=0.1229

χ2-value 3.08 36.64 301.57 1516.9 10.12 8.79 7.23
p− value 0.928 < 0.001 < 0.001 < 0.001 0.320 0.359 0.404
− ˆlog 6736.52 6752.66 6868.79 7231.13 6740.60 6739.67 6737.84
AIC 13477.04 13507.32 13741.58 14464.26 13485.21 13483.35 13481.68
BIC 13489.64 13513.62 13754.18 14470.56 13497.80 13495.95 13500.58

6.2. Dataset 2

The dataset from Table 6 has been taken from [15]. The dataset is related to the HIV exposed infant
data. The data has been taken from three concerned regions, Nairobi, Kisumu and Mombasa
and the data reveals zero-inflation because of the measures that have been put in place to reduce
the rate of Mother to Child Transmission (MTCT). A total of 494 samples were collected from
60 health centres in Kenya from these three regions for analysis. From the table, we can see
that our model outperforms other competing models because of highest p-value among all other
competing distributions and we can also see that our model has lowest criteria i.e., Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) among all other competing
models.

  RT&A, No.3 (74)  
Volume 18, September 2023  

852



Zehra Skinder, Peer Bilal Ahmad, Na Elah
A NEW ZERO-INFLATED COUNT MODEL WITH
APPLICATIONS IN MEDICAL SCIENCES

Table 6: Expected frequencies and χ2-values for fitted models

Claims Observed count ZIPMExD PMExD ZIPD PD NBD DWD ZINBD
0 378 378 323 378 308 354 336 378
1 59 54 123 47 145 86 108 57
2 26 31 35 38 34 31 35 30
3 13 16 9 20 5 13 11 15
4 7 8 2 8 1 5 4 8
5 11 4 0 3 0 2 1 6

Degrees of Freedom 3 2 2 5 2 2 2
ML Estimates π̂=0.6215 δ̂=0.2358 λ̂=1.6051 λ̂=0.4716 p̂=0.5145 q̂=0.3207 p̂=0.6639

δ̂=0.6230 π̂=0.7061 r̂=0.5000 β̂=1.0010 r̂=2.6000
â=0.6416

χ2 2.04 69.90 13.76 172.97 63.53 63.96 3.15
p− value 0.564 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.207
− ˆlog 430.85 476.68 435.39 524.23 438.52 456.12 431.10
AIC 865.70 955.36 874.79 1050.64 881.04 916.25 868.20
BIC 874.10 959.56 883.20 1054.84 889.45 924.66 880.81

6.3. Dataset 3

The dataset from Table7 represents the frequencies of epileptic seizure counts reported in [6]. The
measures of goodness-of-fit for all competing distributions are presented and it is evident that
the proposed distribution fits well, as it has the highest p-value and lowest AIC and BIC criteria.
So, in this regard we see that our model fits better than other fitted models on the given data set.

Table 7: Expected frequencies and χ2 values for fitted models

Claims Observed count ZPMExD PMExD ZIPD PD NBD DWD ZINB
0 126 126 112 126 75 120 120 126
1 80 85 97 65 116 93 93 79
2 59 59 64 69 89 59 59 62
3 42 36 37 49 46 35 35 39
4 24 21 20 26 18 20 20 22
5 8 11 11 11 5 11 11 12
6 5 6 5 4 1 6 6 6
7 4 3 3 1 0 3 3 3
8 3 2 1 0 0 2 2 1

Degrees of Freedom 5 6 4 2 5 5 4
ML Estimates π̂=0.0959 δ̂=0.7720 λ̂=2.1196 λ̂=1.5441 p̂=0.5009 q̂=0.6577 p̂=0.6455

δ̂=0.8540 π̂=0.2715 r̂=1.5500 β̂=1.1560 r̂=3.3845
â=0.1710

χ2-value 3.5 9.66 16.68 82.45 6.10 6.10 2.87
p− value 0.622 0.139 0.002 <0.001 0.296 0.296 0.579
− ˆlog 575.70 577.92 599.63 636.04 594.94 594.74 576.00
AIC 1155.41 1157.84 1203.27 1274.09 1193.88 1193.49 1156.41
BIC 1162.09 1163.07 1210.99 1277.95 1201.60 1201.22 1167.93
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7. Conclusion

A new Zero-inflated version of Poisson moment exponential distribution is introduced in this
paper namely Zero-inflated Poisson Moment Exponential Distribution (ZIPMExD). Key statistical
properties of the distribution including generating functions, reliability characteristics and mo-
ments have been derived. For parametric estimation purpose, two different methods i.e., moment
method and maximum likelihood method of estimation have been used. Simulation study has
been done for evaluating the proficiency of the estimation measures considered in this paper.
Further, the procedure of Log Likelihood ratio test and Wald test are designed for testing the
significance of inflation parameter. Three real life data sets are reviewed for demonstrating the
practicality of the introduced model juxtapose to the existent models being PMExD, PD, ZIPD,
DWD, NBD and ZINBD. We can see that ZIPMExD in terms of Chi-square value and p-value
gives best fit as the existent models do not show best fit. The information measures like Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) in terms of numerical value
reveals that ZIPMExD can be considered as a suitable model in comparison to other models as
discussed in this paper.
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