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Abstract

The xgamma distribution is vital in reliability/survival analysis and biomedical research. In this article,
different estimation methods are proposed for the parameter of this distribution. The distribution is a
unique finite mixture of exponential distribution and gamma distribution. Some further properties of the
distribution that are not available in the earlier literature are studied. We consider the maximum likelihood
estimatot, least squares estimator, weighted least squares estimator, percentile estimator, the maximum
product spacing estimator, the minimum spacing absolute distance estimator, the minimum spacing
absolute log-distance estimator, Cramér von Mises estimator, Anderson Darling estimator, right-tailed
Anderson Darling estimator, and compare them using a comprehensive simulation study. For comparison
purposes, the estimators’ bias and mean squared error are considered. A real data example is also a part of
this work. Some model selection techniques are used to choose the best fitting of the distribution to the
data.

Keywords: Bootstrap confidence intervals; classical methods of estimation; entropy; mixture
distribution; stress-strength reliability.

1. INTRODUCTION

The xgamma distribution was introduced by Sen et al. [14]. It is a mixture distribution of
Fi(x) ~ Exp(0) and F(x) ~ Gamma(3,6) with their mixing proportions 1y = 6/(1+ 6) and
mty = 1 — 7y respectively. The probability density function (pdf) and cumulative distribution
function (cdf) of the xgamma distribution are, respectively, given by

6° 0 2\ ,—0x
f(x;()):(1+9)<1+2x>e ,  x>0,0>0 1)

and

(1+0+0x+22)
(1+6)

F(x;0) =1— e, x>0,6>0. 2)
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The distribution has gained widespread popularity using reliability, survival analysis and biomed-
ical research. The distribution does not belong to the regular exponential family of distributions;
hence, the statistical inferential aspects are not used for the exponential family. The present
study aims to estimate the parameter of the xgamma distribution with seven different methods.
From the literature survey, there is little attempt made in this direction, and this article is an
effort to fill the gap. For this reason, the maximum likelihood estimator (MLE), least squares
estimator (LSE), weighted least squares estimator (WLSE), Crmer“von Mises estimator (CvME),
Maximum product of spacings estimator (MPSE), Anderson-Darling estimator (ADE), and Right-
tail Anderson-Darling estimator (RADE) have been considered for estimation.

The article is organized as follows. Section 2 introduces some further properties of the xgamma
distribution. In Section 3, we introduce seven different methods of estimation. A comprehensive
Monte Carlo simulation study is presented to evaluate the performances of these estimators
concerning bias and mean squared error (MSE) criteria in Section 4. In Section 5, we consider a
real data illustration. The concluding remarks are made in Section 6.

2. NEew PROPERTIES

This section discusses some new statistical properties that have yet to be available in earlier
literature.

2.1. Incomplete Moments, Mean Deviations, and Lorenz and Benferroni Curves

The ! incomplete moment, say, m.(t), of the xgamma distribution is given by

ml(t) = /Otx’f(x)dx

y(r+1,0t)  (r+3,6t)
1+0)o1 " 20+0)0

Apart from range and standard deviation, mean deviation about the mean, §; and median,
0y are used as measures of spread in a population. Incomplete moments are used to define
81 = 2p F(y) — 2ml (u}) and 6, = p) — 2ml (1) respectively. Here, y; = E(X) is to be obtained
from 7" moment of xgamma distribution with » = 1, F (P‘;) is to be calculated from , ml (yll) is
the first incomplete function obtained from the above equation with » = 1.

mi (xp)
(p1y)
tively, where x, = F~!(p) can be computed numerically by the quantile function with u = p.
These curves are significantly used in economics, reliability, demography, insurance, and medicine.
We refer to Pundir, Arora, and Jain[28] and the references cited therein for details on this aspect.

The Lorenz and Benferroni curves are defined by L(p) = mi(x,)/ yll and B(p) = , respec-

2.2. Entropies

The entropy measures the variation of the uncertainty of X, a random variable. A popular entropy
measure is Renyi entropy [13]. If X has the pdf, f(x), then Renyi entropy is defined by

Hr(B) = 115 In {/Ow fﬁ(x)dX} 3)

where > 0 and B # 1. Suppose X has the pdf in (2). Then, the Renyi entropy of xgamma

distribution is
) BB\ 02P=i1 T(2i+1)
Hg(B) = 1_[51“{2<i>2i(1+9)5 prt }

i=0
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Shannon measure of entropy is defined as
H(f) = E[-Inf(X)]

_ [6+3 62 o ;. T(2i+1) & . T(2i+3)
B {9+1} i {1 +9} _Z;(_l) 2((1+6)6i-1 —2(-1) 271 (14 0)6

2.3. Stress-Strength Reliability

The Stress-Strength model is the life of a component with a random strength X subjected to a
random stress Y. When a component experiences stress greater than its capacity to withstand, i.e.,
strength, it breaks and works well when X > Y. So, Stress-Strength Reliability is R = P(Y < X).
Let X ~ xgamma(61) and Y ~ xgamma(6,) be independent random variables. Then Stress-
Strength Reliability

R = P(Y<X)
= '/0 Gy(x)f(x)dx
= 1— 0% .
(91+92)(1+91)(1+92)
02 + 616, + 6 6620
(1+6)+ 61 T+ 12+22 361923 124 '
(61 +62) (01 +62) (01+62)3  (61+6,)

Also if 67 = 6, = 6, then

2.4. Moments of the residual life

The residual life function is essential in reliability /survival analysis, social studies, bio-medical
sciences, economics, population study, the insurance industry, maintenance and product quality
control, and product technology. Let X denote the lifetime of a unit at age t, then X; = X —t |
X >t is the remaining lifetime beyond that age t.

The cdf F(x) is uniquely determined by the 7" moment of the residual life of X (forr = 1, 2, ...)
[Navarro, Franco, and Ruiz [10], and it is given by

mlt) = g | - rdE)

_ (1+6)e™ S i) LU =06t s i1 D3 i 6t)
(14646 + 82 L_Zo( b (z‘)t (1+6)0—i-1 +i§0( 2 (i)t 201+ 6)0r ]

In particular, if r = 1, then m; () represents an important function called the mean residual life
(MRL) function, representing the average life length for a unit alive at age ¢.

2.5. Moments of the reversed residual life

In some real-life situations, uncertainty is not only related to the future but can also refer to the
past. Consider a system whose state is observed only at a specific preassigned inspection time ¢.
If the system is inspected for the first time and found to be ‘down’, failure relies on the past, i.e.
on which instant in (0, ) it has failed. So, the study of a dual notion of the residual life that deals
with the past time seems worthwhile [see Di Crescenzo and Longobardi [6]]. If X, a random
variable denotes the lifetime of a unit is down at age t, then X; =t — X | X < t indicates the idle
time or inactivity time or reversed residual life of the unit at age ¢.
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In the case of forensic science, people may be interested in estimating X; to ascertain a person’s
exact time of death. In the Insurance industry, it represents the period that remained unpaid by a
policyholder due to death. The 7" moment of X; (for r = 1, 2, ...) is given by

i) = g 00

! Sy () UL g (1) (i 43,61)
{1 ot [Zo( v () e+ 50 () S e

2 i=0
(1+96)

In particular, if » = 1, then 1711 (t) represents a function called the mean idle time or inactivity
time (MIT) or reversed residual life (MRRL) function that indicates the mean inactive life length
for a unit which is first observed down at age t. The properties of the MIT function have been
explored by Ahmad, Kayid, and Pellerey [1] and Kayid and Ahmad [7].

3. ESTIMATION ON DISTRIBUTION PARAMETER

In this section, we describe seven estimation methods, namely, MLE, LSE, WLSE, CvME, MPSE,
ADE and RADE, to obtain the estimators of the parameter 6 of the xgamma distribution.

3.1. Maximum likelihood estimator

Let (X1, X, ..., Xy) is a random sample from the distribution in . Then, the log-likelihood
function is given by

n 9 n
£(0) =2nlogf —nlog(1+6) + Y log(1+ EX?) -0Y X (4)
i=1 i=1

The derivative of the log-likelihood function is

X2
ae(o) 2n n z TS
=Y = = __V'X . 5
w 0T BNt R v

Equating this to zero does not yield a closed-form solution for the MLE; thus, a numerical method,
like Newton Raphson, is used to solve this equation.

3.2. Ordinary and weighted least squares estimator

The ordinary least squares and weighted least squares estimators were proposed by Swain et al.
[16] to estimate the parameters of Beta distributions. Suppose F(X;.,|6) denotes the cumulative
distribution function of the ordered random variables Xj., < X5.;, < - -+ < X;;.;; of size n from a
distribution function F(-|0). Therefore, in this case, the least square estimator of 6, say, f; s can
be obtained by minimizing the function

n

S(6) = Y- |F (Xial®) - 5 ]2

i=1 n+1

with respect to 6, where F(-|0) is the cdf, given in Eqn. 2| Equivalently, this can be obtained by
solving;:

3 [F (00— | (1 0) =0,

i=1
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where,
02 2 0X;
m (Xin | 0) = i+0 9+(9 1)(1+XZ‘:”)+9(2—1)X ] i (6)

The weighted least squares estimator of 6, say, éWLS £, can be obtained by minimizing

" (n41)* (n+2) i 17
ZZ%n—H—l){F(Xi:"w)_n%—J |

This estimator can also be obtained by solving the following:

n+1 )2 (n+2) i

im—i+1)

-

[F (Xiin | 6) — 1} m (Xin |0) =0

where 71 (- | 6) is given in Equation (6).

3.3. Cramer-von-Mises estimator

To motivate our choice of Cramer-von-Mises type minimum distance estimators, MacDonald [8]
provided empirical evidence that the estimator’s bias is smaller than the other minimum distance
estimators. Thus, the Cramer-von-Mises estimator of 8, say 6c,pr can be obtained by minimizing

2i—1

C(8 +Z[ X |6) — 2; r

with respect to 6. This estimator can also be obtained by solving the non-linear equations

i[ Xin | 0) = 2'_1}’71(Xi:n|9)=0

where 71 (- | 6) is given in Equation (6).

3.4. Maximum product of spacings estimator

The maximum product spacing method was introduced by Cheng and Amin [4] as an alternative to
MLE to estimate the unknown parameters of continuous univariate distributions. The maximum
product spacing method was also derived independently by Ranneby [12] as an approximation
to the Kullback-Leibler measure of information. To motivate our choice, Cheng and Amin [5]
proved that this method is as efficient as the MLE estimators and consistent under more general
conditions. We define the uniform spacings of a random sample from the xgamma distribution
as:
Di(9>:F(Xi:n ‘9)_F(Xz’—l:n |6), i:1,2,...,l’l,

where F(Xo., | 0) = 0 and F(X,, 41, | #) = 1. Clearly Zl@'ll D;(#) = 1. The maximum product of
spacings estimator @psg, of the parameter 6 is obtained by maximizing, with respect to 6, the
geometric mean of the spacings:

n+1 n+1
G(0) = |T1Di6) @)
i=1
or, equivalently, by maximizing the function
n+1
H(0) = log D;
©)= 77 L o8 DiC®) ®)

233



Sukanta Pramanik, Sandipan Maiti RT&A, No 4 (76)
DIFFERENT ESTIMATION METHODS OF XGAMMA DISTRIBUTION... Volume 18, December 2023

The estimator §ps of the parameter 6 can be obtained by solving the non-linear equation

d 1 n+1 1
%H(Q) = m E{ Di(G) [ﬂl(Xi:n|/9) - 771(Xi—1:n|/9)} =0

where, 11 (- | 8) is given in Equation (6).

3.5. Anderson-Darling and Right-tail Anderson-Darling estimators

The Anderson-Darling (AD) test [see Anderson and Darling [2]]] is an alternative to other statistical
tests for detecting sample distribution’s departure from normality. Specifically, the Anderson-
Darling test converges very quickly towards the asymptote [see Anderson and Darling [3]], Pettitt
[11] and Stephens [15]]. The Anderson-Darling estimator 0 Apt of the parameter 6 are obtained
by minimizing, with respect to 6, the function:
18 -
A(9> = —n- E Z (Zi - 1) {IOgF (Xi:n | 9) + IOgF (XnJrlfi:n | 9)} . (9)
i=1

This estimator can also be obtained by solving the non-linear equations:

i (2i — 1) 1 (Xin | 0) _ Zl (X,Hlfi:n | 9) _ 0
=1 F(Xin [0)  F(Xus1-ion | 6)

where, 1 (- | 0) is defined in Equation (6).
The right-tail Anderson-Darling estimator A 4pr of the parameter 6 is obtained by minimiz-
ing, with respect to 6, the function:
n " 1 =
R(Q) - E -2 Z E (Xi:n | 9) - ; Z (21 - 1) IOgF (XnJrlfi:n | 9) . (10)
i=1 i=1

These estimators can also be obtained by solving the non-linear equations:

n " X | o
_ZZUl(Xi:n|9)+12(2i—l)M

=0
i1 ni3 F(Xp41-im | 0)

where, 1 (- | 8) is defined in Equations (6).

4. SIMULATION STUDY

In this section, we have carried out a Monte Carlo simulation study to assess the performance of
the proposed estimators (MLE, LSE, WLSE, CvME, MPSE, ADE and RADE) of the parameter
6 for the xgamma distribution. First, we generate random data from the xgamma distribution
where we can use the fact that the xgamma distribution is a special mixture of the exponential(f)
and gamma(3,0) distributions. To generate random data X;,i =1, 2, 3, .... n, from the xgamma
distribution with parameter 6, we can use the following algorithm:

1. Generate U; ~ uniform(0,1),i=1,2,3, ... n

2. Generate V; ~ exponential(¢),i=1,2,3, ... n

3. Generate W; ~ gamma(3, 6),i=1,2,3,..n

4. It U; < 0/(1+0), then set Z; = V;. Otherwise, set Z; = W;
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Table 1: True value of 0 and the average bias of the different estimation procedures for xgamma distribution

Y n MLE LSE WLSE CvME MPSE ADE RADE
10 | 0.003704 | 0.002111 | 0.001874 | 0.002768 | 0.001992 | 0.001884 | 0.001008
20 | 0.001981 | 0.001151 | 0.001088 | 0.001505 | 0.001511 | 0.001123 | 0.000638
0.1 | 40 | 0.000934 | 0.000556 | 0.000529 | 0.000735 | 0.001200 | 0.000531 | 0.000310
70 | 0.000544 | 0.000318 | 0.000318 | 0.000421 | 0.000845 | 0.000302 | 0.000156
100 | 0.000392 | 0.000223 | 0.000233 | 0.000296 | 0.000657 | 0.000219 | 0.000120
10 | 0.025356 | 0.016170 | 0.014216 | 0.021056 | 0.009505 | 0.014093 | 0.008516
20 | 0.011770 | 0.007034 | 0.006230 | 0.009586 | 0.009145 | 0.006256 | 0.003748
0.5 | 40 | 0.005585 | 0.003072 | 0.002902 | 0.004403 | 0.007156 | 0.002951 | 0.001367
70 | 0.003144 | 0.002050 | 0.002021 | 0.002805 | 0.005178 | 0.001866 | 0.000982
100 | 0.001619 | 0.000868 | 0.000826 | 0.001398 | 0.003546 | 0.000768 | 0.000143
10 | 0.066489 | 0.051949 | 0.046934 | 0.063382 | 0.021548 | 0.041516 | 0.027305
20 | 0.027416 | 0.017687 | 0.015768 | 0.023747 | 0.016970 | 0.014983 | 0.008669
1 | 40 | 0.017020 | 0.012473 | 0.012031 | 0.015611 | 0.013533 | 0.011465 | 0.007898
70 | 0.008023 | 0.004010 | 0.004044 | 0.005801 | 0.011038 | 0.003737 | 0.002373
100 | 0.005219 | 0.002871 | 0.003082 | 0.004134 | 0.008104 | 0.002752 | 0.001560
10 | 0.107576 | 0.079362 | 0.071569 | 0.097780 | 0.039168 | 0.062468 | 0.040920
20 | 0.051824 | 0.037330 | 0.033998 | 0.047283 | 0.029162 | 0.032012 | 0.021111
1.5 | 40 | 0.024598 | 0.015411 | 0.014735 | 0.020502 | 0.023889 | 0.013955 | 0.009203
70 | 0.014383 | 0.009096 | 0.009045 | 0.012023 | 0.017182 | 0.008117 | 0.005517
100 | 0.011339 | 0.008878 | 0.008546 | 0.010944 | 0.011182 | 0.008025 | 0.005675

A Monte Carlo simulation study was carried out considering N = 5000 times for selected values
of n, 0. For the first simulation, samples of sizes 10, 20, 40, 70 and 100 were considered, and
values of 6 were taken as 0.1, 0.5, 1.0, 1.5. The required numerical evaluations are carried out
using R 3.1.1 software. The following two measures were computed:

1. Average bias of the simulated estimate 6, fori=1,2, 3, ....Nis % Zfil (éi —0)

2. Average Mean Square Error (MSE) of the simulated estimate 0, for i=1, 2, 3, ..., N is
N (0; - 0)

In Table 1, we have calculated the average bias of the parameter 6 using MLE, LSE, WLSE,
CvME, MPSE, ADE and RADE.
In Table 2, we have calculated the average MSEs of the parameter 6 using MLE, LSE, WLSE,
CvME, MPSE, ADE and RADE.
Table 1 shows that
(i) Bias decreases as n increases.
(ii) Bias decreases as the values of 0 increases.
Table 2 shows that
(i) MSE decreases as n increases.
(ii) MSE decreases as the values of 0 increases.
Comparing the Tables and Figures even though the MLE is comparatively easy to
calculate, the ADE or RADE is preferable from the bias and MSE point of view.

5. DAtA ANALYSIS

The data set is given by Murthy et al. [9] and represents the failure time of 20 components.
The data are 0.072, 4.763, 8.663, 12.089, 0.477, 5.284, 9.511, 13.036, 1.592, 7.709, 10.636, 13.949,
2.475,7.867,10.729, 16.169, 3.597, 8.661, 11.501 and 19.809. A summary of these data is: n = 20,
X = 8.42945, s = 5.322056, skewness = 0.1769692, kurtosis = 2.430915. The box plot and the Total
Time on Test (TTT) plot of these observations are displayed in Figure[3| The box plot indicates
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Figure 1: Average bias and MSE of the estimator of xgamma distribution for different estimation procedures
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Figure 2: Average bias and MSE of the estimator of xgamma distribution for different estimation procedures
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Table 2: True value of 0 and the average MSEs of the different estimation procedures for xgamma distribution

0 n MLE LSE WLSE CvME MPSE ADE RADE
10 | 0.000439 | 0.000502 | 0.000483 | 0.000506 | 0.000381 | 0.000443 | 0.000414
20 | 0.000199 | 0.000229 | 0.000217 | 0.000230 | 0.000184 | 0.000209 | 0.000197
0.1 | 40 | 0.000091 | 0.000106 | 0.000100 | 0.000106 | 0.000088 | 0.000097 | 0.000093
70 | 0.000052 | 0.000061 | 0.000057 | 0.000062 | 0.000050 | 0.000056 | 0.000053
100 | 0.000036 | 0.000042 | 0.000039 | 0.000042 | 0.000036 | 0.000039 | 0.000037
10 | 0.013628 | 0.016936 | 0.015879 | 0.017242 | 0.011157 | 0.013783 | 0.012303
20 | 0.005962 | 0.007405 | 0.006890 | 0.007501 | 0.005361 | 0.006442 | 0.005854
0.5 | 40 | 0.002634 | 0.003267 | 0.003026 | 0.003294 | 0.002502 | 0.002930 | 0.002677
70 | 0.001539 | 0.001940 | 0.001776 | 0.001949 | 0.001497 | 0.001739 | 0.001597
100 | 0.001069 | 0.001308 | 0.001205 | 0.001312 | 0.001057 | 0.001189 | 0.001106
10 | 0.069448 | 0.100324 | 0.093373 | 0.101749 | 0.053900 | 0.072068 | 0.062812
20 | 0.028016 | 0.034550 | 0.031993 | 0.035101 | 0.024756 | 0.029757 | 0.027279
1 | 40 | 0.012726 | 0.015990 | 0.014680 | 0.016163 | 0.011771 | 0.014040 | 0.012747
70 | 0.007001 | 0.008904 | 0.008123 | 0.008952 | 0.006748 | 0.007925 | 0.007184
100 | 0.004781 | 0.006223 | 0.005606 | 0.006245 | 0.004748 | 0.005514 | 0.004999
10 | 0.178790 | 0.256766 | 0.239198 | 0.260282 | 0.136610 | 0.181424 | 0.156670
20 | 0.073687 | 0.097266 | 0.089498 | 0.098933 | 0.063242 | 0.080475 | 0.071668
1.5 | 40 | 0.032243 | 0.041780 | 0.037965 | 0.042180 | 0.029828 | 0.036235 | 0.032962
70 | 0.017389 | 0.022625 | 0.020359 | 0.022757 | 0.016632 | 0.019824 | 0.018033
100 | 0.012620 | 0.016351 | 0.014757 | 0.016432 | 0.007166 | 0.014528 | 0.013152
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Figure 3: Box plot and TTT plot for the failure time data
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Table 3: Summarized results of fitting different distributions for failure time data set

xgamma Akash Exponential Lindley  Shankar Sujatha

14 -60.0189  -61.6744 -62.6346 -61.3792  -62.2797 -61.8345
AIC 122.0378 125.3488 127.2693 1247583 126.5595 125.6689
BIC 123.0336  126.3445 128.2650 125.7541 127.5552 126.6647

CAIC 1225357 1255710 127.4915 1249805 126.7817 125.8912
HQIC 1222322 125.5431 127.4636 1249527 126.7538 125.8633

Table 4: Estimated values with SEs for fitting different distributions for failure time data set

xgamma Akash  Exponential Lindley Shankar Sujatha

Omre 03005 03427  0.1186 02162 02352  0.3293
(SE)  (0.0105)  (0.0254) (0.0315) (0.0202)  (0.0237)  (0.0247)
0.5 02503 03150  0.0954 0.1930 02067  0.3026
(SE)  (0.0112)  (0.0235) (0.0235) (0.0164)  (0.0200)  (0.0225)
Owise 02610 03192  0.1041 02002 02133  0.3073
(SE)  (0.0124)  (0.0237) (0.0265) (0.0176)  (0.0208)  (0.0229)
Ocome 02512 03309  0.1003 02019 02179 03174
(SE)  (0.0113)  (0.0245) (0.0252) (0.0178)  (0.0214)  (0.0237)
Oupse 03024 03171 0.0964 0.1945 02083  0.3047
(SE)  (0.0178)  (0.0236) (0.0239) (0.0167)  (0.0201)  (0.0227)
Oape 02690 03206  0.1071 02134 02166  0.3208
(SE)  (0.0133)  (0.0238) (0.0275) (0.0197) (0.0212)  (0.0240)
Orape 02381 03268  0.1034 0.1969 02284  0.3285
(SE)  (0.0107)  (0.0243) (0.0263) (0.0170)  (0.0227)  (0.0246)

that the distribution is right-skewed. The TTT plot suggests an increasing failure rate; thus, the
xgamma distribution could be appropriate for modeling the current data. Figure |4/ shows the
fitted probability distribution and empirical distribution function of the xgamma distribution
based on different estimates of the parameter to the data set. Table [3| summarises the results
of fitting different distributions. Based on the results listed in the table, we conclude that the
xgamma distribution provides the best fit with the lowest values of model selection criteria.
The xgamma model provides the closest fit to the data. In Table [}, we have presented different
estimates of 8 under various distributional assumptions to the data and their corresponding
standard error (SE). It is also noticed that the SE is the least for the assumption of xgamma
distribution, and the MLE and RADE are efficient estimates.

6. CONCLUDING REMARKS

In this paper, different estimation procedures of the parameter of the xgamma distribution have
been studied. Simulation studies are carried out for seven different initial values. As the sample
size increases, the MSEs and biases of all estimators decrease and become close to each other. In
a small sample situation, the MSEs of the ADE and RADE are smaller than the others. A real
data application is conducted to show the appropriateness of xgamma distribution in practical
data modelling. The xgamma distribution was compared with some known distributions and
presented the estimates according to various parameter estimators. The xgamma distribution
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Figure 4: The fitted pdfs and cdfs of xgamma distribution for different methods of estimation based on failure time data

is the best-fitting model for some failure time data, and the ADE and RADE are preferable for
estimating the parameter even though the MLE has computational ease.
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