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Abstract

A meaningful subject of discourse in manufacturing industries is the assessment of the lifetime per-
formance index. In manufacturing industries, the lifetime performance index is used to measure the
performance of the product. A generalized lifetime performance index (GLPI) is defined by taking into
consideration the median of the process measurement when the lifetime of products follow a parametric
distribution may serve better the need of quality engineers and scientists in industry. The present study
constructs various point estimators of the GLPI based on progressive type II right censored data for the
Lindley distributed lifetime in both classical and Bayesian setup. We perform Monte Carlo simulations to
compare the performances of the maximum likelihood and Bayes estimates with a gamma prior of CY(L)
under progressive type-II right censoring scheme. Finally, the validity of the model is adjudged through
analysis of a data set.

Keywords: Bayesian estimation, Metropolis-Hastings method, Process Capability Index, Maxi-
mum likelihood estimator.

1. Introduction

Process Capability Indices (PCIs) have wide use in industries for evaluating a manufacturing
process and whether or not it can produce articles within the specified limits. PCIs aim to quantify
the capability of a process (X) to meet some specifications related to a measurable characteristic of
its produced items. These specifications are determined through the lower specification limit (L),
the upper specification limit(U) and the target value (T). PCI is an effective means to measure a
process’s performance and potential capabilities. In the manufacturing industry, PCIs are utilized
to assess whether product quality meets customer expectations. Since capability is typically
defined in dictionaries as the ability to carry out a task or achieve a goal, a better process capability
implies better product quality. If the process capability is evaluated with product survival lifetime,
it is clear that a larger lifetime means better product quality, higher reliability, and the process is
capable. Hence, the lifetime of products exhibit the larger- the better quality characteristic of time
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orientation. It should be noted that the lifetime of products does not follow a normal distribution.
For instance, [14], [34], [6], [24] and [17] pointed out that the product lifetime possesses an
exponential distribution. The description of the lifetime by the Weibull distribution was noted
by [34], [40], [41] and [16]. In addition, [34] also mentioned that lifetime follows a gamma
distribution. Since the lifetime of products exhibits the larger-the-better quality characteristic of
time orientation, [35] and [23] recommended the use of the capability index (lifetime performance
index) for evaluating the lifetime performance of electronic components, where L is the lower
specification limit. Also, there are many different PCIs available in the literature. The hypothesis
testing procedures are developed by [20] and [45] using the maximum likelihood estimator of PCI
for Pareto distribution under type-II censored sampling and progressive type-I interval censoring,
respectively. A hypothesis testing procedure was developed by [42] for the PCI of the Gompertz
distribution based on the progressive type-I interval censored sample. The MLE was used by [46]
to estimate the PCI of Rayleigh distribution based on the progressive type-I interval censored
sample and developed a new hypothesis testing procedure utilizing an asymptotic distribution
of this estimator. Some classical estimations and bootstrap confidence interval methods for the
PCIs are derived by [36, 37] when the process follows exponentiated exponential and normal
distributions, respectively. The classical and Bayes estimates of PCIs are obtained by [12, 13] for
generalized exponential and normal distributions, respectively. For an expository review, the
reader may follow the following articles of bibliography of the literature on PCIs, viz., [25], [38],
[48] and [1].

The lifetime performance index (LPI) is defined by [23], denoted by CL, which mainly
originated from the concept of symmetry of lifetime distributions. The uniformly minimum
variance unbiased estimator (UMVUE) for CL was obtained by [39] and considered the problem of
the hypothesis testing procedure for the exponential distribution. The UMVUE of CL to develop
the confidence interval under exponential distribution was obtained by [9]. The maximum
likelihood estimator of the lifetime performance index based on first-failure progressive right
type-II censored sample for Lindley distribution was obtained by [18]. The maximum likelihood
estimates of the lifetime performance index based on progressive first failure censoring scheme
Weibull, exponential and two-parameter exponential distributions, were obtained by [2, 3, 4]
respectively. The lifetime performance index of products based on progressively Type-II censored
for the Pareto samples was evaluated by [5]. The MLE, some Bayesian estimators, and credible
intervals were given by [49] for the lifetime performance index of the Pareto distribution based
on the general progressive type-II censored data. Approximate and exact parametric bootstrap
confidence intervals are proposed by [50] for the process performance index of power-normal
distribution. Most of the time, lifetime distributions are not necessarily symmetric. In this
case, the median of the process distribution plays an important role than the process mean (µ).
Therefore, it should be better if the index deals with the distribution’s median (µe). If µ is replaced
by µe, the inferential aspects and their property studies will be somewhat complicated. Using
the median, [32] proposed a generalized process capability index (GPCI) that is the ratio of the
proportion of specification conformance (or process yield) to the proportion of desired (or natural)
conformance. In the same tune, [33] defined a GLPI given as

CY(L) =
0.5 − F(L)

0.5 − α
(1)

=
1 − 2F(L)

1 − 2α
.

Here F(·) denotes the cumulative distribution function (CDF) of the process distribution and
α = P(X < LDL) with LDL being the lower desirable limit (practitioners sometimes take it as
a lower tolerance limit). Here (1 − α) is the confidence level close to unity. Statistical inference
for CY(L), viz., properties of GLPI order, testing procedure for GLPI and parametric bootstrap
confidence intervals based on a complete sample for the Lindley and in particular for exponential
distribution have been obtained by [33].
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In the case of a complete sample, it is necessary to continue the experiment until the last
item (or product) fails. Sometimes, many articles have very long lifetimes, and the experiment
continues for a very long period, so that the results may be of little interest or use. Then, it may be
desirable to terminate the test before all the items under test fail, and the resulting observations
will be called the censored sample. Various types of censored samples exist, including type II,
progressive type II, and progressive first-failure censored samples. The testing of the hypothesis
problem was proposed by [43] based on the maximum likelihood estimator (MLE) of CL for
two-parameter exponential distribution under type-II right censored sample. Based on a type-II
right censored sample, the confidence interval using Pareto distribution was obtained by [20, 21].
A hypothesis testing procedure was proposed by [27, 28] based on MLE and UMVUE with the
exponential distribution under progressive type-II right censored samples, respectively. The MLE
of CL was obtained by [19] under progressive first-failure censored samples from two-parameter
exponential distributions. The CL for the exponential lifetime products are evaluated by [29, 30]
based on type-II censored data. They obtained Bayes’s estimate of CL for the Rayleigh lifetime
products based on upper record values, respectively. Recently, [11] assessed the lifetime perfor-
mance index for Weibull distributed products based on progressive type-II right censored samples.

In this article, we consider a progressive type-II right censoring scheme, which is helpful in a
specific fraction of individuals at risk that may be removed from the experiment at each of several
ordered failure times. Therefore, a progressive censoring scheme allows us to incorporate the
removals before the experiment’s termination into analysis, which is a very common situation in
life-testing experiments. To the best of our knowledge thus far, an attempt has yet to be made to
study the GLPI CY(L) based on a progressive type-II right censoring scheme. Filling up this gap
is the aim of the present study. In this article, we consider the GLPI CY(L), introduced by [33] that
could be used for either normal or non-normal and either continuous or discrete characteristics
and is very simple and could be used comfortably by the practitioners.
The paper is arranged as follows. In section 2, The MLE and the Bayes estimate of CY(L) are
suggested based on progressive type II right censored sample for the Lindley distributed lifetime.
In section 3, the testing procedure due to the GLPI is done. In section 4, an extensive Monte
Carlo study is carried out to compare the performances of CY(L) based on considered methods
of estimation (MLE and Bayes) in terms of their corresponding mean squared errors (MSEs). A
real-world application has been discussed to illustrate the proposed index under progressive
type-II right censored samples in section 5. A brief concluding remark is made in section 6.

2. Estimation of CY(L) under progressively type-II censored sample for

Lindley products

Suppose that the lifetime of products may be modeled by Lindley distribution and let X denote
the lifetime of such product. Hence, the probability density function (PDF) and cumulative
distribution function (CDF), specified by Lindley distribution (see, [31]) are given as

f (x) =
θ2

θ + 1
(1 + x)e−xθ , x > 0, θ > 0 (2)

and

F(x) = 1 − 1 + θ + xθ

θ + 1
e−xθ , x > 0, θ > 0 (3)
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respectively, where, θ is the parameter. Now, for a process whose distribution can be regarded as
Lindley, the GLPI is given as

CY(L) =

{
1 − 2F(L)

1 − 2α

}

=

1 − 2
(

1 − 1+θ+θL
1+θ e−θL

)
1 − 2α

 . (4)

Here, in the following subsections, we derived the maximum likelihood estimate (MLE) and
the Bayes estimate of CY(L) under progressively type-II right censoring scheme for Lindley
distributed products, respectively.

2.1. Maximum likelihood estimate of CY(L)

The experimenter may not always observe the lifetimes of all the products (or items) put
on tests for conducting life testing experiments. The reason may be time limitation and/or
other restrictions (such as money, mechanical or experimental difficulties, material resources,
etc.) on data collection. Therefore, censored samples may arise in practice. In an industrial
experiment, products (or items) may break accidentally. These lead us into the area of progressive
type-II censoring. Under this scheme, n units are placed on test at time zero, and m failures are
observed. When the first failure is observed, r1 of the surviving units are randomly selected
and removed. At the second observed failure, r2 of the surviving units are randomly selected
and removed. Termination of the experiment occurs when the m-th failure is observed, and the
remaining rm = n − ∑m−1

j=1 rj − m surviving units are all removed. Inferences for the data obtained
by progressive censoring have been investigated, among others, by [10], [7], [15], and [44]. So, in
this paper, we consider the case of the progressive type-II right censoring.

Let x1:m:n, x2:m:n, ..., xm:m:n be a progressive type-II right censored sample where x1:m:n, x2:m:n,
..., xm:m:n denote the observed failure times and r1, r2, ..., rm denote the corresponding num-
bers of items removed (withdrawn) from the test. If m be the number of failures observed
before termination, then x1:m:n ≤ x2:m:n ≤ ..., ≤ xm:m:n be the observed ordered lifetimes. For
convenience, we will write xi:m:n as x(i). Let ri denote the number of items removed at the
time of the ith failure, 0 ≤ ri ≤ n − ∑i−1

j=1 rj − i, i = 2, 3, ..., m − 1 with 0 ≤ r1 ≤ n − 1 and

rm = n − ∑m−1
j=1 rj − m, where ri’s and m are pres-specified integers [see, Viveros and Balakrishnan

(1994)]. The complete sample ( r1 = r2 = ... = rm = 0 ) and type-II right censored samples (
r1 = r2 = ... = rm−1 = 0, rm = n − m) are special cases of this scheme. For further details and
for relevant references the reader may follow the article of [7]. The likelihood function of θ under
progressive type-II right censoring scheme is given by

l(θ) = A
m

∏
i=1

f (x(i); θ)[1 − F(x(i); θ)]ri , where A = n(n − r1 − 1)...(n −
m−1

∑
j=1

rj − m + 1)

= A.
θ2m

(1 + θ)m+∑m
i=1 ri

e−θ ∑m
i=1(1+ri)x(i)

m

∏
i=1

(1 + x(i))
m

∏
i=1

(1 + θ + θx(i))
ri (5)

Therefore, the log-likelihood function is given by

L(θ) = ln l(θ) = k + 2m ln θ − (m +
m

∑
i=1

ri) ln(1 + θ)− θ
m

∑
i=1

(1 + ri)x(i)

+
m

∑
i=1

ri ln(1 + θ + θx(i)), (6)
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where k is constant, independent of θ. Now, for MLE of the parameter θ, ∂L(θ)
∂θ = 0

=⇒ 2m
θ

− m + ∑m
i=1 ri

1 + θ
−

m

∑
i=1

(1 + ri)x(i) +
m

∑
i=1

ri(1 + x(i))
1 + θ + θx(i)

= 0. (7)

The explicit solution for the parameter θ through the above non-linear equation is not possible.
Hence, to solve this equation for θ, we have to proceed by some numerical method, from the
previous equation,

∂2L(θ)
∂θ2 = −2m

θ2 +
m + ∑m

i=1 ri

(1 + θ)2 −
m

∑
i=1

ri(1 + x(i))2

(1 + θ + θx(i))2 .

Hence, the Fisher’s information I(θ) is obtained as;

I(θ) = −E(
∂2L(θ)

∂θ2 ) =
2m
θ2 − m + ∑m

i=1 ri

(1 + θ)2 +
m

∑
i=1

riE

[
(1 + X(i))

2

(1 + θ + θX(i))
2

]
(8)

Further, after obtaining the solution above mentioned non-linear equation, the MLE of the index
CY(L) can be directly computed using invariance property of MLE. Let θ̂ be the solution of the
non-linear equation, then the MLE ĈY(L) of CY(L) is given by

ĈY(L) =

1 − 2
(

1 − 1+θ̂+θ̂L
1+θ̂

e−θ̂L
)

1 − 2α

 . (9)

The asymptotic distribution of MLE θ̂ is normal distribution N(θ, I−1(θ)). Hence, the two-sided
tail asymptotic 100(1 − α)% confidence interval for the parameter θ is given by{

θ̂ ∓ τα/2

√
I−1(θ̂)

}
,

where I(θ̂) = 2m
θ̂2 − m+∑m

i=1 ri
(1+θ̂)2 + ∑m

i=1
ri(1+x(i))

2

(1+θ̂+θ̂x(i))2 and τα/2 is the upper α/2-point of standard

normal deviate. The asymptotic distribution of MLE ĈY(L) is also normal distribution N(CY(L),
Var(ĈY(L)) with

Var(ĈY(L)) =
[

∂CY(L)
∂θ

]2

× Var(θ̂) =
[
−2θL{1 + (1 + θ)(1 + L)}e−θL

(1 − 2α)(1 + θ)2

]2

× I−1(θ).

The asymptotic variance is approximated as

V̂ar(ĈY(L)) ≈
[
−2θ̂L{1 + (1 + θ̂)(1 + L)}e−θ̂L

(1 − 2α)(1 + θ̂)2

]2

× I−1(θ̂).

2.2. Bayes estimate of CY(L)

In this section, we obtain the Bayes estimator of CY(L) under the assumption that the parameter θ
is random variable and follows some prior distribution. Let the prior distribution of θ is assumed
to be Gamma with parameter (k, a). Then the distribution of θ is given as

g(θ) =
ak

Γ(k)
e−aθθk−1, θ > 0 (10)

Now, the posterior distribution of θ by using Equations (2.5) and (2.9) is given as

g(θ | x) ∝
θ2m+k−1

(1 + θ)m+∑m
i=1 ri

e−θ(a+∑m
i=1(1+ri)x(i))

m

∏
i=1

(1 + θ + θx(i))
ri ; θ > 0. (11)
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Hence, the Bayes estimate of the parameter θ under squared error loss function is obtained by the
following Equation:

Eθ(θ) = ζ
∫

θ

θ2m+k

(1 + θ)m+∑m
i=1 ri

e−θ(a+∑m
i=1(1+ri)x(i))

m

∏
i=1

(1 + θ + θx(i))
ri dθ (12)

where ζ is a proportionality constant. The computation of the Bayes estimate of the index CY(L)
under the same assumption of prior and loss function is not possible directly from the above
posterior distribution. Since, the explicit form of the posterior PDF is not available but the
associated plot exhibit a more or less assume the shape of normal probability distribution. Thus,
the Metropolis-Hastings method with normal proposal distribution is to be used to generate
random numbers from respective posterior distribution using the Gibbs algorithm. The following
steps are taken to generate the posterior random deviates from the above posterior is as follows:

• Start with an initial guess θ(0).

• Set t = 1.

• Using the Metropolis-Hastings, generate θ(t) from g(θ | x) with the N
(

θ(t−1), 1
)

proposal
distribution.

• Compute CY(L)(t) from Equation (1)

• Set t = t + 1.

• Repeat steps 3-5, T times.

Note that in step 3, we use the Metropolis-Hastings algorithm with q(θ(t−1), σ2) proposal
distribution as follows:

1. Let x = θ(t−1).

2. Generate y from the proposal distribution q.

3. Let p(x, y) = min
(

1,
gθ(y)q(x)
gθ(x)q(y)

)
.

4. Accept y with the probability p(x, y) or accept x with the probability 1 − p(x, y).

The posterior deviates for CY(L) using the above mentioned steps is simulated using the random
deviates of θ by plug-in principal. Let CY(L)1, CY(L)2, · · · , CY(L)T be the T simulated posterior
deviates, then the approximate posterior mean, and posterior variance of CY(L) are given by

Ê(CY(L)|x) = 1
T

T

∑
t=1

CY(L)t

and

MSE(CY(L)|x) = 1
T

T

∑
t=1

(
CY(L)t − CY(L)

)2

respectively.

3. Testing procedure for the generalized lifetime performance index

using progressive type-II samples

In this section, following statistical hypothesis testing will be performed to access whether the
CY(L) adheres the required level. The proposed hypothesis testing procedure using progressive
type-II samples can be performed for CY(L), summarized as follows:
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1. Determine the lower specification limit L and the GLPI, C0
Y.

2. Construct the null hypothesis H0 : CY(L) ≤ C0
Y against the alternative H1 : CY(L) > C0

Y.

3. Specify the level of significant α.

4. Compute ĈY(L) and V̂ar(ĈY(L)) ≈ [−2θ̂L{1+(1+θ̂)(1+L)}e−θ̂L

(1−2α)(1+θ̂)2 ]2.I−1(θ̂).

5. Set critical region ω : ĈY(L) > C0
Y + τα

√
V̂ar(ĈY(L)).

4. Simulation and discussion based on progressively type-II censored

sample.

In this section, a comparison study has been carried out through simulation study under pro-
gressively type II censoring scheme between maximum likelihood and the Bayes estimate of
CY(L) in terms of their corresponding mean squared errors (MSEs) for the considered set up.
All the calculations have been made by using R software (see, [22]). The progressive type-II
right censored sample from the considered lifetime distribution for the different variation of the
parameter (θ), censoring parameters (n, m), censoring schemes (r′is) and lower desired limit (L)
is generated by following the algorithm suggested by [8] algorithm, as stated below:

1. Generate m independent Uniform(0, 1) observations W1, W2, ..., Wm.

2. Set Vi = W1/(i+rm+rm−1+...+rm−i+1)
i for i = 1, 2, ..., m.

3. Set Ui = 1 − Vm.Vm−1...Vm−i+1 for i = 1, 2, ..., m. Then U1, U2, ..., Um is the required progres-
sive type-II censored sample from the Uniform (0, 1) distribution.

4. Finally, we set Ui = 1 − 1+θ+Xiθ
θ+1 e−Xiθ , and solve this equation by Newton-Raphson method

to get Xi for i = 1, 2, ..., m. Then X1, X2, ..., Xm is the required progressive type-II censored
sample from the distribution (2).

The simulated MSE of the MLE and the Bayes estimate of CY(L) have been presented in Tables
1-6 for different censoring schemes with some particular choices of θ and L. From the Tables 1-6,
it is found that the MSE of each estimator is decreasing with n, the sample size. This verifies the
consistency property of all the estimators. It is also observed that the performance of the Bayes
estimation is relatively better than the MLE under all the considered choices.

5. Applications

A real data set is cited to illustrate the MLE, Bayes estimate of LPI CL (see, [23]) and the proposed
GLPI CY(L) for progressive type-II right censoring scheme for the Lindley distributed lifetime.
The considered data set is described in detail by [33] (also available in [26]), and the goodness
of fit test to Lindley distribution is discussed therein. The data set is primarily fitted to the
exponential model in Lawless. [33] have checked the data set with the Lindley distribution and
found it to be a better fit. Thus, from the same data set, the progressive type-II censored data
are generated for the different values of m = 10, 15, L=100 and the censoring schemes, and the
corresponding MLE and Bayes estimates of CY(L) is reported in the Table 7. The Bayes estimates
for the real data set is computed under non-informative prior.
Now, the proposed testing procedure of the GLPI CY(L) is performed for the above chosen
schemes as follows. For the considered data set, the progressive type-II censored data are
generated for the same censoring schemes, mentioned in Table 8, respectively. The MLE of the
parameter θ for the Lindley distribution is obtained from the Eqn. (2.7) for all the considered
schemes and the same are reported in Table 8. The statistical test for testing the null hypothesis
H0 : CY(L) ≤ 1 against the alternative hypothesis H1 : CY(L) > 1 has been performed for the

RT&A, No 4 (76) 
Volume 18, December 2023 

75



abhimanyu s yadav, mahendra saha, amartya bhattacharya,
arindam gupta

ASSESSMENT OF GLPI FOR LD

Table 1: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 0.50 under progressively type-II censoring scheme [True CY(L) = 1.073193 when L = 0.1 and
CY(L) = 0.992842 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

7[0]*10, 8 0*10 1.07058 0.00149 0.98230 0.01431
2, 0*7 1.06040 0.00316 0.99986 0.01086

1,1, 0*6 1.06686 0.00326 0.99877 0.01036
0*7, 2 1.06560 0.00272 0.98734 0.01451

0*6, 1*2 1.07203 0.00191 0.99791 0.00939
1, 0*6, 1 1.06470 0.00424 0.97192 0.01438

0*3, 1*2, 0*3 1.06315 0.00349 0.99770 0.00973
7[0]*20, 16 0*20 1.07081 0.00072 0.99550 0.00439

4, 0*15 1.06834 0.00083 1.00409 0.00546
1*4, 0*12 1.06991 0.00108 0.99523 0.00572

0*15, 4 1.07087 0.00106 0.98304 0.00653
0*12, 1*4 1.07045 0.00138 1.00387 0.00463
2,0*14,2 1.06791 0.00096 1.06689 0.00177

0*7, 2*2, 0*7 1.06902 0.00092 0.99288 0.00449
7[0]*30, 24 0*30 1.07523 0.00048 0.99840 0.00301

6,0*23 1.06878 0.00068 0.97993 0.00392
1*6, 0*18 1.06788 0.00077 0.99505 0.00416

0*23, 6 1.06747 0.00088 0.99042 0.00439
0*18, 1*6 1.06858 0.00057 1.00475 0.00349
3, 0*22, 3 1.06891 0.00063 0.99489 0.00358

0*9, 1*6, 0*9 1.07182 0.00050 0.98809 0.00379
7[0]*50, 40 0*50 1.07370 0.00028 0.99244 0.00218

10, 0*39 1.06526 0.00050 0.98831 0.00264
2*5, 0*35 1.07372 0.00028 0.98873 0.00256
0*39, 10 1.07123 0.00045 0.99057 0.00281

0*30, 1*10 1.06765 0.00052 0.99992 0.00220
5, 0*38, 5 1.07045 0.00032 0.98705 0.00375

0*18, 2*5, 0*17 1.07152 0.00038 0.98859 0.00329
Note: In the table, Scheme (0 ∗ 3, r) indicates that at 1st, 2nd and 3rd failure, no active unit is withdrawn or removed but at 4th failure, r

active units are drawn or removed.
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Table 2: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 0.50 under progressively type-II censoring scheme [True CY(L) = 1.073193 when
L = 0.1 and CY(L) = 0.992842 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

7[0]*10, 8 0*10 1.07597 0.00135 0.97546 0.01372
2, 0*7 1.06649 0.00283 0.99215 0.01049

1,1, 0*6 1.07202 0.00310 0.99148 0.00999
0*7, 2 1.07260 0.00245 0.97842 0.01403

0*6, 1*2 1.07847 0.00168 0.98854 0.00911
1, 0*6, 1 1.07092 0.00416 0.96363 0.01415

0*3, 1*2, 0*3 1.06895 0.00315 0.99046 0.00958
7[0]*20, 16 0*20 1.07378 0.00066 0.99127 0.00437

4, 0*15 1.07176 0.00077 0.99953 0.00533
1*4, 0*12 1.07317 0.00101 0.99098 0.00568

0*15, 4 1.07475 0.00098 0.97784 0.00658
0*12, 1*4 1.07413 0.00128 0.99871 0.00449
2,0*14,2 1.07175 0.00088 1.06302 0.00169

0*7, 2*2, 0*7 1.07239 0.00085 0.98837 0.00439
7[0]*30, 24 0*30 1.07714 0.00047 0.99551 0.00297

6,0*23 1.07127 0.00063 0.97659 0.00390
1*6, 0*18 1.07023 0.00072 0.99216 0.00409

0*23, 6 1.07036 0.00081 0.98673 0.00420
0*18, 1*6 1.07131 0.00052 1.00128 0.00341
3, 0*22, 3 1.07160 0.00059 0.99127 0.00345

0*9, 1*6, 0*9 1.07408 0.00048 0.98499 0.00360
7[0]*50, 40 0*50 1.07486 0.00028 0.99075 0.00209

10, 0*39 1.06679 0.00047 0.98640 0.00240
2*5, 0*35 1.07516 0.00027 0.98682 0.00247
0*39, 10 1.07291 0.00044 0.98830 0.00273

0*30, 1*10 1.06939 0.00049 0.99764 0.00193
5, 0*38, 5 1.07212 0.00030 0.98480 0.00357

0*18, 2*5, 0*17 1.07286 0.00037 0.98670 0.00292
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Table 3: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 0.75 under progressively type-II censoring scheme [True CY(L) = 1.038898 when L = 0.1 and
CY(L) = 0.891517 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

10, 8 0*10 1.02408 0.00490 0.90298 0.01973
2, 0*7 1.03005 0.00589 0.88015 0.02835

1,1, 0*6 1.02637 0.00580 0.90158 0.02385
0*7, 2 1.02057 0.00629 0.91253 0.02451

0*6, 1*2 1.02306 0.00557 0.92649 0.02055
1, 0*6, 1 1.03016 0.00484 0.88536 0.03157

0*3, 1*2, 0*3 1.01554 0.00776 0.90067 0.01950
20, 16 0*20 1.03593 0.00230 0.89003 0.01112

4, 0*15 1.03237 0.00296 0.88569 0.01545
1*4, 0*12 1.03649 0.00246 0.90247 0.01130

0*15, 4 1.02421 0.00318 0.89690 0.01192
0*12, 1*4 1.02827 0.00291 0.88864 0.01237
2,0*14,2 1.03430 0.00229 1.03440 0.00274

0*7, 2*2, 0*7 1.03789 0.00200 0.89309 0.01031
30, 24 0*30 1.03208 0.00159 0.88711 0.00637

6,0*23 1.03609 0.00180 0.89093 0.00982
1*6, 0*18 1.03655 0.00173 0.88934 0.00759

0*23, 6 1.03475 0.00164 0.89663 0.00958
0*18, 1*6 1.03212 0.00182 0.89877 0.00774
3, 0*22, 3 1.03816 0.00202 0.89079 0.01046

0*9, 1*6, 0*9 1.03469 0.00183 0.89383 0.00753
50, 40 0*50 1.03908 0.00077 0.89749 0.00487

10, 0*39 1.03609 0.00114 0.89273 0.00453
2*5, 0*35 1.03278 0.00128 0.89426 0.00483
0*39, 10 1.03953 0.00110 0.90031 0.00463

0*30, 1*10 1.03555 0.00109 0.89815 0.00530
5, 0*38, 5 1.03578 0.00128 0.89571 0.00574

0*18, 2*5, 0*17 1.03867 0.00089 0.89162 0.00504
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Table 4: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 0.75 under progressively Type-II censoring scheme [True CY(L) = 1.038898 when
L = 0.1 and CY(L) = 0.891517 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

10, 8 0*10 1.03297 0.00455 0.89338 0.01833
2, 0*7 1.03916 0.00579 0.87174 0.02609

1,1, 0*6 1.03618 0.00560 0.89210 0.02173
0*7, 2 1.03254 0.00582 0.90036 0.02258

0*6, 1*2 1.03506 0.00509 0.91270 0.01865
1, 0*6, 1 1.04124 0.00444 0.87482 0.02897

0*3, 1*2, 0*3 1.02560 0.00733 0.88980 0.01799
20, 16 0*20 1.04061 0.00223 0.88503 0.01078

4, 0*15 1.03777 0.00285 0.88032 0.01488
1*4, 0*12 1.04167 0.00237 0.89705 0.01079

0*15, 4 1.03095 0.00294 0.88995 0.01139
0*12, 1*4 1.03464 0.00272 0.88194 0.01196
2,0*14,2 1.04039 0.00220 1.02836 0.00293

0*7, 2*2, 0*7 1.04343 0.00193 0.88711 0.00992
30, 24 0*30 1.03536 0.00152 0.88355 0.00628

6,0*23 1.03974 0.00175 0.88705 0.00954
1*6, 0*18 1.04011 0.00168 0.88558 0.00743

0*23, 6 1.03937 0.00157 0.89173 0.00930
0*18, 1*6 1.03660 0.00174 0.89408 0.00747
3, 0*22, 3 1.04224 0.00197 0.88630 0.01015

0*9, 1*6, 0*9 1.03840 0.00177 0.88977 0.00734
50, 40 0*50 1.04110 0.00076 0.89530 0.00479

10, 0*39 1.03837 0.00111 0.89024 0.00445
2*5, 0*35 1.03504 0.00124 0.89184 0.00473
0*39, 10 1.04223 0.00109 0.89728 0.00452

0*30, 1*10 1.03823 0.00106 0.89516 0.00518
5, 0*38, 5 1.03836 0.00125 0.89290 0.00565

0*18, 2*5, 0*17 1.04098 0.00088 0.88919 0.00497
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Table 5: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 1.50 under progressively type-II censoring scheme [True CY(L) = 0.916334 when L = 0.1 and
CY(L) = 0.560892 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

7[0]*10, 8 0*10 0.92111 0.01876 0.59670 0.06439
2, 0*7 0.92292 0.02211 0.58234 0.07653

1,1, 0*6 0.92693 0.01922 0.55731 0.06999
0*7, 2 0.92967 0.01968 0.57833 0.07527

0*6, 1*2 0.93835 0.01868 0.60658 0.06007
1, 0*6, 1 0.92819 0.02075 0.59201 0.06345

0*3, 1*2, 0*3 0.91772 0.02080 0.57585 0.06962
7[0]*20, 16 0*20 0.92597 0.00852 0.57983 0.02738

4, 0*15 0.91773 0.01063 0.56602 0.03939
1*4, 0*12 0.92573 0.01097 0.57893 0.03167

0*15, 4 0.91871 0.01025 0.58104 0.03375
0*12, 1*4 0.91498 0.01218 0.59792 0.03509
2,0*14,2 0.91435 0.01054 0.58679 0.03709

0*7, 2*2, 0*7 0.91880 0.00977 0.57989 0.03197
7[0]*30, 24 0*30 0.91462 0.00617 0.56864 0.01894

6,0*23 0.91960 0.00780 0.57341 0.02488
1*6, 0*18 0.92418 0.00739 0.57963 0.02501

0*23, 6 0.92321 0.00829 0.57843 0.02103
0*18, 1*6 0.92471 0.00667 0.56706 0.02135
3, 0*22, 3 0.91766 0.00781 0.57184 0.01984

0*9, 1*6, 0*9 0.91798 0.00590 0.55905 0.02281
7[0]*50, 40 0*50 0.91497 0.00387 0.57058 0.01225

10, 0*39 0.91995 0.00436 0.56369 0.01427
2*5, 0*35 0.92503 0.00390 0.56944 0.01577
0*39, 10 0.92130 0.00401 0.56377 0.01520

0*30, 1*10 0.91975 0.00443 0.57915 0.01139
5, 0*38, 5 0.91687 0.00477 0.56287 0.01436

0*18, 2*5, 0*17 0.91364 0.00370 0.55129 0.01093
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Table 6: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 1.5 under progressively Type-II censoring scheme [True CY(L) = 0.916334 when
L = 0.1 and CY(L) = 0.560892 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

7[0]*10, 8 0*10 0.90365 0.01723 0.58724 0.05271
2, 0*7 0.90402 0.01989 0.57706 0.05956

1,1, 0*6 0.90828 0.01743 0.55465 0.05433
0*7, 2 0.90508 0.01810 0.57052 0.05563

0*6, 1*2 0.91331 0.01689 0.59403 0.04676
1, 0*6, 1 0.90561 0.01861 0.58232 0.05013

0*3, 1*2, 0*3 0.89825 0.01857 0.57098 0.05346
7[0]*20, 16 0*20 0.91626 0.00821 0.57459 0.02488

4, 0*15 0.90710 0.01022 0.56201 0.03504
1*4, 0*12 0.91540 0.01042 0.57481 0.02815

0*15, 4 0.90527 0.01001 0.57409 0.02974
0*12, 1*4 0.90220 0.01193 0.59034 0.03104
2,0*14,2 0.90213 0.01034 0.57034 0.03124

0*7, 2*2, 0*7 0.90799 0.00946 0.57521 0.02814
7[0]*30, 24 0*30 0.90805 0.00612 0.56529 0.01775

6,0*23 0.91221 0.00761 0.57023 0.02298
1*6, 0*18 0.91709 0.00714 0.57655 0.02317

0*23, 6 0.91407 0.00807 0.57355 0.01931
0*18, 1*6 0.91574 0.00648 0.56287 0.01980
3, 0*22, 3 0.90917 0.00764 0.56766 0.01829

0*9, 1*6, 0*9 0.91040 0.00581 0.55630 0.02116
7[0]*50, 40 0*50 0.91096 0.00385 0.56855 0.01179

10, 0*39 0.91526 0.00428 0.56163 0.01363
2*5, 0*35 0.92053 0.00379 0.56757 0.01504
0*39, 10 0.91552 0.00393 0.56076 0.01451

0*30, 1*10 0.91423 0.00437 0.57613 0.01084
5, 0*38, 5 0.91159 0.00473 0.56055 0.01368

0*18, 2*5, 0*17 0.90905 0.00370 0.54963 0.01048
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pre-chosen level of significance α = 5% and L = 100. Also, the estimate of GLPI CY(L) and the
one-sided 95% confidence interval for CY(L), i.e., [LB, ∞) are computed and are reported in Table
8. From the obtained result it can be verified that the value of C0

Y = 1 does not belong to the
one-sided confidence interval, thus the null hypothesis H0 is rejected. Hence, the rejection of
the null hypothesis indicates that the GLPI for the considered censored observations meets the
required level.

Table 7: Real data estimates of CL and CY(L) for different censoring schemes where L = 100.

n m Schemes ĈLMLE ĈLBayes ĈY(L)MLE ĈY(L)Bayes
6[0]*19 3[0]*10 0,1*9 1.29976 1.31230 1.06033 1.06053

1*9,0 1.32879 1.30256 1.07422 1.07421
0*4,3*3,0*3 1.33256 1.32036 1.08983 1.08686

3[0]*15 0*11,1*4 1.26546 1.27359 1.05995 1.05736
1*4,0*11 1.24328 1.25370 1.06700 1.05697

0*6,1*4,0*5 1.25042 1.23734 1.08076 1.07896
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6. Conclusions

The present article considers the problem of estimating the GLPI, introduced by [32], under
progressive type-II right censored sample where the lower specification limit is given for the
Lindley distributed products. The model parameter and the GLPI are obtained by the MLE and
Bayes estimation methods, respectively. A comparison study has been carried out through the
Monte Carlo simulation study under a progressive type-II censoring scheme between MLE and
the Bayes estimate of GLPI in their corresponding MSEs. A real data set is analyzed to study
the performance of the proposed index. Though the approach of classical estimation and Bayes
estimation are different in direction, assuming the gamma prior and using MCMC method, we
discussed the Bayes estimation of CY(L). The Bayes estimate of the performance index is relatively
better than MLE in terms of corresponding MSEs. The proposed procedure can be extended to
obtain the confidence interval of CY(L) based on MLE and Bayes estimate to evaluate whether
the product quality meets the required level. In our upcoming course of work, the problem will
be attempted. We may use the MLE and the Bayes estimate of CY(L) based on the progressive
type-II right censored sample to draw conclusions about additional lifetime distributions in future.
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