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Abstract

Heavy-tailed distributions have garnered interest due to their advantageous statistical and reliability
characteristics, rendering them valuable in applied fields such as economics, finance, and risk management.
Such distributions offer robust properties, making them pertinent to studies in various areas like
econometrics, statistics, and insurance. Thus, the primary objective of this paper is to propose a Two
parameter right skewed- upside down bathtub type, heavy tailed distribution, which is a generalisation
of Inverse Exponential distribution and is referred to as Modi Inverse Exponential distribution. We
derive several mathematical and statistical features, including quantile function, mode, median, skewness,
kurtosis, and mean deviation. Additionally, the reliability and hazard rate functions are also derived.
Stochastic ordering and order statistics of the proposed distribution were derived. We also investigate
the tail behaviour of the proposed model. Furthermore, estimation methods such as maximum likelihood
estimation and its asymptotic confidence bound, percentile method, and Cramer-von-Mises method were
examined. To demonstrate the appropriateness of the suggested model, we have considered two distinct
real datasets along with three distinct models and concluded that the proposed model is more adaptable.

Keywords:Inverse Exponential distribution, Modi Inverse Exponential distribution, Moments,
Tail Behaviour, Order Statistics, Parameter estimation.

1. Introduction

During the recent years, heavy-tailed distributions have gained attention as an attractive subject
for various research and studies. References to some works on these distributions can be found in
[1],[2],[3],[4],[5]. These distributions possess excellent statistical and reliability properties, making
them practical for many applied sciences such as economics, finance, econometrics, statistics, risk
management, and insurance. Several authors have developed inferential results under financial
modeling, as seen in [6],[7],[8],[9],[10]. There exist various heavy-tailed distributions in many
practical situations, such as financial sciences, reliability engineering and bio-medical science,data
are usually positive, and their distribution is uni-modal hump shaped and extreme values yielding
heavier tails than the classical models. For example, in health science research (1). The medical
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expenditure that exceed a given threshold and (2). Length of stay in hospital, presents highly
skewed, heavy tailed data for which standard classical distributions and simple variable transform
are insufficient to provide an adequate fit to such data. The Exponential distribution has been
widely used for analyzing life-time data. However, its usefulness is restricted to scenarios with
a constant hazard rate, which can be difficult to justify in practical situations. To address this
problem, so many alternative models for life-time data have been developed. Among them,
distributions like Weibull and gamma have been extensively employed when dealing with life-
time data exhibiting a monotonically increasing or decreasing hazard rate. The UBT failure rate
distributions commonly appear in medical and biological fields like in lung cancer patient data
(see [11], in bladder cancer patient data (see [28] ) and in breast carcinoma patient data (see
[12]. The inverse transform method is a widely used approach to derive the inverse form of
different lifetime distributions. The distribution family obtained by this method, known as the
generalized inverted family, often exhibits the characteristic"upside-doun bathtub" hazard rate
pattern. These distributions have the advantage of being the number of parameters required and
are straightforward to apply. For instance, Notable examples of such a distribution include the
inverted gamma distribution (IED) proposed by Lin et al[13] and the Inverse Lindley Distribution
(ILD), introduced by Sharma et al[14]. In addition,The transmuted inverse exponential distribution
was presented by Oguntunde and Adejumo [15]. In the same year, Khan et al [16] propose the
transmuted inverse Weibull distribution. In addition, in 2014, Sharma et al [17]introduce the
transmuted inverse Rayleigh distribution. Then, in 2016, Sharma et al [18] further introduced the
generalized inverse Lindley distribution. The purpose of this study is to propose a new inverted
probability model with UBT type of failure rate. For this purpose , we consider A one parameter
Inverse exponential distribution. Let X be the random variable having the probability density
function (pdf) is given by

g(x) =
θ

x2 e−
θ
x , x > 0, θ > 0. (1)

and the cumulative distribution function (cdf) is

G(x) = e−
θ
x , x > 0, θ > 0. (2)

for all x > 0 , where θ > 0. Furthermore, K. Modi et al [19] introduced a new family of distri-
butions name Modi family of distribution in his paper titled a new family of distributions with
applications on two real data sets on the survival problem. where he proposed a new probability
distribution by taking base line distribution by exponential distribution with one parameter.
This paper aims to substitute αβ with γ within the established family, resulting in a modified
probability density function(pdf) and cumulative distribution function(cdf) is given by.

fY(x) =
(1 + γ)(γg(x))
(γ + G(x))2 , γ > 0. (3)

and

FY(x) =
(1 + γ)G(x)

γ + G(x)
, γ > 0. (4)

where g(x) and G(x) are the pdf and cdf of the baseline distribution. Moreover, We can easily
verified that the given Modi family satisfies the identifiable properties and other properties which
is required for a probability distribution. Hence, this familiy of distribution can be used to
generate more flexible probability distributions. The hazard function of equation (1) is given by,

hY(x) =

[
1 + γ

γ + G(x)

]
hX(x), γ > 0.

Where hX(x) is the hazard function of the baseline distribution.
Acknowledging the need for more flexible lifetime distributions, we introduce a new family of

probability distribution known as the Modi Inverse Exponential distribution with two parameters.
which can be extensively used to fit and analyze data in a variety of field. The paper is
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organized as follows: Section 2 specifies the Modi Inverse Exponential distribution, whereas
Section 3 provides the Modi Inverse Exponential distribution Properties, which include the
Hazard function, Survival function, Quantile function,Mode, Median, Skewness, Kurtosis, Mean
Deviation, Stochastic Ordering, Order statistics. In Section 4, we look at the Modi inverted
exponential distribution’s tail behaviour. Section 5 We investigated different method of estimation
which includes Maximum likelihood estimation and its asymptotic confidence bound, Percentile
method and Cramer-von Mises method is discussed Section 5, we conduct a simulation study to
validate the proposed model’s estimations, and two real data sets are analysed to demonstrate
the efficacy of the proposed model. The conclusion is provided in Section 6.

2. Modi Inverse Exponential Distribution

A random variable X is said to have Modi Inverse Exponential distribution (MIE) if its cumulative
distribution function (cdf) is given by

F(x) =
(γ + 1)

1 + γe
θ
x

, x > 0, γ > 0, θ > 0. (5)

and its pdf is,

f (x) =
θγ(γ + 1)e

θ
x

(xγe
θ
x + x)2

, x > 0, γ > 0, θ > 0. (6)

The shape of the distribution might provide important insights into its characteristics, such
as whether it is symmetrical or skewed. In this context, the MIE(γ, θ) distribution is represented
by its cumulative distribution function (cdf) in Figure 2 and its probability density function (pdf)
in Figure 1 for different values parameter.

Figure 1: Pdf plot of MIE distribution for different parameter values

Theorem 1. Given that X follows the MIE (γ, θ) distribution with f (x) and F(x) as given in (6)
and (5) respectively, then:
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Figure 2: cdf plot of MIE distribution for different parameter values

1. limx→∞ f (x) = 0
2. limx→∞ F(x) = 1

proof. Trivial and hence omitted.

3. Some Statistical Properties of MIE Distribution

This section contains various statistical features associated with the new distribution that have
been derived.

3.1. Hazard Rate Function

The hazard function characterizing a specific phenomenon elucidates the inherent nature of the
failure rate that is associated with lifetime of the specific equipment. For the cdf and pdf provided
in equations (5) and (6), respectively, the expression for h(x) is as follows:

h(x) =
(γ + 1)θe

θ
x

x2(e
θ
x − 1)(γe

θ
x + 1)

(7)

The hazard rate function plot in Figure 3 shows various curves indicating different values of
the parameters γ and θ. We can gain useful insights about the nature of the model’s failure
rate by using this visual depiction, which reveals a distinct right-skewed pattern and UBT type
failure model.The mathematical verification of this assertion may also be established through the
utilization of the outcome presented by Glaser [20]. Glaser demonstrated that the Condition for
UBT can be established if and only if the following conditions are met: φ′(t) > 0 for all t ∈ (0, t0),
φ′(t0) = 0, φ′(t) < 0 for all t > t0, and satisfying limt→0 f (t) = 0 where φ is equal to − f ′(t)

f (t) and
f (t) is the first derivative of the density function with respect to t. For our proposed model, it is
evident that.

φ(t) = −2t(1 + e
θ
t γ) + θ − e

θ
t γθ

t2(1 + e
θ
t γ)

and

φ′(t) =
2((t + e

θ
t tγ)2 − e

θ
t γθ2 + t(θ − e

2θ
t γ2θ)

t4(1 + e
θ
t γ)2
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Figure 3: Hazard plot of MIE distribution for different parameter values

Since, the above equation is not provided in an explicit form to derive the solution, a simulation
study was performed.It was observed that for t0 ≈ 0.4488, φ′(t) > 0 for all t ∈ (0, t0), φ′(t0) = 0,
φ′(t) < 0 for all t > t0. Also, from Equation (6), we verified that limx→0 f (t) = 0. Therefore,
it can be deduced that the MIE(γ,θ) distribution proposed exhibits a right-skewed distribution,
which is characterized by an UBT shape of hazard rate. This distribution is particularly useful
when analyzing medical and reliability data.

3.2. Survival Function

The survival function describes the probability that a unit, component, or individual will not fail at
a given time. The expression for survival function S(x) is stated as follows, and its corresponding
survival plot is presented in Fiqure 4:

S(x) =
γ(e

θ
x − 1)

γe
θ
x + 1

, (8)

Theorem 2. The limit of the hazard rate function of MIE(γ, θ) distribution as x → ∞ is zero.

i.e, lim
x→∞

h(x) = 0.

Proof. Trivial and hence omitted. ■

3.3. The Odd Function

The Odd Function is obtained using the relation Q(x) = F(x)
s(x) and is given by

Q(x) =
γ + 1

γ(e
θ
x − 1)

, (9)
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Figure 4: Survival plot of MIE distribution for different parameter values

3.4. Reverse Hazard Rate Function

The Revised Hazard Rate Function is obtained by using the relation,

ϕ(x) =
f (x)
F(x)

=
θγe

θ
x

x2(γe
θ
x + 1)

,
(10)

3.5. Cumulative Hazard Function

The Cumulative Hazard Function is obtained using the relation,

C(x) = − log(S(x))

= − log

[
γ(e

θ
x − 1)

γe
θ
x + 1

]
,

(11)

3.6. Quantile Function, Skewness and Kurtosis

The MIE distribution can be simulated using the inverse cdf method,

X =

 θ

ln
(

γ+1−u
γu

)
 , (12)

where, u is a uniform random variable, 0 < u < 1. The qth quantile of the MIE distribution is
obtained as:

xq =

 θ

ln
(

γ+1−q
γq

)
 , (13)

By making use of equation (13), we are able to calculate the first and third quartiles by substituting
q = 0.25 and q = 0.75, correspondingly. Once we have obtained these values, we can subsequently
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calculate Galton’s [[21]] skewness (Sk) and Moor’s [[22]] Kurtosis (Kr) by means of the given
formulae.
The measure of skewness Sk,

Sk =
Q(6/8)− 2Q(4/8) + Q(2/8)

Q(6/8)− Q(2/8)
, (14)

and the measure of Kurtosis, Kr

Kr =
Q(7/8)− Q(5/8) + Q(3/8)− Q(1/8)

Q(6/8)− Q(2/8)
, (15)

3.7. Median

Since the distribution proposed is a heavily tailed, right-skewed distribution, the most appropriate
measure of central tendency is the median.The median of the proposed distribution can be
obtained by utilizing q = 0.5 in the quantile function, as delineated in equation (13). So median
Md

Md =

 θ

ln
(

γ+1−0.5
γ(0.5)

)
 , (16)

3.8. Mode

if a random variable X has the PDF given by equation (6), then the corresponding mode is given
by f ′(x) = 0, thus we obtain

f ′(x) =
e

θ
x θγ(1 + γ)

(
e

θ
x (θ − 2x)− γ(θ + 2x)

)
(

e
θ
x + γ

)3
x4

= 0

=⇒
(

e
θ
x (θ − 2x)− γ(θ + 2x)

)
= 0

For various values of γ and θ, we can estimate the value of x by using an optimization technique
in R. If γ = 3 and θ = 4, we obtain the mode as 1.93755.

3.9. Mean Deviation

The mean deviation from the median is a statistical measure, serves as an indicator of population
dispersion. Let "M" stand in for the median of the MIE Distributions specified in equation (16).
The mean deviation from the median may be computed as follows:

ρ(x) = E|x − M| =
∫ ∞

0
|x − M| f (x)dx,

it can be obtained the following equation ρ = µ − 2W(M) where W(M) is

W(M) = θγ(γ + 1)
∫ M

0

e
θ
x

x2(γe
θ
x + 1)2

dx, (17)

This integral may be readily computed numerically using tools such as R, MATLAB, Mathcad,
and others. Thus, obtaining the mean deviation from the median is desired.

RT&A, No 4 (76) 
Volume 18, December 2023 

118



Jabir Bengalath, Bindu Punathumparambath
A NOVAL EXTENSION OF INVERSE EXPONENTIAL DISTRIBUTIONS

Figure 5: Mode plot of MIE distribution for different parameter value

3.10. Stochastic Ordering

Let X1 and X2 be random variables with cumulative distribution functions (cdf’s) F1(x) and F2(x),
respectively. X1 is said to be stochastically greater than or equal to X2 if F1(x) ≤ F2(x) for all x.
(see Gupta et al [23] for more detail).

Theorem 3. Let X1 ∼ MIE(γ1, θ1) and X2 ∼ MIE(γ2, θ2). X1 is said to be stochastically greater
than X2 if γ1 = γ2 = γ and θ1 > θ2.
Proof. Let’s consider θ1 > θ2 and γ1 = γ2 = γ, the ratio simplifies to:

F1(x)
F2(x)

=

γ+1

1+γe
θ1
x

γ+1

1+γe
θ2
x

Since θ1 > θ2, we have:

e
θ1
x

e
θ2
x

> 1

Therefore, when θ1 > θ2 and γ1 = γ2 = γ, F1(x) is stochastically smaller than F2(x) for all
x > 0. ■

3.11. Order Statistics

In this section, we derive a compact expression for the pdf of the ith order statistic of the Modi
inverse exponential distribution. Let X1, X2, X3, ..., Xn be a simple random sample from the Modi
inverse exponential distribution with cdf and pdf given by equations (5) and (6), respectively. Let
X1:n ≤ X2:n ≤ X3:n ≤ ... ≤ Xn:n denote the order statistics obtained from this sample. We now
give the pdf of Xr:n, denoted as fr:n(x), and the rth moments of Xr:n, for i = 1, 2, ..., n, which are
given by:

fr:n(x) = Cr:n [F(x; γ, θ)]r−1 [1 − F(x; γ, θ)]n−r f (x; γ, θ), (18)
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for all x > 0, where F and f are given by equations (5) and (6), respectively, and Cr:n = n!
(n−1)!(n−r)! .

Thus, using the binomial series expansion:

(1 − x)α−1 =
∞

∑
j=0

(−1)j
(

α − 1
j

)
xj.

We obtain:

fr:n(x) = Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)
[F(x; γ, θ)]r+s−1 f (x; γ, θ),

= Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)[
γ + 1

1 + γe
θ
x

]r+s−1
θγ(γ + 1)e

θ
x

(xγe
θ
x + x)2

,

= Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)
θγ(γ + 1)r+s(1 + γe

θ
x )r+s−1e

θ
x (xγe

θ
x + x)−2. (19)

4. Tail Area Property

According to Klugman et al [24]and Nair et al [25] a distribution is classified as a heavy-tailed
distribution when it displays the heavy tail property. These types of distributions are characterized
by the lack of one or more orders of moments. Specifically, the absence of the first moment, which
represents the distribution’s arithmetic mean, indicates the presence of the distribution’s heavy
tail property. The proposed distribution’s arithmetic mean can be derived by solving:

θγ(γ + 1)
∫ ∞

0

e
θ
x

x(γe
θ
x + 1)2

dx,

which is a divergent integral,then the arithmetic mean of the corresponding distribution cannot
be determined. Consequently, based on this criterion, the proposed distribution can be classified
as a heavy-tailed distribution. Another method for evaluating the heavy tail attribute of the
distribution is to examine whether the ratio of the hazard rate to x approaches zero as x approaches
infinity; if it does, then the distribution displays the characteristic of a heavy-tailed distribution.
For the proposed distribution:

(γ + 1)θe
θ
x

x3(e
θ
x − 1)(γe

θ
x + 1)

→ 0

This fact can be proven by implementing L’Hpital’s rule. As a result, the distribution put forward
exhibits a heavy-tailed distribution.

In our analysis, we additionally consider the examination of the heavy tail characteristic of
the distribution via an alternative methodology. This methodology involves the observation of
the ratio of two survival functions. If the ratio of survivals approaches infinity as x approaches
infinity, then one survival function is considered to be heavier than the other. Moreover, the
limiting case of the ratio of two survival functions provides the limiting case of two probability
density functions. Therefore, this ratio also indicates the ratio of two density functions.

lim
x→∞

S1(x)
S2(x)

= lim
x→∞

S′
1(x)

S′
2(x)

= lim
x→∞

f1(x)
f2(x)

here, we conduct a comparison between the proposed distribution and the Pareto Type II distribu-
tion. The survival function of the Pareto Type II distribution is expressed as S(x) = P(X > x) =(
1 + x

λ

)−α. For α > 1, the ratio between the two distributions tends to infinity as x approaches
infinity. This suggests that the tail of the proposed distribution. Figure 6 provides the plot of the
tail density for the proposed distribution in comparison with two other distributions, namely the
normal distribution and the Parato Type II distribution.
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Figure 6: Tail behaviour of Normal, Parato type II and MIE densities

Remark 1: A distribution is said to be heavy-tailed distribution if and only if∫ ∞

0
eλx f (x) dx = ∞ for all λ > 0.

Hence MIE(γ,θ) is heavy tailed becuase it satisfies condition.

Remark 2: if a distribution is said to be heavy-tailed, if the right probabilities are heavier
than the exponential distribution if

lim
x→∞

1 − F(x)
e−λx = ∞ for all λ > 0.

Hence MIE(γ,θ) distribution also satisfies this condition.

Definition: An ultimately positive function f is called regularly varying at infinity with index
γ ∈ R if for any fixed c > 0:

lim
x→∞

f (cx)
x

= cγ.

The aforementioned theorem demonstrates that the density function derived from the MIE(γ,θ)
in equation (6) exhibits regularly varying tails.

Theorem 4. The density function of the MIE(γ,θ) distribution is a function with regularly varying
tails.

Proof. Using the density function (6), we have:

lim
x→∞

f (cx)
f (x)

= lim
x→∞

e
θ
cx x2(γe

θ
x + 1)2

e
θ
x (x + cx)2(γe

θ
cx + 1)2

= 1,

applying limits, the above simplifies to:

lim
x→∞

f (cx)
f (x)

= 1,

RT&A, No 4 (76) 
Volume 18, December 2023 

121



Jabir Bengalath, Bindu Punathumparambath
A NOVAL EXTENSION OF INVERSE EXPONENTIAL DISTRIBUTIONS

Hence the proof. ■
Definition: An ultimately positive function f is long-tailed and is said to belong to class L if and
only if:

lim
x→∞

f (x + y)
f (x)

= 1, for all y > 0.

Theorem 5. The MIE(γ,θ)Distribution belongs to the class L.

Proof.

lim
x→∞

f (x + y)
f (x)

=
e

θ
x+y x2(γe

θ
x + 1)2

e
θ
x (x + y)2(γe

θ
x+y + 1)2

= 1,

Hence, f belongs to the class L. ■
Definition: An ultimately positive function f belongs to the class D of dominated variation
distributions if there exists c > 0 such that:

lim
x→∞

f (x)
f (2x)

= c, for all x > 0.

Theorem 6. The MIE(γ,θ) Distribution belongs to the class D of dominated variation distributions.

Proof.

lim
x→∞

f (x)
f (2x)

=
22e

θ
x

(
γe

θ
2x + 1

)2

e
θ

2x

(
γe

θ
x + 1

)2 = 4,

hence f belongs to the class of dominated variation distributions. ■

4.1. Different method of Estimation

In this section, we are looking at three estimation methods for estimating the unknown model
parameters of the proposed model. The procedures are detailed below

4.2. Maximum Likelihood Estimation

Let X be a random variable with the pdf of the Modi inverse exponential distribution defined in
equation (6), then its log-likelihood function is defined by:

log L(x; γ, θ) = n log θ + n log γ + n log(γ + 1)

+ θ
∞

∑
i=0

1
xi

− 2
∞

∑
i=0

log(xiγe
θ
xi + xi)

(20)

Thus, the non-linear normal equations are given as follows:

∂ log L(x; γ, θ)

∂θ
=

n
θ
+

n

∑
i=0

1
xi

− 2
n

∑
i=0

e
θ
xi γ

(xi + e
θ
xi γxi)

(21)

∂ log L(x; γ, θ)

∂γ
=

n
γ
+

n
1 + γ

− 2
n

∑
i=0

e
θ
xi xi

(xi + e
θ
xi γxi)

(22)

The equations from (21) to (22) above are not in closed form. We refer to using some iterative
procedure such as Newton Raphson, Bisection methods, or some other method to obtain the
approximate maximum likelihood estimates (MLE) of these parameters for the solution of these
explicit equations.
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4.3. The Asymptotic Confidence Bounds:

The maximum likelihood estimators (MLE) of the unknown parameters γ, θ in the MIE (γ, θ) do
not have closed-form solutions. As a result, the exact distribution of the MLE cannot be derived.
However, asymptotic confidence bounds can be obtained based on the asymptotic distribution
of the MLE. The information matrix is calculated by taking the second partial derivatives of
equations (21) to (22) and is given as:

∂2 log L(x; γ, θ)

∂θ2 =− n
θ2 − 2

n

∑
i=0

 e
2θ
xi γ2

(xi + e
θ
xi γxi)2

+
e

θ
xi γ

xi(xi + e
θ
xi γxi)

 (23)

∂2 log L(x; γ, θ)

∂γ2 = − n
γ2 − n

(1 + γ)2 − 2
n

∑
i=0

−
e

2θ
xi x2

i

(xi + e
θ
xi γxi)2

 (24)

∂2 log L(x; γ, θ)

∂γ, θ
= −2

n

∑
i=0

− e
2θ
xi γxi

(xi + e
θ
xi γxi)2

+
e

θ
xi

(xi + e
θ
xi γxi)

 (25)

So that the observed information matrix is given by:

I = −
[

I11 I12
I21 I22

]
Hence, the variance-covariance matrix is approximated as:

V ≈ I−1 =

[
V11 V12
V21 V22

]
To obtain the estimate of V, we replace the parameters by their corresponding maximum likelihood
estimators (MLEs) to get:

V̂ ≈
[

V̂11 V̂12
V̂21 V̂22

]
Using the above variance-covariance matrix, one can derive the (1 − β)100% confidence intervals
for the parameters θ and γ as follows:

γ̂ ± Z γ
2

√
var(γ̂), θ̂ ± Z γ

2

√
var(θ̂).

4.4. The Percentile Method

Let X(j) be the jth order statistic, i.e., X(1) < X(2) < . . . < X(n). if pj denote some estimate of
F(xj; θ, γ), then the estimate of θ and γ can be obtained by minimizing

n

∑
j=1

xj −

 θ

ln
(

γ+1−pj
γpj

)
2

;

with respect to θ and γ. Several types of estimators for pj can be used [26], and this paper

considers pj =
j

n+1 .

4.5. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators aim to minimize the disparity between the
theoretical and empirical cumulative distribution functions. It has been demonstrated empirically
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that these estimators have a lesser bias than other minimum distance estimators. The Cramer-
von-Mises estimators γ̂CME, and θ̂CME, are the values of γ, and θ that minimizing

W(γ, θ) =
1

12n
+

n

∑
i=1

[
F (ti ; γ, θ)− 2i − 1

2n

]2
(26)

where ti is the i-th ordered observation, and F(ti; γ, θ) is the cumulative distribution function
of the MIED with parameters γ and θ. To estimate the parameters, we differentiate the above
equation partially with respect to the parameters γ and θ, respectively, and equate them to zero to
get the normal equations. Since the normal equations are nonlinear, we can use iterative methods
to obtain the solutions.

5. Simulation Study and Data Analysis

5.1. Simulation Study

In this section, we conduct a comprehensive Monte Carlo simulation study that is repeated 1000
times in order to compare the performance of the previously discussed estimators. We evaluate
these estimators using Mean Squared Error (MSE) and make comparisons across sample sizes
n = 50, 100, 150, 200 for two distinct parameter settings: γ = 1 and θ = 0.05, and γ = 0.9 and
θ = 2.5. The simulation-based outcomes provide estimates denoted as ˆγPM, ˆθPM, ˆγML, ˆθML, ˆγCM,
and ˆθCM for the Percentile Method (PM), Maximum Likelihood Estimation (MLE), and Cramer-
von Mises (CVM) method. The corresponding MSE values are displayed in parentheses. Notably,
as sample size n increases, the Mean Squared Error (MSE) tends to decrease, indicating improved
estimation accuracy. Table 1 and Table 2 present the simulation results.

n PM MLE CVM
ˆγPM ˆθPM ˆγML ˆθML ˆγCM ˆθCM

50 0.0836 0.0203 0.0013 0.0206 0.0900 0.0102
(0.3486) (6.918 × 10−04) (8.709 × 10−04) (5.277 × 10−04) (0.4250) (0.0050)

100 0.0406 0.0097 0.0005 0.0102 0.0425 0.0049
(0.1623) (1.303 × 10−04) (6.057 × 10−04) (1.144 × 10−04) (0.1819) (0.0026)

150 0.0269 0.0065 0.0004 0.0067 0.0282 0.0033
(0.1069) (6.499 × 10−05) (1.357 × 10−04) (5.123 × 10−05) (0.1195) (0.0017)

200 0.0203 0.0049 0.0004 0.0050 0.0213 0.0024
(0.0804) (3.696 × 10−05) (4.004 × 10−05) (3.308 × 10−05) (0.0896) (0.0013)

Table 1: Simulation outcomes obtained for the parameter value of γ = 1 and θ = 0.05 are presented herein. The
values enclosed within the parentheses denote the Mean Squared Error (MSE) values.

5.2. Data Analysis

In this section, we demonstrate the usefulness of the proposed Modi Inverse Exponential distri-
bution with parmeter γ and θ . We fit this distribution to a real-life data set and compare the
results with some recent efficient models, namely the Inverse Generalized Weibull distribution,
Generalized Inverse Generalized Weibull distribution. The corresponding PDFs are presented
below:

• Inverse Generalized Weibull Distributions:

f (x, α, β, λ) = αβλβe−(
λ
x )

β

x−(β+1)
(

1 − e−(
λ
x )

β
)α−1

,

• Generalized Inverse Generalized Weibull Distribution:
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n PM MLE CVM
ˆγPM ˆθPM ˆγML ˆθML ˆγCM ˆθCM

50 0.0564 0.0725 1.9823 0.05313 0.0065 0.0362
(3.926 × 10−03) (3.08 × 10−02) (0.2345) (3.09 × 10−02) (4.036 × 10−03) (3.103 × 10−02)

100 0.02762 0.0354 1.2356 0.0256 0.0029 0.0177
(2.591 × 10−05) (2.044 × 10−04) (0.0083) (2.055 × 10−04) (2.688 × 10−05) (2.064 × 10−04)

150 0.01835 0.0232 0.8017 0.0168 0.0019 0.0116
(2.536 × 10−07) (2.024 × 10−06) (0.0072) (2.048 × 10−06) (2.682 × 10−07) (2.053 × 10−06)

200 0.0138 0.0174 0.2211 0.0127 0.0014 0.0087
(4.744 × 10−09) (3.928 × 10−08) (0.0037) (3.991 × 10−08) (5.322 × 10−09) (4.046 × 10−08)

Table 2: Simulation outcomes obtained for the parameter value of γ = 0.9 and θ = 2.5 are presented herein. The
values enclosed within the parentheses denote the Mean Squared Error (MSE) values.

f (x, α, β, λ, γ) = αβγλβe−γ( λ
x )

β

x−(β+1)
(

1 − e−γ( λ
x )

β
)α−1

,

Data Set 1: This data set has been taken from [27]. The data on survival of 40 patients suf-
fering from leukemia, from the Ministry of Health Hospitals in Saudi Arabia, was taken from
Abouammoh et al. (1994):

115 181 255 418 441 461 516 739 743 789 807 865 924 983
1024 1062 1063 1165 1191 1222 1222 1251 1277 1290 1357 1369 1408 1455
1478 1549 1578 1578 1599 1603 1605 1696 1735 1799 1815 1852

Table 3: Estimates and Goodness-of-fit measures based on AIC, BIC, AICC, and CAIC for Data Set 1

Distribution Estimates Log-Likelihood AIC BIC AICC CAIC
MIE γ = 0.1350 -326.978 656.822 660.199 657.146 660.199

θ = 1.7856
IGWD α = 0.0426 -346.170 698.340 703.406 699.006 703.406

β = 1.3546
θ = 2.7048

GIGWD α = 0.0323 -367.455 742.909 749.664 744.052 749.664
β = 0.9067
θ = 1.2614
c = 4.2107

From Table 3, it shows that the proposed Modi Inverse Exponential distribution model has
the lowest AIC, BIC, AICC, and CAIC values among the other distributions, suggesting that it
provides the best fit to the dataset.

Data Set 2: This data set represents survival times in Days, from a Two-Arm Clinical Trial
considered by [28] and [29]. The survival time in days for the 31 patients from Arm B are:

37 84 92 94 110 112 119 127 130 133 140 146 155 159 173 179
194 195 209 249 281 319 339 432 469 519 633 725 817 1557 1776

From Table 4, we can see that our proposed model MIE has minimum AIC, BIC, AICC, and
CAIC values compared to IGWD and GIGWD distributions. Thus, we can infer that the newly
proposed model is a better fit for the given data compared to the other models.
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Table 4: Estimates and Goodness-of-fit measures based on AIC, BIC, AICC, and CAIC for Data Set 2

Distribution Estimates Log-Likelihood AIC BIC AICC CAIC
MIE γ = 0.0618 -206.657 417.315 420.183 417.744 420.183

θ = 1.1340
IGWD α = 0.0596 -217.366 440.733 445.035 441.622 445.035

β = 1.8165
θ = 4.5081

GIGWD α = 0.0665 -217.015 442.032 447.767 443.570 447.767
β = 0.8546
θ = 4.9719
c = 1.0867

6. Conclusion

In this article, We establishes the Modi Inverse Exponential distribution which a right skewed
heavy tailed UBT shaped probability model. The related structural properties are derived and
represented in the respective sections. Furthermore, we explore the tail behavior of the suggested
model and conclude that it is heavy-tailed. To estimate the distribution’s parameters, different
estimation methods such as method of maximum likelihood, method percentile and Method of
Cramer-von Mises are used. For the simulated data set, the results are shown in Table 1 and
2. We can see that the estimated values obtained are near to the predefined parameters, and
as n increases, MSE decreases, confirming the law of large numbers. However, the application
to two real-life data sets shows that the MIE distribution has a better fit than other competing
models, such as the Inverse Generalized Weibull distribution (IGWD) and Generalized Inverse
Generalized Weibull distribution, based on goodness-of-fit measures AIC, BIC, AICC, and CAIC.
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