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Abstract 

Characterization of a probability distribution plays an important role in probability and statistics. 

Before a particular probability distribution model is applied to fit the real world data, it is necessary 

to confirm whether the given probability distribution satisfies the underlying requirements by its 

characterization. The aim of this paper is to find characterization results New Quasi Lindley 

distribution. These results are established using the relation between truncated moments and 

failure rate functions and conditional expectation of adjacent order statistics. The first 

characterization result is based on relation between left truncation moment and failure rate 

function while the second result is based on relation between right truncated moment and reverse 

failure rate function. In the third characterization result we used conditional expectation of order 

statistics when the conditioned one is adjacent order statistics.  Further, some of its important 

deductions are also discussed. 

Keywords: New quasi Lindley distribution, Characterization, Truncated 

moments, Failure rate function, Reversed failure rate function, Order statistics. 

1. Introduction

Characterization is a condition involving certain properties of a random variable

)...,,,( 21 nXXXX  , which identifies the associated distribution function )(xF . The property 

that uniquely determines )(xF  may be based on a function of random variables whose joint 

distribution is related to that of )...,,,( 21 nXXXX  . The only method of finding distribution 

function )(xF  exactly, which avoids the subjective choice, is a characterization theorem. A 

theorem is on a characterization of a distribution function if it concludes that a set of conditions is 

satisfied by )(xF  and only by )(xF . There has been a vast development in the field of 
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characterizing distributions through different techniques; mainly characterization through 

distributional properties, moments and conditional expectation.Characterization of a probability 

distribution plays an important role in probability and statistics. There has been a great interest, in 

recent years, in the characterizations of probability distributions by truncated moments (see, for 

example [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] amongst others). 

Lindley distribution was introduced by [11]. A random variable X is said to have Lindley 

distribution with parameter   if its probability density function )( pdf is of the form 

.0,0;)1(
1

)(
2




  


  xexxf x
   (1) 

Its distribution function )(df  is 
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1

1
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
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  xe
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Various properties of this distribution have been discussed by [12] and they showed, in many 

ways (1) provides a better model for some applications than the exponential distribution. 

A two-parameter distribution called quasi Lindley distribution (QLD) has been introduced by 

[13]. A distribution with parameters   and is said to have quasi Lindley distribution if its pdf  

is of the form 

1,0,0;
1

)(
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and the df  is 

.1,0,0;
1

1
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It can easily be seen that at   , the QLD reduces to the Lindley distribution and at 0 , 

it reduces to the gamma distribution with parameters ),2(  .[13] have discussed its various 

properties and showed that this QLD is a better model than the Lindley distribution for modeling 

waiting and survival times data. 

A new form of quasi Lindley distribution called new quasi Lindley distribution (NQLD) is 

introduced by [14]. The pdf  of NQLD is given by 

2

2

2
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   (5) 

It can easily be seen that at   , the new QLD (5) reduces to the Lindley distribution (1) 

and at 0 , it reduces to the exponential distribution with parameter . 

The df  of the new QLD is obtained as 

2
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 .        (6) 

The failure rate function )( frf  of New Quasi Lindley distribution with parameters   and   is 

given by 

.
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The reverse failure rate function )(rfrf of NQLD with parameters  and   is given by 

.
)()(
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The 
thk moment (about the origin) of the NQLD with parameters   and    is given by 
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Several properties of NQLD have been given by [14] and they showed that NQLD is more 

flexible than Lindley distribution, exponential distribution, and QLD. They also showed that 

NQLD is closer fit than exponential distribution, Lindley distribution and QLD in goodness of fit. 

Several characterization results of Lindley distribution has been given by [6]. They 

characterized Lindley distribution through left and right truncated moments. Conditional 

expectation of order statistics is used to characterize Lindley distribution by [7]. In this paper, we 

have obtained characterization results for quasi Lindley distribution. 

2. Characterizations through Truncated Moments:

First, we give the following two lemmas which are used to prove Theorem 1 and Theorem 2 

respectively. 

Lemma 1: Suppose that the random variable X  has an absolutely continuous df  )(xF with 

0)(,0)0(  xFF for all )(')(, xFxfpdfx  ,
)](1[

)(
)(

xF

xf
xrfrf


 . Let )(xg be a 

continuous function in 0x  and  )]([0 XgE . If 

)()(]|)([ xrxhxXxgE  0x  

where h(x) is a differentiable function in 0x , then 
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where 0K is a normalizing constant [6]. 

Lemma 2: Suppose that the random variable X  has an absolutely continuous cdf  )(xF

with 0)(,0)0(  xFF  for all )(')(, xFxfpdfx  ,
)(

)(
)(

xF

xf
xrfrf  . Let )(xg  be a 

continuous function in 0x  and  )]([0 XgE . If 

)()(]|)([ xrxwxXxgE  0x  

where w(x) is a differentiable function in 0x , then 
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where 0K is a normalizing constant [6]. 

Theorem 1: Suppose that the random variable X  has absolutely continuous distribution with the 

pdf )(xf and df )(xF  with 0)0( F , 0)( xF for all 0x  and frf
)(1

)(
)(

xF

xf
xr


 .

Assume that  ][0 kXE for a given positive integer k . Then X has NQLD with parameters 

 and   if and only if

j
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where
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Proof: for necessary condition, we have
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From relation among dfpdf , and frf , we have 
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From (5), we have 












 







x

yk

x

k dyeyy
ex

xr
xXXE 





)(

)(

)(
)]|([

    










 











x

yk

x

yk

x
dyeydyey

ex

xr 






1

)(

)(
.   (13) 

The following integration result given by [15] (pg-340) is used to solve the above integration
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Using (14), we can write (13) as 
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and hence the necessary part 
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Using the recurrence relations of the k ’s, we have
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From (15) and (16), we have 
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Also from (15) 
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Differentiating (18) with respect to x , we have 
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From (17) and (19), we have 
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Integrating (20) over ),0( x , we have
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Using Lemma 1 given by [6] in (21), we have 
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which is the pdf  of NQLD and hence sufficiency part. 

Remark 1: Putting    in Theorem 1 we get the characterizing result for Lindley distribution 

obtained by [6]. 

Remark 2: Putting 0  in Theorem 1 we get the characterizing result for exponential )(  

distribution. 

Theorem 2: Suppose that the random variable X  has absolutely continuous distribution with the 

pdf )(xf and df )(xF  with 0)0( F , 0)( xF for all 0x  and the rfrf
)(

)(
)(

xF

xf
x  . 

Assume that  ][0 kXE for a given positive integer k . Then X   has NQLD if and only if 
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From (5), we have 
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The following integration result given by [15] (pg-340) is used to solve the above integration 
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From (24) and (25), we have 
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kxxg )( and 

)(
)(

1

0

0

x

xe

xw

k

j

j

j

x



 











.            (26) 

From equations (16) and (26), we have 
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Also from equation (26) 


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Differentiating (28) with respect to x , we have 
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Using (27) in above equation, we have 
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Integrating (29) over ),0( x , we have
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Using Lemma 2 given by [6], we have 
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whereC  is normalizing constant i.e. 1)(
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Therefore, 
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which is the pdf  of NQLD and hence the theorem. 

Remark 3: Putting    in Theorem 2 we get the characterizing result for Lindley distribution 

obtained by [6]. 

Remark 4: Putting 0  in Theorem 2 we get the characterizing result for exponential )(  

distribution. 

Characterization through conditional expectation of order statistics 

Theorem 3: Let X  be a continuous random variable with )(xFdf  and )(xfpdf . Then for 
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if and only if X has the df given in (6). 

Proof: First we will prove (6) implies (31). 

We have 
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From (5) and (6), we have 
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Integrating (32) by parts and then re arranging, we have 
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Differentiating above equation with respect to x , we have 
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Using (33) in above equation, we have 
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Taking the limits of integral in (34) from 0 to x , we have 
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Using the result given by [16], we have 
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and hence the theorem. 

Remark 5: Putting   in Theorem 3, we get the characterization result for Lindley distribution 

as obtained by [7]. 

Remark 6: Putting 0  in Theorem 3, we get the characterization result for exponential )(  

distribution. 

3. Applications
A probability distribution can be characterized in many ways and the method under study here is 

one of them. We have used here the relation between truncated moments and failure rate functions 

as well as conditional expectation of order statistics conditioned on an adjacent order statistics to 

characterize the new quasi Lindley distribution. That is, we have characterized the new quasi 

Lindley distribution if the regression equation truncated from both sides is given, i. e. the data are 

truncated from left side at x and truncated from right side at y. In real practice, several times we 

get the data of which observations are missing either in beginning or in the end. In such type of 

data we can use the result of this paper.  
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